Косинус фи в электротехнике это что – Коэффициент мощности — Википедия

Содержание

Коэффициент мощности — Википедия

Синусоидальное напряжение (красная линия) и ток (зелёная линия) синфазны — между ними нет фазового сдвига (φ=0∘{\displaystyle \varphi =0^{\circ }}, cos⁡φ=1{\displaystyle \cos \varphi =1}) — нагрузка полностью активная, нет реактивной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 1. Как видно, синяя линия (график мгновенной мощности) находится полностью над осью абсцисс (в положительной полуплоскости), вся подводимая энергия преобразуется в работу: переходит в активную мощность, потребляемую нагрузкой. Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг φ=90∘{\displaystyle \varphi =90^{\circ }} (cos⁡φ=0{\displaystyle \cos \varphi =0}) — нагрузка полностью реактивная, нет активной составляющей. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны с коэффициентом мощности, равным 0. Расположение синей линии (графика мгновенной мощности) на оси абсцисс показывает, что в течение первой четверти цикла вся подводимая мощность временно сохраняется в нагрузке, а во второй четверти цикла возвращается в сеть, и так далее, то есть никакой активной мощности не потребляется, полезной работы в нагрузке не совершается. Синусоидальное напряжение (красная линия) и ток (зелёная линия) имеют фазовый сдвиг φ=45∘{\displaystyle \varphi =45^{\circ }} (cos⁡φ=0,71{\displaystyle \cos \varphi =0{,}71}) — нагрузка имеет и активную, и реактивную составляющие. Мгновенная мощность (синяя линия) и активная мощность (голубая линия) рассчитаны из переменного напряжения и тока с коэффициентом мощности, равным 0,71. Расположение синей линии (графика мгновенной мощности) под осью абсцисс показывает, что некоторая часть подводимой мощности всё же возвращается в сеть в течение части цикла, отмеченного φ.

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

В электроэнергетике для коэффициента мощности приняты обозначения cos⁡φ{\displaystyle \operatorname {cos} \varphi } (где φ{\displaystyle \varphi } — сдвиг фаз между силой тока и напряжением) либо λ{\displaystyle \lambda }. Когда для обозначения коэффициента мощности используется λ{\displaystyle \lambda }, его величину обычно выражают в процентах.

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстоят соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке кроме значения коэффициента мощности иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Можно показать, что если к источнику синусоидального напряжения (например, розетка ~230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). Т.е. счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Треугольник мощностей

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U{\displaystyle U} (напряжение) и I{\displaystyle I} (сила тока) используются следующие математические формулы:

  1. χ=PS{\displaystyle \chi ={\frac {P}{S}}}
  2. P=U×I×cos⁡φ{\displaystyle P=U\times I\times \cos \varphi }
  3. Q=U×I×sin⁡φ{\displaystyle Q=U\times I\times \sin \varphi }
  4. S=∑k=1∞(U)×I=P2+Q2+T2{\displaystyle S=\textstyle \sum _{k=1}^{\infty }\displaystyle (U)\times I={\sqrt {P^{2}+Q^{2}+T^{2}}}}

Здесь P{\displaystyle P} — активная мощность, S{\displaystyle S} — полная мощность, Q{\displaystyle Q} — реактивная мощность, T — мощность искажения.

Типовые оценки качества электропотребления[править | править код]

При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Значение коэффициента мощностиВысокоеХорошееУдовлетворительноеНизкоеНеудовлетворительное
cos⁡φ{\displaystyle \operatorname {cos} \varphi }0,95…10,8…0,950,65…0,80,5…0,650…0,5
λ{\displaystyle \lambda }95…100 %80…95 %65…80 %50…65 %0…50 %

Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5…0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение cos⁡φ{\displaystyle \operatorname {cos} \varphi } близко к 1, то есть к идеальному значению.

Несинусоидальность[править | править код]

Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

Коррекция коэффициента мощности при помощи конденсаторов

Коррекция коэффициента мощности (англ. power factor correction (PFC)) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная. Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина cos⁡φ{\displaystyle \cos \varphi }. Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, она обязательна для импульсных источников питания мощностью в 100 и более ватт[источник не указан 3122 дня]. Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.

Разновидности коррекции коэффициента мощности[править | править код]

  • Коррекция реактивной составляющей полной мощности потребления устройства. Выполняется путём включения в цепь реактивного элемента, производящего обратное действие. Например, для компенсации действия электродвигателя переменного тока, обладающего высокой индуктивной реактивной составляющей полной мощности, параллельно цепи питания включается конденсатор. В масштабах предприятия для компенсации реактивной мощности применяются батареи конденсаторов и других компенсирующих устройств.
  • Коррекция нелинейности потребления тока в течение периода колебаний питающего напряжения. Если нагрузка потребляет ток непропорционально приложенному напряжению, для повышения коэффициента мощности требуется схема пассивного (PPFC) или активного корректора коэффициента мощности (APFC). Простейшим пассивным корректором коэффициента мощности является дроссель с большой индуктивностью, включённый последовательно с питаемой нагрузкой. Дроссель выполняет сглаживание импульсного потребления нагрузки и выделение низшей, то есть основной, гармоники потребления тока, что и требуется (правда, это достигается в ущерб форме напряжения, поступающего на вход устройства). Активная коррекция коэффициента мощности ценой некоторого усложнения схемы устройства способна обеспечивать наилучшее качество коррекции, приближая коэффициент мощности к 1.

ru.wikipedia.org

Косинус фи — простое объяснение в 3-х словах. Таблицы коэффициента мощности для различных потребителей.

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.

Давайте рассмотрим и объясним этот косинус, как можно более простыми словами, исключая всякие непонятные научные определения, типа электромагнитная индукция. В двух словах про него конечно не расскажешь, а вот в трех можно попробовать.

Когда ток отстает от напряжения

Предположим перед вами есть 2 проводника. Один из этих проводников имеет потенциал. Не суть важно какой именно — отрицательный (минус) или положительный (плюс).

У другого провода вообще нет никакого потенциала. Соответственно между этими двумя проводниками будет разность потенциалов, т.к. у одного он есть, а у другого его нет.

Эту разность потенциалов как раз таки и принято называть напряжением.

Если вы соедините кончики двух проводов не непосредственно между собой, а через лампочку накаливания, то через ее вольфрамовую нить начнет протекать ток. От одного провода к другому.

На первый взгляд может показаться, что лампочка загорается моментально. Однако это не так. Ток проходя через нить накала, будет нарастать от своего нулевого значения до номинального, какое-то определенное время.

В какой-то момент он его достигает и держится на этом уровне постоянно. То же самое будет, если подключить не одну, а две, три лампочки и т.д.

А что случится, если вместе с лампой последовательно включить катушку, намотанную из множества витков проволоки?

Изменится ли как-то процесс нарастания тока? Конечно, да.

Данная катушка индуктивности, заметно затормозит время увеличения тока от нуля до максимума. Фактически получится, что максимальное напряжение (разность потенциалов) на лампе уже есть, а вот ток поспевать за ним не будет.

Его нарастание слишком медленное. Из-за чего это происходит и кто виноват? Виноваты витки катушки, которые оказывают влияние друг на друга и тормозят ток.

Если у вас напряжение постоянное, например как в аккумуляторах или в батарейках, ток относительно медленно, но все-таки успеет дорасти до своего номинального значения.

А далее, ток будет вместе с напряжением идти, что называется «нога в ногу».

А вот если взять напряжение из розетки, с переменной синусоидой, то здесь оно не постоянно и будет меняться. Сначала U какое-то время положительная величина, а потом — отрицательная, причем одинаковое по амплитуде. На рисунке это изображается в виде волны.

Эти постоянные колебания не дают нашему току, проходящему сквозь катушку, достигнуть своего установившегося значения и догнать таки напряжение. Только он будет подбираться к этой величине, а напряжение уже начинает падать.

Поэтому в этом случае и говорят, что ток отстает от напряжения.

Причем, чем больше в катушке намотано витков, тем большим будет это самое запаздывание.

Как же это все связано с косинусом фи — cos ϕ?

Что такое коэффициент мощности

А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.

А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.

Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.

По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.

В качестве примера можно взять импульсные блоки питания.

Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.

Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.

На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.

Активная и реактивная мощность

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.

Только не путайте cos ϕ с КПД. Это разные понятия. Реактивная составляющая не расходуется, а «возвращается» на подстанцию в сеть, т.е. фактически потери ее нет. Только небольшая ее часть может тратиться на нагрев проводов.

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Низкий коэффициент мощности и его последствия

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

  • во-первых, это повышенное потребление электроэнергии

Часть энергии будет просто «болтаться» в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

Зато по проводам питания будет проходить вся нагрузка, разогревая их бесполезной работой.

  • величина тока в проводке увеличится

Вот известное наглядное видео, демонстрирующее последствия этого для проводки.

  • для эл.станций и трансформаторов оно вредно перегрузкой

Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.

Ноль означает, что полезная работа не совершается. Единица — вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:

Как измерить коэффициент мощности

Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

Однако это тема совсем другой статьи.

svetosmotr.ru

Что такое коэффициент мощности в электротехнике

Дата публикации: .
Категория: Освещение.

Допустим, вы купили компрессор для полива растений или электродвигатель для циркулярной пилы. В инструкции по эксплуатации помимо основных технических характеристик (таких, как потребляемый ток, рабочее напряжение, частота вращения) вы можете обнаружить такой непонятный показатель, как косинус фи (cos ϕ). Данная информация может быть указана и на пластинке (шильдике), закрепленной на корпусе прибора. В нашей статье мы постараемся объяснить простым и доступным языком  всем, даже пользователям далеким от электротехнических тонкостей, как тригонометрическая функция (знакомая нам со школьной скамьи) влияет на работу всем нам привычных электробытовых приборов, и почему ее называют коэффициентом мощности.

Важно! Все нижесказанное касается только сетей переменного тока.

Далекий от электротехники, но весьма наглядный пример

Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

Сдвиг фаз между напряжением и током

При использовании энергии переменного тока происходит приблизительно то же самое. При активной нагрузке (например, при включении электрочайника или лампы накаливания) переменные напряжение (U) и ток (I) полностью совпадают по фазе и одновременно достигают своих максимальных значений. В данном случае мощность потребителя электроэнергии можно рассчитать по формуле P=U•I.

Для сети переменного тока работающий электродвигатель, имеющийся, например, в стиральной машине, является комплексной нагрузкой, включающей в себя активную и индуктивную составляющие. При подаче напряжения на такой прибор оно появляется на обмотках, практически, мгновенно. А вот ток (из-за влияния индуктивности) запаздывает. То есть между ними образуется так называемый сдвиг фаз, который мы и называем ϕ.

При активно-емкостной нагрузке, наоборот, переменный ток сразу начинает течь через конденсатор, а напряжение отстает от него по фазе на величину ϕ.

Треугольник мощностей

Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи — это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду. Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток. На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

Усредненные значения коэффициента мощности

Лампы накаливания и электрические нагревательные элементы, хотя и имеют в своих конструкциях спирали, намотанные с помощью специального провода, считаются чисто активной нагрузкой для сетей переменного тока. Так как индуктивность этих элементов настолько мала, что ею, как правило, просто пренебрегают. Для таких приборов cos ϕ (или коэффициент мощности) принимают равным 1.

В разнообразных электрических ручных инструментах (дрелях, перфораторах, лобзиках и так далее) индуктивная составляющая мощности достаточно мала. Для них принято считать cos ϕ≈0,96÷0,97. Этот показатель достаточно близок к единице, поэтому его, практически, никогда не указывают в технических характеристиках.

Для мощных электродвигателей, люминесцентных ламп и сварочных трансформаторов cos ϕ≈0,5÷0,82. Этот коэффициент мощности необходимо учитывать, например, при выборе диаметра питающих проводов, чтобы они не нагрелись, и не сгорела их изоляция.

На что влияет низкий коэффициент мощности

К чему могут привести низкие показатели коэффициента мощности:

  • При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8  I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
  • Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
  • Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).

В заключении

Смело можно утверждать, что чем ближе значение PF к единице, тем эффективнее используется электроэнергия. В некоторых мощных приборах производители устанавливают специальные приспособления, которые позволяют осуществлять коррекцию коэффициента мощности.

artillum.ru

Коэффициент мощности cos φ: определение, назначение, формула

Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.

Математически cos φ

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.

Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.

Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Короткое видео о кратким объяснением, что такое коэффициент мощности:

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

  1. снижение потерь электроэнергии;
  2. рациональное использование цветных металлов на создание электропроводящей аппаратуры;
  3. оптимальное использование установленной мощности трансформаторов, генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.

Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.

Основные способы коррекции cos φ

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Подробное видео с объяснением, что такое cosφ :

pue8.ru

косинус фи для потребителей, единица измерения

При проектировании электрических сетей для расчета различных значимых показателей используют коэффициенты. В частности, электрику необходимо знать, что такое коэффициент мощности (косинус фи), с опорой на какие параметры определяют его значение, и в чем его физический смысл.

Фазометр – прибор для определения коэффициента

Что такое коэффициент мощности (косинус фи)

Что такое коэффициент мощности? В электротехнике косинус фи – это параметр, характеризующий потребителя электротока в роли реактивного компонента сетевой нагрузки. Этот показатель, равный косинусу от сдвига фазы относительно прикладываемого напряжения, используется только применительно к переменному току. В случае отставания его от напряжения значение сдвига считается положительным, в обратной ситуации – отрицательным.

Формула коэффициента мощности

Отношение, выражающее коэффициент, считается по следующей формуле:

cos φ f = P/UI,

где Р – усредненная мощность переменного тока, U и I – эффективные показатели, соответственно, напряжения и силы электротока.

Практическое значение

В электроэнергетике при проектировании сетей cos коэффициент фи стремятся повысить как можно больше. Соотношение cos угла fi подразумевает, что в случае его малого показателя для обеспечения нужной мощности цепи потребуется использовать электрический ток очень большой силы. Существует корреляция между применением высокого тока и потерями энергии в подводящих кабелях: если показания электросчетчика заметно выше ожидаемых, всегда проверяют правильность расчетов угла фи.

Показатель может быть выяснен с помощью специального прибора – фазометра. При недостаточности коэффициента в дело идут усилители и другие установки, призванные скомпенсировать энергетические потери. Если угол фи рассчитан неправильно, будут иметь место снижение эффективности работы электрооборудования и рост энергопотребления.

Сдвиг фаз между напряжением и током

Фазовый сдвиг – показатель, описывающий разность исходных фаз двух параметров, имеющих свойство меняться во времени с одинаковыми скоростями и периодами. Именно сдвиг между силой и напряжением определяет, сколько будет значение угла фи.

В радиотехнической промышленности используются цепочки для получения асинхронного хода. Одна RC-цепь создает 60-градусный сдвиг, для получения 180-градусного для трехфазной структуры организуют последовательное соединение трех цепочек.

При трансформации электродвижущей силы во вторичных обмотках прибора для всех вариаций тока ее значение идентично по фазе таковому для первичной обмотки. Если обмотки трансформатора включить в противофазе, значение напряжения получает обратный знак. Если напряжение идет по синусоиде, происходит сдвиг на 180 градусов.

В простом случае (к примеру, включение электрического чайника) фазы двух показателей совпадают, и они в одно и то же время достигают пиковых значений. Тогда при расчете потребительской мощности применять угол фи не требуется. Когда к переменному току подключен электродвигатель с составной нагрузкой, содержащей активный и индуктивный компоненты (двигатель стиральной машинки и т.д.), напряжение сразу подается на обмотки, а ток отстает вследствие действия индуктивности. Таким образом, между ними возникает сдвиг. Если индуктивный компонент (обмотки) подменен использованием достижений химии в виде емкостного аккумулятора, отстающей величиной, напротив, оказывается напряжение.

Косинус фи не следует путать с другим показателем, рассчитываемым для комплексных нагрузок, – коэффициентом демпфирования. Он широко используется в усилителях мощности и равен частному номинального сопротивлению прибора и выходному – усилка.

Угол фазового сдвига

Треугольник мощностей

Рассматриваемый коэффициент может быть измерен так же, как частное полезного активного значения мощности к общей (S=I*U). Для иллюстрации влияния фазового сдвига на косинус фи применяется прямоугольный треугольник мощностей. Катеты, образующие прямо угол, представляют реактивное и активное значение, гипотенуза – общее. Косинус выделенного угла равен частному активной и общей мощностей, то есть он является коэффициентом, демонстрирующим, какой процент от полной мощности требуется для нагрузки, имеющей место в данный момент. Чем меньший вес имеет реактивный компонент, тем больше полезная мощность.

Важно! Строго говоря, данный параметр полностью соответствует коэффициенту мощности только при идеально синусоидальном движении тока в электросети. Для получения максимально точной цифры требуется анализ искажений нелинейного характера, присущих переменным току и напряжению. В практических подсчетах эти искажения чаще всего игнорируют и полагают показатель cos fi примерно равным требуемому коэффициенту.

Треугольник мощностей

Усредненные значения коэффициента мощности

ГОСТы указывают на необходимость корректного указания данной цифры. Для разных типов электроприборов характерные значения находятся в определенных границах:

  • Нагревательные компоненты и лампы накаливания, несмотря на присутствие в составе катушек, рассматриваются как строго активная нагрузка, несущественную индуктивную составляющую в этом случае принято игнорировать. Косинус фи для них берут за единицу.
  • У ударных и обычных дрелей, перфораторов и подобных ручных инструментов, работающих от электричества, индуктивная нагрузка выражена слабо, индикатор примерно равен 0,95-0,97. Обычно эту цифру не указывают в инструкциях из-за очевидного пренебрежимо малого значения индукции.
  • Сварочные трансформаторы, высокомощные двигатели, люминесцентные лампочки несут существенную индуктивную нагрузку. Цифра может иметь значения в диапазоне 0,5-0,85. Ее надо правильно определить и учитывать при эксплуатации, к примеру, при выборе сечения кабелей питания (они не должны перегреваться).

Сварочный трансформатор – прибор, требующий повышенного внимания к показателю cos fi

Низкий коэффициент мощности, его последствия

Из-за низких значений угла фи возможны следующие неприятные явления:

  • возрастание трат на электроэнергию примерно на 20%;
  • необходимость использовать более толстые провода из-за энергопотерь, что ведет к еще большим потерям;
  • выделение тепла влечет за собой потребность в изоляционных материалах, более стойких к воздействию высоких температур.

Способы расчета

Данный параметр можно представить, как отношение мощностей: полезной нагрузочной и общей. В формульном виде это записывается так:

cos fi = P/S,

где:

  • S (полная мощность) = I*U=√P2¯+¯Q¯2¯;
  • Q (реактивная мощность) = I*U*sin fi.

У асинхронного электродвигателя с тремя фазами можно посчитать коэффициент так:

cos fi=P/(U*I*√3).

Помимо этого, для вычисления показателя можно применять мощностный треугольник.

Единицы измерения

Иногда встает вопрос, в чем измеряется данный коэффициент, если его описывают, как безразмерную величину. Его обычно указывают в процентах или в сотых долях, во втором случае значения находятся в диапазоне от 0 до 1.

Чтобы приборы, подсоединенные к электрической сети, эксплуатировались возможно более долгий срок, необходимо знать, что такое показатель cos f в электричестве, и как его правильно определять. Его значение нужно учитывать в процессе подключения устройств и их дальнейшей эксплуатации.

Видео

amperof.ru

Косинус фи в электротехнике — это… Коэффициент мощности

Коэффициент мощности, или косинус фи в электротехнике – это отношение активной мощности P (Вт) к полной S (ВА): cos(φ) = P/S. Он указывает на то, насколько эффективно данное устройство использует электрическую энергию.

Идеальная нагрузка

Для объяснения физического значения коэффициента мощности рассмотрим пример расчета косинуса фи для различных потребителей. Предположим, в линию переменного тока подключен идеальный конденсатор. Так как переменное напряжение непрерывно меняет свою полярность, конденсатор половину времени будет заряжаться и половину – возвращать сохраненную энергию обратно к источнику. В результате в линии будут постоянно циркулировать электроны, но чистой передачи энергии не будет. Итак, в проводнике будет и напряжение, и ток, но активной мощности не будет. Произведение U на I называется мнимой мощностью, потому что это просто математическое число, которое не имеет реального физического смысла. В этом примере коэффициент мощности равен 0.

Аналогично расчет косинуса фи для единственного идеального индуктора приведет к cos(φ) = 0, за исключением того, что его ток будет отставать от напряжения.

Теперь рассмотрим противоположный крайний случай резистивной нагрузки. В этом случае вся электрическая энергия, поступающая к ней, потребляется и преобразуется в другие виды энергии, такие как тепло. Это пример того, когда косинус фи в электрике равен 1. Все реальные схемы работают где-то в промежутке между этими двумя крайностями.

Векторная математика

При анализе цепей синусоидальный сигнал можно представить комплексным числом (называемым вектором), модуль которого пропорционален величине сигнала, а угол равен его фазе относительно некоторой ссылки. В линейных схемах коэффициент мощности равен косинусу фи. В электротехнике это угол между фазами напряжения и тока. Эти векторы и соответствующие им активные и реактивные составляющие мощности могут быть представлены в виде прямоугольного треугольника. Конечно, напряжение – это электрическое поле, а ток – поток электронов, поэтому так называемый угол между их векторами является не более чем математической величиной. Условились считать, что индуктивная нагрузка создает положительную реактивную мощность Q (измеряемую в вольт-амперах-реактивных, ВАр). Это связано с так называемым «запаздывающим» коэффициентом, поскольку ток отстает от напряжения. Аналогично емкостная нагрузка создает отрицательную Q и «опережающий» λ.

Нелинейные искажения

Индукторы и конденсаторы – не единственные причины низкого косинуса фи. В электротехнике это обычное явление, когда (за исключением идеальных R, L и C) электрические цепи нелинейны, особенно из-за наличия таких активных компонентов, как выпрямители. В таких схемах ток I (t) непропорционален напряжению V (t), даже если последнее является чистой синусоидой, поскольку I (t) будет периодическим, но не синусоидальным. Согласно теореме Фурье, любая периодическая функция представляет собой сумму синусоидальных волн с частотами, кратными исходной. Эти волны называются гармониками. Можно показать, что они не способствуют передаче чистой энергии, а увеличивают ток и уменьшают коэффициент λ. Когда напряжение синусоидальное, только первая гармоника I1 обеспечит реальную мощность. Однако ее величина зависит от фазового сдвига между током и напряжением. Эти факты отражены в общей формуле расчета коэффициента мощности: λ = (I1/I) × cos(φ). Первый член в этом уравнении представляет собой искажения, а второй – смещение.

Активная и пассивная компенсация

Коррекция косинуса фи в электротехнике – это любая техника увеличения коэффициента мощности до 1. В общем случае cos(φ) может варьироваться от 0 до 1. Чем выше коэффициент мощности, тем эффективнее используется электричество. Причинами несовершенства являются искажения и фазовый сдвиг между гармониками напряжения и тока той же частоты. Поэтому существуют две основные категории методов коррекции коэффициента мощности.

Гармонические искажения вызваны нелинейными компонентами, такими как мост выпрямителя в источниках питания постоянного тока, который подключается непосредственно к большому накопительному конденсатору. Их можно скорректировать на этапе проектирования источника питания путем введения различных пассивных или активных схем компенсации. Основным источником фазового сдвига U-I являются промышленные асинхронные двигатели, которые с точки зрения схемы имеют индуктивную нагрузку. Косинус фи двигателя (который на холостом ходу падает до 0,1) можно увеличить, добавив внешние компенсирующие конденсаторы. При этом их необходимо установить как можно ближе к нагрузке, чтобы избежать циркуляции реактивной мощности до места их размещения.

Активная компенсация реактивной мощности использует активные электронные схемы с обратной связью, которые сглаживают форму кривой выпрямленного тока.

Нелинейные устройства генерируют гармонические колебания с частотой ƒ=1/(2π√LC). Если она совпадает с одной из гармоник, то будет усиливаться, что может привести к различным последствиям, в т. ч. катастрофическим. Во избежание этого, последовательно с компенсирующим конденсатором подсоединяют небольшой индуктор, что образует т. н. шунтирующий фильтр подавления гармоник.

Существует несколько причин для корректировки косинуса фи для различных потребителей. Известно, что когда λ < 1, в линии циркулируют переменные токи, которые не передают активную мощность, но вызывают рассеивание тепла в проводке, создают дополнительную нагрузку на генераторы и требуют электрогенерирующего оборудования большего размера. Вот почему электроэнергетические компании могут взимать с крупных клиентов дополнительную плату при λ < 0,95, выставлять счета за полную мощность или штрафовать за превышение реактивной. Таким образом, для промышленного объекта компенсация мнимой составляющей может быть выгодной.

Коррекция λ в быту

Что касается электроники, существуют правила, которые ограничивают гармоники, привносимые бытовой техникой (ПК, телевизорами и т. д.) в сеть. Несмотря на отсутствие международных стандартов, которые непосредственно регулируют коэффициент мощности, его корректировка автоматически снижает гармонические искажения. Таким образом, для разработчиков блоков питания основной причиной повышения косинуса фи трансформатора является удовлетворение конкретного требования к содержанию гармоник, даже если оно не может давать никаких прямых выгод ни для производителя, ни для пользователя.

В быту низкий λ уменьшает пропускную способность проводников и автоматических выключателей. Помимо этого, вопреки распространенному заблуждению лиц, не знакомых с основами электротехники, домовладельцы и потребители от коррекции коэффициента мощности выгоды не получают.

Мнимая польза

Производится ряд «приборов», предлагаемых через Интернет, продавцы которых утверждают, что они сократят счета за электричество, корректируя коэффициент мощности в домашней электросети. Их рекламируют под разными названиями. В связи с этим потребители часто спрашивают, уменьшит ли компенсация реактивной мощности счета за электричество? Действительно, коррекция λ снижает потребление полного тока и соответственно уменьшает Q. Однако в настоящее время в жилых домах реактивная мощность не тарифицируется. Знание основ электротехники позволяет избежать участи жертв такого обмана.

Нужно ли компенсировать Q?

Потребители платят исключительно за активную энергию, т. е. за киловатт-часы, и это единственное, что могут измерить старомодные ротационные счетчики. Технически снижение реактивной составляющей немного снизит потери в кабелях между счетчиком коммунальных услуг и точкой соединения компенсатора мнимой мощности, но этот эффект пренебрежительно незначителен. По большому счету, улучшение коэффициента λ и снижение мнимого тока практически не влияет на показания счетчика. Теоретически ситуация изменится, если внутренние тарифы будут включать плату за киловольт-ампер-часы, измеренные современными счетчиками, однако это маловероятно. Конечно, электрическим компаниям выгодно снижать Q, но сначала нужно определить показатели домашней нагрузки, чтобы не принести больше вреда, чем пользы.

Нужны ли встроенные компенсаторы?

По тем же соображениям нет смысла покупать технику со встроенной коррекцией коэффициента мощности. Фактически активная система компенсации даже увеличивает расходы из-за добавления стадии преобразования. Таким образом, при прочих равных условиях, потребление электроэнергии может увеличиться. Однако коррекция коэффициента мощности в электронике дает определенные технические выгоды. В частности, это увеличивает количество ватт, которые можно извлечь из розетки. Другим преимуществом является то, что приборы могут работать при любом напряжении (115 или 230 В). Но стоит ли это дополнительной платы?

fb.ru

Косинус фи (cos φ) или Коэффициент мощности

На шильдиках двигателей и некоторых других устройств можно видеть непонятный параметр косинус фи (cos φ). Что этот параметр означает, в данной статье коротко объясняется, что это такое.
Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока.
Иногда для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.

Условные обозначения

P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.

Что такое Косинус фи (cos φ) — «Коэффициент мощности»

Косинус фи (cos φ) это косинус угла между фазой напряжения и фазой тока.
При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А как мы знаем cos0=1. То есть при активной нагрузке коэффициент мощности равен 1 или 100%.

Активная нагрузка

При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз».
При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения.
При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения
А почему тогда косинус фи (cos φ) это тоже самое что коэффициент мощности, да потому что S=U*I.
Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).

Емкостная нагрузка

Индуктивная нагрузка

Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю.
Получается что полезная, активная мощность равна 0(нулю).

Коэффициент мощности это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.

Треугольник мощностей

Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.

P=U x I x cos φ

Q =U x I x sin φ

На практике. Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить тоже есть, при этом ни какой полезной работы не совершается. Соответственно активная мощность минимальна.
Если на двигателе увеличить нагрузку то сдвиг фаз начнет уменьшаться и соответственно косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.

К счастью счетчики активной мощности фиксируют соответственно только активную мощность. И нам не приходится переплачивать за полную мощность.

Однако у реактивной мощности есть большой минус она создает бесполезную нагрузку на электрическую сеть из-за этого образуются потери.

www.elektroceh.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *