Курс электроники для начинающих: Курсы Электронщика для новичков и мастеров с опытом.

Содержание

Курсы Электронщика для новичков и мастеров с опытом.

Определять неисправность деталей, как установленных на плате, так и в «чистом» виде. Подбирать аналоги для замены, узнаете по каким основным критериям это делается, определять взаимозаменяемость деталей.

На практике узнаете типовые схемы включения с примерами включения в схеме реального устройства. В качестве примера мы рассмотрим схемы наиболее распространённых устройств: блок питания, ноутбуки, мониторы, зарядные устройства и т.д. В результате вы самостоятельно сможете проводить их ремонт на компонентном уровне.

Изучение различных электронных компонентов, встречающихся практически во всех без исключения бытовых и промышленных устройствах электронной техники. Построение схем на их базе, от элементарно простых до более сложных, с построением временных диаграмм и детальным изучением, протекающих процессов

Изучение работы операционных усилителей, компараторов, логических элементов.

Также проводиться сборка небольших схем на основе почти всех перечисленных элементов, с изучением их работы, измерением основных параметров или исследованием схем с помощью осциллографа.

Изучение основных принципов работы измерительных приборов, предназначенных для измерения тока напряжения сопротивления, визуального исследования электрических сигналов (осциллограф)

Будут рассмотрены топологии построения схем и примеры реальных схем на базе той или иной топологии. Рассказано об особенностях данных схем и областях применения. Рассмотрим несколько основных типовых схем построения импульсных БП, рассказывается об особенностях и областях применения той или иной схемы. Далее слушателям будут предложены реальные схемы (розданы листы со схемами БП-разными) и они будут должны самостоятельно определить топологию данной схемы. Именно определение топологии построения схемы на 80% определяет успех дальнейшего ремонта, который в 99% случаев придётся проводить, не имея схемы конкретно именно ремонтируемого БП.

Обучение программированию микроконтроллеров мы проводим на индивидуальных занятиях, где будет учитываться ваш опыт и то какие контроллеры и для каких целей вы хотите программировать. После пробного урока вы можете обсудить с преподавателем свой индивидуальный план и график занятий и приступить к реализации проекта.

Радиоэлектроника, или как я начал её постигать / Хабр

Добрый день, уважаемое сообщество.

Меня все время удивляли люди, которые понимают в радиоэлектронике. Я всегда их считал своего рода шаманами: как можно разобраться в этом обилии элементов, дорожек и документации? Как можно только взглянуть на плату, пару раз «тыкнуть» осциллографом в только одному ему понятные места и со словами «а, понятно» взять паяльник в руки и воскресить, вроде как почившую любимую игрушку. Иначе как волшебством это не назовёшь.

Расцвет радиоэлектроники в нашей стране пришёлся на 80-е годы, когда ничего не было и все приходилось делать своими руками. С той поры прошло много лет. Сейчас у меня складывается впечатление, что вместе с поколением 70-х уходят и знания с умением. Мне не повезло: половину эпохи расцвета меня планировали родители, а вторую половину я провёл играя в кубики и прочие машинки. Когда в 12 лет я пошёл в кружок «Юный техник» — это были не самые благополучные времена, и ввиду обстоятельств через полгода пришлось с кружком «завязать», но мечта осталась.

По текущей деятельности я программист. Я осознаю, что найти ошибку в большом коде ровно тоже самое, что найти «плохой» конденсатор на плате. Сказано — сделано. Так как по натуре я люблю учиться самостоятельно — пошёл искать литературу. Попыток начать было несколько, но каждый раз при начале чтения книг я упирался в то, что не мог разобраться в базовых вещах, например, «что есть напряжение и сила тока». Запросы к великому и ужасному Гуглу также давали шаблонные ответы, скопированные из учебников. Попробовал найти место в Москве, где можно поучиться этому мастерству — поиски не закончились результатом.

Итак, добро пожаловать в кружок начинающего радиолюбителя.


Я люблю учиться и узнавать что-то новое, но просто знания мне мало. В школе мне привили навык «теорему нельзя выучить — её можно только понять» и теперь я несу это правило по жизни. Окружающие, конечно, смотрят с недоумением, когда вместо того, чтобы взять готовые решения и сложить по-быстрому их воедино я начинаю изобретать свои велосипеды. Второй довод для написания статьи — это мысль «если ты понимаешь предмет — ты можешь его с лёгкостью объяснить другому». Ну что ж, попробую сам понять и другим объяснить.

Первая моя цель, прямо как по книгам — аналоговый радиоприёмник, а там пойдем и в цифру.

Сразу хочу предупредить — статья написана дилетантом в радиоэлектронике и физике и является скорее рассуждением. Все поправки буду рад выслушать в комментариях.

Итак, чем что такое напряжение, ток и прочее сопротивление? В большинстве случаев для понимания электрических процессов приводят аналогию с водой.

Мы не будем отходить от этого правила, правда с небольшими отклонениями.
Представим трубу. Для контроля некоторых показателей мы включим в неё несколько счётчиков расхода воды, манометров для измерения давления, и элементы, которые мешают току воды.

В электрическом эквиваленте схема будет выглядеть примерно так:

Напряжение

Курс физики нам говорит, что напряжение — это разность потенциалов между двумя точками. Если перекладывать определение на нашу трубу с водой, то потенциал — это давление, т. е. напряжение — это разница давлений между двумя точках. Этим и объясняется принцип его измерения вольтметром. Получается, что если попытаться измерить напряжение в двух соседних точках трубы, где нет никаких сопротивлений движению воды (отсутствуют краны и сужения, внутренним трением воды о стенки трубы мы пока пренебрежём) и давление не меняется — то разница давлений в этих двух точках будет равна нулю. Если же сопротивление присутствует, происходит снижение давления (в электрическом эквиваленте падение напряжения), то мы получим величину напряжения.
Сумма напряжений на всех элементах равна напряжению на источнике. Т.е. если сложить показания всех вольтметров на нашей схеме, мы получим напряжение батареи.

Например, будем считать, что наша батарея даёт напряжение 5 вольт и резисторы имеют сопротивление 100 и 150 Ом. Тогда по закону Ома U=IR, или I=U/R, получаем, что по цепи течёт ток с силой I=5/250=20мА. Так как сила тока во всей цепи одинакова (пояснения чуть дальше), из того же закона Ома следует, что первый вольтметр покажет U=0,02*100=2В, а второй U=0,02*150=3В.

Сила тока

Из того же курса физики известно, что это количество заряда за единицу времени. В водяном эквиваленте — это сама вода, а её измеритель, амперметр — есть счётчик воды. Опять таки становится понятно, почему амперметр подключается в разрыв цепи. Если его подключить на место, например, вольтметра V1, то образуется новая цепь, из которой будет исключено сопротивление R1, а значит как минимум мы получим некорректные значения (что будет «как максимум»станет понятно чуть позже). Вернёмся к нашей водичке — подключение амперметра параллельно любому из элементов означает, что часть воды пойдёт по основной трубе, а другая часть пойдёт через счётчик — и как раз этот счётчик будет врать.

Ах, да, о цепи. В большинстве литературы что мне попадалось фраза о том, что батарейки являются лишь источником напряжения, и только сопротивления являются источником тока. Как же так? Как сопротивление может являться источником чего-то ещё, кроме как источником сопротивления (тепло пока не в счёт)? Все верно, если опираться на закон Ома I=U/R, однако сколько не прикладывай сопротивление, ток не появится, пока не будет источника напряжения и замкнутой цепи (ровно как если заткнуть справа нашу трубу пробкой что не делай — счётчики воды будут молчать)!

Сопротивление в цепи просто должно присутствовать, ведь если оно равно нулю — сила тока устремится в бесконечность. Такую ситуацию мы видим при «замыкании» — искры это и есть очень большая сила тока, а если точнее теплота, равная Q=(I^2)Rt (формула действительна при постоянной силе тока и сопротивления).

Ещё одно важное замечание — при рассмотрении расчёта напряжения и силы тока я не нашёл уточнений, что в замкнутой цепи на всех участках сила тока будет одинаковой. Т.е. все счётчики будут крутиться с одной скоростью и показывать одни и те же значения. По сути, количество тока, который прошёл по цепи аналогичен количеству «воды», вышедшей из трубы.

Сопротивление

Пожалуй, самое простое явление для объяснения. Вернувшись к нашей трубе, сопротивление — это есть все возможные сужения и краны. Согласно тому, что мы разобрали выше — при повышении сопротивления уменьшается ток во всей цепи и понижает напряжение на концах сопротивления. Или снова в водяных реалиях — закрытие нашего крана на пол оборота вызовет уменьшение расхода воды на всех счётчиках и пропорциональное (в зависимости от сопротивления) снижение давления на манометрах.

Так куда же все падает и уменьшается? Вот здесь аналогия с водой неоднозначна, так как в случае с электричеством «излишки» превращаются в тепло и рассеиваются. 2)R.

Курить не круто!

Когда я ходил в кружок Юный техник более старшие товарищи проводили «эксперименты» с прикуриванием от электричества. Для этого они брали блок питания, подключали к нему резисторы малой мощности и повышали напряжение. Повышали до тех пор, пока он не раскалялся до красна, как автомобильный прикуриватель. После этого, практически через мгновение резистор «перегорал» и отправлялся в мусорное ведро.


С постоянным током все понятно, а переменный?

Переменный ток, как таковой в радиоэлектронике используется редко. Его как минимум делают постоянным и в большинстве случаев снижают. Видимо по этому в попадавшейся мне литературе про него практически не говорится.

В чем же его отличие? C обывательской точки зрения, в малом — направление тока в нем меняется. Здесь аналогия с трубой не совсем уместна, первое что приходит в голову — шейкер для коктейлей (жидкость при смешивании в нем гуляет туда-сюда). Нам в радиоэлектронике нужно знать, как идёт ток в нашей цепи, чтобы получить от него то, что мы хотим.

Следующее, с чем я пошёл разбираться — полупроводники. Дырки? Электроны? Ключевой режим? Каскады? Полевой транзистор, то тот, который нашли в поле? Пока ничего не понятно…

Самостоятельное изучение схемотехники / Хабр

Я решил написать ряд статей, которые должны помочь разобраться самостоятельно в предмете схемотехники. Первая часть вводная, в ней рассказывается об основных дисциплинах, которые стоит изучить для понимания принципов конструктирования и построения электрических схем. Если эта статья вам понравится, тема будет развиваться, внимание будет фокусироваться на нюансах и примерах.


Для старта в обучении требуется изучить три основные дисциплины:
1. Основы электротехники
2. Теоретические основы электроники
3. Теория автоматов

Все на так страшно, как кажется на первый взгляд.

Первый пункт необходим для понимания принципов работы с электричеством (В этом предмете изучаются основы расчета электрических схем).
Второй пункт — то же самое, что и первый, но более углубленный. Здесь будут рассматриваться частные примеры основных электронных устройств, через их электрические схемы.
Третий пункт — это очень важная дисциплина, которая рассматривает электрические схемы с точки зрения их логики работы. Эта дисциплина является вводной частью в курс схемотехники и рассматривает основные логические элементы, принципы построения принципиальных схем, процессы происходящие в схемах и многое другое.

Как изучать эти дисциплины?
Изучать их стоит по ВУЗовским учебникам, совмещаяя друг с другом. Т.е. стоит начать изучение курсов ОЭ и ТА параллельно, а после этого переходить к изучению ТОЭ и схемотехники. Уже после нескольких недель вы сможете сами разрабатывать простые логические схемы и понимать работу более сложных. Конечно, не стоит забывать и про практику, на нее нужно делать особый упор. Решайте задачи, изучайте электрические и принципиальные схемы.

Какие книги понадобятся в процессе обучения?
Для изучения электротехники и электроники пойдет любой учебник для высших учебных заведений. (Как пример А. А. Бессонов «Теоретические основы электротехники»)
Теорию автоматов можно изучать по одноименному учебнику Ю. Г. Карпова

Программное обеспечение:
В ходе обучения весьма пригодяться программы такие как
Electronic Workbench
Старая программа для построения принципиальных электрических схем. Для обучения вполне пойдет демо версия с ограниченным количеством допустимых элементов на листе. Программу можно использовать как для изучения курса теории автоматов, так и для проверки задач по электротехнике.

P-CAD
Будет использоваться на завершающих этапах обучения для разводки элементов по печатной плате.

На этом вводная часть заканчивается. Если данная тема будет интересна хабраюзерам, я продолжу писать статьи на эту тему.
Удачи вам в самообразовании.

Основы электроники. Урок №1: Начало


Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы. Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Что изучает электротехника

Электроэнергетика и электротехника

Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.

Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.

Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.

С чего начать изучение основ электротехники

Радиотехника для начинающих

Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.

Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК. Учебник всегда будет под рукой.

Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.

Как самостоятельно изучить электронику с нуля?

Научиться можно только тому, что любишь. Гёте И.

  1. Творчество и результат
  2. Типичный подход к обучению
  3. Математика в электронике
  4. Книги по электронике
  5. Дорого ли заниматься электроникой?
  6. Что делать, если не получается?
  7. О практике

«Как самостоятельно изучить электронику с нуля?» — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.

Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку — будет интересно!

Творчество и результат

Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину… Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.

Как нас обычно учат

Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле.

А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.

Есть такая старая инженерная шутка гласит: «Раз ты хорош в математике, то тебе надо пойти в электронику». Типичная чушь. Электроника — это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.

Главное — это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на «метод тыка», но только если не искать ответа, а тупо повторять одно и тоже действие.

Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?

Конструирование — это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе.

Математика в электронике

В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения, владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше — люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.

Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)

И тогда япошел самым старым и простым путём: через книги. В хороших книгах тематика обсуждается наиболее полно и нет пустой болтовни. Конечно, в книгах есть и ошибки, и косноязычие. Просто надо знать какие книги читать и в каком порядке. После прочтения хорошо написанных книг и результат будет отличным.

Мой совет прост, но полезен — читайте книги и журналы. Я, к примеру, хочу не только повторять чужие схемы, а уметь конструировать свои. Создавать — это интересно и весело. Именно таким должно быть моё хобби: интересным и занимательным. Да и ваше тоже.

Какие книги помогут освить электронику

Много времени я провел выискивая подходящие книги. И понял, что надо сказать спасибо СССР. Такой массив полезных книг после него остался! СССР можно ругать, можно хвалить. Смотря за что. Так вот за книги и журналы для радиолюбителей и школьников надо благодарить. Тиражи бешеные, авторы отборные. До сих пор можно найти книги для новичков, которые дадут фору всем современным. Поэтому есть смысл пройтись по букинистам и поспрашивать (да и скачать все можно).

Ниже мой список книг для начинающих изучать электронику:

  1. Седов Е.А. — Мир электроники — 1990
  2. Борисов. Энциклопедия юного радиолюбителя
  3. Сворень. Электроника. Шаг за шагом
  4. Сворень. Транзисторы. Шаг за шагом. 1971
  5. Айсберг. Радио? Это очень просто!
  6. Айсберг. Транзистор? Это очень просто!
  7. Климчевский Ч. — Азбука радиолюбителя.
  8. Атанас Шишков. Первые шаги в радиоэлектронике
  9. Эймишен. Электроника? Нет ничего проще.
  10. Б.С.Иванов. Осциллограф — ваш помощник (как работать с осциллографом)
  11. В. Новопольский — Работа с осциллографом
  12. Хабловски. И. Электроника в вопросах и ответах
  13. Никулин, Повный. Энциклопедия начинающего радиолюбителя
  14. Ревич. Занимательная электроника
  15. Колдунов. Радиолюбительская азбука
  16. Шишков. Первые шаги в радиоэлектронике
  17. Радиоэлектроника. Понемногу — обо всём.
  18. Колдунов. Радиолюбительская азбука
  19. Бессонов В.В. Электроника для начинающих и не только
  20. В. Новопольский — Работа с осциллографом
  21. Тигранян. Хрестоматия радиолюбителя

Это мой список книг для самых «маленьких». Обязательно следует пролистывать и журналы Радио с 70х по 90е гг. После этого можно уже читать:

  1. Гендин. Советы по конструированию
  2. Хоровиц, Хилл. Искусство схемотехники.
  3. Кауфман, Сидман. Практическое руководство по расчетам схем в электронике
  4. Ленк. Электронные схемы. руководство
  5. Волович Г. Схемотехника аналоговых и аналого-цифровых электронных устройств
  6. Титце, Шенк. Полупроводниковая схемотехника. 12-е изд.
  7. Шустов М. А. Практическая схемотехника.
  8. Гаврилов С.А.-Полупроводниковые схемы. Секреты разработчика
  9. Барнс. Эллектронное конструирование
  10. Миловзоров. Элементы информационных систем
  11. Ревич. Практическое программирвоание МК AVR
  12. Белов. Самоучитель по Микропроцессорной технике
  13. Суэмацу. Микрокомпьютерные системы управления. Первое знакомство
  14. Ю. Сато. Обработка сигналов
  15. Д.Харрис, С.Харрис. Цифровая схемотехника и архитектура компьютера
  16. Янсен. Курс цифровой электроники

Думаю, эти книги ответят на множество вопросов. Более специальные знания можно почерпнуть из более специальных книг: по аудиоусилителям, по микроконтроллерам и т.д.

И конечно же нужно практиковаться. Без паяльника вся теория в прорубь. Это как водить машину в голове. Кстати, более подробные обзоры некоторых книг из списка выше можешь прочитать в разделе «Читалка».

Что еще следует делать?

Учиться читать схемы устройств! Учиться анализировать схему и стараться понять как работает устройство. Этот навык приходит только с тренировкой. Начинать надо с самых простых схем, постепенно наращивая сложность. Благодаря этому ты не только изучишь обозначения радиоэлементов на схемах, но и научишься их анализировать, а также запомнишь ходовые приемы и решения.

Дорого ли заниматься электроникой

К сожалению, деньги потребуются! Радиолюбительство не самое дешевое хобби и потребуется некоторый минимум фин. вложений. Но начать можно практически без вложений: книги можно доставать буккросингах или брать в библиотеках, читать в электронном виде, приборы можно купить для начала самые простые, а более продвинутые купить тогда, когда будет не хватать возможностей простых приборов.

Сейчас купить можно всё: осциллограф, генератор, источник питания и другие измерительные приборы для домашней лаборатории — всё это следует со временем приобрести (или сделать самому то, что в домашних условиях сделать можно)

Но когда ты маленький и начинающий можно обойтись пальником и деталями из сломанный техники, которую кто-нибудь выкидывает или просто валялась дома давно без дела. Главное иметь желание! А остальное приложится.

Что делать, если не получается?

Продолжать! Редко что-то получается хорошо с первого раза. А бывает так, что результатов нет и нет — будто упёрся в невидимый барьер. Кто-то этот барьер преодолевает за полгода-год, а другие только через несколько лет.

Если сталкиваешься со сложностями, то не надо рвать волосы и думать о себе, что ты самый тупой на свете, так как Вася понимает, что такое обратный ток коллектора, а вот ты все никак не можешь понять почему он играет роль. Может быть Вася просто надувает щёки, а сам ни бум-бум =)

Качествои и скорость самообучения зависят не только от личных способностей, но и от окружения. Вот тут надо радоваться существованию форумов. На них все таки встречаются (и часто) вежливые профессионалы, готовые с радостью учить новичков. (Есть еще всякие грымзы, но считаю таких людей потерянной веткой эволюции. Мне их жаль. загибать пальцы — это понты самого низкого уровня. Лучше просто молчать)

Полезные программы

Обязательно следует ознакомиться с САПРами: рисовалками принципиальных схем и печатных плат, симуляторами, — полезные и удобные программы (Eagele, SprintLayout и т.д.). Я выделил на сайте целый раздел под них. Время от времени там будут появляться материалы по работе с программами, которые использую сам.

И самое главное — испытывайте радость творчества от радиолюбительства! На мой взгляд к любому делу следует относится как к игре. Тогда оно будет и занимательным и познавательным.

О практике

Обычно каждый радиолюбитель всегда знает какое устройство хочет сделать. Но если ты еще не определился, то я посоветую собрать источник питания, разобраться для чего нужна и как работает каждая его часть. Затем можно обратить внимание на усилители. И собрать, например, аудиоусилитель. Можно поэксперементировать с самыми простыми электрическими цепями: делителем напряжения, диодным выпрямителем, фильтрами ВЧ/СЧ/НЧ, транзистором и однотранзисторными каскадами, простейшими цифровыми схемами, конденсаторами, индуктивностями. Всё это пригодится в дальнейшем, а знание таких основных цепей и компонентов придаст уверенность в своих силах.

Когда шаг за шагом идешь от простейшего к более сложному, тогда знания порционно накладываются друг на друга и легче освоить более сложные темы. Но иногда не ясно из каких кирпичиков и как следует сложить здание. Поэтому иногда следует действовать наоборот: поставить цель собрать какое-нибудь устройство и освоить множество вопросов при его сборке.

Да прибует с тобой Ом, Ампер и Вольт:

Основные характеристики тока

Добро пожаловать!

К основным характеристикам относятся сила тока, напряжение, сопротивление и мощность. Параметры электрического тока, протекающего по проводу, характеризуются именно этими величинами.

Сила тока

Параметр означает количество заряда, проходящего по проводу, за определённое время. Силу тока измеряют в амперах.

Напряжение

Это есть не что иное, как разница потенциалов между двумя точками проводника. Величина измеряется в вольтах. Один вольт – эта разность потенциалов, при которой для переноса заряда в 1 кулон потребуется произвести работу, равную одному джоулю.

Сопротивление

Этот параметр измеряется в омах. Его величина определяет сопротивление энергопотоку. Чем больше масса и площадь поперечного сечения проводника, тем больше сопротивление. Оно также зависит от материала и длины провода. При разнице потенциалов на концах проводника в 1 Вольт и силе тока 1 Ампер сопротивление проводника равно 1 Ому.

Мощность

Физическая величина выражает скорость протекания электроэнергии в проводнике. Мощность тока определяется произведением силы тока и напряжения. Единица мощности – ватт.

Какие еще есть книги для изучения электроники

Помимо двух материалов, которые были рассмотрены в этой статье, есть также множество других. Они, возможно, более придутся по душе читателю. Среди них:

  • Борисов В. Г. «Юный радиолюбитель».
  • Ревич Ю. В. « Занимательная электроника».
  • Хоровиц П., Хилл У. «Искусство схемотехники в трех томах».


Обложка книги «Практическая электроника»

Таким образом, практическая электроника не сложна даже для начинающих. Подготовив себя теорией из книг и реализовав все примеры на практике, можно стать настоящим электронщиком.

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

N = I x U.

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Электротехника и электромеханика

Электрическая механика – это раздел электротехники. Эта научная дисциплина изучает принципиальные схемы оборудования, двигателей и прочих приборов, использующих электрическую энергию.

Пройдя курс электромеханики для начинающих, новички могут самостоятельно научиться ремонтировать бытовые электрические устройства и приборы. Основные законы электромеханики дают возможность понять, как устроен электродвигатель, чем отличается трансформатор от стабилизатора, что такое генератор и многое другое.


Стенд для изучения основ электромеханики

Дополнительная информация. Несомненную пользу новичкам принесут учебные пособия и видео курсы по электротехнике и электромеханике. Если есть друзья или знакомые, разбирающиеся в этом деле, то это только поможет быстро освоить азы этих дисциплин.

Безопасность и практика

Основы электротехники для начинающих делают особое ударение на правилах техники безопасности. Их несоблюдение на практике порой может стать причиной получения электротравм и повреждения имущества. Для новичков в электротехнике надо следовать четырём основным требованиям ТБ.

Четыре правила техники безопасности для новичков:

  1. Перед работой с каким-либо устройством или оборудованием следует ознакомиться с его документацией. Все руководства по эксплуатации имеют раздел безопасности. В нём описаны опасные действия, которые могут вызвать короткое замыкание или удар электрическим током.
  2. Прежде, чем приступать к работе с электротехническими устройствами или электропроводкой, нужно отключить электричество. Затем произвести осмотр состояния изоляции проводников. Если обнаружено нарушение изоляционного покрытия, то оголённую часть проводников надо покрыть отрезком изоляционной ленты.
  3. При работе с проводкой и оборудованием под напряжением бытовой электросети надо использовать диэлектрические перчатки, защитные очки и обувь на толстой резиновой подошве. В электрораспределительных шкафах, щитах и электроустановках новичкам вообще делать нечего. Ими занимаются квалифицированные электрики, которые имеют допуск к работе под напряжением.
  4. Ни в коем случае нельзя касаться оголённых проводников руками. Для этого есть отвёртки-пробники, мультиметры и другие электроизмерительные приборы. Только убедившись в отсутствии напряжения, можно касаться проводов.

Электроника на практике

ПЭ – это раздел электроники, на практике показывающий основные закономерности электричества. Именно в практической части изучается каждый элемент цепи отдельно и применяется на деле в совокупности с другими. С этим названием вышла и книга, в которой можно найти много интересных статей по электротехнике, сформулированных на общедоступном языке.

Вам это будет интересно Особенности напряжения прикосновения

Материал включает в себя фотографии и опыты, к которым даны полные инструкции. Прочитав его, можно спокойно разбираться во всех электронных и радиотехнических терминах, овладеть пайкой и получить навыки дл чтения простых схем.

Важно! Прошло второе переиздание книги, в котором были отредактированы небольшие ошибки и опечатки, учтены пожелания читателей. Второе издание стало стоящим и полезным учебником для начинающих радиолюбителей.

Электрика для чайников

Электроника окружает человека в виде различных устройств и приборов. Современная бытовая техника в большинстве своём управляется с помощью электронных схем. Курсы обучения основам электроники для начинающих нацелены на то, чтобы новичок мог отличать транзистор от резистора и понимать, как и для чего служит та или иная электронная схема.


Учебник по электронике для новичков

Учебные пособия и видеокурсы способствуют пониманию принципов построения электронных схем. Что такое печатная плата, как создать схему своими руками – на все эти вопросы отвечают основы электроники для новичков. Усвоив азы электроники, домашний «мастер» сможет определить вышедшую из строя радиодеталь в телевизоре, аудио устройстве и другой бытовой технике и заменить её. Кроме этого, новичок приобретёт опыт работы с паяльником.


Электронная схема усилителя звука

Видеокурсы, печатная продукция несут в себе массу информации по освоению основ электротехники, электромеханики и электроники. Приобрести знания в этих сферах можно, не выходя из дома. Просмотреть нужное видео, заказать учебники позволяет доступность сети интернета.

Разновидности профессии

Специальность электрика предусматривает довольно широкий спектр обязанностей и выполняемых работ в самых различных отраслях.

Среди таких направлений стоит выделить:

  • Электромонтажники – выполняют монтаж электропроводки и другого электрооборудования как в низковольтных, так и в высоковольтных сетях.


Монтажные работы

  • Эксплуатационный персонал – осуществляет контроль состояния, режимов работы электрического оборудования, осуществляет взаимодействие между различными электроустановками и даже частями энергосистемы.
  • Электрики, осуществляющие наладку, испытание оборудования перед вводом в работу и в процессе электроснабжения.


Наладка оборудования

  • Электронщики – работают с электронными схемами, включая современное оборудование (компьютеры, сервера и т.д.), выполняют пайку радиодеталей.


Работа с электронными схемами

  • Аудиторы – анализируют потребление и расход электроэнергии, разрабатывают эффективные меры по снижению потерь и т. д.

Данный перечень определяет только основные направления, на практике существует прикладное применение в зависимости от соответствующей отрасли: автоэлектрики, сетевики, подстанционники, железнодорожные электрики, электрики, обслуживающие системы автоматики и телемеханики, релейных защит, специализирующиеся на бытовых сетях и т.д.


Обслуживание сетевого хозяйства

Применительно к каждому конкретному производству или работе обязанности электрика и объем требуемых от него знаний определяется местными инструкциями и положениями.

Курсы обучения электроники для начинающих

Первый шаг – он самый сложный.

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел «Старт«.

На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Ну, а для начала, рекомендуем научиться паять.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Обзор характеристик и особенностей выбора мультиметра для начинающего радиолюбителя.

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Омметр – прибор для измерения сопротивления. Здесь вы узнаете о том, как омметр можно использовать в своей радиолюбительской практике.

Здесь вы познакомитесь с тем, как устроен и работает осциллограф. Научитесь разбираться в органах управления осциллографа. Осциллограф является одним из самых мощных инструментов для изучения процессов, происходящих в электронной технике.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.

Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) – это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Таблица значений ESR конденсаторов разной ёмкости поможет вам определить качество электролитического конденсатора.

Здесь вы узнаете, как правильно соединять конденсаторы и рассчитывать общую ёмкость при их последовательном и параллельном включении.

Узнайте, как правильно соединять резисторы и рассчитывать их общее сопротивление при последовательном и параллельном включении.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Простой апгрейд мультиметра DT – 830B. Встраиваем светодиодный фонарик в цифровой мультиметр.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя – это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2. 32V на базе готового модуля DC-DC преобразователя.

Собираем радиоуправляемое реле на базе готового радиомодуля.

Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).

Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.

Модернизация USB-колонок SVEN PS-30 на базе микросхемы-декодера CM6120-S.

Что такое мультивибратор и зачем он нужен? Здесь вы узнаете, как собрать мультивибратор на транзисторах. Познакомитесь с формулой расчёта его колебаний.

Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.

Здесь вы узнаете, как собрать мигалку на светодиодах из доступных радиодеталей. Много фоток и пояснений гарантируется.

Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.

Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.

Организуем рабочее место радиолюбителя-новичка. Собираем многофункциональную розетку.

Непременным атрибутом современного музыкального устройства служит вход внешнего сигнала AUX IN. Как использовать столь полезную функцию? Музыка налету.

Узнайте как можно переделать проводную гарнитуру мобильного телефона и максимально использовать возможности сотового телефона Sony Ericsson. В статье приводиться принципиальная схема проводной гарнитуры сотового телефона и методика её доработки.

Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: «А как управлять этой лентой?». Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.

Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.

Электроника для начинающих. Начальный курс электроники. Основы электроники. Курс лекций по электронике . Учебник.

Говорите, что всю жизнь мечтали познакомиться с электроникой поближе, но не знали с чего начать? Тогда вы оказались в нужное время в нужном месте!

На страницах нашего сайта будут освещены фундаментальные основы электроники и физики электронов: что они собой представляют и почему следует о них знать. Однако не стоит беспокоиться — вам не придется умирать от скуки над научными трудами по теоретической физике: мы подадим основные положения и правила в виде, легкодоступном для усвоения. Кроме того, здесь же вы ознакомитесь с простыми рекомендациями по безопасности. Электроника — забавная вещь, но только в том случае, если вы не обожжетесь, не поджаритесь на электрическом стуле и не заедете себе в глаз взбесившимся резистором.

Курс начинающего электронщика.

Электроника для начинающих, представляет информацию без которой начинающему электронщику не обойтись, понятие электрического тока, описание радиокомпонентов, обозначение на электронных схемах все это основы электроники. Все эти знания пригодятся тебе, когда ты начнешь разрабатывать и собирать электронные схемы.

Осн овы электроники

Ч то нужно для того чтобы самостоятельно изучить электронику совершенно не обладая начальными знаниями как говорится “с нуля”. Нужно желание и большая любовь к тому чем ты занимаешься. А что может дать нам импульс для возникновения столь сильного чувства, это конечно же результат.

Результат можно получить через какое – то время, двигаясь от простого к сложному поднимаясь по ступенькам пирамиды, у которой первые ступени – это основа электроники, только вот не у всех хватит терпения дойти до вершины, поэтому стоит попробовать поступить в обратном порядке.

Когда – то много лет назад я познакомился с “радиохулиганом” (кто не знает – это так называли тех, кто выходил в эфир без официального разрешения, они общались в эфире и крутили музыку Высоцкого и пр.) и меня это увлекло. Я попросил его научить меня как собрать радиоприемник, и он помог мне собрать простой детекторный приемник. Он работал! Принимал несколько радиостанций, радости не было предела, возможно это и был тот результат который не дал мне бросить увлечение. Потом я уже самостоятельно собирал более сложные электронные схемы, в общем то не особо владея знаниями в области электроники, и только со временем постепенно читая книги и журналы из разряда электроника для начинающих постигал сию премудрость. Так что не бойся, пробуй свои силы и у тебя все получится – Это НЕ сложно!

В разделе сайта электроника для начинающих предоставлена краткая и самая необходимая информация, все рассказано простыми словами.

Установка антенн

Кроме занятий по электронике много полезной информации касающееся приема телевизионного сигнала. Телевизионные антенны и все, что нужно знать о них, так же тесты и обзоры оборудования для приема цифрового телевидения.

10 видеоуроков по радиоэлектронике

Этот видеокурс придется по вкусу всем любителям попаять. Радиоэлектроника научит вас основам, которые в дальнейшем позволят собрать любую схему и прибор.

Первое видео курса поведает о самых-самых базовых понятиях: токе и напряжении. Вы узнаете, зачем о них нужно знать и чем они отличаются.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна сопротивлению этого участка. Если это предложение ни о чем вам не говорит, то стоит посмотреть следующее видео этого курса.

Не знаете, чем отличается параллельное и последовательное подключение элементов схемы? Как рассчитать необходимое сопротивление и как подключить резисторы? Обо всем этом вы узнаете из очередного видео.

Частота, переменное напряжение и ток. Что это, для чего нужно знать и как с ними работать – все это в новом уроке видеокурса.

Конденсатор – деталь, которая используется очень и очень часто. Однако не все понимают для чего его используют. Этот урок расскажет об этом подробно и просто.

Продолжение урока об электрическом конденсаторе. Для чего он нужен и с чем его паять.

https://youtu.be/cxh4o25Fjrc

Диоды – тема нового видео. Как они устроены, как работают и для чего их используют.

Видеоурок наглядно покажет и расскажет, что такое катушка индуктивности. Вы ознакомитесь с ее свойствами и случаями использования.

О диодах и их устройстве вы теперь знаете, а вот что такое диодный мост, расскажет это видео. Также вы поймете для чего в выпрямителе используют конденсатор и диод.

Бесплатная энергия и способы ее получения, самозапитка, вечный двигатель, гравитационный и антигравитационный, магнитный и антимагнитный двигатель – то, о чем вы узнаете из видео.

6 лучших YouTube каналов для изучения робототехники

Что нужно изучить, чтобы быть востребованным?

Электроника для начинающих [Дмитрий Забарило] | Хобби и рукоделие

Как правило, люди, только ставшие на путь изучения электроники, стремятся собрать какое-либо устройство. Однако, к сожалению, в большинстве случаев устройство, на которое было затрачено много времени и усилий – не работает. И как показывает опыт, что при сборке устройства допущен сущий пустяк. Однако в силу отсутствия опыта и элементарных знаний в соответствующей области, начинающие электронщики не могут самостоятельно устранить ошибку. Такое обстоятельство дел отбивает желание продолжать дальнейшее изучение интереснейшей науки – электроники, носящей прикладной характер.
Также неопытные радиолюбители часто боятся конструировать электронные устройства, содержащие много транзисторов и микросхем, считая подобные схемы уделом профессионалов. Одна это далеко не всегда является истинной.

Содержание курса

  • Назначение и принцип построения электрических схем.
  • Гальванические элементы и аккумуляторы: способы изображения на чертежах электрических схем.
  • Соединительные провода. Понятия: общий провод, отрицательный провод, масса, потенциал в точке.
  • Резисторы. Простейшая электрическая цепь.
  • Светодиоды. Расчет сопротивления. Разветвленная электрическая цепь.
  • Пояснение схемы и процесса сборки блока питания с регулировкой напряжения. Трансформаторы, диоды, диодный мост, конденсаторы (электролитические, керамические), интегральные стабилизаторы напряжения.
  • Применение электромагнитных реле в электрических схемах. Подключение лампочки накаливания к сети 220 В (230 В) с помощью реле.
  • Биполярные транзисторы.
  • Принцип работы, схемы, расчет и сборка транзисторного ключа.
  • Принцип работы, схемы, расчет и сборка транзисторных усилителей.
  • Введение в микросхемы. Типовые схемы включения микросхем.
  • Практическое применение микросхемы NE555: режим работы и схемы. Расчет и сборка таймеров и генераторов (сирены) на NE555.
  • Геркон. Принцип работы и применение. Простейшая сигнализация на герконе и микросхеме NE555.
  • Микросхема К174УН4Б. Особенности микросхемы К174УН4Б. Схема и сборка усилителя звука на К174УН4Б.
  • Микросхема TDA2030. Схема и сборка усилителя звука на TDA2030.
Все материалы курса сопровождаются подробным и наглядным пояснением. НИ ОДНО видео из данного курса не было ранее опубликовано на моем канале. Курс ПОЛНОСТЬЮ СНЯТ С НУЛЯ и преследует определенную логическую структуру, позволяющую совсем начинающему электронщику продвинутся к среднему уровню с дальнейшей перспективой роста.
Видеокурс состоит из 17 видеороликов, общей продолжительность более 5 с половиной часов, объемом 10,5 ГБ.

 

Изучите электронику с помощью онлайн-курсов и классов

Что такое электроника?

Электроника — это раздел физики, связанный с проектированием схем и изучением электронов в различных условиях. Электроника также описывает область электротехники и дизайн, функции и использование электронных устройств и систем.

Чем занимаются инженеры-электрики? Инженеры-электрики контролируют проектирование, тестирование, производство, строительство и мониторинг электрических и электронных устройств, машин и систем.

Одним из первых электронных изобретений была электронная лампа, открытие, которое произвело революцию в современном мире и уступило место фотографии, радио, телевидению и междугородной телефонии.

Сегодня, от смартфонов до ноутбуков, технологии электроники стали доминировать в нашей повседневной жизни, создавая электротехнику и электроэнергию, которая в первую очередь связана с передачей электроэнергии, которые постоянно растут.

Для студентов, интересующихся курсами электротехники, вы можете изучить основы электротехники и электроники, вычислительные структуры, электронные интерфейсы и принципы работы электрических цепей с помощью широкого спектра онлайн-курсов.

Если вы хотите получить степень в области электротехники, пройти стажировку в области электротехники или получить более общую информацию по электротехнике, область электроники обширна и предлагает бесчисленные возможности для прикладного изучения электротехники.

Сегодня доступен разнообразный набор инструментов онлайн-обучения; позволяя потенциальным студентам думать не только о книгах по электротехнике, и записываться на интерактивные и увлекательные онлайн-курсы по электронике.

Курсы по электронике

Независимо от того, являетесь ли вы новичком или студентом среднего уровня в области электроники, edX предлагает вводные и продвинутые курсы по электронике для самостоятельного изучения на всех уровнях.

Токийский технологический институт, например, в настоящее время предлагает вводный курс «Введение в электротехнику и электронику». В этом четырехнедельном курсе вы получите базовые знания о взаимодействии электроэнергии, энергии и окружающей среды.

MIT предлагает самостоятельный промежуточный курс «Схемы и электроника: усиление, скорость и задержка».В этом курсе вы узнаете, как создавать усилители, взаимосвязь между математическим представлением поведения схемы первого порядка и соответствующими реальными эффектами, а также как повысить скорость цифровых схем.

Работа в электронике

По данным Бюро статистики труда США, электротехника является ведущей отраслью со средним доходом более 98 000 долларов в год.

Инженеры-электрики и лица, специализирующиеся на исследованиях, проектировании, разработке, тестировании или производстве и установке электрического оборудования и систем, необходимы для выполнения коммерческих, промышленных, военных и научных исследований.

Например, в автомобильной промышленности есть большой спрос на инженеров-электронщиков, поскольку они переходят на автономные автомобили.

Специализация в области электронной техники также может привести к карьере в оборонной промышленности, быстро развивающейся индустрии потребительских товаров или в авиакосмической отрасли.

Поиск на сайте Indeed.com дает более 46 000 результатов, 23 000 из которых зарабатывают более 80 000 долларов в год. Призывы к работе в области электротехники изобилуют в американских городах, таких как Сан-Диего, Калифорния; Нью-Йорк, штат Нью-Йорк; и Остин, Техас.

Запишитесь на онлайн-курсы по электронике сегодня и станьте частью этой постоянно развивающейся области.

Карьера в электронике

Поскольку люди становятся все более зависимыми от электронных технологий и энергии, будущее в руках инженеров-электриков и тех, кто специализируется на применении электроники. Будь то разработка сложных систем искусственного интеллекта или разработка новейшего iPhone, изучение электроники может привести к успешной и прибыльной карьере.

Базовая электроника: 20 ступеней (с изображениями)

Список деталей:
2N3904 Транзистор PNP
2N3906 Транзистор NPN
47 Ом — резистор 1/4 Вт
1 кОм — резистор 1/4 Вт
470 кОм — Резистор 1/4 Вт
Электролитический конденсатор 10 мкФ
Керамический дисковый конденсатор 0,01 мкФ
5 мм красный светодиод
Держатель батареи 3 В AA

Дополнительно:
Резистор 10 кОм — 1/4 Вт
Потенциометр 1M

Следующая схема может выглядит устрашающе, но на самом деле довольно прямолинейно. Он использует все части, которые мы только что рассмотрели, для автоматического мигания светодиода.

Для схемы подойдут любые NPN- или PNP-транзисторы общего назначения, но если вы захотите следовать за ними дома, я использую транзисторы 293904 (NPN) и 2N3906 (PNP). Я узнал их расположение выводов, просмотрев их таблицы данных. Хороший источник для быстрого поиска таблиц — Octopart.com. Просто найдите номер детали, и вы должны найти изображение детали и ссылку на техническое описание.

Например, из таблицы данных транзистора 2N3904 я быстро смог увидеть, что контакт 1 был эмиттером, контакт 2 был базой, а контакт 3 был коллектором.

Помимо транзисторов, все резисторы, конденсаторы и светодиоды должны легко подключаться. Однако в схеме есть одна хитрость. Обратите внимание на полуарку возле транзистора. Эта дуга указывает на то, что конденсатор перепрыгивает через дорожку от батареи и вместо этого подключается к базе транзистора PNP.

Также при построении схемы не забывайте, что электролитические конденсаторы и светодиоды поляризованы и будут работать только в одном направлении.

После того, как вы закончите построение схемы и включите питание, он должен мигать. Если он не мигает, внимательно проверьте все соединения и ориентацию всех деталей.

Уловка для быстрой отладки схемы — это подсчет компонентов в схеме по сравнению с компонентами на вашей макетной плате. Если они не совпадают, вы что-то упустили. Вы также можете проделать тот же трюк с подсчетом количества объектов, подключенных к определенной точке цепи.

Как только он заработает, попробуйте изменить значение резистора 470K.Обратите внимание, что при увеличении значения этого резистора светодиод мигает медленнее, а при его уменьшении светодиод мигает быстрее.

Причина этого в том, что резистор управляет скоростью, с которой конденсатор 10 мкФ заполняется и разряжается. Это напрямую связано с миганием светодиода.

Замените этот резистор потенциометром 1 МОм, включенным последовательно с резистором 10 кОм. Подключите его так, чтобы одна сторона резистора подключалась к внешнему контакту потенциометра, а другая сторона подключалась к базе транзистора PNP. Центральный штифт потенциометра должен быть заземлен. Частота мигания теперь изменяется, когда вы поворачиваете ручку и проходите через сопротивление.

С чего начать? — learn.sparkfun.com

Добро пожаловать в Электронику!

Мы живем в удивительно высокотехнологичном мире, окруженном электронными штуковинами и гаджетами. Поскольку наша жизнь так наполнена электроникой, каждый — инженеры, преподаватели, предприниматели, студенты и художники — могут получить большую пользу, узнав о них больше.Понимание того, как читать схемы, паять, программировать и строить схемы, дает уникальное понимание мира, в котором мы живем; не говоря уже о том, что взлом и создание электроники — это просто развлечение!

С помощью наших руководств и наборов мы хотим помочь сделать мир электроники максимально доступным. Каждый может (и должен!) Изучать электронику. Просто нужно найти с чего начать.

Руководства для начинающих

Наши руководства объясняют, обучают и вдохновляют энтузиастов электроники и новичков. У нас есть широкий спектр руководств, охватывающих как основы теории электроники, так и примеры сборки проектов. Учебники написаны экспертами и содержат высококачественные изображения, которые помогут вам в этом. Если вы не знаете, с какого урока начать, ознакомьтесь с разделом «Уроки для начинающих» этого руководства.

Стартовые комплекты

В нашем розничном интернет-магазине мы продаем все, от наборов для пайки для начинающих до платформ для продвинутых разработчиков. Что может быть лучше, чем начать обучение с , сделав ? Наши наборы помогают объяснить основные концепции электроники, а также позволяют создавать что-то интересное и функциональное.Найдите наши рекомендуемые наборы для начинающих в разделе «Стартовые наборы» этого руководства и приступайте к сборке!

Руководства для начинающих

Наши учебные пособия разделены на несколько категорий: концепции, технологии, навыки, руководства по подключению и проекты. Каждая учебная категория основана на последней.

Концепт

Наши концептуальные руководства охватывают действительно мелкие и мелкие области электроники. Это то, чему вы можете научиться на уроках электроники.

Технологии

В обучающих программах

Technology конкретно рассказывается о компонентах, стандартах и ​​технологиях, которые делают все это возможным. Вы можете узнать, как работает GPS и как вы можете добавить его в свой проект. Или вы можете прочитать все о резисторах, диодах и других основных электронных компонентах.

Навыки

Electronics — это не только вычисление токов, напряжений и сопротивлений. Вы должны изучить некоторые (сладкие) навыки, чтобы создавать вещи! Вот несколько отличных мест для начала в разделе навыков:

крючки

Вы ищете краткое руководство по использованию нового щита или коммутационной платы Arduino? Это то, на что ориентированы наши руководства по подключению.Эти учебные пособия обычно включают объяснение конкретного продукта, а также примеры схем и кода для его быстрого запуска и работы. Ознакомьтесь с некоторыми из этих руководств по подключению:

Проектов

Если вы ищете вдохновения для собственных проектов, ознакомьтесь с некоторыми из того, что мы сделали. Эти руководства достаточно подробны, чтобы вы могли следовать им и строить точную копию. Или вы можете рифовать наш проект, улучшать его и делать своим. Они должны послужить несколькими отличными учебниками по стартовым проектам:

Статьи

Если мы напишем учебное пособие, которое не соответствует ни одной из вышеперечисленных категорий, мы разместим его в разделе статей.Здесь вы найдете информацию о том, как ориентироваться в требованиях FCC или как мы собираем наши продукты. Это хорошие чтения и содержат важную информацию для кого-то …

Стартовые комплекты

Мы хотим, чтобы все были такими же увлеченными электроникой, как и мы. Наши стартовые наборы хорошо документированы, просты для понимания и забавны!

Можно взять набор для пайки и сделать классическую игру на память Саймона или часы Big-Time.

Если вы пока не хотите использовать паяльник, обратите внимание на SparkFun Inventor’s Kit. Это набор для начинающих электроники , который включает микроконтроллер Arduino. Вы будете быстро мигать светодиодами, вращать моторы и прокручивать сообщения на ЖК-дисплеях. Он включает в себя хорошо иллюстрированное справочное руководство, которое проведет вас через все эксперименты.

Электроника не всегда означает пайку, электромонтаж и макетирование. Мы также занимаемся носимой электроникой (электронный текстиль) — удивительным сочетанием шитья и электроники.Используя токопроводящую нить, мы можем вшить аккумуляторные батареи, светодиоды и микроконтроллеры в ткань, чтобы освещать рюкзаки, платья, куртки и т. Д. Наш LilyPad ProtoSnap идеально подходит для быстрого создания прототипа и тестирования схемы электронного текстиля, прежде чем разобрать ее и вшить на место.


Дополнительные стартовые комплекты можно найти в категории комплектов в нашем магазине!

Стартовые классы

Наша страсть к обучению электронике не ограничивается экраном компьютера. У нас есть класс в нашей штаб-квартире (в Боулдере, Колорадо, США), где мы проводим несколько семинаров, и мы также, как известно, проводим шоу в дороге.

Летом 2013 года мы отправляемся в тур по стране, распространяя нашу проповедь электроники по всей стране. Для каждой остановки в туре мы будем проводить один из трех семинаров:

Введение в Arduino

Перейдите от мигания светодиода к виртуальному прототипированию за семь часов и еще успейте пообедать! Этот класс предназначен для тех, кто никогда раньше не играл с Arduino, а также для тех, кто немного поигрался, но не совсем уверен в том, как работают основы.Это проще, чем вы думаете! Мы соберем базовые однокомпонентные электрические схемы, узнаем об аналоговом и цифровом, вводе и выводе, базовых концепциях программирования, попрактикуемся в базовой последовательной связи и кратко рассмотрим базовое виртуальное прототипирование. Если вы не заметили, ключевое слово здесь простое.

Программирование PicoBoard и Scratch

Сочетая Scratch — бесплатную среду блочного программирования с перетаскиванием и перетаскиванием — и PicoBoard, ученики в возрасте пяти лет могут научиться интегрировать датчики в проекты. Они узнают, как использовать датчик освещенности для управления фоном своей анимации, использовать ползунок для управления скоростью своего персонажа и как создавать свои собственные датчики. Попутно они также изучат фундаментальные концепции, такие как функционирование электричества в этих датчиках.

Электронный текстиль и Arduino

Носимая электроника (иногда называемая электронным текстилем) — одна из последних тенденций в мире встраиваемой электроники. С Советом по разработке ProtoSnap LilyPad вы познакомитесь со сшиваемой электроникой с помощью системы LilyPad, технологии, разработанной в результате партнерства между SparkFun и профессором Массачусетского технологического института Лией Бьючли.Этот семинар включает в себя все необходимое, чтобы научить студентов программировать и шить свои собственные творения LilyPad.


Посетите нашу страницу классов, чтобы получить информацию о предстоящих мероприятиях. Мы обучаем всему, от мягких схем (обучение электронике с помощью токопроводящего пластика) до проектирования печатной платы.

Введение в базовую электронику, электронные компоненты и проекты

Изучить основы электроники и создавать собственные проекты намного проще, чем вы думаете.В этом руководстве мы дадим вам краткий обзор стандартных электронных компонентов и объясним их функции. Затем вы узнаете о принципиальных схемах и о том, как они используются для проектирования и построения схем. И, наконец, вы примените эту информацию, создав свою первую базовую схему.

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ КНИГА (PDF) — Информационный пакет Makerspace

Прежде чем начать, убедитесь, что ваш электронный рабочий стол правильно настроен. Рабочее место не должно быть необычным, и вы даже можете собрать свой собственный электронный верстак.

Электронные компоненты могут быть небольшими, поэтому рекомендуется держать все в порядке. Самый популярный вариант — использовать прозрачные пластиковые ящики для хранения деталей. Кроме того, вы можете использовать пластиковые ящики для хранения, которые свешиваются на стойку или помещаются на полку.

Теперь, когда у вас есть хорошее рабочее место, пора снабдить его необходимыми инструментами и оборудованием. Это неполный список, но он выделяет наиболее распространенные элементы, используемые в электронике.

Макетная плата

Макетные платы — важный инструмент для создания прототипов и временных схем. Эти платы содержат отверстия для вставки проводов и компонентов. Из-за своего временного характера они позволяют создавать схемы без пайки. Отверстия в макете соединены рядами по горизонтали и вертикали, как показано ниже.

Цифровой мультиметр

Мультиметр — это устройство, которое используется для измерения электрического тока (амперы), напряжения (вольт) и сопротивления (Ом).Он отлично подходит для поиска неисправностей в цепях и способен измерять как переменное, так и постоянное напряжение. Прочтите этот пост, чтобы узнать больше о том, как использовать мультиметр.

Держатели батарей

Батарейный отсек — пластиковый корпус, в который помещаются батарейки от 9В до АА. Некоторые держатели закрыты и могут иметь встроенный выключатель.

Тестовые провода (зажимы типа «крокодил»)

Измерительные провода отлично подходят для соединения компонентов друг с другом для проверки цепи без необходимости пайки.

Кусачки для проволоки

Кусачки необходимы для снятия изоляции с многожильных и сплошных медных проводов.

Набор прецизионных отверток

Прецизионные отвертки также называются ювелирными отвертками и обычно поставляются в комплекте. Преимущество этих отверток перед обычными — точные наконечники каждой отвертки. Это очень удобно при работе с электроникой, содержащей крошечные винты.

Третья рука помощи

При работе с электроникой кажется, что рук никогда не хватает, чтобы все удержать.Вот здесь-то и пригодится рука помощи (третья рука). Отлично подходит для удержания печатных плат или проводов при пайке или лужении.

Тепловая пушка

Тепловая пушка используется для усадки пластиковых трубок, известной как термоусадка, для защиты оголенного провода. Термоусадочная лента, которую называют изолентой электроники, пригодится в самых разных сферах применения.

Перемычка

Эти провода используются с макетными платами и макетными платами и обычно представляют собой одножильный провод 22-28 AWG.Провода перемычки могут иметь концы «папа» или «мама» в зависимости от того, как их нужно использовать.

Паяльник

Когда придет время создать постоянную цепь, вам нужно будет спаять части вместе. Для этого вам понадобится паяльник. Конечно, паяльник бесполезен, если к нему нет припоя. Вы можете выбрать свинцовый или бессвинцовый припой нескольких диаметров.

Теперь пора поговорить о различных компонентах, которые воплощают в жизнь ваши электронные проекты.Ниже приводится краткое описание наиболее распространенных компонентов и функций, которые они выполняют.

Переключатель

Переключатели

могут быть разных форм, например, кнопочные, кулисные, мгновенные и другие. Их основная функция заключается в прерывании электрического тока путем включения или выключения цепи.

Резистор

Резисторы используются для сопротивления прохождению тока или для контроля напряжения в цепи. Величина сопротивления резистора измеряется в Ом.У большинства резисторов есть цветные полосы снаружи, и этот код сообщит вам значение сопротивления. Вы можете использовать мультиметр или калькулятор цветового кода резистора Digikey, чтобы определить номинал резистора.

Переменный резистор (потенциометр)

Переменный резистор также известен как потенциометр. Эти компоненты можно найти в устройствах, таких как диммер или регулятор громкости для радио. Когда вы поворачиваете вал потенциометра, сопротивление в цепи изменяется.

Светозависимый резистор (LDR)

Светозависимый резистор также является переменным резистором, но управляется светом, а не поворотом ручки. Сопротивление в цепи меняется в зависимости от интенсивности света. Они часто встречаются во внешнем освещении, которое автоматически включается в сумерках и выключается на рассвете.

Конденсатор

Конденсаторы накапливают электричество, а затем разряжают его обратно в цепь при падении напряжения.Конденсатор подобен перезаряжаемой батарее, его можно заряжать, а затем разряжать. Значение измеряется в диапазоне Ф (фарад), нанофарада (нФ) или пикофарада (пФ).

Диод

Диод пропускает электричество в одном направлении и не дает ему течь в обратном. Основная роль диода — отводить электричество от нежелательного пути внутри цепи.

Светоизлучающий диод (LED)

Светодиод похож на стандартный диод тем, что электрический ток течет только в одном направлении.Основное отличие состоит в том, что светодиод излучает свет, когда через него проходит электричество. Внутри светодиода находятся анод и катод. Ток всегда течет от анода (+) к катоду (-) и никогда в обратном направлении. Более длинная ветвь светодиода — это положительная (анодная) сторона.

Транзистор

Транзистор — это крошечные переключатели, которые включают или выключают ток при срабатывании электрического сигнала. Помимо переключателя, он также может использоваться для усиления электронных сигналов.Транзистор похож на реле, за исключением того, что у него нет движущихся частей.

Реле

Реле — это переключатель с электрическим приводом, который открывается или закрывается при подаче питания. Внутри реле находится электромагнит, который управляет механическим переключателем.

Интегральная схема (ИС)

Интегральная схема — это схема, размер которой уменьшен для размещения внутри крошечного чипа. Эта схема содержит электронные компоненты, такие как резисторы и конденсаторы, но в гораздо меньшем масштабе.Интегральные схемы бывают разных вариаций, таких как таймеры 555, регуляторы напряжения, микроконтроллеры и многие другие. Каждый вывод на ИС уникален с точки зрения своей функции.

Перед тем как разрабатывать электронный проект, вам нужно знать, что такое схема и как ее правильно создать.

Электронная схема — это круговой путь проводников, по которым может течь электрический ток. Замкнутая цепь похожа на круг, потому что она начинается и заканчивается в одной и той же точке, образуя полный цикл.Кроме того, замкнутая цепь позволяет электричеству беспрерывно течь от (+) питания к (-) земле.

Напротив, если есть какой-либо перерыв в подаче электроэнергии, это называется обрывом цепи. Как показано ниже, переключатель в цепи может вызвать ее размыкание или замыкание в зависимости от своего положения.

Все схемы должны иметь три основных элемента. Эти элементы представляют собой источник напряжения, токопроводящую дорожку и нагрузку.

Источник напряжения, например аккумулятор, необходим для протекания тока через цепь.Кроме того, необходим токопроводящий путь, по которому будет проходить электричество. Наконец, для правильной схемы нужна нагрузка, потребляющая энергию. Нагрузкой в ​​приведенной выше схеме является лампочка.

При работе со схемами вы часто встретите что-то, называемое схематической диаграммой. На этих схемах используются символы, показывающие, какие электронные компоненты используются и где они размещаются в цепи. Эти символы представляют собой графические изображения реальных электронных компонентов.

Ниже приведен пример схемы, на которой изображена цепь светодиода, управляемая переключателем. Он содержит символы для светодиода, резистора, батареи и переключателя. Следуя схематической диаграмме, вы сможете узнать, какие компоненты использовать и где их разместить. Эти схемы чрезвычайно полезны для новичков при первом изучении схем.

Принципиальная схема светодиодной цепи

Существует много типов электронных символов, и они незначительно различаются в зависимости от страны.Ниже приведены несколько наиболее часто используемых электронных символов в США.

Резисторы

обычно используются в проектах электроники, и важно знать, какой размер использовать. Чтобы узнать номинал резистора, вам нужно знать напряжение и силу тока для светодиода и батареи.

Для правильной работы стандартному светодиоду обычно требуется напряжение около 2 В и ток 20 мА или 0,02 А. Далее вам нужно узнать, какое напряжение у вашего аккумулятора. В этом примере мы будем использовать батарею на 9 В.Чтобы определить размер резистора, нам нужно использовать формулу, известную как закон Ома, как показано ниже.

Закон Ома — сопротивление (R) = напряжение (В) / ток (I)

  • Сопротивление измеряется в Ом (Ом)
  • Напряжение измеряется в вольтах (В)
  • Ток измеряется в амперах (A)

Используя закон Ома, вам нужно вычесть напряжение светодиода из напряжения батареи. Это даст вам напряжение 7, которое нужно разделить на.02 ампера от светодиода. Эта формула показывает, что вам понадобится резистор 350 Ом.

Отметим, что стандартные резисторы не имеют сопротивления 350 Ом, но доступны в 330 Ом, что вполне подойдет.

Теперь пришло время объединить все, что вы узнали, и создать базовую схему. Этот проект — отличный стартовый проект для начинающих. Мы будем использовать тестовые провода, чтобы создать временную схему без пайки.

Необходимые детали:

Принципиальная схема

Этапы проекта

  1. Присоедините зажим аккумулятора к верхней части аккумулятора 9 В.
  2. Красный провод от зажима аккумулятора подсоединяется к одному зажиму типа «крокодил» на красном щупе.
  3. Другой конец красного щупа подсоединяется к длинной ножке (+) светодиода.
  4. Подключите один зажим «крокодил» черного тестового провода к короткой ножке (-) светодиода.
  5. Другой конец черного измерительного провода зажимается на одной ножке резистора 330 Ом.
  6. Закрепите одну сторону другого черного измерительного провода на другой ножке резистора 330 Ом.
  7. Противоположный конец черного щупа подключается к черному проводу аккумулятора.

ВАЖНО — Никогда не подключайте светодиод напрямую к батарее 9 В без резистора в цепи. Это сделать с повреждением / разрушением светодиода. Однако вы можете подключить светодиод к батарее 3 В или меньше без резистора.

Другой способ создать и протестировать схему — построить ее на макете. Эти платы необходимы для тестирования и создания прототипов схем, потому что пайка не требуется. Компоненты и провода вставляются в отверстия, образуя временную цепь.Поскольку это не навсегда, вы можете экспериментировать и вносить изменения, пока не будет достигнут желаемый результат.

Под отверстиями каждого ряда находятся металлические зажимы, которые соединяют отверстия друг с другом. Средние ряды идут вертикально, как показано, в то время как внешние столбцы соединяются горизонтально. Эти внешние колонны называются силовыми шинами и используются для приема и подачи питания на плату.

На макетные платы необходимо подавать питание, и это можно сделать несколькими способами.Один из самых простых способов — вставить провода от держателя батареи в шины питания. Это будет подавать напряжение только на ту шину, к которой он подключен.

Для питания обеих шин потребуется перемычка, соединяющая (+) и (-) с рейкой на противоположной стороне.

Теперь мы узнаем, как создать схему на макетной плате. Эта схема точно такая же, как и раньше, но мы не будем использовать измерительные провода.

Необходимые детали:

Принципиальная схема

Этапы проекта

  1. Присоедините зажим аккумулятора к верхней части аккумулятора 9 В.
  2. Поместите красный провод от зажима аккумулятора в F9 макета.
  3. Вставьте черный провод зажима аккумулятора в разъем J21 на макетной плате.
  4. Согните ножки резистора 330 Ом и поместите одну ножку в F21.
  5. Поместите другую ножку резистора в F15.
  6. Вставьте короткую ножку светодиода в J15, а длинную — в J9.

Красные стрелки на изображении ниже помогают показать, как течет электричество в этой цепи. Все компоненты соединены друг с другом по кругу, как при использовании тестовых проводов.

ВАЖНО — Никогда не подключайте светодиод напрямую к батарее 9 В без резистора в цепи. Это сделать с повреждением / разрушением светодиода.

Если вы хотите сделать свою схему постоянной, вам нужно спаять ее вместе. Подробное руководство по пайке электроники вы найдете в нашем посте How To Solder, где вы найдете полное пошаговое руководство.

В Интернете есть множество отличных мест, где можно найти электронные компоненты, детали и инструменты.Ниже приведен список наших любимых мест для покупок электроники.

Узнайте об электронике — Домашняя страница

Сайт для изучения электронной техники. Используйте меню выше или выберите тему в полях предварительного просмотра ниже — вы не более чем в трех щелчках мыши от наиболее важной информации о том, что вам нужно знать.

Посетите наш новый раздел «Неисправности транзисторов» и узнайте, почему транзисторы выходят из строя и как их можно проверить с помощью мультиметра. Простые тесты для биполярных переходных транзисторов (BJT) и полевых транзисторов (JFET и MOSFET).

Уже один из самых популярных образовательных сайтов в области электроники, насчитывающий около 300 страниц и более 1700 иллюстраций и видео по широкому кругу тем электроники, Learnabout Electronics превратился в крупный международный образовательный сайт, которым пользуются миллионы независимых учащихся, образовательные издательства, учебные заведения вооруженных сил, а также колледжи и университеты по всему миру.Используется для занятий электроникой. Чтобы узнать больше о сайте Learnabout Electronics, щелкните здесь.

Изучите основы электроники — закон Ома, простые схемы и схемы резисторов — как последовательные, так и параллельные, объясните шаг за шагом. Все самое необходимое; объяснение напряжения тока, проводимости и сопротивления. Как температура влияет на сопротивление? Все это здесь, вместе с распознаванием компонентов для 4-, 5- и 6-полосных резисторов, а также кодами SMT и простым поиском неисправностей. Некоторые из наиболее полных данных по резисторам в сети!

Наши страницы, посвященные компонентам и схемам переменного тока, предназначены для обучения основам теории переменного тока с помощью 11 простых для изучения модулей. Используйте их как полный курс или изучите любую отдельную тему, включая конденсаторы, катушки индуктивности, реактивное сопротивление, импеданс, формы сигналов и векторы.

Каждый модуль имеет резервную копию бумажной версии для загрузки, печати и сохранения. На онлайн-страницах также используются интерактивные видео, что делает наши популярные пояснительные страницы одними из самых востребованных в Интернете.

Изучение электроники? Затем вам необходимо знать о компонентах, включая диоды, JFET, MOSFT, биполярные транзисторы, тиристоры, симисторы и диаки, оптопары и основы теории полупроводников. Найдите полные и простые объяснения многих распространенных типов. Посмотрите наши анимированные видеоролики, чтобы прояснить работу транзисторов. В чем разница между подключениями общего эмиттера, общей базы и общего коллектора? Узнайте, как правильно тестировать транзисторы в нашем разделе «Идентификация неисправностей», и получите помощь в решении тех математических задач, которые вам понадобятся, когда вы только начинаете заниматься электроникой.

Узнайте, как спроектировать и построить работающий транзисторный усилитель с минимумом математики. Классы усилителей описаны от A до D вместе с многокаскадными усилителями, практичными усилителями мощности и схемами операционных усилителей. Разберитесь с отрицательной обратной связью, входным импедансом и контролем полосы пропускания. Все, от базовых фактов об усилителях до сложных профессиональных конструкций, можно найти на сайте Learnabout Electronics.

Каждой цепи (почти) нужен источник питания, поэтому вам нужно знать, как работают источники питания.Узнайте об этих жизненно важных схемах — от базовых схем выпрямителя до источников питания с переключаемым режимом, и от основных компонентов до интегральных схем — все в наших простых в освоении модулях.

С модулями питания также есть ссылки на ключевые страницы с подробной информацией и основными терминами, с которыми вам необходимо ознакомиться. Используйте возможности learnabout-electronics — сотни страниц информации об электронике, которые помогут вам разобраться в том, что вам необходимо знать , а важные технические описания компонентов источников питания также находятся на расстоянии одного клика, чтобы связать вас с данными производителей.

Начните изучать реальные схемы прямо сейчас с Learnabout Electronics.

Узнайте о цифровой электронике с ПЯТЬЮ МОДУЛЯМИ, наполненными информацией и схемами по цифровой технологии! Начните с двоичной арифметики — булевой алгебры, карт Карно, всего необходимого. Пошаговые инструкции по упрощению логических выражений, чтобы упростить логические выражения!

Логические вентили, логические семейства и цифровые схемы объяснены, от базовых вентилей до сложных схем, которые заставляют компьютеры работать. Мультиплексоры, сумматоры, счетчики, регистры сдвига и многое другое. Загрузите бесплатное программное обеспечение Logisim и более 60 интерактивных симуляторов обычных цифровых схем.

Цены | Академия Электроники Программирования

Когда вы закончите этот курс, у вас появятся навыки и уверенность, чтобы разработать проект, который может взаимодействовать с вашим телефоном по беспроводной сети, используя библиотеки с открытым исходным кодом с приложениями Blynk IoT.

Это наше первое «Пошаговое руководство по проекту», но это НЕ ЯВЛЯЕТСЯ вырезанным и вставленным проектом Arduino! Вы будете руководствоваться при создании этого проекта, и ожидается, что вы будете отражать его по мере того, как вы проектируете, кодируете и сталкиваетесь с трудностями.

Нам бы очень хотелось, если в конце этого курса вы создали этот беспроводной проект, но цель не столько в этом проекте, сколько в навыках, которые вы приобретете, когда закончите обучение.

Уроки включают:

МОДУЛЬ 1 — ВВЕДЕНИЕ В ПРОЕКТ

МОДУЛЬ 2 — ПРОТОТИПИРОВАНИЕ

  • Процесс создания прототипа Введение
  • Контур с изображениями
  • Схема со словами
  • Создание спецификаций
  • Обрезка
  • Обрезка в действии
  • Исследования и закупки
  • Решения по деталям
  • Приоритет с наименьшими висячими фруктами

МОДУЛЬ 3 — ЗАПИСЬ КОДА ДЛЯ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ С ТЕРМИСТОРОМ

  • Введение в уравнение Стейнхарта-Харта
  • Измерительные коэффициенты
  • Создание схемы термистора
  • Кодировка для считывания необработанной цепи термистора
  • Реализация уравнения Стейнхарта-Харта в коде
  • Отображение ° C и ° F
  • Создание функций для getTemps

МОДУЛЬ 4 — ЗНАКОМСТВО С ПРИЛОЖЕНИЕМ BLYNK И БИБЛИОТЕКАМИ ARDUINO

  • Начало установки с Blynk
  • A Обзор Blynk
  • Установление соединения WiFi с Blynk
  • Получение данных на телефон Blynk
  • Отправка данных с вашего компьютера с помощью Blynk
  • Использование BlynkTimer для отправки данных с интервалами

МОДУЛЬ 5 — ИНТЕГРАЦИЯ СЧИТЫВАНИЯ ТЕМПЕРАТУРЫ И КОДА IOT

  • Установление соединения между термометром и телефоном
  • Передать температуру с устройства на телефон по запросу
  • Настройка уведомлений о температуре
  • Регулировка целевой температуры из приложения для устройства

МОДУЛЬ 6 — ОТДЕЛКА

  • Построение простого корпуса
  • Куда идти дальше

4 великие книги для изучения и изучения основ электроники

Последние 3 года или около того мы бесплатно предоставляем отличные образовательные материалы по электронике через этот веб-сайт. У нас есть сотни схем и теоретических статей по различным темам, которые вы можете свободно использовать для изучения. Но «Электроника» — обширная и обширная тема, и есть много областей, которые еще даже не затронуты.

Мы получаем множество запросов от читателей в виде комментариев и электронных писем с вопросами — Как я могу начать изучать электронику ; С чего начать изучение электроники; Какие хорошие книги для изучения электроники? и т. Д. На этот вопрос сложно ответить, так как есть много ресурсов для изучения электроники.Как бы то ни было, мы думали, что перечислим 4 действительно хороших книги для изучения основ электроники . Книги не обязательно располагаются в любом порядке — но первая книга Forrest Mims отобрана вручную 🙂 Это действительно хорошая книга, и мы рекомендуем ее всем, кто интересуется электроникой. Книги организованы таким образом — сначала идет название, затем небольшой брифинг о содержании книги, немного об авторе и, наконец, даются ссылки на различные торговые сайты, где вы можете купить книгу. Ссылки даны только для Индии, США и Великобритании. Для других стран читатели могут делать заказы из корзины покупок своей страны. Мы выбрали Amazon в качестве поставщика корзины для покупок в США и Великобритании. В Индии мы выбрали Flipkart — они предлагают одни из лучших тарифов и обслуживания клиентов.

Примечание. Некоторые книги доступны не во всех странах. Пожалуйста, смирись с этим!

# 1 Начало работы в электронике, Forrest.M.Mims

«Одна из лучших книг по электронике» — это мой лучший отзыв об этой книге.

На данный момент продано более 1,3 миллиона копий, это единственный бестселлер в технических изданиях, который затмевает многие популярные романы! Известная в народе как «Записная книжка инженера» — эта книга напечатана в формате «рукописный» . В нем 100+ базовых схем, которые более 3 раз тестируются (для исключения всех возможных ошибок) самим автором. В этой книге также объясняются все основные компоненты аналоговой и цифровой электроники, а также их функции и способы использования.Вы можете узнать, как работают эти компоненты и как они подходят для различных схем.

Об авторе: —

Форрест М Мимс III — наиболее известен как ученый-любитель. Он занимает место в «Истории электроники » как разработчик первого персонального компьютера — «Altair8800» с микропроцессором Intel8080. Вы можете прочитать о его вкладе в нашей истории электроники — Инфографика (см. Год — 1975).Мимс написал более 50+ книг по различным темам электроники и было продано более 7 миллионов копий. Интересный факт о Форресте Мимсе заключается в том, что он не имеет формального академического образования в области естественных наук. Он специализировался на английском и истории !! Он с детства интересовался наукой, и из своего любопытства он изучал и исследовал науку

Купить эту книгу:

Начало работы в электронике — США

Начало работы в электронике — Индия

Начало работы в электронике — Великобритания

# 2 Make Electronics — Learning by Discovery by Charles Platt (2-е издание)

«Учись, пока творишь» — это лучший вариант обложки для этой книги.

Это отличная книга, в которой вы можете сначала потренироваться, а потом учиться, пока вы делаете схему. Совершенно другой подход к самообучению электроники. Книга побуждает задуматься — « Почему так ?». В одном из первых экспериментов автор просит читателя дотронуться языком до выводов батарейки — отличный способ начать изучать электронику. Проблема с большинством книг по «базовой электронике» состоит в том, что все они сначала преподают математический анализ схем! — что не нравится новичку 😉 Начинающим в электронике надо сначала смочить руки при экспериментировании.Подобные эксперименты методом проб и ошибок развивают любопытство. Чтобы разрешить любопытство, начинаешь спрашивать — «Почему так происходит» . С этого момента вам следует начать изучение теории. Когда вы начнете изучать теорию после экспериментов с разными вещами — вы поймете теорию эффективно и быстрее.

Так что эта книга действительно хороша, чтобы намочить руки! Настоятельно рекомендуется.

Примечание: — ProTechTrader — , компания, которая специализируется на торговле электронными компонентами в США, выпустила довольно полезный «Комплект компонентов» на основе этой книги — Make Electronics — Learning by Discovery (2nd Edition) .Мы подробно рассмотрели этот комплект компонентов от ProTechTrader . Этот комплект очень полезен для любого новичка в электронике и может во много раз ускорить процесс обучения.

Об авторе: —

Чарльз Платт — автор электроники первого поколения 70-х и 80-х годов. Сейчас он работает редактором всемирно известного журнала Make Magazine. Он же писал научно-популярные романы вроде «Кремниевый человек». Кроме того, он также является программистом первого поколения.

Купить эту книгу:

Изготовление электроники — обучение с помощью открытий — США

Производство электроники — обучение, основанное на открытиях — Индия

Производство электроники — Обучение, основанное на открытиях — Великобритания

# 3 All New Electronics — Самоучитель Гарри Кибетт и Эрл Бойсен

«Понять основную теорию» — отличная книга для изучения теории!

К настоящему времени мы просмотрели две отличные книги по практической электронике! Они предлагают не только практические схемы, но и две вышеупомянутые книги помогут вам изучить теорию при создании схем. Но эти две книги не так хороши, когда речь идет о математическом анализе и теоретическом объяснении, основанном на чистой науке. Как насчет того, чтобы подписаться на такую ​​книгу? Здесь я рекомендую «Руководство по самообучению по новой электронике» из публикаций Wiley, чтобы удовлетворить ваши теоретические потребности. Как я уже писал ранее в этой статье, теория действительно важна. Но вы понимаете теорию более ясно после экспериментов с разными вещами! 🙂 По крайней мере, мой личный опыт таков! Вот почему я рекомендую книгу по теории как №3, а практическую — в №1 и №2

.

Из этой книги легко выучить следующее: —

  • Математические вычисления для понимания работы схем
  • Концепции, которые необходимо понять для разработки электронных схем
  • Ключевые компоненты электроники, такие как транзисторы, микросхемы — разберитесь в них.
  • Общие сведения об источниках питания, генераторах, усилителях, фильтрации и многом другом

Об авторах: —

Фактически эта книга — третье издание. Гарри Кибетт написал первые два издания (впервые опубликовано 30 лет назад), а после его кончины Эрл Бойсен написал последнее третье издание. Гарри Кибетт был техническим директором Columbia Pictures. Эрл Бойсен — инженер и соавтор популярной книги « Electronics for Dummies ».

Купить эту книгу:

All New Electronics — Self Teaching Guide — USA

.

Самоучитель по новой электронике — Индия

Самоучитель по новой электронике — Великобритания

# 4 Практическая электроника для изобретателей Пауля Шерца

«Что дальше после изучения основ?» — Эта книга — ответ на этот вопрос 🙂

Вы можете спросить, зачем мне 4-я книга по основам электроники? Разве я не узнал так много основ, прочитав три вышеупомянутые книги.В каком-то смысле — да! К тому времени, когда вы закончите третью книгу (то есть Книгу № 3), вы будете иметь полное представление об основных электронных концепциях. Тогда вы можете спросить — Почему тогда вы добавляете 4-ю книгу? У меня есть на то причины!

Первые две книги — Начало работы в электронике, Форрест Мимс. , и , . Make Electronics, Чарльз Платт. были посвящены «экспериментам» с базовыми электронными схемами. Они не уделяли особого внимания теории — физике и математике, лежащей в основе любых схемотехнических приложений! Отсюда возникла необходимость понять теорию звука, лежащую в основе электроники, и я предложил «All New Electronics» Гарри Кибетта. Хотя эта книга хорошо объясняет теорию, она не смогла связать эти теории с приложениями в реальной жизни. Вы изучаете теорию, лежащую в основе схемы резервуара, и не понимаете, как она применяется в реальной жизни — , насколько это нечетко?

И это единственная лучшая причина купить книгу Пауля Шерца — Практическая электроника для изобретателей восполняет этот пробел. Это книга, которая связывает теорию с реальной жизнью. Изюминкой этой книги являются 750+ нарисованных от руки иллюстраций, которые помогут вам превратить теоретические идеи в реальные изобретения.Наконец, это единственная книга по базовой электронике, которая дает действительно хорошее введение в следующий шаг — микроконтроллеры !

Купить эту книгу:

Практическая электроника для изобретателей — США

Практическая электроника для изобретателей — Индия

Практическая электроника для изобретателей — Великобритания

# 5 Сделайте больше электроники Чарльз Платт

«Следующий шаг к увлекательному изучению электроники»

Я уже перечислял «Make Electronics» Чарльза Платта.Это следующая книга, которую стоит купить, если вы уже знакомы с первой. Это не совсем руководство для новичков, но это хорошая отправная точка для тех, кто уже знаком с концепциями электроники.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *