Количество электричества формула: Определение силы тока. Единицы измерения силы тока

Содержание

Направление и величина электрического тока. Количество электричества

  

Мы неоднократно подчеркивали, что электроны в электрическом поле перемещаются от точек с более низким потенциалом к точкам с более высоким потенциалом. Следовательно, и в электрической цепи, показанной на рис. 1, электроны движутся от отрицательного полюса источника электрической энергии к положительному: поэтому следовало бы считать, что электрический ток идет от минуса (—) к плюсу ( + ).

Рисунок 1. Простейшая электрическая цепь

 

Однако до объяснения электрических явлений с точки зрения электронной теории, т. е. когда природа электрического тока не была достаточно изучена, полагали, что ток идет от положительного полюса источника к отрицательному.

Чтобы не менять этого установившегося и прочно вошедшего в практику положения, решили сохранить такую условность и считать, что ток идет от плюса к минусу, как показано на рис.

2. В действительности же в металлических проводниках ток проходит в обратном направлении.

Рисунок 2. Направление движения электронов в проводнике и направление тока 

 

С ростом напряженности внешнего электрического поля увеличивается сила, действующая на электроны в проводнике. Электроны начинают перемещаться по проводнйку быстрее, а значит, увеличивается количество электричества, проходящее через поперечное сечение проводника в единицу времени.

Для характеристики интенсивности движения электрических зарядов в проводниках вводится понятие о силе тока или токе.

Определение:

 Силой тока называется количество электричества, проходящее через поперечное сечение проводника в единицу времени.

Сила тока (ток) обозначается буквой I или i.

Если за время t через поперечное сечение проводника прошло количество электричества q, то ток в проводнике можно определить по формуле:

За единицу тока принимается ампер (сокращенно обозначается буквой  А). В ГОСТ  приведено следующее определение этой основной электрической единицы: «ампер — сила неизменяющегося тока, который, проходя по двум параллельным прямоугольным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2*10

-7 единицы силы  на каждый метр длины».

Следует подчеркнуть, что ампер — единственная основная электрическая единица. Все остальные единицы, используемые при электрических и магнитных измерениях, определяются через четыре основные единицы Международной системы единиц (метр — килограмм — секунда — ампер).

Единица измерения тока названа по имени французского физика и математика Андре Мари Ампера (1775—1836), открывшего закон взаимодействия электрических токов и предложившего новую гипотезу для объяснения магнитных свойств вещества.

В радиотехнике часто приходится иметь дело с токами, величина которых в тысячи и даже миллионы раз меньше одного ампера. Такие токи измеряются в миллиамперах (сокращенно обозначается мА или mА) или в микроамперах (сокращенно обозначается мкА или μА). Миллиампер одна тысячная доля ампера, т. е.

1 мА = 0,001 А, или 1 А = 1000 мА.

Микроампер — это одна миллионная доля ампера или одна тысячная доля миллиампера, т. е.

1 мкА = 0,001 мА = 0,000001 А.

Полезно запомнить также следующие соотношения:

1 мА= 1000 мкА = 0,001 А; 1 А = 1000 мА = 1 000 000 мкА.

При рассмотрении вопросов взаимодействия зарядов мы сказали, что количество электричества измеряется в кулонах. При этом количество электричества в 1 кулоне соответствует приблизительно общему заряду 6 • 1018 электронов. Сейчас можно дать более строгое определение кулона:

Определение: кулон — это количество электричества, проходящее через поперечное сечение проводника в течение 1 секунды при неизменяющемся токе в 1 ампер.

Эта единица количества электричества часто называется ампер-секундой (сокращенное обозначение А-с).

На практике количество электричества измеряется в ампер-часах (А-ч).

Если известен ток I в проводнике, то количество электричества q, прошедшее через поперечное сечение проводника за время t, можно определить по формуле:

где q — в кулонах; I— в амперах; t — в секундах.

Для измерения тока в цепи применяются приборы, называемые амперметрами. Амперметр включается в цепь так, чтобы через него проходил весь измеряемый им ток (рис. 3). 

Рисунок 3. Схема включения амперметра в электрическую цепь.

 Б — источник напряжения; PA — амерметр; EL — нагрузка (лампа).

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Измерение количества электричества — Справочник химика 21

    Способы измерения количества электричества в кулонометрии [c. 521]

    Единицей измерения количества электричества является кулон — количество электричества, проходящее через проводник при токе силой 1 а за время [c.425]

    Современные кулонометрические приборы включают все необходимые узлы, позволяющие проводить анализ как методом кулонометрического титрования, так и методом потенциостатиче-ской кулонометрии. К таким приборам относится хроноамперо-метрическая система СХА-1,1. В СХА входит программное устройство, задающее напряжение на электродах, потенциостат для поддержания электрических режимов на электродах, интегратор тока для измерения количества электричества и потенциометр для фиксирования конечной точки титрования. 

[c.165]


    На использовании закона Фарадея основан способ измерения количества электричества — кулонометрия. Приборы, применяемые для этого, называются кулонометрами. Существуют три группы кулонометров весовые, объемные и титрационные.
[c.21]

    Кулонометрия объединяет методы анализа, основанные на измерении количества электричества, затраченного на электрохимическую реакцию. Последняя приводит к количественному окислению или восстановлению определяемого вещества или же [c.161]

    Кулонометрия основана на законах Фарадея, так что ее можно рассматривать как метод, обратный методу, предложенному М. Фарадеем для измерения количества электричества с помощью химического кулонометра. Между количеством вещества и количеством электричества существует следующая зависимость  

[c.266]

    Потенциостатическая кулонометрия основана на измерении количества электричества, затраченного на электрохимическое окисление или восстановление определяемого вещества, причем при электролизе потенциал рабочего электрода поддерживается постоянным, и значение его таково, что электрохимическая реакция протекает со 100%-ной эффективностью тока. [c.174]

    Кулонометрический метод анализа (кулонометрия) основан на измерении количества электричества, затрачиваемого на электрохимическое превращение вещества.[c.144]

    Кулонометрия основана на измерении количества электричества, израсходованного на электролиз определенного количества вещества при постоянном потенциале, который соответствует потенциалу выделения данного элемента. В основе этого метода лежит закон Фарадея. 

[c.26]

    Кулонометрию при постоянной силе тока применяют, если необходимо провести высокоселективные определения. По сравнению с методом потенциостатической кулонометрии она обладает рядом достоинств меньшей продолжительностью электролиза и более удобным способом измерения количества электричества, рассчитываемого по формуле Q = it. Небольшую силу тока, которая дает возможность полностью осуществить электролиз растворов с большими концентрациями ионов металлов за удовлетворительное время, можно легко поддерживать постоянной, включив последовательно с кулонометрической ячейкой высокое внешнее сопротивление и применяя высокое напряжение источника питания (батареи). Силу тока определяют по уравнению 

[c. 272]

    Обычно на электродах имеют место одновременно несколько электрохимических реакций, поэтому лишь некоторые электрохимические системы можно иопользовать для измерения количества электричества с помощью /специальных приборов — кулонометров, принцип действия которых основан на пр(имене-нии закона Фарадея. Уже Гельмгольц высоко оценил значение открытия Фарадеем закона электролиза, поскольку благодаря этому открытию и используя атомно-молекулярные представления были сделаны выводы о корпускулярных свойствах электричества . 

[c.309]


    ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ КОЛИЧЕСТВА ЭЛЕКТРИЧЕСТВА [c.211]

    Во второй группе определений используют обратный процесс — анодное окисление металлов, предварительно выделенных электролизом из анализируемого раствора. Эти определения основаны на измерении количества электричества, затраченного на анодное растворение металла  [c.221]

    Так как в потенциостатической кулонометрии в цепи электрохимической ячейки протекают токи, изменяющиеся во времени, а о количестве определяемого вещества судят по количеству электричества, прошедшего через ячейку, для измерения Q применяют кулонометры. При этом точность определений зависит от точности измерения количества электричества или метода интегрирования кривых ток-время. Выбор кулонометра или способа измерения Q зависит не только от требуемой точности определения, но и от величины тока, от ожидаемого количества электричества и от сопротивления раствора. Современные приборы снабжены электронными интеграторами с цифровым отсчетом. При этом отпадает необходимость в строгой стабилизации тока, так как интегратор точно фиксирует количество электричества, затраченное в процессе электролиза. [c.528]

    КУЛОНОМЕ№ИЯ — электрохимический метод анализа, основанный на измерении количества электричества, расходуемого на электролитическое восстановление или окисление. [c.142]

    Определение теплоемкости калориметрической системы. Теплоемкость калориметрической системы определяют, пропуская через нагреватель точно измеренное количество электричества. Включают электропривод мешалки, получают отсчеты температуры предварительного периода. Затем включают нагреватель и одновре-менпо секундомер время включения задано вариантом работы. Следует записать в ходе главного периода показания вольтметра и амперметра. По истечении заданного времени выключают ток нагревателя, однако главный период этим не заканчивается, температура продолжает подниматься вследствие тепловой инерции нагревателя. Получив не менее 10 отсчетов равномерного уменьшения температуры в заключительном периоде, опыт прекращают. Выливают раствор соли и осколки стекла в специальный сборник, промывают калориметрическую систему дистиллированной водой. [c.20]

    Требуется измерить количество электричества (постоянный ток), прошедшего через раствор или какой-либо прибор. В распоряжении имеются только точный амперметр и секундомер. Сила тока во времени изменяется. Как осуществить измерение количества электричества  [c.18]

    Для измерения количества электричества используют электрохимические кулонометры. [c.64]

    Приборы для измерения количества электричества, израсходованного на электролиз вещества [c. 211]

    Метрологические свойства метода. Измерение количества электричества можно производить достаточно точно время измеряется с точностью выше 0,1%, ток может регулироваться вручную с точностью ] % и автоматически с точностью +0,1 %  [c.73]

    Кулонометрия — электрохимический метод количественного анализа, основанный на измерении количества электричества, израсходованного hi окисление или восстановление определяемого вещее ва. Из уравнения [c.108]

    В связи с изложенным очевидно, что с помощью снятия потенциодинамических поляризационных кривых возможно получение данных только об относительной чувствительности материалов к КР, а для объективной количественной оценки процесса необходимо измерение количества электричества, выделяющегося при изменении потенциала катодной защиты в положительном направлении. [c.78]

    На данном рисунке приведены результаты измерения по указанному методу толщины пленки, образованной на поверхности железа в нейтральном растворе в результате анодного окисления в течение 1 ч при постоянном потенциале. В этом случае создают оголенную поверхность металла и общую толщину пленки определяют по измеренному количеству электричества. Однако в случаях, когда нельзя получить оголенную поверхность, например у нержавеющей стали и других материалов, толщина пленки в начальный период определяется с погрешностью. [c.191]

    При тщательных лабораторных измерениях для однозначно протекающих электрохимических реакций выход по току равен единице (в пределах ошибок опыта). Закон Фарадея точно со-блюдается, поэтому он лежит в основе самого точного метода измерения количества электричества, прошедшего через цепь, по количеству выделенного на электроде вещества. Для таких измерений используют серебряный или медный, а также йодный и газовый кулометры (кулометрия). [c.387]

    Конец восстановления определяют путем измерения потенциала (при восстановлении с постоянной силой тока) или силы тока (при восстановлении с постоянным потенциалом). Восстановление можно производить как при постоянной силе тока, так и при постоянном потенциале. Однако преимущественно используют метод восстановления при постоянной силе тока. Это объясняется двумя причинами. Во-первых, электродный потенциал как средство определения конца восстановления очень чувствителен к состоянию поверхности электрода. Во-вторых, измерение количества электричества Q = и) можно производить с большей точностью, чем в случае с использованием метода постоянного потенциала (0 = 51Ш). Если восстанавливать пленку при постоянной силе тока, то электродный потенциал прежде всего падает до характерного потенциала восстановления пленки и процесс восстановления развивается вблизи такого значения потенциала. [c.195]


    В общем случае точность кулонометрических определений при контролируемом потенциале определяется точностью измерения количества электричества, необходимого для полного окисления или восстановления определяемого вещества  [c.521]

    Кулонометрический анализ основан на измерении количества электричества, затраченного на количественное проведение данного электрохимического процесса в данной пробе, т. е. при условии, что выход по току равен 100%. [c.100]

    Измерение количества электричества, прошедшего за время электролиза, — одна из трудных задач данного метода, поскольку уменьшение силы тока во времени не линейно и зачастую не подчиняется определенному математическому закону. Можио измерять силу тока через определенные промежутки времени и построить затем кривую уменьшения силы тока, либо записать эту кривую с помощью самописца и подвергнуть графическому или весовому интегрированию с целью определения площади под кривой, которая и является произведением /т. Это просто, но очень не точно. Значительно более точные результаты можио получить, применяя различные виды кулоио-метров. [c.258]

    Им широко пользуются для различных расчетов в электрохимии. В частности, на законах Фарадея основан самый точный способ измерения количества электричества, прошедшего через цепь. Он заключается в определении массы вещества, выделившегося при электролизе на электроде. Для этого служат приборы, называемые кулонометрами. В лабораторной практике используется медный кулонометр, в котором электролизу подвергается подкисленный раствор USO4 с медными электродами. Важно, чтобы в кулонометре на электроде происходила только одна электрохимическая реакция и полученный продукт был доступен точному количественному опреде-.лению. Например, все количество электричества, прохо-.дящее через медный кулонометр, расходуется на перенос меди с анода на катод, где масса ее определяется гравиметрическим методом. [c.256]

    Так как сила тока на протяжении всего опыта остается постоянной н точно известной, для измерения количества электричества достаточно точно измерить вторую составляющую — время. В простейщем варианте мо>кно воспользоваться секундомером, пуская его одновременно с замыканием цепи и выключая в момент окончания реакции, указываемый тем или иным индикатором. Более сложные схемы могут включать механические или электрические таймеры, отзывающиеся как на сигнал пуска системы, так и на сигнал окончания процесса, вполне [c. 260]

    Например, в некоторых электрохимических методах используют электропревращение вещества, степень окисления которого до и после реакции надежно известна. В этом случае измеренное количество электричества, затраченного на такое электропревращение, можно непосредственно перевести в количество вещества (моль), а коэффициентом пересчета служит фундаментальная величина—постоянная Фарадея. Аналогично, в титриметрии количества взаимодействующих веществ однозначно связаны между собой стехиометрическим соотношениями. Для нахождения количества определяемого вещества достаточно знать уравнение соответствующей реакции, молярные массы взаимодействующих веществ и измеренное значение объема раствора титранта (а также, разумеется, его концентрацию см. ниже). [c.464]

    Кулонометры. Поскольку в потенциостатической кулонометрии в цепи электролитической ячейки протекают токи, изменяющиеся во времени, а о количестве окисленного или восстаиовлениого вещества судят по количеству электричества, прошедшего через ячейку, необходимо применять приборы для измерения количества электричества. Причем точность кулонометрического определения определяется точностью метода определения количества электричества или метода интегрирования кривых ток — время. [c.75]

    Им широко пользуются для различных расчетов в электрохимии. В частности, на законах Фарадея основан самый точный способ измерения количества электричества, прошедшего через цепь. Он заключается в определении количества вещества, выделившегося при электролизе на электроде. Для этого служат приборы, называемые кулоно-метрами. В лабораторной практике используется медный кулонометр, в котором электролизу подвергается подкисленный раствор uSO с [c.207]

    Кулонометрические методы основаны на измерении количества электричества, затраченного на количественное электроокисление или электровосста- [c.432]


нахождения величины заряда и количество заряда

Электрический заряд – это основа работы любого электронного прибора и та величина, без которой невозможно посчитать ни один важный показатель в электродинамике и электростатике. Подробная расшифровка термина, описание формулы нахождения электрического заряда и образец решения типовой задачи приведены в данной статье.

Что такое электрический заряд q

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

Понятие из учебного пособия

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Основные формулы

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон сохранения

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

Закон Кулона

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. -7 или 10 микрокулон.

Формула для решения

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

Расчет количества электричества для выделения из раствора водорода и кислорода | Задачи 704

 

Задача 704. 
Какое количество электричества потребуется для выделения из раствора: а) 2 г водорода; 6) 2 г кислорода?
Решение:
Эквивалентная масса водорода равна М/2 = 2/2 = 1г/моль, а кислорода – М/4 = 32/4 = 8г/моль.
Для расчета количества электричества (Q = It) используем уравнение Фарадея:

Здесь m —  масса образовавшегося или подвергшегося превращению вещества; Э — его эквивалентная масса;
I — сила тока; t — время; F — постоянная Фарадея (96500 Кл/моль), т.е. количество электричества, необходимое для осуществления электрохимического превращения одного эквивалента вещества.

Решим уравнение закона Фарадея относительно количества электричества и подставим данные задачи, получим:

Ответ: а)  1,93 . 105 Кл; б) 2,4 . 104 Кл.


Задача 705.
При электролизе водного раствора Сг2(SO4)3 током силой 2 А масса катода увеличилась на 8 г. В течение какого времени проводили электролиз?
Решение:
Для расчета времени используем уравнение закона Фарадея:

Здесь m —  масса образовавшегося или подвергшегося превращению вещества; Э — его эквивалентная масса;
I — сила тока; t — время; F — постоянная Фарадея (96500 Кл/моль), т. е. количество электричества, необходимое для осуществления электрохимического превращения одного эквивалента вещества.

Решим уравнение закона Фарадея относительно времени и подставим данные задачи:

(m = 8г, I = 2 A, Э = М/3 = 17,332г/моль), получим:

Ответ: 6,19ч.


Задача 706.
При электролизе водного раствора SnCl2 на аноде выделилось 4,48 л хлора (условия нормальные). Найти массу выделившегося на катоде олова.
Решение:
Схема электродного процесса имеет вид:
Катод: Sn2+ + 2  = Sn0;
Анод: 2Cl — 2 = Cl2.
Следовательно, эквивалентная масса олова равна М/2 = 118,710/2 = 59,355г/моль, а эквивалентный объём хлора равен:

VЭ(Сl2) = VM/2 = 22,4/2 = 11,2 моль/л.

Рассчитаем количество, выделившегося хлора:

n(Cl2) = V(Сl2)/VЭ(Сl2) = 4,48/11,2 = 0,4 моль/л.

Так как  n(Sn) = n(Cl2), то массу олова рассчитаем по формуле: 

m(Sn) =  n(Sn) . MЭ(Sn) = 0,4 . 59,355 = 23,742 г. 

Ответ: 23,742г.


Задача 707.
За 10 мин из раствора платиновой соли ток силой 5 А выделил 1,517 г Рt. Определить эквивалентную массу платины.
Решение:
Для расчета эквивалентной массы платины используем уравнение закона Фарадея:

Здесь m —  масса образовавшегося или подвергшегося превращению вещества; Э — его эквивалентная масса;
I — сила тока; t — время; F — постоянная Фарадея (96500 Кл/моль), т.е. количество электричества, необходимое для осуществления электрохимического превращения одного эквивалента вещества.

Решим уравнение закона Фарадея относительно эквивалентной массы и подставим данные задачи:

(m = 1,517г, I = 5 A, t = 10мин = 10 . 60 = 600с), получим:

Ответ: 48,8 г/моль.


Формула электрического тока. По какой формуле можно рассчитать силу тока. Закон Ома.

Электрический ток, это именно та сила, которая течет во всей электротехники заставляя ее работать. Но сводить все к простому течению электротока по электрическим цепям в схемах неразумно, должна быть какая-то мера, определенная величина этой силы тока. Ведь если в электрической схеме пойдет слишком большой ток по проводникам, которые на него не рассчитаны, то просто эта схема выгорит. Из школьных уроков мы помним, что существуют так называемые формулы, которые и позволяют вычислять конкретные неизвестные величины имея при этом известные.

Вот самая базовая, наиболее используемая формула тока, по которой и вычисляется эта самая сила тока. В ней всего лишь три электрических величины (базовые электрические величины) — ток, напряжение и сопротивление.

 

Итак, сила тока на схемах обычно обозначается большой английской буквой «I». Единицей измерения тока является «Ампер». Формула тока звучит следующим образом — электрический ток равен отношению напряжения (разности потенциалов) к сопротивлению. То есть, чтобы найти силу тока нам нужно просто напряжение разделить на сопротивление. Единицей измерения электрического напряжения является «Вольт», а сопротивления «Ом». Следовательно, известные вольты делим на известные омы и получаем ранее неизвестные амперы.

Эта же формула еще называется законом Ома. Она помогает найти из двух известных величин третью, которая неизвестна. Чтобы найти напряжение, то нужно силу тока перемножить на сопротивление, а для нахождения сопротивления нужно будет напряжение разделить на силу тока. Все достаточно просто. Данная формула тока подходит и для постоянного тока и для переменного, но именно с активным сопротивлением. То есть, по ней можно рассчитать те электрические цепи (участки цепей в схемах), которые содержать сопротивления в виде обычных нагревателей, резисторов, лампочек (не имеющих индуктивную и емкостную составляющую). Индуктивностью обладают все катушки, а емкостью обладают все конденсаторы (они уже имеют реактивное сопротивление и рассчитываются по другой формуле).

Если говорить о формуле тока, которая ближе к научной сфере, то она уже будет иметь вид немного другой. Электрический ток изначально выражается как отношение количества электрических зарядов ко времени их прохождения через проводник.

 

Электрический ток это упорядоченное движение электрических зарядов (в твердых телах это электроны, а в жидких и газообразных телах это ионы). Так вот ток, это непосредственное движение этих зарядов и, естественно, что он определяется их количеством и временем течения. Электрические заряды измеряются в «Кулонах», ну а время в «секундах». Следовательно, чтобы узнать силу электрического тока нужно количество зарядов разделить на время их прохождения. То есть, кулоны делим на секунды и получаем амперы.

Повторюсь, что на практике при измерении и вычислении силы тока пользуются именно формулой закона Ома, поскольку приходится использовать при расчетах напряжение и сопротивление. Именно они повсеместно будут встречаться в электрических схемах той или иной электротехники. Никаких кулонов (количества зарядов) вы при своей работе электриком не увидите!

Ну, и поскольку выше я затронул тему реактивного сопротивления, то пожалуй приведу формулу для нахождения силы тока именно для цепей, содержащих индуктивное и емкостное сопротивление.

 

По данной формуле можно найти силу тока, которая будет течь в электрической цепи с переменным, синусоидальным напряжением и содержащая реактивное сопротивление в виде катушки (индуктивности) или конденсатора (емкости). Думаю вы заметили, что в приведенной формуле изменился лишь тип сопротивления. Сама же основа — это все та же формула закона Ома, что была приведена в самом начале. Просто тут для нахождения индуктивного и емкостного сопротивления уже используются такие величины как частота, емкость и индуктивность, ну и еще «ПИ», которое равно 3,14.

P.S. Формулу электрического тока вы просто обязаны знать наизусть (если вы конечно электрик или электронщик). Формула закона Ома будет вам полезна очень много раз. Как только нужно найти силу тока, напряжение или сопротивление (зная любые две величины из трех) вы быстро и без проблем сразу подставляете числа в эту формулу и вычислите неизвестные электрические величины.

Формула электрического заряда, q

Определение и формула электрического заряда

Фундаментальным свойством электрического заряда является существование двух видов зарядов: положительных и отрицательных. Заряды, имеющие один знак, отталкиваются. Взаимодействие зарядов разного знака определяют как притяжение. Телу можно сообщить заряд любого знака. В макроскопическом теле заряды разных знаков могут взаимно компенсировать друг друга.

Электрический заряд является релятивистски инвариантной величиной. Это значит, что величина заряда не зависит от системы отсчета, не важно, движется заряд (заряженное тело) или покоится.

Электрический заряд тела находят как суммарный заряд его частей.

Разделения электрических зарядов разных знаков можно добиться путем электризации посредством непосредственного контакта тел (например, трением) или без контакта, например посредством электрической индукции. При зарядке тела, мы создаем на нем избыток электронов или недостаток в сравнении с их нормальным количеством, при котором тело не имеет заряда. При этом электроны берутся у другого тела или удаляются из заряжаемого тела, но не уничтожаются или создаются. Важно запомнить, что процесс зарядки и разрядки тел является процедурой перераспределения электронов, при этом общее их число не изменяется.

При соединении заряженного проводника с незаряженным, заряд перераспределяется между обоими телами. Допустим, что одно тело несет отрицательный заряд, его соединяют с незаряженным телом. Электроны заряженного тела под воздействием сил взаимного отталкивания переходят на незаряженное тело. При этом заряд первого тела уменьшается, заряд второго увеличивается, до тех пор, пока не наступит равновесие.

Элементарный заряд

Немецкий физик и физиолог Г. Гельмгольц обратил внимание на то, что заряды, которые переносят ионы при явлении электролиза, являются целыми, кратными некоторой величине, равной Кл. Каждый одновалентный ион переносит такой заряд. Любой двухвалентный ион несет заряд, равный Кл, и так далее. Гельмгольц сделал вывод о том, что заряд Кл является минимальным количеством электричества, которое существует в природе. Данный заряд получил название элементарного заряда.

Закон сохранения заряда

Закон сохранения заряда является фундаментальным законом природы. Он был установлен на основании обобщения экспериментальных данных. Подтвержден в 1843 г. английским физиком М. Фарадеем.

Формулировка закона: В любой замкнутой системе алгебраическая сумма зарядов – это неизменная величина, и не важно, какие процессы происходят в этой системе:

   

где N – количество зарядов.

Закон Кулона

На вопрос: С какими силами взаимодействуют неподвижные точечные заряды? Отвечает закон Кулона, который можно записать в виде формулы как:

   

где – сила, с которой заряд действует на заряд ; – радиус вектор, который проведен от второго заряда к первому; – электрическая постоянная; – диэлектрическая проницаемость вещества в котором находятся заряды. В соответствии с третьим законом Ньютона первый заряд действует на второй с силой равной по модулю и противоположной по направлению силе Обратите внимание, что заряды в формуле (2) точечные.

Примеры решения задач по теме «Электрический заряд»

Электричество — Основные формулы

1. Электростатика
1.1 Закон Кулона

q1, q2 — величины точечных зарядов,
r — расстояние между зарядами.

1.2 Напряженность поля уединенного точечного заряда

q — величина уединенного точечного заряда,
r — расстояние от заряда.

1.3 Потенциал точки в поле точечного заряда

q — величина уединенного точечного заряда,
r — расстояние от заряда.

1.4 Потенциальная энергия заряда в электростатическом поле

φ — потенциал,
q1 — величина заряда.

1.5 Потенциальная энергия заряда
q1 в поле точечного заряда

q — величина уединенного точечного заряда, который создает поле,
r — расстояние между зарядами.

1.6 Теорема Гаусса

N — поток вектора напряженности электрического поля через замкнутую поверхность,
q — полный заряд, находящийся внутри замкнутой поверхности.

1.7 Напряженность электрического поля вблизи от поверхности проводника

σ — поверхностная плотность заряда.

1.8 Емкость плоского кондесатора

q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.

1.9 Энергия плоского кондесатора

q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.

2. Постоянный электрический ток
2.1 Закон Ома для участка однородной цепи

U — напряжение на концах участка,
R — сопротивление участка цепи.

2.2 Закон Ома для замкнутой цепи с источником тока

 — ЭДС (электродвижущая сила),
r — внутреннее сопротивление источника ЭДС.

2.3 Работа постоянного тока

U — напряжение на концах участка цепи,
t — время, за которое совершается работа.

2.4 Закон Джоуля-Ленца

Q — теплота,
R — сопротивление проводника,
t — время, за которое выделяется теплота.

2.5 Полная мощность, развиваемая источником тока

 — ЭДС источника тока,
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.6 Полезная мощность

 — ЭДС источника тока,
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.7 Коэффициент полезного действия источника тока

R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.8 Первое правило Кирхгофа

n — число проводников, сходящихся в узле;
Ik — сила тока в k-м проводнике.

2.9 Второе правило Кирхгофа

n — число неразветвленных участков в контуре;
m — число ЭДС в контуре.

Quantity of Electricity Chemistry Tutorial

Quantity of Electricity Chemistry Tutorial Больше бесплатных руководств Стать членом Члены Вход & тире; в Связаться с нами

Хотите игры по химии, упражнения, тесты и многое другое?

Вам необходимо стать членом AUS-e-TUTE!

Ключевые понятия

  • Гальванический элемент (гальванический элемент) производит поток электронов.
    Этот поток электронов называется электрическим током.
    Ток обозначен символом I и измеряется в амперах (амперах, А).
  • Количество заряда, проходящего через точку в электрической цепи, зависит от электрического тока и времени, в течение которого ток может течь.
    Количество заряда обозначается символом Q и измеряется в кулонах (C).
  • Количество заряда (или электричества), содержащегося в токе, протекающем в течение определенного времени, можно вычислить:
    Q = I × т
    Q = количество заряда (электричества) в кулонах (Кл)
    I = ток в амперах (амперы, A)
    t = время (секунды)
  • Это уравнение можно преобразовать для вычисления электрического тока с учетом количества заряда (электричества) и времени:

    I = Q ÷ t

  • Это уравнение можно переформулировать для расчета времени, затраченного на количество заряда (электричества) и электрического тока:

    t = Q ÷ I

  • Это уравнение можно использовать для определения количества заряда, электрического тока или продолжительности времени, необходимого для проведения эксперимента по электролизу, например:
    (i) для гальваники
    Промышленный пример: электролитическое рафинирование меди

    (ii) электролиз расплавленных солей для извлечения металла
    Промышленный пример: извлечение алюминия из бокситов
    Промышленный пример: извлечение натрия из расплавленного хлорида содуима

    (iii) электролиз водных растворов для извлечения элемента:
    Промышленный пример: электролитическое извлечение меди

Пожалуйста, не блокируйте рекламу на этом сайте.
Нет рекламы = нам нет денег = нет бесплатных вещей для вас!

Рабочий пример: расчет количества заряда

Вопрос: Рассчитайте количество заряда (электричества) Q, полученное при прохождении тока силой 25 ампер в течение 1 минуты.

Решение:

(на основе подхода StoPGoPS к решению проблем.)

  1. Что вас просят сделать?

    Рассчитать количество заряда
    Q =? C

  2. Какие данные (информацию) вы указали в вопросе?

    Извлеките данные из вопроса:
    I = ток = 25 А
    t = время = 1 минута
    Преобразуйте время в минутах во время в секундах, умножив на 60
    t = 1 мин × 60 сек / мин = 60 секунд

  3. Какая связь между тем, что вы знаете, и тем, что вам нужно выяснить?

    Напишите уравнение: Q = I × t

  4. Подставьте значения в уравнение и решите относительно Q:

    Q = 25 × 60
    = 1500 С

  5. Правдоподобен ли ваш ответ?

    Работа в обратном направлении: используйте рассчитанное вами значение Q и ток, указанный в вопросе, для расчета времени, затем сравните его со временем, указанным в вопросе:
    Q = 1500 С
    I = 25 А

    t = Q ÷ I = 1500 ÷ 25 = 60 секунд
    60 секунд = 1 минута

    Поскольку рассчитанное здесь время совпадает с указанным в вопросе, мы достаточно уверены, что наш ответ для Q правильный.

  6. Изложите свое решение задачи «рассчитать количество заряда»:

    Q = 1500 C

Рабочий пример: расчет тока

Вопрос: Рассчитайте ток, необходимый для обеспечения 30 000 кулонов заряда (электричества) за 5 минут.

Решение:

(На основе подхода StoPGoPS к решению проблем.)

  1. Что вас просят сделать?

    Рассчитать текущий
    I =? А

  2. Какие данные (информацию) вы указали в вопросе?

    Извлеките данные из вопроса:
    Q = 30 000 ° C
    t = 5 минут
    Преобразуйте время в минутах во время в секундах, умножив на 60
    t = 5 мин × 60 сек / мин = 300 секунд

  3. Какая связь между тем, что вы знаете, и тем, что вам нужно выяснить?

    Напишите уравнение: I = Q ÷ t

  4. Подставьте значения и решите для I:

    I = Q ÷ t
    = 30 000 ÷ 300
    = 100 ампер

  5. Правдоподобен ли ваш ответ?

    Работа в обратном направлении: используйте значение тока, вычисленное выше, и количество заряда (электричества), указанное в вопросе, чтобы рассчитать затраченное время, и сравните его со временем, указанным в вопросе:
    I = 100 А
    Q = 30 000 ° C

    t = Q ÷ I = 30,000 ÷ 100 = 300 секунд
    Преобразуйте время в секундах во время в минутах, разделив на 60
    t = 300 сек ÷ 60 сек / мин = 5 минут

    Поскольку время, вычисленное здесь, такое же, как и время, указанное в вопросе, мы уверены, что наше вычисленное значение для тока верное.

  6. Изложите свое решение задачи «рассчитать ток»:

    I = 100 А

Рабочий пример: расчет времени

Вопрос: Вычислите время в минутах, необходимое для получения заряда (электричества) 12 000 C, используя ток 10 ампер.

Решение:

(На основе подхода StoPGoPS к решению проблем.)

  1. Что вас просят сделать?

    Рассчитать время в минутах
    т =? минут

  2. Какие данные (информацию) вы указали в вопросе?

    Извлеките данные из вопроса:
    Q = 12 000 ° C
    I = 10 А

  3. Какая связь между тем, что вы знаете, и тем, что вам нужно выяснить?

    Напишите уравнение: t = Q ÷ I

  4. Подставьте значения и решите для t:

    т = Q ÷ I
    = 12 000 ÷ 10
    = 1200 секунд

    Преобразуйте время в секундах во время в минутах, разделив на 60
    t = 1,200 сек ÷ 60 сек / мин
    = 20 минут

  5. Правдоподобен ли ваш ответ?

    Работа в обратном направлении: используйте рассчитанное вами значение времени и тока, указанные в вопросе, чтобы вычислить количество заряда, и сравните это значение со значением, указанным в вопросе:
    t = 20 минут = 20 × 60 = 1200 секунд
    I = 10 А
    Q = I × t = 10 × 1200 = 12000 C

    Поскольку вычисленное здесь значение Q совпадает со значением, указанным в вопросе, мы уверены, что наше вычисленное значение для времени является правильным.

  6. Изложите свое решение задачи «рассчитать время в минутах»:

    t = 20 минут

Предупреждение!

Некоторое содержимое на этой странице не может быть отображено.

Пожалуйста, включите JavaScript и всплывающие окна для просмотра всего содержимого страницы.

© AUS-e-TUTE

www.ausetute.com.au

Электроэнергия, работа и мощность

Чтобы понять, как работают устойчивые технологии, важно усвоить определенные основные принципы.Знать, как фотоэлектрические элементы преобразуют солнечную энергию в электричество, означает понимать основы электричества и света. Понимание того, как ветряные турбины производят электричество, означает понимание кое-чего о власти, работе и электромагнетизме. В этом модуле будут представлены основные концепции, необходимые для понимания технологий, обсуждаемых в этом курсе. Хотя формулы иногда используются для объяснения фундаментальных принципов, суть не в том, чтобы уметь решать количественные задачи. Формулы помогут вам увидеть взаимосвязь.

Цели обучения: Учащиеся смогут:

  1. Выделите различия между энергией, работой и мощностью и приведите примеры каждого из них с использованием соответствующих единиц.
  2. Дайте соответствующие определения для следующих электрических терминов: электрон, электрический заряд, электрический потенциал, сопротивление, ток, мощность, проводник, полупроводник и изолятор.

    Учащийся сможет сопоставить электрические величины / свойства с различными единицами измерения, используемыми в электротехнике (например,грамм. вольт, ампер, ватт, ом, ампер-час, киловатт-час и т. д.)

  3. Укажите элементы электрической цепи.
  4. Укажите различия между параллельными и последовательными цепями и отметьте влияние на электрический потенциал (измеренный в вольтах) и ток (измеренный в амперах).
  5. Объясните взаимосвязь между потоком тока и магнетизмом и покажите, как это лежит в основе электродвигателей и генераторов.
  6. Различайте электричество постоянного и переменного тока, определите полезные качества каждого из них, отметьте, какие устройства связаны с каждым из них, и опишите роль силовых инверторов.

Энергия, работа и мощность

Перейти к: Force | Работа | Мощность

Проще говоря, Вселенная состоит из четырех вещей: пространства, времени, массы и энергии. Первый закон термодинамики гласит, что энергия не может быть ни создана, ни разрушена. Но Эйнштейн показал нам, что энергию можно превратить в массу и наоборот. Второй закон термодинамики гласит, что каждый раз, когда энергия меняет форму, часть ее превращается в тепло. Энергия бывает разных форм.Самая полезная энергия или энергия высочайшего качества — это то, что мы можем использовать для работы. Например, энергия движения (кинетическая энергия) воды, падающей через плотину, может быть использована для вращения водяного колеса для измельчения зерна или выработки электричества.

Потенциальная и кинетическая энергия

Provenance: Первоисточник: Environment Canada (https://www. ec.gc.ca/eau-water/default.asp?lang=en&n=00EEE0E6-1), доступ через USGS: https://water.usgs .gov / edu / wuhy.html Это воспроизведение является копией официальной работы, опубликованной правительством Канады, и воспроизведение не было произведено в сотрудничестве или с одобрения правительства Канады.
Повторное использование: Информация на этом веб-сайте была размещена с намерением сделать ее доступной для личного или публичного некоммерческого использования и может быть воспроизведена частично или полностью и любыми средствами без взимания платы или дополнительного разрешения, если не указано иное. Пользователи должны: проявлять должную осмотрительность для обеспечения точности воспроизводимых материалов; Укажите как полное название воспроизводимых материалов, так и организацию автора; и Укажите, что воспроизведение является копией официального произведения, опубликованного Правительством Канады, и что воспроизведение не было произведено при участии или с одобрения Правительства Канады.

Самая низкая форма энергии с точки зрения полезности — тепло. Да, тепло можно использовать для производства пара и привода электрических турбин. Но для этого требуется много тепла, и это тепло должно исходить от какого-то другого источника энергии, например, горящего угля или солнечного света. Физики используют термин энтропия, чтобы описать изменение полезной энергии на менее полезное тепло.

Проще говоря, вселенная состоит из четырех вещей; пространство, время, масса и энергия. Первый закон термодинамики гласит, что энергия не может быть ни создана, ни разрушена.(Хотя позже Эйнштейн показал, что для ядерных реакций энергию можно превратить в массу и наоборот). Энергия бывает разных форм. Когда энергия передается от одного объекта к другому или когда она трансформируется из одного типа в другой, ее можно использовать для выполнения работы. Например, энергия движения (кинетическая энергия) воды, падающей через плотину, может быть использована для вращения водяного колеса для измельчения зерна или выработки электричества.

Энтропия — это мера распределения энергии. Концентрированные формы энергии, такие как энергия, хранящаяся в ядре атома, в химических связях или в высоковольтных электрических устройствах, очень полезны для выполнения работы.С другой стороны, менее концентрированные формы энергии, такие как низкотемпературное тепло, вибрации или звуковые волны, гораздо менее полезны. Второй закон термодинамики гласит, что всякий раз, когда энергия используется для выполнения работы, часть энергии превращается из концентрированной формы в менее полезную. Физики говорят, что по мере того, как энергия распространяется или рассеивается, энтропия увеличивается. Одним из результатов второго закона термодинамики является то, что ни один процесс не может преобразовать 100% энергии в полезную работу.

Что такое энергия? Полезно разделить энергию на два списка. Кинетическая энергия — это энергия движущегося объекта. Падающая вода (реагирующая на силу тяжести), солнечный свет, электроны, протекающие по проводу (электричество), велосипед в движении, использование мускулов для движения глаз во время чтения — все это примеры кинетической энергии. Потенциальная энергия — это то, что сохраняется и готово к преобразованию в кинетическую энергию. Это включает воду, удерживаемую плотиной, электрический заряд, хранящийся в батарее, химическую энергию, хранящуюся в жирах и сахарах, и химическую энергию, хранящуюся в бензине и угле.

На схеме гидроэлектростанции вода, стекающая по напорному штоку, имеет кинетическую энергию. Эта кинетическая энергия используется для вращения турбины, подключенной к электрогенератору. Вода, хранящаяся за плотиной, имеет потенциальную энергию или запасенную энергию. Обратите внимание, что сила тяжести, действующая на воду, в каждом случае обеспечивает энергию.

Сила

Когда к объекту прикладывается энергия, мы думаем об этом как о силе .Некоторые силы требуют контакта между двумя объектами, а другие действуют на расстоянии. Силы, которые требуют контакта , включают толкание, тянущее усилие (натяжение) и трение. Силы, которые работают без прямого контакта между объектами, включают гравитацию, магнетизм и электрическую силу. Стандартная единица силы названа в честь сэра Исаака Ньютона, отца физики. Один Ньютон (1 Н) = количество силы для ускорения 1 кг массы на один метр в секунду 2 . Или 1 Н = (1 кг x 1 м) / с 2 .

Аппарат Джоуля для демонстрации эквивалентности работы и тепла

Происхождение: Изображение из нового ежемесячного журнала Harper’s, № 231, август 1869 г. Доступно по: https://commons.wikimedia.org/wiki/File:Joule%27s_Apparatus_(Harper%27s_Scan).png
Повторное использование: Этот элемент является общественным достоянием и может использоваться повторно без ограничений.

Работа

Мы используем энергию для работы. Самый простой способ думать о работе — это перемещать объект.Когда к объекту прикладывается сила (масса, умноженная на ускорение), которая заставляет этот объект перемещаться, пройденное расстояние — это уже выполненная работа. Но мы используем энергию для выполнения большего количества работ, чем перемещение мебели или автомобилей. Работа также выполняется, когда мы используем солнечный свет или природный газ для обогрева наших домов, когда мы используем электричество для освещения наших комнат или когда мы используем бутерброд с арахисовым маслом и желе для питания клеток нашего мозга.

Поскольку энергия бывает разных форм, неудивительно, что существуют разные способы ее измерения.Трудно отслеживать все различные единицы энергии. Посмотрите на таблицу ниже, чтобы увидеть некоторые единицы и отношение к джоулям, который является золотым стандартом измерения энергии. Он назван в честь Джеймса Джоуля, пивовара 19-го века, который показал эквивалентность механической работы и тепла. Один джоуль примерно равен количеству энергии, необходимому для поднятия 100-граммового яблока на 1 метр (3,3 фута).

Изображенный аппарат был использован Джеймсом Джоулем для демонстрации эквивалентности механической работы и тепла.Он рассчитал работу, выполняемую силой тяжести на гирю. Эта тяга повернула лопаточные колеса, которые смешали воду в изолированном контейнере. Вода нагревается при перемешивании, показывая, что тепло = работа.

Паровая машина Ватта

Происхождение: Викикоммоны: https://commons.wikimedia.org/wiki/File:SteamEngine_Boulton%26Watt_1784.png
Повторное использование: Этот элемент находится в общественном достоянии и может использоваться повторно без ограничений.

Мощность

Мощность — это мера того, сколько энергии используется за определенный период времени. Для этого мы можем использовать ватт. Джеймс Ватт был пионером в понимании физики энергии и разработал один из первых успешных паровых двигателей. Он одолжил нам свою фамилию для этого подразделения.

Показано изображение паровой машины, разработанной совместно Джеймсом Ваттом для откачки воды из затопленных угольных шахт в Англии.

Ватт — это один джоуль энергии, затрачиваемый за одну секунду. Таким образом, ватт включает в себя как затраченную энергию, так и время, в течение которого она была затрачена. По аналогии, вы можете получить один галлон воды из капающего крана за час или из открытого крана за 15 секунд. В конце концов, вы все равно получите галлон воды, но во втором случае вода течет в ведро намного быстрее. Так что аспект времени важен. Мы используем термин мощность для обозначения количества энергии и скорости ее доставки. Джоуль — это член энергии, а ватт — член мощности.

Насколько велик ватт мощности? Подбрасывание 100 г яблока в воздух на 1 м (3.3 фута) потребляет 1 ватт мощности. Ноутбук, который вы можете использовать для чтения, потребляет около 5 & acirc; & # 128; & # 147; 50 ватт, в зависимости от того, работает ли у вас в фоновом режиме музыка или работают другие приложения. Старомодная лампа накаливания мощностью 100 Вт потребляет 1 киловатт-час электроэнергии, если оставить ее включенной на 10 часов. Киловатт — это 1000 ватт, сокращенно кВт. 10 часов x 100 Вт = 1000 кВтч. Обратите внимание на разницу между кВт и кВтч. КВт — это мера мощности, а кВтч — мера того, сколько энергии было использовано в целом.

Яблоко, падающее на метр, делает это с мощностью 1 ватт.

Источник: Эван-Амос, автор изображения
Повторное использование: Лицо, связавшее произведение с этим документом, посвятило произведение общественному достоянию, отказавшись от всех своих прав на произведение во всем мире в соответствии с законом об авторском праве, включая все смежные и смежные права в пределах, разрешенных законом. Вы можете копировать, изменять, распространять и выполнять работу даже в коммерческих целях, не спрашивая разрешения

Вы не уверены в киловатт-часах и киловатт-часах? Это уловка.Помните, что ватт — это джоуль / сек. Значит, в ватт или киловатт уже заложено время. Это энергия / время. Это мощность, скорость использования энергии. Но мощность не сообщает вам, сколько энергии было использовано за определенный период времени. Чтобы получить это, вам нужно умножить мощность на время. Затем единицы времени должны быть зачеркнуты. Увы, принято оставлять час на месте — глупо, но так оно и делается. 1 кВтч = 1 кВт x 1 час.

Вот пример. В моем доме есть фотоэлектрическая система (солнечная электроэнергия), которая в идеальных условиях приятного солнечного прохладного дня рассчитана на выработку 4 кВт.За 4 часа это составит:

4 кВт x 4 часа = 16 кВт · ч электроэнергии. В частично облачный день система может работать на половинной мощности или на 2 кВт выходной мощности. При такой скорости мне потребуется 8 часов, чтобы выработать те же 16 кВт · ч, что я сделал в солнечный день; 2кВт x 8 часов = 16 кВтч.

В состоянии покоя типичный человек использует энергию мощностью 80 Вт для обеспечения жизненных функций организма (так называемый метаболизм в состоянии покоя). Взрослый мужчина может съедать около 2000 килокалорий в день. Одна ккал = 1,163 Втч. Таким образом, диета в 2000 ккал обеспечит 2326 Втч или 2 Втч.326 кВтч. Если бы человек просто пролежал в постели 24 часа, он бы сжег 80 Вт x 24 часа = 1920 Вт · ч или 1 920 кВт · ч. Если этот парень останется в постели и продолжит так есть, он в конечном итоге потребляет 2,326 кВтч & acirc; & # 128; & # 147; 1,920 кВтч = 0,406 кВтч больше, чем он использует, и это будет храниться в виде жира. Фунт жира равен примерно 3500 ккал (4 070,5 кВтч). Так что через десять дней он может прибавить еще фунт. Интенсивная поездка на велосипеде использует энергию в размере 200 Вт. Поэтому ему следует подумать о двухчасовой поездке на велосипеде, чтобы оставаться в форме (0.2 кВт для езды на велосипеде x 2 часа = 4,0 кВтч).

Сводка силы, работы и мощности

Сила = Энергия, приложенная к объекту (измеряется в ньютонах).

Работа = Сила X Расстояние или количество переданного тепла (Измеряется в Джоулях или калориях) .

Мощность = работа / время (измеряется в ваттах с)

Различные блоки энергии

1 калория (термохимическая) = 4.184 Дж

1 британская тепловая единица = 251,9958 калорий

1 БТЕ (термохимический) = 1054,35 Дж

1 киловатт-час (кВтч) = 3,6 x 106 Дж

1 киловатт-час (кВтч) = 3412 британских тепловых единиц (IT)

1 терм = 100 000 британских тепловых единиц

1 электрон-вольт = 1,6022 x 10-19 Дж

Электричество и магнетизм

Изолированные провода

Происхождение: Chatama размещено на Викискладе https://commons.wikimedia.org/wiki/File:600V_CV_5.5sqmm.jpg
Повторное использование: Этот файл находится под лицензией Creative Commons Attribution-Share Alike 3.0 Непортированная лицензия. Вы можете: делиться — копировать, распространять и передавать произведение для ремикса — адаптировать произведение При следующих условиях: приписывание — вы должны атрибутировать работу способом, указанным автором или лицензиаром (но ни в коем случае не предполагает, что они одобряют вас или ваше использование произведения). делиться одинаково — если вы изменяете, трансформируете или расширяете эту работу, вы можете распространять полученную работу только по той же или аналогичной лицензии, что и эта.

Теперь, когда у вас есть хорошее представление об энергии, работе и мощности, пора зарядиться и изучить электричество! Древние имели смутное представление об электричестве из-за своего жизненного опыта.Рыбаки, ловившие разного рода «электрическую рыбу», при обращении с ней подвергались шоку. Другие чувствовали воздействие статического электричества от своей шерстяной одежды. Египтяне видели связь между электрической рыбой и молнией. Но только около 1600 года начались серьезные научные исследования электричества. Усилиями многих исследователей к концу 19 века было разработано хорошее представление об электричестве и о том, как его использовать.

Напомним, что вся материя состоит из атомов.А атомы состоят из нескольких основных частиц: электронов с отрицательным зарядом, протонов с положительным зарядом и нейтронов без заряда. Электричество можно представить как поток электронов через проводник, подобный медному проводу. На самом деле это не поток электронов, а импульс, который проходит по проводу.

Хорошие проводники, как и металлы, легко пропускают электричество. У них есть электроны на внешних орбиталях, с которыми легко вступить в контакт. Плохие проводники называются изоляторами, и они не пропускают беспрепятственный ток электричества.Даже самые лучшие проводники оказывают некоторое сопротивление току электричества. Такое сопротивление измеряется в единицах, называемых Ом. Стекло — хороший изолятор и, следовательно, плохой проводник.

Третий класс соединений — полупроводники. Они реагируют на изменение условий, чтобы включить или выключить подачу электричества. Полупроводники часто содержат смесь кремния и металлов. Пластины из этих полупроводников лежат в основе «микросхем» компьютера, а также являются основой для светодиодных ламп и фотоэлектрических (солнечных) элементов.

Фотоэлектрические панели изготовлены из полупроводников.

Происхождение: Фото Б. Кукера
Повторное использование: бесплатно для повторного использования

Панели фотоэлементов, используемых для производства электричества из солнечного света, сделаны из полупроводников.

Для подачи электричества должна быть замкнутая цепь. Электроны должны начинать с состояния с высокой энергией и заканчиваться в состоянии с низкой энергией. Ниже представлена ​​схема простой схемы. Обратите внимание, что электричество проходит от высокоэнергетического конца батареи через лампу, а затем обратно к низкоэнергетическому концу батареи.Когда выключатель разомкнут, подача электричества прекращается.

Об электричестве просто думать как об электроне (или импульсе размером с электрон), протекающем по проводнику. Но на практике один электрон слишком мал и несет слишком мало энергии, чтобы выполнять какую-либо реальную работу. Однако групповые потоки электронов могут вызвать сильный толчок! Кулон равен 6,24 × 10 18 электронов. А amp — это поток в один кулон в секунду через проводник. Таким образом, ампер измеряет скорость потока электричества.Мы называем поток электричества током.

Не все электричество течет с одинаковой силой. Чтобы понять это, подумайте о давлении или силе воды, выходящей из трубы. Если труба прикреплена к резервуару наверху высокого здания, вода будет иметь гораздо большее давление, чем если бы резервуар был на 30 см выше трубы. То же самое и с электричеством. «Давление» электричества — это электрический потенциал. Электрический потенциал — это количество энергии, доступное для проталкивания каждой единицы заряда через электрическую цепь.Единицей измерения электрического потенциала является вольт. Вольт равен джоуля на кулон. Таким образом, если автомобильный аккумулятор имеет электрический потенциал 12 вольт, он может обеспечить 12 джоулей энергии на каждый кулон заряда, который он подает на стартер. Точно так же, если розетка в вашем доме имеет электрический потенциал 120 вольт, то она может обеспечить 120 джоулей энергии на каждый кулон заряда, который доставляется на устройство, подключенное к стене. (Примечание: величина «электрический потенциал» иногда называется несколькими разными именами, включая напряжение, разность потенциалов и электродвижущую силу.Для ясности мы всегда будем ссылаться на электрический потенциал, который измеряется в вольтах). Электроны высокого напряжения возвращаются в «основное состояние» с большей энергией, чем электроны низкого напряжения.

А В — это сила, необходимая для перемещения одного А через проводник с сопротивлением 1 Ом .

Вы думаете: «Кажется, существует связь между усилителями, вольтами и омами» & acirc; & # 128; & # 148; и ты прав! Электрический потенциал = ток x сопротивление.Это закон Ома, который обычно записывается как: E = I x R . E — электрический потенциал, измеренный в вольтах, I — ток, измеренный в амперах, а R — сопротивление, измеренное в омах.

Электроны, проходящие через сопротивление проволоки, совершают работу. Действительно полезны два вида работы, выполняемой током. Если в проводе имеется большое сопротивление, большая часть работы будет выполняться в виде тепла. Подумайте об электрическом тостере, феном или обогревателе.

Второй действительно важный вид работы, выполняемой током, протекающим через провод, — это создание магнитного поля.Надеюсь, в детстве вы играли с постоянными магнитами. Вы знаете, что у магнитов два полюса: один называется северным, а другой — южным. Это название связано с использованием магнитов в компасах для определения направления. Вы знаете, что одинаковые концы магнитов отталкиваются друг от друга, а противоположные концы притягиваются. Теперь, когда электрический ток течет через провод, он становится похож на магнит в том смысле, что у него есть магнитное поле. Однако, в отличие от постоянных магнитов, магнитное поле можно отключить, остановив ток.Это свойство лежит в основе работы электродвигателей. Ток, проходящий через обмотки проводов в электродвигателе, вызывает включение магнетизма. Затем это заставляет двигатели вращаться, притягиваясь и толкаясь притяжением и отталкиванием электромагнитов.

Работа, совершаемая током с течением времени, называется мощностью. Мощность измеряется в ваттах. Но вы это уже знаете! Напомним, что выше вы узнали, что обычный человек в состоянии покоя сжигает 80 Вт.

На электричество;

1 Ватт = 1 А x 1 Вольт.

Уравнение можно изменить для расчета производимого тока;

1 ампер = 1 Вт / 1 объем т.

Подведем итоги.

Ампер измеряет количество электричества, протекающего с течением времени (ток).

Ом измерить сопротивление потоку.

Вольт измеряет количество энергии, доступное для проталкивания каждого заряда.

Ватт — это мера мощности или работы, которая выполняется с течением времени.

Вы знаете, что закон Ома устанавливает связь между E, I и R. Но сколько работы уже сделано? Это выражается как Сила. Мощность = Электрический потенциал x Ток, или P = E x I. Эта формула указывает на то, что мощность зависит как от количества поставляемой электроэнергии, так и от силы, стоящей за ней. Например, небольшая солнечная панель может выдавать 18 вольт и 2 ампера. Его мощность составит 18 вольт x 2 ампера = 36 ватт. Теперь можно построить еще одну солнечную панель, чтобы производить 9 вольт и 4 ампер.Его мощность составит 9 вольт x 4 ампера = 36 ватт. Так же, как и другой!

Цепи

Простая схема

Происхождение: Бенджамин Кукер, Хэмптонский университет
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей, если вы указываете авторство и предлагаете производные работы по аналогичной лицензии.

Пересмотр простой схемы

Происхождение: Бенджамин Кукер, Хэмптонский университет
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей, если вы указываете авторство и предлагаете производные работы по аналогичной лицензии.

Оборудование, производящее и использующее электричество, подключено в электрическую цепь.Оборудование может быть установлено как последовательно, так и параллельно. Посмотрите на схемы ниже, чтобы увидеть последствия использования последовательной и параллельной схем. Для фотоэлементов (PV) каждая ячейка может производить только около 0,6 вольт. Поскольку для большинства приложений требуется более высокое напряжение, фотоэлементы должны быть подключены последовательно для получения желаемых результатов.

Последовательная схема

Происхождение: Бенджамин Кукер, Хэмптонский университет
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http: // creativecommons.org / licenses / by-nc-sa / 3.0 / Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

Параллельная схема

Происхождение: Бенджамин Кукер, Хэмптонский университет
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей, если вы указываете авторство и предлагаете производные работы по аналогичной лицензии.

Электродвигатели и генераторы

Магнитное поле вокруг провода, по которому течет ток

Происхождение: Бенджамин Кукер, Хэмптонский университет
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете использовать это повторно элемент для некоммерческих целей, если вы указываете авторство и предлагаете производные работы по аналогичной лицензии.

Напомним, что часть работы, совершаемой электричеством, происходит, когда оно проходит через провод для создания магнитного поля.Ганс Кристиан Эрстед обнаружил это в 1820 году. Годом позже Майкл Фарадей показал, что магнитное поле вокруг провода можно использовать для создания электромагнитов, которые могут быть хитроумно скомпонованы для создания электродвигателя.
Электромагнит

Происхождение: Оригинальное фото Джины Клиффорд: https://www.flickr.com/photos/cobalt_grrl/2256696466
Повторное использование: Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0) Бесплатно: Совместное использование — копирование и распространение материал на любом носителе или в любом формате. Адаптировать — ремикшировать, преобразовывать и дополнять материал для любых целей, даже для коммерческих целей.

Обратите внимание на изображение электромагнита, полученное путем наматывания изолированного провода на железный гвоздь. Железный гвоздь концентрирует магнитное поле, создаваемое током в изолированном проводе. Изоляция предотвращает короткое замыкание цепи железным гвоздем.

На схемах ниже показано, как работает электродвигатель. Обратите внимание, что при каждом половинном обороте контакты в коммутаторе меняют направление тока, чтобы двигатель вращался в том же направлении.

Простой электродвигатель

Происхождение: Изображения созданы или предоставлены для изучения этого материала.com защищены авторским правом © Chris Woodford (Объясните, что stuff.com) и опубликованы под этой лицензией Creative Commons. http://www.explainthatstuff.com/electricmotors.html
Повторное использование: Per Creative Commons License: Совместное использование — копирование и распространение материала на любом носителе или формате. Адаптация — ремикс, преобразование и создание материала

. Простой электродвигатель

Происхождение: Создано Авинашем Синха как оригинальный DIY-файл по лицензии Creative Commons на следующем веб-сайте: http: // www.Instructables.com/file/FW079IPGGC2UDG3/
Повторное использование: По лицензии CC разрешено следующее: Совместное использование — копирование и распространение материала на любом носителе или любом формате. Адаптация — ремикс, преобразование и построение материала

.
Генератор постоянного тока

Происхождение: Изображение с www.alternative-energy-tutorials.com, используется с разрешения
Повторное использование: Все учебные пособия и материалы, опубликованные и представленные на веб-сайте учебных пособий по альтернативным источникам энергии, включая текст, графику и изображения, являются собственностью авторских прав или аналогичных права Учебников по альтернативной энергии, представляющих www.Alternative-energy-tutorials.com, если прямо не указано иное. Согласно веб-мастеру AET: Как вы любезно спросили, я не возражаю против того, чтобы вы бесплатно использовали это изображение в рамках своего веб-курса по энергетике. Тем не менее, я должен попросить вас правильно ссылаться на мои учебные пособия, изображения и сайт: www.alternative-energy-tutorials.com соответственно в своих презентациях.

Майкл Фарадей не усовершенствовал электродвигатель, но он обнаружил важное свойство электромагнетизма, которое привело к другому великому изобретению — электрическому генератору.Фарадей открыл в 1831 году принцип магнитной индукции. Он обнаружил, что, проводя магнит по проводу, он вызывает электрический ток в замкнутой цепи. Это привело к разработке электрических генераторов. Первые успешные коммерческие разработки появились примерно в 1860 году. Электрогенератор — это, по сути, электродвигатель, который вращается под действием некоторой внешней силы и в ответ производит индуцированный ток. Гибридные электромобили, такие как Toyota Prius, делают именно это. Электродвигатель питается от аккумулятора при нажатии педали акселератора.Когда педаль отпускается, инерция автомобиля действует через вращающиеся колеса, вращая двигатель, заставляя двигатель работать в качестве генератора, создавая электричество для подзарядки аккумулятора.

Электроэнергия переменного и постоянного тока

Генератор переменного тока

Происхождение: Автор: Федеральное управление гражданской авиации http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_handbook/media/FAA-8083-30_Ch20.pdf
Повторное использование: Это изображение или файл является произведением Сотрудник Федерального управления гражданской авиации, взятый на работу или взятый на работу в рамках служебных обязанностей этого лица.Это произведение федерального правительства США, изображение находится в общественном достоянии Соединенных Штатов.

До сих пор мы рассматривали только один вид электричества — постоянный ток (DC). Это то, что производят батареи, солнечные панели и генераторы постоянного тока. Для электричества постоянного тока ток всегда течет в одном и том же направлении. Другой вид электричества — это переменный ток (AC). Как видно из названия, ток переключает направление в проводе с регулярным циклом. Электроэнергия переменного тока — это то, что приходит в наши дома через электросеть.Производится генераторами переменного тока. Генератор переменного тока устроен иначе, чем генератор постоянного тока. Помните, что в генераторе постоянного тока или двигателе есть коммутатор или выпрямитель, который переключает направление тока в катушках якоря (той части, которая вращается). В генераторе переменного тока вместо реверсивного коммутатора используются контактные кольца. Таким образом, с каждой половиной оборота генератора индуцированный ток меняет направление.

Выходной сигнал генератора переменного тока генерирует синусоидальную волну при скачках напряжения в цепи взад и вперед.Реверсирование тока происходит быстро. В Соединенных Штатах стандарт для электросети составляет 60 Гц (переключение вперед и назад 60 раз в секунду).

Синусоидальная волна от генератора переменного тока

Provenance: Booyabazooka в английской Википедии
Повторное использование: Этот элемент предлагается по лицензии Creative Commons Attribution-NonCommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/3.0/ Вы можете повторно использовать этот элемент в некоммерческих целях при условии указания авторства и предложения любых производных работ по аналогичной лицензии.

На диаграмме справа показана синусоида, генерируемая генератором переменного тока. При напряжении выше 0 вольт электричество течет в одном направлении, а при напряжении ниже 0 вольт — в другом. Ось Y — напряжение, а ось X — время.

Короткое видео о разнице между генераторами и двигателями постоянного и переменного тока

Преимущество использования переменного тока заключается в том, что можно легко повышать или понижать напряжение в различных частях сети системы доставки. Это делают трансформаторы. Трансформатор состоит из двух расположенных бок о бок катушек, большой и малой.Обе катушки имеют общий железный сердечник. Переменный ток, проходящий через небольшую первичную катушку, за счет магнитной индукции создает ток более высокого напряжения в большей вторичной катушке. И обратное также верно: если первичная обмотка больше, вторичная обмотка меньшего размера будет иметь более низкое выходное напряжение.

Трансформатор, используемый для увеличения переменного напряжения

Происхождение: BillC в англоязычной Википедии
Повторное использование: Выпущено под лицензией GNU Free Documentation License.

Зачем вообще увеличивать и уменьшать напряжение? Помните, что V = I x R. Передача электричества на большие расстояния приводит к потере энергии на тепло из-за сопротивления проводов. Чтобы предотвратить это, напряжение увеличивается, что требует меньшего тока и меньших тепловых потерь. Когда вы подойдете к вашему дому, напряжение снова упадет. По высоковольтным линиям электропередачи может подаваться электроэнергия 765 кВ (то есть 765 000 вольт!). То, что получается от розетки, составляет 120 вольт.

Переключение между переменным и постоянным током

Инвертор для переключения с постоянного на переменный ток

Происхождение: Фотография сделана Б.Cuker
Повторное использование: Без копирования, можно использовать для любых целей.

Поскольку мы используем электричество как переменного, так и постоянного тока, важно уметь преобразовывать одно в другое. Эту работу выполняет устройство, называемое инвертором мощности. Многие бытовые приборы работают от сети переменного тока. Холодильники, кондиционеры, лампы накаливания и люминесцентные лампы, пылесосы, фены и стиральные машины — все напрямую используют кондиционер. Электроника, такая как компьютеры, телевизоры и сотовые телефоны, требует постоянного тока.В устройствах обычно инвертор встроен в шнур питания переменного тока. По проводу, идущему от инвертора, проходит постоянный ток, необходимый устройству. Инверторы

также могут использоваться для преобразования постоянного тока в переменный. Такие устройства позволяют использовать 12 В постоянного тока автомобиля для питания портативного компьютера. Дома, которые используют фотоэлектрические панели для использования солнечной энергии для производства электроэнергии, также должны преобразовывать свою выработку в соответствии с переменным током, если системы подключены к электросети.

Оба типа инверторов используют электронные схемы для перехода на электричество.Теория их работы выходит за рамки этого основного устройства. Но вы должны знать, что силовые инверторы подчиняются второму закону термодинамики. Таким образом, в процессе преобразования энергия теряется на тепло. Но современные инверторы могут достигать КПД до 95%.

Показан силовой инвертор, который преобразует постоянный ток солнечных панелей в переменный ток для фотоэлектрической системы, подключенной к сети.

Хранение и производство электроэнергии с помощью батарей

Схема свинцово-кислотной батареи

Provenance: Ohiostandard в английской Википедии — перенесено с en.wikipedia в Commons от Burpelson AFB с использованием CommonsHelper.
Повторное использование: Разрешается копировать, распространять и / или изменять этот документ в соответствии с условиями лицензии GNU Free Documentation License версии 1.2 или любой более поздней версии, опубликованной Free Software Foundation; без неизменяемых разделов, без текстов на лицевой обложке и без текстов на задней обложке. Копия лицензии включена в раздел под названием GNU Free Documentation License.

Батареи преобразуют потенциальную энергию химических веществ в кинетическую энергию электричества.Бенджамин Франклин ввел термин «батарея» для описания стопки стеклянных пластин с металлическим покрытием, которые он использовал для хранения энергии. Но то, что у него было, сегодня мы назвали бы конденсаторами. Батареи работают, соединяя вместе два химических материала, которые имеют разное сродство к электронам. Материалы анода предпочитают терять электроны, а материалы катода — получать их. Электроды батареи погружены в раствор, содержащий положительно и отрицательно заряженные ионы, называемый электролитом. При включении в цепь электроны текут от анода к катоду.В то же время отрицательно заряженные ионы в электролите перемещаются от катода к аноду для поддержания нейтральности заряда и, таким образом, замыкают электрическую цепь.

В перезаряжаемой батарее реакции на аноде и катоде можно обратить вспять, используя электрическую энергию для подачи тока, который толкает электроны в противоположном направлении — от катода к аноду. Это восстанавливает исходное состояние двух электродов. Ваш портативный компьютер, мобильный телефон и автомобильный аккумулятор — все это примеры аккумуляторных батарей.В современных батареях используются комбинации различных типов металлов и соединений оксидов металлов, образованные из таких элементов, как углерод, кадмий, кобальт, литий, марганец, никель, свинец и цинк для повышения производительности.

Батарея из лимона

Происхождение: Тереза ​​Нотт из Викимедиа: https://commons.wikimedia.org/wiki/File:Lemon_battery.png
Повторное использование: Этот файл находится под лицензией Creative Commons Attribution-Share Alike 3.0 Unported.Вы можете: делиться — копировать, распространять и передавать произведение для ремикса — адаптировать произведение При следующих условиях: приписывание — вы должны атрибутировать работу способом, указанным автором или лицензиаром (но ни в коем случае не предполагает, что они одобряют вас или ваше использование произведения). делиться одинаково — если вы изменяете, трансформируете или расширяете эту работу, вы можете распространять полученную работу только по той же или аналогичной лицензии, что и эта.

Простая батарея, использующая кислотные фрукты и два разных металла (бронза и стальные сплавы).

Exercises Exercises for Module 1 (Microsoft Word 2007 (.docx) 17kB Jul12 17)

1. Создайте цепь, используя две последовательно соединенные батареи и лампочку. Используйте цифровой мультиметр (DMM) для измерения электрического потенциала в вольтах между положительной и отрицательной клеммами в цепи. Теперь добавьте в цепь вторую лампочку последовательно с первой. Какова яркость каждой лампочки по сравнению с яркостью, когда в цепи была только одна лампочка? С помощью вольтметра измерьте напряжение между положительной клеммой аккумулятора и проводом сразу после первой лампочки, а затем сразу после второй лампочки.Запишите результаты. Теперь создайте цепь с двумя параллельными лампочками. Запишите яркость и напряжение на каждой лампочке.

Объясните свои результаты.

Простая схема с одной лампочкой

Цепь с двумя последовательно включенными лампочками

Цепь с двумя параллельно включенными лампами

2.Создайте пять магнитов для выборщиков, каждый с проволокой разной длины, обернутой вокруг железных гвоздей: 10 см, 20 см, 30 см, 40 см и 50 см. В каждом случае на каждом конце провода должно быть по 10 см, чтобы его можно было подключить к батарее. Таким образом, катушка «10 см» будет фактически сделана из провода длиной 30 см и так далее. Подключите каждый магнит к батарее и прикрепите как можно больше канцелярских скрепок к магнитной цепочке с кончика ногтя. Запишите максимальное количество скрепок в каждом случае. Затем нарисуйте график зависимости максимального количества удерживаемых скрепок от длины провода, из которого сделаны обмотки.Объясните, почему график выглядит именно так.

3. Соберите простой двигатель из предоставленного комплекта. Обязательно обратите внимание на инструкции о том, как удалить изоляцию на противоположных сторонах провода, который контактирует с зажимами аккумулятора.Как только вы заставите свой мотор вращаться, проведите следующие эксперименты.

а. Обратите внимание на направление вращения двигателя. Можете ли вы заставить его пойти в обратном направлении? Объяснять.

г. Теперь снимите магнит и переверните. Затем перезапустите мотор. Поворачивает ли он в том же направлении, что и раньше? Почему?

г. Теперь переверните аккумулятор и перезапустите двигатель. Направление вращения осталось прежним? Объяснить, почему.

г. Подумайте об электродвигателе как о системе.Определите источник энергии и ее судьбу во вращающейся двигательной системе. В своем ответе используйте следующие термины: электрохимическая энергия, кинетическая энергия (энергия движения) и тепло. Нарисуйте созданную вами схему для запуска электродвигателя. Наденьте шляпу системного мышления.

  • Определите каждый компонент системы.
  • Отследите поток энергии в системе. Обязательно покажите, где он переходит от электрического тока к магнитной энергии, кинетической энергии и теплу.
  • Сделайте снимок диаграммы и включите его в свой отчет.

Является ли электродвигатель закрытой системой (вся энергия остается в системе) или это открытая система (некоторый обмен энергией с окружающей средой)?

4. Из кусочка цитрусовых сделайте батарейку. Положите медный пенни с одной стороны фрукта и стальную скрепку с другой стороны. Измерьте напряжение с помощью цифрового мультиметра. Запишите результат: ______.

Теперь попробуйте использовать фруктовый аккумулятор, чтобы зажечь светодиодную лампочку.Это работает? Объясните, что создает электричество.

Список литературы

Электромагниты и закон Фарадея

Электродвигатель и генератор

Асинхронный двигатель переменного тока

Трансформаторы

Преобразователи переменного / постоянного тока

Как работают батареи

Яркость лампы

Падение напряжения (В)

Первая лампочка

Вторая лампа

Яркость лампы

Падение напряжения (В)

Первая лампочка

Вторая лампа

Яркость лампы

Падение напряжения (В)

Длина провода в бухте (см)

10

20

30

40

50

Макс. нет. скрепок

Количество электроэнергии — обзор

4.4 Заключительные замечания

Обсуждение до этого момента было направлено на оценку количества электроэнергии, которое может быть произведено путем выборочного размещения современных ветряных турбин в регионах, признанных подходящими для их размещение.Как указано, данные о ветре, использованные в этом анализе, были получены на основе ретроспективного анализа прошлых метеорологических условий. В этом смысле настоящий анализ можно интерпретировать как определение электричества, которое могло быть произведено турбинами, установленными в какой-то момент в прошлом, когда ветровые условия могли быть аналогичными и оставались аналогичными тем, которые указаны в принятой здесь базе данных. Прошлое, конечно, в лучшем случае несовершенный пролог к ​​будущему. Но при планировании будущего это может быть лучший вариант в нашем распоряжении.

Оговорки, которые следует отметить при рассмотрении платы, указанной в названии этой главы, — для определения глобального потенциала ветроэнергетики — включают следующее. Размещение большого количества ветряных турбин в определенном месте может иметь потенциал для изменения местных и, возможно, даже региональных ветровых условий. Широкое развертывание ветряных электростанций может повлиять на баланс кинетической энергии атмосферы, что приведет к потенциально последующим изменениям в циркуляции глобальной атмосферы.А в ответ на повышение концентрации парниковых газов климатические и ветровые условия в будущем могут значительно отличаться от условий, которые преобладали в прошлом. Поэтому количественные прогнозы будущего потенциала ветроэнергетики будут зависеть от уровня неизбежной неизбежной неопределенности.

Воздействие ветряных электростанций на местные метеорологические условия изучалось в ряде недавних исследований. Чжоу и др. [30]. использовал спутниковые данные, охватывающие период 2003–2011 годов, для анализа реакции региональной приземной температуры на строительство ветряной электростанции в Техасе.Они обнаружили свидетельства значительного повышения температуры поверхности, на целых 0,72 ° C за десятилетие, особенно ночью и особенно в непосредственной близости от ветряных электростанций. Рой и Трайтер [31] обнаружили аналогичную закономерность в своем исследовании реакции температуры на развитие ветряной электростанции в Сан-Горгонио, Калифорния. Они сообщили о доказательствах статистически значимого повышения температуры примерно на 1 ° C на высоте 5 м с подветренной стороны от ветряной электростанции в ночное время.Увеличение продолжалось в течение раннего утра, после чего следовало умеренное похолодание в течение дня. Они предположили, что влияние ветряных электростанций на местную погоду можно свести к минимуму, изменив конструкцию роторных систем или разместив ветряные электростанции в регионах с высоким уровнем естественной турбулентности. Далее они определили регионы Среднего Запада и Великих равнин США как идеальные для размещения ветряных электростанций с низким уровнем воздействия.

Если бы весь спрос на электроэнергию в Соединенных Штатах был удовлетворен за счет ветра, сопутствующий сток кинетической энергии составлял бы примерно 6% стока, естественным образом вносимого поверхностным трением на всей прилегающей территории США, 11% для сток определен с областью, указанной выше как наиболее благоприятной для развития ветряной электростанции.Влияние на циркуляцию атмосферы потенциально серьезных обязательств по ветроэнергетике изучалось в ряде недавних исследований, в частности, Кирк-Давидофф и Кейт [32] и Кейт и др. [33]. Они пришли к выводу, что использование ветровых ресурсов на высоких уровнях проникновения может привести к значительным изменениям в циркуляции атмосферы даже в регионах, удаленных от расположения задействованных турбин. Они утверждали, что бюджет глобальной инвентаризации атмосферной кинетической энергии регулируется в первую очередь процессами на входной стороне реестра, а не приемником.Они утверждали, что в этом случае увеличение трения в результате работы большого количества энергетических турбин может быть компенсировано уменьшением диссипации количества движения за счет трения в другом месте. Они пришли к выводу, что средняя глобальная температура поверхности не изменится существенно перед лицом крупных инвестиций в ветроэнергетику. Температура на высоких широтах может снизиться до умеренной степени в ответ на ожидаемое снижение эффективности меридионального переноса тепла.В этом случае воздействие можно рассматривать как положительное, в некоторой степени компенсирующее усиленное потепление, которое, согласно прогнозам, возникнет в этой среде в ответ на антропогенное увеличение концентрации парниковых газов.

Влияние крупномасштабных инвестиций в ветряные электростанции на циркуляцию атмосферы исследовали также Miller et al. [34] и Marvel et al. [35]. Используя простой подход параметризации для моделирования влияния работы турбины как поглотителя атмосферного импульса, Miller et al.[34] пришли к выводу, что турбины, равномерно распределенные по поверхности Земли, могут устойчиво собирать кинетическую энергию со скоростью до 400 ТВт. Если бы турбины были развернуты на высоте 100 м, выработка могла бы составить 1800 ТВт. Используя альтернативный подход для параметризации стока для импульса, связанного с эксплуатацией ветровых ресурсов, Якобсон и Арчер [36] пришли к выводу, что по мере увеличения количества ветряных турбин в большом географическом регионе извлечение энергии должно сначала увеличиваться линейно, со временем сходясь к предел, оцениваемый как превышающий 250 ТВт для турбин, расположенных на высоте 100 м, возрастает до 380 ТВт для турбин, развернутых на высоте 10 км.

Существует заметное расхождение между этими различными оценками ветрового потенциала. Адамс и Кейт [37] обратились к этой проблеме с помощью мезомасштабной модели. Они пришли к выводу, что выработка энергии с помощью ветра должна быть ограничена в среднем примерно 1 Вт · м −2 для объектов, распределенных на территории примерно 100 км 2 . Далее они утверждали, что результаты, полученные с использованием мезомасштабной модели, должны предоставить полезное руководство к тому, чего можно ожидать от более полной глобальной модели.Однако это утверждение еще предстоит продемонстрировать.

Современные ветряные турбины рассчитаны на эффективную работу в течение жизненного цикла до 25 лет или даже дольше. Прогнозы ветроэнергетики на следующие 25 лет, включая необходимость предвидеть влияние внутренней изменчивости, станут проблемой для потенциальных инвесторов. В глобальных и региональных климатических моделях трудно учесть исторические тенденции ветровых режимов. Мало оснований полагать, что они будут более успешными в предсказании будущего.Прайор и др. [38], на основе существующих исследований, утверждали, что ожидаемые в будущем изменения средней скорости ветра и плотности энергии вряд ли превысят межгодовую изменчивость (± 15%), наблюдаемую в последнее время на большей части Европы и Северная Америка. За последние несколько десятилетий интенсивность приземных ветров снизилась в Китае, Нидерландах, Чехии, США и Австралии [39–42]. Точная причина этого снижения неизвестна. Vautard et al. [43] проанализировали степень и потенциальную причину изменений скорости приземного ветра, наблюдавшихся в средних широтах севера в период с 1979 по 2008 год, используя данные 822 приземных метеостанций.Они указали, что скорость приземного ветра снизилась на 5–15% почти на всех континентальных территориях в северных средних широтах, причем наибольшее снижение наблюдается при более высоких скоростях ветра. Напротив, ветры на высотах, полученные на основе градиентов давления на уровне моря, и ветра, полученные на основе повторного анализа погоды, не демонстрируют такой тенденции. Было высказано предположение, что увеличение шероховатости поверхности в результате увеличения биомассы и связанных с этим изменений в почвенном покрове над Евразией может составлять до 25–65% уменьшения приземных ветров, наблюдаемых над этим регионом.

Хуанг и МакЭлрой [3], используя ассимилированные метеорологические данные за период с января 1979 года по декабрь 2010 года, исследовали происхождение энергии ветра как с механической, так и с термодинамической точки зрения. Их результаты указывают на тенденцию к росту производства кинетической энергии за последние 32 года, предполагая, что ресурсы энергии ветра могут увеличиться в условиях потепления. Они далее подчеркнули тот факт, что общий запас кинетической энергии атмосферы демонстрирует значительную межгодовую изменчивость, особенно в ответ на изменение фаз цикла Эль-Ниньо – Южное колебание (ЭНСО).Таким образом, можно ожидать, что потенциал ветра как источника электричества в любом конкретном месте будет изменяться не только в долгосрочной перспективе, но и в межгодовом периоде в ответ на естественные колебания циркуляции атмосферы.

Общий вывод из этой главы состоит в том, что ветровые ресурсы в глобальном масштабе могут удовлетворить значительную часть нынешнего и ожидаемого будущего спроса на электроэнергию. Можно ожидать, что концентрация объектов в определенных регионах будет способствовать изменению преобладающих местных метеорологических условий.Однако маловероятно, что это изменение будет достаточно разрушительным, чтобы компенсировать преимущества, которые могут быть реализованы в первую очередь за счет концентрации. Производство электричества путем улавливания кинетической энергии ветра можно рассматривать как дополнительный вклад в поверхностное трение, которое служит естественным компенсатором глобального производства кинетической энергии атмосферой. При высоких уровнях проникновения ветровые установки могут оказывать заметное влияние на бюджет этого важного количества: можно ожидать, что климат изменится соответствующим образом.Однако, учитывая обозримое расширение ветряных систем в ближайшем будущем, это вряд ли создаст серьезную проблему. Наиболее важное ограничение для будущего роста, скорее всего, будет связано с проблемой реагирования на внутреннюю изменчивость входящего потока ветра, усугубляемого тем фактом, что этот источник может не идеально соответствовать моделям спроса на электроэнергию.

Расчет переданной энергии — Ток, напряжение и сопротивление — GCSE Physics (Single Science) Revision — Other

Для заданного количества перемещающегося электрического заряда количество переданной энергии увеличивается с увеличением разности потенциалов.

Вы можете вычислить передаваемую энергию, используя следующее уравнение:

переданная энергия = разность потенциалов × заряд

E = V × Q

куда:

E — передаваемая энергия в джоулях, Дж

В — разность потенциалов в вольтах, В

Q — заряд в кулонах, C

Вопрос

Сколько энергии передается когда разность потенциалов 120 В, а заряд 2 Кл?

Показать ответ

Переданная энергия = 120 × 2 = 240 Дж

Это уравнение можно преобразовать в В = E ÷ Q

Таким образом, напряжение — это передаваемая энергия, деленная на заряд.Измененная формула означает, что мы можем определить один вольт как один джоуль на кулон.

Основные расчеты электролиза

Постоянная Фарадея — это самый важный бит информации в расчетах электролиза. Убедитесь, что вы действительно понимаете следующую часть.


 

Кулоны

кулон — это мера количества электричества. Если в течение 1 секунды протекает ток в 1 ампер, значит, прошел 1 кулон электричества.

Это означает, что вы можете вычислить, сколько электричества прошло за заданное время, умножив ток в амперах на время в секундах.

Количество кулонов = ток в амперах x время в секундах

Если вам дано время в минутах, часах или днях, тогда вы должны преобразовать это время в секунды, прежде чем делать что-либо еще.

Например, если в течение часа течет ток 2 ампера, то:

Количество кулонов = 2 x 60 x 60 = 7200

(60 минут в час; 60 секунд в каждой минуте.)

Это просто!


 

Фарадей

Электричество — это поток электронов. Для целей расчетов нам нужно знать, как связать количество молей электронов, которые текут, с измеренным количеством электричества.

Заряд, который несет каждый электрон, составляет 1,60 x 10 -19 кулонов. Если вам когда-нибудь понадобится использовать его на экзамене, вам будет дана ценность.

1 моль электронов содержит постоянную Авогадро L, электронов — то есть 6.02 x 10 23 электронов. Вам также дадут это на экзамене, если вам нужно его использовать.

Это означает, что 1 моль электронов должен нести

6,02 x 10 23 x 1,60 x 10 -19 кулонов

= 96320 кулонов

Это значение известно как постоянная Фарадея.

Вы можете встретить формулу F = Le , где F — постоянная Фарадея, L — постоянная Авогадро, а e — заряд электрона (в единицах количества кулонов, которые он несет).Мы только что использовали это, фактически не заявляя об этом — это в основном очевидно!


 

Числа, которые мы здесь используем, округлены. Расчет просто показывает вам, как это решить, если вам нужно, но не дает обычно используемого значения. Для целей экзамена значение постоянной Фарадея обычно принимается равным 9,65 x 10 4 C моль -1 (кулонов на моль). Это еще одно число, которое вам вряд ли придется запоминать.

То есть 96500 кулонов на моль.

Итак, 96500 кулонов называется 1 фарадей . Обратите внимание на маленькую букву «f», когда она используется как единица измерения.

Всякий раз, когда у вас есть уравнение, в котором имеется 1 моль электронов, это представлено в электрической цепи 1 фарадеем электричества — другими словами, 96500 кулонами.

Как оценить потребность в электроэнергии

Когда вы получаете счет за электроэнергию каждый месяц, вы можете не понимать, как именно была рассчитана общая сумма.Каждое устройство в вашем доме вносит свой вклад в общую сумму счета. Чтобы выяснить, какие приборы и устройства потребляют больше всего энергии, вы можете оценить общие потребности в энергии , для каждого блока. Эта оценка также полезна для оценки требований к мощности для альтернативной или резервной системы энергоснабжения.

Оценить потребности в энергии и затраты на питание электронного устройства или прибора очень просто. На задней панели каждого устройства есть этикетка с указанием потребляемой мощности.Это число, которое вам понадобится, чтобы вычислить потребление энергии и требования. Наряду с ваттами вам нужно будет оценить количество часов в день, в течение которых устройство или прибор используется. Если вы предпочитаете не проверять все свои устройства вручную, вы можете приобрести устройство, которое поможет вам оценить потребление энергии. Эти устройства варьируются от простых устройств для измерения мощности до сложных решений для домашнего мониторинга. В этом посте мы предполагаем, что у вас нет доступа к сложному решению для домашнего мониторинга.Если вы новичок в чтении этикеток с энергопотреблением на задней панели ваших приборов и устройств, просмотрите следующие несколько разделов с справочной информацией, чтобы получить представление об основах электротехники и терминологии.

Предпосылки: основы электротехники

Чтобы понять электрические термины, перечисленные на этикетках прибора или устройства, необходимо понять несколько электрических терминов. Основные термины: напряжение, ток и сопротивление:

.

Напряжение (Вольт): Разница потенциальной энергии (заряда) между двумя точками в цепи.Одна точка имеет больше энергии, чем другая, и разница между точками называется напряжением. Напряжение измеряется в вольтах.
Ток (Ампер): Поток электронов (заряд) между двумя точками в цепи. Сила тока измеряется в амперах.
Сопротивление (Ом): Сопротивление — это электрическое сопротивление (сложность) между двумя точками проводника. Сопротивление измеряется в Ом.

Напряжение, ток и сопротивление связаны уравнением, называемым законом Ома:

V = I x R

где V — вольт, I — ток, а R — сопротивление.При описании напряжения, тока и сопротивления часто используется аналогия «вода, текущая в трубе». Ток аналогичен потоку воды, а напряжение — это давление в трубе. Когда напряжение (давление) выше, будет течь более сильный ток. На рисунке 1 показана аналогия с водой с (а) давлением (напряжением) без тока и (б) давлением (напряжением) и током.

Рисунок 1. Механическое изображение напряжения и тока.

Электроэнергия также может быть выражена в единицах мощности, называемых Вт .Ватт — это единица электрической мощности, представленная током в один ампер в цепи с разностью потенциалов в 1 вольт. Мощность связана с напряжением и током следующим уравнением:

P = I x V

где P — мощность, I — ток, а V — вольты. Мощность (электрическая энергия) измеряется в ваттах или киловаттах. Его также можно измерить с течением времени. Например, лампочка мощностью 60 Вт потребляет 60 Вт в определенный момент времени.Киловатт-час (кВтч) — это электрическая энергия, равная мощности, подаваемой одним киловаттом за один час.

Справочная информация: напряжение переменного и постоянного тока

Электрические концепции, которые мы описали до сих пор, являются примерами постоянного тока (DC) . Постоянный ток (DC) — это электрический ток, который течет линейно в постоянном направлении. Существует также другой тип тока, называемый переменным током (AC) , который отличается от постоянного тока, потому что он меняет направление.Рисунок 2 иллюстрирует разницу между этими двумя концепциями. Как показано, постоянное напряжение постоянно. Напряжение переменного тока имеет синусоидальную форму, что означает, что оно изменяется со временем.

Рис. 2. Визуальная разница между постоянным и переменным напряжением.

Мы можем использовать предыдущую аналогию с водой для описания переменного тока; вместо воды, текущей по трубе, вода в трубе перемещается вперед и назад с помощью рукоятки, соединенной с поршнем.На рисунке 3 показана иллюстрация этой концепции. Брызги жидкости могут быть очень быстрыми — 50 или 60 циклов в секунду (50 или 60 Гц). Устройства, которые питаются от топливных элементов , или батареи , используют питание постоянного тока; однако устройства, которые подключаются к стене в наших домах, используют переменный ток.

Рисунок 3. Переменный ток Аналогия напряжения (напряжения) и тока.

Проверка необходимой энергии

Чтобы оценить использование энергии в вашем доме, могут помочь следующие источники:

• Счета за электроэнергию
• Рейтинг оборудования
• Ожидаемые профили нагрузки

Посмотрев на свой счет за электроэнергию, вы можете увидеть, как ваши ватты меняются от месяца к месяцу в течение года.Ваше потребление энергии носит сезонный характер и зависит от того, где вы живете. Например, если вы живете в холодном климате, ваши зимние счета могут быть намного выше, чем ваши летние, из-за необходимости в тепле зимой. В жарком климате ваш летний счет может быть намного выше, чем ваш зимний, из-за того, что кондиционер работает все лето.

Каждый прибор или электронное устройство имеет паспортную табличку, на которой указаны напряжение, сила тока, частота и мощность. Обычно они расположены на задней панели устройства.Эти характеристики представляют собой максимальное количество мощности, которое может быть поставлено; следовательно, номинальная мощность, указанная на паспортной табличке, теоретически соответствует 100-процентному использованию. Многие устройства не работают со 100-процентной загрузкой; поэтому использование номинальных значений на паспортной табличке может привести к завышению требований к мощности. Пример паспортной таблички показан на Рисунке 4.

Рисунок 4. Паспортные таблички электронного устройства.

Хотя потребление энергии можно рассчитать на основе ваших счетов за электроэнергию и паспортных табличек устройства, фактические измерения дадут более точные данные.Фактические измерения нагрузки можно получить с помощью ватт-часов. Эти фактические измерения нагрузки часто используются для проектирования PV , топливного элемента и систем резервного питания от батарей. Фактическая нагрузка требуется для определения размера и стоимости системы альтернативной энергии . Часто разработчики систем рекомендуют потребителю изменить свои методы энергопотребления, чтобы минимизировать потребление энергии, чтобы фотоэлектрическая система могла быть спроектирована с учетом этих требований вместо установки более крупной системы для компенсации пикового использования.

Расчет потребления энергии

Общее количество энергии, потребляемой вашим домом, можно легко рассчитать, выполнив шесть простых шагов:

1. Укажите количество ватт для каждого прибора или электронного устройства (это называется «нагрузкой» для каждого устройства). Все существующие и планируемые электрические нагрузки должны быть идентифицированы.
2. Оцените среднесуточное использование (количество часов в день, в течение которых прибор или электронное устройство работают)
3. Умножьте мощность устройства на количество часов, в течение которых вы его используете (это даст вам определенное количество «ватт-часов»). Например, если вы используете телевизор на 120 Вт в течение двух часов в день. Вы можете умножить мощность на количество часов, используемых в день, чтобы получить 240 ватт-часов в день.
4. В вашем счете за электричество электричество указано в киловатт-часах. Чтобы сравнить потребление энергии в киловатт-часах, нам нужно будет преобразовать ватт-часы в киловатт-часы. Поскольку 1 киловатт равен 1000 ватт, разделите на 1000, чтобы преобразовать ватт-часы (Втч) в киловатт-часы (кВтч):

240 Втч / 1000 = 0.24 кВтч

5. Чтобы сравнить эти цифры с вашим счетом за электроэнергию, нам нужно преобразовать это число в количество часов, которые прибор или устройство использует в месяц. Например, 0,24 кВтч x 30 дней = 7,2 кВтч в месяц.
6. Чтобы рассчитать затраты на электроэнергию и сравнить их с вашим счетом за электричество, посмотрите на свой счет за электричество, чтобы определить, сколько вы платите за киловатт-час. Если в вашем счете указано, что вы платите 0,12 доллара за киловатт-час, стоимость может быть оценена следующим образом: 7.2 кВтч в месяц x 0,12 доллара США за кВтч = 0,86 доллара США в месяц.

Вы можете организовать эти числа, как в Таблице 1 ниже.

Электрическая нагрузка Мощность (Вт) Среднее ежедневное использование (ч) Средняя дневная энергия (ватт-часы) Среднесуточная энергия (киловатт-часы) Среднемесячная энергия (киловатт-часы) Стоимость в месяц ($)
Телевидение 120 2 240 0.24 7,2 0,86

Таблица 1. Таблица для расчета среднесуточной энергии.

Заполнив Таблицу 1, вы можете получить хорошую оценку количества электроэнергии, которое вы используете каждый месяц, и связанных с этим затрат. Чтобы определить размер системы накопления энергии, вам также нужно будет посмотреть на требуемую пиковую мощность (максимальное количество энергии, которое может потребоваться в день) и продолжительность средней мощности (самый продолжительный период времени, в течение которого средняя мощность нужный).Среднее потребление энергии определяет общее количество энергии, потребляемой за день.

Заключение

В этом посте мы рассмотрели основные электрические термины, такие как напряжение, ток, сопротивление, мощность, постоянный ток (DC) и переменный ток (AC). Затем мы использовали эти концепции для расчета потребности в энергии для прибора или устройства. Эти потребности в энергии можно использовать для оценки общего потребления энергии и связанных с этим затрат на эту энергетическую нагрузку. Расчет этих требований может помочь вам уменьшить ваши счета за электроэнергию и помочь вам определить размер фотоэлектрической, резервной аккумуляторной батареи или другой альтернативной энергетической системы.

Автор: Д-р Коллин Шпигель

Доктор Коллин Шпигель — консультант по математическому моделированию и техническому письму (президент SEMSCIO) и профессор, имеющий докторскую степень. и степень магистра инженерных наук. Она имеет семнадцатилетний опыт работы в инженерии, статистике, науке о данных, исследованиях и написании технических статей для многих компаний в качестве консультанта, сотрудника и независимого владельца бизнеса. Она является автором работ « Designing and Building Fuel Cells » (McGraw-Hill, 2007) и «PEM Fuel Cell Modeling and Simulation using MATLAB» (Elsevier Science, 2008).Ранее она владела Clean Fuel Cell Energy, LLC, организацией по топливным элементам, которая обслуживала ученых, инженеров и профессоров по всему миру.

Формула мощности

— уравнения с примерами

Если мы оглянемся, то обнаружим несколько вещей, которые требуют энергии для бега или работы. Этой силой может быть что угодно: электричество, физическая сила, человеческие ресурсы и т. Д. Основная задача остается прежней — способность выполнять работу в определенное время.

Формула порошка может быть определена как работа, выполненная любым конкретным объектом или источником за заданное время.

Предположим, что A и B — два человека, выполняющие одну и ту же задачу, но A завершил задачу раньше B, тогда что это означает?

Это просто означает, что A более эффективен, чем B, и эффективность прямо пропорциональна мощности, поэтому мы можем сказать, что A более мощный, чем B. данное время.

Мощность = Работа, проделанная объектом или телом / Общее затраченное время.

Формула мощности отличается в зависимости от требуемых формулировок, например, она может быть другой для объектов, связанных с силой, а также может отличаться для электронных устройств.

Формула мощности для различных отношений и единиц:

  1. P = VI:

Эта формула для мощности взята из главы, посвященной электричеству. Формула дана великим ученым по имени Ом, и эта формула названа в его честь и также известна как закон Ома.

Это означает, что мощность прямо пропорциональна разности потенциалов проводника. Здесь P обозначает мощность, V обозначает разность потенциалов, а I обозначает ток.Единица СИ — ватт. Единица измерения V — вольт, а для I — в столбце.

  1. Формула электрической мощности:

P = R × I2 или V2 / R: Эти формулы являются вариантом закона Ома. Здесь R означает сопротивление, V означает разность потенциалов, а I означает ток.

В нем указано, что мощность прямо пропорциональна квадрату разности потенциалов и обратно пропорциональна сопротивлению проводника.

  1. Уравнение мощности:

P = E / t: Эта формула также называется уравнением механической мощности.Здесь E означает энергию в джоулях, а t означает время в секундах.

Эта формула утверждает, что потребление энергии в единицу времени называется мощностью.

  1. P = w / t:

Это наиболее распространенная и основная формула мощности, о которой мы узнали очень рано. Эта формула выводится из теоремы работы-энергии.

В нем указано, что работа, выполняемая за единицу времени, называется мощностью. Здесь W означает работу в джоулях, а t означает время в секундах.

  1. P = F × s / t:

В этой формуле F обозначает силу, приложенную к объекту, s обозначает смещение объекта, а t обозначает общее затраченное время.

В нем говорится, что общее время, необходимое объекту для перемещения из одного места в другое, когда к нему применяется внешняя сила, называется мощностью.

Формула силы различна для разных полей, как упоминалось выше, но ее значение остается почти одинаковым для всех.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *