Конструкция заземляющих устройств: классификация, технические характеристики и особенности монтажа

Содержание

Устройство заземления. Виды и особенности. Правила и монтаж

Большая часть домов в нашей стране оснащена системой электропередач, не имеющей заземления, по старому образцу. Необходимо помнить, что работа современных бытовых устройств без наличия заземляющего контура способствует возникновению в их деятельности различных неисправностей, и, как следствие, выходу из строя. Владельцам домов приходится самостоятельно производить устройство заземления, которое необходимо для создания электробезопасности.

Основной задачей заземления является отключение напряжения сети при возникновении утечки тока. Это может быть выражено в виде прикосновения человека к токоведущим частям, повреждения изоляции электрических проводов. Другой, не менее важной функцией заземления является создание нормальных условий для работы бытовых электрических устройств.

Некоторые устройства требуют кроме заземляющего контакта в розетке, еще и прямого подключения к шине заземления. Для этого имеются специальные зажимы.

Например, микроволновая печь может создавать фон, опасный для человека, если ее не подключить напрямую к заземляющей шине. На задней стенке корпуса печи может находиться специальная клемма для заземления. А если прикоснуться влажными руками к стиральной машине без заземления, то руки может неприятно щипать. Решить эту проблему можно только, подключив «землю» на корпус стиральной машины. С электрической духовкой ситуация похожа на предыдущие случаи.

Также своеобразно реагирует на наличие заземления бытовой компьютер. Если сделать заземление на корпус системного блока, то может повыситься скорость Интернета, и исчезнут всевозможные зависания.

Не менее важным является устройство заземления в частных домах. Тем более, если дом деревянный. Все дело в возможных ударах молнии. На частных усадьбах много различных частей, которые притягивают молнии: скважины, трубы, колодцы и т. д. При отсутствии молниеотвода и контура заземления, удар молнии с большой вероятностью может привести к пожару. Обычно в сельской местности нет пожарной части, или она удалена, поэтому жилые и подсобные помещения могут пострадать или полностью выгореть за короткий срок. Вместе с заземлением рекомендуется выполнять устройство молниеотвода.

Правила устройство заземления

Искусственные системы заземления используют в случаях, когда естественные элементы заземления не удовлетворяют правилам. В качестве естественных элементов могут служить водопроводные стальные трубы, находящиеся в земле, артезианские скважины, элементы зданий из металла, соединенные с землей и т.п.

Запрещается применять бензопроводы, нефтепроводы и газопроводные трубы в виде естественных заземлителей.

Для самодельных элементов заземления рекомендуется использовать металлический уголок 50 х 50 мм, в длину 3 метра. Эти отрезки забивают в землю в траншее, имеющей глубину 0,7 метра. При этом оставляют 10 см отрезков над дном. К ним приваривают проложенный в траншее стальной пруток диаметром от 10 до 16 мм, либо стальную полосу аналогичного сечения по всему контуру объекта.

По правилам в электрических установках до 1000 вольт сопротивление контура заземления должно быть не выше 4 Ом. Для установок более 1000 вольт сопротивление заземления должно быть не выше 0,5 Ом.

Варианты и особенности

Всего существует 6 систем заземления, но в частных постройках используется чаще всего 2 схемы: TN — C — S и TT. В последнее время популярна первая из этих систем. В ней имеется глухозаземленная нейтраль. Шина РЕ и нейтраль N проводится одним проводом РЕN, на входе в здание устройство заземления разделяется на отдельные ветки.

В такой схеме защита осуществляется электрическими автоматами, при этом не обязательно монтировать устройства защитного отключения. Недостатком такой схемы можно назвать следующий момент. Если повреждается проводник РЕN между подстанцией и домом, то на шине заземления в доме возникнет напряжение фазы. При этом оно не отключается никакой защитой. В связи с этим правила требуют обязательное наличие механической защиты проводника РЕN, и резервное заземление на столбах через каждые 200 метров.

Однако, в селах электрические сети в основном не удовлетворяют этим требованиям. Поэтому целесообразно применять схему ТТ. Эту схему лучше применять для отдельных построек, имеющих грунтовый пол, так как есть вероятность прикосновения сразу к заземлению и грунту, что опасно при схеме TN – C — S.

Отличие состоит в том, что «земля» идет на щит от индивидуального заземления, а не от подстанции. Эта система более устойчива к возникновению повреждений защитного проводника, но требует обязательной установки устройства защитного отключения. Иначе не будет защиты от удара током. Поэтому правила называют такую схему резервной.

Монтаж заземления

Устройство заземления существует двух видов, отличающиеся способом монтажа и свойствами материалов. Один вид состоит из модульной штыревой конструкции заводского исполнения с несколькими электродами, а второй вид выполняется самостоятельно из кусков металлопроката. Эти виды отличаются заглубленными частями, а надземная часть и проводники аналогичны друг другу.

Устройство заземления приобретенное в торговой сети, имеет свои преимущества:
  • Продается комплектом, элементы набора разработаны специалистами с соблюдением всех требований правил, изготовлены на заводском оборудовании.
  • Не требуются сварочные работы, и почти не нужны земляные работы.
  • Дает возможность углубиться в землю на значительную глубину с получением малого сопротивления всего устройства заземления.

Устройство заземления заводского исполнения имеет недостаток это высокая стоимость набора.

Материалы и инструменты

Заземлители, изготовленные самостоятельно, должны быть выполнены из оцинкованного металлопроката: прутка, уголка, либо трубы.

Купленные наборы состоят из омедненных штырей с резьбой. Они соединяются муфтами из латуни. Провод заземления соединяется со штырем зажимом из нержавейки с применением специальной пасты. Заземлители запрещается смазывать или окрашивать.

При выборе сечения проката необходимо учесть тот факт, что при воздействии коррозии со временем сечение уменьшится.

Наименьшие сечения проката выбираются:
  • Оцинкованный пруток – 6 мм.
  • Пруток из металла без покрытия – 10 мм.
  • Прямоугольный прокат – 48 мм2.

Штыри соединяют полосой, проволокой или уголком. Ими подводят заземление до электрического щита. Размеры соединяющего проката: пруток – диаметром 5 мм, прямоугольный профиль – 24 мм2.

Сечение провода заземления в здании не должно быть меньше сечения провода фазы. К этим проводникам имеются требования по диаметру жил:
  • Алюминиевый без изоляции – 6 мм.
  • Медный без изоляции – 4 мм.
  • Изолированный алюминиевый – 2,5 мм.
  • Изолированный медный – 1,5 мм.

Для соединения всех проводников заземления нужно применять заземляющие шины, выполненные из электротехнической бронзы. По схеме ТТ элементы щита крепятся на стенку ящика.

Заземлители, изготовленные самостоятельно, забивают в землю кувалдой, а заводские элементы с помощью отбойного молотка. В обоих вариантах целесообразно использовать стремянку. Прокат из черного металла сваривается ручной сваркой.

Земляные работы

Заземлители располагают от фундамента на расстоянии 1 метра. Размечается контур заземления в виде треугольника, окружности или линии. Расстояние между штырями должно быть не менее 1,2 м. Рекомендуется сделать треугольник с 3-метровой стороной, и длиной штырей 3 метра.

Затем копают траншею глубиной 0,8 м. Ее ширина должна быть удобной для сварки проводников. Чаще всего делают траншею шириной 0,7 м.

Подготовка электрода (штыря)

Электрод заостряется с помощью болгарки. Если металлопрокат, бывший в употреблении, то необходимо его очистить от старого покрытия. На штырь заводского исполнения навинчивается острая головка, место соединения смазывается специальной пастой.

Заглубление электродов

Электроды забивают в землю с помощью кувалды. Начинать удары лучше, находясь на стремянке или подмостьях. При мягком металле удары наносят через деревянные бруски. Штыри забиваются не до конца, над поверхностью дна оставляют 10-20 см для выполнения соединения с контуром.

Заводские электроды забивают отбойным молотком. После заглубления штыря, на него навинчивают муфту и другой заземлитель. Далее процесс повторяют до достижения необходимой глубины.

Соединение электродов

Штыри обычно соединяют полосой 40 х 4 мм. Для проката из черного металла используют сварочное соединение, так как болты быстро подвергнутся коррозии, что увеличит сопротивление контура. Сваривать необходимо качественным швом.

Заземление от готового контура проводится полосой к дому, загибается и крепится на фундаменте. На краю полосы приваривают болт для крепления провода от щита.

На последний электрод монтируется крепежный хомут и закрепляется провод. Зажим герметизируют специальной лентой.

Засыпка траншеи

Для засыпания траншеи целесообразно использовать плотную однородную почву.

Устройство заземления, приобретенное в магазине, с одним штырем, может иметь в комплекте пластмассовый колодец для ревизии.

Проведение в щит

Распределительный щит фиксируется на стене здания, кроме мест с высокой влажностью. Сквозь стены провод проводят с применением трубных гильз. В щитке провод заземления соединяется с заземляющей шиной, установленной на корпусе щита, болтовым соединением.

Сопротивление заземления проверяют мультиметром. Если оно оказывается больше 4 Ом, то нужно увеличить число электродов. На разъем шины заземления также подключаются провода заземления в желтой изоляции, которые приходят в щит от потребителей. При присоединении светильников, розеток, различных устройств желтые провода заземления также подключают к своим клеммам. Например, в розетках такая клемма с винтом расположена в центре.

Похожие темы:

Заземление

Защитное заземление

Опасность поражения электрическим током и его воздействие на нетоковедущие контакты

Электротравмы возникают при попадании человека под действие напряжения или при прикосновении к токопроводящему участку, потенциал которого отличается от потенциала земли. Так же опасность поражения током возможна при прикосновении к двум точкам в электроустанвке с различными потенциалами. Статистика говорит, что в производстве на электротравмы приходится 0,5 – 1 % всех случаев, при этом смертельные случаи составляют 20 – 40% от общего числа поражений электрическим током. Чаще всего смертельное поражение происходит в оборудовании с питанием от 127 до 380 Вольт. Опасность поражения электрическим током заключается в том, что организм человека не в состоянии дистанционно определить наличие и силы тока, а его защитная реакция проявляется только уже под воздействием на тело электрического тока, когда речь уже идет о непосредственном поражении. Во время протекания тока он вызывает непроизвольные сокращения мышц, в том числе и органов, жизненно важных для человека, что нарушает их нормальную жизнедеятельность. Дополнительную опасность несут в себе электроустановки повышенного напряжения выше 1000В., где опасность поражения заключается в приближении к токопроводящим шинам и удара током электрической дуги.

Во время протекания тока через организм человека, происходит нагрев тканей, ожоги (термическое воздействие), разложение жидкостей, крови (электролитическое), нарушение обменных процессов в организме, мышечный спазм (биологическое).

При протекании через организм токов 0,6 – 1,5 мА переменной частоты 50 Гц или 5 – 7 мА постоянного тока человек начинает ощущать их воздействие. Когда неотпускающий ток начинает вызывать судорожные сокращения мышц, его значение составляет: 10 – 15 мА для переменного значения и 50 – 80 мА для постоянного. При значении переменного тока в 100мА 50Гц и постоянного тока в 300мА начинается фибрилляция сердца (сбой его ритма работы).

Для электронных устройств попадание электрического тока на нетоковедущие части (к примеру, корпус), либо на питающие или информационные линии с другим потенциалом (короткое замыкание), приводит к гарантированному выходу устройства из строя. Причем в зависимости от величины напряжения и площади замыкания степень выгорания электронных деталей экспотенциальна. Другим, не менее опасным фактором влияния постороннего напряжения на нетоковедущие элементы является статическое электричество. Статический заряд, приходящий на плату с электронными компонентами, даже приложенный к корпусу, способен полностью вывести ее основные элементы из строя. Чаще всего страдает основной управляющий процессор. В современной электронике выход из строя процессора, припаянного к плате BGA монтажом (когда контакты располагаются непосредственно под чипом), ведет к полной замене модуля из-за высокой сложности и технологичности ремонта, либо отсутствия в свободной продаже запасных радиозапчастей. Хорошим примером может служить попадание молнии, либо подключение телевизионного выхода видеокарты к телевизору на «горячую», ведущее к выгоранию видеопроцессора карты из-за разности потенциалов, подключение спутникового конвертера (головки) при вставленном кабеле во включенный спутниковый ресивер, ведущее к выгоранию последнего, ремонт электроники без заземляющего браслета. Так же на практике довольно часто встречается ситуация, когда корпус системного блока начинает бить током. Это происходит из-за конструкции его блока питания. При высыхании одного из 2-х сетевых электролитов происходит изменение потенциала средней точки, которая через развязывающие конденсаторы находится на корпусе компьютера. Примеров может быть огромное множество. Уберечь себя и электронику от нежелательного воздействия посторонних электрических токов помогает заземление.

Защитное заземление

Защитное заземление представляет собой преднамеренное электрическое соединение металлических нетоковедущих частей оборудования, которое может оказаться под напряжением, с землей или ее эквивалентом. Такая мера защиты является наиболее эффективной мерой защиты электронного и электрооборудования, которое может запитываться от промышленной сети до 1000 вольт. Его функциональное назначение заключается в снижении напряжения прикосновения либо в приложенном неконтролируемом потенциале извне. При этом за счет минимально возможного сопротивления заземления, стремящегося в идеале к 0, происходит выравнивание потенциалов оказавшихся под действием напряжения устройства и земли. В результате ток протекает по наименьшему сопротивлению заземления непосредственно в землю, защищая при этом заземляемый объект и человека в том числе. В установках с напряжением питания выше 1000 В. и большими токами, проходящими через заземление, должна быть предусмотрена токовая автоматически разрывающая питающую цепь защита, позволяющая отключить поврежденный участок. В этом случае пробоя питающей фазы на корпус речь идет об однофазном коротком замыкании.

Существуют правила устройства электроустановок (ПУЭ), согласно которым, при напряжении переменного тока 380 В., а так же постоянного тока 400 В. и выше, защитное заземление должно применяться в обязательном исполнении во всех электроустановках. Если оборудование применяется в особо опасных помещениях, то заземлению подлежат электроприборы с необходимым питанием для сети переменного тока от 42 В. и выше, для сети постоянного тока от 110 В. То же правило соответствует применению заземления во взрывоопасных установках.

Защитному заземлению подлежат любые нетоковедущие части, на которые теоретически возможен пробой изоляции, наведение статического напряжения, или попадание токов извне. Кроме того, защитные металлические гофры кабельных силовых трасс во избежание пробоя проводов и попадания напряжения на себя также необходимо заземлять.

Правилами ПУЭ не регламентируется заземление электрических шкафов и электрооборудования, если оно установлено на металлических конструкциях с заземлением, либо имеющих надежный электрический контакт металлических частей с землей. В качестве заземлителя в этом случае может выступать арматура, оттяжки, кронштейны и т.д.

Конструкция заземления и заземляющих устройств

К заземляющим устройствам относят совокупность заземлителей, которыми могут выступать металлические проводники или группы проводников, соединенных между собой и грунтом. В зависимости от расположения заземляющих устройств по отношению к заземляемому оборудованию заземление может быть выносным (сосредоточенным) или контурным (распределенным).

Выносные заземлители

В случае применения выносных заземлителей их располагают сосредоточенно на равном расстоянии от общей заземляющей шины, как и заземляемое оборудование. На рисунке выносного заземления представлено: 1 – заземлители, 2 – заземляющие проводники, 3 –заземляемое оборудование. Заземлители расположены на удаленном расстоянии от оборудования для предотвращения растекания тока на устройства и появления контурных заземляющих токов.

В данной схеме при прикосновении человека к корпусу оборудования, на котором появится напряжение, через его тело пройдет ток значительно меньший по отношению к его величине, которая пройдет через заземляющие шины к заземлителям. Причем, чем меньше сопротивление шины и заземлителей, тем ниже будет величина тока через человека. Учитывая эти факторы, стоит отметить, что выносное заземление обеспечивает достаточную безопасность человека до тех пор, пока напряжение на оборудовании не превысит некоторой пороговой величины. Если на корпусе оборудования появятся токи большой величины (токи короткого замыкания), то часть из них пройдут через тело человека, что чревато электрическим ударом. Для предотвращения этой ситуации применяют контурное заземление.

Заземлители контурного заземления

Данный вид заземления обусловлен размещением заземлителей по всему периметру или внутри площадки, где расположено заземляемое оборудование. Все заземлители между собой соединены электрической связью. В случае замыкания на корпус происходит стекание тока в землю по ближайшему заземлителю, где самая большая разность потенциалов. Если рассматривать напряжение на всей территории площадки, то в отличие от применения выносного заземления его величина будет значительно меньше. Данное напряжение называется шаговым. Если человек одной рукой или другой частью тела прикоснется к устройству, а другой частью тела прикоснется к заземлителю, при этом он будет расположен между заземлителями, то через его тело протечет, в случае замыкания, значительный ток. В то же время напряжение над заземлителем (под ногами человека ток весь уходит в землю) будет практически рано 0.

Вокруг площадки напряжение шага будет весьма значительным, поэтому для его рассеивания в земле, если рядом расположены узкие проходы или проезд транспорта, закапывают металлические шины. Эти шины не соединены с заземляющим устройством и между собой. В этом случае распределение потенциала по земле происходит равномерно, а напряжение шага значительно уменьшается.

Типы заземлителей

Заземлители разделяются на искусственные и естественные. Искусственные заземлители устанавливаются ручным способом и производятся из металлоконструкций. Естественные заземлители несут в себе производственные и строительные электропроводящие конструкции и коммуникации (железные трубы, арматура фундамента). Главное условие – их хороший контакт с землей. Нельзя использовать в качестве естественных заземлителей трубопроводы горючих газов или жидкостей (газо- и нефтепроводы). Для оптимальной защиты устройств применяют естественное заземление в первую очередь.

Искусственное заземление изготовляют из стали.

По себестоимости дешевле всего такое заземление можно изготовить из электродов, вертикально вкопанных в землю. Все электроды должны быть соединены между собой. Вертикальные электроды выполняют из стержней с диаметром 10 – 14 мм. и длиной не менее 5 метров. Так же можно применить уголки. Для горизонтальной связи применяют полосу из стали сечением 4 х 12мм., либо прутки с диаметром не менее 1см. Заземляющие проводники с заземлителями для минимального сопротивления должны быть соединены сваркой, а с заземляемым оборудованием также сваркой или с помощью болтового соединения.

На рисунке слева представлены:
а – вертикальный электрод в грунте,
б – сварное соединение заземлителей с заземляющими проводниками,
в – сварные соединения заземляющих проводников.

Как мы уже упоминали – чем ниже сопротивление заземления, тем меньший ток пройдет через человека, поэтому очень важен фактор минимизации сопротивления заземляющего устройства. Суммарное сопротивление заземления зависит от суммы всех сопротивлений при протекании тока от устройства к земле. Сопротивление заземления состоит из сопротивления материалов и сварных соединений.

Ниже мы приведем данные сопротивления заземления, при условии напряжения на заземляющем устройстве не более 10 кВ. Если напряжение на заземляющем устройстве превышает 5 кВ, то необходимо предусмотреть меры по защите и изоляции кабелей связи, проходящих по земле.

>Применение заземления в быту

Разговор о применении заземления в бытовых помещениях возникает, когда
— есть необходимость прикасания человеком к металлоконструкциям здания и одновременно к металлизированному корпусу радиоэлектронного оборудования,
— наличие сырости в помещении, либо влажности более 75% (пример: обязательно заземление электропечи в бане или сауне),
— пол помещения выполнен из металла, либо любого другого токопроводящего материала.

Для осуществления заземления металлического оборудования, у которого есть опасность оказаться под напряжением достаточно применение медного неизолированного провода с сечением не менее 4 кв. см. от устройства к заземлителю, либо контурной заземляющей шине из стали или металла с низким сопротивлением. Физическое осуществление заземления происходит с помощью варки или болтового соединения в хорошо доступном и просматриваемом месте. Если применяется соединение болтом, то необходимо заранее предусмотреть защитные меры места соединения от коррозирования (регламентируется для помещений с повышенной влажностью). В случае применения защитного заземления или зануления в бытовых розетках в качестве третьего заземляющего контакта, прокладка заземляющего провода должна производиться укладкой в стене с последующим оштукатуриванием. При этом не допускаются перекрестия заземляющих проводов с питающей линией (все провода должны идти параллельно).

Нельзя осуществлять последовательное заземление металлических корпусов единой шиной от одной единицы к другой, так как есть опасность возникновения контурных токов. Так же не допускается использовать единое заземление на устройства, если они питаются от разных линий электропередач.

Применение заземления при работе с электроникой

Бытовое заземление в современных жилищах сегодня является неотъемлемой частью электрической разводки. Для защиты потребителей и безопасной их эксплуатации применяют розетки и переноски с дополнительным контактом заземляющей нейтрали, маркирующийся буквой N.

В целях защиты слаботочных радиоэлектронных цепей во время ремонта, сборки и наладки устройств следует применять специальные заземляющие браслеты. Со стороны заземлителя браслет с помощью захватного устройства крепится к заземляющей шине, другая сторона выполнена в виде гибкой ткани с наличием металлизированной контактной площадки. Контактная площадки должна плотно соприкасаться с кожным покровом человека. Как правило, браслет одевают на запястье. Заземляющий браслет так же называют антистатическим.

Помимо основных средств борьбы со статическим электричеством существуют и дополнительные меры: антистатическая одежда в виде халатов и обуви, специальные пакеты (их можно встретить при покупке компьютерных материнских плат или жестких дисков), специализированная мебель и т.д.

2. Сведения о защитном заземлении

2.1. Принцип действия защитного заземления

Любое электрооборудование может оказаться под напряжением при неисправности изоляции токоведущих частей. Причинами нарушения изоляции могут быть механические повреждения, действие химически агрессивной среды, повышение температуры, неправильная эксплуатация электроустановок. Неожиданность неисправности и неподготовленность к ней людей приводит, как правило, к несчастным случаям.

Основным защитным мероприятием от поражения электротоком на электроустановках является установка защитного заземления. Защитным заземлением называется преднамеренное соединение с землей металлических частей электрооборудования, не находящихся под напряжением в обычных условиях, но которые могут оказаться под напряжением в результате нарушения изоляции токоведущих частей.

Защитное действие достигается путем снижения напряжения на корпусе электрооборудования за счет стекания тока на землю через заземляющее устройство малого электрического сопротивления. Чем меньше будет сопротивление заземляющего устройства, тем меньше будет напряжение на заземленном корпусе оборудования, что уменьшит величину тока, проходящего через человека. Второй защитный эффект заземляющего устройства может быть обусловлен выравниванием напряжения между оборудованием и землей, на которой находится человек, за счет увеличения потенциала земли в месте стекания тока. Поэтому для предотвращения несчастных случаев от поражения электрическим током перед монтажом заземляющего устройства рассчитывают его параметры из условия снижения величины тока, протекающего через человека, до допустимых уровней.

Защитное заземление применяется во всех электроустановках переменного тока напряжением 380 В и выше и постоянного тока напряжением 440 В и более. В помещениях с повышенной опасностью заземляют электроустановки с напряжением переменного тока 42 В и более, а постоянного тока начиная со 110 В. Во взрывоопасных помещениях заземление применяют независимо от величины напряжения.

Контрольные измерения заземляющих устройств должны проводиться не реже одного раза в год в период наименьшей проводимости. Один раз летом при наибольшем просыхании почвы, а на следующий год – зимой при наибольшем промерзании грунта.

2.2. Конструкция заземляющих устройств

Конструктивно заземление состоит из заземлителей (электродов) и заземляющих проводников (рис. 1). Заземлители могут быть естественными или искусственными. В качестве естественных заземлителей используют проложенные в земле металлические трубопроводы (за исключением трубопроводов с горючими жидкостями и газами), металлические элементы и арматура железобетонных конструкций зданий и сооружений и т.п. В качестве искусственных заземлителей используются стальные трубы диаметром 25–60 мм с толщиной стенок не менее 3,5 мм, уголковая или полосовая сталь сечением не менее 48 мм2, а также прутковая сталь диаметром не менее 10 мм. Длину вертикальных заземлителей (электродов) рекомендуется принимать равной 2,0–5,0 м. Расстояние от поверхности грунта до начала одиночного вертикального заземлителя (заглубление электрода) составляет 0,5–0,8 м.

Электрическая связь между вертикальными заземлителями осуществляется заземляющими магистральными проводниками, изготавливаемыми обычно из полосовой стали сечением не менее 48 мм2 или стали круглого сечения диаметром не менее 6 мм. Заземляющие проводники соединяют заземляемые объекты с заземлителями и изготавливаются обычно из стали прямоугольного или круглого сечения. Заземляющие магистральные проводники соединяются с вертикальными заземлителями посредством сварки. Заземляемые объекты соединяются с заземляющим устройством через болтовые соединения или путем сварки.

Заземляющие устройства могут быть выносного или контурного типа. При контурном заземлении (рис. 1) заземлители располагаются равномерно по периметру площадки, на которой находится электрооборудование. Выносное очаговое заземляющее устройство (рис. 2) располагается за пределами площадки, где установлено подлежащее заземлению оборудование. Схема выносного заземляющего устройства при расположении электродов в ряд приведена на рис. 3.

Заземление частного дома своими руками — устройство, контур и схема заземления

Одним из защитных методов людей от ударов током в жилом доме считается осуществление заземления. Практика показывает, что монтаж автовыключателей или УЗО во многих случаях бывает попросту не достаточно.

Именно поэтому специалисты не рекомендуют полагаться только лишь на данные приспособления. Лучше всего отдать свое предпочтение надежному заземлению, которое можно сделать в домашних условиях собственноручно.

Данная система позволит в итоге не переживать за жизнь постояльцев в случае возникновения чрезвычайного происшествия.

Заземление частного дома своими руками

Содержание статьи

Рабочее (защитное) заземление частного дома: его устройство и назначение

Рабочее заземление предназначается для спасения людей от электрического тока. К тому же оно позволяет защитить бытовую технику от выхода из строя при возникновении его корпусного пробоя.

Также такое заземление является весьма полезным для уменьшения последствий удара молнии. Это касается лишь тех случаев, если у дома предусмотрен соответствующим молниеотвод.

Назначение заземления

Рабочее заземление при электрическом чрезвычайном происшествии выполняет роль защитного. Главные его задачи заключаются в следующем:

  • спасение людей от поражения током;
  • защита бытовой техники при корпусном пробое;
  • поддержка нормальной работы оборудования.

Постоянно действующее рабочее заземление требуется только для промоборудования. Если речь идет о бытовой техники, достаточно всего лишь заземление через евророзетку.

Евророзетка с заземляющими контактами

Несмотря на это, специалисты рекомендуют все же наглухо заземлить ряд приборов в доме. Среди них стоит выделить стиральную машину, микроволновую печь, электродуховку, индукционную плиту (варочную поверхность), а также настольный компьютер.

Устройство заземления

Применение искусственных систем заземления обусловлено тем, что естественные системы нередко не соответствуют всем правилам и нормам. Это может привести к их плохому срабатыванию и низкой эффективности.

К естественным заземлителям можно отнести водопроводные трубы из стали, что соприкасаются с почвой.

Также к этой категории относятся действующие артезианские скважины или же некоторые другие элементы сооружений, выполненные из металла. При этом в обязательном порядке они должны быть соединены с землей.

При самодельном создании заземления специалисты рекомендуют применять уголки из стали размером 50х50 миллиметров, длина которых составляет 3 метра. Их следует забить в землю в траншее.

Ее глубина должна достигать 70 сантиметров. При этом около 10 сантиметров должно находиться над дном. К этой части уголков стоит приварить проложенный в траншее пруток из стали диаметром в пределах от 10 до 16 миллиметров. Вместо него разрешается использовать полосу размером 40х3 или 40х4, расположенную по всему периметру сооружения.

В соответствии с действующими правилами, если имеется электрическая установка до 1000 Вольт, сопротивление заземления не должно превышать 4 Ом.

Системы заземления

Существует 6 отличающихся между собой заземляющих систем. Несмотря на такое разнообразие, в жилых домах применяется преимущественно только 2 из них, такие как:

  • TN – C – S. Главной особенностью данной системы считается то, что подача тока происходит с использованием нуля PEN, который обязательно дополнительно подключается к глухо заземленной нейтрале.

Евророзетка с заземляющими контактами

В здании, в распредустройстве провод расходится на две части РЕ и N. Одна – PE – представляет собой ноль защитный (заземление), вторая – проводник – выполняет роль рабочего поля N. Для того чтобы данная система надежно работала, очень важно обеспечить ей соответствующую защиту.

Это обусловлено возможностью возникновения опасного напряжения на корпусах электроприборов.

Это касается тех приспособлений, которые связаны с проводником PE. Такая ситуация возникает в случае механического повреждения нуля PEN между непосредственно самой подстанцией и сооружением.

  • TT. Эта система применяется в селах и деревнях. В загородных условиях сложно обеспечить безопасность нуля PEN. Эта схема требует выполнения «глухого» заземления по отношению к нейтрали. Осуществление передачи напряжения при этом происходит посредством 4 проводов.

 

Евророзетка с заземляющими контактами

Четвертый из них применяется в качестве функционального нуля N. Со стороны потребителя в данной ситуации необходимо создать штыревой заземлитель. Именно к нему следует подсоединить все проводники от PE. С ними следует связать корпуса приборов.

Система TT применяется преимущественно в отдаленных от городов районах. В крупных населенных пунктах предпочтение отдают TN – C – S.

Схема заземления

Все же большей популярностью пользуется система заземления TN – C – S. Отличительной ее особенностью является наличие глухо заземленной нейтрали.

В системе TN – C – S шина РЕ и нейтраль N проводятся при помощи всего лишь одного провода PEN. На входе в дом конструкция должна разделяться на несколько отдельных веток. Данная схема подразумевает защиту посредством автоматических выключателей. Можно использовать УЗО.

Схема TN-C-S

В схеме TT «земля» должна выходить на щит от отдельного заземления, а не от конкретной подстанции.

Схема ТТ

Данная система считается более надежной и безопасной. Она лучше устойчива к повреждению защитного проводника. В данном случае не требуется монтаж устройства отключения.

Контурное заземление своими руками 380 и 220В

Под контурным заземлением подразумевает размещение одиночных заземлителей по периметру площадки. Последняя используется в свою очередь для размещения необходимого заземляющего оборудования. Таким образом, элементы подобной конструкции могут быть расположены вокруг частного дома равномерно.

Применение контурного заземления напрямую связано с тем, что оно обеспечивает хороший уровень безопасности.

Это достигается за счет того, что выравнивается потенциал основания. Некоторые его значения при этом могут быть повышены. Такая особенность связано с тем, что подобным образом можно уравнять эти характеристики с параметрами непосредственно самого оборудования.

Треугольник – замкнутый контур

Чаще всего контурное заземление в жилых домах собственноручно создают при помощи контура в виде треугольника, имеющего равные стороны. Это обусловлено тем, что таким образом на относительно небольшой площади можно обеспечить максимальный участок рассеивания тока. При этом с обеспечением всех необходимых параметров затраты на такую систему минимальны.

Контур заземления

Для монтажа контурного заземления нужно учитывать то, что глубина забивания стержней треугольника должна быть примерно в два раза меньше расстояния между ними. Таким образом можно получить необходимые характеристики сопротивления.

Если штыри забиваются на глубину 2,5 метра, их следует расставлять на расстоянии от 2,5 до 5 метров между собой. Если вследствие особенностей почвы не удается создать треугольник с равными сторонами, можно немного отойти от этой формы.

Линейный контур

Вместо треугольного контура в некоторых ситуациях используется контур в виде половины круга или же цепочки штырей. Они должны быть находиться на одной линии. В такой ситуации следует обеспечить равное расстояние между стержнями. Оно должно равняться или же быть больше, чем их высота.

Линейный контур

Для оптимального уровня рассеивания тока важно обеспечить использование большого количества вертикальных стержней. В ином случае система будет неэффективной.

Основной недостаток линейного контура заземления заключается в том, что получение нужных параметров выполнить довольно сложно.

Это возможно только в случае применения достаточно существенного количества электродов. Именно поэтому при наличии места на площадке вокруг частного дома специалисты рекомендуют все же использовать контур в виде треугольника.

Штыревое модульное заземление

Под модульно-штыревым заземлением подразумевается тип устройства, при котором владелец здания может самостоятельно варьировать количество как общую длину, так и количество точек монтажа в почву вертикальных заземлителей. Таким образом, речь идет о сборной конструкции. Данная особенность системы является очень удобной в тех случаях, если характеристики грунтов на площадке постепенно способы меняться. К тому же такая схема подходит тем, кому сложно использовать другие системы заземления.

Модульное заземление

Модульно-штыревое заземление позволяет организовать глубинную схему контура. Она отличается своим вертикальным заглублением. В основе данной схемы используются круглые стержни, диаметром от 14 до 20 миллиметров. При этом их длина варьируется от 1,2 до 1,5 метра.

Основное предназначение модульно-штыревого заземления заключается регулировке направления тока, который продуцирует молния. Система позволяет его отводить и рассеивать. Для этого используется конструкция внешней защиты. Она подразумевает монтаж молниеприемников и токоотводов. Таким образом создаются оптимальные условия для эксплуатации электрического оборудования.

Требования к сопротивлению заземляющего устройства

В соответствии с ПУЭ, в электроустановках напряжением до 1000 В для их безопасной работы следует создать специальные условия. Они подразумевают, что сопротивление заземления не должно превышать 4 Ом. Это касается систем, которые отличаются своей изолированной нейтралью.

Если суммарная мощность всех использующихся источников тока достигает 100 кВА, заземляющие устройства должны иметь сопротивление, не превышающее 10 Ом.

Заключение

Правильная организация заземления– это гарантия безопасности для жильцов. К тому же таким образом можно предотвратить выход из строя домашних бытовых приборов, таких как холодильники, микроволновые печи, компьютеры, электрические плиты и т. д. Главное – следовать всем правилам и нормам, а также рекомендациям опытных специалистов.

Назначение разных видов заземления и нормы по их установке

Заземление – система защитного контура, для предотвращения поражения током при замыкании фазы на корпус. Назначение, виды и способы его монтажа – это основные вопросы, стоящие перед каждым собственником жилья и производственного помещения.

Заземляющее устройство – это конструкция, оснащенная заземлителем и заземляющими проводниками.

Виды заземления в зависимости от удаления объекта от защитного контура

По этой характеристике, виды заземляющих устройств подразделяют:

  • выносное;
  • контурное устройство.

Разберем каждое из них подробнее.

Выносное устройство

При этом типе, расположение заземлителя производится за пределами помещения. Выносное (сосредоточенное) защитное устройство монтируют при невозможности оснащения контура на участке со скальным, каменистым грунтом, либо при наличии за участком наиболее подходящего для заземления качества земли.

Разброс производственного оборудования на значительном расстоянии друг от друга – это еще одна причина установки выносной системы.

К преимуществу этого типа, относят возможность выбора места установки с лучшими свойствами грунтов, с малым уровнем сопротивления. К таким грунтам относят – глинистый или песчаный влажный грунт. Но есть у способа существенный минус. Значение коэффициента касания проводника равно 1, из-за удаленности от производственных объектов.

Такой вид защиты монтируют для обслуживания объектов с малыми токами короткого замыкания (не более кВ). Потенциальное напряжение при касании поврежденного участка цепи не меньше потенциала заземлителей.

Контурное устройство

Заземляющие электроды располагаются равномерно, по границам контура обслуживаемого участка и на нем самом. Поэтому, второе название этого типа – распределенное.

При таком способе установки заземлителей, безопасность использования приборами обеспечивается понижением потенциалов на каждом заземлителе и потенциалы их выравниваются. Такой метод позволяет понижать пиковый ток КЗ. Одиночнорасположенные на территории контура заземлители позволяют решать эту проблему.

Каждый метод заземления, при долгой эксплуатации, может повысить сопротивление контура. Для раннего обнаружения неисправности, необходимо периодически осматривать контур и подтягивать гайки на креплении проводов.

Обустройство повторного заземления

Данный метод позволяет понижать опасное для человека значение тока замыкания и других повреждений проводки и электрических приборов. При этом, повторное заземление – это отдельно расположенная и независимая от основного контура система заземлителей.

Установка предусматривает срабатывание в аварийной ситуации ближайшего автомата защиты. Наиболее часто, повторным способом, обустраивается старое здание с устаревшей двухжильной алюминиевой проводкой. Проводку ведут к каждому потребителю от места сварки концевого контакта на основании контура. На корпус щита провода закреплены с помощью болтов и гаек с гроверами.

Виды заземления в зависимости от подведения проводки

До проведения работ по электропроводке здания, необходимо сделать выбор способа подключения к внутридомовой сети провода земли и вида контура защиты. Приведем расшифровку аббревиатур, применяемых в названии видов подводки кабеля:

  • I – изолированная проводка;
  • N – обозначает подключение к нейтральному проводу;
  • Т – символ, обозначающий подключение к заземляющему проводу.

Принята мировая система заземления, в которую входят три основных вида.

IT- система

Практически неприменяемая система в жилищном строительстве. При ней используют сопротивление с большим номиналом или через воздушную прослойку. Применяется этот вид заземления в лабораторных и лечебных помещениях. Служит для обеспечения большого уровня защиты для оборудования и приборов, требующих при обслуживании значительного уровня безопасности и стабильности.

По правилам ПУЭ, для частного хозяйственного строительства, можно использовать систему с независимыми заземлителями.

Система ТТ

Провода подводят к щитовой, на вводе в здание с двумя заземлителями. Наиболее часто применяют для обслуживания систем источников напряжения в сети и на металлическом покрытии системы без изоляции. Значительные показатели работы нулевой проводки на расстоянии от трансформаторов тока до потребителя электроэнергии.

При монтаже может возникнуть сложность, связанная с подбором диаметра проводки для обеспечения безопасности самого заземления. Для этих целей в данный вид подведения провода, устанавливается система отключения.

TN-система

Это, наиболее распространенный вид проведения заземляющего проводника с заземлением нейтрального провода, позволяет подключать к нейтрали всех потребителей тока данного здания.

Подключается все оборудование к заземлению через провода ноля. Все токопроводящие корпуса оборудование и приборы в электрощитовых и других потребителей, при коротком замыкании на корпуса, выключаются от сети с помощью автоматов и предохраняют человека, находящегося в помещении от поражения электротоком.

Она подразделяется на следующие виды:

  1. Система TN – 5. Вид подведения заземления и нулевого провода двумя отдельными проводниками. Такой способ на сегодняшний день является наиболее безопасной для человека. Проводку от источника питания, при этом способе, ведут с использованием трехжильного медного провода с соответствующим сечением для данного здания и количества потребителей. Как правило, для подведения фазы используют коричневый или черный проводник, ноль подводят голубым или синим проводом, а для подведения заземления используется желто-зеленый цвет изоляции.
  2. Система TN-C-S, в ней подводятся к электрощиту два провода, а именно провод нейтрали и провод фазы. И уже в щитке производят разделение ноля на два проводника, один из которых ноль, а второй провод заземления. Для обеспечения надежной и безопасной защиты в щитке требуется устанавливать дополнительный автомат отключения после разводки проводников.

При использовании медных многожильных проводников в проводке старого здания, не оснащенного защитным контуром, появляется оснастить электросеть надежной защитой.

Такая система хорошо предохраняет проводку и бытовые приборы при попадании молнии. При установке УЗО повышается уровень безопасности человека. К минусам можно отнести — установка дополнительного оборудования и снижение безопасности при обслуживании загородного дома.

Сечение проводки и выбор конструкции заземляющих контуров – одни из основных характеристик при проведении монтажа одного из видов заземляющего контура.

Для проведения работ по изготовлению контура заземления используются различные заземлители из искусственных или натуральных металлов. Исходя из пункта 1,7,109 Правил установки, могут быть использованы железобетонный или металлический участок здания, находящиеся в земле защитные оболочки кабелей, погружаемые в скважины трубы и другие.

Нельзя подключать провода заземления к газовым трубопроводам, трубам канализации, отопительным трубопроводам. Но для выравнивания потенциалов тока, данные участки можно использовать.

При мощности электрической сети здания более кВт, его необходимо оборудовать системой заземления. Виды заземления используются для обеспечения безопасной работы сети тока, но величина сопротивления не должна превышать величины 4 Ом.

Заземлители (заземляющие колья, забиваемые в землю для создания контура заземления) обязательно выполняются из меди, оцинкованного или черного металла. Все значения размеров заземлителей и других составляющих контура, приведены в пунктах ПУЭ.

Горизонтальная перемычка контура заземления должна быть заглублена в грунт не менее полуметра, в случае легкого грунта заглублять его следует не менее метра. Горизонтальные перемычки на сопротивление контура влияют больше чем вертикальные заземлители.

При необходимости устанавливается повторный контур заземления электрической сети.

При выборе сечения необходимо ознакомится с требованиями ПУЭ, но провод заземления не может быть меньше провода фазы.

Заземление не сможет заменить автоматический разрыватель цепи и УЗО, а они не смогут выполнить работу заземления.

Соединение элементов заземляющих устройств в земле

Соединение элементов заземляющих устройств в земле

При обустройстве заземления приходится соединять между собой провода, а также проводники и штыри, устанавливаемые под землей. Такие соединения должны быть устойчивыми к действию коррозии, а также не требовать обслуживания в течение длительного периода времени. В настоящее время используются три основных способа соединения проводов заземлений — опресовка, сварка и винтовой зажим. В этой статье будет дано краткое описание каждого из методов и проведено сравнение их преимуществ и недостатков.

Нормативная база

Соединение проводов заземления регулируется ГОСТ Р 50571.5.54-2013 (МЭК 60364-5-54:2011) «Электроустановки низковольтные». Часть 5-54, пункт 542.2.8: «Если заземлитель состоит из частей, которые должны быть соединены вместе, соединение должно быть выполнено экзотермической сваркой, опрессовкой, зажимами или другим разрешённым механическим соединителем».

Другим документом, регламентирующим соединение проводов заземления, является ПУЭ. П. 1.7.139, 7-е издание ПУЭ, в частности, гласит: «Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов должны быть надёжными и обеспечивать непрерывность электрической цепи… Соединения должны быть защищены от коррозии и механических повреждений. Для болтовых соединений должны быть предусмотрены меры против ослабления контакта».

Кроме этого, параметры соединения проводов заземления винтовыми зажимами регулируются ГОСТ 10434 «Соединения контактные электрические. Общие технические требования». Если нет агрессивной среды (земля к ней, как правило, не относится), то соединения должны относиться ко 2 классу. К нему относятся контактные соединения цепей, сечения проводников которых выбраны по стойкости к сквозным токам, потере и отклонению напряжения, механической прочности и защите от перегрузки. Допускает зажимное соединение и циркуляр 11/2006 ассоциации «Электромонтаж», если соединяемые элементы выполнены не из чёрных металлов.

Опрессовка

Соединение проводов посредством опрессовки — самый простой и технологичный способ. Провода вставляются с двух сторон в гильзу и опрессовываются специальным устройством, именуемым кримпером. Однако, такой способ непригоден для соединения провода со штырём заземления. К тому же, если соединение опрессовкой находится под землей, то гильза и провода покрываются слоем окиси, что повышает сопротивление контакта. Применяется герметизация такого соединения, но в итоге такая герметизация представляет собой сложное и ненадёжное решение. По сути, не могут полностью быть соблюдены нормы ПУЭ. Вот почему опрессовка не может быть применяться для соединения, находящегося под землей.

Сварка

В настоящее время ГОСТ не упоминает в числе методов, допустимых для соединения проводов заземления дуговую сварку

Известны два основных вида сварки — электродуговая и экзотермическая. При электродуговой сварке температура достигает +7000°C, из-за чего происходит разрушение защитного антикоррозионного слоя. Кроме этого, сильный нагрев ослабляет не только покрытия, но и металлы, из которых сделаны сердцевины проводников. Возникает так называемая межкристаллитная коррозия, которая потенциально способна привести к разрушению соединения. Вот почему ГОСТ Р 50571.5.54-2013 не указывает в числе допустимых для соединения проводников заземления методов дуговую сварку.

Набор для экзотермической сварки проводников

Вместо дуговой сейчас для соединения проводов заземления применяют так называемую экзотермическую (иногда её ещё называют термитной) сварку. При экзотермической сварке для нагрева металла используется так называемый термит — порошкообразная смесь алюминия или магния с железной окалиной (либо окисью меди). Применительно к контуру заземления обычно используется термит на основе алюминия и оксида меди. Место соединения заформовывают огнеупорным материалом, туда засыпают порошкообразный термитный состав, который затем поджигают. В результате сгорания термита образуется жидкая медь, которая имеет хорошую адгезию со свариваемым материалам. Температура расплава превышает 3000°C. Экзотермическая сварка соответствует нормам как ГОСТ Р 50571.5.54-2013, так и ПУЭ.

Посмотреть, как осуществляется экзотермическая сварка, можно на видео:

Выпускаются готовые комплекты для экзотермической сварки, для использования которых не требуется специальной подготовки. Тем не менее, при прочих равных условиях, применение экзотермической сварки всё же сложнее, чем соединение проводов винтовыми зажимами. Естественно, к винтовым зажимам, пригодным для соединения проводов заземления, предъявляются особые требования.

Винтовые зажимы

Для того, чтобы реализовать преимущества готовых наборов для заземления ZANDZ, а, именно, предельную простоту сборки и установки, есть смысл использовать винтовые зажимы. Если при сборке допущена ошибка, можно разобрать и потом правильно собрать. Но даже если ваши квалификация и опыт позволяют сразу сделать всё правильно, всё равно с винтовыми зажимами работать проще, чем применять сварку.

Но у винтовых зажимов есть два недостатка, которые, впрочем, преодолимы. Во-первых, при соединении ими омеднённого штыря заземления и провода из обычной стали, либо оцинкованной стали, возникает электрохимическая реакция, приводящая к коррозии. Во-вторых, со временем может происходить ослабление затяжки винтов, на что особое внимание обращено в ПУЭ.

Винтовой зажим ZANDZ с пружинными шайбами

Проблема возникновения электрохимической реакции в винтовых зажимах успешно решается использованием специальной прокладки, механически разделяющей проводники из разных материалов, но при этом сохраняющей электрический контакт между ними. В качестве примера можно привести профилированный зажим ZANDZ ZZ-005-064 https://skomplekt.com/tovar/6/27/6801720337/. Для того, чтобы болтовые соединения не ослабевали, в них устанавливают шайбы Гровера, примером этому может служить профилированный зажим Galmar GL-10332N.

Выводы

Из всех рассмотренных способов соединения проводников в заземлении, располагающихся в грунте, наиболее надёжным является экзотермическая сварка. Но для массового применения можно рекомендовать винтовые зажимы, имеющие меры по предотвращению электрохимической коррозии и ослабления соединения со временем. В любом случае, для правильного выбора типа соединения лучше обратиться за консультацией к специалистам. Вам нужна консультация по проектированию или монтажу заземления и молниезащиты? Обращайтесь в Технический центр ZANDZ.com!


Смотрите также:

Виды заземлений — какие бывают? Системы и назначение конструкции

Заземление – это намеренное соединение определенной части оборудования или электрической цепи с грунтом. Чаще всего, для заземления используется один или несколько штырей из металла необходимой длины и диаметра, забитых в грунт и соединенных вместе.

Заземление

Конструкцию соединяют с кабелем, подключенному к заземляемому устройству. Штыри и провод, металлическая полоса, связывающая их, место установки заземления, оговорено по правилам монтажа электрических установок.

Электроустановки подразделяются:

  1. С напряжением более 1 кВ с эффективно или глухо заземленной нейтралью.
  2. С напряжением более 1 кВ с заземленной через резистор или изолированной нейтралью.
  3. С напряжением менее 1 кВ с глухо заземленной нейтралью.
  4. С напряжением менее 1 кВ с изолированной нейтралью.

С учетом технических особенностей электросетей и электрической установки, для ее работы может быть необходима какая-либо токоотводящая конструкция. Обычно, до проектирования электрического устройства, определяют перечень требования, в которых указывают необходимую конструкцию.

Сейчас в мире используют единую систематизацию подобных устройств, в которую входят три системы:

  1. Система IT.
  2. Система TT.
  3. Система TN.

Эта аббревиатура расшифровывается так:

  • Символ I — изолированный.
  • Символ N — подключено к нейтрали.
  • Символ T — заземление.

Системы TN

Такие конструкции отличаются наличием глухо заземленной нейтрали и подсоединением к ней всех способных проводить электроэнергию элементов сети.

Подключение к нейтрали производят используя нулевые проводники.

Электрошкафы, щиты и корпуса приборов, подключают к проводнику PEN. Выполняется это для создания короткого замыкания, при пробивании проводки на корпус, в результате чего, защитные автоматы обесточивают сеть, идущую на вышедший из строя участок сети, таким образом, предупреждая поражение током людей, находящихся поблизости.

Система с нулевым и расчлененным рабочим проводником

Заземление

Система TN-S

Система TN-S для безопасности оборудована двумя, а не одним нулевым проводом, один из них служит как защитный провод, а второй используется в качестве нейтрального проводника, подключенного к глухо заземленной нейтрали. Эта конструкция сегодня является самой безопасной, способной эффективно защитить от удара электричеством.

Принцип работы этой конструкции состоит в том, что используют всего одну фазу для подачи рабочего напряжения и ноль.

Разводку производят проводом из трех жил, одна из которых служит как нуль и подключается к вводному проводу.

Система c проводом PEN и двумя нулями

Заземление

Система TN и TN-C-S

Здесь характерно использование в определенном месте оборудования, соединенного с нулевым проводом, расщепляющимся на два проводника: PE и N, для последующего заземления оборудования.

Для бесперебойной работы, система TN-C-S после места раздвоения, оборудуется еще одним заземлителем.

Положительные свойства этой системы:

  1. Простой переход на нее во время ремонта старых домов.
  2. Простая конструкция защиты от молнии.
  3. Возможность создания защиты проводки простыми автоматами от замыкания.

Минусы этой системы:

  1. Риск перегорания нулевого провода вне здания, что грозит пробоем корпусов из металла электротоком.
  2. Нужда в использовании оборудования для уравнивания потенциалов.
  3. Сложность в создании действенной защиты внегородской черты.

Для частных, хозяйственных строений, ПУЭ советуют использовать совершенно другую систему — TT.

Независимые заземлители

Заземление

Система TT

В конструкции системы TT есть два заземлителя:

  1. Для источника электротока.
  2. Для незащищенных металлических элементов системы.

Положительным свойством этой конструкции является повышенная работоспособность нулевого провода на промежутке от оборудования до места подачи напряжения и независимость PE провода.

Сложность может появиться только с использованием собственного заземлителя, так как непросто подобрать для него подходящий диаметр. Но такой минус компенсируется с помощью системы защитного отключения.

Система с изолированным нейтральным проводом

Заземление

Система IT

В большинстве случаев, в такой конструкции, нейтраль изолируют от земли, или создают необходимое зануление IT, используя устройство со значительным сопротивлением.

В домашних условиях, устройства такого типа не нашли применения, они практически не используются, но позволяют их применять для питания специальных устройств, для которых необходима безопасность и максимальная стабильность при работе, к примеру, в лабораториях и лечебных учреждениях.

Технологии заземляющих устройств

Есть несколько способов изготовления контура заземления.

Чаще всего, используют две из них:

  1. Модульно-штыревое заземление.
  2. Традиционное заземление.

Конструкция модульного заземления

Модульно-стержневое заземление

Для ее устройства используют стержни, из покрытого медью качественного металла. Их вертикально забивают в грунт на глубину около 1 м, диаметр стержней 14 мм. По краям стержня нарезают по 30 мм резьбы и так же покрывают ее медью.

Металлические части конструкции соединяют вместе латунными муфтами. По горизонтали их соединяют стальными полосами с латунными зажимами или используют для этого комплект медного провода. Также, устраивают соединение контура заземления и щитка-распределителя. Для защиты элементов заземления от коррозии, в комплект входит защитная паста.

Традиционное заземление

Стандартное заземление

Изготавливают такую систему из черного металла: полос, труб, уголка. На 3 м в грунт, с промежутком 5 м вбивают треугольником три металлических электрода. Далее, электроды соединяют в общий контур, используя металлическую полосу и электросварку.

Такое заземление имеет несколько отрицательных свойств (к примеру, трудоемкость создания контура и коррозия, разрушающая металл изделия), по этой причине, в наше время вместо нее стараются использовать более совершенный способ заземления.

Естественные заземляющие элементы

Фундамент подстанции

Чаще всего, их используют для заземления электрического оборудования. В качестве естественных заземлителей применяют металлические элементы различных ЖБ конструкций, к примеру, фундаменты подстанций и линий электропередач и фундаменты строений.

Дополнительно, для естественного заземления подключают части подземных коммуникаций, изготовленных из металла, к примеру, подходит броня кабелей и всевозможные трубопроводы, иногда допустимо подключать и наземные коммуникации, к примеру, подойдут для этой цели рельсовые пути.

Какие ЖБ изделия нельзя применять для заземления?

ЗаземлениеНе стоит подключать заземляющий провод к фундаментам, собранным из отдельных ЖБ элементов. Желательно связать прутья арматуры блоков, и только тогда допустимо подключать заземлитель. Иначе, лучше использовать искусственный заземлитель.

Для этого используют металлический проводник, вбитый вертикально или горизонтально в грунт. Иногда используют несколько таких проводников, связав их вместе. Важно, чтобы отдельные электроды контура, были вбиты на необходимую глубину.

Горизонтальный заземлитель желательно уложить на глубину 50 см, если грунт на участке легкий, то укладку электрода желательно производить на глубине 1 м. Важно то, что у горизонтальных проводников, сопротивление больше чем у вертикальных.

По этой причине, лучше использовать вертикальный заземлитель.

Толщина искусственных заземлителей:

  1. Металлический прут — сечение 10 мм;
  2. Оцинкованный металлический прут — сечение 6 мм;
  3. Металлический уголок — толщина 4 мм, полка 75 мм;
  4. Металлическая полоса — 4 мм;
  5. Брак или БУ трубы — 3,5 мм толщина стенки;
  6. Общее сечение проводников забиваемых в землю — 160 мм.

Заземление нейтрального проводника

В нашей стране, сети 6-35 кВ эксплуатируются с не глухо заземленной нейтралью. Использование таких сетей хорошо тем, что у них низкое значение токов замыкания на грунт, но при ОЗЗ, изготовленных из металла, в таких сетях повышается напряжение на целых фазах относительно земли до уровня линейного, что плохо в этом случае.

Коэффициент замыкания на грунт — отношение разницы потенциалов между землей и фазой при замыкании остальных фаз на землю к разнице между землей и фазой в сети.

Статья была полезна?

0,00 (оценок: 0)

9 Рекомендуемые методы заземления

Основы безопасности и качества электроэнергии

Заземление и заземление — основа безопасности и качества электроэнергии. Система заземления обеспечивает путь с низким импедансом для тока короткого замыкания , а ограничивает повышение напряжения на обычно нетоковедущих металлических компонентах системы распределения электроэнергии.

9 Recommended Practices for Grounding 9 Recommended Practices for Grounding 9 Рекомендуемых методов заземления (фото: ag0n.net)

В условиях повреждения низкий импеданс приводит к высокому протеканию тока повреждения , вызывая срабатывание устройств защиты от сверхтока, быстро и безопасно устраняя повреждение.Система заземления также позволяет безопасно отводить на землю переходные процессы, такие как молнии.

Соединение — это намеренное соединение обычно не токонесущих металлических компонентов для образования токопроводящей дорожки. Это помогает гарантировать, что эти металлические компоненты имеют одинаковый потенциал, ограничивая потенциально опасные перепады напряжения.

Следует внимательно рассмотреть установку системы заземления, которая превышает минимальные требования NEC для повышения безопасности и качества электроэнергии.

1. Проводники заземления оборудования

Изумрудная книга IEEE рекомендует использовать заземляющие провода для оборудования во всех цепях, не полагаясь только на систему кабельных каналов для заземления оборудования. Используйте заземляющие проводники оборудования, сечения которых равны фазным проводам, чтобы снизить полное сопротивление цепи и сократить время отключения устройств защиты от сверхтоков.

Equipment grounding conductor Equipment grounding conductor Провод заземления оборудования

Соедините все металлические корпуса, кабельные каналы, коробки и заземляющие провода оборудования в одну электрически непрерывную систему.Рассмотрим установку заземляющего проводника оборудования проводного типа в качестве дополнения к заземляющему проводнику оборудования только для кабелепровода для особо чувствительного оборудования .

Минимальный размер заземляющего провода оборудования для обеспечения безопасности указан в NEC 250.122, но рекомендуется использовать заземляющий провод полного размера из соображений качества электроэнергии.

Вернуться к оглавлению ↑


2. Изолированная система заземления

Согласно NEC 250.146 (D) и NEC 408.40 Исключение, рассмотрите возможность установки изолированной системы заземления, чтобы обеспечить чистый эталонный сигнал для правильной работы чувствительного электронного оборудования.

Isolated grounding system for branch circuits Isolated grounding system for branch circuits Изолированная система заземления для параллельных цепей (фото: iaeimagazine.org)

Изолированное заземление — это метод, который пытается снизить вероятность попадания «шума» в чувствительное оборудование через заземляющий провод оборудования. Штырь заземления электрически не связан с ярмом устройства и, следовательно, не подключен к металлической розетке. Таким образом, он «изолирован» от зеленого провода заземления.

Отдельный провод зеленого цвета с желтой полосой подводится к щиту вместе с остальными проводниками схемы, но обычно он не подсоединяется к металлическому корпусу. Вместо этого он изолирован от корпуса и проходит через шину заземления вспомогательного оборудования или заземление отдельно выделенной системы. Изолированные системы заземления иногда устраняют циркулирующие токи контура заземления.

Обратите внимание, что NEC предпочитает термин изолированное заземление , в то время как IEEE предпочитает термин изолированное заземление .

Вернуться к оглавлению ↑


3. Заземление ответвленной цепи

Замените параллельные цепи, не содержащие заземления оборудования, параллельными цепями с заземлением оборудования. Чувствительное электронное оборудование, такое как компьютеры и оборудование с компьютерным управлением, требует ссылки на землю, обеспечиваемой заземляющим проводом оборудования, для правильной работы и защиты от статического электричества и скачков напряжения.

Отказ от использования заземляющего проводника оборудования может вызвать протекание тока через низковольтные цепи управления или связи, которые подвержены сбоям и повреждению, или через землю.

Устройства защиты от перенапряжения (SPD)

должны подключаться к заземляющему проводу оборудования.

Вернуться к оглавлению ↑


4. Сопротивление заземления

Измерьте сопротивление системы заземляющих электродов относительно земли.

Примите разумные меры для обеспечения того, чтобы сопротивление земли составляло 25 Ом или меньше для типичных нагрузок .Во многих промышленных случаях, особенно при наличии электронных нагрузок, существуют требования, которые требуют значений от 5 Ом или менее во много раз ниже 1 Ом.

Measuring earth resistance with fall of potential method Measuring earth resistance with fall of potential method Измерение сопротивления заземления методом падения потенциала (фото: eblogbd.com)

Для этих особых случаев разработайте программу обслуживания чувствительных электронных нагрузок для измерения сопротивления заземления раз в полгода, первоначально с использованием измерителя сопротивления заземления . После этого следует измерять сопротивление заземления не реже одного раза в год.

При проведении этих измерений следует принять соответствующие меры безопасности. , чтобы снизить риск поражения электрическим током. .

Запишите результаты для использования в будущем. Изучите значительные изменения в измерениях сопротивления заземления по сравнению с историческими данными и устраните недостатки в системе заземления. Проконсультируйтесь со специалистом по электрическому проектированию для получения рекомендаций по снижению сопротивления заземления, где это необходимо.

Вернуться к оглавлению ↑


5.Штанги заземления

NEC позволяет размещать заземляющие стержни на расстоянии не более 6 футов друг от друга, но сферы влияния стержней являются вертикальными.

Рекомендуемая практика заключается в размещении нескольких заземляющих стержней на расстоянии минимум двойной длины стержня друг от друга. Устанавливайте заземляющие стержни с глубокой забивкой или химически усиленными грунтами в гористой или каменистой местности и в плохих почвенных условиях. Детальное проектирование систем заземления выходит за рамки этого документа.

Earthing electrode Earthing electrode Электрод заземления

Вернуться к оглавлению ↑

6.Кольцо заземления

В некоторых случаях может быть целесообразно установить медное заземляющее кольцо , дополненное приводными заземляющими стержнями , для нового коммерческого и промышленного строительства в дополнение к металлическим водопроводным трубам, конструкционной строительной стали и электродам в бетонном корпусе, так как требуется Кодексом.

Кольца заземления обеспечивают удобное место для соединения нескольких электродов системы заземления, например, нескольких заземлителей Ufer, молниеотводов, нескольких вертикальных электродов и т. Д.

Установите заземляющие кольца полностью вокруг зданий и сооружений и ниже линии промерзания в траншее на расстоянии нескольких футов от места основания здания или сооружения. Если необходимо низкое сопротивление заземления, дополните заземляющее кольцо заземляющими стержнями с приводом в тройной конфигурации в каждом углу здания или сооружения и в средней точке с каждой стороны.

The emergency generator connected to the ring-ground, and additionally grounded to reinforcing rods in its concrete pad The emergency generator connected to the ring-ground, and additionally grounded to reinforcing rods in its concrete pad Аварийный генератор, подключенный к кольцевому заземлению и дополнительно заземленный к арматурным стержням в его бетонной площадке (фото: psihq.ком)

Минимальный размер проводника для заземляющего кольца, установленный NEC, составляет 2 AWG , но чаще используются сечения 500 kcmil . Чем больше проводник и чем длиннее проводник, тем большая площадь поверхности контактирует с землей и тем ниже сопротивление заземления.

Вернуться к оглавлению ↑


7. Система электродов заземления

Grounding electrode system bus Grounding electrode system bus Системная шина заземляющих электродов (фото: electric-contractor.net)

Соедините все заземляющие электроды , которые имеются, включая металлические подземные водопроводные трубы, конструкционную строительную сталь, электроды в бетонном корпусе, трубчатые и стержневые электроды, пластинчатые электроды, а также заземляющее кольцо и все подземные металлические трубопроводные системы, пересекающие заземляющее кольцо, к системе заземляющих электродов.

Соедините заземляющие электроды отдельных зданий в университетском городке вместе, чтобы создать одну систему заземляющих электродов.

Подсоедините все электрические системы , такие как электроснабжение, кабельное телевидение, спутниковое телевидение и телефонные системы, к системе заземляющих электродов. Прикрепите наружные металлические конструкции, такие как антенны, радиомачты и т. Д., К системе заземляющих электродов. Подсоедините токоотводы молниезащиты к системе заземляющих электродов.

Вернуться к оглавлению ↑


8. Система молниезащиты

Медные системы молниезащиты могут превосходить другие металлы по показателям коррозии и обслуживания. NFPA 780 (Стандарт на установку систем молниезащиты) следует рассматривать как минимальный стандарт проектирования.

Building lightning protection system Building lightning protection system Система молниезащиты в здании (фото предоставлено Schneider Electric)

Систему молниезащиты следует подключать только к высококачественной системе заземляющих электродов с низким сопротивлением и надежным заземлением .

Вернуться к оглавлению ↑


9. Устройства защиты от перенапряжения (SPD) (ранее называвшиеся TVSS)

Настоятельно рекомендуется использовать устройства защиты от перенапряжения. Обратитесь к стандарту IEEE 1100 (Изумрудная книга) по вопросам дизайна. Систему защиты от перенапряжения следует подключать только к высококачественной, надежной системе заземляющих электродов с низким сопротивлением.

Surge protection device - Single line diagram Surge protection device - Single line diagram Устройство защиты от перенапряжения — однолинейная схема (предоставлено Schneider Electric)

Как правило, устройство защиты от перенапряжения не следует устанавливать после источника бесперебойного питания (ИБП).См. Инструкции производителя.

Вернуться к оглавлению ↑

Справочная информация // Рекомендуемые методы проектирования и установки медных проводных систем зданий — Copper Development Association Inc.

,

Важность заземления электронного оборудования

Заземление электронного оборудования для личной безопасности и устранения неисправностей не отличается от любого другого оборудования. Безопасное заземление требует быстрого размыкания автоматических выключателей или плавких предохранителей и минимизации разницы напряжений между открытыми металлическими поверхностями на всей задействованной электрической системе и оборудовании до уровней, безопасных для людей.

Что отличает электронные системы, так это чувствительность их схемных компонентов к относительно небольшим переходным токам и напряжениям.Твердотельным устройствам также свойственно быть очень быстрыми, поэтому они подвержены столь же «быстрым» электрическим помехам. Даже молния — медленный переходный процесс по сравнению с реакцией практически любого электронного устройства.

Типичные угрозы для правильной работы электронных устройств и систем включают:

1. Молния

Прямые удары, но эффекты также включают в себя перемещение облака над облаком и близлежащие удары, вызывающие индуцированное напряжение

2.Переходные процессы переключения

Переходные процессы переключения при работе силовой сети и переключении конденсаторов коэффициента мощности, работе грозового разрядника и устранении неисправностей, особенно в близлежащих силовых цепях.

3. Статическое электричество

Дуга, непосредственно прикладываемая к оборудованию, но иногда дуги вблизи оборудования также влияют на оборудование.

4. Быстрые электрические переходные процессы

Обычно вызываются искрящимися контактами или коллапсирующими магнитными полями в катушках контакторов в оборудовании, обычно очень близко к затронутому оборудованию.

Основы решения проблем переходных процессов

Устранение проблем переходных процессов никогда не бывает легким.Они могут быть случайными или повторяющимися. Как правило, они имеют форму волны, которую нелегко проанализировать. Тем не менее, переходные процессы могут быть устранены с помощью:

1. Ограничение перенапряжений (перенапряжения) на силовых проводниках переменного тока с помощью устройств защиты от перенапряжения (SPD)

2. Снижение вероятности электрического шума , попадающего в подключенные силовые цепи к электронному оборудованию и кабелям сигнальной цепи данных, которые соединяют блоки оборудования. Этого часто можно достичь, соблюдая требования к правильной прокладке и заземлению ответвленных цепей, включая их кабелепроводы, и обеспечивая надлежащее разделение проводов питания и сигналов данных.

3. Надлежащее заземление , включающее в себя правильную установку заземляющих проводов оборудования всех типов, а также заземление и соединение нейтрали на служебном входе и для отдельно выделенных систем переменного тока.

Хотя все вышеперечисленное входит в сферу деятельности подрядчиков, мы хотим подчеркнуть, что поставщик оборудования может и должен предоставить оборудование, которое может «выдерживать» практические уровни переходных процессов, которые, как известно, существуют в типичных коммерческих и промышленных предприятиях. сайт.В противном случае могут потребоваться значительные усилия и большие затраты для того, чтобы такое слишком чувствительное оборудование работало надлежащим образом.

Grounding Electronic Equipment Grounding Electronic Equipment

Кредит: turbinetech.com

Системы взаимосвязанного электронного оборудования

В этом разделе рассматривается заземление электронных систем, которые связаны между собой сигнальными, информационными или телекоммуникационными кабелями. Для этого типа оборудования полезно думать о двух видах заземления:

1.Защитное заземление для защиты от пожара и персонала. Этот вид заземления также помогает обеспечить защиту оборудования, чтобы минимизировать ущерб от сбоев электрической системы и переходных процессов, таких как молния.

2. Функциональное заземление для защиты цепей данных и твердотельных компонентов в различных элементах взаимосвязанного оборудования, составляющего электронную систему. Иногда это называют «компьютерным» или «электронным» заземлением, но это не очень точные термины. Обратите внимание, что защита цепей данных не обязательно должна включать соединения заземляющих электродов, хотя хорошее заземление системы заземляющих электродов обслуживающего оборудования здания значительно упрощает эту защиту.

Например, как упоминалось выше, самолеты, летящие во время грозы, не имеют заземления, но, несмотря на удары молнии, вероятно, безопаснее, чем многие наземные системы. Ожидается, что после удара молнии все электронное оборудование в самолете продолжит работать безупречно.

Некоторые важные моменты относительно заземления

Пункт № 1

Обычно безопасное заземление оборудования точно такое же для электронного оборудования, как и для любого другого устройства, будь то холодильник или печатный станок.Заземление «зеленого провода» и системы кабелепровода / кабелепровода, которое хорошо задокументировано в NEC и других нормах, полностью определяет эти требования.

Безопасное заземление оборудования требует быстрого отключения автоматических выключателей или предохранителей и сведения к минимуму разницы напряжений на открытых металлических поверхностях оборудования до безопасных для людей уровней. Это называется контролем «потенциала прикосновения». Нет абсолютно никакого противоречия между заземлением, определенным NEC, и более специализированными методами заземления и соединения, описанными ниже в (2).

Однако может возникнуть ненужный конфликт, например, когда кто-то пытается создать «отдельное», «выделенное» или «чистое» заземляющее соединение, которое не разрешено NEC!

Пункт № 2

Защита каналов передачи данных обычно требует дополнительных соображений, выходящих за рамки намерений NEC, но не в нарушение их. Защита цепей данных от сбоев или даже повреждений не всегда требует заземления, хотя хорошее заземление значительно упрощает эту защиту.

Самолеты не имеют земли во время полета. Самолет оснащен собственной системой «заземления» для систем переменного и постоянного тока, а также для заземления сигналов. Эта система заземления полностью металлическая по своей природе, и ее часто называют автономной системой отсчета мощности и сигналов, что является более точным описанием. Даже прямые «попадания» молнии вряд ли вызовут повреждение оборудования или даже нарушение сигналов.

Пункт № 3

Цепи большинства электронных систем почти всегда чувствительны к напряжениям в несколько десятков вольт или даже к одному или двум вольтам.В результате эти системы разработаны с большой осторожностью, чтобы не допускать переходных процессов в фактическую схему и пути прохождения сигналов между соединенными между собой блоками системы.

Для достижения этой цели в некотором оборудовании используются методы изолирующего трансформатора с электростатическим экраном и источники питания постоянного и переменного тока, предназначенные для подавления переходных процессов. Однако для того, чтобы эти методы были полностью эффективными, часто необходимо использовать хорошие методы заземления и соединения, превышающие требования NEC.

Point # 4

Сигналы данных в большинстве электронных систем состоят из битов информации, обрабатываемых в виде прямоугольных волн или импульсов с амплитудой около 5 вольт и тактовой частотой, которая может превышать 200 МГц.Данные, передаваемые между оборудованием, часто имеют величину 12-18 вольт, а скорость передачи ниже, чем скорость обработки сигналов, доступная внутри оборудования.

В любом случае время нарастания сигнала часов и большинства других сигнальных импульсов, таких как те, которые используются для передачи битов, намного быстрее, чем при обычном ударе молнии. Тем не менее, даже на этих скоростях системы можно сделать так, чтобы они обладали высокой надежностью и были относительно невосприимчивыми к помехам, если соблюдались надлежащие методы заземления и соединения.

Точка № 5

Формы волны, связанные с молнией, обычно являются «наихудшей» ситуацией для переходных процессов в большинстве проводов систем питания переменного тока и связанных с ними систем заземления.

Это делает молнии основной угрозой. Дополнительную информацию о молниях и типичных формах их сигналов можно получить, обратившись к ANSI / IEEE Std C62.41-1992

Пункт № 6

В некотором оборудовании с электромеханическими контакторами возникают быстрые электрические переходные процессы. Проблема с помехами от этих элементов может быть серьезной, но ее легко решить, установив RC демпфер (состоящий из резисторов и конденсаторов) на контакты, катушки или оба элемента неисправного устройства.Этот вид помех в электронных схемах иногда можно контролировать с помощью более строгого экранирования или методов заземления и соединения.

Однако основная причина такого рода проблем на самом деле не связана с экранированием или заземлением и соединением. Напротив, это проблема модификации схемы оборудования, и это тот тип вещей, который типичные электрические подрядчики обычно не должны идентифицировать или решать.

Гармоники

Обратите внимание, что сами по себе генерация гармонического тока и напряжения не является проблемой заземления, если только это не вызвано неправильным подключением цепи или отказом компонента, при котором часть гармонического тока попадает в систему заземления оборудования.В этом случае усилия состоят не в том, чтобы подавить гармоники, а в том, чтобы найти неправильное соединение или неисправный компонент и произвести ремонт.

Гармоники часто представляют собой важную проблему безопасности в нейтральном проводе трехфазной системы переменного тока, соединенной звездой, где он поддерживает нелинейные нагрузки, подключенные между фазой и нейтралью, например, компьютеры и т. Д. Токовая нагрузка нейтрального тракта должна быть увеличена до 200% от допустимой нагрузки, используемой для соответствующих линейных проводов.Это делается регулярно, чтобы избежать возгорания из-за перегрузки по току из-за третьей гармоники и других нечетных кратных гармоник, называемых «тройными».

Могут потребоваться другие меры, чтобы гармоники не мешали правильной работе системы. Однако точный метод и точка, выбранные для заземления нейтрального проводника в источнике питания переменного тока, не устранят никаких проблем, связанных с гармониками. Незаземление нейтрали, вероятно, будет нарушением NEC почти во всех конструкциях и снизит безопасность персонала.

Фильтры гармонического тока (ловушки)

Фильтры гармоник, обычно называемые «ловушками», не вызывают проблем с заземлением, если только они не подключены неправильно, чтобы направить ток через них в систему заземления оборудования. Это необычная ситуация, связанная с нарушением NEC, которое требует исправления. Как правило, ловушка подключается между фазой, фазой и нейтралью или обоими способами, но никогда не подключается к оборудованию или другому заземлению.

Устройства защиты от перенапряжения (SPD) и соединения заземления

Помимо соединений между фазой и фазой с нейтралью, устройства защиты от перенапряжения (SPD) также подключаются к заземляющему проводу оборудования схемы.

Любое переходное напряжение, которое затем действует SPD и вызывает протекание тока через него и к оборудованию заземления, повышает потенциал земли, как измерено на месте установки СПД и на удаленный «землю», используемого в качестве опорного нулевого напряжения. Поскольку SPD могут подвергаться воздействию очень высоких напряжений с крутыми (например, быстрым временем нарастания) волновыми фронтами, одновременное воздействие на систему заземления может быть очень серьезным.

Некоторые практические рекомендации

Вот некоторые из практических рекомендаций по электрическому монтажу, которые мы рекомендуем:

Рекомендация № 1

Устанавливаемые на месте электрические заземляющие / соединительные проводники, проложенные между металлической рамой или корпусами отдельных блоков электронного оборудования, должны быть подключены к система заземления «зеленого провода» NEC на обоих концах, не изолирована или не изолирована от нее.

Рекомендация № 2

Изолирующие трансформаторы с электростатическим экраном между обмотками легко доступны, и их следует использовать для сопряжения электрической системы с панелью управления, используемой для подачи питания параллельной цепи на электронное оборудование. Установка как трансформатора, так и щитка (ов) должна производиться как можно ближе физически к обслуживаемому электронному оборудованию.

Обратите внимание, что электростатическое экранирование может обеспечить полезное затухание большинства типов синфазных переходных процессов примерно до 1000: 1 (например.г., -60 дБ). Значения затухания выше этого значения, как правило, нереалистичны и вряд ли могут быть обеспечены трансформатором, который установлен в реальной установке и соответствует требованиям NEC. В любом случае строго следуйте рекомендациям производителя трансформатора для достижения максимальной выгоды, но только если инструкции соответствуют NEC.

Рекомендация № 3

Соединительные кабели между корпусами электронных систем в аппаратных следует прокладывать в непосредственной близости от несущего пола.Это особенно в случае, если она содержит существенные металлические конструкции, которые хорошо заземленные, такие как сталь настилы, и т.д.

Наилучших результатов, однако, получены, когда эти кабели расположены в непосредственной близости к специально установленному опорной сетке сигнала, такие как рекомендуется устанавливать под фальшполом, обычно используемым в компьютерном зале. Если соединительные кабели проложены между точками кабельного лотка или кабельного канала, то в этих формах кабельного канала предпочтительнее использовать случайную прокладку, а не «аккуратную» сборку.

(Рекомендуется, так как случайная прокладка снижает помехи от одного соседнего проводника к другому, когда они проложены параллельно друг другу на значительную длину.)

Рекомендация № 4

Если для прокладки кабелей используются кабельные каналы, они должны быть сделаны из металла, быть надежно и непрерывно заземленными и приклеенными, а также иметь плотную крышку, например, закрепляемую винтами. Лоток с лестницей менее желателен, чем лоток со сплошным дном.

Рекомендация № 5

Прокладываемые на месте кабели передачи данных, как правило, должны быть отделены от силовых кабелей и трубопроводов на максимально возможном расстоянии.Это уменьшает нежелательную связь между двумя цепями. Чтобы избежать проблем с шумовой связью, когда одна цепь пересекается над или под другой, попробуйте сделать кроссовер под прямым углом.

Рекомендация № 6

Если металлические кабельные каналы или кабелепроводы используются для прокладки соединительных кабелей передачи данных, рекомендуется выполнить дополнительные соединения в нескольких точках по всей их длине (черная пластина) для обеспечения хорошего продольного соединения.

Помимо того, что они хорошо заземлены / связаны с оборудованием на концах участка, кабелепровод или дорожка качения также должны быть прикреплены к любой близлежащей конструкционной стали вдоль участка.

Рекомендация № 7

Всех металлические трубопроводы, воздуховоды, труба / кабельный канал, кабельный канал и кабельный лоток расположен в пределах 6 футов (горизонтальных или вертикальных) любой установленный опорный сигнал сети (SRG) должен быть связаны с SRG. Это особенно важно там, где эти проводники входят или покидают зону, определенную SRG. Если этого не сделать, то боковая вспышка молнии может произойти от вышеуказанных или любых ближайших заземленных металлических предметов к SRG.

Боковая вспышка может вызвать пожар, повреждение электронной схемы или и то, и другое.Дополнительную информацию о боковой вспышке можно получить, обратившись к ANSI / NFPA780-1995, Национальному кодексу молниезащиты.

Рекомендация № 8

В дополнение к любым требованиям NEC, клемма нейтрали, такая как клемма Xo на вторичном трансформаторе, подключенном звездой, отдельной производной системы, должна быть подключена к SRG и, если возможно, также к ближайшему стальному корпусу. ,

Рекомендация № 9

Обязательно прикрепите SRG к любой доступной поблизости строительной стали, чтобы создать множество точек заземления / соединения.Это важно делать по периметру SRG и для любой стали, проникающей через поверхность SRG.

Рекомендация № 10

Заземление систем и оборудования переменного тока должно полностью соответствовать требованиям NEC. Кроме того, если электрическое или электронное оборудование было протестировано и внесено в список NRTL (Национально признанная испытательная лаборатория, такая как UL), тогда могут быть дополнительные или особые требования к заземлению / соединению, которые также должны быть выполнены для обеспечения надлежащей работы. ,

Опять же, любое использование «выделенного», «чистого» или другого, не разрешенного NEC подключения, например, которое отделено от рабочего заземляющего электрода здания и системы заземляющих проводов связанного оборудования, полностью противоречит цели этого. статья. Подходят только системы заземления и соединения, соответствующие требованиям национального электрического кодекса.

Рекомендация № 11

Следует проявлять особую осторожность для обеспечения надлежащего заземления, если указано разрешенное NEC изолированное заземление.«Изолированное / изолированное заземление» (IG) должно соответствовать разделу 250-74 NEC; Подключение клеммы розетки к коробке; исключение № 4; и Раздел 250-75, Подключение других корпусов для проводных (например, прямых) подключений параллельных цепей к электронному оборудованию.

Рекомендация № 12

В частности, во время или после установки не должно предприниматься никаких попыток отделить заземляющие проводники оборудования электронной системы от заземляющих проводов оборудования энергосистемы переменного тока и связанных с ними заземляющих соединений заземляющих электродов.

Такое разделение нарушило бы NEC и привело бы к потенциальному возгоранию электрическим током и поражению электрическим током. Они также могут повредить схемы внутри соответствующего электронного оборудования или, по крайней мере, ухудшить его работу.

Рекомендация № 13

Обратите внимание, что использование метода IG, даже если он соответствует требованиям NEC, не всегда улучшает рабочие характеристики оборудования. Фактически, использование метода подключения IG также может ухудшить ситуацию или привести к отсутствию заметных изменений в работе оборудования.

Обычно нет способа предсказать преимущества, если таковые имеются, изолированных цепей заземления, кроме как путем прямого наблюдения и сравнения между методами твердого заземления (SG) и IG в каждом случае.

Рекомендация № 14

Относительно легко преобразовать существующие схемы IG в схемы SG по мере необходимости. С другой стороны, как правило, непрактично и нерентабельно преобразовывать существующую схему SG в тип IG, который соответствует требованиям NEC.

Соответственно, схемы, используемые для подачи питания на электронное оборудование, могут быть спроектированы и сначала установлены как типы IG, так что позже они могут быть преобразованы туда и обратно между IG и SG по мере необходимости.

Рекомендация № 15

Заземляющие проводники оборудования в фидере или ответвленной цепи всегда должны прокладываться внутри одного кабелепровода или кабелепровода, содержащего соответствующие проводники силовой цепи этой цепи. Это также относится к гибкому шнуру и кабельной сборке.

Рекомендация № 16

Если используются безобрывные переключатели (в том числе в системах ИБП), возможность синфазного шума не устраняется. Требуется надлежащее заземление между альтернативными источниками питания, обычно путем надежного соединения нейтралей двух систем, но только одна из двух систем переменного тока имеет заземленную нейтраль.

Если две задействованные системы переменного тока не установлены физически рядом друг с другом, во время операций переключения на коммутаторе может возникнуть нарушение сдвига потенциала земли. Этот сдвиг потенциала земли может затем нежелательно внести синфазный шум в нагрузку, обслуживаемую переключателем.

Рекомендация № 17

Проблем со сдвигом потенциала земли и проблемами синфазного шума в целом можно избежать. Изолирующий трансформатор устанавливается рядом с обслуживаемыми нагрузками и располагается между выходом безобрывного переключателя и входом обслуживаемых электронных нагрузок.

В этих случаях нейтральный вывод на вторичной обмотке изолирующего трансформатора надежно заземлен, а трансформатор и электронное нагрузочное оборудование объединены друг с другом для целей широкополосного заземления, если они также подключены к SRG, установленному в в помещении с оборудованием и непосредственно под оборудованием

Рекомендация № 18

В случае больших площадей указанным выше способом можно использовать более одного изолирующего трансформатора. Например, установка нескольких развязывающих трансформаторов и заземление на SRG в аппаратной является рекомендуемой практикой для больших площадок.

Кроме того, несколько отдельных, но оборудованных SRG помещений могут быть снабжены собственным изолирующим трансформатором и заземлены, как указано выше.

Рекомендация № 19

Специально разработанные, «оригинальные» формы заземления, которые буквально не соответствуют требованиям NEC, не рекомендуются. Это включает подходы к заземлению, называемые «чистым», «выделенным», «одноточечным», и другие формы «изолированного» заземления, не разрешенные NEC.

Авторам известны случаи, когда все заземления изначально правильно соединялись между собой перемычкой, которую владелец или оператор в дальнейшем может снять по своему усмотрению.Поскольку удаление этого соединения создает как нарушение NEC, так и опасность пожара / поражения электрическим током, авторы не рекомендуют такой подход!

Рекомендация № 20

Устройства защиты от перенапряжения (SPD) обеспечивают защиту от перенапряжения в различных точках для цепей питания и данных, где бы они ни применялись должным образом. Настоятельно рекомендуется правильное использование SPD.

Рекомендация № 21

После завершения электрического монтажа необходимо провести тщательный осмотр проводки, чтобы убедиться, что все критерии безопасности и производительности соблюдены.

Что касается заземления, то в процесс проверки должно входить следующее:

Правило 1

Часто происходит неправильная идентификация проводов, таких как нейтраль и «зеленый провод». Проблема проявляется в том месте, где они заканчиваются. Ошибка такого рода является серьезным нарушением раздела 250-21 NEC и других.

Перекрестное соединение между нулевым и заземляющим проводниками приводит к нежелательному протеканию тока в системе заземления оборудования, но обычно не вызывает срабатывания устройства защиты от сверхтоков.Следовательно, часто нет немедленного указания на проблему, например, при первом включении питания. Следовательно, эти проводники и соединения необходимо проверить перед подачей питания.

Правило 2

Все металлические кабелепроводы, кабельные каналы, кабельные каналы и другие металлические кожухи должны быть хорошо скреплены по всей длине, чтобы обеспечить непрерывность от начала до конца.

Они также должны быть хорошо заземлены в нескольких точках по своей длине до строительной стали и SRG в пределах 6 футов, чтобы обеспечить эффективное высокочастотное заземление.Эффективно заземленные оконечные устройства к обслуживаемому оборудованию и от него являются наиболее важными.

Правило 3

Убедитесь, что для подключения SPD к проводникам, которые они защищают, использовалась как можно более короткая длина провода. В идеале SPD должен быть установлен непосредственно на оборудовании, которое он защищает, или внутри него.

Внешний монтаж в отдельном корпусе и подключение кабелепровода к защищаемому оборудованию создает более длинные расстояния между SPD и нагрузкой, которую он защищает. Это снижает эффективность защиты.

Правило 4

Любое соединение, которое не является хорошим электрическим соединением в течение срока службы установки, является потенциальной проблемой. Такое плохое соединение может быть причиной шума или полного прерывания обработки сигнала или непрерывности питания. Либо соединение выполнено правильно, либо его необходимо переделать, чтобы привести его в соответствие со спецификациями.

Помехи заземления на оборудование на основе электронно-лучевой трубки (ЭЛТ)

Низкочастотные магнитные поля, например, связанные с основной частотой 60 Гц энергосистемы и гармониками от нее, иногда могут мешать нормальному отклонению электрона. луч используется для рисования изображения на экране ЭЛТ.Эта интерференция магнитного поля воспринимается оператором оборудования как волнистая или рябь, что часто очень сбивает с толку оператора. (См. Рис. 1)

Ground Current Interference Ground Current Interference

Односторонние магнитные поля того типа, который вызывает этот вид помех, создаются в заземляющих проводниках за счет любого непрерывного или почти непрерывного протекания тока во внешних заземляющих проводниках дополнительного оборудования, заземлении электродные проводники, конструкционные стальные элементы, трубопроводы, каналы, кабельные лотки, кабельные каналы и т. д.Блуждающие токи заземления в любом из этих элементов могут оказывать такое же влияние на экран ЭЛТ.

К счастью, влияние этих мешающих магнитных полей экспоненциально спадает с увеличением расстояния между источником поля и оборудованием, на которое оно воздействует. Кроме того, ориентация ЭЛТ на силовые линии магнитного поля влияет на серьезность проблемы. Поэтому увеличение расстояния между оборудованием и переориентация оборудования часто является первым успешным шагом в решении проблемы.

Другой практический подход к уменьшению воздействия магнитных полей на ЭЛТ состоит в увеличении количества и расположения любых заземляющих / соединительных соединений между заземленными элементами, включая тот, который вызывает помехи. Например, более сильное соединение между трубопроводом холодной воды, строительной сталью и проводниками заземляющего электрода часто решает проблему. (См. Рис. 2)

Typical Electrodes in Grounding Typical Electrodes in Grounding

Вышеупомянутая процедура обычно работает, поскольку она разделяет токи от одного проводника на несколько меньших.Например, поскольку магнитное поле, окружающее проводник, пропорционально амплитуде тока, процесс создания нескольких путей для тока снижает ток в любом проводнике и, следовательно, рассеянное магнитное поле, излучаемое из него.

Однако лучший подход — это выяснить, как нежелательный ток попадает в проводник, и устранить проблему в соответствии с требованиями NEC, такими как Раздел 250-21 «Нежелательный ток на заземляющих проводниках».

У вас проблемы с заземлением? Поделись с нами.

Ссылка: erico

Читать дальше:
.

Что такое заземление и важность системы заземления?

Заземление — очень сложный предмет. Правильная установка систем заземления требует знания характеристик почвы, материалов и составов заземляющих проводов, а также заземляющих соединений и выводов.

Статья 250 Национального электротехнического кодекса (NEC) содержит общие требования к заземлению и заземлению электрических установок в жилых, коммерческих и промышленных учреждениях.Многие люди часто путают или смешивают термины заземление, заземление и соединение.

Чтобы понять простые термины:

Заземление

Заземление подключается к общей точке, которая подключена обратно к источнику электроэнергии. Он может быть подключен к земле, а может и не быть. Примером, когда он не подключен к земле, является заземление электрической системы внутри самолета.

Заземление

Заземление — это общий термин, используемый за пределами США и обозначающий соединение заземления оборудования и сооружений с Землей-матерью.Это необходимо в системе молниезащиты, поскольку земля является одним из выводов при ударе молнии.

Склеивание

Склеивание — это постоянное соединение металлических частей для образования токопроводящей дорожки, которая обеспечит электрическую непрерывность и способность безопасно проводить любой ток, который может возникнуть.

ПОЧЕМУ ЗАЗЕМЛЕНИЕ?

Importance of Grounding System Importance of Grounding System

Существует несколько важных причин, по которым следует установить систему заземления.Но самая главная причина — защитить людей! К вторичным причинам относится защита конструкций и оборудования от непреднамеренного контакта с электрическими линиями под напряжением. Система заземления должна обеспечивать максимальную защиту от сбоев в электросистеме и молнии.

Хорошая система заземления должна проходить периодические проверки и техническое обслуживание, если необходимо, для сохранения ее эффективности. Непрерывному или периодическому техническому обслуживанию способствует надлежащая конструкция, выбор материалов и надлежащие методы установки, чтобы гарантировать, что система заземления противостоит износу или непреднамеренному разрушению.Следовательно, необходим минимальный ремонт, чтобы сохранить эффективность в течение всего срока службы конструкции.

Система заземления выполняет три основные функции, перечисленные ниже.

Безопасность персонала

Безопасность персонала обеспечивается заземлением с низким импедансом и соединением металлического оборудования, шасси, трубопроводов и других проводящих объектов, чтобы токи из-за неисправностей или молнии не создавали напряжения, достаточные для возникновения опасности поражения электрическим током.

Надлежащее заземление облегчает срабатывание устройства защиты от сверхтока, защищающего цепь.

Защита оборудования и зданий

Защита оборудования и зданий обеспечивается заземлением с низким импедансом и соединением между электрическими службами, защитными устройствами, оборудованием и другими проводящими объектами, чтобы повреждения или токи молнии не приводили к возникновению опасного напряжения в здании.

Кроме того, правильная работа устройств защиты от сверхтоков часто зависит от цепей тока короткого замыкания с низким импедансом.

Снижение электрического шума

Правильное заземление помогает снизить электрический шум и обеспечивает:

  • Сопротивление между точками заземления сигнала по всему зданию сводится к минимуму.
  • Минимизированы потенциалы напряжения между соединенным между собой оборудованием.
  • Чтобы минимизировать влияние электрического и магнитного полей.

Другая функция системы заземления заключается в обеспечении эталона для проводников цепи для стабилизации их напряжения относительно земли во время нормальной работы. Сама земля не обязательна для выполнения эталонной функции. Вместо этого можно использовать другое подходящее проводящее тело.

Функция системы заземляющих электродов и клеммы заземления заключается в обеспечении системы проводников, обеспечивающих электрический контакт с землей.Два примечания мелким шрифтом (FPN), которые появляются в разделе 250-1 NEC, дают хорошее обобщение причин для систем заземления и проводников цепи, а также проводящих материалов, которые окружают электрические проводники и оборудование.

Артикул: erico

Читайте также:
.

курсов PDH онлайн. PDH для профессиональных инженеров. PDH Engineering.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов.

Russell Bailey, P.E.

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова . Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, а курс был очень информативным, особенно потому, что я думал, что уже знаком с

с деталями Канзас

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент, оставивший отзыв на курс

материалов до оплаты и

получает викторину «

Арвин Свангер, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие ».

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса.»

Уильям Валериоти, P.E.

Техас

«Этот материал во многом оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем »

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам.

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании каких-то неясных раздел

законов, которые не применяются

«нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы использовать свой медицинский прибор

.

организация.

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

доступный и простой

использовать. Большое спасибо ».

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь печатный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев предоставлено.

Жаклин Брукс, П.Е.

Флорида

«Очень полезен документ» Общие ошибки ADA при проектировании объектов «.

испытание потребовало исследований в

документ но ответы были

в наличии »

Гарольд Катлер, П.Э.

Массачусетс

«Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курса. Процесс прост, и

намного эффективнее, чем

вынуждены путешествовать «.

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для Professional

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от.

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории.

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40%.

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правила. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительных

аттестат. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *