Кв киловольт: киловольт [кВ] в вольт [В] • Конвертер электростатического потенциала и напряжения • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Содержание

киловольт [кВ] в вольт [В] • Конвертер электростатического потенциала и напряжения • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Плазменная лампа

Общие сведения

Поднимаясь в гору, мы совершаем работу против силы притяжения

Поскольку мы живём в эпоху электричества, многим нам с детства знакомо понятие электрического напряжения: ведь мы порой, исследуя окружающую действительность, получали от него немалый шок, засунув тайком от родителей пару пальцев в розетку питания электрических устройств. Поскольку вы читаете эту статью, ничего особо страшного с вами не произошло — трудно жить в эпоху электричества и не познакомится с ним накоротке. С понятием электрического потенциала дело обстоит несколько сложнее.

Будучи математической абстракцией, электрический потенциал лучше всего по аналогии описывается действием гравитации — математические формулы абсолютно схожи, за исключением того, не существуют отрицательные гравитационные заряды, так как масса всегда положительная и в то же время электрические заряды бывают как положительными, так и отрицательными; электрические заряды могут как притягиваться, так и отталкиваться. В результате же действия гравитационных сил тела могут только притягиваться, но не могут отталкиваться. Если бы мы смогли разобраться с отрицательной массой, мы бы овладели антигравитацией.

Но стоит только оттолкнуться…

Понятие электрического потенциала играет важную роль в описании явлений, связанных с электричеством. Вкратце понятие электрического потенциала описывает взаимодействие различных по знаку или одинаковых по знаку зарядов или групп таких зарядов.

Из школьного курса физики и из повседневного опыта, мы знаем, что поднимаясь в гору, мы преодолеваем силу притяжения Земли и, тем самым, совершаем работу против сил притяжения, действующих в потенциальном гравитационном поле. Поскольку мы обладаем некоторой массой, Земля старается понизить наш потенциал — стащить нас вниз, что мы с удовольствием позволяем ей, стремительно катаясь на горных лыжах и сноубордах. Аналогично, электрическое потенциальное поле старается сблизить разноимённые заряды и оттолкнуть одноимённые.

Отсюда следует вывод, что каждое электрически заряженное тело старается понизить свой потенциал, приблизившись как можно ближе к мощному источнику электрического поля противоположного знака, если никакие силы этому не препятствуют. В случае одноимённых зарядов каждое электрически заряженное тело старается понизить свой потенциал, удалившись как можно дальше от мощного источника электрического поля одинакового знака, если никакие силы этому не препятствуют. А если они препятствуют, то потенциал не меняется — пока вы стоите на ровном месте на вершине горы, сила гравитационного притяжения Земли компенсируется реакцией опоры и вас ничто не тянет вниз, только ваш вес давит на лыжи. Но стоит только оттолкнуться…

Аналогично и поле, создаваемое каким-то зарядом, действует на любой заряд, создавая потенциал для его механического перемещения к себе или от себя в зависимости от знака заряда взаимодействующих тел.

«Сизиф», Тициан, Музей Прадо, Мадрид, Испания

Электрический потенциал

Заряд, внесённый в электрическое поле, обладает определенным запасом энергии, т. е. способностью совершать работу. Для характеристики энергии, запасённой в каждой точке электрического поля, и введено специальное понятие — электрический потенциал. Потенциал электрического поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.

Возвращаясь к аналогии с гравитационным полем, можно обнаружить, что понятие электрического потенциала сродни понятию уровня различных точек земной поверхности. То есть, как мы рассмотрим ниже, работа по поднятию тела над уровнем моря зависит от того, как высоко мы поднимаем это тело, и аналогично, работа по отдалению одного заряда от другого зависит от того, насколько далеко будут эти заряды.

Представим себе героя древнегреческого мира Сизифа. За его прегрешения в земной жизни боги приговорили Сизифа выполнять тяжёлую бессмысленную работу в загробной жизни, вкатывая огромный камень на вершину горы. Очевидно, что для подъема камня на половину горы, Сизифу нужно затратить вдвое меньшую работу, чем для подъема камня на вершину. Далее камень, волею богов, скатывался с горы, совершая при этом некоторую работу. Естественно, камень, поднятый на вершину горы высотой Н (уровень Н), при спуске сможет совершить большую работу, чем камень, поднятый на уровень Н/2. Принято считать уровень моря нулевым уровнем, от которого и производится отсчет высоты.

По аналогии, электрический потенциал земной поверхности считается нулевым потенциалом, то есть

ϕEarth = 0

где ϕEarth — обозначение электрического потенциала Земли, являющегося скалярной величиной (ϕ — буква греческого алфавита и читается как «фи»).

Эта величина количественно характеризует способность поля совершить работу (W) по перемещению какого-то заряда (q) из данной точки поля в другую точку:

ϕ = W/q

В системе СИ единицей измерения электрического потенциала является вольт (В).

Посетители Канадского музея науки и техники вращают большое беличье колесо, которое вращает генератор, питающий трансформатор Тесла (на рисунке справа), который, в свою очередь, создает высокое напряжение в несколько десятков тысяч вольт, достаточное для пробоя воздуха

Напряжение

Одно из определений электрического напряжения описывает его как разность электрических потенциалов, что определяется формулой:

V = ϕ1 – ϕ2

Понятие напряжение ввёл немецкий физик Георг Ом в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 г. эмпирического закона Ома:

Трансформатор Тесла в Канадском музее науки и техники

V = I·R,

где V — это разность потенциалов, I — электрический ток, а R — сопротивление.

Другое определение электрического напряжения представляется как отношение работы поля по передвижению заряда в проводнике к величине заряда.

Для этого определения математическое выражение для напряжения описывается формулой:

V = A / q

Напряжение, как и электрический потенциал, измеряется в вольтах (В) и его десятичных кратных и дольных единицах — микровольтах (миллионная доля вольта, мкВ), милливольтах (тысячная доля вольта, мВ), киловольтах (тысячах вольт, кВ) и мегавольтах (миллионах вольт, МВ).

Напряжением в 1 В считается напряжение электрического поля, совершающего работу в 1 Дж по перемещению заряда в 1 Кл. Размерность напряжения в системе СИ определяется как

В = кг•м²/(А•с³)

Напряжение может создаваться различными источниками: биологическими объектами, техническими устройствами и даже процессами, происходящими в атмосфере.

Боковая линия акулы

Элементарной ячейкой любого биологического объекта является клетка, которая с точки зрения электричества представляет собой электрохимический генератор малого напряжения. Некоторые органы живых существ, вроде сердца, являющихся совокупностью клеток, вырабатывают более высокое напряжение. Любопытно, что самые совершенные хищники наших морей и океанов — акулы различных видов — обладают сверхчувствительным датчиком напряжения, называемым органом боковой линии, и позволяющим им безошибочно обнаруживать свою добычу по биению сердца. Отдельно, пожалуй, стоит упомянуть об электрических скатах и угрях, выработавших в процессе эволюции для поражения добычи и отражения нападения на себя способность создавать напряжение свыше 1000 В!

Хотя люди генерировали электричество, и, тем самым, создавали разность потенциалов (напряжение) трением кусочка янтаря о шерсть с давних времён, исторически первым техническим генератором напряжения явился гальванический элемент. Он был изобретён итальянским учёным и врачом Луиджи Гальвани, который обнаружил явление возникновения разности потенциалов при контакте разных видов металла и электролита. Дальнейшим развитием этой идеи занимался другой итальянский физик Алессандро Вольта. Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока. Соединив несколько таких источников последовательно, он создал химическую батарею, так называемый «Вольтов столб», благодаря которой стало возможным получать электричество с помощью химических реакций.

Вольтов столб — копия, сделанная электриком из Музея Алессандро Вольта в Комо, Италия. Канадский музей науки и техники в Оттаве

Из-за заслуг в создания надёжных электрохимических источников напряжения, сослуживший немалую роль в деле дальнейших исследования электрофизических и электрохимических явлений, именем Вольта названа единица измерения электрического напряжения — Вольт.

Среди создателей генераторов напряжения необходимо отметить голландского физика Ван дер Граафа, создавшего генератор высокого напряжения, в основе которого лежит древняя идея разделения зарядов с помощью трения — вспомним янтарь!

Отцами современных генераторов напряжения были два замечательных американских изобретателя — Томас Эдисон и Никола Тесла. Последний был сотрудником в фирме Эдисона, но два гения электротехники разошлись во взглядах на способы генерации электрической энергии. В результате последующей патентной войны выиграло всё человечество — обратимые машины Эдисона нашли свою нишу в виде генераторов и двигателей постоянного тока, исчисляющихся миллиардами устройств — достаточно просто заглянуть под капот своего автомобиля или просто нажать кнопку стеклоподъёмника или включить блендер; а способы создания переменного напряжения в виде генераторов переменного тока, устройств для его преобразования в виде трансформаторов напряжения и линий передач на большие расстояния и бесчисленных устройств для его применения по праву принадлежат Тесле. Их число ничуть не уступает числу устройств Эдисона — на принципах Тесла работают вентиляторы, холодильники, кондиционеры и пылесосы, и масса других полезных устройств, описание которых выходит за рамки настоящей статьи.

Этот находящийся в Канадском музее науки и техники в Оттаве мотор-генератор, изготовленный компанией Westinghouse в 1904 г., использовался в качестве надежного источника питания для создания магнитного поля возбудителя на гидроэлектростанции в Ниагара-Фоллс, шт. Нью-Йорк. Строительством электростанции руководили Никола Тесла и Джордж Вестингауз

Безусловно, учёными позднее были созданы и другие генераторы напряжения на других принципах, в том числе и на использовании энергии ядерного распада. Они призваны служить источником электрической энергии для космических посланцев человечества в дальний космос.

Но самым мощным источником электрического напряжения на Земле, не считая отдельных научных установок, до сих пор остаются естественные атмосферные процессы.

Ежесекундно на Земле грохочут свыше 2 тысяч гроз, то есть, одновременно работают десятки тысяч естественных генераторов Ван дер Граафа, создавая напряжения в сотни киловольт, разряжаясь током в десятки килоампер в виде молний. Но, как ни удивительно, мощь земных генераторов не идёт ни в какое сравнение с мощью электрических бурь, происходящих на сестре Земли — Венере — не говоря уже об огромных планетах вроде Юпитера и Сатурна.

Характеристики напряжения

Напряжение характеризуется своей величиной и формой. Относительно его поведения с течением времени различают постоянное напряжение (не изменяющееся с течением времени), апериодическое напряжение (изменяющееся с течением времени) и переменное напряжение (изменяющееся с течением времени по определённому закону и, как правило, повторяющее само себя через определённый промежуток времени). Иногда для решения определённых целей требуется одновременное наличие постоянного и переменного напряжений. В таком случае говорят о напряжении переменного тока с постоянной составляющей.

Таким вольтметром измеряли напряжение в начале XX века. Канадский музей науки и техники в Оттаве

В электротехнике генераторы постоянного тока (динамо-машины) используются для создания относительно стабильного напряжения большой мощности, в электронике применяются прецизионные источники постоянного напряжения на электронных компонентах, которые называются стабилизаторами.

Измерение напряжения

Измерение величины напряжения играет большую роль в фундаментальных физике и химии, прикладных электротехнике и электрохимии, электронике и медицине и во многих других отраслях науки и техники. Пожалуй, трудно найти отрасли человеческой деятельности, исключая творческие направления вроде архитектуры, музыки или живописи, где с помощью измерения напряжения не осуществлялся бы контроль над происходящими процессами с помощью разного рода датчиков, являющимися по сути дела преобразователями физических величин в напряжение. Хотя стоит заметить, что в наше время и эти виды человеческой деятельности не обходятся без электричества вообще и без напряжения в частности. Художники используют планшеты, в которых измеряется напряжение емкостных датчиков, когда над ними перемещается перо. Композиторы играют на электронных инструментах, в которых измеряется напряжение на датчиках клавиш и в зависимости от него определяется насколько сильно нажата та или иная клавиша. Архитекторы используют AutoCAD и планшеты, в которых тоже измеряется напряжение, которые преобразуется в числовую форму и обрабатывается компьютером.

В кухонном термометре (слева) температура мяса определяется с помощью измерения напряжения на резистивном датчике температуры, через который пропускают небольшой ток. В мультиметре (справа) температура определяется путем измерения напряжения непосредственно на термопаре

Измеряемые величины напряжения могут меняться в широких пределах: от долей микровольта при исследованиях биологических процессов, до сотен вольт в бытовых и промышленных устройствах и приборах и до десятков миллионов вольт в сверхмощных ускорителях элементарных частиц. Измерение напряжения позволяет нам контролировать состояние отдельных органов человеческого организма при помощи снятия энцефалограмм мозговой деятельности. Электрокардиограммы и эхокардиограммы дают информацию о состоянии сердечной мышцы. При помощи различных промышленных датчиков мы успешно, а, главное, безопасно, контролируем процессы химических производств, порой происходящие при запредельных давлениях и температурах. И даже ядерные процессы атомных станций поддаются контролю с помощью измерения напряжений. С помощью измерения напряжения инженеры контролируют состояние мостов, зданий и сооружений и даже противостоят такой грозной природной силе как землетрясения.

Пульсоксиметр, как и вольтметр, измеряет напряжение на выходе устройства, усиливающего сигнал с фотодиода или фототранзистора. Однако, в отличие от вольтметра, здесь на дисплее мы видим не значение напряжения в вольтах, а процент насыщения гемоглобина кислородом (97%).

Блестящая идея связать различные значения уровней напряжения со значениями состояния единиц информации дало толчок к созданию современных цифровых устройств и технологий. В вычислительной технике низкий уровень напряжения трактуется как логический нуль (0), а высокий уровень напряжения — как логическая единица (1).

По сути дела, все современные устройства вычислительной техники являются в той или иной степени компараторами (измерителями) напряжения, преобразовывая свои входные состояния по определённым алгоритмам в выходные сигналы.

Помимо всего прочего, точные измерения напряжения лежат в основе многих современных стандартов, выполнение которых гарантирует их абсолютное соблюдение и, тем самым, безопасность применения.

Плата памяти, используемая в персональных компьютера, содержит десятки тысяч логических вентилей

Средства измерения напряжения

В ходе изучения и познания окружающего мира, способы и средства измерения напряжения значительно эволюционировали от примитивных органолептических методов — русский учёный Петров срезал часть эпителия на пальцах, чтобы повысить чувствительность к действию электрического тока — до простейших индикаторов напряжения и современных приборов разнообразных конструкций на основе электродинамических и электрических свойств различных веществ.

Вкус электричества. Когда-то, очень давно, если не было вольтметра, мы определяли напряжение языком!

К слову сказать, начинающие радиолюбители легко отличали «рабочую» плоскую батарейку на 4,5 В от «подсевшей» без каких-либо приборов по причине их полного отсутствия, просто лизнув её электроды. Протекавшие при этом электрохимические процессы давали ощущение определённого вкуса и лёгкого жжения. Отдельные выдающиеся личности брались определять таким способом пригодность батареек даже на 9 В, что требовало немалой выдержки и мужества!

Примером простейшего индикатора — пробника сетевого напряжения — может служить обыкновенная лампа накаливания с рабочим напряжением не ниже напряжения сети. В продаже имеются простые пробники напряжения на неоновых лампах и светодиодах, потребляющие малые токи. Осторожно, использование самодельных конструкций может быть опасным для Вашей жизни!

Необходимо отметить, что приборы для измерения напряжения (вольтметры) весьма отличаются друг от друга в первую очередь по типу измеряемого напряжения — это могут быть приборы постоянного или переменного тока. Вообще, в измерительной практике важно поведение измеряемого напряжения — оно может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ электротехнических цепей и устройств (слаботочные и силовые).

Различают следующие значения напряжения:

  • мгновенное,
  • амплитудное,
  • среднее,
  • среднеквадратичное (действующее).

Мгновенное значение напряжения Ui (см. рисунок) — это значение напряжения в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.

Амплитудное (пиковое) значение напряжения Ua — это наибольшее мгновенное значение напряжения за период. Размах напряжения Up-p — величина, равная разности между наибольшим и наименьшим значениями напряжения за период.

Среднее квадратичное (действующее) значение напряжения Urms определяется как корень квадратный из среднего за период квадрата мгновенных значений напряжения.

Все стрелочные и цифровые вольтметры обычно градуируются в среднеквадратических значениях напряжения.

Среднее значение (постоянная составляющая) напряжения — это среднее арифметическое всех его мгновенных значений за время измерения.

Средневыпрямленное напряжение определяется как среднее арифметическое абсолютных мгновенных значений за период.

Разность между максимальным и минимальным значениями напряжения сигнала называют размахом сигнала.

Сейчас, в основном, для измерения напряжения используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.

Измерение напряжения осциллографом

Иллюстрацией к вышесказанному будет серия опытов по измерению напряжений с использованием генератора сигналов, источника постоянного напряжения, осциллографа и многофункционального цифрового прибора (мультиметра).

Эксперимент №1

Общая схема эксперимента №1 представлена ниже:

Генератор сигналов нагружен на сопротивление нагрузки R1 в 1 кОм, параллельно сопротивлению подключены измерительные концы осциллографа и мультиметра. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.

Опыт 1: Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 герц и амплитудой 4 вольт. На экране осциллографа будем наблюдать изображение, показанное ниже. Отметим, что цена деления масштабной сетки экрана осциллографа по вертикальной оси 2 В. Мультиметр и осциллограф при этом покажут среднеквадратичное значение напряжение 1,36 В.

Опыт 2: Увеличим сигнал от генератора вдвое, размах изображения на осциллографе возрастёт ровно вдвое и мультиметр покажет удвоенное значение напряжения:

Опыт 3: Увеличим частоту генератора в 100 раз (6 кГц), при этом частота сигнала на осциллографе изменится, но размах и среднеквадратичное значение останутся прежними, а показания мультиметра станут неправильными — сказывается допустимый рабочий частотный диапазон мультиметра 0—400 Гц:

Опыт 4: Вернёмся к исходной частоте 60 Гц и напряжению генератора сигналов 4 В, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением напряжения, которое он показывал в опыте №1, так как изменилось действующее напряжение сигнала:

Эксперимент №2

Схема эксперимента №2, аналогична схеме эксперимента 1.

Ручкой изменения напряжения смещения на генераторе сигналов добавим смещение 1 В. На генераторе сигналов установим синусоидальное напряжение с размахом 4 В с частотой 60 Гц — как и в эксперименте №1. Сигнал на осциллографе поднимется на половину большого деления, а мультиметр покажет среднеквадратичное значение 1,33 В. Осциллограф покажет изображение, подобное изображению из опыта 1 эксперимента №1, но поднятое половину большого деления. Мультиметр покажет почти такое же напряжение, как было в опыте 1 эксперимента №1, так как у него закрытый вход, а осциллограф с открытым входом покажет увеличенное действующее значение суммы постоянного и переменного напряжений, которое больше действующего значения напряжения без постоянной составляющей:

Техника безопасности при измерении напряжения

Поскольку в зависимости от класса безопасности помещения и его состояния даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:

  1. Не проводить измерения напряжения, требующих определённых профессиональных навыков (свыше 1000 В).
  2. Не производить измерения напряжений в труднодоступных местах или на высоте.
  3. При измерении напряжений в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
  4. Пользоваться исправным измерительным инструментом.
  5. В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
  6. Пользоваться измерительным прибором с исправными щупами.
  7. Строго следовать рекомендациям производителя по использованию измерительного прибора.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Преобразовать кВ в В (киловольт в вольт)

Прямая ссылка на этот калькулятор:
https://www.preobrazovaniye-yedinits.), скобки и π (число пи), уже поддерживаются на настоящий момент.

  • Из списка выберите единицу измерения переводимой величины, в данном случае ‘киловольт [кВ]’.
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘вольт [В]’.
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘378 киловольт’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘киловольт’ или ‘кВ’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрическое напряжение’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’64 кВ в В‘ или ’27 кВ сколько В‘ или ’38 киловольт -> вольт‘ или ’92 кВ = В‘ или ’64 киловольт в В‘ или ’87 кВ в вольт‘ или ’58 киловольт сколько вольт‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

    Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(91 * 97) кВ’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии.3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 2,400 999 978 150 9×1029. В этой форме представление числа разделяется на экспоненту, здесь 29, и фактическое число, здесь 2,400 999 978 150 9. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 2,400 999 978 150 9E+29. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 240 099 997 815 090 000 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.


    Сколько вольт в 1 киловольт?

    1 киловольт [кВ] = 1 000 вольт [В] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования киловольт в вольт.

    Московские подстанции переводят на напряжение 20 кВ

    Новости

    9 августа 2016, 13:55

    Московские подстанции переводят на напряжение 20 кВ

    В столице России проходит реконструкция подстанций с повышением класса напряжения.

    В центре Москвы отркыли подстанцию «Берсеневскую». Она обеспечивает электроэнергией потребителей в Центральном, Западном и Юго-Западном округах Москвы. Необходимость в новой станции появилась уже давно, так как старые сети не справлялись с нагрузкой.


    Новая подстанция создаст в центре Москвы значительный резерв свободной мощности (порядка 155 мегаватт) для подключения новых потребителей.

    Кроме того, электроподстанция станет частью опорной распределительной сети, которая нужна для повышения надёжности электроснабжения столицы. Преимущество сетей 20 киловольт (по сравнению с преобладающими в городе сетями шесть и 10 киловольт) — возможность передачи электроэнергии на большие расстояния с меньшими потерями.

    При модернизации электрических сетей энергетические компании стараются повысить класс напряжения, чтобы уменьшить расходы и потери при транспортировке электроэнергии к потребителю. Обычно горожане используют в быту напряжение в 220 вольт (в розетках) или 380 вольт (электроплиты).

    Сети со средним напряжением 6, 10 киловольт морально устарели и уже перестают справляться с возрастающей нагрузкой. Ввод в строй новых электрических сетей среднего напряжения 20 киловольт позволяет не только перейти на более высокий уровень надёжности электроснабжения, но и увеличить пропускную способность распределительных сетей как минимум в полтора-два раза.

    Ещё одна особенность всех новых подстанций — это оборудование комплектными распределительными устройствами с элегазовой изоляцией (КРУЭ). КРУЭ предназначены для распределения и транзита электроэнергии от питающих центров по линиям электропередачи в автоматическом режиме.

    КРУЭ надёжны и успешно используются в энергетической отрасли многих европейских стран. Подстанции, оборудованные КРУЭ, занимают маленькую площадь по сравнению с равными по мощности традиционными энергообъектами с открытыми распределительными устройствами (ОРУ). Такие подстанции надёжно работают при любой погоде: спецоборудование максимально защищено от воздействия окружающей среды, экологично и бесшумно, а требования к обслуживанию минимальны. Кроме того, КРУЭ экранированы от электромагнитных полей и не создают радиопомех. Станции с таким оборудованием можно сооружать в жилых районах и рядом с зонами отдыха.

    Новая подстанция тоже очень проста в эксплуатации. В её здании работает только один диспетчер, который обеспечивает круглосуточный мониторинг работающего оборудования и производит оперативные переключения, переговариваясь с системным оператором.

    Напомним, что также в Киеве ПАО «Киевэнерго» презентовало один из первых проектов по переводу распределительных электросетей 6 (10) кВ в центре столицы на более высокий класс напряжения — 20 кВ.

     

    Читайте самые интересные истории ЭлектроВестей в Telegram и Viber

    17 Сентября 2012 кВт – киловат, кВ – киловольт,

    Номинальное напряжение электрических систем

    Номинальное напряжение источников и сети (кВт)

    Номинальные междуфазные напряжения на зажимах (кВ)

    генераторов

    трансформаторы

    Первичной обмотки

    Вторичной обмотки

    0,22

    0,23

    0,22

    0,23

    0,38

    0,4

    0,38

    0,4

    0,68

    0,69

    0,66

    0,69

    (3)

    (3,15)

    (3)

    (3,15)

    6

    6,3

    6 и 6,3*

    6,3 и 6,6

    10

    10,5

    10 и 10,5*

    10,5 и 11

    20

    21

    20 и 21*

    22

    35

    прочерк

    35

    38,5

    110

    прочерк

    110

    115 и 121

    (150)

    прочерк

    (150)

    (158)

    220

    прочерк

    220

    230 и 240

    330

    прочерк

    330

    347

    500

    прочерк

    500

    прочерк

    750

    прочерк

    750

    прочерк

    1150

    прочерк

    1150

    прочерк

    Напряжения, указанные в скобках для вновь проектируемых сетей не рекомендуется

    Знаком * отмечены напряжение трансформаторов, присоединяемых непосредственно к шинам генераторного напряжения электрических станции или к выводам генераторов.

    Выбор напряжений

    Напряжение каждого звена системы, электроснабжения, должно выбираться с учетом напряжении смежных звеньев. На основании технико-экономических сравнении, вариантов, выбор напряжения производится в следующих случаях;

    1. Имеется возможность получения энергии от источника питания при двух и более напряжениях.

    2. Предприятие с большой потребляемой мощностью нуждается в сооружении или значительном расширении существующих районных подстанции, электростанции или сооружении собственной электростанции.

    3. Имеется связь электростанции предприятии с районными сетями.

    При выборе вариантов предпочтение следует отдавать варианту с более высоким напряжением. Для питания больших предприятии на первых ступенях распределения электроэнергии, следует применять напряжение 110, 220 и 330 кВ.

    Напряжение 35 кВ следует применять для частичного, внутризаводского распределения электроэнергии в случающих случаях;

    1. При наличии крупных электроприемников питающихся напряжением 35 кВ.

    2. При наличии удаленных от источников питания нагрузок.

    Напряжение 20 кВ следует применять для электроснабжения отдельных объектов предприятия; это могут быть рудники, карьеры, определенные населенные пункты.

    Напряжение 10 кВ применяют для распределительных сетей, от которых питаются электродвигатели мощность от 350 и до 630 кВ.

    Напряжение 6 кВ применяется, когда имеется электроприемники номинального напряжения 6 кВ и их суммарное мощность приближается к половине мощности трансформатора, а так же если возможно ограничения токов короткого замыкания на шинах 6 кВт, без значительного усложнения схемы. Оно так же применяется при схеме электроснабжения блок-трансформатор-двигатель, если число двигателей 6кВт не велико, мощности их значительны, и они расположены, обособлено друг от друга.

    Напряжение 380/220 вольт должно применяться для питания силовых и осветительных электроприёмников от общих трансформаторов.

    Напряжение 660 вольт, для внутрицехового электроэнергии чаще всего применяется;

    при значительном количестве двигателей мощностью от 350 до 630 кВ,

    при длинных и разветвленных сетях напряжением до 1000 вольт,

    при первичном напряжении распределительной сети 10 кВ,.

    киловольт [кВ] в ватт на ампер [Вт/А] • Конвертер электростатического потенциала и напряжения • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения


    Что такое кВТ и кВА

    Электрическая мощность является величиной, характеризующей скорость передачи с потреблением либо генерацией электроэнергии за временную единицу. Чем больше сила, тем больше работы может выполнить электрическое оборудование за временную единицу. Бывает она полной, реактивной и активной.


    кВТ и кВА

    кВт — полная электрическая сила, а кВА — активная согласно понятию, представленному Джейсом Уаттом. В соответствии с этим в первом случае одна единица равняется 1000 Ватт. Одним Вт является мощность, при которой за одну секунду может совершаться работа в один джоуль. Часть полной силы, передающейся в нагрузку за конкретный период тока, это активная мощность. Она подсчитывается в качестве произведения действующих значений тока с напряжением на угловой косинус со сдвигом фаз около них.


    Подробное определение киловатта

    Киловатт ампер является полной мощностью, которая потребляется любым электрическим оборудованием, а киловатт считается активной энергией, которая тратится на выполнение полезной работы. Полная сила это сумма активных и реактивных показателей.

    Обратите внимание! Все электрические приборы, имеющие статус потребителей, делятся на несколько категорий:

    • активные,
    • реактивные.

    К первым относятся лампы накаливания с обогревателями и электрическими плитами. Ко вторым относятся кондиционеры с телевизорами, дрелями и люминесцентными лампами.


    Подробное определение киловатт ампер

    Резистивная

    Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

    ТЭН — это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

    Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах.

    Объект измерения

    В ваттах на данный момент можно измерить любую силу, не только электрическую. К примеру, чтобы измерить двигательную автомобильную силу, применяются ватты. Но зачастую используются не сами они, а их производные. Аналогично с метрами и километрами, граммами и килограммами, 1 кВТ=1000 Вт. Поэтому все электроприборы, как правило, имеют выраженную силу.

    Что касается амперной величины, самыми популярными приборами, измеряемыми в ней, являются источники бесперебойного питания и различные промышленные и строительные генераторы питания.


    Что измеряется в величинах

    Индуктивная

    Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной.

    Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

    Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные.

    Отличия

    Измерение активной силы происходит в киловаттах, а полной или номинальной — в киловольт амперах. Вольт ампер с киловольт ампером, будучи мощностной единицей тока, подсчитывается как произведение токовых амперных значений в электрической цепи и вольтовое напряжение на ее окончаниях. Ватт на киловатт является энергией, совершаемой за секунду, и равной одному джоулю. Измерение осуществляется при помощи силы постоянно действующей энергии при вольтовом напряжении.

    Вам это будет интересно Однофазный автомат с16

    Обратите внимание! Только часть от мощности устройства участвует в момент совершения рабочей деятельности. Остальная же выходит наружу.


    Чем отличаются величины

    Онлайн калькулятор перевода кВА в кВт:

    Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

    Мощность бывает полная, реактивная и активная:

    • S – полная мощность измеряется в кВА (килоВольтАмперах)

    Характеризует полную электрическую мощность переменного тока. Для получения полной мощности значения реактивной и активной мощностей суммируются. При этом соотношение полной и активной мощностей у разных потребителей электроэнергии может отличаться. Таким образом, для определения совокупной мощности потребителей следует суммировать их полные, а не активные мощности.

    кВА характеризует полную электрическую мощность, имеющую принятое буквенное обозначение по системе СИ – S: это геометрическая сумма активной и реактивной мощности, находимая из соотношения: S=P/cos(ф) или S=Q/sin(ф).

    • Q – реактивная мощность измеряется в кВар (килоВарах)

    Перевод кВА в кВТ и наоборот

    Если говорить обычным языком, отличие квт от ква в том, что кВт является полезной, а кВА полной мощностью. Согласно следующему примеру перевода значений кВА-20%=кВт и 1=0,8 кВт. Для перевода ампера в квт необходимо от первого значения вычесть двадцать процентов. В итоге выйдет показатель, имеющий малую погрешность. Например, если бытовой стабилизатор обладает мощностью 15, то чтобы вычислить киловатты, необходимо это значение перемножить на 0,8 или же отнять от него 20%. Потом можно все пересчитать, используя онлайн-конвертеры. В итоге необходимо действовать по простой формуле:

    P=S * Сosf, где P является активной мощностью, S-полной силой, Сos f мощностным коэффициентом.


    Формула перевода

    Для обратного действия и вычисления киловольт, к примеру, на портативном генераторе 10 киловатт необходимо поделить это значение на 0,8, согласно приведенной ниже формуле:

    S=P/ Сos f, где S считается полной мощностью, P активной силой, а Сos f мощностным коэффициентом. Более подробная справочная информация дана в любом физическом учебном пособии, в том числе и ответ на вопрос, как мощность трансформатора 1000 ква перевести в кВт.


    Формула перевода кВТ в кВА

    Стоит отметить, что наиболее часто встречающимися расшифровками мощностного коэффициента являются следующие значения: 1 является оптимальным значением, 0,95 хорошим, 0,90 — удовлетворительным, 0,80 средним, 0,70 низким и 0,60 плохим. Поэтому силу трансформатора 1000 ква перевести в киловатты не составит труда.


    Мощностный коэффициент значения

    Отвечая на вопрос, какая у киловатт и киловольт разница, можно сказать, что это две разные величины. В первом случае это единица измерения полной мощности, а во втором только активной. Разница их проявляется в работе электрического оборудования, несмотря на возможную схожесть в написании величин.

    Как перевести кВА в кВт

    Производители электрооборудования зачастую указывают мощность приборов в кВт с поправочным коэффициентом. Например, мощность электродрели указывается 3 кВт, а коэффициент мощности 0,8. Чтобы узнать полную мощность электрической дрели в кВА, необходимо воспользоваться следующей формулой: S = 3:0.8 cos = 3.75 кВА.

    Ну а для того, чтобы перевести кВА в кВт, потребуется, наоборот, полную мощность умножить на коэффициент мощности: S = 3.75х0.8 cos = 3 кВт.

    Надеюсь теперь все понятно, почему мощность трансформаторов и некоторых электроприборов указывается не в кВт (активная мощность), а в кВА — полная мощность. Просто производитель не может заранее знать всей нагрузки, а только рассчитать активную.

    Понятие мощности трансформатора

    Трансформатор переменного тока не производит электрическую энергию, а лишь преобразовывает ее по величине. Поэтому его мощность полностью зависит от ее величины нагрузки (тока потребления) вторичной цепи. При наличии нескольких потребителей должна учитываться суммарная нагрузка, которая может быть подключена одновременно. Для цепей переменного тока учитывается активный и реактивный характер потребления.

    Активная

    Данная составляющая часть характеристики определяется как среднее значение мгновенной за определенный период времени. Для цепей синусоидального переменного тока в качестве отрезка времени используется значение периода колебания:

    Активная часть зависит от характера нагрузки, то есть от сдвига фаз между током и напряжением и определяется по формуле:

    где ϕ – угол сдвига фаз.

    Активная составляющая устройств переменного тока выражается в Ваттах, как и для цепей постоянного тока.

    Реактивная

    Реактивная нагрузка отличается от активной тем, что в течение одного периода колебаний напряжения электрическая энергия реально не потребляется, но возвращается назад. В результате того, что к питающему устройству подключены устройства с большой емкостью или индуктивностью (электродвигатели), между током и напряжением возникает сдвиг фаз.

    Реактивная составляющая потребления определяется выражением:

    Единица измерения – вар (вольт-ампер реактивный).

    Полная

    Полная мощность трансформатора учитывает всю потребленную и возвращенную энергию и находится из выражения:

    Все составляющие связаны соотношением:

    Единица измерения – ВА (вольт-ампер).

    Полная мощность равняется активной только в случае полностью активной нагрузки.

    Номинальная

    Номинальная мощность трансформатора учитывает возможность работы конструкции с учетом подключения потребителей разного характера, то есть аналогична полной. При этом гарантируется исправная работа устройства весь заявленный срок службы при оговоренных условиях эксплуатации.

    Номинальная мощность, как и полная, учитывает активный и реактивный характер потребления, которое может изменяться во время эксплуатации.

    Выражается в вольт-амперах.

    Жилье рядом с ЛЭП: стандарты безопасности, строительные нормативы — Среда обитания

    Выбирая недвижимость, мы взвешиваем множество факторов – качество подъездных путей, удаленность от центра города, развитость коммуникаций и пр. Но когда коммуникации в виде высоковольтных линий электропередачи (ЛЭП) находятся прямо над головой, возникает вопрос, насколько это безопасно. И часто продать жилье рядом с ЛЭП – большая проблема.

    В СССР магнитная составляющая излучения высоковольтных ЛЭП вообще не учитывалась в нормативах безопасности. Разрешалось и строительство в зоне ЛЭП, и проживание. Допустимые в России с 2007 года показатели магнитного излучения сегодня в десятки раз выше аналогичных стандартов в Скандинавии и ряде других европейских стран.

    Большинство опрошенных БН экспертов советует взвесить и даже провести некоторые измерения, прежде чем купить или строить новое жилье рядом с ЛЭП.

    Взгляд в историю

    Как ни странно, человечество гораздо лучше осведомлено о безопасных уровнях радиации, чем о критических уровнях электромагнитного излучения. Высоковольтные ЛЭП – это именно источники электромагнитного поля промышленной частоты – 50 Гц. Их провода – своего рода антенны для радиоволн огромной длины – 6 млн м, эти волны именуют «мегаметровыми». Для сравнения: радиостанции FM-диапазона вещают на волнах длиной в несколько метров, а сотовые сети стандарта GSM используют дециметровые волны.

    В СССР допустимые нормативы учитывали только электрическую составляющую поля, а воздействие на человеческий организм магнитной составляющей вообще не оценивалось.

    Покупка жилья на вторичном рынке: какие существуют риски?Приобретая квартиру, комнату или дом на вторичном рынке, необходимо досконально проверить историю >>С электрической напряженностью электрического поля проблем как раз не возникает. Максимально допустимый уровень напряженности внутри жилых помещений – 0,5 киловольт на метр (кВ/м), в зонах жилой застройки – 1,0 кВ/м. Превысить его, как утверждают специалисты, очень сложно, поэтому в «советской» версии под линиями вплоть до 220 кВ допускалось находиться сколь угодно, а иногда даже строиться. Дачные поселки под высоковольтными линиями встречались довольно часто. Позже появились так называемые охранные зоны ЛЭП, призванные защищать скорее сами конструкции, нежели здоровье населения. Так или иначе, они учитывали расстояние от дома до ЛЭП.

    Напряжение ЛЭП, кВ

    6

    10

    35

    110

    220

    330

    500

    750

    1150

    Нормы безопасного расстояния от ЛЭП, м

    СанПиН № 2971-84 0 0 0 0 0 20 30 40 55
    Охранные зоны от ЛЭП 10 10 15 20 25 30 30 40 55

    Магнетизм страшнее электричества

    «Большинство наших практических исследований подтверждают – напряженность электрического поля вблизи ЛЭП не превышает установленных нормативов. По магнитному полю – все не так однозначно. Величина магнитного поля зависит от токов, проходящих по проводам, материала стен здания, и даже конструкции опор ЛЭП» – сообщил директор Центра электромагнитной безопасности, член Научно-консультативного комитета программы «ЭМП и здоровье» Всемирной организации здравоохранения (ВОЗ) Олег Григорьев. Ряд западных исследований свидетельствуют, что при проживании вблизи ЛЭП повышается риск ряда заболеваний, причем именно из-за магнитной составляющей. Некоторые результаты настораживают.

    Так, шведские ученые установили, что у людей, проживающих на расстоянии до 800 м от ЛЭП напряжением 200 кВ, статистически чаще встречаются лейкозы, опухоли мозга, онкология молочной железы. У мужчин снижается репродуктивная функция, снижается процент рождения мальчиков. Исследователи установили, что виной всем перечисленным проблемам – повышенный уровень магнитной составляющей электромагнитного поля, и оценили опасный порог плотности магнитного потока в 0,1 микротеслы (мкТл).

    К аналогичному выводу пришли и финcкие специалисты. Правда, исследования они проводили в пятисотметровом коридоре от ЛЭП напряжением 110-400 кВ. Опасным порогом ученые Финляндии сочли значение плотности магнитного потока в 0,2 мкТл.

    Грань риска

    Агентство по исследованию рака ВОЗ отнесло магнитное поле промышленной частоты (МППЧ) с плотностью потока выше 0,3-0,4 мкТл к «возможным канцерогенам» группы 2В. Чтобы было понятно, есть еще группа 2А («вероятных канцерогенов») и группа 1, в которую, собственно, входят абсолютно доказанные канцерогены. Эксперты ВОЗ допускают, что магнитная составляющая электромагнитного поля промышленной чистоты плотностью потока выше 0,3-0,4 мкТл – «в условиях длительного хронического воздействия, возможно, является канцерогенным фактором окружающей среды».

    Справедливости ради заметим, что в новом тысячелетии и российские стандарты также «увидели» наконец опасность магнитной составляющей поля. СанПиН 2.1.2 1002-00 установил предельное значение магнитного показателя для жилых помещений в 10 мкТл, а для территории жилой застройки – в 50 мкТл. С 10 ноября 2007 года вступили в силу более строгие рамки, составляющие 5 и 10 мкТл соответственно. Увы, даже эти цифры – в десятки раз выше «скандинавского» порога в 0,2 мкТл, который стал официальным критерием для многих государств.

    «Ряд стран подтвердил эти нормативы законодательно. Это Швейцария, Скандинавские страны, Израиль и некоторые другие. Но России нет в этом списке. Считаю целесообразным для вновь вводимых жилых объектов и для всех школьных и дошкольных учреждений придерживаться рекомендация ВОЗ по данному вопросу. Пусть это и не имеет гигиенического обоснования, но предупредительный принцип ВОЗ как раз и предусмотрен для таких ситуаций», – говорит Олег Григорьев.

    Пока представители научного мира не могут найти биологического обоснования воздействию МППЧ на организм человека. Существует и особое мнение. Дескать, ЛЭП не могут оказывать существенного влияние на здоровье людей, так как на расстояниях в 200 метров от проводов магнитное поле, образованное ими, меньше магнитного поля Земли, которое составляет 30-50 мкТл. Однако не следует забывать, что магнитное поле нашей планеты относительно постоянно, и не вибрирует с частотой 50 Гц в секунду, как МППЧ.

    Враги внешние и внутренние

    При осмотре объекта недвижимости не стоит сразу паниковать, если рядом обнаружится ЛЭП. Для начала оцените ее напряжение. В России наиболее часто встречаются ЛЭП напряжением 6, 10, 35, 110, 150, 220, 330 и 500 кВ. Определить, какое напряжение у данной линии можно косвенно, посчитав количество изоляторов (в ЛЭП до 220 кВ), или число проводов в одной связке («пучке») для линий от 330 кВ и выше.

    Число изоляторов в гирлянде

    1

    3-5

    6-8

    15

    Напряжение ЛЭП, кВ 10 35 110 220

     

    Число проводов в одной связке

    2

    3

    4

    6-8

    Напряжение ЛЭП, кВ 330 500 750 1150

    В районах индивидуального жилищного строительства по улицам проходят линии 6-10 кВ, реже 35 кВ. С этим придется смириться (если потенциального покупателя пугают даже такие ЛЭП, следует задуматься о переезде в неэлектрифицированное экопоселение). Более серьезную опасность представляют ЛЭП от 110 до 750 кВ.

    «И дело даже не в электромагнитном поле, вернее, не только в нем. ЛЭП – это источник повышенной опасности: ураганов, обрывов проводов, попадание молний в опоры ЛЭП – всего этого, увы, нельзя исключить», – считает главный специалист по гигиене труда из Федеральной службы по надзору в сфере защиты прав потребителей по Новосибирской области Сергей Уржумов.

    Если есть выбор, строительство под ЛЭП, конечно, нежелательно. Теоретически жилой дом, расположенный вблизи ЛЭП, можно защитить. От электрического поля хорошо защищает заземленная крыша из профнастила или металлочерепицы, арматурная сетка внутри стен (поэтому железобетонные стены лучше всего ослабляют радиоволны). Но крышу и сетку необходимо надежно заземлить. Для подавления магнитных полей промышленной частоты может дополнительно понадобится экранирование ферромагнетиками либо многослойными «пирогами» из специальных сортов стали.

    Но даже если все это организовать и поставить защиту от внешней опасности, не стоит забывать, что электромагнитными полями промышленной частоты вас будут в изобилии снабжать холодильник, утюг, и даже уютный домашний торшер. Посмотрите на таблицу ниже и вы поймете – помимо внешних электромагнитных «врагов» в доме есть множество потенциально опасных внутренних источников.

    Распространение магнитного поля промышленной частоты от бытовых электрических приборов (выше уровня 0,2 мкТл)

    Источник

    Расстояние, на котором фиксируется больше 0,2 мкТл

    Холодильник, оснащенный системой No frost (во время работы компрессора) 1,2 м от дверцы;

    1,4 м от задней стенки

    Холодильник обычный (во время работы компрессора) 0,1 м от электродвигателя компрессора
    Утюг (режим нагрева) 0,25 м от ручки
    Электрорадиатор 0,3 м
    Торшер с двумя лампами по 75 Вт 0,03 м (от провода)
    Электродуховка 0,4 м от передней стенки

    ЛЭП уйдут под землю

    Если Россия вслед за развитыми странами признает опасным уровень МППЧ хотя бы в 0,4 мкТл, это серьезно повлияет рынок недвижимости, поскольку значительное количество индивидуальных и многоквартирных домов, детсадов и школ окажутся в зоне повышенного уровня МППЧ. Властям придется организовывать дорогостоящие работы, чтобы добиться снижения уровня магнитного поля. Возможно, вопрос станет о переносе той или иной ЛЭП. Впрочем, в крупных городах, в частности в Москве и Санкт-Петербурге, разработаны программы переноса ЛЭП с поверхности под землю. Во многом это делается в целях высвобождения дорогих земельных участков, находящихся сегодня под ЛЭП, для застройки. При этом толща земли может стать естественной преградой для распространения электромагнитных волн, и добиться безопасного уровня излучения станет проще.

    Однако эксперты указывают на опасность некачественного монтажа подземных линий, поскольку стоимость переноса оценивается в 1 млн евро за 1 км, и у девелоперов будет соблазн сэкономить на безопасности. Ведь если воздушная ЛЭП всегда доступна для мониторинга эксплуатирующими и контролирующими организациями, то подземелье, как известно, – дело темное.

    Но и воздушные линии можно сделать безопаснее. «Сегодня есть проекты опор, когда за счет подвеса проводов, расщепления фаз и т. д. происходит векторная компенсация поля», – рассказывает Олег Григорьев.

    Делайте выводы

    Приобретать или строить новый дом, по мнению большинства экспертов, все-таки лучше подальше от ЛЭП. И не только из-за возможного воздействия МППЧ. Огромную роль может сыграть и «пси-фактор», когда реальная опасность будет куда меньше, нежели фобии жильцов.

    «Приведу забавный случай. Владельцы загородного дома заметили, что после строительства поблизости базовой станции мобильного оператора на участке пропали пчелы, а количество мух и ос резко уменьшилось. При проверке выяснилось, что станция вообще еще не была подключена. Так что многие обращения обусловлены чисто психологическими причинами – мнительностью и страхами», – отмечает Сергей Уржумов.

    Если дом или квартира находится вблизи ЛЭП и у потенциального покупателя есть сомнения, можно вызвать специалистов Роспотребнадзора и определить уровни электрического и магнитного полей. Но поскольку уровень магнитной составляющей зависит от величины тока в проводах, заранее необходимо узнать в энергетической компании, в каком режиме на момент диагностики работает ЛЭП.

    Текст: Марк Паверман    Фото: Алексей Александронок   

    Специалисты «МРСК Урала» подали напряжение на ЛЭП 110 киловольт, восстановленные после урагана в Чайковском районе Пермского края

    Согласие на обработку персональных данных

    В соответствии с требованиями Федерального Закона от 27.07.2006 №152-ФЗ «О персональных данных» принимаю решение о предоставлении моих персональных данных и даю согласие на их обработку свободно, своей волей и в своем интересе.

    Наименование и адрес оператора, получающего согласие субъекта на обработку его персональных данных:

    ОАО «МРСК Урала», 620026, г. Екатеринбург, ул. Мамина-Сибиряка, 140 Телефон: 8-800-2200-220.

    Цель обработки персональных данных:

    Обеспечение выполнения уставной деятельности «МРСК Урала».

    Перечень персональных данных, на обработку которых дается согласие субъекта персональных данных:

    • — фамилия, имя, отчество;
    • — место работы и должность;
    • — электронная почта;
    • — адрес;
    • — номер контактного телефона.

    Перечень действий с персональными данными, на совершение которых дается согласие:

    Любое действие (операция) или совокупность действий (операций) с персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу, обезличивание, блокирование, удаление, уничтожение.

    Персональные данные в ОАО «МРСК Урала» могут обрабатываться как на бумажных носителях, так и в электронном виде только в информационной системе персональных данных ОАО «МРСК Урала» согласно требованиям Положения о порядке обработки персональных данных контрагентов в ОАО «МРСК Урала», с которым я ознакомлен(а).

    Согласие на обработку персональных данных вступает в силу со дня передачи мною в ОАО «МРСК Урала» моих персональных данных.

    Согласие на обработку персональных данных может быть отозвано мной в письменной форме. В случае отзыва согласия на обработку персональных данных.

    ОАО «МРСК Урала» вправе продолжить обработку персональных данных при наличии оснований, предусмотренных в п. 2-11 ч. 1 ст. 6 Федерального Закона от 27.07.2006 №152-ФЗ «О персональных данных».

    Срок хранения моих персональных данных – 5 лет.

    В случае отсутствия согласия субъекта персональных данных на обработку и хранение своих персональных данных ОАО «МРСК Урала» не имеет возможности принятия к рассмотрению заявлений (заявок).

    Киловольт в Вольт Преобразование (кВ в В)

    Введите напряжение в киловольтах ниже, чтобы получить значение, преобразованное в вольты.

    Как преобразовать киловольты в вольты

    Чтобы преобразовать измерение киловольта в измерение вольт, умножьте напряжение на коэффициент преобразования.

    Поскольку один киловольт равен 1000 вольт, вы можете использовать эту простую формулу для преобразования:

    вольт = киловольт × 1000

    Напряжение в вольтах равно киловольтам, умноженным на 1000.

    Например, вот как преобразовать 5 киловольт в вольт, используя формулу выше.

    5 кВ = (5 × 1000) = 5000 В

    Сколько вольт в киловольте?

    В киловольте 1000 вольт, поэтому мы используем это значение в приведенной выше формуле.

    1 кВ = 1000 В

    Киловольты и вольт — это единицы измерения напряжения.Продолжайте читать, чтобы узнать больше о каждой единице измерения.

    Один киловольт равен 1000 вольт, что представляет собой разность потенциалов, которая перемещает один ампер тока против одного ома сопротивления.

    Киловольт — это производная единица измерения напряжения в системе СИ, кратная вольту. В метрической системе «килограмм» является префиксом для 10 3 . Киловольты можно обозначить как кВ ; например, 1 киловольт можно записать как 1 кВ.

    Напряжение — это измерение электродвижущей силы и разности электрических потенциалов между двумя точками проводника. [1] Один вольт равен разности потенциалов, которая сместит один ампер тока на один ом сопротивления.

    Вольт — производная единица измерения напряжения в системе СИ в метрической системе. Вольт можно обозначить как В ; например, 1 вольт можно записать как 1 В.

    Закон Ома гласит, что ток между двумя точками проводника пропорционален напряжению и обратно пропорционален сопротивлению. Используя закон Ома, можно выразить разность потенциалов в вольтах как выражение, используя ток и сопротивление.

    В В = I А × R Ом

    Разность потенциалов в вольтах равна величине тока в амперах, умноженной на сопротивление в омах.

    Киловольт (кВ) Преобразование единиц напряжения

    Киловольт — это единица измерения напряжения. Используйте один из приведенных ниже калькуляторов преобразования, чтобы преобразовать в другую единицу измерения, или читайте дальше, чтобы узнать больше о киловольтах.

    Калькуляторы преобразования в киловольт

    Выберите единицу напряжения, в которую нужно преобразовать.

    Единицы СИ

    Единицы измерения сантиметр – грамм – секунда

    Киловольт Определение и использование

    Один киловольт равен 1000 вольт, что представляет собой разность потенциалов, которая перемещает один ампер тока против одного ома сопротивления.

    Киловольт — это производная единица измерения напряжения в системе СИ, кратная вольту. В метрической системе «килограмм» является префиксом для 10 3 . Киловольты можно обозначить как кВ ; например, 1 киловольт можно записать как 1 кВ.

    Киловольт Таблица преобразования единиц измерения

    Общие значения напряжения в киловольтах и ​​эквивалентные измерения напряжения в британской и метрической системе
    киловольт нановольт микровольт милливольт вольт мегавольт гигавольт статвольты абвольты
    1 кВ 1,000,000,000,000 нВ 1 000 000 000 мкВ 1000000 мВ 1000 В 0.001 МВ 0,000001 GV 3.335641 stV 100000000000 abV
    2 кВ 2,000,000,000,000 нВ 2 000 000 000 мкВ 2 000 000 мВ 2000 В 0.002 МВ 0,000002 GV 6.671282 стВ 200000000000 abV
    3 кВ 3,000,000,000,000 нВ 3 000 000 000 мкВ 3 000 000 мВ 3000 В 0.003 МВ 0,000003 GV 10.006923 стВ 300000000000 abV
    4 кВ 4,000,000,000,000 нВ 4 000 000 000 мкВ 4 000 000 мВ 4000 В 0.004 МВ 0,000004 GV 13.342564 stV 400000000000 abV
    5 кВ 5,000,000,000,000 нВ 5 000 000 000 мкВ 5 000 000 мВ 5000 В 0.005 МВ 0,000005 GV 16.678205 стВ 500000000000 abV
    6 кВ 6 000 000 000 000 нВ 6 000 000 000 мкВ 6 000 000 мВ 6000 В 0.006 МВ 0,000006 GV 20.013846 стВ 600000000000 abV
    7 кВ 7,000,000,000,000 нВ 7 000 000 000 мкВ 7 000 000 мВ 7000 В 0.007 МВ 0,000007 GV 23.349487 стВ 700000000000 abV
    8 кВ 8,000,000,000,000 нВ 8 000 000 000 мкВ 8 000 000 мВ 8000 В 0.008 МВ 0,000008 GV 26.685128 стВ 800000000000 abV
    9 кВ 9 000 000 000 000 нВ 9 000 000 000 мкВ 9 000 000 мВ 9000 В 0.009 МВ 0,000009 GV 30.020769 стВ

    0000000 abV

    10 кВ 10,000,000,000,000 нВ 10 000 000 000 мкВ 10 000 000 мВ 10 000 В 0.01 МВ 0,00001 GV 33.35641 СТВ 1,000,000,000,000 abV
    11 кВ 11 000 000 000 000 нВ 11 000 000 000 мкВ 11 000 000 мВ 11000 В 0.011 МВ 0,000011 GV 36.69205 стВ 1,100,000,000,000 abV
    12 кВ 12 000 000 000 000 нВ 12 000 000 000 мкВ 12 000 000 мВ 12000 В 0.012 МВ 0,000012 GV 40.027691 стВ 1,200,000,000,000 abV
    13 кВ 13 000 000 000 000 нВ 13 000 000 000 мкВ 13 000 000 мВ 13000 В 0.013 МВ 0,000013 GV 43.363332 стВ 1,300,000,000,000 abV
    14 кВ 14 000 000 000 000 нВ 14 000 000 000 мкВ 14 000 000 мВ 14 000 В 0.014 МВ 0,000014 GV 46.698973 стВ 1,400,000,000,000 abV
    15 кВ 15 000 000 000 000 нВ 15 000 000 000 мкВ 15 000 000 мВ 15 000 В 0.015 МВ 0,000015 GV 50.034614 стВ 1,500,000,000,000 abV
    16 кВ 16 000 000 000 000 нВ 16 000 000 000 мкВ 16 000 000 мВ 16 000 В 0.016 МВ 0,000016 GV 53.370255 стВ 1,600,000,000,000 abV
    17 кВ 17 000 000 000 000 нВ 17 000 000 000 мкВ 17 000 000 мВ 17000 В 0.017 МВ 0,000017 GV 56.705896 стВ 1,700,000,000,000 abV
    18 кВ 18 000 000 000 000 нВ 18 000 000 000 мкВ 18 000 000 мВ 18000 В 0.018 МВ 0,000018 GV 60.041537 стВ 1,800,000,000,000 abV
    19 кВ 19 000 000 000 000 нВ 19 000 000 000 мкВ 19 000 000 мВ 19 000 В 0.019 МВ 0,000019 GV 63.377178 stV 1,900,000,000,000 abV
    20 кВ 20,000,000,000,000 нВ 20 000 000 000 мкВ 20 000 000 мВ 20 000 В 0.02 МВ 0,00002 GV 66.712819 стВ 2,000,000,000,000 abV

    Возможно, вам пригодятся и другие наши электрические калькуляторы.

    Определение киловольта по Merriam-Webster

    ки · ло · вольт | \ ˈKi-lə-ˌvōlt , ˈKē-lə- \

    : единица разности потенциалов, равная 1000 вольт

    Перевести киловольт в кв — Перевод единиц измерения

    ›› Перевести киловольт в киловольт

    Пожалуйста, включите Javascript для использования конвертер величин.
    Обратите внимание, что вы можете отключить большинство объявлений здесь:
    https://www.convertunits.com/contact/remove-some-ads.php



    ›› Дополнительная информация в конвертере величин

    Сколько киловольт в 1 кв? Ответ — 1.
    Мы предполагаем, что вы конвертируете между киловольт и киловольт .
    Вы можете просмотреть более подробную информацию по каждой единице измерения:
    киловольт или кв
    Производная единица системы СИ для напряжения — вольт.
    1 вольт равен 0.001 киловольт, или 0,001 кв.
    Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
    Используйте эту страницу, чтобы узнать, как преобразовать киловольт в киловольт.
    Введите свои числа в форму для преобразования единиц!


    ›› Таблица преобразования киловольт в кв

    1 киловольт на кв = 1 кв

    5 кВ на кв = 5 кв

    от 10 кВ до кв = 10 кВ

    20 кВ на кв = 20 кв

    30 кВ на кв = 30 кв

    40 кВ на кв = 40 кв

    50 кВ на кв = 50 кв

    75 кВ на кв = 75 кв

    100 киловольт на кв = 100 кв



    ›› Хотите другие единицы?

    Вы можете произвести обратное преобразование единиц измерения из кв в киловольты, или введите любые две единицы ниже:

    ›› Обычные преобразователи напряжения

    киловольт на декавольт
    киловольт на петавольт
    киловольт на фемтовольт
    киловольт на милливольт
    киловольт на вольт
    киловольт на нановольт
    киловольт на децивольт от
    киловольт до микровольт от0 вольт до микровольта

    ›› Определение:

    киловольт

    Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.

    Итак, 1 киловольт = 10 3 вольт.

    Вольт определяется следующее:

    Вольт (обозначение: В) — производная единица измерения разности электрических потенциалов или электродвижущей силы в системе СИ, широко известная как напряжение. Он назван в честь ломбардского физика Алессандро Вольта (1745–1827), который изобрел гальваническую батарею, первую химическую батарею.

    Вольт определяется как разность потенциалов в проводнике, когда ток в один ампер рассеивает один ватт мощности.[3] Следовательно, это базовое представление СИ: m 2 · кг · с -3 · A -1 , которое может быть равно одному джоулю энергии на кулон заряда, Дж / Кл.


    ›› Определение:

    киловольт

    Префикс СИ «килограмм» представляет собой коэффициент 10 3 , или в экспоненциальной записи 1E3.

    Итак, 1 киловольт = 10 3 вольт.

    Вольт определяется следующее:

    Вольт (обозначение: В) — производная единица измерения разности электрических потенциалов или электродвижущей силы в системе СИ, широко известная как напряжение.Он назван в честь ломбардского физика Алессандро Вольта (1745–1827), который изобрел гальваническую батарею, первую химическую батарею.

    Вольт определяется как разность потенциалов в проводнике, когда ток в один ампер рассеивает один ватт мощности. [3] Следовательно, это базовое представление СИ: m 2 · кг · с -3 · A -1 , которое может быть равно одному джоулю энергии на кулон заряда, Дж / Кл.


    ›› Метрические преобразования и др.

    Конвертировать единицы.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

    Преобразование вольт [В] в киловольт [кВ] • Конвертер электрического потенциала и напряжения • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстоянияМассовый преобразовательКонвертер сухого объема и общих измерений при приготовлении пищиПреобразователь площадиПреобразователь объема и общих измерений при приготовлении пищиПреобразователь температуры Конвертер модулейПреобразователь энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углаКонвертер топливной эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютКонвертер женской одежды и размеров обувиКонвертер мужской одежды и размеров обувиКонвертер угловой скорости и удельной скорости вращенияКонвертер угловой скорости и удельной скорости вращения Преобразователь Момент инерции Преобразователь Момент силы Преобразователь Моментный преобразователь Удельная энергия, теплота сгорания (на массу) Преобразователь Удельная энергия, теплота сгорания Конвертер температур сгорания (на объем) Конвертер температурного интервалаКонвертер температурного расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициента теплопередачиКонвертер абсолютного коэффициента теплопередачи Конвертер массового расхода ) Конвертер вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL )Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптический Powe Преобразователь r (диоптрия) в увеличение (X) Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельной проводимости Конвертер манометровПреобразование уровней в дБм, дБВ, ваттах и ​​других единицахПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности полной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровых изображений Конвертер единиц измерения объема древесины Калькулятор молярной массы Периодическая таблица

    Плазменный шар

    Обзор

    Когда мы поднимаемся на холм, мы работаем, чтобы противостоять силе тяжести

    Мы живем в эпоху электричество а про электрика напряжение знаю с детства. Многие из нас исследовали окружающую среду и буквально испытали шок, когда мы тайком коснулись электрических розеток, пока родители не наблюдали за нами.Что ж, раз вы читаете эту статью, с вами ничего плохого не случилось, даже если вы изучали электричество в детстве. Почти невозможно жить в эпоху электричества и не быть с ним близко знакомым. Что касается электрического потенциала , это несколько более сложный вопрос.

    Поскольку это математическая абстракция, самый простой способ понять электрический потенциал — рассматривать его как аналогию с гравитацией. Формулы для обоих аналогичны. Разница в отрицательных значениях.У нас может быть отрицательный электрический потенциал из-за наличия как отрицательных, так и положительных зарядов, которые либо притягивают, либо отталкивают друг друга. С другой стороны, гравитационные силы могут вызывать притяжение только между двумя объектами. Мы не до конца поняли отрицательную массу. Как только мы овладеем им, это позволит нам понять антигравитацию.

    Тем не менее, как только мы оттолкнемся …

    Концепция электрического потенциала играет важную роль в описании явлений, связанных с электричеством.Мы можем определить понятие электрического потенциала как понятие, описывающее взаимодействия электрически заряженных частиц или групп заряженных частиц, которые имеют одинаковые или противоположные заряды.

    Из школьных уроков физики и из повседневного опыта мы знаем, что, взбираясь на холм, мы преодолеваем силу тяжести и выполняем для этого работу. Силы гравитации, которые нам предстоит преодолеть, действуют в потенциальном гравитационном поле Земли. Когда Земля взаимодействует с нами, она пытается уменьшить наш гравитационный потенциал, потому что у нас есть определенная масса.В рамках этого взаимодействия Земля тянет нас вниз, и мы позволяем ей спускаться по горному склону на лыжах или сноуборде. Точно так же электрическое потенциальное поле, которое действует на заряженные частицы, стремится сблизить частицы с противоположным зарядом и раздвинуть частицы с одинаковым зарядом.

    Из вышеизложенного можно сделать вывод, что электрически заряженное тело пытается уменьшить свой электрический потенциал. Для этого он пытается подобраться как можно ближе к мощному источнику электрического поля с противоположным зарядом, пока другие силы не мешают ему сделать это.Если электрический заряд объектов одинаков, каждый из электрически заряженных объектов пытается уменьшить свой электрический потенциал, удаляясь как можно дальше от одинаково заряженного источника мощного электрического поля. Опять же, это только в том случае, если никакие другие силы не препятствуют этому. Если есть силы, которые препятствуют этому, электрический потенциал не изменяется. По аналогии с гравитацией, когда вы стоите на вершине горы, сила тяжести компенсируется силой реакции земли, и ничто не тянет вас вниз и с этой горы.Лыжи толкает только ваш вес. Однако как только вы оттолкнетесь… вы спуститесь с холма!

    Точно так же электрическое поле, создаваемое заряженной частицей или группой частиц, действует на другие заряженные частицы. Он создает электрический потенциал для перемещения этих заряженных частиц друг к другу или от друг друга, в зависимости от того, является ли заряд между этими двумя взаимодействующими частицами или объектами одинаковым или противоположным.

    Сизиф Тициана, Музей Прадо, Мадрид, Испания

    Электрический потенциал

    Когда заряженная частица попадает в электрическое поле, она имеет определенное количество энергии, которое может быть использовано для выполнения работы.Электрический потенциал — это термин, который описывает эту энергию, запасенную в каждой точке электрического поля. Электрический потенциал электрического поля в данной точке равен работе, которую силы этого поля могут совершить, когда единица положительного заряда перемещается за пределы поля.

    Снова глядя на аналогию с гравитационным полем, мы можем заключить, что понятие электрического потенциала аналогично явлению уровня различных точек на поверхности Земли. Как мы обсудим ниже, работа по поднятию тела над землей зависит от того, насколько высоко нам нужно поднять это тело, и аналогично работа по перемещению одного заряда от другого зависит от того, насколько далеко эти заряды находятся.

    Представим себе Сизифа, одного из героев мифов Древней Греции. Он был обречен богами выполнять бессмысленную работу в загробной жизни, перекатывая огромный камень на вершину горы в наказание за грехи, которые он совершил при жизни. Чтобы поднять камень на полпути к горе, он должен выполнить половину работы, которую ему нужно выполнить, чтобы подвести камень полностью к вершине. Как только он довел камень до упора, боги столкнули его с горы. Чтобы добраться до дна, сам камень тоже проделал некоторую работу.Камень, поднятый на гору высотой Н , может выполнять больший объем работы, чем камень, поднятый только наполовину, на высоту Н /2. Обычно мы считаем высоту от уровня моря, который считается нулевой высотой.

    Используя эту аналогию, мы можем сказать, что электрический потенциал поверхности Земли является нулевым потенциалом, то есть

    ϕ Земля = 0

    где ϕ Земля — электрический потенциал, скалярная переменная. .Здесь ϕ — буква греческого алфавита, произносимая как «фи».

    Это значение количественно определяет способность электрического поля выполнять работу (W) по перемещению заряда (q) из одной заданной точки в другую точку:

    ϕ = W / q

    В СИ электрический потенциал измеряется в вольт (В).

    Посетители Канадского музея науки и техники могут генерировать для него электрическую энергию, вращая большое колесо человеческого хомяка. Это колесо вращает генератор, который питает эту катушку Тесла (справа).Катушка генерирует высокое напряжение в десятки тысяч вольт. Этого достаточно, чтобы загорелся разряд электричества.

    Напряжение

    Электрическое напряжение (В) можно определить как разность электрических потенциалов, как в формуле:

    В = ϕ1 — ϕ2

    Понятие напряжения было введено Георгом Ом , немцем. физик. В своей статье, опубликованной в 1827 году, он предложил использовать гидродинамическую модель электрического тока для объяснения эмпирического закона Ома, открытого им в 1826 году.Этот закон можно записать по следующей формуле:

    Катушка Тесла в Канадском музее науки и техники.

    V = I × R,

    где V — разность потенциалов, I — электрический ток, а R — сопротивление.

    Альтернативное определение электрического напряжения описывает его как отношение работы, которую электрическое поле выполняет для перемещения электрического заряда, к величине этого заряда.

    Это определение может быть выражено с помощью следующей формулы:

    V = A / q

    Подобно электрическому потенциалу, напряжение также измеряется в вольтах (В) и десятичных кратных и дробных единицах — единицах, производных от вольт , например, микровольт (одна миллионная вольт, мкВ), милливольт (одна тысячная вольт, мВ), киловольт (одна тысяча вольт, кВ) и мегавольт (один миллион вольт, МВ).

    Напряжение в один вольт эквивалентно напряжению электрического поля, которое выполняет работу в один джоуль по перемещению заряда в один кулон. Мы можем определить вольт, используя другие единицы СИ следующим образом:

    В = кг · м² / (А · с³)

    Напряжение может генерироваться различными источниками, такими как биологические системы и объекты, электронные и механические устройства, и даже различные процессы в атмосфере.

    Боковая линия акулы

    Элементарным элементом любой биологической системы является клетка, которую можно рассматривать как небольшой электрохимический генератор.Некоторые органы живых организмов, такие как сердце, образованные множеством клеток, производят более высокое напряжение. Интересно отметить, что разные виды акул, которые являются идеальными хищниками океанов и морей, имеют очень чувствительные датчики напряжения. Эти датчики известны как боковая линия , и они позволяют акулам обнаруживать свою добычу по сердцебиению. Этот механизм очень надежен. Говоря о напряжении в животном мире, мы должны также упомянуть электрических скатов и угрей, которые разработали метод нападения на свою добычу и борьбы с хищниками, генерируя в процессе эволюции напряжение более 1000 В.

    Люди могли генерировать электричество и создавать разницу потенциалов, протирая кусок янтаря шерстью или мехом в течение долгого времени, но гальванический элемент считается первым устройством, вырабатывающим электричество. Он был создан итальянским ученым и врачом Луиджи Гальвани , который обнаружил, что разница потенциалов возникает, когда разные металлы и электролиты контактируют друг с другом. Другой итальянский физик, Алессандро Вольта , продолжил и развил это исследование.Вольта был первым человеком в мире, который погрузил листы цинка и меди в кислоту, чтобы получить постоянный электрический ток. Таким образом, он создал первый химический источник электрического тока. Он соединил несколько из этих источников последовательно, чтобы создать первую химическую батарею. Он стал известен как гальваническая батарея и позволяла людям вырабатывать электричество с помощью химических реакций.

    Гальваническая свая — копия, сделанная в 1999 году Гелсайдом Гваттерини, электриком из музея Вольта в Комо, Италия.Канадский музей науки и технологий

    Единица измерения напряжения, вольт, а также сам термин «напряжение» названы так, чтобы ознаменовать вклад Вольта в исследования электрохимических и электрических явлений. Благодаря ему у нас появились надежные электрохимические источники энергии.

    Говоря об исследователях, которые работали над созданием устройств для выработки электроэнергии, мы не должны забывать голландского физика Ван де Граафф . Он создал генератор высокого напряжения, известный сейчас как генератор Ван де Граафа .При производстве электроэнергии используется тот же принцип разделения зарядов, который мы используем, когда натираем янтарь шерстью или мехом.

    Можно сказать, что два выдающихся американских ученых Томас Эдисон и Никола Тесла были отцами современных электрогенераторов. Тесла работал на компанию Эдисона, но два исследователя разошлись во взглядах на то, как генерировать электрическую энергию, и пошли разными путями. Последовала патентная война, и человечество извлекло из нее выгоду благодаря работе этих двух ученых.Реверсивные машины Эдисона можно использовать в качестве генераторов и двигателей постоянного тока. Сегодня производятся миллиарды устройств, в которых используется механизм этих реверсивных машин. Мы можем найти их под капотом нашей машины, в стеклоподъемнике, блендере и других устройствах. С другой стороны, именно Тесла открыл способы генерации переменного тока и принцип его преобразования. Эти открытия используются в таких устройствах, как электрические трансформаторы, линии электропередач, транспортирующие электричество на большие расстояния, и другие.Также существует множество этих устройств, и они включают в себя множество бытовой электроники, часто используемой нами в повседневной жизни, например вентиляторы, холодильники, кондиционеры, пылесосы и многие другие устройства, которые мы не можем здесь описать из-за объема этого. статья.

    Этот двигатель-генератор постоянного тока, изготовленный Westinghouse в 1904 году, использовался для обеспечения постоянной мощности для генерации магнитного поля в возбудителе на гидроэлектростанции Ниагара-Фолс (Нью-Йорк), построенной Никола Тесла и Джорджем Вестингаузом.

    В конце концов, ученые открыли другие электрические генераторы, использующие другие принципы, в том числе те, которые используют энергию ядерного деления. Некоторые из этих генераторов предназначены для использования в качестве источников энергии во время длительных путешествий в космос.

    Если не рассматривать некоторые из генераторов, созданных для научных исследований, можно сказать, что самыми мощными источниками электрической энергии на Земле по-прежнему являются атмосферные процессы.

    Каждую секунду вблизи поверхности Земли происходит более 2000 вспышек молний.Это означает, что десятки тысяч генераторов Ван де Граафа в природе генерируют токи в десятки килоампер одновременно в форме молнии. Тем не менее, мы не можем даже начать сравнивать созданные человеком генераторы на Земле с электрическими бурями, которые происходят на сестре планеты Земля, Венере, и мы даже не будем пытаться сравнивать их со штормами на более крупных планетах, таких как Юпитер и Сатурн.

    Характеристики напряжения

    Напряжение можно охарактеризовать по величине и форме волны.В зависимости от его поведения во времени мы можем определить постоянное напряжение, которое не меняется со временем, апериодическое напряжение, которое изменяется со временем, и переменное напряжение, которое изменяется со временем по определенному закону и обычно повторяется через определенные промежутки времени. Иногда для достижения поставленной цели может потребоваться как постоянное, так и переменное напряжение. В данном случае речь идет о переменном напряжении с постоянной составляющей.

    Этот вольтметр использовался для измерения напряжения в начале двадцатого века.Канадский музей науки и техники в Оттаве

    Генераторы постоянного тока, также известные как динамо-машины или динамо-электрические машины, используются в электротехнике для обеспечения высокой мощности при относительно стабильном напряжении. Прецизионные электронные устройства используются для подачи электроэнергии и поддержания постоянного уровня напряжения. Они работают с использованием электрических компонентов и также известны как регуляторы напряжения .

    Измерение напряжения

    Измерения напряжения широко используются во многих областях науки и техники, включая фундаментальную физику и химию, прикладную электротехнику и электрохимию, а также в медицине.Трудно представить себе дисциплину, в которой измерение напряжения не использовалось бы для управления различными процессами. Эти измерения выполняются различными типами датчиков, которые фактически являются преобразователями измерений различных свойств в напряжение. Некоторыми исключениями из этого правила являются или, скорее, были некоторые творческие области человеческой деятельности, такие как архитектура, музыка или изобразительное искусство. В наши дни даже музыканты и артисты используют электронные устройства, которые зависят от напряжения. Например, художники и дизайнеры могут использовать электронные планшеты со стилусом.В этих планшетах напряжение измеряется, когда стилус перемещается над поверхностью планшета. Затем он преобразуется в цифровые сигналы и отправляется на компьютер для обработки. Архитекторы также используют планшеты и программное обеспечение, такое как ArchiCAD, на компьютерах. Музыканты и композиторы часто работают с электронными музыкальными инструментами. Напряжение измеряется датчиками клавиш, чтобы определить интенсивность нажатия клавиши.

    Температура мяса измеряется электронным термометром слева путем измерения напряжения на резистивном датчике температуры.Это осуществляется путем подачи небольшого электрического тока через этот датчик. С другой стороны, мультиметр справа определяет температуру путем измерения напряжения, создаваемого термопарой, без подачи тока от внешнего источника питания.

    Единицы напряжения могут изменяться в широком диапазоне: от долей микровольта при исследовании биологических процессов до сотен вольт в бытовой электронике и промышленном оборудовании и десятков миллионов вольт в мощных ускорителях частиц.Измерение напряжения позволяет нам отслеживать и контролировать некоторые функции определенных внутренних органов человека. Например, чтобы отобразить работу мозга, мы записываем электроэнцефалограмму . Чтобы понять, как работает сердце, мы записываем электрокардиограмму или эхокардиограмму сердечной мышцы. С помощью различных промышленных датчиков мы можем успешно и, что более важно, безопасно контролировать различные процессы, происходящие в химическом производстве.Некоторые из этих процессов происходят при экстремальных давлениях и температурах, и из-за этого безопасность является серьезной проблемой. Измеряя напряжение, мы даже можем отслеживать процессы на атомных электростанциях, которые происходят во время ядерных реакций. Инженеры также поддерживают в хорошем состоянии мосты и конструкции, измеряя напряжение, и могут даже предотвратить или уменьшить разрушительные последствия землетрясения.

    Как и вольтметр, пульсоксиметр измеряет напряжение усиленного сигнала с фотодиода.Однако, по сравнению с вольтметром, это устройство отображает процент насыщения гемоглобина кислородом, 97% в этом примере, а не напряжение, измеренное в вольтах.

    Блестящая идея связать разные значения напряжения с логическими уровнями сигналов привела к созданию современных цифровых технологий. Например, в информационных технологиях низкое напряжение представляет собой низкий логический уровень (0), а высокое напряжение представляет собой высокий логический уровень (1).

    Можно сказать, что все современные устройства в вычислительной технике и электротехнике каким-либо образом измеряют напряжение, а затем преобразуют свои входные логические состояния с помощью определенных алгоритмов для получения выходных сигналов в требуемом формате.

    Кроме того, точные измерения напряжения являются основой многих современных стандартов безопасности. Соблюдение этих стандартов в соответствии с предписаниями обеспечивает безопасность во время использования устройства.

    Карта памяти, которая используется в персональных компьютерах, содержит десятки тысяч логических вентилей.

    Приборы для измерения напряжения

    На протяжении всей истории, по мере того как мы узнавали больше об окружающем нас мире, наши методы измерения напряжения эволюционировали от примитивных органолептических методов .Примером таких методов является работа русского ученого Петрова, который срезал часть эпителия на пальцах, чтобы повысить его чувствительность к электрическому току. Эти методы эволюционировали до простых детекторов и индикаторов напряжения, а затем и до современных устройств с различными режимами работы, в которых используются электродинамические и электрические свойства материалов и веществ.

    Вкус электричества: давным-давно, когда вольтметры не были так широко доступны и недороги, мы использовали для определения напряжения по вкусу

    Интересно отметить, что в прошлом, когда современные измерительные устройства, такие как мультиметры, не были легко доступны для широкая публика, энтузиасты радиоэлектроники могли сказать рабочий 4.Аккумулятор для фонаря на 5 вольт от разряжавшегося. Они сделали это, просто облизывая электроды. Произошедшие при этом электрохимические процессы вызывали легкое ощущение жжения и придавали батарее определенный привкус. Некоторые люди даже пытались определить, подходят ли 9-вольтовые батарейки, но это потребовало немалого мужества, потому что ощущение было очень неприятным.

    Рассмотрим пример простого индикатора или измерителя напряжения — обычную лампу накаливания с напряжением не ниже напряжения сети.В наши дни вы также можете купить простые тестеры напряжения, основанные на неоновых лампах и светодиодах и потребляющие небольшие токи. При работе с электричеством всегда нужно проявлять осторожность, потому что любые ошибки, особенно при использовании устройств DIY, могут быть опасными для жизни!

    Следует отметить, что вольтметры, являющиеся приборами для измерения напряжения, могут значительно отличаться друг от друга, наиболее заметное различие заключается в типе измеряемого напряжения. Например, аналоговые вольтметры могут измерять напряжение постоянного или переменного тока.Свойства измеряемого напряжения очень важны в процессе измерения. Это может быть функция времени и другого типа, например, прямой, гармонический, негармонический, импульсный и т. Д.

    Наиболее распространены следующие типы напряжения:

    • мгновенное напряжение,
    • размах напряжения,
    • среднее напряжение, также известное как среднее напряжение,
    • среднеквадратичное напряжение.

    Мгновенное напряжение U i (на рисунке) — это величина напряжения в данный момент времени.Мы можем отслеживать напряжение во времени на экране осциллографа и определять напряжение в данный момент времени, исследуя кривую.

    Пиковое или амплитудное значение напряжения U a — это наивысшее мгновенное значение напряжения за данный период. Размах амплитуды U p-p — это разница между максимальной положительной и максимальной отрицательной амплитудами сигнала.

    Среднеквадратичное значение напряжения U рассчитывается как квадратный корень из среднего арифметического квадратов мгновенных напряжений в течение заданного периода времени.

    Все цифровые и аналоговые вольтметры обычно калибруются для считывания среднеквадратичных значений.

    Среднее значение напряжения (составляющая постоянного тока) — это среднее арифметическое всех его мгновенных значений за период, в течение которого происходит измерение.

    Среднее напряжение полупериода рассчитывается как среднее арифметическое абсолютных мгновенных значений для выборок напряжения за данный период времени.

    Разница между максимальным и минимальным значениями напряжения называется размахом сигнала.

    В наши дни напряжение часто измеряют с помощью многоцелевых цифровых устройств, таких как осциллографы. Их экран может отображать различные важные характеристики сигнала, а не только форму волны напряжения. Эти характеристики включают частоту измеряемых периодических сигналов. Стоит отметить, что ограничение частоты — очень важная характеристика любого устройства измерения напряжения.

    Измерение напряжения с помощью осциллографа.

    Мы можем проиллюстрировать приведенное выше обсуждение несколькими экспериментами по измерению напряжения.Мы будем использовать генератор функциональных сигналов, источник постоянного тока, осциллограф и многофункциональный цифровой измерительный прибор (мультиметр).

    Эксперимент 1

    Ниже представлена ​​схема эксперимента 1:

    Генератор сигналов подключен к резистору с сопротивлением R, равным 1 кОм. Щупы осциллографа и мультиметра подключены параллельно резистору. При проведении этого эксперимента мы должны помнить, что полоса пропускания осциллографа намного превышает пропускную способность мультиметра.Сначала мы попробуем Эксперимент 1.

    Тест 1: Давайте подадим синусоидальный сигнал с частотой 60 Гц и амплитудой 4 вольта от генератора к нагрузочному резистору. На экране осциллографа появится кривая, как на фотографии ниже. Следует отметить, что значение каждого вертикального деления на экране осциллографа составляет 2 В. И осциллограф, и мультиметр покажут среднеквадратичное значение 1,36 В.

    Test 2: Давайте удвоим амплитуду сигнала генератора. .Амплитуда на осциллографе и на мультиметре увеличится вдвое:

    Test 3: Теперь увеличим частоту генератора в 100 раз (до 6 кГц). Частота на осциллографе изменится, но амплитуда и среднеквадратичное значение останутся прежними. Среднеквадратичное значение, которое мультиметр будет неверным, вызвано ограничением полосы пропускания мультиметра всего в 0–400 Гц.

    Тест 4: Давайте попробуем исходную частоту 60 Гц и напряжение 4 В для генератора сигналов, но изменим форму напряжения сигнала с синуса на треугольник.Шкала на осциллографе останется прежней, но значение, отображаемое на мультиметре, уменьшится по сравнению со значением напряжения, которое он показал в тесте 1. Это произошло из-за изменения среднеквадратичного значения сигнала.

    Эксперимент 2

    Мы будем использовать ту же установку для эксперимента 2, что и для эксперимента 1.

    Давайте повернем ручку смещения генератора сигналов, чтобы добавить смещение 1 В постоянного тока к нашему синусоидальному сигналу 4 В pp . Мы установим синусоидальное напряжение на генераторе сигналов равным 4 В с частотой 60 Гц, как в эксперименте 1.Сигнал на осциллографе будет сдвинут на половину деления вверх. Мультиметр отобразит среднеквадратичное значение 1,33 В, что почти такое же, как в тесте 1 эксперимента 1, потому что в режиме измерения переменного тока он имеет вход, связанный по переменному току, и не может измерять составляющую постоянного тока. Кривая на осциллографе со связью по постоянному току будет аналогична кривой в тесте 1 эксперимента 1, но будет сдвинута вверх на одно деление. Среднеквадратичное значение, измеренное осциллографом, будет выше, чем в тесте 1 эксперимента 1, потому что среднеквадратичное значение суммы напряжений постоянного и переменного тока выше, чем среднеквадратичное значение для сигнала без компонента постоянного тока:

    Указания по безопасности при измерениях Напряжение

    В зависимости от мер безопасности, установленных в помещении или в здании, даже низкое напряжение 12–36 вольт может быть смертельным.Поэтому при работе с электричеством в целом и при измерении напряжения, в частности, крайне важно соблюдать следующие правила техники безопасности:

    1. Если у вас нет специальной подготовки по работе с высоким напряжением, не измеряйте напряжение, превышающее 1000 В.
    2. Не измеряйте напряжение в труднодоступных или высоких местах.
    3. Используйте специальные средства защиты, такие как резиновые перчатки, коврики и обувь, при измерении сетевого напряжения.
    4. Используйте правильно работающие измерительные приборы и избегайте поломок.
    5. При работе с многофункциональными устройствами, такими как мультиметры, убедитесь, что функция и диапазон установлены правильно.
    6. Не используйте измерительные приборы с поврежденными датчиками.
    7. Следуйте инструкциям производителя для измерительного устройства.

    Список литературы

    Эту статью написал Сергей Акишкин

    Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    определение киловольта по The Free Dictionary

    Hydro One Inc, крупнейшая компания по передаче и распределению электроэнергии в Онтарио, расширяет тепличную промышленность на юго-западе Онтарио путем разработки и строительства новой линии электропередачи напряжением 230 киловольт от Чатема до Лимингтона. По соглашению GE возьмет на себя проектирование, закупки и строительство. (EPC) сетевой станции на 132 / 6,3 кВ, строительство которой планируется завершить в начале 2019 года.Корейские кабельные поставщики концентрируются на разработке кабелей на 220 киловольт и заключении сделок под ключ, чтобы опередить иностранные компании. Был завершен контракт на поставку кабелей мощностью 66 киловольт для расширения сети на 57 км и замены разъемов на 330 киловольт, в дополнение к расширению за счет расширения сети. установка 30 ячеек для установки в передатчики. Большая часть Бейрута питается от этой сети 220 кВ, линии Хорш-Арамун, названной в честь соответствующих электростанций, которые она соединяет.Позже новая линия электропередачи будет связана с третьей линией электропередачи Иран-Армения мощностью 400 киловольт. Второй контракт, который предусматривает строительство трансформаторной подстанции к югу от Дахрана в Восточном регионе, мощностью 115/380 Киловольт подписан с Saudi Electro-Mechanical Services Co. Премьер-министр Игорь Чудинов подписал постановление правительства о строительстве подстанций Датка и Куршаб и реабилитации высоковольтных электрических сетей 220 кВ.Этот приказ был подписан с целью привлечения инвестиций в строительство и реконструкцию высоковольтных электрических сетей на 200 кВ и, таким образом, для улучшения электроснабжения в Кыргызской Республике, сообщает пресс-служба премьер-министра. Строительство подстанции 500 кВ Датка и подстанции 220 кВ Куршаб, as а также реабилитация 220 киловольтных электрических сетей южной энергосистемы поможет снизить зависимость от энергосистем соседних стран. Президент компании Майк Метатавабин назвал эту идею «надуманной», когда впервые услышал, что главный герой Игнас Галл сделал движение из проекта, по которому линии электропередачи на 115 киловольт (кВ) будут проложены через 270 километров Маскег.Предполагается, что это линия на 275 киловольт. ИЗМЕНЕНИЕ НАЗВАНИЯ: Amersham базируется на Лонг-Вуд Драйв, Уитчерч. Был ряд возражений против размещения линии 110 киловольт вдоль живописного маршрута на западе острова Донегол.

    Преобразовать киловольты в вольты (кВ в В)

    Вы переводите единицы разности электрических потенциалов из киловольт в вольты

    1 Киловольт (кВ)

    =

    1000 Вольт (В)

    Результаты в вольтах (В):

    1 (кВ) = 1000 (В)

    Конвертировать

    Вы хотите перевести вольт в киловольты?

    Как преобразовать киловольты в вольты

    Чтобы преобразовать киловольты в вольты, умножьте разность электрических потенциалов на коэффициент преобразования.Один киловольт равен 1000 вольт, поэтому используйте эту простую формулу для преобразования:

    киловольт = вольт × 1000

    Например, вот как преобразовать 5 киловольт в вольты, используя формулу выше.

    5 кВ = (5 × 1000) = 5000 В

    1 киловольт равно сколько Вольт?

    1 киловольт равен 1000 вольт: 1 кВ = 1000 В

    В 1 киловольте 1000 вольт. Чтобы преобразовать киловольты в вольты, умножьте полученное значение на 1000 (или разделите на 0,001).

    1 Вольт равно сколько Киловольт?

    1 Вольт равен 0.001 киловольт: 1 В = 0,001 кВ

    В 1 вольте 0,001 киловольта. Чтобы преобразовать из вольт в киловольт, умножьте полученное значение на 0,001 (или разделите на 1000).

    Популярные преобразователи разности потенциалов:

    микровольты в вольты, киловольты в вольты, микровольты в вольты, милливольты в микровольты, вольты в мегавольты, мегавольты в микровольты, вольты в милливольты, микровольты в киловольты, мегавольты в вольты, вольт в

    вольт и

    вольт Вольт 90111 901 7000 В

    Киловольт Вольт Вольт Киловольт
    1 кВ 1000 В 1 В 0.001 кВ
    2 кВ 2000 V 2 V 0,002 кВ
    3 кВ 3000 V 3 V 0,003 кВ
    4 V 0,004 кВ
    5 кВ 5000 V 5 V 0,005 кВ
    6 кВ 6000 V 6 V 0,001210 7 кВ 7 В 0.007 кВ
    8 кВ 8000 V 8 V 0,008 кВ
    9 кВ 9000 V 9 V 0,009 кВ
    10 В 0,01 кВ
    11 кВ 11000 В 11 В 0,011 кВ
    12 кВ 12000 V 12 В 9010 13 кВ 11 9001 13000 В 13 В 0.013 кВ
    14 кВ 14000 V 14 V 0,014 кВ
    15 кВ 15000 V 15 V 0,015 кВ
    0,015 кВ
    16 V 0,016 кВ
    17 кВ 17000 V 17 V 0,017 кВ
    18 кВ 18000 V 18 V 9010 197 кВ 11 9001 19000 В 19 В 0.019 кВ
    20 кВ 20000 В 20 В 0,02 кВ
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *