Компаратор на оу – Компаратор напряжения на ОУ: принцип работы, схемы

Содержание

Компаратор напряжения на ОУ: принцип работы, схемы

Для управления электронными схемами применяются различные устройства, которые помогают настраивать и разветвлять сигналы. Для сравнения двух разных импульсов часто используется компаратор с однополярным питанием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Фото — УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Фото — Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Фото — схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Фото — простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото — аналоговый компаратор

Видео: компараторы

Принцип работы

Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.

Фото — схема работы компаратора

Схема включения, по которой можно понять принцип работы компаратора, показана выше. Используя аналоговый сигнал во + входе, именуемым «неинвертируемым», и выходе, который называется под названием «инвертируемый», устройство использует два аналогичных разнополярных сигнала. При этом если аналоговый вход больше, чем аналоговый выход, то выход будет «1», и это включит открытый коллектор транзистора Q8 на эквивалентной схеме LM339, которую нужно включить. Но, если вход находится на отрицательном уровне, то сигнал будет равняться «0», из-за чего, коллектор будет находиться в закрытом виде.

Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания. Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к. компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.

Назначение

Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения. Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д. Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.

Фото — компараторы для компьютера

Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.

Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.

Фото — ОУ компаратор

Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

  1. Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
  2. Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
  3. И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

www.asutpp.ru

Компараторы и триггеры Шмитта на ОУ

Всем доброго времени суток. В предыдущих статьях я рассказывал о применении операционных усилителей в линейных схемах, где ОУ охвачен отрицательной обратной связью, которая позволяет строить усилители, параметры которых будут в основном определяться элементами обвязки ОУ. Данная статья расскажет о применении ОУ без обратной связи или даже с положительной обратной связью (ПОС).

Работа операционного усилителя без обратной связи

Как известно напряжение на выходе ОУ UВЫХ определяется произведением входного дифференциального напряжения UД (разность напряжений между входными выводами) на коэффициент усиления ОУ по напряжению КU



Операционные усилители имеют очень большой коэффициент усиления ОУ по напряжению КU = 105 … 106, а выходное напряжение не может выйти за пределы напряжения питания (обычно несколько меньше). Поэтому, для того чтобы ОУ работал в качестве усилителя напряжения максимальное входное дифференциальное напряжение не должно превышать нескольких десятков мкВ (при UПИТ = 15 В, КU = 105, UД ≈ 150 мкВ). С учётом вышесказанного можно сделать вывод, что без применения отрицательной обратной связи, которая снижает усиление ОУ в схеме, применение ОУ бесполезно, так как при входных напряжениях в несколько милливольт ОУ войдёт в насыщение с выходным напряжением равным напряжению питания.

Но существуют схемы, в которых операционные усилители применяются без обратной отрицательной связи, а в некоторых случаях специально вводят положительную обратную связь (ПОС) для увеличения коэффициента усиления схем. Одним из видов таких схем являются пороговые устройства, в состав которых входят различные компараторы, триггеры Шмитта, детекторы уровней напряжения.

Принцип работы компаратора

Простейшим пороговым устройством является компаратор. Он сравнивает напряжение, которое поступает на один из его входов, с опорным напряжением, которое присутствует на другом его входе. Простейший компаратор получается из операционного усилителя, в котором отсутствует отрицательная обратная связь. Рассмотрим принцип работы компаратора напряжений на основе ОУ, схема которого изображена ниже



Использование ОУ в качестве компаратора и графики входного и выходного напряжений.

В основе компаратора лежит ОУ на инвертирующий вход, которого поступает входное напряжение UBX, а неинвертирующий вход соединён с источником опорного напряжения UОП. Принцип работы компаратора изображённого на рисунке заключается в следующем: когда входное напряжение UBX больше опорного UОП, то выходное напряжение принимает значение отрицательного напряжения насыщения –UНАС и остаётся неизменным пока входное напряжение UBX не уменьшиться ниже опорного напряжения UОП, в этом случае на выходе будет напряжение положительного насыщения +UНАС.



На рисунке изображен компаратор с инвертирующим выходным сигналом по отношению к входному сигналу. Для того, чтобы не происходило инверсии на выходе необходимо поменять подключение выводов ОУ, то есть входной сигнал должен поступать на неивертирующий вход, а опорное напряжение на инвертирующий вывод. Тогда при превышении опорного напряжения на выходе ОУ будет положительное напряжение насыщения, а при входном напряжении меньше, чем опорное напряжение на выходе будет присутствовать отрицательное напряжение насыщения ОУ.



Основные схемы компаратора

Существует много разновидностей компараторов, но в из основе лежат две основные схемы: одновходовая и двухвходовая. Одновходовая схема позволяет сравнивать разнополярные напряжения по модулю, то есть по абсолютной величине. Двухвходовый же компаратор сравнивает два напряжения с учётом знака. Расссмотрим обе схемы подробнее.



Схема одновходового компаратора.

На рисунке выше изображён одновоходовый компаратор, позволяющий сравнивать два разнополярных напряжения по абсолютному значению (по модулю). В его основе лежит инвертирующий сумматор, в котором отсутствует отрицательная обратная связь, поэтому ослабления коэффициент усиления операционного усилителя не происходит. В результате чего на инвертирующем входе ОУ происходит суммирование входного напряжения UBX и опорного напряжения UОП приведённого к инвертирующему входу UПРИВ, а результат суммирования усиливается ОУ и выводится на его выход. Для того чтобы происходило сравнение необходимо фактически производить операцию вычитания, то есть напряжения на входах UBX и UПРИВ должны иметь разную полярность.

Приведённое напряжение UПРИВ можно вычислить по следующему выражению



Резистор R3 предназначен для компенсации входного тока смещения и должен быть равен величине параллельно соединённых резисторов R1 и R2



Основным недостатком данной схемы является необходимость использования стабилизированного отрицательного напряжения, что приводит к усложнению схемы. Поэтому одновходовый компаратор не получил широкого распространения.

Наибольшее распространение получила схема двухвходового компаратора, в котором отсутствует необходимость в отрицательном напряжении. Схема данного компаратора приведена ниже



Схема двухвходового компаратора.

В основе двухвходового компаратора лежит дифференциальный усилитель, в котором отсутствует отрицательная обратная связь, поэтому разность между входным напряжением UBX и UОП опорным напряжение усиливается ОУ, не имеющего снижения коэффициента усиления из-за отсутствуя ООС, и выделяется на выходе ОУ. В данной схеме входные резисторы R1 и R2 имеют одинаковое значение.

Компараторы применяются в широком спектре схем:

  1. Триггеры Шмитта и в схемах формирования сигнала, преобразующих сигнал произвольной формы в прямоугольный или импульсный сигнал.
  2. Детекторы уровня – схемы, в которых происходит индицирование момента достижения входным сигналом заданного уровня опорного напряжения.
  3. Генераторы импульсных сигналов, например, треугольной или прямоугольной формы.

При использовании компаратора в схемах, где входное напряжение медленно меняется и амплитуда сигнала очень близка к опорному напряжению, то шумы на входном выводе могут вызвать ложные срабатывания компаратора и на его выходе могут появиться дополнительные импульсы, что продемонстрировано на рисунке ниже



Появление ложных импульсов на выходе компаратора.

Для устранения таких ложных срабатываний компаратора, в его схему вводится некоторый гистерезис, путём добавления положительной обратной связи (ПОС) к операционному усилителю.

Триггер Шмитта

Как сказано выше для устранения ложных срабатываний компаратора, известных, как «дребезг контактов» необходимо использовать схему компаратора с петлёй гистерезиса, которая получила название триггера Шмитта.

В одной из статей я рассказывал о триггере Шмитта выполненном на транзисторах. Он характеризуется тем, что в отличие от компаратора имеет так называемую петлю гистерезиса. То есть компаратор переключается из высокого уровня напряжения в низкий при одной и той же величине входного напряжения, а триггер Шмитта имеет два уровня (порога) переключения. Данное различие иллюстрирует изображение ниже



Изменение входного и выходного напряжения компаратора (справа) и триггера Шмитта (слева).

Уровни напряжения, при которых происходит переключение триггера Шмитта называются верхним уровнем (порогом) срабатывания триггера UВП и нижним уровнем (порогом) срабатывания триггера UНП.

Для реализации триггера Шмитта применяют ОУ охваченные положительной обратной связью (ПОС), которая реализуется подачей на неинвертирующий вход части выходного напряжения. Схема триггера Шмитта изображена ниже



Триггер Шмитта на операционном усилителе.

Работа триггера Шмитта во многом похожа на работу компаратора, только в отличие от него в триггере опорное напряжение не постоянно, а зависит от разности выходного и опорного напряжений, то есть имеет различные значения.

Рассмотрим инвертирующий триггер Шмитта. В исходном входное напряжение не превышает верхнего уровня срабатывания триггера UВП, поэтому на выходе присутствует положительное напряжение насыщения UНАС+ (примерно на 1 – 2 В ниже положительного напряжения питания UПИТ+). Когда входное напряжение достигает верхнего порога переключения UВП выходное напряжение резко упадёт до уровня отрицательного напряжения насыщения UНАС-(примерно на 1 – 2 В выше отрицательного напряжения питания UПИТ-). Верхний уровень напряжения переключения триггера Шмитта определяется следующим выражением



Далее триггер остаётся в устойчивом состоянии до тех пор, пока входное напряжение не станет меньше нижнего порога срабатывания UНП, а на выходе триггера установится положительное напряжение насыщения UНАС+. Нижний порог срабатывания триггера определяется следующим выражением



Таким образом, петля гистерезиса будет зависеть от соотношения резисторов R2 и R3, а ширина петли гистерезиса UГИС определяется разностью верхнего порога срабатывания UВП и нижнего порога срабатывания UНП



Триггеры Шмитта на ОУ являются основой для построения различных генераторов импульсов, поэтому важнейшими характеристиками ОУ работающих в импульсных схемах является быстродействие, которое зависит от задержек срабатывания и времени нарастания выходного напряжения.

Ограничение уровня выходного напряжения компаратора и триггера Шмитта

Применение положительной обратной связи (ПОС) в компараторах и триггерах Шмитта ускоряет переключение схем, но в связи с тем, что выходное напряжение UВЫХ изменяется от UНАС+ до UНАС-, то время переключения составляет довольно значительную величину (от долей до единиц микросекунд).

Кроме того существует проблема несовместимостей уровней выходного напряжения, к примеру, при напряжении питания ОУ UПИТ = ±15 В, выходное напряжение составит UВЫХ ≈ ±14 В (UНАС+ ≈ +14 В, а UНАС- ≈ -14 В), в то время как уровни ТТЛ микросхем составляют около +5 В или 0 В.

Для устранения вышеописанных проблем применяют так называемую привязку или ограничение уровня выходного напряжения, для этого в компаратор или триггер Шмитта вводят ООС в виде различных схем ограничения. Простейшими ограничительными схемами являются диоды или стабилитроны. Схема триггера Шмитта с ограничение выходного напряжения показана ниже



Триггер Шмитта с ограничением выходного напряжения при помощи стабилитрона в цепи ООС.

Ограничение выходного напряжения в триггере Шмитта работает следующим образом. При поступлении на инвертирующий вход напряжения меньше, чем напряжение опорного уровня (UВХОП), то выходное напряжение UВЫХ начинает изменяться в положительном направлении и при достижении напряжения стабилизации стабилитрона UСТ напряжение на выходе перестанет расти, а будет изменяться только ток. При этом выходное напряжение будет равняться напряжению стабилизации стабилитрона (UВЫХ = UСТ).

В случае если входное напряжение начнёт увеличиваться, выше опорного напряжения, то на выходе напряжение начнёт уменьшаться и в этом случае направление тока через стабилитрон начнёт изменяться на противоположный, а стабилитрон начнёт вести себя как диод. В результате падение напряжения на нём составит примерно 0,7 В независимо от величины протекающего через него тока, а на выходе напряжение составит -0,7 В.

Таким образом, при использовании стабилитрона выходное напряжение триггера Шмитта составит: UВЫХ1 = UСТ (при отсутствии ограничения UНАС+) или UВЫХ2 ≈ 0,7 (при отсутствии ограничения UНАС-).

Для симметричного ограничения выходного напряжения могут применяться последовательно включенные диоды или стабилитроны, что показано на рисунке ниже



Триггер Шмитта с симметричным ограничением выходного напряжения.

В данной схеме реализуется симметричное ограничение выходного напряжения относительно опорного напряжения, причем выходное напряжение выше опорного напряжения ограничивается стабилитроном VD1, а напряжение при этом составит на 0,7 В больше напряжения стабилизации. В случае же выходного напряжения ниже опорного, то выходное напряжение будет на 0,7 В ниже напряжения стабилизации стабилитрона VD2.

При расчёте компараторов и триггеров Шмитта с ограничением выходного напряжения в качестве UНАС+ необходимо использовать UСТ (когда используется один стабилитрон) или UСТVD1 (при двухстороннем ограничении). А вместо UНАС- необходимо использовать значение падения напряжения на диоде примерно 0,7 В (при одном стабилитроне) или UСТVD2 (при двухстороннем ограничении).

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Компаратор на операционном усилителе. Практикум.

В данной статье разберёмся как работает компаратор на операционном усилителе.

Операционные усилители – очень мощный инструмент современного радиолюбителя. Одной из самых простых схем его использования является подключение по схеме компаратора.

Название компаратор прижилось в отечественной литературе. Произошло оно от заимствования с английского слова compare = сравнить. Поэтому многие радиолюбители называют компаратор сравнивающим устройством.

Обычно для экономии стоимости данные схемы реализуют на операционных усилителях, но бывают и специализированные микросхемы компараторов. Они, как правило, имеют лучшее быстродействие и меньшее падение напряжения на самой микросхеме, но их невозможно использовать в качестве операционного усилителя. В данной статье речь пойдёт о использовании именно операционника (ОУ) в качестве компаратора. А вариант с использованием специализированных компараторов будет рассмотрен позже.

Наглядно эта схема показана на следующем рисунке:

Рис.1. Схема подключения операционного усилителя в качестве компаратора.

Давайте вместе разберемся в её работе.

Наиболее понятно, работа данной схемы представляется в виде работе некоторого постоянно сравнивающего устройства, которое постоянно сравнивает сигнал 1 и сигнал 2 подаваемые на вход компаратора. Выход оно устанавливает исходя из следующего:

Сигнал 1 больше по напряжению, чем сигнал 2?

Если да, то выход устанавливается в 10В (напряжение питание операционного усилителя). Если нет, то в 0В.

Рис.2. Наглядное описание работы компаратора

На первый взгляд в работе данной схемы нет ничего необычного, но существует бесчисленное множество применений работы данной схемы. В основном это устройства, которые переводят аналоговый сигнал в некоторую логическую величину: ДА или НЕТ. Это может быть и индикатор зарядки батареи, и датчик критического уровня жидкости в сосуде или любой другой аналоговый сигнал, который переходи какое-то определённое значение.

Разберём несколько из примеров использования компараторов (рекомендованных для домашней сборки), для того чтобы лучше разобраться в том, как работает данная схема.

1. Датчик перегрева радиатора

Данная схема работает по следующему принципу: В зависимости от температуры терморезистор R5 будет иметь разное значение сопротивления. С ростом температуры его сопротивление увеличивается.

Если температура не достигла заданной, то напряжение на выходе компаратора равно 0, и светодиод не горит.

При достижении температуры, установленной потенциометром R3, компаратор переключается, светодиод загорается, информируя нас о том, что терморезистор R5 перегрелся. В этот момент нужно как-то охладить работу вашей схемы, например, включив вентилятор или насос для прокачки воды. Это легко реализовать подключением в качестве нагрузки к выходу компаратора обычное электромагнитное реле.

Рис.3. Схема подключения датчика температуры.

2. Индикатор зарядки/разрядки батареи с двумя фиксированными уровнями.

Задача данного датчика крайне проста: проинформировать держателя батарейки о полном её заряде и скором прекращении работы. Данная схема отличается от предыдущей тем, что строиться на базе не одного, а двух компараторах, но это не беда для современной техники. Дело в том, что большинство современных операционных усилителей выпускаются в корпусе DIP8/SO8 и в своём составе содержат два операционных усилителя. К примеру, вот фрагмент даташита (технического описания микросхемы) используемого мною ОУ:

Рис. 4. Расположение выводов у микросхемы ОУ NE5532.

Решается она следующим образом: входное напряжение поступает на сложный делитель R3-R5-R7. В результате получаются два аналоговых уровня соответствующих не инвертирующим входам ОУ.

Тот, что получается между резисторами R3-R5 будет говорить нам о глубоком разряде аккумулятора, так как он будет срабатывать при достаточно низком напряжении.

Тот, что получается между резисторами R5-R7 будет говорить нам о полном заряде аккумулятора, так как он будет срабатывать при высоком напряжении на клеммах аккумулятора.

Сразу замечу, что схема мной собиралась не раз и тестировалась на лабораторном блоке питания и реальной батарейке. По этому все комментарии по настройке тут особо не нужны, так как схема работает сразу практически без настройки. Схема отлично работает с 9В свинцовыми и МеОН аккумуляторами. Для популярных в последнее время Li-ion батареек она несколько изменяется: современные Li-ion батарейки работают в диапазоне 4,2-2,4В. Для них питание операционного усилителя выбирается на уровне 2,4В (под стандартный стабилизатор), фиксированный уровень сравнения вместо 2,5В становится 1,2В и используются низковольтные ОУ. В остальном схема точно такая-же.

Рис.5. Схема индикатора зарядки/разрядки батареи.

Несколько тонкостей работы с компараторами.

Данный материал написан для людей, которые уже попробовали поработать с компараторами и хотят углубиться в данной теме:

1. Чувствительность компаратора зависит от величины минимального напряжения между входами. Если вы стараетесь сделать очень точные измерения, по типу вытащить 0,001*С из схемы срабатывания охлаждения, то будьте готовы к тому, что у вас это не получиться в виду ограничений микросхемы

2. Во время переключения некоторое время компаратор переключается. Это свойство проявляется в основном при детекции вч сигналов. Если ваши рабочие частоты лежат до 100 кГц, то о данном параметре на всех современных ОУ можете не заморачиваться. В противном случае смотрите на величину скорости роста сигнала. Обычно у современных ОУ эта величина составляет единицы/десятки вольт в микросекунду. В вашем случае она считается по формуле:

Если данная величина получилась больше, чем параметр ОУ, то меняйте оу. На экране осциллографа при этом у вас будет сильное сваливание от прямоугольного сигнала на выходе ОУ к треугольному сигналу.

3. В некоторых случаях полезно реализовать гистерезис(запаздвание) на положительной обратной связи, но это рассмотрим подробнее в одном из следующих занятий практикума.

В конце концов вот вам приятный подарок, раз уж вы дочитали до конца. Вот видео автора данной статьи о компараторах, из которого можно подчеркнуть много интересного и полезного.

Заключение

А теперь собственно ваше практическое задание: на основе вышеизложенного собрать простую схему на компараторе и показать её любому своему знакомому с объяснениями как это работает. Особенно рекомендую собрать схему на датчик перегрева и протестировать её работу на примере стакана с горячей водой. Присылайте свои фото и комментарии с практикумом на адрес info{собака}meanders.ru. А в качестве бонуса фотографии самого интересного практикума я выложу ниже в данной статье со ссылками на собравшего.

meanders.ru

Компаратор — Википедия

Символическое изображение аналогового компаратора на электрических и структурных схемах.

Компара́тор аналоговых сигналов (от лат. comparare «сравнивать») — сравнивающее устройство[1]: электронная схема, принимающая на свои входы два аналоговых сигнала и выдающая сигнал высокого уровня, если сигнал на неинвертирующем входе («+») больше, чем на инвертирующем (инверсном) входе («−»), и сигнал низкого уровня, если сигнал на неинвертирующем входе меньше, чем на инверсном входе. Значение выходного сигнала компаратора при равенстве входных напряжений, в общем случае не определено. Обычно в логических схемах сигналу высокого уровня приписывается значение логической 1, а низкому — логического 0.

Через компараторы осуществляется связь между непрерывными сигналами, например, напряжения и логическими переменными цифровых устройств.

Применяются в различных электронных устройствах, АЦП и ЦАП, устройствах сигнализации, допускового контроля и др.

Одно из напряжений (сигналов), подаваемое на один из входов компаратора обычно называют опорным или пороговым напряжением. Пороговое напряжение делит весь диапазон входных напряжений, подаваемых на другой вход компаратора на два поддиапазона. Состояние выхода компаратора, высокое или низкое, указывает, в каком из двух поддиапазонов находится входное напряжение. Компаратор с одним входным пороговым напряжением принято называть однопороговым компаратором, существуют компараторы с двумя или несколькими пороговыми напряжениями, которые, соответственно делят диапазон входного напряжения на число поддиапазонов на 1 большее числа порогов.

Сравниваемый сигнал может подаваться как на инвертирующий, так и на неинвертирующий вход компаратора. Соответственно, в зависимости от этого компаратор называют инвертирующим или неинвертирующим.

Математическое описание компаратора[править | править код]

Проходная характеристика неинвертирующего компаратора. Uоп=Uref{\displaystyle U_{\text{оп}}=U_{ref}} в формулах.

В аналитическом виде идеальный однопороговый неинвертирующий компаратор задаётся следующей системой неравенств:

Uout={U0,if Uin<Urefне определено,if Uin=UrefU1,if Uin>Uref{\displaystyle U_{out}={\begin{cases}U_{0},&{\mbox{if }}U_{in}<U_{ref}\\{\text{не определено}},&{\mbox{if }}U_{in}=U_{ref}\\U_{1},&{\mbox{if }}U_{in}>U_{ref}\end{cases}}}
где Uref{\displaystyle U_{ref}} — напряжение порога сравнения,
Uout{\displaystyle U_{out}} — выходное напряжение компаратора,
Uin{\displaystyle U_{in}} — входное напряжение на сигнальном входе компараторе.

Третьему, неопределённому значению, в случае бинарного состояния выхода можно:

  1. присвоить U0{\displaystyle U_{0}} или U1{\displaystyle U_{1}},
  2. присвоить U0{\displaystyle U_{0}} или U1{\displaystyle U_{1}} случайным образом динамически,
  3. учитывать предыдущее состояние выхода и считать равенство недостаточным для переключения,
  4. учитывать первую производную по времени выходного сигнала и её равенство нулю считать недостаточным для переключения.

В случае использования многозначной логики, например, троичной для учёта третьего состояния (равенство) применить соответствующую троичную функцию из чёткой троичной логики с чётким третьим значением.

Схемотехнически простейший компаратор представляет собой дифференциальный усилитель с высоким коэффициентом усиления (в идеале — бесконечным). Обычно в качестве компараторов напряжения в современной электронике применяют микросхемы операционных усилителей (ОУ). Но существуют и выпускаются специализированные для применения в качестве компараторов микросхемы.

Микросхема компаратора отличается от обычного линейного (ОУ) устройством и входного, и выходного каскадов:

  • Входной каскад компаратора должен выдерживать широкий диапазон дифференциальных входных напряжений (между инвертирующим и неинвертирующим входами), вплоть до значений питающих напряжений, а также полный диапазон синфазных напряжений.
  • Выходной каскад компаратора обычно конструируют совместимым по логическим уровням и токам с распространённым типом входов логических схем (технологий ТТЛ, ЭСЛ и т. п.). Возможны исполнения выходного каскада компаратора на одиночном транзисторе с открытым коллектором, что обеспечивает одновременную совместимость с ТТЛ и КМОП логическими микросхемами.
  • Микросхемы компараторов не рассчитаны для работы с отрицательной обратной связью как ОУ и при их применении отрицательная обратная связь не используется. И наоборот, для формирования гистерезисной передаточной характеристики компараторы часто охватывают положительной обратной связью. Эта мера позволяет избежать быстрых нежелательных переключений состояния выхода, обусловленном шумами во входном сигнале, при медленно изменяющемся входном сигнале.
  • При проектировании микросхем компараторов уделяется особое внимание быстрому восстановлению входного каскада после перегрузки и смены знака разности входных напряжений. В быстродействующих компараторах для повышения быстродействия схемотехнически не допускают захода биполярных транзисторов в выходном каскаде в режим насыщения.

Компараторы охваченные положительной обратной связью имеют гистерезис и по сути являются двухпороговыми компараторами, часто такой компаратор называют триггером Шмитта.

При равенстве входных напряжений реальные компараторы и ОУ, включенные по схеме компараторов дают хаотически изменяющийся выходной сигнал из-за собственных шумов и шумов входных сигналов. Обычная мера подавления такого хаотического переключения — введение положительной обратной связи для получения гистерезисной передаточной характеристики.

При программном моделировании компаратора возникает проблема выходного напряжения компаратора при одинаковых напряжениях на обоих входах компаратора. В этой точке компаратор находится в состоянии неустойчивого равновесия. Проблему можно решить множеством разных способов, описанных в подразделе «программный компаратор».

Программное моделирование компаратора[править | править код]

В программах в качестве первого приближения можно использовать простейшую модель асимметричного компаратора, в котором третье значение с равными величинами сравниваемых входных переменных постоянно приписывается к «0» или к «1», в примере, приведенном ниже, третье значение постоянно приписывается к «0»:

DEFINT Y
DEFSNG X
Xref=2.5
Xin=2.6
IF Xin>Xref THEN Y=1 ELSE Y=0 'Асимметричный компаратор
PRINT Y

В более сложных моделях симметричных компараторов третье значение можно, в рамках двоичной логики:

  1. приписать к «0» или к «1» постоянно,
  2. приписывать к «0» или к «1» случайным образом динамически,
  3. учитывать предыдущее значение и считать равенство недостаточным для переключения,
  4. учитывать первую производную и её равенство нулю считать недостаточным для переключения,

или выйти за рамки двоичной логики и:

  1. для учёта третьего значения (равенство) применить соответствующую троичную функцию из чёткой троичной логики с чётким третьим значением.

Существующая проблема третьего состояния при программном моделировании, когда два числа, представленные кодовыми словами, могут быть в точности равны, на практике не имеет места: два напряжения не могут в точности совпадать, так как, во-первых, аналоговое напряжение величина неквантуемая, а во-вторых, существует шум, напряжение смещения входов компаратора, и иные возмущения, разрешающие неоднозначность даже в случае равенства входных напряжений аналогового компаратора.

Компараторы с двумя и более напряжениями сравнения[править | править код]

Строятся на двух и более обычных компараторах.

Двухпороговый (троичный) компаратор[править | править код]

Двухпороговый (троичный) компаратор имеет два напряжения сравнения и состоит из двух обычных компараторов. Два напряжения сравнения делят весь диапазон входных напряжений на три нечётких поддиапазона в нечёткой (fuzzy) троичной логике, которым присваиваются три чётких значения в чёткой троичной логике. Двухбитный троичный (2B BCT) логический сигнал (трит) на выходе троичного компаратора указывает, в каком из трёх поддиапазонов находится входное напряжение. Логическая часть троичного компаратора выполняет унарную троичную логическую функцию — «повторитель» (F1073 = F810). Двухбитный троичный трит (2B BCT) может быть преобразован в трёхбитный трит (3B BCT) или в трёхуровневый трит (3LCT).[источник не указан 679 дней]

В аналитическом виде двухпороговый (троичный) компаратор задаётся следующими системами неравенств:

{Uref2>Uref1Uout1={0,if Uin<Uref1undefined,if Uin=Uref11,if Uin>Uref1Uout2={0,if Uin<Uref2undefined,if Uin=Uref21,if Uin>Uref2{\displaystyle {\begin{cases}U_{ref2}>U_{ref1}\\U_{out1}={\begin{cases}0,&{\mbox{if }}U_{in}<U_{ref1}\\undefined,&{\mbox{if }}U_{in}=U_{ref1}\\1,&{\mbox{if }}U_{in}>U_{ref1}\end{cases}}\\U_{out2}={\begin{cases}0,&{\mbox{if }}U_{in}<U_{ref2}\\undefined,&{\mbox{if }}U_{in}=U_{ref2}\\1,&{\mbox{if }}U_{in}>U_{ref2}\end{cases}}\end{cases}}}

где:
Uref1 и Uref2 — напряжения нижнего и верхнего порогов сравнения,
Uout1 и Uout2 — выходные напряжения компараторов, а
Uin — входное напряжение на компараторах.

Двухпороговый (троичный) компаратор является простейшим одноразрядным троичным АЦП.

Троичный компаратор является переходником из нечёткой (fuzzy) троичной логики в чёткую троичную логику для решения задач нечёткой троичной логики средствами чёткой троичной логики.

Тумблеры и переключатели на 3 положения без фиксации (ON)-OFF-(ON)[2][3] являются механоэлектрическими троичными (двухпороговыми) компараторами, в которых входной величиной является механическое отклонение рычага от среднего положения.

Двухпороговый (троичный) компаратор выпускается в виде отдельной микросхемы MA711H (К521СА1).

Применяется в прецизионном триггере Шмитта популярной микросхемы-таймера NE555.

Троичный компаратор низкого качества с двоичными компараторами на цифровых логических элементах 2И-НЕ применён в троичном индикаторе напряжения источника питания с преобразованием трёх диапазонов входного напряжения в один трёхбитный одноединичный трит (3B BCT)[4]. Для построения прецизионного триггера Шмитта в этой схеме не хватает двоичного RS-триггера, который можно выполнить на двух дополнительных логических элементах 2И-НЕ (например, использовать два из четырёх логических элементов 2И-НЕ микросхемы К155ЛА3).

Многовходовые компараторы[править | править код]

Входной каскад параллельных АЦП прямого преобразования является многоуровневым компаратором. В нём применяются 2n−1{\displaystyle 2^{n}-1} напряжений сравнения, где n — количество битов выходного кода. Разность соседних уровней сравнения в таких многовходовых компараторах обычно постоянна.

Примеры интегральных микросхем компараторов[править | править код]

Пример широко известных компараторов: LM311 (российский аналог — КР554СА3), LM339 (российский аналог — К1401СА1). Эта микросхема часто встречается, в частности, на системных платах ЭВМ, а также в системах управления ШИМ контроллеров в блоках преобразования напряжения (например, в компьютерных блоках питания с системой питания ATX)[5][6].

Параметры, характеризующие качество компараторов, можно разделить на три группы: точностные, динамические и эксплуатационные. Компаратор характеризуется теми же точностными параметрами, что и ОУ. Основным динамическим параметром компаратора является время переключения tп. Это промежуток времени от начала сравнения до момента, когда выходное напряжение компаратора достигает противоположного логического уровня. Время переключения замеряется при постоянном опорном напряжении, подаваемом на один из входов компаратора и скачке входного напряжения Uвх, подаваемого на другой вход. Это время зависит от величины превышения Uвх над опорным напряжением. На рис. 8 приведены переходные характеристики компаратора mА710 для различных значений дифференциального входного напряжения Uд при общем скачке входного напряжения в 100 мВ. Время переключения компаратора tп можно разбить на две составляющие: время задержки tз и время нарастания до порога срабатывания логической схемы tн. В справочниках обычно приводится время переключения для значения дифференциального напряжения, равного 5 мВ после скачка.

ru.wikipedia.org

Расчет компаратора на операционном усилителе

   Простая схема триггера Шмитта на операционом усилителе имеет симметричные пороговые напряжения относительно нулевой точки и требует для своей работы двуполярное питание. Симметричные пороги ограничивают возможности применения схемы, а двуполярное питание подразумевает использование соответствующего источника, что неудобно, если схема триггера используется совместно с микроконтроллером, напряжение питания которого обычно 5 или 3,3 Вольта. 

   Существует еще одна схема триггера Шмитта на операционном усилителе, в которой используется однополярное питание и можно задавать отличающиеся друг от друга пороговые напряжения. О расчете такой схемы и пойдет речь в этой статье. 


   Рассматриваемая схема имеет два устойчивых состояния — когда на выходе операционного усилителя нулевое напряжение и когда на выходе положительное напряжение насыщения (+Usat).  Нам нужно разобраться, как рассчитать номиналы резисторов R1, R2 и R3 для произвольно задаваемых верхнего и нижнего порогов. 

   Принимая во внимание упрощения, используемые при анализе схем на операционных усилителях (бесконечное входное сопротивление и, соответственно, нулевые входные токи, нулевое выходное сопротивление , бесконечный коэффициент усиления без обратной связи, бесконечная полоса пропускания),  мы можем перерисовать схему триггера Шмитта,  заменив операционный усилитель источником напряжения. 

 

U1 — источник питания операционного усилителя. 

U2 — источник напряжения, имитирующий выход операционного усилителя. 

Напряжение между точками A и B — это входное напряжение операционного усилителя. 

 

Если воспользоваться методом узловых потенциалов, то можно определить значение этого напряжения. Оно будет равно:

 

Uab = (U1*g1 + U2*g3)/(g1 + g2 + g3)

 

где g1, g2, g3 — проводимости ветвей цепи. Проводимость — это величина обратная сопротивлению  g = 1/R, если ты не знал или забыл. Измеряется в сименсах.

 

Подробное рассмотрение метода узловых потенциалов выходит за рамки этой статьи, поэтому просто прими это выражение на веру. 

 

Используя приведеное выше выражение, запишем уравнения, определяющие пороги триггера Шмитта.  

 

при U2 = 0 

Uab = Ult = U1*g1 /(g1 + g2 + g3)

 

при U2 = +Usat

Uab = Uht = (U1*g1 + Usat*g3)/(g1 + g2 + g3)

 

Ult, Uht — нижнее и верхнее пороговые напряжения. Эти значения мы задаем. U1 и Usat — напряжение питания и насыщения соответственно. 

 

   Все, что теперь от нас требуется — решить эту систему из двух уравнений, задав значение одного из резисторов, например R3. Выполнить эти вычисления вручную несложно, но довольно муторно. Нужно выразить из первого уравнения g1, подставить это выражение во второе, выразить g2 через g3, а затем последовательно вычислить значения резисторов.

 

   Лично я предпочитаю использовать для расчета компаратора  Маткад. Он позволяет изменять любые параметры схемы и тут же  получать ответ. Это удобно, когда требуется подобрать значения резисторов соответствующих номинальному ряду, например Е24.

 

   Ниже приведен пример расчета компаратора на операционном усилителе. 

   Фактическое значение задается только для резистора R3, для резисторов R1 и R2 задаются только начальные значения. Сам маткадовский файл для расчета приведен в конце статьи.

 

 

   Несколько слов по поводу выбора номиналов резисторов. 

   Номиналы резисторов должны быть достаточно большими, чтобы не нагружать источник питания и выход операционного усилителя и достаточно маленькими, чтобы входное сопротивление реального операционного усилителя оказывало как можно меньшее влияние на наши расчеты. В схемах, которые мне доводилось применять, я обычно задавал сопротивление обратной связи от 10 до 100 кОм. Получаемые расчетные значения двух других резисторов были ~от 10 кОм до 2 МОм.

 

   Также не следует забывать, что все резисторы имеют разброс номинала и это в какой-то мере будет влиять на реальные значения пороговых напряжений.

 

   Ну вот собственно и все, что я хотел поведать по этой теме. Надеюсь материал пригодится начинающим электронщикам.  

chipenable.ru

Аналоговый компаратор. Триггер Шмитта — chipenable.ru

   Аналоговый компаратор – это устройство, предназначенное для сравнения двух сигналов. Простейшая схема компаратора может быть построена на операционном усилителе без обратной связи. На один из входов операционного усилителя подается известное опорное напряжение, на другой —  сравниваемый аналоговый сигнал, например сигнал с датчика.  



   Разберем, как работает эта схема. 

Поведение операционного усилителя без обратной связи описывается уравнением:

 

Uout = (Uin1 – Uin2)*G

 

   где Uout – напряжение на выходе операционного усилителя, Uin1 – напряжение на неинвертирующем входе, Uin2 – напряжение на инвертирующем входе, G – коэффициент усиления с разомкнутой петлей обратной связи.

 

   В инженерных расчетах коэффициент усиления идеального операционного усилителя (G) обычно принимается равным бесконечности. Мы возьмем реальный операционный усилитель — LM358. Его коэффициент усиления равен приблизительно 100000.

   Подадим на неинвертирующий вход усилителя опорное напряжение в 1.5 вольта, а на инвертирующий вход синусоидальный сигнал амплитудой 1 вольт и постоянной составляющей 1.5 вольта.   

 

 По приведенной выше формуле рассчитаем выходное напряжение операционного усилителя для двух случаев.

 

1) Uin2 < Uin1 на 1 мВ

  Uout = (Uin1 – Uin2)* G = 1 мВ * 100000 = 100 В 

 

2) Uin2 > Uin1 на 1 мВ

  Uout = (Uin1 – Uin2)* G = -1 мВ * 100000 = -100 В

 

   Это в теории, на практике выходное напряжение операционного усилителя естественно не может выйти за пределы питающих напряжений. Реальное выходное напряжение операционного усилителя в этих случаях будет равно его положительному +Usat или отрицательному напряжению насыщения –Usat (saturation — насыщение). 

   У большинства операционных усилителей, включая и LM358, положительное и отрицательное  напряжение насыщения при однополярном питании равно  Vcc – (1..2) и 0 Вольт соответственно, где Vcc – это напряжение питания. Также существуют операционные усилители, у которых выходное напряжение насыщения практически равно напряжению питания (rail-to-rail усилители).  Да, и не забудь, что на выходное напряжение усилителя оказывает влияние нагрузка. Низкоомная нагрузка на выходе усилителя будет уменьшать его выходное напряжение.

 

С учетом выше сказанного:

 

1) Uout = ~Vcc  – 1.5= 5 – 1.5 = 3.5 В

2)Uout = ~0 В

 

   То есть пока входной сигнал меньше опорного — на выходе операционного усилителя будет положительное напряжение насыщения. Как только входной сигнал превысит опорный – выходное напряжение операционного усилителя станет равно нулю. 

 

   Описанная схема представляет собой инвертирующий компаратор. Если мы поменяем источники напряжения местами, то получим неинвертирующий компаратор. Попробуй самостоятельно разобраться, как при этом поведет себя схема.  

 

   Компаратор можно использовать для обработки сигналов датчиков. Например, на компараторе можно построить простой датчик освещенности. 

 

 

 

   К сожалению, такая схема компаратора обладает существенным недостатком. При подаче на вход усилителя зашумленного сигнала, на выходе будут наблюдаться многократные переключения напряжения. Если выход операционного усилителя управляет электромагнитным реле, такое поведение схемы вызовет подгорание контактов реле.  


   Для устранения этих колебаний в схему добавляют управляемую положительную обратную связь.

 

   Триггер Шмитта – это компаратор с положительной обратной связью. В этой схеме часть выходного сигнала операционного усилителя подается на неинвертирующий вход и задает пороги переключения схемы. 

 

Электрическая схема инвертирующего триггера Шмитта представлена ниже. 

 

Разберемся, как она работает. 

   Операционный усилитель у нас запитан от двуполярного 5-ти вольтового источника питания.  На инвертирующий вход Uin2 подается синусоидальный сигнал амплитудой +-2 В. Резисторы R1 и R2 имеют номиналы 25 кОм и 10 кОм соответственно. 

   Напряжение на неинвертирующем входе снимается с делителя напряжения подключенного к выходу операционного усилителя и  мы можем рассчитать его значение для положительного и отрицательного напряжения насыщения.

 

1) Uin1 = +Usat*R2/(R1+R2) = 3.5*10/35 = 1 В

 

2) Uin1 = -Usat*R2/(R1+R2) = -3.5*10/35 = -1 В

 

   Когда на выходе усилителя положительное напряжение насыщения – на неинвертирующем входе напряжение 1 В. Допустим, входной сигнал медленно нарастает от нуля. Пока напряжение сигнала меньше напряжения на неинвертирующем входе – ничего не происходит. Как только сигнал превысит порог в  1 вольт, выходное напряжение операционного усилителя «переключится» и станет равным отрицательному напряжению  насыщения. Это изменит напряжение на неинвертирующем входе, оно станет равным (-1) вольт. 

    Входной сигнал будет нарастать до своего максимум, а потом пойдет на спад. Когда его амплитуда станет меньше 1 вольта, на выходе усилителя будет по-прежнему отрицательное напряжение насыщения. И только когда входной сигнал пересечет порог (-1) вольт, выходное напряжение снова «переключится» и станет равным положительному напряжению насыщения. Естественно это повлечет за собой изменение порогового напряжения.. 

     На графике ниже ты можешь видеть, как меняется выходной сигнал операционного усилителя в зависимости от входного.

 

 

   Благодаря такому поведению схемы, зашумленный сигнал не будет вызывать колебаний на выходе усилителя.

 

  Триггер Шмитта демонстрирует такое свойство систем, как гистерезис. Которое заключается в том, что реакция системы на текущее воздействие зависит от воздействия, действующего на нее ранее. То есть поведение системы зависит от ее истории. 

   Если выразить поведение схемы в виде графика зависимости выходного напряжения от входного, то мы получим так называемую петлю гистерезиса.

 

 

 

Где Uht – верхний порог триггера Шмитта, Ult- нижний порог  

 

Uht = +Usat*R2/(R2+R1)

Uht = -Usat*R2/(R2+R1)

 

 

 Еще одно свойство триггера Шмитта, возникающее вследствие положительной обратной связи – это увеличение скорость переключения выходного напряжения, по сравнению с простым компаратором. Как только выходное напряжение операционного усилителя начинает меняться, положительная обратная связь увеличивает разностное напряжение  (Uin1 – Uin2) и еще больше изменяет выходное напряжение, что в свою очередь еще больше увеличивает разностное. 

 

   Как и простейшая схема компаратора, триггер Шмитта имеет «неинвертирующую версию», но здесь мы на ней останавливаться уже не будем.

   Теперь о недостатках схемы.

   Пороговые значения триггера Шмитта задаются с помощью делителя напряжения, и они симметричны относительно «нуля питания». Именно поэтому в схеме используется двуполярный источник питания. Хотелось бы иметь возможность запитывать схему от однополярного источника и задавать несимметричные пороговые напряжения.  

   О расчете такой схемы и примерах ее использования в следующей статье….

chipenable.ru

Как сделать схему компаратора с операционным усилителем своими руками

Чтобы управлять компонентами электронных схем, используют разные приспособления, которые могут осуществлять настройку и разделять сигналы. Для быстрого сравнения нескольких различных импульсов принято использовать специальный компаратор с однополярным питанием.

Основные технические характеристики

Компаратором называется устройство, сравнивающее несколько напряжений и силу электрического тока, выдающее окончательный силовой сигнал, указывающее на наибольшее значение параметров и одновременно делающее точный расчет их соотношения. У изделия существует несколько аналоговых входов и один цифровой выход. Чтобы визуально отобразить сигнал, в устройстве применяется световой индикатор.

Несколько десятилетий назад применялся лишь интегрированный компаратор электрического напряжения, который принято называть высокоскоростным. Ему необходимо некоторое дифференциальное напряжение в обозначенном диапазоне, которое намного меньше, чем напряжение питающей сети. Подобные устройства не пропускают остальные внешние сигналы, находящиеся за диапазоном питающей сети.

Типы компараторов

Специалисты разделяют компараторы на такие типы:

  • аналоговые изделия;
  • компараторы на операционном усилителе.

Аналоговый компаратор

В данное время довольно часто применяется аналоговый компаратор, который оснащен специальным транзисторным входом. Входящий потенциал сигнала в устройстве имеет значение не меньше 0,4 вольта и никогда не увеличивается. Изделие часто делают очень быстрого реагирования, из-за чего входящий сигнал будет меньше указанного диапазона, например, 0,3 вольта. Зачастую подобный диапазон может ограничиваться лишь определенным входным напряжением на транзисторе.

Компаратор на операционном усилителе

Кроме простого устройства, еще изготавливают видеоспектральный компаратор на операционном усилителе. Такое изделие обладает довольно точной балансировкой разницы входного напряжения и большим сопротивлением сигнала на выходе. Из-за такого свойства, компаратор на операционном усилителе можно применять в низко проводимых электрических цепях с маленьким напряжением.

Другими словами, операционный усилитель частоты способен работать совместно с открытым контуром и используется как изделие небольшой производительности. В процессе работы, не инвертирующий вход имеет более высокое значение напряжения, нежели инвертирующий вход. Большое усиление сигнала, который выходит из усилителя, провоцирует выход маленького напряжения на входе устройства.

Если не инвертирующий вход спадает меньше инвертирующего, то сигнал на выходе способен насытиться при отрицательном уровне напряжения, но он будет проводить электрические импульсы. Значение напряжения на выходе операционного усилителя может ограничиваться лишь напряжением питающей сети. Вся электрическая цепь усилителя работает только в линейном режиме при отрицательном значении обратной связи. Этому способствует специальный хорошо сбалансированный источник питания. Практически вся аппаратура, которая работает вместе с компаратором, оборудована функцией фиксации полученной информации. Подобные электронные принципы не способны работать в схемах, в которых применяются плохо проводящие радиоэлементы и разомкнутые контуры.

Недостатки устройства на операционном усилителе

У компаратора с операционным усилителем есть такие недостатки:

  1. Подобные усилители способны работать только в линейном режиме с отрицательным значением обратной связи. Однако операционные усилители довольно долго восстанавливаются.
  2. Практически все усилители оборудованы специальным конденсатором для внутренней компенсации, который способен ограничить скорость увеличения напряжения на выходе для сигналов с большой частотой. Другими словами, подобная схема может задержать электрический импульс.
  3. Устройство не обладает внутренним гистерезисом.

Обладая такими недостатками, компаратор для управления разными цепями применяется без операционного усилителя. Единственным исключением можно считать только генератор. Это устройство необходимо для различных процессов с ограничительным значением напряжения на выходе, которое способно осуществлять взаимодействие с цифровой логикой. Именно поэтому они применяются в разной термической аппаратуре. А также его используют, чтобы сравнивать электрические сигналы и сопротивления таких приборов, как стабилизатор или таймер.

Как работает компаратор

Чтобы наглядно показать принцип работы быстрого компаратора с гистерезисом, необходимо рассмотреть устройство с несколькими выходами.

Применяя аналоговый сигнал в первом входе, который принято называть не инвертируемым, и выходе, считающимся инвертируемым, изделие использует пару одинаковых сигналов разной полярности. Когда значение аналогового входа больше, чем у его выхода, то такой выход будет положительной полярности. Это должно включить подготовленный коллектор транзистора в его цепи, который и необходимо было запустить. Однако когда вход имеет отрицательную полярность, то электрический сигнал будет очень маленького значения, поэтому коллектор транзистора будет оставаться закрытым.

Почти всегда фазовый компаратор способен воздействовать на входы в схемах логических элементов, и поэтому работает по уровню напряжения питающей сети. Другими словами, это устройство способно преобразовывать аналоговый сигнал в цифровой формат. Подобный принцип работы помогает не уточнять значение нужного выходного сигнала, потому что устройство постоянно обладает захватом петли гистерезиса и конечным коэффициентом усиления.

Назначение и применение компаратора

Подобное изделие нашло применение в простых схемах персональных компьютеров, в которых необходимо быстро сравнивать сигналы напряжения входа. А также это может быть устройство для зарядки телефона или другого гаджета, электронные весы, датчик напряжения, микроконтроллер, таймер и подобные изделия. Иногда его используют в разных интегральных микросхемах, которые обязаны контролировать импульсы на входе, обеспечивать связь от источника импульса до места его назначения.

Наилучшим примером можно считать регулятор Шиммера, который способен работать в многоканальном режиме. Таким образом, он может сравнить большое количество электрических сигналов. А также этот компаратор используется для восстановления цифрового сигнала, который может искажать связь в зависимости от значения напряжения и расстояния до источника сигналов. Это устройство принято считать аналогом обычного компаратора, который обладает широкими функциональными возможностями и способен обеспечить измерение большого количества входящих электрических сигналов.

Сейчас выпускается специальный компаратор шероховатости. Подобное изделие может быстро определить качество поверхности, которая до этого момента была механически обработана. Использование такого устройства обосновано необходимостью определения допусков поверхности, которая подверглась обработке.

instrument.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *