Кто и когда изобрел электричество: Кто придумал электричество и какой принцип его действия

Содержание

Кто придумал электричество и какой принцип его действия

Современную жизнь просто невозможно представить без света и электроприборов. Потому открытие электричества – важнейшее событие в истории человечества. Это революционный прорыв, который подарил людям огромные возможности, сделав жизнь комфортной. Электричество – это движение заряженных частиц под действием электромагнитного поля либо в одном направлении (постоянный ток), либо с периодической сменой направления (переменный ток). 

Сам термин возник от греческого слова «электрон», что означает «янтарь». Его родоначальником стал древнегреческий философ Фалес, который ещё в 7 в. до н. э. обнаружил чудесное свойство янтаря притягивать к себе легкие материалы (например, пробковую стружку) и волосы, если его потереть о кусок шерсти. Однако только в середине 17 века нашей эры были досконально изучены наблюдения Фалеса. Этим занялся немецкий физик Отто фон Герике, который создал первый электроприбор. Он представлял собой закреплённый на металлическом штифте вращающийся шар из серы, который также как и янтарь имел силу притяжения и отталкивания.

А вот список главных приборов для которых и придумали электричество:

Наименование: Энергосберегающая лампа EUROLAMP Candle Twisted 9W E14 4100K
Тип лампы: Декоративная
Артикул: CT-09144
Мощность (W): 9
Световой поток (lm): 550
Ширина (мм): 106

Высота (мм): 38
Температура (К): 4100
Тип света: свет нейтральный
Тип цоколя: Е14
Напряжение (V): 180-240
Ресурс, часов: 12000
Срок службы, лет 8
Аналог лампы накаливания (W): 45
Ток (mA): 60
Частота электросети (Hz): 50
Количество в ящике, шт: 50
Класс энергосбережения: А
Штрих код упаковки: 4260232674332
Размер упаковки (мм): 46х46х117
Штрих-код ящика: 4260232674356
Производитель: EUROLAMP
Гарантия: 2 года
—//лучшее предложение//—

(Код: CT-09144)

Тип лампы: Декоративная
Мощность (W): 9
Температура (K): 4100
Тип цоколя: Е14

Наименование:EUROLAMP LED Лампа G45 5W E14 3000K
Тип лампы:Декоративная
Артикул:LED-G45-05143(D)
Мощность (W): 5
Cветовой поток (lm): 500
Ширина (мм): 45
Высота (мм): 78
Температура (К): 3000
Тип света: теплый свет
Тип цоколя: E14
Напряжение (V): 175-250
Ресурс , часов: 50000
Срок службы, лет: 35
Аналог лампы накаливания (W): 50
Ток (mA): Данные не указаны
Частота электросети (Hz): 40/60

Количество в ящике, шт: 50
Класс энергосбережения: A
Штрих код упаковки: 4260410482704
Размер упаковки (мм): Данные не указаны
Штрих код ящика: 4260410483107
Производитель: EUROLAMP
Гарантия: 5

(Код: LED-G45-05143(D))

Тип лампы: Декоративная
Мощность (W): 5
Температура (K): 3000
Тип цоколя: E14

Наименование:EUROLAMP LED Лампа G95 15W E27 4000K

Тип лампы:Декоративная
Артикул:LED-G95-15274(D)
Мощность (W): 15
Cветовой поток (lm): 1300
Ширина (мм): 95
Высота (мм): 128
Температура (К): 4000
Тип света: нейтральный свет
Тип цоколя: E27
Напряжение (V): 175-250
Ресурс , часов: 50000
Срок службы, лет: 35
Аналог лампы накаливания (W): 150
Ток (mA): 90
Частота электросети (Hz): 40/60
Количество в ящике, шт: 25
Класс энергосбережения: A
Штрих код упаковки: 4260410485637
Размер упаковки (мм): 145*100*100
Штрих код ящика: 4260410485651
Производитель: EUROLAMP EUROLAMP
Гарантия: 5

(Код: LED-G95-15274(D))

Тип лампы: Декоративная
Мощность (W): 15
Температура (K): 4000
Тип цоколя: E27

Наименование: EUROLAMP LED Світильник квадратний Downlight NEW 4W 4000K
Тип светильника: Врезной
Артикул: LED-DLS-4/4
Мощность (W): 4
Cветовой поток (lm): 280
Ширина (мм): 105
Высота (мм): 10
Температура (К): 4000
Тип света: нейтральный свет
Напряжение (V): 175-250

Ресурс , часов: 50000
Ток (mA): Данные не указаны
Частота электросети (Hz): 50
Количество в ящике, шт: 40
Класс энергосбережения: A
Штрих код упаковки: 4260410480816
Размер упаковки (мм): 1300*1700*320
Штрих код ящика: 4260410481011
Производитель: EUROLAMP
Гарантия: 2

(Код: LED-DLS-4/4)

Тип светильника: Врезной
Мощность (W): 4
Температура (K): 4000
Размеры (мм): 105*10

В 1729 году учёный Стивен Грей, который изучал свойства движения электричества, обнаружил, что не все материалы могут проводить электрический ток.

Вещества, которые проводят ток, получили название «электрики» (проводники), а те, которые не проводят ток, – «диэлектрики» (изоляторы). Не менее важным стало открытие французского учёного Шарля Дюфея, который в 1733 году в результате многочисленных экспериментов с серой и смолой открыл положительный и отрицательный электрический заряд. Хотя он первоначально считал, что это два разных вида электрического тока.

Первый конденсатор, который получил название Лейденская банка, был создан голландским физиком Питером ван Мушенбруком. Это устройство состояло из стеклянной колбы, обшитой листом олова внутри и снаружи. Банка закрывалась деревянной крышкой, и в неё вставлялся металлический штырь. При подаче электроэнергии Лейденская банка могла накапливать довольно мощные заряды. Также с её помощью была получена первая электрическая искра.

В 1747 году американский политик и учёный Бенджамин Франклин представил свой научный трактат, в котором давалось понятие «электричество». Там писалось, что все материалы содержат «жидкое электричество», которое под воздействием трения может перетекать от одного материала к другому и накапливаться в них. Бенджамин Франклин также является изобретателем громоотвода, с помощью которого доказал, что молния имеет электрическое происхождение.

В 1785 году французским учёным Шарлем Кулоном на основе многочисленных экспериментов с металлическими шариками был выеден закон, описывающий электрическое взаимодействие между точечными зарядами (закон Кулона). Суть его в открытии того, что одноимённо заряженные частицы («-» и «-» или «+» и «+») отталкиваются, а разноимённо заряженные («-» и «+») – притягиваются.

В 1800 году было сделано главное открытие в изучении электричества. Итальянский физик Алессандро Вольта изобрёл первый гальванический элемент – химическую батарею. Он состоял из круглых серебряных пластинок, между которыми находились смоченные в солёной воде кусочки бумаги. Химическая батарея позволяла получать постоянный электрический ток благодаря химическим реакциям.

Датский учёный Ханс-Кристиан Эрстед в 1820 году открыл воздействие электрического тока на магнит. Он заметил, что при подаче электрического тока на проводник стрелка компаса, лежащего параллельно, поворачивается в перпендикулярном направлении. Разработки Эрстеда продолжил французский учёный Андре-Мари Ампер, который занялся исследованием электрического магнетизма, дав начало новой науке – электродинамике. Множество таких талантливых учёных, как Омм, Ленц, Гаусс, Джоуль, занимались исследованиями электрического тока. В 1830 году был открыто электростатическое поле.

В 1831 году английский учёный Майкл Фарадей открыл электромагнитную индукцию и на её основании изобрел первый электрогенератор. Также он ввел понятие магнитного и электрического поля и создал элементарный электродвигатель. Он представлял собой электрический проводник, вращающийся вокруг магнита.


Учёным, который сделал громадный вклад в изучение электричества и магнетизма и, что самое главное, использовал свои разработки на практике, был Никола Тесла. Благодаря его изобретениям современные люди пользуются многими бытовыми и электроприборами. Никола Тесла – человек, которого по праву считают одним из величайших изобретателей 20 века.

Кто изобрёл электричество? — История изобретений

Как и другие великие изобретения, открытие электричества заняло тысячи лет, так как было достаточно сложно разработать правильную теорию, объясняющую суть феномена.

Учёные-физики объединили магнетизм и электричество, пытаясь выяснить, как эти силы способны притягивать предметы, вызывать онемение частей тела и даже вызвать пожары. В этой статье вы узнаете, когда изобрели электричество и историю электричества.

Было три основных факта проявления электрических сил, которые привели учёных к изобретению электричества: электрические рыбы, статическое электричество и магнетизм. Древнеегипетские врачи знали об электрических разрядах, которые генерировал нильский сом. Они даже пытались использовать измельчённого до порошка сома как лекарство. Платон и Аристотель в 300-х годах до н.э. упоминали об электрических скатах, которые оглушают электричеством людей. Преемник их идей Теофраст знал, что электрические скаты могут оглушить человека, даже не прикасаясь к нему напрямую, посредством мокрых конопляных сетей рыбаков или их трезубцев.

Плутарх добавил новую информацию о скатах (читайте также статью о животных, способных чувствовать и генерировать электромагнитное поле):

те, кто экспериментировал с ним, сообщают, что если его выбрасывает на берег живым, а вы будете лить на него воду сверху, то можете почувствовать онемение, восходящее по руке, и притупление чувствительности от прикосновения воды. Кажется, будто рука оказалась чем-то инфицирована.

Плиний Старший продвигается дальше в изучении скатов и отмечает новую информацию, связанную с проводимостью электричества различными веществами. Так, он обратил внимание на то, что металл и вода проводят электричество лучше, чем всё остальное. Также он обратил внимание на ряд целебных свойств при поедании скатов. Такие римские врачи, как Скрикониус Ларгус, Диоскуридес и Гален, начали использовать скатов, чтобы лечить хронические головные боли, подагру и даже геморрой. Гален полагал, что электричество ската как-то связано со свойствами магнетита. Стоит отметить, что инки также знали об электрических угрях.

Около 1000 шода нашей эры ибн Сина также выяснил, что электрические удары скатов могут излечить хроническую головную боль. В 1100-х годах ибн Рушд в Испании писал о скатах и о том, как они могут вызвать онемение у рук рыбаков, даже не трогая сеть. Ибн Рашд пришёл к выводу, что эта сила оказывает такой эффект лишь на некоторые предметы, в то время как другие могли спокойно пропускать её через себя. Абд аль-Латиф, работавший в Египте около 1200 года н.э., сообщил, что электрический сом в Ниле может делать то же самое, что и скаты, но намного сильнее.

Другие учёные начали изучать статическое электричество. Греческий учёный Фалес около 630 года до нашей эры знал, что если потереть янтарь о шерсть, а затем коснуться его, то можно получить электрический разряд.

Само слово «электричество», вероятно, происходит из финикийского языка от слова, означающего «светящийся свет» или «солнечный луч», которое греки использовали для обозначения янтаря (др.-греч. ἤλεκτρον: электрон). Теофраст в 300-х годах до нашей эры знал другой особый камень — турмалин, который притягивает к себе небольшие предметы, такие как кусочки ясеня или меха, если его разогреть. В 100-х годах н.э. в Риме Сенека сделал несколько замечаний о молниях и феномене огней святого Эльма. Уильям Гилберт в 1600 году узнал, что стекло может получить статический заряд, также как и янтарь. По мере колонизации Европа становилась всё богаче, происходило развитие образования. В 1660 году Отто фон Герике создал вращающуюся машину для производства статического электричества.

Огни святого Эльма

Первая электрическая машина Отто Герике. Большой шар из застывшей серы вращается, а учёный прижимает к нему руку или шерсть, чтобы наэлектризовать его.

В третьем направлении изучения электричества учёные работали с магнитами и магнетитом. Фалес знал, что магний способен намагнитить железные прутья. Индийский хирург Сушрута около 500 г. до н.э. использовал магнетит для хирургического удаления железных осколков. Около 450 г. до н.э. Эмпедокл, работавший в Сицилии, считал, что, возможно, невидимые частицы каким-то образом тянули железо к магниту, подобно реке. Он сравнивал это с тем, как невидимые частицы света проникают к нам в глаза, чтобы мы могли видеть. Философ Эпикур последовал за идеей Эмпедокла. Между тем в Китае учёные тоже не сидели без дела. В 300-х годах н.э. они также работали с магнитами, используя недавно изобретённую швейную иглу. Они разработали способ изготовления искусственных магнитов, а около 100 г. до н.э. они изобрели магнитный компас.

Магнетит

В 1088 году н.э. Шэнь Го в Китае писал о магнитном компасе и его способности находить север. К 1100-м годам китайские корабли были оснащены компасами. Около 1100 года н.э. исламские астрономы также переняли технологию изготовления китайских компасов, хотя в Европе к этому времени это уже было нормальным явлением, когда их упоминал Александр Некем в 1190 году. В 1269 году, вскоре после создания Неаполитанского университета, когда Европа стала ещё более развитой, Питер Перегрин на юге Италии написал первое европейское исследование о магнитах. Ульиям Гилберт в 1600 году понял, что компасы работают потому, что сама Земля представляет из себя магнит.

Примерно в 1700 году эти три направления исследований начали объединяться, поскольку учёные увидели их взаимосвязь.

В 1729 году Стивен Грей показывает, что электричество можно передавать между вещами, соединяя их. В 1734 году Шарль Франсуа Дюфе понял, что электричество способно притягивать и отталкивать. В 1745 году в городе Лейден учёным Питером ван Мушенбруком и его учеником Кюнеусом создана банка, которая может хранить электроэнергию и сразу же разряжать её, тем самым став первым в мире конденсатором. Бенджамин Франклин начинает свои собственные эксперименты с батареями (как он их называет), которые способны хранить электричество, постепенно разряжая их. Также он начал свои эксперимент с электрическими угрями и прочим. В 1819 году Ганс Христиан Эрстед понял, что электрический ток может влиять на стрелку компаса. Изобретение электромагнита в 1826 году начинает эру электрических технологий, таких как телеграф или электрических двигатель, способный экономить нам массу времени и изобретать другие машины. Что уже говорить про изобретение телефона, транзисторов или компьютера.

Лейденская банка

история возникновения, век и год изобретения

Электричество — это вид энергии, которую не требовалось изобретать, а только обнаружить и изучить. История отдает должное первооткрывателю Бенджамину Франклину, именно его эксперименты помогли установить связь между молнией и электричеством. Хотя на самом деле, правда об открытии электроэнергии намного сложнее, поскольку в ее истории не существует единого определяющего момента, дающего прямой ответ на вопрос, кто изобрёл электричество.

История

То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.

История открытия

Сегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.э. древние греки обнаружили, что потирание меха на янтаре вызывает притяжение между ними. Это явление демонстрирует статическое электричество, которое полностью описали ученые в 17 веке в пояснениях, как появляется электричество.

Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.

Кто изобрёл электричество

К 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.

Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом. Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Кто является основоположниками науки об электричестве

Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.

Французский физик Андре Мари Ампер

Основоположниками науки об электричестве являются:

  1. Французский физик Андре Мари Ампер, 1775-1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
  2. Французский физик Чарльз Августин из Кулона, 1736-1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
  3. Итальянский физик Алессандро Вольта, 1745-1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
  4. Георг Симон Ом, 1789-1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
  5. Густав Роберт Кирхгоф, 1824-1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.
  6. Генрих Герц, 1857-1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
  7. Джеймс Клерк Максвелл,1831-1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
  8. Майкл Фарадей, 1791-1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
  9. Томас Эдисон, 1847-1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.
Томас Эдисон

Теории и законы электричества

Общие законы, регулирующие электричество, немногочисленны и просты и применяются неограниченным количеством вариантов.

Закон Ома

Закон Ома — ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению между ними.

I = V / R или V = IR или R = V / I

Где:

I — ток через провод в амперах;

V — напряжение, измеренное на проводнике в вольтах;

R — сопротивление провода в Ом.

В частности, он также гласит, что R в этом отношении постоянна, не зависит от тока.

Закон Ватта, подобно закону Ома, подтверждает связь между мощностью (ваттами), током и напряжением: P = VI или P = I 2 R.

Закон Кирхгофа (KCL) доказывает, что суммарный ток или заряд, поступающий в соединение или узел, в точности равен заряду, покидающему узел, поскольку ему некуда деться, кроме как уйти, поскольку внутри узла заряд не может быть поглощён. Другими словами, алгебраическая сумма всех токов, входящих и выходящих из узла, должна быть равна нулю.

Закон Фарадея гласит о том, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательному значению временной скорости изменения магнитного потока, заключенного в ней.

Закон Ленца утверждает, что направление тока, индуцированного в проводе изменяющимся магнитным полем по фарадеевскому закону, создаст магнитное поле, противостоящее изменению, которое его вызвало. Проще говоря, размер эдс, индуцированной в цепи, пропорциональна скорости изменения потока.

Закон Гаусса гласит, что суммарный электрический поток с замкнутой поверхности равен вложенному заряду, деленному на диэлектрическую проницаемость.

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Создание Лейденской банки

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Когда появилось электричество на территории России

Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Александра III.

Энергетика России 2018

Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г. в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года. Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г. она возросла с 2 до 13,5 млрд кВт.

В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.

После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.

Кто изобрел электричество: в каком году

Современная жизнь невозможна без освещения, автомобилей, оборудования, цифровой и другой техники, в их основу заложен единый ресурс, в связи с этим многие люди задаются вопросом кто изобрел используемое повсеместно электричество. Кем был тот человек, с которого началось развитие науки и производства, и стала потенциально возможной нынешняя комфортабельность жизни?

Природа явления

Изобретения электричества как такового не было, поскольку это явление природное и изучение его началось еще в Древней Греции в 7 веке до нашей эры. Философ и естествоиспытатель Фалес Милетский обратил внимание на то, что если янтарь натереть шерстью овцы, то у камня появляется способность притягивать к себе некоторые легкие предметы. Он же и сформулировал термин. Поскольку по-гречески янтарь называется «электрон», то выявленная сила была означена Фалесом «электричеством».

Научные изыскания

Реальные научные исследования электрической природы начинались только в XVII веке в эпоху Возрождения. В Магдебурге в то время служил бургомистром Отто фон Герике, но власть не была настоящим увлечением чиновника. Все свободное время он проводил в своей лаборатории, где после тщательного изучения трудов Фалеса Милетского изобрел первую в мире электрическую машину. Правда ее применение было не практическим, а скорее научным, она позволяла изобретателю исследовать эффекты притяжения и отталкивания посредством электрической силы. Машина представляла собой стержень, на котором кружился шарик серы, в данной конструкции он заменял янтарь.

Основатель электротехники

Также в конце XVII века при английском дворе трудился придворный медик и физик Уильям Гилберт. Его также вдохновили труды древнегреческого мыслителя, и он перешел к собственным исследованиям по данной тематике. Этот изобретатель разработал прибор для изучения электричества – версор. С его помощью он смог расширить знания об электрических явлениях. Так он установил, что подобными янтарю свойствами обладают сланцы, опал, алмаз, карборунд, аметист и стекло. Кроме этого, Гилберт установил взаимосвязь между пламенем и электричеством, а так же сделал ряд других открытий, которые позволили современным ученым называть его основоположником электротехники.

Передача электричества на расстояние

В XVIII веке исследования по теме были успешно продолжены. Два ученых из Англии Гренвилл Уилер и Стивен Грей установили, что электричество проходит через одни материалы (их назвали проводниками) и не проходит через другие. Они же поставили первый опыт по передаче электрической силы на расстояние. Ток прошел небольшую дистанцию. Так 1729 год можно назвать первой датой, при ответе на вопрос, в каком году изобрели промышленное электричество. Далее открытия последовали одно за другим:

  • профессор математики из Голландии Машенбрук изобрел «лейденскую банку», которая по своей сути явилась первым конденсатором;
  • французский естествоиспытатель Шарль Дюфе классифицировал электрические силы на стеклянные и смоляные;
  • Михаил Ломоносов доказал, что молнии получаются из-за разности потенциалов, и изобрел первый громоотвод;
  • профессор из Франции Шарль Кулон открыл закон взаимосвязи между неподвижными зарядами точечного формата.

Все установленные факты были собраны под одной обложкой Бенджамином Франклином, он же предложил несколько перспективных теорий, например, то, что заряды могут быть, как положительными, так и отрицательными.

От теории к практике

Все установленные факты были верны, и легли в основу практических разработок. В XIX веке научные изыскания одно за другим находили практические воплощения:

  • итальянский ученый Вольт разработал источник постоянного электрического тока;
  • ученый из Дании Эрстед установил электрические и магнитные взаимосвязи между предметами;
  • ученый из Санкт-Петербурга Петров разработал схему, которая позволяла использовать электрический ток для освещения помещений;
  • англичанин Деларю изобрел первую в мире лампу накаливания

  • Ампер вывил факт, что магнитное поле формируется не статическими зарядами, а электрическим полем;
  • Фарадей открыл электромагнитную индукцию и спроектировал первый двигатель;
  • Гаусс разработал теорию электрического поля;
  • итальянский физик Гальвани установил наличие электричества в организме человека, в частности выполнении движений мышцами посредством электротока.

Работы каждого из вышеназванных ученых мужей послужили основой для тех или иных направлений, поэтому любого их них смело можно назвать первым в мире ученым, кто изобрел электричество.

Эпоха «Великих открытий»

Сделанные открытия и осуществленные разработки позволили выполнить системный анализ явления и его возможностей, после которого сделались возможными проекты различных электрических систем и устройств. Кстати, к чести России можно сказать, что первым населенным пунктом на планете, который был освещен электричеством, стало Царское Село в 1881 году. Так, в результате труда нескольких поколений мы можем жить в максимально комфортном мире.

История электричества: видео

Читайте также:

Изобретение электричества год. Кто и когда изобрёл электричество? Кто открыл электричество

Одним из самых величайших открытий человечества стало электричество, с самого начала своего появления оно помогало нашей цивилизации активно развиваться. Электричество – это, пожалуй, самый экологический вид энергии. И не исключено, что в скором времени оно станет основным видом энергии, если на планете не останется сырьевых ресурсов.

Итак, кто изобрел электричество?

Электричество обнаружил ещё в прошлой эре греческий философ Фалес (VII век до нашей эры). Он увидел, что при трении янтаря о шерсть, камень начинает притягивать к себе лёгкие предметы. Кстати, электрон в греческом значит «янтарь», а электричество — «янтарность». Данные термины появились лишь в 1600 году, т.к. наблюдения Фалеса так и ни к чему не привели.

В 1650 году Магдебургским бургомистром Отто фоном Герике была построена электростатическая установка. Выглядела она как металлический стержень с шаром из серы. Это устройство помогало наблюдать свойства притягивания и отталкивания.

В 1729 году англичанин Стивен Грей проводил опыты по передаче электричества на расстояние. Эти опыты показали, что не каждому материалу свойственно проводить электричество, т. е. все материалы можно разделить на электрики и диэлектрики.

В 1733 году Шарль Дюфе открыл 2 вида электричества, получившие названия: стеклянное и смоляное. Обнаружить их удалось во время трения смолы о шерсть и стекол о шёлк.

В 1745 году появился первый электрический конденсатор с названием – Лейденская банка. Автором данного изобретения стал голландец Питер ван Мушенбрук.

В 1747 году американец Бенджамин Франклин написал очерк «Эксперименты и наблюдения над электричеством». Эта работа, по сути, является первой теорией электричества, где Франклином применяется к электричеству термин «нематериальная жидкость». В ней также была выдвинута теория о существовании положительных и отрицательных зарядов. Ещё Бенджамин Франклин придумал громоотвод и с его помощью наглядно доказал, что молния имеет именно электрическую природу.

1785 год стал переломным, исследование электричества попало в научную плоскость. Это открытие Закона Кулона.

В 1800 год – время ещё одного ключевого изобретения, когда удалось исследовать электричество более досконально, поставив много важных опытов. Итальянец Вольт придумал первый источник постоянного тока. Это изобретение было первым гальваническим элементом, состоящим из серебряных и цинковых кружков; между ними помещали бумагу, смоченную в соленой воде.

1820 году датским физиком Эрстедом было открыто электромагнитное взаимодействие, обнаружил которое он практически случайно, заметив колебания стрелки компаса, лежащего рядом с проводником. Электрический ток на проводник подавался циклично, при этом стрелка компаса колебалась в такт с включениями проводника в электрическую цепь.

Уже в 1821 году французский физик Ампер сделал открытие – магнетизм вокруг проводника образуется во время подачи на него электрического тока, в то время как при статическом электричестве магнетизма нет.

Также немалый вклад в изучение электричества был внесён учеными Джоулем, Ленцем, Омом и Гауссом. Гаусс в 1830 году уже описал главную теорию электростатического поля.

Вышеперечисленные открытия в области исследования электричества помогли Майклу Фарадею в 1831 году открыть электромагнитную индукцию. Это был важнейший момент в изучении электричества и его свойств. Благодаря этому открытию Фарадей создал первый электрогенератор. Он задвигал катушку в намагниченный сердечник, в результате на обмотке катушки появлялся электрический ток. Чуть позже, в 1834 году Фарадеем были открыты законы электролиза. После чего он описал новые термины: электрическое и магнитное поля.

Фарадей также придумал самый первый электродвигатель – проводник с электрическим током, способный вращаться вокруг постоянного магнита.

Как видите, появлению электричества поспособствовали многие учёные, но кого именно стоит считать его изобретателем, ответить крайне сложно.

Вместе со статьёй «Кто изобрел электричество?» читают:

Электричество — это вид энергии, которую не требовалось изобретать, а только обнаружить и изучить. История отдает должное первооткрывателю Бенджамину Франклину, именно его эксперименты помогли установить связь между молнией и электричеством. Хотя на самом деле, правда об открытии электроэнергии намного сложнее, поскольку в ее истории не существует единого определяющего момента, дающего прямой ответ на вопрос, кто изобрёл электричество.

То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.

История открытия

Сегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.э. древние греки обнаружили, что потирание меха на янтаре вызывает притяжение между ними. Это явление демонстрирует статическое электричество, которое полностью описали ученые в 17 веке в пояснениях, как появляется электричество.

Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.

Кто изобрёл электричество

К 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.

Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом. Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Кто является основоположниками науки об электричестве

Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.

Французский физик Андре Мари Ампер

Основоположниками науки об электричестве являются:

  1. Французский физик Андре Мари Ампер, 1775-1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
  2. Французский физик Чарльз Августин из Кулона, 1736-1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
  3. Итальянский физик Алессандро Вольта, 1745-1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
  4. Георг Симон Ом, 1789-1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
  5. Густав Роберт Кирхгоф, 1824-1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.
  6. Генрих Герц, 1857-1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
  7. Джеймс Клерк Максвелл,1831-1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
  8. Майкл Фарадей, 1791-1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
  9. Томас Эдисон, 1847-1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.

Томас Эдисон

Теории и законы электричества

Общие законы, регулирующие электричество, немногочисленны и просты и применяются неограниченным количеством вариантов.

Закон Ома

Закон Ома — ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению между ними.

I = V / R или V = IR или R = V / I

I — ток через провод в амперах;

V — напряжение, измеренное на проводнике в вольтах;

R — сопротивление провода в Ом.

В частности, он также гласит, что R в этом отношении постоянна, не зависит от тока.

Закон Ватта, подобно закону Ома, подтверждает связь между мощностью (ваттами), током и напряжением: P = VI или P = I 2 R.

Закон Кирхгофа (KCL) доказывает, что суммарный ток или заряд, поступающий в соединение или узел, в точности равен заряду, покидающему узел, поскольку ему некуда деться, кроме как уйти, поскольку внутри узла заряд не может быть поглощён. Другими словами, алгебраическая сумма всех токов, входящих и выходящих из узла, должна быть равна нулю.

Закон Фарадея гласит о том, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательному значению временной скорости изменения магнитного потока, заключенного в ней.

Закон Ленца утверждает, что направление тока, индуцированного в проводе изменяющимся магнитным полем по фарадеевскому закону, создаст магнитное поле, противостоящее изменению, которое его вызвало. Проще говоря, размер эдс, индуцированной в цепи, пропорциональна скорости изменения потока.

Закон Гаусса гласит, что суммарный электрический поток с замкнутой поверхности равен вложенному заряду, деленному на диэлектрическую проницаемость.

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Создание Лейденской банки

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Когда появилось электричество на территории России

Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Александра III.

Энергетика России 2018

Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г. в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года. Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г. она возросла с 2 до 13,5 млрд кВт.

В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.

После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.

2002-04-26T16:35+0400

2008-06-05T12:03+0400

https://сайт/20020426/129934. html

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита. —-Основные свойства и законы электричества—установлены любителями. Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров. Электричество—это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания. Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития. Янтарь упорно терли, любовались…

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита.

Основные свойства и законы электричества—установлены любителями.

Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров.

Электричество—это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания.

Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития.

Янтарь упорно терли, любовались им, делали из него различные украшения, и на этом дело ограничивалось.

В 1600 г. в Лондоне была опубликована книга английского врача В.Гильберта, в которой он впервые показал, что способностью янтаря притягивать после трения легкие предметы обладают и многие другие тела, в том числе стекло. Он заметил также, что влажность воздуха в значительной степени препятствует этому явлению.

Ошибочная концепция Гильберта.

Однако Гильберт и первым ошибочно установил различительную грань между электрическими и магнитными явлениями, хотя в действительности эти явления порождаются одними и теми же электрическими частицами и никакой грани между электрическими и магнитными явлениями не существует. Эта ошибочная концепция имела далеко идущие последствия и надолго запутала существо вопроса.

Гильберт обнаружил также, что магнит теряет магнитные свойства при нагревании и восстанавливает их при охлаждении. Он использовал насадку из мягкого железа для усиления действия постоянных магнитов, первым стал рассматривать Землю, как магнит. Уже из одного этого краткого перечисления видно, что врачом Гильбертом были сделаны важнейшие открытия.

Самое удивительное в этом анализе заключается в том, что до Гильберта, начиная от древних греков, которые установили свойства янтаря, и китайцев, которые пользовались компасом, не было никого, кто бы сделал такие выводы и так систематизировал наблюдения.

Вклад в науку О.Генрике.

Тогда события развивались необыкновенно медленно. Прошел 71 год, прежде чем немецким бургомистром О.Герике в 1671 г. был сделан следующий шаг. Вклад его в электричество был огромным.

Герике установил взаимное отталкивание двух наэлекризованных тел (Гильберт полагал, что существует лишь притяжение), передачу электричества от одного тела к другому с помощью проводника, электризацию посредством влияния при приближении к незаряженному телу наэлектризованного тела, и, самое главное,— первым построил основанную на трении электрическую машину. Т.е.

он создал все возможности для дальнейшего проникновения в сущность электрических явлений.

Не только физики внесли свой вклад в развитие электричества.

Прошло еще 60 лет, прежде чем французский ученый Ш.Дюфе в 1735-37 гг. и американский политик Б.Франклин в 1747-54 гг.

установили, что электрические заряды бывают двух родов. И, наконец, в 1785 г. французским артиллерийским офицером Ш.Кулоном был сформирован закон взаимодействия зарядов.

Надо указать также на работу итальянского врача Л.Гальвани. Огромное значение имели работы А.Вольта по созданию мощного источника постоянного тока в виде «вольтова столба».

Важный вклад в познание электричества произошел в 1820 г., когда датский профессор физики Х.Эрстед открыл воздействие проводника с током на магнитную стрелку. Практически одновременно было открыто и изучено А.Ампером взаимодействие между собой токов, имеющее чрезвычайно важное прикладное значение.

Большой вклад в изучение электричества был внесен также аристократом Г.Кавендишем, аббатом Д.Пристли, школьным учителем Г.Омом. На основании всех этих исследований подмастерье М. Фарадей открыл в 1831 г. электромагнитную индукцию, которая в действительности является одной из форм взаимодействия токов.

Почему в течение тысячелетий люди ничего не знали об электричестве? Почему в этом процессе участвовали самые различные слои населения? В связи с развитием капитализма был общий подъем экономики, ломались средневековые кастовые и сословные предрассудки и ограничения, поднимался общий культурный и образовательный уровень населения. Однако и тогда не обошлось без трудностей. Например, Фарадею, Ому и ряду других талантливых исследователей приходилось вести ожесточенные бои со своими теоретическими противниками и оппонентами. Но все же, в конечном итоге, их идеи и взгляды публиковались и находили признание.

Из всего этого можно сделать интересные выводы: научные открытия делаются не только академиками, но и любителями науки.

Если мы хотим, чтобы наша наука находилась на передовых позициях, то должны помнить и учитывать историю ее развития, бороться с кастовостью и монополизмом односторонних взглядов, создавать равные условия для всех талантливых исследователей, независимо от их научного статуса.

Поэтому пора открыть страницы наших научных журналов для школьных учителей, артиллерийских офицеров, аббатов, врачей, аристократов и подмастерьев, чтобы и они смогли принять активное участие в научном творчестве. Сейчас они лишены такой возможности.

Электричество

Электричеством или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением. . Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира — Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.

Что такое электричество?

Электричество — это совокупность физических явлений, связанных с наличием электрического заряда. Хотя изначально электричество рассматривалось как явление, отдельное от магнетизма, но с разработкой уравнений Максвелла оба эти явления были признаны частью единого явления: электромагнетизма. Различные распространенные явления связаны с электричеством, такие как молнии, статическое электричество, электрическое отопление, электрические разряды и многие другие. Кроме того, электричество лежит в основе многих современных технологий.

Наличие электрического заряда, который может быть либо положительным, либо отрицательным, порождает электрическое поле. С другой стороны, движение электрических зарядов, которое называется электрическим током, создает магнитное поле.

Когда заряд помещается в точку с ненулевым электрическим полем, на него действует сила. Величина этой силы определяется законом Кулона. Таким образом, если бы этот заряд был перемещен, электрическое поле выполнило бы работу по перемещению (торможению) электрического заряда. Таким образом, можно говорить об электрическом потенциале в определенной точке пространства, равному работе, выполняемой внешним агентом при переносе единицы положительного заряда из произвольно выбранной точки отсчета до этой точки без какого-либо ускорения и, как правило, измеряемому в вольтах.

В электротехнике, электричество используется для:

  • подачи электроэнергии туда, где электрический ток используется для питания оборудования;
  • в электронике, имеющей дело с электрическими цепями, которые включают активные электрические компоненты, такие как вакуумные трубки, транзисторы, диоды и интегральные схемы, и связанные с ними пассивные элементы.

Электрические явления изучались с античных времен, хотя прогресс в теоретическом понимании начался в XVII и XVIII веках. Даже тогда практическое применение электричества было редкостью, и инженеры смогли использовать его в промышленных и жилых целях только в конце XIX века. Быстрое расширение электрических технологий в это время трансформировало промышленность и общество. Универсальность электричества заключается в том, что оно может использоваться почти в безграничном множестве отраслей, таких как транспорт, отопление, освещение, коммуникации и вычисления. Электроэнергия в настоящее время является основой современного индустриального общества.

История электричества

Задолго до того, как зародились какие-либо знания об электричестве, люди уже знали об ударах током электрической рыбы. Древнеегипетские тексты, датируемые 2750 годом до н. э., называли этих рыб «Громовержцы Нила» и описывали их как «защитников» всех других рыб. Свидетельства об электрических рыбах снова появляются тысячелетиями позже от древнегреческих, римских и арабских естествоиспытателей и врачей. Несколько древних писателей, такие, как Плиний Старший и Скрибониус Ларгус, свидетельствуют об онемении, как эффекте поражения электрическим током, производимым сомиками и электрическими скатами, а также они знали, что такие удары могут передаваться через проводящие ток предметы. Пациентам, страдающим от заболеваний, таких как подагра или головная боль прописывались прикосновения к таким рыбам с надеждой, что мощный электроудар может вылечить их. Возможно, что самое раннее и ближайшее приближение к открытию идентичности молнии и электричества из любого другого источника, было совершено арабами, у которых до 15-го века в языке слово «молния» (раад) применялось к электрическим скатам.

Древние культуры Средиземноморья знали, что если некоторые предметы, такие как янтарные палочки, потереть кошачьим мехом, то он нанёт притягивать легкие предметы, такие как перья. Фалес Милетский сделал ряд наблюдений статического электричества примерно в 600 г. до н.э., из которых он вывел, что для того, чтобы сделать янтарь способным притягивать предметы необходимо трение, в отличие от минералов, таких как магнетит, которым трение было не нужно. Фалес ошибался, полагая, что притяжение янтаря было связано с магнитным эффектом, но позже наука доказала связь между магнетизмом и электричеством. Согласно спорной теории, основанной на обнаружении Багдадской батареи в 1936 году, которая напоминает гальваническую ячейку, хотя неясно, был ли артефакт электрическим по своей природе, парфяне, возможно, знали о гальванотехнике.

Электричество продолжало вызывать не более, чем интеллектуальное любопытство на протяжении тысячелетий до 1600 года, когда английский ученый Уильям Гилберт провел тщательное изучение электричества и магнетизма, и выявил отличая «магнетитного» эффекта от статического электричества, производимого путем трения янтаря. Он придумал новое латинское слово electricus («янтарный» или «как янтарь», от ἤλεκτρον, Elektron, с греческого: «янтарь») для обозначения свойства предметов притягивать мелкие предметы после натирания. Эта лингвистическая ассоциация породила английские слова «электрический» и «электричество», которые впервые появились в печати в работе Томаса Брауна «Pseudodoxia Epidemica» в 1646 году.

Дальнейшую работу проводили Отто фон Герике, Роберт Бойль, Стивен Грей и Шарль Франсуа Дюфе. В 18 веке Бенджамин Франклин провел обширные исследования в области электричества, продав свои владения для финансирования своей работы. В июне 1752 года он, как известно, прикрепил металлический ключ к нижней части нити воздушного змея и запустил змея в грозовое небо. Последовательность искр, соскакивающих с ключа на тыльную сторону ладони показала, что молния действительно имеет электрическую природу. Он также объяснил кажущее парадоксальным поведение лейденской банки в качестве устройства для хранения большого количества электрического заряда с точки зрения электричества, состоящего из положительных и отрицательных зарядов.

В 1791 году Луиджи Гальвани объявил о своем открытии биоэлектромагнетизма, демонстрируя, что электричество является средством, с помощью которого нейроны передают сигналы к мышцам. Аккумуляторная батарея Алессандро Вольта или гальванический столб 1800-х годов изготавливались из чередующихся слоев цинка и меди. Для ученых это был более надежный источник электрической энергии, чем электростатические машины, используемые ранее. Понимание электромагнетизма как единства электрических и магнитных явлений произошло благодаря Эрстеду и Андре-Мари Амперу в 1819-1820 годах. Майкл Фарадей изобрел электрический двигатель в 1821 году, а Георг Ом математически проанализировал электрическую цепь в 1827году. Электричество и магнетизм (и свет) были окончательно связаны Джеймсом Максвеллом, в частности, в его работе «О физических силовых линиях» в 1861 и 1862 годах.

В то время как в начале 19-го века мир стал свидетелем стремительного прогресса в науке об электричестве, в конце 19 века наибольший прогресс случился в области электротехники. С помощью таких людей, как Александр Грэхем Белл, Отто Титус Блати, Томас Эдисон, Галилео Феррарис, Оливер Хевисайда, Аньош Иштван Йедлик, Уильям Томсон, 1-й барон Кельвин, Чарльз Алджернон Парсонс, Вернер фон Сименс, Джозеф Уилсон Суон, Реджинальд Фессенден, Никола Тесла и Джордж Вестингауз, электричество превратилась из научного любопытства в незаменимый инструмент для современной жизни, став движущей силой второй промышленной революции.

В 1887 году Генрих Герц обнаружил, что электроды освещенные ультрафиолетовым светом, создают электрические искры более легко, чем не освещенные. В 1905 году Альберт Эйнштейн опубликовал статью, в которой были объяснены экспериментальные данные фотоэлектрического эффекта как результат переноса световой энергии дискретными квантованными пакетами, возбуждающими электроны. Это открытие привело к квантовой революции. Эйнштейн был удостоен Нобелевской премии по физике в 1921 году за «открытие закона фотоэлектрического эффекта». Фотоэлектрический эффект также используется в фотоэлементах таких, какие можно найти в панелях солнечных батарей, и это часто используется для выработки электроэнергии в коммерческих целях.

Первым полупроводниковым устройством стал детектор «кошачий ус», который был первым в использовании в радиоприемниках в 1900-х годах. Усоподобная проволочка приводится в легкое контактное прикосновение с твердым кристаллом (например, кристаллом германия) для того, чтобы продетектировать радиосигнал посредством контактно-переходного эффекта. В полупроводниковом узле, ток подается в полупроводниковые элементы и соединения, сконструированные специально для переключения и усиления тока. Электрический ток может представляться в двух формах: в виде отрицательно заряженных электронов, а также положительно заряженными вакансиями электронов (незаполненными электронами местами в атоме полупроводника), называемыми дырками. Эти заряды и дырки понимаются с позиции квантовой физики. Строительным материалом чаще всего является кристаллический полупроводник.

Развитие полупроводниковых устройств началось с изобретением транзистора в 1947 году. Распространенными полупроводниковыми устройствами являются транзисторы, микропроцессорные чипы и чипы оперативной памяти. Специализированный тип памяти, называемый флэш-памятью используется в USB флэш-накопителях, и совсем недавно полупроводниковыми накопителями стали заменять и накопители на механически вращающихся жестких магнитных дисках. Полупроводниковые устройства стали распространенными в 1950-х и 1960-х годах, в период перехода от вакуумных ламп к полупроводниковым диодам, транзисторам, интегральным схемам (ИС) и светодиодам (LED).

Основные понятия электричества

Электрический заряд

Наличие заряда порождает электростатическую силу: заряды оказывают друг на друга силовое действие, этот эффект был известен в древности, хотя и не был тогда понятен. Легкий шарик, подвешенный на веревочке может быть заряжен прикосновением к нему стеклянной палочкой, которая сама до этого была заряжена при трении о ткань. Подобный шар, заряженный тем же стеклянным стержнем будет отталкиваться от первого: заряд заставляет два шара отделяться друг от друга. Два шара, которые заряжаются от натертого янтарного стержня также отталкиваются друг от друга. Тем не менее, если один шар заряжается от стеклянной палочки, а другой — от янтарного стержня, то оба шара начинают притягиваются друг к другу. Эти явления были исследованы в конце восемнадцатого века Шарлем Огюстеном де Кулоном, который сделал вывод, что заряд проявляется в двух противоположных формах. Это открытие привело к известной аксиоме: одинаково заряженные объекты отталкиваются, а противоположно заряженные объекты притягиваются.

Сила действует на сами заряженные частицы, следовательно, заряд имеет тенденцию к как можно более равномерному распространению по проводящей поверхности. Величина электромагнитной силы, будь то притяжение или отталкивание, определяется законом Кулона, который гласит, что электростатическая сила пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними. Электромагнитное взаимодействие является очень сильным, оно уступает по силе только сильному взаимодействию, но в отличие от последнего, оно действует на любых расстояниях. По сравнению с гораздо более слабым гравитационным взаимодействием, электромагнитная сила, расталкивает два электрона в 1042 раз сильнее, чем гравитационная сила притягивает их.

Исследование показало, что источником заряда являются определенные типы субатомных частиц, которые обладают свойством электрического заряда. Электрический заряд порождает электромагнитную силу, которая является одной из четырех фундаментальных сил природы, и взаимодействует с ней. Наиболее известными носителями электрического заряда являются электрон и протон. Эксперимент показал, что заряд — сохраняющаяся величина, то есть, суммарный заряд внутри изолированной системы всегда будет оставаться постоянным вне зависимости от каких-либо изменений, которые происходят в пределах этой системы. В системе заряд может передаваться между телами либо прямым контактом, либо путем передачи по проводящему материалу, например проводу. Неофициальный термин «статическое электричество» означает чистое присутствие заряда (или «дисбаланс» зарядов) на теле, обычно вызываемое тем, что разнородные материалы, будучи потертыми друг о друга, передают заряд от один другому.

Заряды электронов и протонов противоположны по знаку, следовательно, суммарный заряд может быть как положительным, так и отрицательным. По соглашению, заряд переносимый электронами, считается отрицательным, а переносимый протонами — положительным, по традиции, заложенной работами Бенджамина Франклина. Величина заряда (количество электричества) обычно обозначается символом Q и выражается в кулонах; каждый электрон несет один и тот же заряд, приблизительно -1,6022 × 10-19 кулона. Протон имеет заряд, равный по значению и противоположный по знаку, и, таким образом, + 1,6022 × 10-19 Кулона. Зарядом обладает не только вещество, но и антивещество, каждая античастица несет равный заряд, но противоположный по знаку к заряду его соответствующей частицы.

Заряд можно измерить несколькими способами: ранний прибор-электроскоп с золотыми лепестками, который, хотя все еще используется для учебных демонстраций, в настоящее время вместо него применяется электронный электрометр.

Электрический ток

Движение электрических зарядов называется электрическим током, интенсивность его обычно измеряется в амперах. Ток может создаваться какими-либо движущимися заряженными частицами; чаще всего это электроны, но в принципе любой заряд приведенный в движение представляет собой ток.

По исторически сложившейся договоренности положительный ток определяется направлением движения положительных зарядов, перетекающих из более положительной части цепи в более отрицательную часть. Ток, определенный таким образом, называется условным током. Одной из наиболее известной формой тока является движение отрицательно заряженных электронов по цепи, и таким образом, положительное направление тока сориентировано в противоположном движению электронов направлении. Тем не менее, в зависимости от условий, электрический ток может состоять из потока заряженных частиц движущегося в любом направлении, и даже в обоих направлениях одновременно. Договоренность считать положительным направлением тока направление движения положительных зарядов широко используется для упрощения этой ситуации.

Процесс, при котором электрический ток проходит через материал, называется электрической проводимостью, и её природа изменяется в зависимости от того, какими заряженными частицами она осуществляется и от материала, через который они перемещаются. В качестве примеров электрических токов можно привести металлическую проводимость, осуществляемую потоком электронов через проводник, такой как металл, и электролиз, осуществляемый потоком ионов (заряженных атомов) через жидкость или плазму, как в электрических искрах. В то время как сами частицы могут двигаться очень медленно, иногда со средней скоростью дрейфа только доли миллиметра в секунду, электрическое поле, что приводит их в движение распространяется со скоростью близкой к скорости света, позволяя электрическим сигналам быстро проходить по проводам.

Ток вызывает ряд наблюдаемых эффектов, которые исторически являлись признаком его присутствия. Возможность разложения воды под действием тока от гальванического столба была обнаружена Николсоном и Карлайлом в 1800 году. Этот процесс теперь называется электролиз. Их работа была значительно расширена Майклом Фарадеем в 1833 году. Ток, протекая через сопротивление, вызывает локализованный нагрев. Данный эффект Джеймс Джоуль описал математически в 1840 году. Одно из наиболее важных открытий, касающихся тока было сделано случайно Эрстедом в 1820 году, когда при подготовке лекции, он обнаружил, что ток, протекающий по проводу, вызвал поворот стрелки магнитного компаса. Так он открыл электромагнетизм, фундаментальное взаимодействие между электричеством и магнетизмом. Уровень электромагнитных выбросов, генерируемых электрической дугой, достаточно высок для получения электромагнитных помех, которые могут нанести ущерб работе смежного оборудования.Он обнаружил электромагнетизм, фундаментальное взаимодействие между электричеством и магнетизмом. Уровень электромагнитных излучений, генерируемых электрической дугой достаточно высок, чтобы производить электромагнитные помехи, которые могут вызвать помехи в работе находящегося поблизости оборудования.

Для технического или бытового применения ток часто характеризуется как либо постоянный (DC), либо переменный (AC). Эти термины относятся к тому, как ток изменяется во времени. Постоянный ток, производимый, например, батареей и требуемый для большинства электронных устройств, является однонаправленным потоком от положительного потенциала цепи к отрицательному. Если этот поток, что чаще случается, переносится электронами, они будут перемещаться в противоположном направлении. Переменным током называется любой ток, который непрерывно меняет направление, он почти всегда имеет форму синусоиды. Переменный ток пульсирует назад и вперед внутри проводника без перемещения заряда на какое-нибудь конечное расстояние за длительный промежуток времени. Усредненное по времени значение переменного тока равно нулю, но он доставляет энергию сначала в одном направлении, а затем в обратном. Переменный ток зависит от электрических свойств, которые не проявляют себя при стационарном режиме постоянного тока, например, от индуктивности и емкости. Эти свойства, однако, могут проявить себя, когда схема подвергается переходным процессам, например, при первоначальной подаче энергии.

Электрическое поле

Понятие электрического поля было введено Майклом Фарадеем. Электрическое поле создается заряженным телом в пространстве, которое окружает тело, и приводит к силе, действующей на любые другие заряды, расположенные в поле. Электрическое поле действует между двумя зарядами аналогично гравитационному полю, действующему между двумя массами, и также простирается до бесконечности и обратно пропорционально квадрату расстояния между телами. Тем не менее, есть существенная разница. Сила тяжести всегда притягивает, заставляя соединиться две массы, в то время как электрическое поле может привести либо притяжению, либо к отталкиванию. Так как крупные тела, такие как планеты в целом имеют нулевой суммарный заряд, их электрическое поле на расстоянии обычно равно нулю. Таким образом, сила тяжести является доминирующей силой на больших расстояниях во Вселенной, несмотря на то, что сама она гораздо слабее.

Электрическое поле, как правило, различается в различных точках пространства, а его напряженность в любой точке определяется как сила (отнесенная к единице заряда), которую будет испытывать неподвижный, ничтожно малый заряд, если его поместить в эту точку. Абстрактный заряд, называемый «пробным зарядом», должен иметь исчезающе малое значение, чтобы его собственным электрическим полем, нарушающим основное поле, можно было пренебречь, а также должен быть стационарным (неподвижным), чтобы предотвратить влияние магнитных полей. Поскольку электрическое поле определяется в терминах силы, а сила является вектором, то электрическое поле также является вектором, имеющим как величину, так и направление. А если конкретнее, то электрическое поле является векторным полем.

Учение о электрических полях, создаваемых неподвижными зарядами, называется электростатикой. Поле может быть визуализировано с помощью набора воображаемых линий, направление которых в любой точке пространства совпадает с направлением поля. Это понятие было введено Фарадеем, и термин «силовые линии» до сих пор иногда встречается. Линии поля — это пути, по которым точечный положительный заряд будет совершать движение под действием поля. Они, однако, являются абстрактным, а не физическим объектом, а поле пронизывает всё промежуточное пространство между линиями. Линии поля, исходящие из стационарных зарядов, имеют несколько ключевых свойств: во-первых, они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах; во-вторых, они должны входить в любой идеальный проводник под прямым углом (нормально), и в-третьих, они никогда не пересекаются и не замыкаются сами на себя.

Полое проводящее тело содержит весь свой заряд на своей внешней поверхности. Поэтому поле равно нулю во всех местах внутри тела. На этом принципе работает клетка Фарадея — металлическая оболочка, которая изолирует свое внутреннее пространтсво от внешних электрических воздействий.

Принципы электростатики имеют важное значение при проектировании элементов высоковольтного оборудования. Существует конечный предел напряженности электрического поля, которая может быть выдержана любом материалом. Выше этого значения происходит электрический пробой, который вызывает электрическую дугу между заряженными частями. Например, в воздухе электрический пробой наступает при небольших зазорах при напряженности электрического поля, превышающем 30 кВ на сантиметр. При увеличении зазора предельная напряженность пробоя снижается, примерно, до 1 кВ на сантиметр. Наиболее заметное подобное естественное явление — это молния. Она возникает, когда заряды разделяются в облаках восходящими колоннами воздуха, и электрическое поле в воздухе начинает превышать значение пробоя. Напряжение большого грозового облака может достигать 100 МВ и иметь величину энергии разряда 250 кВт-час.

На величину напряженности поля сильно влияют находящиеся поблизости проводящие объекты, и напряженность особенно велика, когда полю приходится огибать заостренные объекты. Этот принцип используется в громоотводах, острые шпили которых принуждают молнии разряжаться в них, а не в здания, которые они защищают.

Электрический потенциал

Понятие электрического потенциала тесно связано с электрическим полем. Небольшой заряд, помещенный в электрическое поле, испытывает силу, и для того, чтобы переместить заряд против этой силы, требуется совершить работу. Электрический потенциал в любой точке определяется как энергия, которую необходимо затратить, чтобы крайне медленно переместить единичный пробный заряд с бесконечности до этой точки. Потенциал обычно измеряется в вольтах, и потенциал в один вольт — это потенциал, при котором необходимо затратить один джоуль работы, чтобы переместить заряд в один кулон из бесконечности. Это формальное определение потенциала имеет небольшое практическое применение, и более полезным является понятие электрической разности потенциалов, то есть энергия, необходимая для перемещения единицы заряда между двумя заданными точками. Электрическое поле имеет одну особенность, оно является консервативным, что означает, что путь, пройденный пробным зарядом не имеет никакого значения: на прохождение всевозможных путей между двумя заданными точками всегда будет затрачена одна и та же энергия, и, таким образом, существует единственное значение разности потенциалов между двумя положениями. Вольт настолько сильно закрепился в качестве единицы измерения и описания разности электрических потенциалов, что термин вольтаж используется широко и повседневно.

Для практических целей полезно определить общую точку отсчета, относительно которой потенциалы могут быть выражены и сравниваться. Хотя, она может находиться и на бесконечности, гораздо более практично использовать в качестве нулевого потенциала саму Землю, которая во всех местах, как предполагается, имеет один и тот же потенциал. Эту точка отсчета, естественно, обозначают как «земля» (ground). Земля является бесконечным источником равного количества положительных и отрицательных зарядов и, следовательно, она электрически нейтральна и незаряжаема.

Электрический потенциал является скалярной величиной, то есть, он имеет только значение и не имеет направления. Его можно рассматривать как аналог высоты: подобно тому, как выпущенный объект будет падать посредством разности высот, вызванной гравитационным полем, так и заряд будет «падать» посредством напряжения, вызванного электрическим полем. Как на картах обозначается рельеф посредством контурных линий, соединяющих точки одинаковой высоты, так и набор линий, соединяющих точки равного потенциала (известные как эквипотенциали) могут быть прорисованы вокруг электростатически заряженного объекта. Эквипотенциали пересекают все силовые линии под прямым углом. Они также должны лежать параллельно поверхности проводника, в противном случае будет производиться сила, перемещающая носители зарядов по эквипотенциальной поверхности проводника.

Электрическое поле формально определяется как сила, оказываемая на единицу заряда, но понятие потенциала предоставляет более полезное и эквивалентное определение: электрическое поле — это локальный градиент электрического потенциала. Как правило, оно выражается в вольтах на метр, а направление вектора поля является линией наибольшего изменения потенциала, то есть в направлении ближайшего расположения другой эквипотенциали.

Электромагниты

Открытие Эрстедом в 1821 году того факта, что магнитное поле существует вокруг всех сторон провода, несущего электрический ток, показало, что существует прямая связь между электричеством и магнетизмом. Более того, взаимодействие казалось отличающимся от гравитационных и электростатических сил, двух сил природы, тогда известных. Сила действовала на стрелку компаса, не направляя ее к проводу с током или от него, а действовала под прямым углом к нему. Немного неясными словами «электрический конфликт имеет вращающее поведение» Эрстед выразил своё наблюдение. Эта сила также зависела от направления тока, ибо, если ток менял направление, то магнитная сила меняла его тоже.

Эрстед не в полной мере смог понять свое открытие, но наблюдаемый им эффект был взаимным: ток оказывает силовое воздействие на магнит, и магнитное поле оказывает силовое воздействие на ток. Феномен был в дальнейшем изучен Ампером, который обнаружил, что два параллельных провода с током, оказывают силовое действие друг на друга: два провода, с протекающими по ним токами в одном и том же направлении, притягиваются друг к другу, в то время как провода, содержащие токи в противоположных направлениях друг от друга, отталкиваются. Это взаимодействие происходит посредством магнитного поля, которое каждый ток создает, и на основе этого явления определяется единица измерения тока — Ампер в международной системе единиц.

Эта связь между магнитными полями и токами является чрезвычайно важной, поскольку она привела к изобретению Майклом Фарадеем электродвигателя в 1821 году. Его униполярный двигатель состоял из постоянного магнита, помещенного в сосуд с ртутью. Ток пропускался по проводу, подвешенному на шарнирном подвесе над магнитом и погруженному в ртуть. Магнит оказывал тангенциальную силу на провод, что заставляло последний вращаться вокруг магнита до тех пор, пока в проводе поддерживался ток.

Эксперимент, проведенный Фарадеем в 1831 году, показал, что провод, движущийся перпендикулярно магнитному полю, создавал разность потенциалов на концах. Дальнейший анализ этого процесса, известного как электромагнитная индукция, позволил ему сформулировать принцип, теперь известный как закон индукции Фарадея, что разность потенциалов, наведенная в замкнутом контуре пропорциональна скорости изменения магнитного потока пронизывающего контур. Разработка этого открытия позволили Фарадею изобрести первый электрический генератор, в 1831 году, в котором преобразуется механическая энергия вращающегося медного диска в электрическую энергию. Диск Фарадея был неэффективным и не использовался в качестве практического генератора, но он показал возможность выработки электроэнергии с использованием магнетизма, и эта возможность была взята на вооружение теми, кто последовал за его разработками.

Способность химических реакций производить электроэнергию, и, обратная способность электроэнергии производить химические реакцие имеет широкий спектр применений.

Электрохимия всегда была важной частью учения о электричестве. Из первоначального изобретения вольтова столба, гальванические элементы эволюционировали в самые разнообразные типы батарей, гальванические и электролизные элементы. Алюминий получают в огромных количествах электролизным способом, и во многих портативных электронных устройствах используются перезаряжаемые источники электроэнергии.

Электрические схемы

Электрическая цепь представляет собой соединение электрических компонентов таким образом, что электрический заряд, вынужденный проходить по замкнутой траектории (контуру), обычно выполняет ряд некоторых полезных задач.

Компоненты в электрической цепи могут принимать различные формы, выступая в роли таких элементов, как резисторы, конденсаторы, выключатели, трансформаторы и электронные компоненты. Электронные схемы содержат активные компоненты, такие как полупроводники, которые обычно работают в нелинейном режиме и требуют применения к ним комплексного анализа. Наиболее простыми электрическими компонентами являются те, которые называются пассивными и линейными: хотя они могут временно хранить энергию, они не содержат ее источников и работают в линейном режиме.

Резистор, пожалуй, самый простой из пассивных элементов схемы: как предполагает его название, он сопротивляется току, протекающему через него, рассеивая электроэнергию в виде тепла. Сопротивление является следствием движения заряда через проводник: в металлах, например, сопротивление в первую очередь связано со столкновениями электронов и ионов. Закон Ома является основным законом теории цепей, и гласит, что ток, проходящий через сопротивление прямо пропорционален разности потенциалов на нем. Сопротивление большинства материалов относительно постоянно в широком диапазоне температур и токов; материалы, удовлетворяющие этим условиям, известны как «омические». Ом — единица сопротивления, была названа в честь Георга Ома и обозначается греческой буквой Ω. 1 ом — это сопротивление, которое создает разность потенциалов в один вольт при пропускании через него тока величиной в один ампер.

Конденсатор является модернизацией лейденской банки и представляет собой устройство, которое может хранить заряд, и тем самым накапливать электрическую энергию в создающемся поле. Он состоит из двух проводящих пластин, разделенных тонким изолирующим слоем диэлектрика; на практике это пара тонких полосок металлической фольги, смотанных вместе, для увеличения площади поверхности в единице объема и, следовательно, емкости. Единицей емкости является фарад, названный в честь Майкла Фарадея и обозначается символом F: один фарад является емкость, которая создает разность потенциалов в один вольт, при хранении заряда в один кулон. Через конденсатор, подключенный к источнику питания вначале протекает ток, так как в конденсаторе происходит накопление заряда; этот ток будет, однако уменьшаться по мере того, как конденсатор будет заряжаться, и в конце концов станет равным нулю. Конденсатор поэтому не пропускает постоянный ток, а блокирует его.

Индуктивность является проводником, как правило, мотком провода, которая хранит энергию в магнитном поле, возникающем при прохождении тока через неё. При изменении тока, магнитное поле также изменяется, создавая напряжение между концами проводника. Индуцированное напряжение пропорционально скорости изменения тока. Коэффициент пропорциональности называется индуктивностью. Единица индуктивности — генри, названна в честь Джозефа Генри, современника Фарадея. Индуктивность в один генри — это индуктивность, которая вызывает разность потенциалов в один вольт, при скорости изменения тока, проходящего через неё, в один ампер в секунду. Поведение индуктивности противоположенное поведению конденсатора: она будет свободно пропускать постоянный и блокировать быстро меняющийся ток.

Электрическая мощность

Электрическая мощность — это скорость, с которой электрическая энергия передается электрической цепью. Единица СИ мощности — ватт, равный одному джоулю в секунду.

Электрическая мощность как и механическая является скоростью выполнения работы, измеряется в ваттах и обозначается буквой P. Термин потребляемая мощность, используемый в просторечии, означает «электрическую мощность в ваттах.» Электрическая мощность в ваттах, производимая электрическим током I, равным прохождению заряда Q кулон каждые t секунд через электрическую разность потенциалов (напряжение) V равна

P = QV/t = IV

  • Q — электрический заряд в кулонах
  • t — время в секундах
  • I — электрический ток в амперах
  • V — электрический потенциал или напряжение в вольтах

Генерация электроэнергии часто производится с помощью электрогенераторов, но также может производиться химическими источниками, такими как электрические батареи или другими способами с помощью самых разнообразных источников энергии. Электрическая мощность, как правило, поставляется на предприятия и в дома электроэнергетическими компаниями. Оплата за электроэнергию обычно происходит за киловатт-час (3,6 МДж), который является произведенной мощностью в киловаттах, умноженной на время работы в часах. В электроэнергетике измерения мощности производят с использованием счетчиков электроэнергии, которые запоминают количество общей электрической энергии, отдаваемой клиенту. В отличие от ископаемого топлива, электроэнергия является низкоэнтропийной формой энергии и может быть преобразована в энергию движения или многие другие виды энергии с высокой эффективностью.

Электроника

Электроника имеет дело с электрическими цепями, которые включают в себя активные электрические компоненты, такие как вакуумные трубки, транзисторы, диоды и интегральных схемы, и связанные с ними пассивные элементы и элементы коммутации. Нелинейное поведение активных компонентов и их способность контролировать потоки электронов позволяет усиливать слабые сигналы и широко использовать электронику в обработке информации, телекоммуникации и обработке сигналов. Способность электронных устройств работать в качестве переключателей позволяет проводить цифровую обработку информации. Элементы коммутации, такие как печатные платы, технологии компоновки и другие разнообразные формы коммуникационной инфраструктуры дополняют функциональные возможности схемы и превращают разнородные компоненты в обычную рабочую систему.

Сегодня большинство электронных устройств используют полупроводниковые компоненты для осуществления электронного управления. Изучение полупроводниковых приборов и связанных с ними технологий рассматривается как отрасль физики твердого тела, тогда как проектирование и конструирование электронных схем для решения практических задач относятся к области электроники.

Электромагнитные волны

Работы Фарадея и Ампера показали, что изменяющееся во времени магнитное поле порождало электрическое поле, а изменяющееся во времени электрическое поле являлось источником магнитного поля. Таким образом, когда одно поле меняется во времени, то всегда индуцируется другое поле. Такое явление обладает волновым свойствами и естественно называется электромагнитной волной. Электромагнитные волны были теоретически проанализированы Джеймсом Максвеллом в 1864 году. Максвелл разработал ряд уравнений, которые могли однозначно описать взаимосвязь между электрическим полем, магнитным полем, электрическим зарядом и электрическим током. Он смог к тому же доказать, что такая волна обязательно распространяется со скоростью света, и, таким образом, и свет сам является формой электромагнитного излучения. Разработка законов Максвелла, которые объединяют свет, поля и заряд, является одним из важнейших этапов в истории теоретической физики.

Таким образом, работа многих исследователей позволила использовать электронику для преобразования сигналов в высокочастотные колебательные токи, а через соответствующим образом сформированные проводники электричество позволяет передавать и принимать эти сигналы посредством радиоволн на очень большие расстояния.

Производство и использование электрической энергии

Генерация и передача электрического тока

В 6 веке до н. э. греческий философ Фалес Милетский экспериментировал с янтарными стержнями, и эти эксперименты стали первыми исследованиями в области производства электрической энергии. Пока этот метод, теперь известный как трибоэлектрический эффект, мог только поднимать легкие предметы и генерировать искры, он был крайне неэффективен. С изобретением вольтова столба в восемнадцатом веке жизнеспособный источник электроэнергии стал доступным. Вольтов столб и его современный потомок — электрическая батарея, хранит энергию в химическом виде и выдает её в виде электрической энергии по требованию. Батарея является универсальным и очень распространенным источником питания, который идеально подходит для многих применений, но энергия, хранящаяся в ней, конечна, и как только она расходуется, батарею необходимо утилизировать или заряжать. Для больших потребностей электрическая энергия должна генерироваться и передаваться непрерывно по проводящим линиям электропередачи.

Электроэнергия обычно генерируется электромеханическими генераторами, приводимыми в движение паром, получаемым от сжигания ископаемого топлива, или теплом, выделяемым в ядерных реакциях; или из других источников, таких как кинетическая энергия, извлеченная из ветра или проточной воды. Современная паровая турбина, разработанная сэром Чарльзом Парсонсом в 1884 году, сегодня производит около 80 процентов электроэнергии в мире с использованием различных источников тепла. Такие генераторы не имеют никакого сходства с униполярным генератором — диском Фарадея 1831 года, но они по-прежнему полагаться на его электромагнитный принцип, согласно которому проводник, сцепляясь с изменяющимся магнитным полем, индуцирует разность потенциалов на своих концах. Изобретение в конце ХIХ века трансформатора означало, что электрическая энергия может передаваться более эффективно при более высоком напряжении, но более низком токе. Эффективная электрическая передача означает, в свою очередь, что электроэнергия может производиться на централизованных электростанциях с выгодой от масштабной экономии, а затем передаваться на относительно большие расстояния туда, где в ней есть необходимость.

Поскольку электрическая энергия не может быть легко сохранена в количествах, достаточных для удовлетворения потребностей в национальном масштабе, её должно производиться в любое время столько, сколько в данный момент её требуется. Это обязывает энергокомпании тщательно прогнозировать свои электрические нагрузки и постоянно согласовывать эти данные с электростанциями. Некоторое количество генерирующих мощностей должно всегда храниться в запасе в качестве подушки безопасности для электросетей на случай резкого повышения спроса на электроэнергию.

Спрос на электроэнергию растет с большой скоростью по мере модернизации страны и развития ее экономики. Соединенные Штаты демонстрировали 12-процентный рост спроса в течение каждого года первых трех десятилетий ХХ века. Такой темп роста в настоящее время наблюдается в странах с формирующейся экономикой, таких как Индия или Китай. Исторически темпы роста спроса на электроэнергию опережают темпы роста спроса на другие виды энергии.

Экологические проблемы, связанные с производством электроэнергии, привели к усилению внимания к производству электроэнергии из возобновляемых источников, в частности на ветряных и гидроэлектростанциях. Несмотря на то, что можно ожидать продолжения дебатов о воздействии на окружающую среду различных средств производства электроэнергии, её окончательная форма относительно чистая.

Способы применения электричества


Передача электричества является весьма удобным способом передачи энергии, и она была адаптирована к огромному, и продолжающему расти, количеству применений. Изобретение практической лампы накаливания в 1870-х годах привело к тому, что освещение стало одним из первых массово доступных применений электроэнергии. Несмотря на то, что электрификация подразумевала собой определенные риски, замена открытого пламени газового освещения значительно снизила опасность возгорания внутри домов и фабрик. Во многих городах были созданы коммунальные предприятия, ориентированные на растущий рынок электрического освещения.

Нагревающий резистивный эффект Джоуля используется в нитях ламп накаливания и также находит более непосредственное применение в системах электрического отопления. Хотя этот метод отопления универсальный и управляемый, его можно считать расточительным, поскольку для большинства способов электрогенерации уже потребовалось производство тепловой энергии на электростанции. В ряде стран, таких как Дания, выпустили законы, ограничивающие или запрещающие применение резистивного электрического нагрева в новых зданиях. Электричество, однако, до сих пор остается весьма практичным источником энергии для отопления и охлаждения, причем кондиционеры или тепловые насосы представляют собой растущий сектор спроса на электроэнергию для отопления и охлаждения, последствия которого коммунальные предприятия все в большей степени обязаны учитывать.

Электричество используется в сфере телекоммуникаций, и на самом деле электрический телеграф, коммерческое использование которого было продемонстрировано в 1837 году Куком и Уитстоном, было одним из самых ранних электрических телекоммуникационных применений. При строительстве первых межконтинентальных, а затем трансатлантической, телеграфных систем в 1860-х годах, электричество позволило обеспечивать связь в течение нескольких минут со всем земном шаром. Оптоволоконная и спутниковая связь заняли часть рынка систем связи, однако можно ожидать, что электроэнергия будет оставаться важной частью этого процесса.

Наиболее очевидное использование эффектов электромагнетизма происходит в электродвигателе, который представляет собой чистое и эффективное средство движущей силы. Стационарный двигатель, такой как лебедка, легко обеспечить электропитанием, но двигателю для мобильного применения, такого как электрическое транспортное средство, необходимо либо перемещать вместе с собой источники питания, такие как батареи, либо собирать ток скользящим контактом, известным как пантограф.

Электронные устройства используют транзистор, пожалуй, одно из важнейших изобретений ХХ века, который является фундаментальным строительным блоком всех современных схем. Современная интегральная схема может содержать несколько миллиардов миниатюризованных транзисторов на площади всего несколько квадратных сантиметров.

Электричество также используется в качестве источника топлива для общественного транспорта, в том числе в электрических автобусах и поездах.

Влияние электричества на живые организмы

Действие электрического тока на организм человека

Напряжение, приложенное к человеческому телу, вызывает прохождение электрического тока через ткани, и хотя это отношение нелинейно, но чем большее напряжение приложено, тем больший оно вызывает ток. Порог восприятия варьируется в зависимости от частоты питания и местом прохождения тока, он составляет приблизительно от 0,1 мА до 1 мА для электричества сетевой частоты, хотя и ток, настолько малый, как один микроампер, может быть обнаружен как эффект электровибрации при определенных условиях. Если ток достаточно большой, то он может вызвать сокращение мышц, аритмию сердца, а также ожоги тканей. Отсутствие каких-либо видимых признаков того, что проводник находится под напряжением, делает электричество особенно опасным. Боль, вызванная электрическим током может быть интенсивной, что приводит к тому, что электричество иногда используют в качестве метода пытки. Смертная казнь, приведенная в исполнение поражением электрическим током, называется казнью на электрическом стуле (electrocution). Казнь на электрическом стуле до сих пор остается средством судебного наказания в некоторых странах, хотя его использование стало более редким в последнее время.

Электрические явления в природе

Электричество не является изобретением человека, оно может наблюдаться в нескольких формах в природе, заметным проявлением которого является молния. Многие взаимодействия, знакомые на макроскопическом уровне, такие как прикосновение, трение или химическая связь, обусловлены взаимодействиями между электрическими полями на атомном уровне. Магнитное поле Земли, как полагают, возникает из-за естественного производства циркулирующих токов в ядре планеты. Некоторые кристаллы, такие как кварц, или даже сахар, способны создавать разность потенциалов на своих поверхностях, когда подвергаются внешнему давлению. Это явление, известное как пьезоэлектричество, от греческого piezein (πιέζειν), что означает «нажать», было обнаружено в 1880 году Пьером и Жаком Кюри. Этот эффект обратим, и когда пьезоэлектрический материал подвергается воздействию электрического поля, происходит небольшое изменение его физических размеров.

Некоторые организмы, такие как акулы, способны обнаруживать и реагировать на изменения электрических полей, эта способность известна как электрорецепция. В то же время другие организмы, именуемые электрогенными, способны генерировать напряжения сами, что служит им в качестве оборонительного или хищного оружия. Рыбы отряда гимнотообразных, самым известным представителем которого является электрический угорь, могут обнаруживать или оглушать свою добычу с помощью высокого напряжения, генерируемого видоизмененными мышечными клетками, называемыми электричесикими клетками (electrocytes). Все животные передают информацию по клеточным мембранам импульсами напряжения, называемыми потенциалами действия, в чью функцию входит обеспечение нервной системы связью между нейронами и мышцами. Поражение электрическим током стимулирует эту систему, и вызывает сокращение мышц. Потенциалы действия также отвечают за координацию деятельности определенных растений.

В 1850 году Уильям Гладстон спросил ученого Майкла Фарадея, в чем ценность электричества. Фарадей ответил: «В один прекрасный день, сэр, вы сможете обложить его налогом».

В 19-м и начале 20-го века, электричество не было частью повседневной жизни многих людей, даже в промышленно развитом западном мире. Популярная культура того времени, соответственно, часто изображала его как таинственную, квази-магическую силу, которая может умертвлять живых, воскрешать мертвых или иным образом изменять законы природы. Такой взгляд начал царить с опытов Гальвани 1771 года, в которых демонстрировались ноги мертвых лягушек дергающимися при применении животного электричества. Об «оживлении» или реанимации очевидно мертвых или утопленников было сообщено в медицинской литературе вскоре после работы Гальвани. Об этих сообщениях стало известно Мэри Шелли, когда она принялась за написание Франкенштейна (1819), хотя она и не указывает на такой метод оживления монстра. Оживление монстров с помощью электричества стало актуальной темой фильмов ужасов позже.

По мере того, как углублялось общественное знакомство с электричеством, как источником жизненной силы второй промышленной революции, его обладатели чаще показывались в положительном свете, например, электромонтажники, про которых сказано «смерть сквозь перчатки им леденит пальцы, сплетающие провода» в стихотворении Редьярда Киплинга 1907 года «Сыновья Марфы». Разнообразные транспортные средства с электрическим приводом заняли видное место в приключенческих рассказах Жюля Верна и Тома Свифта. Специалисты в области электроэнергетики, будь то вымышленные или реальные — в том числе ученые, такие как Томас Эдисон, Чарльз Штайнмец или Никола Тесла — широко воспринимались как кудесники, наделенные волшебными полномочиями.

По мере того, как электричество переставало быть новинкой и становилось необходимостью в повседневной жизни во второй половине 20-го века, оно обратило к себе особое внимание со стороны популярной культуры только тогда, когда оно переставало поступать, что являлось событием, которое обычно сигнализирует о бедствии. Люди, которые поддерживают его поступление, такие как безымянный герой песни Джимми Уэбба «Монтер из Уичито» (1968), все чаще представлялись в качестве героических и волшебных персонажей.

Моя Энергия: История энергетики

/ Популярная энергетика / История энергетики

Энергия в древности

Современную жизнь невозможно представить без электричества и тепла. Материальный комфорт, который окружает нас сегодня, как и дальнейшее развитие человеческой мысли накрепко связаны с изобретением электричества и использованием энергии.

С древних времен люди нуждались в силе, точнее в двигателях, которые давали бы им силу большую человеческой, для того, чтобы строить дома, заниматься земледелием, осваивать новые территории.

Первые аккумуляторы пирамид

В пирамидах Древнего Египта ученые нашли сосуды, напоминающие аккумуляторы. В 1937 году во время раскопок под Багдадом немецкий археолог Вильгельм Кениг обнаружил глиняные кувшины, внутри которых находились цилиндры из меди. Эти цилиндры были закреплены на дне глиняных сосудов слоем смолы.

Впервые явления, которые сегодня называют электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Древнегреческий философ Фалес Милетский в VI веке до нашей эры отмечал способность янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря – «электрон» – это явление стали называть электризацией.

Сегодня нам уже будет нетрудно разгадать «тайну» янтаря, натертого шерстью. В самом деле, почему янтарь электризуется? Оказывается, при трении шерсти о янтарь на его поверхности появляется избыток электронов, и возникает отрицательный электрический заряд. Мы как бы «отбираем» электроны у атомов шерсти и переносим их па поверхность янтаря. Электрическое поле, созданное этими электронами, притягивает бумагу. Если вместо янтаря взять стекло, то здесь наблюдается другая картина. Натирая стекло шелком, мы «снимаем» о его поверхности электроны. В результате на стекле оказывается недостаток электронов, и оно заряжается положительно. Впоследствии, чтобы различать эти заряды, их стали условно обозначать знаками, дошедшими до наших дней, минус и плюс.

Описав удивительные свойства янтаря в поэтических легендах, древние греки так и не продолжили его изучение. Следующего прорыва в деле покорения свободной энергии человечеству пришлось ждать много веков. Зато когда он все-таки был совершен, мир в буквальном смысле слова преобразился. Еще в 3 тысячелетии до н.э. люди использовали паруса для лодок, но только в VII в. н.э. изобрели ветряную мельницу с крыльями. Началась история ветряных двигателей. Водяные колеса использовали на Ниле, Эфрате, Янцзы для подъема воды, вращали их рабы. Водяные колеса и ветряные мельницы вплоть до ХVII века являлись основными типами двигателей.

Эпоха открытий

В истории попыток использования пара записаны имена многих ученых и изобретателей. Так Леонардо да Винчи оставил 5000 страниц научных и технических описаний, чертежей, эскизов различных приспособлений.

Джанбаттиста делла Порта исследовал образование пара из воды, что было важно для дальнейшего использования пара в паровых машинах, исследовал свойства магнита.

В 1600 году придворный врач английской королевы Елизаветы Уильям Гилберт изучил все, что было известно древним народам о свойствах янтаря, и сам провел опыты с янтарем и магнитами.

Кто придумал электричество?

Термин «электричество» ввел английский естествоиспытатель, лейб-медик королевы Елизаветы Уильям Гилберт. Впервые он употребил это слово в своем трактате «О магните, магнитных телах и о большом магните – Земле» в 1600 году. Ученый объяснял действие магнитного компаса, а также приводил описания некоторых опытов с наэлектризованными телами.

В целом практических знаний об электричестве за XVI – XVII столетия было накоплено не так уж много, но все открытия были предвестниками по-настоящему больших перемен. Это было время, когда опыты с электричеством ставили не только ученые, но и аптекари, и врачи, и даже монархи.

Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х годов в Париже он вместе с голландским физиком Кристианом Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нем.

В 1680 году Дени Папен приехал в Англию и создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив.

Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Французский учёный изобрёл паровой котёл с рычажным предохранительным клапаном.

В 1774 году Уатт Джеймс в результате ряда экспериментов создал уникальную паровую машину. Для обеспечения работы двигателя он применил центробежный регулятор, соединённый с заслонкой на выпускном паропроводе. Уатт детально исследовал работу пара в цилиндре, впервые сконструировав для этой цели индикатор.

В 1782 году Уатт получил английский патент на паровой двигатель с расширением. Он же ввёл первую единицу мощности — лошадиную силу (позднее его именем была названа другая единица мощности — ватт). Паровая машина Уатта благодаря экономичности получила широкое распространение и сыграла огромную роль в переходе к машинному производству.

Итальянский анатом Луиджи Гальвани в 1791 году опубликовал труд «Трактат о силах электричества при мышечном движении».

Это открытие через 121 год дало толчок исследованиям человеческого организма с помощью биоэлектрических токов. Обнаруживались больные органы при исследовании их электрических сигналов. Работа любого органа (сердца, мозга) сопровождается биологическими электрическими сигналами, имеющими для каждого органа свою форму. Если орган не в порядке, сигналы изменяют свою форму, и при сравнении «здоровых» и «больных» сигналов обнаруживаются причины заболевания.

Опыты Гальвани натолкнули на изобретение нового источника электричества профессора Тессинского университета Алессандро Вольта. Он дал опытам Гальвани с лягушкой и разнородными металлами иное объяснение, доказал, что электрические явления, которые наблюдал Гальвани, объясняются только тем, что определенная пара разнородных металлов, разделенная слоем специальной электропроводящей жидкости, служит источником электрического тока, протекающего по замкнутым проводникам внешней цепи. Эта теория, разработанная Вольтой в 1794 году, позволила создать первый в мире источник электрического тока, который назывался Вольтов столб.

Он представлял собой набор пластин из двух металлов, меди и цинка, разделенных прокладками из войлока, смоченного в соляном растворе или щелочи. Вольта создал прибор, способный за счет химической энергии производить электризацию тел и, следовательно, поддерживать в проводнике движение зарядов, то есть электрический ток. Скромный Вольта назвал свое изобретение в честь Гальвани «гальваническим элементом», а электрический ток, получающийся от этого элемента – «гальваническим током».

Первые законы электротехники

В начале XIX века опыты с электрическим током привлекали внимание ученых из разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки компаса под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В 1820 году это явление в своем докладе подробно описал датский физик Ганс Христиан Эрстед. Небольшая, всего в пять страниц, книжка Эрстеда в том же году была издана в Копенгагене на шести языках и произвела огромное впечатление на коллег Эрстеда из разных стран.

Однако правильно объяснить причину явления, которое описал Эрстед, первым сумел французский ученый Андре Мари Ампер. Оказалось, ток способствует возникновению в проводнике магнитного поля. Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления – электричество и магнетизм – одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы.

Воодушевленный открытиями Эрстеда и Ампера, другой ученый, англичанин Майкл Фарадей предположил, что не только магнитное поле может воздействовать на магнит, но и наоборот – двигающийся магнит будет оказывать воздействие на проводник. Серия опытов подтвердила эту блестящую догадку – Фарадей добился того, что подвижное магнитное поле создало в проводнике электрический ток.

Позже это открытие послужило основой для создания трех главных устройств электротехники – электрического генератора, электрического трансформатора и электрического двигателя.

Начальный период использования электричества

У истоков освещения с помощью электричества стоял Василий Владимирович Петров, профессор медицинско-хирургической Академии в Петербурге. Исследуя световые явления, вызываемые электрическим током, он в 1802 году сделал свое знаменитое открытие – электрическую дугу, сопровождающуюся появлением яркого свечения и высокой температуры.

Жертвы ради науки

Русский учёный Василий Петров, первым в мире в 1802 году описавший явление электрической дуги, не жалел себя при проведении экспериментов. В то время не было таких приборов, как амперметр или вольтметр, и Петров проверял качество работы батарей по ощущению от электрического тока в пальцах. Чтобы чувствовать слабые токи, учёный срезал верхний слой кожи с кончиков пальцев.

Наблюдения и анализ Петровым свойств электрической дуги легли в основу создания электродуговых ламп, ламп накаливания и много другого.

В 1875 году Павел Николаевич Яблочков создает электрическую свечу, состоящую из двух угольных стержней, расположенных вертикально и параллельно друг другу, между которыми проложена изоляция из каолина (глины). Чтобы горение было более продолжительным, на одном подсвечнике помещалось четыре свечи, которые горели последовательно.

В свою очередь Александр Николаевич Лодыгин ещё в 1872 году предложил вместо угольных электродов использовать нить накаливания, которая при протекании электрического тока ярко светилась. В 1874 году Лодыгин получил патент на изобретение лампы накаливания с угольным стерженьком и ежегодную Ломоносовскую премию Академии наук. Устройство было запатентовано также в Бельгии, Франции, Великобритании, Австро-Венгрии.

В 1876 году Павел Яблочков завершил разработку конструкции электрической свечи, начатой в 1875 г. и 23 марта получил французский патент, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. «Свеча Яблочкова» оказалась проще, удобнее и дешевле в эксплуатации, чем лампа А. Н. Лодыгина. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Так же Яблочков предложил первые практически применявшиеся трансформаторы переменного тока с разомкнутой магнитной системой.

Тогда же в 1876 году в России была сооружена первая электростанция на Сормовском машиностроительном заводе, ее прародительница была построена в 1873 году под руководством бельгийско-французского изобретателя З.Т. Грамма для питания системы освещения завода, так называемая блок-станция.

В 1879 русские электротехники Яблочков, Лодыгин и Чиколев совместно с рядом других электротехников и физиков организовали в составе Русского технического общества Особый Электротехнический отдел. Задачей отдела было содействие развитию электротехники.

Уже в апреле 1879 года впервые в России электрическими фонарями освещен мост – мост Александра II (ныне Литейный мост) в Санкт-Петербурге. При содействии Отдела на Литейном мосту введена первая в России установка наружного электрического освещения (дуговыми лампами Яблочкова в светильниках, изготовленных по проекту архитектора Кавоса), положившая начало созданию местных систем освещения дуговыми лампами некоторых общественных зданий Петербурга, Москвы и других больших городов. Электрическое освещение моста устроенное В.Н. Чиколевым, где горело 12 свечей Яблочкова вместо 112 газовых рожков, функционировало всего 227 дней.

Трамвай Пироцкого

Вагон электрического трамвая изобрел Федор Аполлонович Пироцкий в 1880 году. Первые трамвайные линии в Санкт-Петербурге были проложены только зимой 1885 года по льду Невы в районе Мытнинской набережной, так как право на использование улиц для пассажирских перевозок имели только владельцы конок – рельсового транспорта, который передвигался при помощи лошадей.

В 80-е годы возникли первые центральные станции, они были более целесообразны и более экономичны, чем блок-станции, так как снабжали электричеством сразу много предприятий.

В то время массовыми потребителями электроэнергии были источники света – дуговые лампы и лампы накаливания. Первые электростанции Петербурга вначале размещались на баржах у причалов рек Мойки и Фонтанки. Мощность каждой станции составляла примерно 200 кВт.

Первая в мире центральная станция была пущена в работу в 1882 году в Нью-Йорке, она имела мощность 500 кВт.

В Москве электрическое освещение впервые появилось в 1881 году, уже в 1883 году электрические светильники иллюминировали Кремль. Специально для этого была сооружена передвижная электростанция, которую обслуживали 18 локомобилей и 40 динамо-машин. Первая стационарная городская электростанция появилась в Москве в 1888 году.

Нельзя забывать и о нетрадиционных источниках энергии.

Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт.

План ГОЭЛРО

В России создавались электростанции в конце XIX и начале XX веков, однако, бурный рост электроэнергетики и теплоэнергетики в 20-е годы XX столетия после принятия по предложению В.И. Ленина плана ГОЭЛРО (Государственной электрификации России).

22 декабря 1920 года VIII Всероссийский съезд Советов рассмотрел и утвердил Государственный план электрификации России – ГОЭЛРО, подготовленный комиссией, под председательством Г.М. Кржижановского.

План ГОЭЛРО должен был быть реализован в течении десяти-пятнадцати лет, а его результатом должно было стать создание «крупного индустриального хозяйства страны». Для экономического развития страны это решение имело огромное значение. Недаром свой профессиональный праздник российские энергетики отмечают именно 22 декабря.

В плане много уделялось проблеме использования местных энергетических ресурсов (торфа, воды рек, местного угля и др.) для производства электрической энергии.

8 октября 1922 года состоялся официальный пуск станции «Уткина заводь» — первой торфяной электростанции в Петрограде.

Первая ТЭЦ России

Самая первая тепловая электростанция, построенная по плану ГОЭЛРО в 1922 году, называлась «Уткина заводь». В день пуска участники торжественного митинга переименовали ее в «Красный октябрь», и под этим именем она проработала до 2010 года. Сегодня это Правобережная ТЭЦ ПАО «ТГК-1».

В 1925 году запустили Шатурскую электростанцию на торфе, в тот же год на Каширской электростанции начали освоение новой технологии сжигания подмосковного угля в виде пыли.

Днем начала теплофикации в России можно считать 25 ноября 1924 года – тогда заработал первый теплопровод от ГЭС-3, предназначенный для общего пользования в доме номер девяносто шесть на набережной реки Фонтанки. Электростанция № 3, которую переоборудовали для комбинированной выработки тепловой и электрической энергии, является первой в России теплоэлектроцентралью, а Ленинград – пионером теплофикации. Централизованное снабжение горячей водой жилого дома функционировало без сбоев, и через год ГЭС-3 стало снабжать горячей водой бывшую Обуховскую больницу и бани, находящиеся в Казачьем переулке. В ноябре 1928 года к тепловым сетям государственной электростанции № 3 подключили здание бывших Павловских казарм, располагавшихся на Марсовом поле.

В 1926 году была пущена в эксплуатацию мощная Волховская ГЭС, энергия которой по линии электропередачи напряжением 110 кВ, протяженностью 130 км поступала в Ленинград.

Первая ГЭС по плану

Самая первая гидроэлектростанция, построенная по плану ГОЭЛРО – Волховская ГЭС. Ее ввели в эксплуатацию 19 декабря 1926 года. Станция и сегодня продолжает исправно работать, являясь неотъемлемой частью энергосистемы Северо-Запада.

Волховстрой стал первой школой советского гидроэнергостроительства.

Здесь впервые решались сложные инженерные и технические проблемы проектирования и строительства плотины, здания станции, линии электропередачи, электроподстанций, а также монтажа и наладки оборудования. Численность работающих доходила до 15 тысяч человек.

Строительство электростанции начиналось в трудные годы для еще молодой Советской республики. Поэтому часть необходимого оборудования приходилось закупать за границей.

Однако петроградский завод «Электросила» обратился с просьбой к Волховстрою передать им изготовление части оборудования. Это предложение рассматривалось как неслыханная дерзость. Завод «Электросила» совместно с другими заводами Петрограда–Ленинграда блестяще справился с поставленной задачей.

Даже эмигрантская газета «Накануне» досадливо признавала: «В России имеется три чуда: Красная Армия, Сельскохозяйственная выставка и Волховстрой». Четыре других генератора, высоковольтные трансформаторы, выключатели, электрооборудование для собственных нужд поставила шведская фирма «ASEA».

Все вопросы технического характера решались с широким привлечением ленинградских организаций: гидравлических лабораторий Ленинградского политехнического института, Института путей сообщений, Электротехнического института и др. По вопросам гидротехнических и строительных работ, а также по электротехническим вопросам, по которым не имелось достаточного отечественного опыта, обращались к иностранным специалистам.

Атомная энергетика XX века

20 декабря 1951 года, ядерный реактор впервые в истории произвел пригодное для использования количество электроэнергии — в нынешней Национальной Лаборатории INEEL Департамента энергии США. Реактор выработал достаточную мощность, чтобы зажечь простую цепочку из четырех 100-ваттных лампочек. После второго эксперимента, проведенного на следующий день, 16 участвовавших в нем учёных и инженеров «увековечили» свое историческое достижение, написав мелом свои имена на бетонной стене генератора.

Советские ученые приступили к разработке первых проектов мирного использования атомной энергии ещё во второй половине 1940-х годов. А 27 июня 1954 года в городе Обниск была запущена первая атомная электростанция.

Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева). К концу ХХ века в мире насчитывалось уже более 400 атомных электростанций.

Современная энергетика. Конец XX века

Конец XX века ознаменован различными событиями, связанными как с высокими темпами строительства новых станции, началом развития возобновляемых источников энергии, ак и с появлением первых проблем от сформировавшейся огромной мировой энергосистемы и попытками их решить.

Блэкаут

Американцы называют ночь на 13 июля 1977 «Ночью страха». Тогда случилась огромная по своим размерам и последствиям авария на электрических сетях в Нью-Йорке.  Из-за попадания молнии в линию электропередачи на 25 часов была прервана подача электричества в Нью-Йорк и 9 млн жителей оказались без электроснабжения. Трагедии сопутствовал финансовый кризис, в котором пребывал мегаполис, необыкновенно жаркая погода, и небывалый разгул преступности. После отключения электричества на фешенебельные кварталы города набросились банды из бедных кварталов. Считается, что именно после тех страшных событий в Нью-Йорке понятие «блэкаут» стало повсеместно использоваться применительно к авариям в электроэнергетике. 

Так как современное сообщество всё больше зависит от электроэнергии, аварии на электросетях наносят ощутимые убытки предприятиям, населению и правительствам. Во время аварии выключаются осветительные приборы, не работают лифты, светофоры, метро. На жизненно важных объектах (больницы, военные объекты и т. д.) для функционирования жизнедеятельности во время аварий в энергосистемах используются автономные источники питания: аккумуляторы, генераторы. Статистика показывает значительное увеличение аварий в 90-е гг. XX — начале XXI вв.

В те годы продолжалось развитие альтернативной энергетики. В сентябре 1985 года состоялось пробное включение генератора первой солнечной электростанции СССР в сеть. Проект первой в СССР Крымской СЭС был создан в начале 80-х в рижском отделении института «Атомтеплоэлектропроект» при участии тринадцати других проектно-конструкторских организаций Министерства энергетики и электрификации СССР. Полностью станция вступила в строй в 1986 году.

В 1992 году началось строительство крупнейшей в мире ГЭС «Три ущелья» в Китае на реке Янцзы. Мощность станции — 22,5 ГВт. Напорные сооружения ГЭС образуют крупное водохранилище площадью 1 045 км², полезной ёмкостью 22 км³. При создании водохранилища было затоплено 27 820 га обрабатываемых земель, было переселено около 1,2 млн человек. Под воду ушли города Ваньсянь и Ушань. Полное завершение строительства и ввод в официальную эксплуатацию состоялся 4 июля 2012 года.

Развитие энергетики неотделимо от проблем, связанных с загрязнением окружающей среды. В Киото (Япония) в декабре 1997 года в дополнение к Рамочной конвенции ООН об изменении климата был принят Киотский протокол. Он обязывает развитые страны и страны с переходной экономикой сократить или стабилизировать выбросы парниковых газов в 2008 – 2012 годах по сравнению с 1990 годом. Период подписания протокола открылся 16 марта 1998 года и завершился 15 марта 1999 года.

По состоянию на 26 марта 2009 Протокол был ратифицирован 181 страной мира (на эти страны совокупно приходится более чем 61 % общемировых выбросов). Заметным исключением из этого списка являются США. Первый период осуществления протокола начался 1 января 2008 года и продлится пять лет до 31 декабря 2012 года, после чего, как ожидается, на смену ему придёт новое соглашение.

Киотский протокол стал первым глобальным соглашением об охране окружающей среды, основанным на рыночном механизме регулирования — механизме международной торговли квотами на выбросы парниковых газов.

Карта генерации России

XXI век, а точнее 2008 год, стал знаковым для энергетической системы России, было ликвидировано Российское открытое акционерное общество энергетики и электрификации «ЕЭС России» (ОАО РАО «ЕЭС России») — российская энергетическая компания, существовавшая в 1992—2008 годах. Компания объединяла практически всю российскую энергетику, являлась монополистом на рынке генерации и энерготранспортировки России. На её месте возникли государственные естественно-монопольные компании, а также приватизированные генерирующие и сбытовые компании.

В XXI веке в России строительство электростанций выходит на новый уровень, начинается эра применения парогазового цикла. Россия способствует наращиванию новых генерирующих мощностей — в 2018 году страна завершает строительство мощностей по программе ДПМ. Крупнейшие компании обсуждают необходимость вывода из эксплуатации старых станций, дополняя свои стратегии развития пунктами об увеличении эффективности использования текущих ресурсов. 

Электричество — величайшее изобретение человечества

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита.

—-Основные свойства и законы электричества—установлены любителями.

Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров.

Электричество—это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания.

Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития.

Янтарь упорно терли, любовались им, делали из него различные украшения, и на этом дело ограничивалось.

В 1600 г. в Лондоне была опубликована книга английского врача В.Гильберта, в которой он впервые показал, что способностью янтаря притягивать после трения легкие предметы обладают и многие другие тела, в том числе стекло. Он заметил также, что влажность воздуха в значительной степени препятствует этому явлению.

—-Ошибочная концепция Гильберта.

Однако Гильберт и первым ошибочно установил различительную грань между электрическими и магнитными явлениями, хотя в действительности эти явления порождаются одними и теми же электрическими частицами и никакой грани между электрическими и магнитными явлениями не существует. Эта ошибочная концепция имела далеко идущие последствия и надолго запутала существо вопроса.

Гильберт обнаружил также, что магнит теряет магнитные свойства при нагревании и восстанавливает их при охлаждении. Он использовал насадку из мягкого железа для усиления действия постоянных магнитов, первым стал рассматривать Землю, как магнит. Уже из одного этого краткого перечисления видно, что врачом Гильбертом были сделаны важнейшие открытия.

Самое удивительное в этом анализе заключается в том, что до Гильберта, начиная от древних греков, которые установили свойства янтаря, и китайцев, которые пользовались компасом, не было никого, кто бы сделал такие выводы и так систематизировал наблюдения.

—-Вклад в науку О.Генрике.

Тогда события развивались необыкновенно медленно. Прошел 71 год, прежде чем немецким бургомистром О.Герике в 1671 г. был сделан следующий шаг. Вклад его в электричество был огромным.

Герике установил взаимное отталкивание двух наэлекризованных тел (Гильберт полагал, что существует лишь притяжение), передачу электричества от одного тела к другому с помощью проводника, электризацию посредством влияния при приближении к незаряженному телу наэлектризованного тела, и, самое главное,— первым построил основанную на трении электрическую машину. Т.е.

он создал все возможности для дальнейшего проникновения в сущность электрических явлений.

—-Не только физики внесли свой вклад в развитие электричества.

Прошло еще 60 лет, прежде чем французский ученый Ш.Дюфе в 1735-37 гг. и американский политик Б.Франклин в 1747-54 гг.

установили, что электрические заряды бывают двух родов. И, наконец, в 1785 г. французским артиллерийским офицером Ш.Кулоном был сформирован закон взаимодействия зарядов.

Надо указать также на работу итальянского врача Л.Гальвани. Огромное значение имели работы А.Вольта по созданию мощного источника постоянного тока в виде «вольтова столба».

Важный вклад в познание электричества произошел в 1820 г., когда датский профессор физики Х.Эрстед открыл воздействие проводника с током на магнитную стрелку. Практически одновременно было открыто и изучено А.Ампером взаимодействие между собой токов, имеющее чрезвычайно важное прикладное значение.

Большой вклад в изучение электричества был внесен также аристократом Г.Кавендишем, аббатом Д.Пристли, школьным учителем Г.Омом. На основании всех этих исследований подмастерье М.Фарадей открыл в 1831 г. электромагнитную индукцию, которая в действительности является одной из форм взаимодействия токов.

Почему в течение тысячелетий люди ничего не знали об электричестве? Почему в этом процессе участвовали самые различные слои населения? В связи с развитием капитализма был общий подъем экономики, ломались средневековые кастовые и сословные предрассудки и ограничения, поднимался общий культурный и образовательный уровень населения. Однако и тогда не обошлось без трудностей. Например, Фарадею, Ому и ряду других талантливых исследователей приходилось вести ожесточенные бои со своими теоретическими противниками и оппонентами. Но все же, в конечном итоге, их идеи и взгляды публиковались и находили признание.

Из всего этого можно сделать интересные выводы: научные открытия делаются не только академиками, но и любителями науки.

Если мы хотим, чтобы наша наука находилась на передовых позициях, то должны помнить и учитывать историю ее развития, бороться с кастовостью и монополизмом односторонних взглядов, создавать равные условия для всех талантливых исследователей, независимо от их научного статуса.

Поэтому пора открыть страницы наших научных журналов для школьных учителей, артиллерийских офицеров, аббатов, врачей, аристократов и подмастерьев, чтобы и они смогли принять активное участие в научном творчестве. Сейчас они лишены такой возможности.

Урок истории электричества для детей — видео и стенограмма урока

Бенджамин Франклин

Вы можете знать Бенджамина Франклина как одного из отцов-основателей, но он также открыл электричество в ходе эксперимента с молнией. Франклин в 1752 году считал молнию интересной и хотел узнать о ней больше. Итак, он сделал что-то очень опасное, что никто из нас не должен пытаться. Он вытащил воздушного змея на улицу во время грозы, намочил веревку воздушного змея, вставил в конец металлический ключ и позволил воздушному змею плыть в шторм.Он обнаружил, что электричество от грозовых туч спустилось по струне, и он получил удар электрическим током.

Бенджамину Франклину повезло, он получил только шок. Однако этот опасный эксперимент стал отправной точкой для большего числа ученых, которые будут экспериментировать с электричеством в течение следующих ста лет. Эти ученые и изобретатели хотели выяснить, что можно сделать с электричеством, которое Бенджамин Франклин обнаружил в своем эксперименте.

И именно человек по имени Томас Эдисон открыл следующую важную веху в истории электричества.

Томас Эдисон

Томас Эдисон был первым зарегистрированным изобретателем, который произвел долговечную электрическую лампочку, которую он создал в своей лаборатории в 1879 году. Он продолжал экспериментировать, улучшая свое изобретение, и к концу 1880-х годов, Томас Эдисон смог запитать несколько городских кварталов через электрические станции.

Изобретатели продолжали экспериментировать с электричеством, и к 1930-м годам у большинства людей в крупных городах было электричество.Вскоре после этого электричество достигло семей, живущих в сельских районах Соединенных Штатов, благодаря тогдашнему президенту Франклину Д. Рузвельту. Он считал, что фермеры Америки должны иметь доступ к электричеству, как и люди, живущие в городах. Так, в 1935 году было создано сельское электрическое управление для подачи электричества в сельскую местность. Таким образом, к концу 1930-х годов фермеры в сельской местности также имели доступ к электричеству в своих домах.

Сегодня почти каждая семья имеет доступ к электричеству в своих домах, школах и на рабочих местах.Если вы подумаете о своих повседневных взаимодействиях, вы поймете, что трудно представить жизнь без электричества.

Краткое содержание урока

Электричество — это поток электроэнергии или заряда от источников энергии. Любопытный Бенджамин Франклин обнаружил электричество во время экспериментов в бурную ночь, когда он был поражен электрическим током от молнии. В течение следующих ста лет изобретатели и ученые продолжали развивать это открытие. Томас Эдисон был первым, кто изобрел электрическую лампочку с длительным сроком службы, а президент Франклин Д.Рузвельт в 1935 году создал Сельское управление электроснабжения , которое обеспечило электричеством сельские районы, в том числе фермы. Оттуда доступ к электричеству расширился до того, что мы имеем сегодня.

Alliant Kids — Кто изобрел электричество? и другие факты об энергетике

Большинство отключений электроэнергии вызвано погодными условиями.

Сильный ветер, ледяной шторм и сильный снегопад могут сломать деревья и опоры электропередач, которые упадут и сломают линии. Когда это происходит, энергетические компании работают быстро, чтобы восстановить подачу электроэнергии, как только это станет безопасным.

В случае отключения электричества линейные рабочие — герои. Это люди, которые устанавливают, обслуживают и ремонтируют линии электропередач. Они идут навстречу опасности — включая снежные бури и даже ураганы и торнадо — чтобы восстановить энергию.

Отключение электроэнергии никогда не бывает забавным (отвратительно от невозможности использовать телевизор для видеоигр), но в определенных ситуациях это особенно опасно. Подумайте о больницах, где нужно заботиться о сотнях людей и которым нужен свет, чтобы видеть. Или пожилые люди, которые живут одни и могут нуждаться в кислородных устройствах, чтобы выжить.

Иногда энергокомпания планирует отключение электроэнергии в определенной области для выполнения необходимых работ. Этот тип сбоев встречается редко и затрагивает только небольшое количество людей одновременно. Люди, которых затронул этот тип отключения, уведомляются заранее.

Процесс восстановления электроснабжения Alliant Energy

  • Убедитесь, что у критически важных служб, таких как полиция, пожарные депо и больницы, есть электричество.
  • Проверьте объекты генерации, чтобы определить, работает ли все еще исходный источник энергии.
  • Ремонт линий электропередачи от генерирующих станций к подстанциям.
  • Ремонтные подстанции, на которых снижается мощность ЛЭП для бытового использования.
  • Ремонт распределительных линий, по которым электричество подается от подстанций в каждый квартал.
  • Отремонтируйте водопроводные линии, обслуживающие от 20 до 300 домов и предприятий.
  • Повторное подключение линий к отдельным клиентам — это самый сложный и трудоемкий этап в процессе восстановления.

Изобретение электрического освещения — Электричество и альтернативные источники энергии

  • Фазовых наконечников копья Хлодвига, используемых в современной Альберте.

    наконечников копья фазы Хлодвига представляют собой старейшую охотничью технологию в Альберте, да и во всей Северной Америке. Эти рифленые, зазубренные каменные наконечники прикреплялись к кости или деревянному стержню и использовались для охоты на огромную добычу, такую ​​как мамонты и мастодонты.
    Источник: Отдел управления историческими ресурсами, Археологическая служба

    .
  • Технология Atlatl (метание копья) появляется в современной Альберте.

    Атлатлы использовались ранними охотниками для увеличения скорости метательного оружия. Копья или дротики, брошенные атлатлем, могли нанести животному разрушительные раны, позволяя охотнику убить животное с безопасного расстояния.
    Источник: любезно предоставлено Head-Smashed-In Buffalo Jump

  • Лук и стрелы достигли нынешней Альберты.

    Технологии лука и стрел в Северной Америке, похоже, сначала развивались в Арктике, а затем распространились на юг по всему континенту.Лук и стрела идеально подходили для использования на широких открытых пространствах Великих равнин и получили широкое распространение по всему региону.
    Источник: любезно предоставлено Head-Smashed-In Buffalo Jump

  • «Конная революция» начинается в современной Альберте.

    лошадей завезли в Северную Америку испанские колонисты в шестнадцатом веке. Из испанской колонии Нью-Мексико лошади распространились по Северной Америке, достигнув современной Альберты в 1730-х годах.Принятие лошади оказало значительное влияние на способы охоты / передвижения коренных народов равнин.
    Источник: Королевский музей Альберты

  • Национальный парк Скалистых гор создан канадским правительством.

    Одной из главных достопримечательностей нового парка были природные горячие источники. Роскошный отель Banff Springs, построенный канадской Тихоокеанской железной дорогой в 1888 году, закачивал воду из горячих источников в бассейны и процедурные кабинеты.Туристы стекались сюда, чтобы воспользоваться предполагаемыми лечебными свойствами воды.
    Источник: Музей Уайта в канадских Скалистых горах, v263-na-3562

    .
  • Calgary Water Power Company открывает первую гидроэлектростанцию ​​в Альберте.

    Компания принадлежала предпринимателю Питеру Принсу, который также управлял компанией Eau Claire & Bow River Lumber Company. С 1894 по 1905 год компания была основным поставщиком электроэнергии для города Калгари.
    Источник: Архивы Гленбоу, NA-4477-44

    .
  • Город Эдмонтон покупает компанию Edmonton Electric Lighting Company.

    Решение в пользу государственной собственности было принято после неоднократных перебоев в работе частной коммунальной службы. Эдмонтон был первым крупным городским центром Канады, у которого была собственная электроэнергетическая компания.
    Источник: Архивы Гленбоу, NC-6-271

  • Образована компания Calgary Power Company.

    Основатель компании Макс Эйткен изначально был привлечен в регион его огромным гидроэнергетическим потенциалом. Компания превратится в крупнейшее коммунальное предприятие Канады, принадлежащее инвесторам. В 1981 году компания сменила название на TransAlta Utilities Corporation, чтобы лучше отразить ее провинциальный охват.
    Источник: Фото любезно предоставлено TransAlta

    .
  • Первая гидроэлектростанция в Альберте открывается у водопада Подкова.

    Принадлежащая и управляемая Calgary Power, плотина Horseshoe Falls была первым из двух таких сооружений, построенных в системе Bow River до Первой мировой войны.Вторая гидроэлектростанция начала работу на водопаде Кананаскис в 1913 году.
    Источник: Glenbow Archives NA-3544-28

  • Начало эксплуатации Призрачной плотины гидроэлектростанции

    Это массивное сооружение было самой большой плотиной гидроэлектростанции в Альберте на момент ее строительства. Электростанция Ghost Power Plant более чем вдвое увеличила объем электроэнергии, вырабатываемой компанией Calgary Power, которая уже была основным поставщиком энергии в провинции.
    Источник: Архивы Гленбоу, NA-5663-44

    .
  • Первая Сельская Ассоциация Электрификации (REA) в Альберте основана в Спрингбанке.

    В течение следующих двух десятилетий в провинции будет создано в общей сложности 416 REA. Эти организации сыграют решающую роль в распространении электроэнергии в сельских районах Альберты.
    Источник: Архивы Гленбоу, NA-4160-20

    .
  • Избиратели Альберты категорически отвергают предложение о государственной собственности на электроэнергетические предприятия.

    Провинциальные выборы 1948 года включали плебисцит по вопросу владения электроэнергетическими предприятиями в Альберте.Сельские районы в основном проголосовали за государственную собственность, в то время как городские избиратели (особенно в южной Альберте) поддержали сохранение частной собственности. В конце концов, голосование было очень близким: общественная собственность проиграла всего лишь 151 голосом.
    Источник: Изображение любезно предоставлено Peel ’Prairie Provinces, цифровой инициативой Библиотеки Университета Альберты

  • Ветряная электростанция Коули-Ридж начинает работу недалеко от Пинчер-Крик.

    Cowley Ridge была первой коммерческой ветряной электростанцией в Канаде.Всего в 1993-94 гг. Было установлено 52 ветряных турбины. В 2000 году проект был расширен за счет добавления пятнадцати новых (и гораздо более мощных) турбин.
    Источник: Фото любезно предоставлено TransAlta

    .
  • Солнечное сообщество Drake Landing открывается недалеко от Окотокса, Альберта.

    Drake Landing — первое полностью интегрированное солнечное сообщество в Северной Америке. В этой отмеченной наградами инициативе используется технология солнечного отопления, чтобы удовлетворить большинство потребностей населения в отоплении помещений и горячей воде.
    Источник: Wikimedia Commons / CA-BY-SA-3.0

  • Город Эдмонтон объявляет о запуске проекта «Преобразование отходов в биотопливо».

    В рамках проекта по переработке отходов в биотопливо мусор будет превращаться в биотопливо путем сбора углерода из отходов. В проект входит Центр перспективных энергетических исследований, который открылся в 2012 году.
    Источник: Фото предоставлено Enerkem

  • Вспоминая отца электричества: 7 неизвестных фактов о Майкле Фарадее

    Майкл Фарадей

    Отец электричества Майкл Фарадей родился 22 сентября 1791 года.Английский ученый, ответственный за открытие электромагнитной индукции, электролиза и диамагнетизма, происходил из бедной семьи кузнецов. Из-за слабой финансовой поддержки Фарадей получил только базовое образование.

    В возрасте 14 лет он работал учеником в книжном магазине на Бландфорд-стрит в Лондоне. Именно в этом магазине он получил возможность заниматься самообразованием. Он проявил большой интерес к науке об электричестве, которая оказалась чрезвычайно полезной не только для него, но и для будущего человечества.

    Мы представляем вам 7 неизвестных фактов об Отце Электричества:
    • Майкл Фарадей отвечает за обширное исследование электромагнетизма, области, которая изменила образ жизни людей на этой планете. Чтобы отдать дань уважения ему, Фарад, устройство, используемое для измерения электрической емкости, названо в честь Фарадея

    • В 1826 году Фарадей основал Королевский институт лондонских знаменитых лондонских вечерних бесед и рождественских лекций.Обе эти практики продолжаются и по сей день.
    Источник: Википедия
    • Электромагнитная индукция, принцип, лежащий в основе электрического трансформатора и генератора, был открыт Фарадеем в 1831 году.
    • Именно Фарадей первым популяризировал концепцию искусственного охлаждения или охлаждения. . Он сказал, что любой газ можно сжать до жидкой формы, а затем выпустить в виде пара, что заставит газ действовать как хладагент.
    • Бензол, важный нефтехимический продукт, используемый при производстве пластика, был открыт Майклом Фарадеем.Он нашел его в маслянистых остатках газовых фонарей в Лондоне.
    • Вы когда-нибудь задумывались, почему вы не получаете удар током во время полета во время шторма? Это потому, что самолет построен по концепции клетки Фарадея. Майкл Фарадей изобрел ограждение, которое могло препятствовать проникновению любого электрического заряда внутрь, защищая объект в клетке.

    Заинтересованы в общих знаниях и текущих делах? Щелкните здесь, чтобы оставаться в курсе событий и узнавать, что происходит в мире с нашим G.К. и раздел «Текущие события».

    Чтобы получить дополнительную информацию о текущих событиях, отправьте свой запрос по почте на адрес [email protected]

    Щелкните здесь, чтобы получить полный охват IndiaToday.in о пандемии коронавируса.

    Пять изобретателей, которые сделали возможным электричество сегодня

    Майкл Фарадей и электромагнетизм


    Майкл Фарадей сосредоточил свое внимание на электромагнетизме и сделал несколько ключевых открытий, таких как электромагнитная индукция, основа генераторов и электродвигателей.Ему также приписывают получение электричества с помощью движущегося магнита и катушки.

    Он также тщательно исследовал электролиз, открытый много лет назад Уильямом Николсоном. Вскоре после этого Фарадей разработал два закона, которые носят его имя: законов электролиза Фарадея. Это открытие сделало его основоположником электромагнетизма и электрохимии.

    Фарадей показал, что магнетизм производит электричество движением.

    Джеймс Клерк Максвелл и беспроводной телеграф

    Джеймс Клерк Максвелл занялся работой Фарадея и расширил свои исследования электромагнитных полей.

    Он разработал четыре дифференциальных уравнения, математически связывающих электрические и магнитные поля. Эти уравнения названы в его честь и известны как уравнения Максвелла .

    Исследования физика позволили Генриху Рудольфу Герцу получить электромагнитные радиоволны. Кроме того, благодаря его достижениям на свет появились беспроводной телеграф и радио . Фактически, наследие Максвелла во всех областях является одним из самых значительных: на протяжении предыдущего столетия многие другие ученые, такие как Эйнштейн.продолжил свои исследования.

    Эдисон и первая лампочка

    Хотя многие считают, что он был изобретателем лампочки , на самом деле то, что сделал Томас Альва Эдисон, улучшило ее работу, так что она стала коммерчески прибыльной.

    Его достижения побудили города в Европе и США установить систем электрического освещения постоянного тока . Спустя годы эта система была заменена системой переменного тока, разработанной Tesla и Westinghouse, которая в конечном итоге оказалась более эффективной и безопасной.

    Открытия и исследования Эдисона сыграли фундаментальную роль в создании радиоклапана и электроники. Кроме того, изобретатель работал в других сферах, таких как кино, электрический железнодорожный транспорт и телеграф.

    Вестингауз прагматик

    Джордж Вестингауз увидел свое будущее в системе переменного тока Николы Теслы. Он купил сербский проект и усовершенствовал его, включая улучшенный трансформатор и добавив генератор переменного тока.

    Он основал Westinghouse Electric & Manufacturing Company для внедрения системы переменного тока, которая заменит систему постоянного тока Эдисона. Он также накопил около 400 патентов на свое имя, в том числе инновационную систему для транспортировки газа и другие.

    Эдисон против Вестингауза: шокирующее соперничество | История

    Feedloader (кликабельность)

    Стив Джобс и Билл Гейтс. Они были гениальными соперниками: два американских титана, которые изменили технологическую индустрию и дожили до воплощения своего видения компьютеров и электронных устройств в миллиардах домов и офисов по всему миру.Тем не менее, их философия и характеры были такими же разными, как ночь и день, Mac и ПК, и на протяжении многих лет они не могли сопротивляться подстрекательству и враждебности друг друга, когда заявляли о своих претензиях на глобальном рынке технологий.

    «Единственная проблема Microsoft в том, что у них просто нет вкуса, — сказал Джобс в 1996 году. — У них абсолютно нет вкуса. И я не имею в виду что-то маленькое, я имею в виду что-то большое, в том смысле, что они не думают об оригинальных идеях и не привносят особой культуры в свои продукты.”

    В 2006 году, когда Apple выпустила свою популярную рекламу Mac vs. PC, в которой модный молодой персонаж, похожий на Джобса, взаимодействует с неуклюжим, бэк-офисным типом Гейтса в коричневом костюме, Гейтс был явно раздражен. «Я не знаю, почему вести себя так, как будто он выше. Я даже не понимаю, — сказал Гейтс. «Если вы просто хотите сказать:« Стив Джобс изобрел мир, а потом пришли остальные из нас », это нормально».

    Тем не менее, несмотря на колкости (и случайные судебные процессы) и несмотря на очевидную конкуренцию, и Джобс, и Гейтс были достаточно умны, чтобы знать, что на потребительском рынке есть место для сосуществования Apple и Microsoft, и на протяжении многих лет ни один из них не был слишком горд. или слишком обижены словами другого, чтобы помешать им вступать в различные партнерские отношения на этом пути.(Фактически, в 1997 году Microsoft вложила в Apple 150 миллионов долларов наличными в то время, когда Совет директоров вернул Джобса на должность временного генерального директора, поскольку Apple понесла огромные финансовые убытки.) Однако того же нельзя сказать. за Томаса Эдисона и Джорджа Вестингауза, которые более века назад вели ужасную битву за переменный и постоянный ток, известную как «Война токов». Оба знали, что есть место только для одной американской системы электроснабжения, и Эдисон намеревался разрушить Вестингауз в «большой политической, юридической и маркетинговой игре», в ходе которой знаменитый изобретатель устроил публичные мероприятия, на которых убивали собак, лошадей и даже слона, используя Переменный ток Вестингауза.Двое мужчин будут разыгрывать свою битву на первых полосах газет и в Верховном суде в первой в стране попытке казнить человека электричеством.

    После того, как в 1879 году Эдисон разработал первую практическую лампу накаливания, поддерживаемую его собственной электрической системой постоянного тока, спешка по строительству гидроэлектростанций для выработки электроэнергии постоянного тока в городах Соединенных Штатов практически гарантировала Эдисону целое состояние в виде лицензионных отчислений. Но с самого начала Эдисон осознал ограничения мощности постоянного тока.Было очень трудно передавать данные на расстояние без значительных потерь энергии, и изобретатель обратился к 28-летнему сербскому математику и инженеру, которого он недавно нанял на Edison Machine Works, чтобы помочь решить эту проблему. Никола Тесла утверждал, что Эдисон даже предложил ему значительную компенсацию, если он сможет разработать более практичную форму передачи энергии. Тесла принял вызов. Имея математический опыт, которого не было у его босса-изобретателя, он решил модернизировать генераторы постоянного тока Эдисона.Тесла сказал Эдисону, что будущее электроснабжения связано с переменным током — где энергия высокого напряжения может передаваться на большие расстояния с использованием более низкого тока — за много миль от электростанций, что позволяет создать гораздо более эффективную систему доставки. Эдисон отверг идеи Теслы как «великолепные», но «совершенно непрактичные». Тесла был подавлен и утверждал, что Эдисон не только отказался учитывать мощность переменного тока, но и отказался должным образом компенсировать ему его работу. Тесла покинул Эдисон в 1885 году и решил самостоятельно собрать капитал для Tesla Electric Light & Manufacturing, даже рыл канавы для компании Эдисона, чтобы оплачивать его счета, пока промышленник Джордж Вестингауз из Westinghouse Electric & Manufacturing Company не стал убежденным сторонником. в области электроснабжения переменного тока, купил несколько патентов Tesla и приступил к коммерциализации системы, чтобы сделать электрическое освещение чем-то большим, чем городской роскошный сервис.Хотя идеи и амбиции Теслы можно было отбросить, у Вестингауза были и амбиции, и капитал, и Эдисон сразу осознал угрозу для своего бизнеса.

    В течение года Westinghouse Electric начала устанавливать собственные генераторы переменного тока по всей стране, уделяя особое внимание менее населенным районам, недоступным для системы Эдисона. Но Westinghouse также добивалась успехов в таких городах, как Новый Орлеан, продавая электроэнергию в убыток, чтобы врезаться в бизнес Эдисона. К 1887 году, после всего лишь года работы в бизнесе, Westinghouse уже имела в два раза меньше генерирующих станций, чем Edison.Обеспокоенность Эдисона была ощутимой, поскольку торговые агенты по всей стране были деморализованы охватом Westinghouse сельскими и пригородными районами. Но у Томаса Эдисона была идея. Несомненно, система Вестингауза должна быть более опасной, учитывая все это напряжение, проходящее по проводам. «Так же точно, как смерть, — предсказал Эдисон, — Westinghouse убьет клиента в течение 6 месяцев после того, как он установит систему любого размера».

    В ноябре 1887 года Эдисон получил письмо от дантиста из Буффало, штат Нью-Йорк, который пытался разработать более гуманный метод казни, чем повешение.Став свидетелем того, как пьяный мужчина случайно покончил с собой, прикоснувшись к работающему электрическому генератору, Альфред П. Саутвик убедился, что электричество может обеспечить более быструю и менее болезненную альтернативу для преступников, приговоренных к смерти. Возможно, у Волшебника из Менло-Парка возникнут какие-то мысли о том, какой электрический ток лучше всего «вызовет смерть во всех случаях». Эдисон, выступавший против смертной казни, сначала отказался участвовать в проекте Саутвика. Но когда дантист продолжал настаивать, Эдисон, осознав возможность, которая появилась у него на коленях, написал в ответ, что, хотя он «от всей души присоединится к усилиям по полной отмене смертной казни», у него действительно есть некоторые мысли об электрических токах, в которых можно избавляться от «преступников, приговоренных к смертной казни».”

    «Самые эффективные из них, — писал он, — известны как« машины переменного тока », производимые главным образом в этой стране г-ном Гео. Вестингауз, Питтсбург ».

    В июне 1888 года Эдисон начал демонстрировать репортерам смертоносную силу переменного тока. Он прикрепил кусок жести к динамо-машине переменного тока и повел собаку на жестянку пить из металлической сковороды. Как только собака коснулась металлической поверхности, она вскрикнула, и «собачка упала замертво».

    Эскиз казни Уильяма Кеммлера 6 августа 1890 года на переменном токе.Википедия

    Электричество убьет человека «за десятитысячную долю секунды», — сказал Эдисон одному репортеру вскоре после демонстрации и тут же напомнил ему, что «ток должен исходить от машины переменного тока».

    Битва течений началась. Вестингауз понял, что задумал Эдисон, и написал изобретателю письмо, в котором говорилось: «Я считаю, что со стороны некоторых людей была предпринята системная попытка наделать много вреда и создать как можно большую разницу между компанией Эдисона. и Westinghouse Electric Co., когда должно быть совершенно иное положение дел ». Эдисон не видел причин для сотрудничества и продолжил свои эксперименты при различных уровнях напряжения с десятками бездомных собак, купленных у соседских мальчиков в Ориндж, штат Нью-Джерси, по 25 центов каждая. Исследования Эдисона вскоре доказали, что переменный ток, по его словам, «вне всяких сомнений более губителен, чем постоянный». К концу года Эдисон устроил демонстрацию перед комитетом штата Нью-Йорк, который начал расследование по делу об использовании электричества при казнях.В своей лаборатории в Вест-Ориндж изобретатель подключил электроды к нескольким телятам и лошади; Несмотря на то, что гибель животных не была быстрой, комитет был впечатлен. Штат Нью-Йорк выразил желание приобрести «три динамо-машины Westinghouse переменного тока», но Westinghouse отказался продавать их с целью того, что теперь описывается как «смерть от электрического тока». Это не было важно. Продавец электроэнергии по имени Гарольд Браун получил заказ от государства на создание электрического стула, и Эдисон платил ему за кулисами, чтобы он использовал переменный ток в его конструкции.Каким-то образом Браун заполучил несколько динамо-машин переменного тока.

    Когда штат Нью-Йорк приговорил осужденного убийцу Уильяма Кеммлера к смертной казни, он должен был стать первым человеком, казненным на электрическом стуле. Убивать преступников электричеством «хорошая идея», — сказал тогда Эдисон. «Это будет так быстро, что преступник не сможет сильно пострадать». Он даже представил новое слово американской публике, которую все больше и больше беспокоила опасность электричества. Осужденные преступники будут «Вестингаузом.”

    Вестингауз был в ярости. Он понес бы убытки в миллионы долларов, если бы пропагандистская кампания Эдисона убедила общественность в том, что его ток переменного тока был бы смертельным для домовладельцев. Westinghouse внесла 100000 долларов на оплату судебных издержек по апелляции Кеммлера в Верховный суд США, где утверждалось, что смерть на электрическом стуле равносильна жестокому и необычному наказанию. И Кеммлер, и Вестингауз потерпели неудачу, и 6 августа 1890 года Кеммлера привязали к стулу Гарольда Брауна в тюрьме Оберн и подключили к динамо-машине переменного тока.Когда на него обрушился ток, кулак Кеммлера сжался так сильно, что кровь начала стекать с его ладони по подлокотнику кресла. Его лицо исказилось, и через 17 секунд было отключено электричество. Присутствовал Артур Саутвик, «отец электрического стула», который заявил свидетелям: «Это кульминация десяти лет работы и учебы. Сегодня мы живем в более высокой цивилизации ».

    Тем не менее, позади дантиста Кеммлер начал кричать, прося воздуха.

    «Великий Бог! Он жив!» кто-то крикнул.

    «Включите ток! Включите ток немедленно! » другой кричал. «Этот человек не мертв!»

    Но динамо-машине требовалось время, чтобы нарастить ток, и Кеммлер хрипел и задыхался перед испуганными свидетелями, когда электричество начало проходить через его тело. Некоторые свидетели упали в обморок, а других вырвало, поскольку казалось, что Кеммлер был на грани прихода в сознание. Спинка его пальто ненадолго загорелась. Прошло несколько минут, прежде чем Кеммлер окончательно окоченел. Течение прекратилось, и он был объявлен мертвым доктором.Эдвард Спицка, предсказавший, что «больше никогда не будет другого удара током».

    Вестингауз пришел в ужас от сообщений о казни Кеммлера. «Это было жестокое дело, — сказал он. «Они могли бы лучше справиться с топором».

    Слон Топси был убит электрическим током техниками Томаса Эдисона на Кони-Айленде на глазах у многотысячной толпы. Чикаго Трибьюн

    Томас Эдисон считал, что будущие казни от сети переменного тока будут проходить более гладко, «без сегодняшней сцены в Оберне.Чтобы еще больше продемонстрировать смертельную природу переменного тока, он организовал широко посещаемый спектакль на Кони-Айленде, штат Нью-Йорк, где была казнена цирковая слониха по имени Топси после того, как ее сочли слишком опасной для жизни среди людей. За последние годы слон убил троих мужчин — одного дрессировщика, который пытался накормить Топси зажженной сигаретой. Эдисон снабдил Топси сандалиями из медной проволоки, и перед многотысячной толпой через слона прошел переменный ток в 6000 вольт, пока она не упала на бок мертвой.

    Несмотря на все усилия Эдисона и его попытки убедить General Electric в обратном, Эдисон и его система постоянного тока не смогли преодолеть превосходство переменного тока. В 1893 году Вестингаузу был предоставлен контракт на освещение Всемирной выставки в Чикаго, что принесло ему всю положительную рекламу, необходимую для того, чтобы сделать переменный ток отраслевым стандартом. Со своей стороны, Эдисон позже признал, что сожалеет, что не прислушался к совету Теслы.

    Источники

    Книги : Марк Эссиг, Эдисон и электрическое кресло , Уокер и компания, 2003.Крейг Брэндон, Электрический стул: неестественная американская история , McFarland & Company, Inc., 1999. Гилберт Кинг, Казнь Уилли Фрэнсиса: раса, убийство и поиск правосудия на юге Америки , Basic Civitas Книги, 2008.

    Статьи : «Ждите СЛЕДУЮЩЕГО!» Newsweek , 11 февраля 2007 г. http://www.thedailybeast.com/newsweek/2007/02/12/wait-till-the-next-one.html Создание рабочих мест »Стива Лора, New York Times , 12 января 1997 г.«Стив Джобс и Билл Гейтс: все сложно», Джей Грин, CNET News, Microsoft, 24 августа 2011 г. «Кони-слон убит» New York Times , 6 января 1903 г.

    Научные инновации

    История магнетизма и электричества

    600 до н.э. — магнитный камень

    Магнитные свойства природных ферритных ферритов (Fe 3 O 4 ) камней (магнитов) были описаны греческими философами.

    600 до н.э. — Электрический заряд

    Янтарь — желтоватый полупрозрачный минерал. Еще в 600 г. до н.э. греческий философ Аристофан знал об его особенном свойстве: при натирании куска меха янтарь развивает способность притягивать к себе небольшие кусочки материала, например перья. На протяжении веков это странное, необъяснимое свойство считалось уникальным для янтаря. Этот странный эффект оставался загадкой более 2000 лет, пока примерно в 1600 году нашей эры доктор Уильям Гилберт не исследовал реакции янтаря и магнитов и впервые записал слово «электрический» в отчете по теории магнетизма.

    Позже, в 1895 г., Х.А. Лоренц разработал теорию электронов. Теперь мы знаем, что есть три способа производства электричества: статическая, электрохимическая и электромагнитная индукция.

    1175 — Первое упоминание о компасе

    Александр Некем, английский монах из Сент-Олбанса, описывает работу компаса.

    1269 — Первое подробное описание компаса

    Петрус Перегринус де Маринкур, французский крестоносец, описывает плавающий компас и компас с точкой поворота.

    1600 — Статическое электричество (De Magnete)

    В 16 веке Уильям Гилберт (1544–1603), придворный врач королевы Елизаветы I, доказал, что многие другие вещества являются электрическими (от греческого слова янтарь, электрон) и что они обладают двумя электрическими эффектами. При натирании мехом янтарь приобретает смолистое электричество; однако стекло при натирании шелком приобретает стекловидное электричество. Электричество отталкивает одно и то же и притягивает противоположный вид электричества. Ученые думали, что трение действительно создало электричество (их слово для обозначения заряда).Они не осознавали, что на мехе или шелке остается равное количество противоположного электричества. Доктор Уильям Гилберт понял, что сила создается, когда кусок янтаря (смолы) натирается шерстью и притягивает легкие предметы. Сегодня, описывая это свойство, мы говорим, что янтарь «наэлектризован» или обладает «электрическим зарядом». Эти термины произошли от греческого слова «электрон», означающего янтарь, и отсюда и возник термин «электричество». Лишь в конце 19 века это «нечто» состояло из отрицательного электричества, известного сегодня как электроны.

    Гилберт также изучал магнетизм и в 1600 году написал «De magnete», который дал первое рациональное объяснение таинственной способности стрелки компаса указывать север-юг: сама Земля была магнитной . «Де Магнет» открыл эру современной физики и астрономии и положил начало веку, отмеченному великими достижениями Галилея, Кеплера, Ньютона и других.

    Гилберт записал три способа намагничивания стальной иглы: прикосновением к грузоподъемному камню; холодным волочением в направлении Север-Юг; и при длительном воздействии магнитного поля Земли при ориентации Север-Юг.

    1660 — Генератор статического электричества

    Отто фон Герике изобретает грубую машину для производства статического электричества.

    1729 — Проводники и непроводники

    Стивен Грей описывает, что мощность, которой обладает одно наэлектризованное тело, может передаваться другому путем их соединения.

    1734 — Электрическое притяжение и отталкивание

    Шарль Франсуа де Систерне Дю Фай первым распознал два вида электричества.

    1730 — Составной магнит

    Servigton Savery производит первый составной магнит, связывая вместе несколько искусственных магнитов с общим полюсным наконечником на каждом конце.

    1740 — Первый коммерческий магнит

    Gowen Knight производит первые искусственные магниты для продажи научным исследователям и наземным мореплавателям.

    1745 — Electric Force, Capacitor

    Leyden Jar — одна из самых ранних и простых форм электрического конденсатора, независимо изобретенная около 1745 года голландским физиком Питером ван Мушенбруком из Лейденского университета и Эвальдом Георгом фон Клейстом из Померании. Первоначальная лейденская банка представляла собой стеклянную банку с водой с закрытой пробкой, через которую в воду выходила проволока или гвоздь.Банку заряжали, держа ее в одной руке и приводя оголенный конец провода в контакт с электрическим устройством. Если контакт между проводом и источником электричества был прерван, а провод касался другой рукой, происходил разряд, который воспринимался как сильный ток.

    Если заряд Q помещается на металлические пластины, напряжение повышается до величины V. Показателем способности конденсатора накапливать заряд является емкость C, где C = Q / V. Заряд проходит от конденсатора так же, как от аккумулятора, но с одним существенным отличием.Когда заряд покидает пластины конденсатора, без подзарядки ничего нельзя получить. Это происходит потому, что электрическая сила является консервативной. Выделяемая энергия не может превышать запасенную. Способность выполнять работу называется электрическим потенциалом .

    Тип сохранения энергии также связан с ЭДС. Электрическая энергия, получаемая от батареи, ограничена энергией, хранящейся в химических молекулярных связях. И ЭДС, и электрический потенциал измеряются в вольтах, и, к сожалению, термины напряжение, потенциал и ЭДС используются довольно свободно.Например, термин потенциал батареи часто используется вместо ЭДС.

    1747 — Стекловидное электричество, сохранение заряда

    Бенджамин Франклин (1706-90) был американским печатником, писателем, философом, дипломатом, ученым и изобретателем.

    После открытия Гилбертом того факта, что сила электрического заряда создается трением различных материалов, Бенджамин Франклин в 1747 году улучшил это положение, объявив, что этот электрический заряд состоит из двух типов электрических сил: силы притяжения и силы отталкивания .(Уильям Уотсон (1715-87) в Англии независимо пришел к такому же выводу.) Чтобы идентифицировать эти две силы, он дал названия, положительный и отрицательный заряды, и чтобы их символизировать, он использовал знаки + и -, обозначающие положительный и отрицательный заряды. the — для отрицательного. Бенджамин Франклин понял, что все материалы обладают одним видом электрической «жидкости», которая может свободно проникать в материю, но не может быть ни создана, ни разрушена. Действие трения просто передает жидкость от одного тела к другому, электризуя оба.Франклин и Ватсон разработали принцип сохранения заряда: общее количество электричества в изолированной системе постоянно. Франклин определил жидкость, которая соответствует электричеству стекловидного тела, как положительное, а отсутствие жидкости как отрицательное. Следовательно, согласно Франклину, направление потока было от положительного к отрицательному — противоположное тому, что, как теперь известно, верно. В дальнейшем была разработана теория двух жидкостей, согласно которой образцы одного типа притягиваются, а образцы противоположных типов — отталкиваются.

    Франклин был знаком с лейденским сосудом (стеклянный сосуд, покрытый изнутри и снаружи оловянной фольгой), как он может хранить заряд и как он вызывал электрошок при разрядке. Франклин задался вопросом, были ли молния и гром также результатом электрических разрядов. Во время грозы 1752 года Франклин запустил воздушного змея с металлическим наконечником. В конце влажной проводящей веревки из конопли, по которой летел змей, он прикрепил металлический ключ, к которому привязал непроводящую шелковую веревку, которую держал в руке.Эксперимент был чрезвычайно опасным, но результаты были безошибочными: когда он держал костяшки пальцев возле ключа, он мог черпать из него искры. Следующие двое, пытавшиеся провести этот чрезвычайно опасный эксперимент, были убиты.

    1750 — Первая книга по изготовлению магнитов

    Джон Митчелл издает первую книгу по изготовлению стальных магнитов.

    1757 — Мощность, паровой двигатель

    Джеймс Ватт (1736-1819) не проводил электрических экспериментов. Он был мастером по профессии и в 1757 году основал ремонтную мастерскую в Глазго.Ватт измерил скорость работы, выполняемой лошадью, поднимающей мусор в старую шахту, и обнаружил, что она составляет около 22 000 фут-фунтов в минуту. Он добавил, что запас в 50% составляет , 33000 фут-фунтов равняются одной лошадиных сил.

    Джеймс Ватт, также изобрел паровой конденсационный двигатель. Его усовершенствования паровых двигателей были запатентованы в течение 15 лет, начиная с 1769 года, и его именем была названа электрическая единица мощности — Ватт. Когда генератор Эдисона был соединен с паровой машиной Ватта, производство электроэнергии в больших масштабах стало практическим предложением.

    1767 — Электрическая сила

    Уже в 1600 году было известно, что сила притяжения или отталкивания уменьшается по мере разделения зарядов . Эта взаимосвязь была впервые поставлена ​​на числовую или количественную основу Джозефом Пристли, другом Бенджамина Франклина. В 1767 году Пристли косвенно вывел, что когда расстояние между двумя маленькими заряженными телами увеличивается в какой-то раз, силы между телами уменьшаются на квадрат множителя.Например, если расстояние между зарядами увеличивается втрое, сила уменьшается до одной девятой своего прежнего значения. Доказательство Пристли, хотя и строгое, было настолько простым, что он не стал его настойчиво защищать. Этот вопрос не считался решенным до 18 лет спустя, когда Джон Робинсон из Шотландии провел более прямые измерения задействованной электрической силы.

    1780 — Электрический ток

    Из-за несчастного случая итальянский ученый 18-го века Луиджи Гальвани начал цепочку событий, которая завершилась разработкой концепции напряжения и изобретением батареи.В 1780 году один из помощников Гальвани заметил, что рассеченная лягушачья лапа дергалась, когда он касался ее нерва скальпелем. Другой помощник подумал, что в это же время он видел искру от ближайшего заряженного электрогенератора. Гальвани предположил, что электричество было причиной мышечных сокращений. Однако он ошибочно полагал, что этот эффект был вызван переносом особой жидкости или «животным электричеством», а не обычным электричеством.

    Эксперименты, подобные этому, в которых лапы лягушки или птицы стимулировались контактом с различными типами металлов, привели Луиджи Гальвани в 1791 году к выдвижению теории о том, что ткани животных генерируют электричество.Экспериментируя с тем, что он назвал атмосферным электричеством, Гальвани обнаружил, что мышца лягушки будет подергиваться, когда ее подвешивают за медный крючок на железной решетке.

    1792 — Электрохимия, гальванический элемент

    К 1792 году другой итальянский ученый, Алессандро Вольта, не согласился: он понял, что главными факторами открытия Гальвани были два разных металла — стальной нож и оловянная пластина, на которых лежала лягушка. . различные металлы, разделенные влажной тканью лягушки, производили электричество.Нога лягушки была просто детектором.

    В 1800 году Вольта показал, что когда влага проникает между двумя разными металлами, возникает электричество. Это побудило его изобрести первую электрическую батарею, гальваническую батарею, которую он сделал из тонких листов меди и цинка, разделенных влажным картоном (войлок, пропитанный рассолом).

    Таким образом, был открыт новый вид электричества — электричество, которое течет непрерывно, как водяной поток, вместо того, чтобы разряжаться одной искрой или ударом.Вольта показал, что электричество можно заставить перемещаться из одного места в другое по проводам, тем самым сделав важный вклад в науку об электричестве.

    1820 — Электромагнетизм, ток

    В 1820 году физик Ганс Кристиан Эрстед узнал, что ток, протекающий по проводу, будет двигать стрелку компаса, расположенную рядом с ним. Это показало, что электрический ток создает магнитное поле.

    Андре Мари Ампер, французский математик, посвятивший себя изучению электричества и магнетизма, был первым, кто объяснил электродинамическую теорию.Он показал, что два параллельных провода, по которым протекает ток, притягиваются друг к другу, если токи текут в одном направлении, и противодействуют друг другу, если токи текут в противоположных направлениях. Он сформулировал в математических терминах законы, которые управляют взаимодействием токов с магнитными полями в цепи, и в результате этого от его имени была получена единица измерения электрического тока , усилитель . Электрический заряд в движении называется электрическим током. Сила тока — это количество заряда, проходящего через заданную точку в секунду, или I = Q / t, где Q кулонов заряда проходит за t секунд.Единица измерения тока — это ампер или ампер, где 1 ампер = 1 кулон / сек. Поскольку ток также является источником магнетизма, он является связующим звеном между электричеством и магнетизмом.

    1822 — Преобразования Фурье

    Барон Жозеф Фурье (1768-1830) был французским математиком. Его метод анализа волн, опубликованный в 1822 году, был результатом его работы о потоке тепла. Он показывает, как любую волну можно построить из более простых волн. Этот мощный раздел математики, преобразования Фурье, внес свой вклад в важные современные разработки, такие как распознавание электронной речи.

    1826 — Сопротивление — токи, вызывающие нагрев

    В 1826 году немецкий физик Георг Симон Ом исследовал принцип Вольта для электрической батареи и соотношение тока Ампера в цепи . Он отметил, что, когда в цепи был ток, иногда было тепло, и количество тепла было связано с разными металлами. Он обнаружил, что существует связь между током и теплом, существует некое «сопротивление» протеканию тока в цепи.Обнаружив это, он обнаружил, что если разность потенциалов (вольт) остается постоянной, ток пропорционален сопротивлению. Эта единица электрического сопротивления — ом — была названа в его честь. Он также сформулировал закон, показывающий соотношение между вольт, ампер и сопротивлением , и этот закон был назван «законом Ома», также названным в его честь. Этот закон, каким мы его знаем сегодня, лежит в основе электричества.

    1830 — Индуктивность

    В 1830 году Джозеф Генри (1797-1878) обнаружил, что изменение магнетизма может заставить токи течь, но он не смог опубликовать это.В 1832 году он описал самоиндукцию — основное свойство индуктора. В знак признания его работы индуктивность измеряется в генри. Затем была подготовлена ​​почва для всеобъемлющей электромагнитной теории Джеймса Клерка Максвелла. Разброс реальных токов огромен. Современный электрометр может обнаруживать токи величиной до 1/10000000000000000 ампер, что составляет всего 63 электрона в секунду. Ток в нервном импульсе составляет примерно 1/100 000 ампер; 100-ваттная лампочка рассчитана на 1 ампер; разряд молнии достигает пика примерно 20 000 ампер; А атомная электростанция мощностью 1200 мегаватт может выдавать 10 миллионов ампер при напряжении 115 В.

    1836 — Ячейка Даниэля

    В 1836 году Джон Даниэлл (1790-1845) предложил усовершенствованную электрическую ячейку, которая обеспечивала равномерный ток во время непрерывной работы. Ячейка Даниэля дала новый импульс исследованиям в области электричества и нашла множество коммерческих применений. В 1837 году Даниэлю была вручена высшая награда Королевского общества — медаль Копли за изобретение ячейки Даниэля.

    1837 — Телеграф, электромагнит

    После открытия электрической батареи и электромагнита Сэмюэл Морс (1791-1872) представил электрический телеграф.Закодированные сообщения отправлялись по проводам с помощью электрических импульсов (обозначенных точками и тире), известных как азбука Морзе. Это действительно было началом использования электроэнергии в коммерческих целях. Электрический телеграф известен как первое практическое применение электричества и первая система электрической связи. Здесь интересно отметить, что в то время почтовое отделение в Австралии играло важную роль в организации связи.

    1840 — Механический компьютер

    Чарльз Бэббидж (1791–1871), британский математик, сконструировал несколько машин для создания безошибочных таблиц для навигации.Механические устройства будут служить моделями для более поздних электронных компьютеров.

    1850 — Термоэлектричество

    Томас Зеебек, немецкий физик, открыл «эффект Зеебека». Он скрутил два провода, сделанных из разных металлов, и нагрел соединение в месте их пересечения, создав небольшой ток. Ток — это результат перетекания тепла от горячего спая к холодному. Это называется термоэлектричеством. Термо — это греческое слово, означающее тепло.

    1854 — Булева алгебра

    Джордж Буль был полностью самоучкой.Он опубликовал способ использования символов, который идеально выражает правила логики. Используя эту систему, можно четко и часто упрощать сложные правила.

    1855 — Электромагнитная индукция

    Майкл Фарадей (1791-1867) англичанин, сделал одно из самых значительных открытий в истории электричества: электромагнитную индукцию. Его новаторская работа касалась того, как работают электрические токи. Многие изобретения явились результатом его экспериментов, но они появились на пятьдесят или сто лет спустя.Неудачи никогда не разочаровывали Фарадея. Он бы сказал; «неудачи так же важны, как и успехи». Он чувствовал, что неудачи тоже учат. Фарад, единица емкости назван в честь Майкла Фарадея.

    Фарадей очень интересовался изобретением электромагнита, но его блестящий ум продвинул предыдущие эксперименты еще дальше. Если электричество могло производить магнетизм, почему магнетизм не мог производить электричество . В 1831 году Фарадей нашел решение.Электричество могло быть произведено посредством магнетизма движением. Он обнаружил, что когда магнит перемещается внутри катушки с медной проволокой, через нее течет крошечный электрический ток. H.C. Эрстед в 1820 году продемонстрировал, что электрические токи создают магнитное поле. Фарадей заметил это и в 1821 году экспериментировал с теорией, согласно которой, если электрические токи в проводе могут создавать магнитные поля, то магнитные поля должны производить электричество. К 1831 году он смог доказать это и с помощью своего эксперимента смог объяснить, что эти магнитные поля представляют собой силовые линии.Эти силовые линии заставят ток течь в катушке с проволокой, когда катушка вращается между полюсами магнита. Затем это действие показывает, что катушки проволоки, перерезанные магнитными силовыми линиями, каким-то странным образом производят электричество. Эти эксперименты убедительно продемонстрировали открытие электромагнитной индукции при производстве электрического тока путем изменения напряженности магнитного поля.

    1860 — Arc Lights

    По мере того, как практическое использование электричества стало очевидным и электрический телеграф начал работать, вскоре ученые начали искать пути дальнейшего использования этого электричества.Следующим очень важным достижением было внедрение электрической угольной дуги, которая была продемонстрирована в экспериментальной форме в 1808 году сэром Хамфри Дэви. Он использовал большую батарею, чтобы обеспечить ток для своей демонстрации, поскольку эти дуговые лампы требуют сильного тока, а средства механической выработки электричества еще не были разработаны. Принцип этих дуговых ламп состоит в том, что когда два угольных стержня в цепи соединяются, образуется дуга. Эта дуга, которая излучает блестящее накаливание, сохраняется до тех пор, пока стержни просто разъединены и механически подаются таким образом, чтобы поддерживать дугу.Поскольку дуговые лампы потребляли сильный ток от этих батарей, практическое применение они получили только в 1860 году. К этому времени были разработаны адекватные источники генерации, которые затем использовались в основном только для уличного освещения и в кинотеатрах. Хотя дуговое освещение все еще использовалось до начала 1900-х годов, в конечном итоге они были вытеснены лампами накаливания, за исключением того, что большинство кинотеатров используют их в своих проекторах даже сегодня.

    1860 — Двигатель постоянного тока

    История электродвигателя начинается с Ганса Христиана Эрстеда, который в 1820 году обнаружил, что электричество создает магнитное поле, как упоминалось ранее.Фарадей продолжил это в 1821 году, разработав принцип электродвигателя собственной конструкции. Среди них стоит упомянуть Якоби в 1834 году, Элиас в 1842 году, Фромент в 1844 году и Пачинотти в 1860 году. Пачинотти использовал кольцевую арматуру, которая использовалась в 1860 году и была выдающимся достижением по сравнению с любыми предыдущими попытками. Большинство этих двигателей находились на экспериментальной стадии, но только в 1871 году Зеноб Теофиль Грамм представил свой двигатель, который на самом деле был развитием машины Пачинотти.Этот двигатель был назван первым электродвигателем коммерческого значения. В этот период ученые сконцентрировались на «двигателе», но тем временем эксперименты с машинами, производящими электричество динамически, продолжались.

    1866 — LeClanche Cell

    Leclanche (1839–1882) — французский инженер, который примерно в 1866 году изобрел батарею, носящую его имя. В слегка измененном виде батарея Leclanché, теперь называемая сухим элементом, производится в больших количествах и широко используется в таких устройствах, как фонарики и портативные радиоприемники.Эта ячейка состоит из цинкового корпуса, заполненного влажной пастой, содержащей сульфат аммония. В центре этой электролитной пасты находится угольный стержень, покрытый диоксидом марганца, который является сильным окислителем.

    1871 — Генератор постоянного тока

    С разработкой Эдисоном в 1879 году угольной лампы накаливания, генератор постоянного тока стал одним из основных компонентов систем освещения с постоянным потенциалом. Раньше для уличного освещения использовались только дуговые лампы. Затем коммерческое и жилое освещение, к чему стремились изобретатели, стало практичным, и так родилась электроэнергетика и электроэнергетика.Когда Х. К. Эрстед в 1820 году обнаружил, что электрический ток создает магнитные поля, был разработан двигатель постоянного тока. В 1831 году Майкл Фарадей открыл принцип электромагнитной индукции. Он обнаружил, что перемещение магнита через катушку с проволокой вызывает электрический ток, протекающий по проволоке, поэтому теперь можно разработать электрический генератор. Но только в 1871 году, когда Грамм представил свой двигатель и генератор, электрический генератор стал использоваться в коммерческих целях. К 1872 году Сименс и Хальске из Берлина усовершенствовали генератор Грамма, изготовив якорь барабана.Были внесены и другие улучшения, такие как якорь с прорезями в 1880 году, но к 1882 году Эдисон завершил разработку системы, которую мы все еще используем для распределения электроэнергии от электростанций.

    1876 — Телефон

    С тех пор, как телеграф был изобретен Самуалом Морсом в 1837 году, в его использовании были достигнуты большие успехи, но он продолжал работать как телеграфная система, использующая азбуку Морзе для связи. Александр Грэм Белл в 1875 году интересовался телеграфией и понял, что при использовании кода Морзе по телеграфным проводам должны быть другие способы связи с использованием электричества.Он также интересовался акустикой и звуком и работал по принципу, что если азбука Морзе создает электрические импульсы в электрической цепи, некоторые звуковые средства, вызывающие вибрацию в воздухе, могут также создавать электрические импульсы в цепи. В эксперименте он использовал «диафрагму», связанную с электрической цепью, и любой звук, достигающий диафрагмы, вызывал электрические импульсы, которые передавались на другой конец цепи. Тогда они вызовут вибрацию другой диафрагмы на этом конце и будут находиться по отношению к первой диафрагме, следовательно, звук будет электрически передаваться от одного конца цепи к другому.Он продолжал работать над этими экспериментами, и 7 марта 1876 года его телефон был официально запатентован, и была проведена успешная демонстрация в выставочном зале в Филадельфии. Грэм Белл как раз успел запатентовать свой телефон, поскольку другой изобретатель Элиша Грей также экспериментировал с аналогичным изобретением. Позже Эдисон улучшил диафрагму, которую тогда называли передатчиками, но Белл победил, удостоившись чести изобрести «телефон».

    Александр Грэм Белл (1847-1922) родился в Шотландии, вырос в семье, которая интересовалась наукой о звуке.Отец и дед Белла учили глухих речи. Блок уровня звука назван в его честь бел. Уровни звука измеряются в десятых долей , или децибелах. Аббревиатура децибела — дБ.

    1879 — Генерация постоянного тока, лампа накаливания

    Томас Альва Эдисон (1847-1931) был одним из самых известных изобретателей всех времен с 1093 патентами. Самоучка, Эдисон интересовался химией и электроникой. За всю свою жизнь Эдисон получил только три месяца формального обучения и был исключен из школы как отсталый, хотя на самом деле из-за приступа скарлатины в детстве он был частично глухим.

    Прошло почти 40 лет, прежде чем Томас Эдисон построил действительно практичный генератор постоянного тока. Многие изобретения Эдисона включали фонограф и улучшенный печатный телеграф. В 1878 году британский ученый Джозеф Суон изобрел лампу накаливания, а через двенадцать месяцев Эдисон сделал аналогичное открытие в Америке. Позже Свон и Эдисон создали совместную компанию по производству первой практичной лампы накаливания. До этого электрическое освещение было моими примитивными дуговыми лампами.

    Эдисон использовал свой генератор постоянного тока, чтобы обеспечить электричеством свою лабораторию, а затем в сентябре 1882 года осветить первую улицу Нью-Йорка, освещенную электрическими лампами. постоянного тока для выработки электроэнергии, другие ученые в Европе и Америке признали, что постоянный ток имеет серьезные недостатки.

    1880 — Слой Хевисайда

    Оливер Хевисайд (1850-1925) Британский математик понял, что информация распространяется по кабелю в виде волны в пространстве между проводниками, а не через сами проводники.Его концепции позволили проектировать междугородные телефонные кабели. Он также обнаружил, почему радиоволны огибают Землю. Это привело к дальнему радиоприему.

    1880 — Абсолютные температуры, законы Кирхгофа, законы Кулона, магнитный поток, микрофон

    Уильям Томсон, лорд Кельвин (1824–1907) был наиболее известен своим изобретением новой температурной шкалы, основанной на концепции абсолютного нуля температуры. при -273 ° C (-460 ° F).

    Добавить комментарий

    Ваш адрес email не будет опубликован.