Минимальное сопротивление изоляции кабеля: Сопротивление изоляции кабеля: нормы, таблица

Содержание

Сопротивление изоляции кабеля: нормы, таблица

Одной из важнейших характеристик проводника является сопротивление. Особенно это важно для кабелей, которые могут иметь длину в несколько километров. Сопротивление зависит от материала и площади поперечного сечения провода. Отклонение сопротивления от нормы в большую или меньшую стороны влияет на потери энергии и безопасность системы.

Какое должно быть сопротивление изоляции кабеля и проводов

Минимальное значение этой характеристики измеренного напряжения должно быть выше номинального значения. Требуемое значение определяется производителем кабеля или электротехнического изделия в соответствии с текущими спецификациями. Существует несколько видов электротехнических изделий:

  • Универсальные.
  • Силовые.
  • Контрольные.
  • Распределительные.
Измерение сопротивления

Делятся они не только по физическим характеристикам, но и по структуре. Например, кабели, предназначенные для прокладки под землей, армированы металлической лентой и состоят из нескольких слоев изоляционного материала. Измеряется сопротивление изоляции в омах. Однако поскольку значение индикатора велико, всегда используется приставка «мега». Указанное число рассчитывается для конкретной длины, обычно одного километра. Если длина менее 1000 метров, нужно выполнить пересчет. Для кабелей, используемых для передачи и передачи низкочастотных сигналов, сопротивление изоляции должно быть не менее 5000 МОм / км. Но для основной линии — более 10 МОм / км. В то же время минимальное требуемое значение всегда указывается в паспорте продукта.

Как правило, принимаются следующие спецификации сопротивления изоляции:

  • Кабели, размещенные в комнате с нормальными условиями окружающей среды, 0,50 Мом.
  • Электрические плиты, не используемые для передачи − 1 МОм.
  • Распределительные щиты, содержащие компоненты для распределения электроэнергии И магистральные линии − 1 МОм.
  • Изделия, обеспечивающие напряжение до 50 В — 0,3 МОм.
  • Двигатели и другое оборудование, работающее при напряжении 100-380 В, − 0,5 МОм.
  • Оборудование, подключенное к линиям электропередачи, предназначенное для передачи сигналов с максимальной амплитудой 1 кВ — 1 МОм.

Важно! Для кабелей, подключенных к силовой цепи, применяются немного другие характеристики. Следовательно, провода, используемые в электрической сети с напряжением, превышающим 1 кВ, должны иметь значение сопротивления не менее 10 МОм.

Для линий управления стандарт требует значения сопротивления не менее 1 МОм

Проверка сопротивления

Безопасность зависит от сопротивления. Поэтому важно регулярно измерять это значение для выявления отклонений. Кроме того, для промышленных объектов указаны обязательные циклы измерений. В соответствии с установленными нормами и правилами, проверки сопротивления изоляции проводов и кабелей должны проводиться:

  • Для мобильных или переносных установок не реже одного раза в шесть месяцев.
  • Для внешнего оборудования и наружных кабелей и более опасных помещений — не реже одного раза в год.
  • Во всех других случаях — каждые три года.
Схема подключения мегомметра

Как измерить сопротивление изоляции кабеля

Перед испытанием следует удалить остаточный заряд с отсоединенных токоведущих частей. Это делается путем подключения их к наземной шине. Снимается контактная перемычка только после подключения прибора-измерителя. В конце теста остаточный заряд снова снимается путем кратковременного замыкания на землю. Найти величину сопротивления можно двумя путями: либо с помощью расчета или таблицы, либо непосредственно с помощью приборов.

По таблице ПУЭ

Значения сопротивления зависят от поперечного сечения элемента, проводящего электрический ток, и материала, из которого он изготовлен.

Таблица для алюминиевого провода

Обычно это медь или алюминий. Основные значения указаны в таблице:

Таблица для медного провода

С помощью приборов

Как правило, оборудование, используемое для проведения измерений, делится на две группы: панельные измерители и мегомметры. Первый используется для мобильных или стационарных электрических установок с независимой нейтралью. Индикаторы и компоненты реле включены в типичную конструкцию оборудования контроля изоляции. Эти счетчики могут работать в непрерывном режиме и могут использоваться в сетях переменного тока напряжением 220 В или 380 В с разными частотами.

В большинстве же случаев измерение производится с помощью мегомметра. Он отличается от обычных омметров тем, что может работать при достаточно высоких значениях напряжения, генерируемых самим устройством. Существует два типа мегомметров:

Аналоговый прибор Цифровой датчик

Стандартный мегомметр содержит три датчика. К ним подключаются: защитное заземление, измерительные провода, экранирование. Последний используется для устранения тока утечки.

Метод измерения можно выразить следующим образом:

  • В соответствии с требованиями, предъявляемыми к производственной линии, выбирается испытательное напряжение. Например, для домашней проводки значение устанавливается в диапазоне от 100 до 500 В.
  • При использовании цифрового устройства необходимо нажать кнопку «Тест», а на аналоговом устройстве поворачивать ручку, пока индикатор не покажет требуемое значение напряжения.
  • Линейный выход тестера подключить к испытательному сердечнику кабеля, а выход заземления к жгуту из остальных проводов. То есть каждый сердечник проверяется относительно остальных электрических проводов, электрически соединенных друг с другом.

Важно! Если полученные данные неудовлетворительные, каждая жила в кабеле проверяется отдельно.

  • Записать все полученные значения и сравнить их со спецификациями.
Подключение датчика к кабелям

Меры безопасности

Один из основных принципов исследования изоляции — невозможно начать работу, не убедившись, что в зоне измерения нет напряжения. Оборудование, используемое для тестирования, должно быть сертифицированным. Должен использоваться мегомметр, выходное напряжение которого соответствует установленным стандартам. Поэтому для сетей или устройств с напряжением до 50 В будет использоваться тестер, который имеет значение в 100 В, в то время как устройства с более низкими значениями не смогут предоставить правдивую информацию о, а более мощные устройства могут вызвать повреждение цепи.

Измерение сопротивления важно для любого типа кабеля. От этого зависит безопасность работы всей электрической цепи. Проводится измерение специальным прибором, а затем результаты сравниваются с таблицей и данными, указанными в прикладной документации.

Сопротивление изоляции кабеля

 

Наша электролаборатория оказывает услуги проведения различных электротехнических измерений. Мы располагаем штатом квалифицированных специалистов и полным набором испытательного и измерительного оборудования. Наша аккредитация и сертификаты позволяют выдавать протоколы и акты установленного образца. Мы оперативно откликаемся на обращения наших клиентов, быстро и качественно выполняем заказы.

Измерение сопротивления изоляции норма

Измерение сопротивления изоляции кабеля. Прибор MIC-2500

Существует множество ситуаций, когда требуется произвести измерение сопротивления изоляции кабельных линий. Одно дело, когда такие измерения проводятся собственным электротехническим персоналом предприятия или организации для того, чтобы убедиться в исправности кабельной линии. Совсем другое дело, когда на выходе должен появиться юридический документ, именуемый «протоколом проверки сопротивления изоляции проводов и кабелей».

Такой документ будет иметь юридическую силу только в случае, если его выдала электролаборатория прошедшая аккредитацию в уполномоченном государственном органе (Росаккредитация) и имеющая соответствующий аттестат. Например, такой протокол может затребовать энергоснабжающая организация в случае аварийного отключения кабельной линии перед повторным её включением.

Ещё протоколы предоставляются в органы Энергонадзора для приёмки в эксплуатацию вновь смонтированных или реконструируемых электроустановок, при подключении их к электросети энергоснабжающей организации. Требования ПТЭЭП предписывают производить замеры изоляции не реже одного раза в год. Такие протоколы должны хранится у лица ответственного за электрохозяйство. К ним очень «неравнодушны» пожарные инспектора.

Меры безопасности при проведении измерений

Организационные и технических мероприятия, обеспечивающие безопасность персонала во время измерений и испытаний кабельных линий, регламентируются «Правилами по охране труда» Эти правила определяют порядок оформления работ, состав бригады и квалификацию персонала производящего замеры и испытания в зависимости от категории электроустановки. Стоит заметить, что даже измерение изоляции кабельных линий и электропроводки 0.4 кВ с помощью мегомметра должны производить специалисты прошедшие обучение и имеющие соответствующую группу допуска по электробезопасности.

Измерение сопротивления изоляции норма

Инженер электролаборатории проводит измерение сопротивления изоляции кабеля. Прибор MIC-2500

Нормы сопротивления изоляции

Параметры изоляции кабелей определяются требованиями пункта 1.8.40 ПУЭ (Правил устройства электроустановок). Для силовых кабелей, осветительных электропроводок, цепей вторичной коммутации до 1000 В. нормой являются 0.5 Мом и выше для каждой жилы кабеля между фазными проводами, по отношению к нулевому проводу и проводу защитного заземления.

Для кабельных линий напряжением выше 1000 В сопротивление не нормируется. Для определения соответствия нормам ПУЭ применяется другой параметр – ток утечки, измеряемый в миллиамперах. Испытания проводят на основе методик, утверждённых Ростехнадзором. Величина испытательного напряжения, величина допустимого тока утечки зависят от рабочего напряжения кабеля и типа его изоляции. Кратность испытательного напряжения зависит от рода тока испытательной установки. С помощью мегомметра можно только оценить качество изоляции высоковольтного кабеля.

Электрики в повседневной практике считают нормальной изоляцию в 1 Мом на каждый киловольт рабочего напряжения. Так сопротивление изоляции кабеля 10 кВ можно считать нормальным, если оно превышает 10 Мом измеренных мегомметром на 2.5 кВ.

Вам нужно провести измерения? Обращайтесь к нам!

Наша электролаборатория аккредитована и имеет свидетельство регистрации электролаборатории в Ростехнадзоре в установленном порядке и проводит все необходимые электротехнические измерения. Например, такие, как измерение сопротивления изоляции электропроводок и кабелей, измерение сопротивления цепи фаза-ноль, измерения связанные с сетью заземления.

Мы оказываем услуги клиентам, расположенным в Москве и Подмосковье. Сфера наших возможностей не ограничивается только измерениями. Еще мы занимаемся проектированием электроустановок и их ремонтом. Обо всем этом вы можете узнать на нашем сайте. Связавшись с нами, вы получите компетентные консультации по всем интересующим вас вопросам.

Похожие статьи

Поддержите наш проект, поделитесь ссылкой!

Сопротивление изоляции кабеля — норма и таблица

Любое электротехническое изделие характеризуется целым рядом параметров. Для кабелей одним из основных является сопротивление изоляции. Существуют определенные нормы, которые обязательно учитываются при проектировании и монтаже, а также в процессе эксплуатации и проведения ТО трасс коммуникаций.

s-1

Каковы они нормы сопротивления изоляции кабеля? Дело в том, что по данному вопросу нередко встречаются разночтения. Это вызвано, по мнению автора, несколькими факторами.

Во-первых, кабель – понятие обобщенное. К этой группе изделий относятся образцы, используемые при прокладке линий силовых, сигнальных и телефонных. Кабеля могут быть коаксиальными (радиочастотными), контрольными, распределительными и общего назначения. То есть вариантов конструктивного исполнения защитных оболочек, отличающихся, в том числе, и толщиной, множество.

Во-вторых, на изготовление изоляции идут самые разные материалы – резина, пластики, даже пропитанная особым образом бумага. Хотя в более современных кабелях защита, как правило, комплексная, то есть сочетающая различные диэлектрические слои.

В-третьих, о сопротивлении какой изоляции идет речь – внешней оболочки или поверхностного покрытия жил?

01

В-четвертых, следует принимать во внимание и специфику монтажа и дальнейшей эксплуатации конкретного кабеля. Например, способ прокладки трассы – открытый или закрытый. Где она укладывается – в грунте, в лотках (вариантов достаточно). Чем характеризуется окружающая среда – предельная величина и перепады температуры, влажности, агрессивность и так далее.

Сопротивление изоляции – нормы для кабелей

Все значения – в МОм.

Кабеля силовые

  • Высоковольтные (более 1 000 В). Для них нормы не существует. То есть, чем сопротивление изоляции выше, тем лучше. Принято считать, что его значение не должно быть менее 10.
  • Низковольтные (до 1 000 В). По сути, речь идет об электропроводках и вторичных цепях различных установок. Минимальный предел значения сопротивления изоляции – 0,5. Более подробную информацию по данному вопросу можно найти в ПУЭ 7-ой редакции (табл. 1.8.34 и п. 1.8.37).

05

Кабеля контрольные, сигнальные, общего назначения

Это довольно большая группа изделий. К ней можно отнести кабеля, монтируемые для цепей управления, автоматики, питания эл/приводов, подключения защитных, распределительных устройств и так далее. Для них нормой считается, если сопротивление изоляции не ниже 1. Но это общепринятый показатель. Точное значение, в зависимости от разновидности кабеля, следует искать в его сопроводительной документации.

Для кабелей связи нормы сопротивления несколько иные, более «жесткие». Для линий городских н/ч – не менее 5, магистральных – 10 (МОм/км).

Если кабель имеет наружную оболочку из алюминия с покрытием из ПВХ, то норма сопротивления выше и равняется 20.

Примечание. ПУЭ оговаривает, что измерение сопротивления изоляции проводится мегаомметром с напряжением индуктора:

  • для кабелей в цепях не более 500 В – 500;
  • до 1 000 В – 1 000;
  • все остальные – 2 500.

Специалистам не нужно объяснять, что все требования к сопротивлению изоляции указываются в технических заданиях, ГОСТ и СНиП на определенный вид работы. Его величину несложно узнать по паспорту кабеля, а при необходимости контроля состояния изделия произвести соответствующее измерение. Специфика этой операции оговорена в п. 1.8.7. ПУЭ (7-я редакция).

В быту для оценки степени износа изоляции силового кабеля можно воспользоваться следующей таблицей, которая отражает ориентировочные усредненные нормы.

s-2

Так как непрофессионал не в состоянии учесть всех нюансов конструктивного исполнения изделия и его использования, этого, как правило, вполне достаточно, чтобы понять, стоит ли закладывать данный образец или он уже непригоден к эксплуатации. То есть отбраковать. Ну а если есть определенные сомнения, то нелишне проконсультироваться с профильным специалистом.

измерение сопротивления изоляции в электроустановках

В электролаборатории “Электротехника” вы можете заказать измерение сопротивления изоляции в электроустановках до и свыше 1000В.

Цель проведения испытаний

Измерения в электроустановках до и свыше 1000В  проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.

Нормы сопротивления изоляции

  • В соответствии с гл.1.8 ПУЭ (Правила устройства электроустановок) для электроустановок напряжением до 1000 В допустимые значения сопротивления изоляции:

Испытуемый элемент

Напряжение мегаомметра, В

Наименьшее допустимое значение сопротивления изоляции, МОм

Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях)

500-1000

10

Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей

500-1000

1,0

Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения машин постоянного тока, присоединенные к силовым цепям

500-1000

1,0

Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже

500

0,5

Электропроводки, в том числе осветительные сети

1000

0,5

Распределительные устройства, щиты и токопроводы (шинопроводы)

500-1000

0,5

  • Согласно ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Приложение 3; 3.1 (таблица 37), минимально допустимые значения сопротивления изоляции электроустановок напряжением до 1000 В :

Наименование элемента

Напряжение мегомметра, В

Наименьшее допустимое значение сопротивления изоляции, МОм

Электроизделия и аппараты на номинальное напряжение, В:
– до 50
– свыше 50 до 100
– свыше 100 до 380
– свыше 380

100
250
500-1000
1000-2500

0,5

Распределительные устройства, щиты и токопроводы

1000-2500

1,0

Электропроводки, в том числе осветительные сети

1000

0,5

Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т. п.

1000-2500

1,0

Краны и лифты

1000

0,5

Стационарные электроплиты

1000

1,0

Шинки постоянного тока и шинки напряжения на щитах управления

500-1000

10

Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500-1000 В, присоединенных к главным цепям

500-1000

1,0

Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на напряжение, В:
– до 60
– выше 60

100
500

0,5

Силовые кабельные линии

2500

0,5

Обмотки статора синхронных электродвигателей

1000

1,0

Вторичные обмотки измерительных трансформаторов

1000

1,0

Измерение сопротивления изоляции в электроустановках

Требования к проведению измерений сопротивления изоляции

  • Измерение производится мегаомметром с выходным напряжением 500, 1000, 2500 В.
  • Измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм2 производится мегаометром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.
  • Если электропроводки, находящиеся в эксплуатации, имеют сопротивление  менее 1 МОм, то заключение об их пригодности дается после испытания их переменным током промышленной частоты напряжением 1 кВ.
  • Измерение сопротивления изоляции электрических машин и аппаратов следует производить при температуре изоляции не ниже +5° C (кроме случаев, оговоренных специальными инструкциями.).

Измерение сопротивления изоляции силовых кабелей и электропроводок

Начало замеров сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить. Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления изоляции, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию. При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.

Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.

Граничные показатели мегаомметра – 15 и 60 секунд с момента присоединения к исследуемому объекту, из них вычисляется и коэффициент абсорбции, то есть влажности изоляции. Если значения явно не соответствуют ожидаемому, рекомендуется повторно снять остаточное напряжение, наложив заземление, переключить предел и повторить замер. По правилам техники безопасности измерения сопротивления изоляции электрооборудования, эту операцию требуется проводить в диэлектрических перчатках. Помимо этого, строго рекомендуется соблюдать правила измерений, указанные в п.п. 1.7.81, 2.1.35 ПУЭ: «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»; «как со стороны источников питания, так и со стороны приемника, нулевые проводники должны быть отсоединены от заземленных частей», «схема испытания… имеет различия лишь в количестве замеров (4 или 8, вместо 3 или 6) и в отсутствие необходимости использовать зажим «Экран» на мегаомметрах»; «измерение сопротивления изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, аппаратах, вывернутых электролампах».

 

Измерение сопротивления изоляции силового электрооборудования

Как и для изоляции кабелей, для электрических аппаратов и машин большое значение имеет температура. Так, для изоляции класса А характерно увеличение сопротивления изоляции в полтора раза при понижении температуры на каждые 10 градусов. Изоляция класса В увеличивает сопротивление в два раза при повышении температуры на 10 градусов. Поэтому установлены температурные пределы для измерения сопротивления изоляции электрооборудования, а также разработаны специальные коэффициенты: для электрических машин – Кт, для трансформаторов – Кз, которые можно посмотреть в таблице. Нормы для сопротивления изоляции приведены в двух документах: для уже работающих установок – в ПТЭЭП, для находящихся в процессе ввода в эксплуатацию – в ПУЭ.

Помимо изоляции проводки, при измерении сопротивления изоляции электрооборудования, замеряется и сопротивление относительно корпуса и наружных металлических частей при выключенном двигателе. Как правило, такие замеры проводятся для переносных электроинструментов. Если корпус инструмента выполнен из диэлектрика, его перед измерением оборачивают металлической фольгой и соединяют с контуром заземления. Для переносных трансформаторов дополнительно проводятся замеры сопротивления изоляции между корпусом и обмотками. А также между обмотками, при этом вторичную обмотку надо закоротить на корпус. Измерения сопротивления изоляции электрооборудования включают в себя и измерения сопротивления изоляции автоматических выключателей и устройств защитного отключения.

Оформление результатов замеров сопротивления изоляции

Результаты измерений заносятся в протокол. На основании сравнения результатов измерений  делается заключение о соответствии параметров требованиям ПУЭ и ПТЭЭП. Протоколы сводятся в отчёт, который утверждается руководителем лаборатории. К отчёту прилагается дефектная ведомость, в которую заносятся все дефекты, обнаруженные при измерении.

Проверка сопротивления изоляции кабеля мегаомметром: нормы

Качество изоляции влияет на исправность обеспечения объектов электроэнергией. Процесс измерения сопротивления изоляции кабеля необходим для полного исключения возникновения короткого замыкания ввиду пробоя оболочки, к которому могут привести нарушение эксплуатации или ошибка в подключении проводников.

Виды проводников

Виды проводников

Чтобы сопротивление изоляции кабеля было проведено корректно, в первую очередь нужно выбрать подходящий вид кабеля. По функциональному назначению их разделяют на три вида:

  • Контрольные – это проводники, использующиеся в подключении разнообразных электроприборов, устройств с дистанционным управлением, защитных и автоматических устройств. Показатели измерения сопротивления изоляции контрольного кабеля должны начинаться от 1 МОм. Точные показатели нужно смотреть в инструкциях к проводнику, так как контрольные кабели — это группа, включающая в себя достаточно обширный список изделий.
  • Низковольтные силовые – данные электропровода эксплуатируются для проведения проводки в жилых помещениях, также это вторичные цепи различных установок. Здесь данные диагностики не должны быть ниже 0,5 МОм.
  • Силовые высоковольтные кабели – сопротивление изоляции в среднем 10 МОм. Высоковольтные проводники предназначены для кабельных воздушных ЛЭП. При измерении сопротивления изоляции высоковольтного кабеля ориентируйтесь на то, что тем выше показатели, тем лучше.

Как определить сопротивление кабеля

Таблица сопротивления изоляции для различных кабелей

Согласно главе 1.8 Правил устройства электроустановки, допустимы следующие показатели сопротивления изоляции для устройств напряжением до 1000 В:

Наименьший показатель сопротивления изоляции, МОм Напряжение мегаомметра, В Кабель
0,5 500-1000 Распределительные устройства, щиты, шинопроводы
0,5 1000 Электропроводки
0,5 500 Вторичные цепи, элементы при питании от отдельного источника или через разделительный трансформатор для рабочего напряжения до 60 В
1 500-1000 Цепи управления, защиты. Автоматики и измерений, цепи возбуждения машин постоянного тока, присоединенные к силовым цепям
1 500-1000 Вторичные цепи каждого присоединения, цепи питания приводов разъединителей и выключателей
10 500-1000 Шины постоянного тока на щитах управления и в распределительных устройствах

Аппараты для проведения проверки

Данные фиксируются при помощи мегаомметра. Конструкция датчика включает в себя источник снабжения постоянным током и устройство диагностики. Мегаомметр получает питание от генератора переменного тока с выпрямительным мостом.

Чем проверить сопротивление изоляции

По расчетному электронапряжению существуют мегаомметры до 1000 В и выше — до 250 В. Измерение сопротивления изоляции кабеля совершается на напряжение 500-2500 В.
В пакете с аппаратом обычно вложены медные проводки в 2-3 метра, их сопротивление составляет до 100 мОм.

Одна из самых распространенных моделей прибора – M4100/1-5. Оптимальная скорость вращения ручки прибора – 120 в минуту. Генератор питания включается мануально. Также есть мегаомметры M4100/4, M4100/3. Эти приборы не так распространены, но не менее хороши на практике.

Посредством мегаомметра реально выявить и предотвратить следующее:

  • возгорание;
  • аварийные ситуации;
  • неисправности приборов;
  • короткие замыкания;
  • опасность поражения электрическим током рабочего персонала;
  • изнашивание устройства.

Меры безопасности при проверке:

  • Диагностику изоляции кабелей с 1 кВ напряжением имеют право проводить только профессионалы, имеющие 3 группу по электробезопасности. Команда диагностиков должна включать как минимум двух квалифицированных электриков
  • Перед началом диагностики убедитесь в том, что вокруг области проверки отсутствуют посторонние люди
  • После того, как мегаомметр будет подключен к токопроводящим жилам, строго запрещено трогать их руками.

Измерение сопротивления изоляции кабелей

Методика проведения измерений

Изначально нужно помнить о том, что результат замера сопротивления изоляции кабелей сильно зависит от состояния влажности и температуры в комнате, где проводится мероприятие. При низкой температуре в структуре электропровода застрянут мелкие части льда, который, как известно, не является проводником электричества, соответственно, мегаомметр не сможет засечь эти частички в нем. Исходя из этого, рекомендуемая температура проведения проверок – от -30 до 50 C. Влажность воздуха должна составлять до 85-90 %. Это также зависит от модели кабели и материала оболочки, все это стоит уточнять в приложенной документации.

Также от конкретной модели проводника зависит величина напряжения, необходимые условия диагностики и требуемый участок кабеля.

Прежде всего нужно провести несколько приготовлений, осуществление которых повысит продуктивность проводимых мероприятий.

Выполняется проверка устройства. Фиксируются показатели мегаомметра при разомкнутых (стрелка прибора указывает на отметку бесконечности) и замкнутых проводниках (стрелка прибора указывает на ноль).

Следующее – удостовериться в отсутствии напряжения на проводнике, для этого надо отключить его от сети и заземлить токоведущие жилы проверяемого элемента. Наличие напряжения обязательно проверяется при помощи указателя напряжения, предварительно испытанном на электроустановке исходя из правил охраны труда. Проводить проверку при хотя бы частичном присутствии напряжения запрещено.

Перед тем как начнется диагностика, убедитесь в том, что все детали с трансформаторами отключены от диагностируемой детали.

Методика измерения кабелей: важные особенности

Для начала диагностики прибор ставят в горизонтальное положение согласно рабочей инструкции. Измерение сопротивление у проводников напряжением меньше 50 В делается под электронапряжением 100 В. Проверку электроустановок до 50 В напряжением 500 В включительно проводить настоятельно не рекомендуется.

При снятии данных мегаомметра удостоверьтесь в том, что стрелка стоит в стабильной позиции. Для этого крутите рукоять мегаомметра со скоростью 120-140 об/мин. Если вам необходимо знать коэффициент абсорбции электропровода, снимайте данные стрелки по прошествии 16 секунд после старта вращения рукояти устройства. Если же нужно просто узнать показатели сопротивления, то снимайте показатели, после того как стрелка полностью замрет, но не раньше минуты.

Когда проверка сопротивления изоляции кабеля завершена, те детали, которые были диагностированы со слабым сопротивлением, должны быть разобраны с целью выявить и устранить повреждение.

Измерение проводится:

  • между фазными жилами — А-В, В-С, А-С
  • между фазными жилами и нулем — А-N, В-N, С-N;
  • между фазными жилами и землей, если пятижильный провод — А-РЕ, В-РЕ, С-РЕ;
  • между нулем и землей — N-PE. В этом случае сначала отключите ноль от нулевой шины.

Итак, диагностика проведена и результаты получены, теперь нужно определить уровень сопротивления изоляции проводов. Примерные данные вы можете увидеть в списке, приведенном ниже:

  • 2 Мом и меньше — очень низкий уровень
  • 2-5 МОм — низкий уровень
  • 5-10 МОм — уровень ниже нормы
  • 10-50 МОм — хороший уровень
  • 50-100 МОм — высокий уровень
  • 100 Мом и больше — крайне высокий уровень.

Следуя всем рекомендациям, вы сможете корректно провести диагностику сопротивления изоляции кабелей. Помните, что неаккуратность и нарушения в технике безопасности могут привести к непредсказуемым последствиям. Будьте очень внимательны.

Нормы сопротивления изоляции: таблица, материалы, контроль

Каждый вид кабелей и проводов имеет свои специфические, первичные и вторичные электрические параметры, которыми эта продукция характеризуется. К одному из основных параметров кабельной продукции относится сопротивление изоляции.

Конструкция 2-жильного кабеля

Конструкция 2-жильного кабеля.

Нормы сопротивления изоляции – это те данные, на которые опираются все виды работ по строительству, эксплуатации и обслуживанию кабелей.

Две металлических жилы, по которым передаются электрические сигналы (токи), почти всегда подвергаются разнообразному мешающему или опасному влиянию со стороны окружающей среды. Соответственно, и сами эти жилы тоже являются своеобразным влияющим фактором, в первую очередь они оказывают влияние друг на друга. Таким образом, ничем не защищенные металлические провода несут потери за счет всевозможных паразитных утечек, вплоть до создания аварийных ситуаций.

Изоляция токопроводящих жил

Для того чтобы свести к минимуму или существенно уменьшить появление подобного рода негативных ситуаций, токопроводящие жилы в кабелях защищают изолирующим покрытием из диэлектрического, не проводящего электрического тока, материала. Для создания изоляционных оболочек и покровов используют такие материалы, как резина, бумага и пластические массы, отдельно или в разных комбинациях. Изоляция для разных марок и видов кабелей существенно отличается как по применяемым материалам, так и по принципам использования изолирующих покровов. В настоящее время выпускается огромное количество кабельной продукции для всевозможного применения.

Вернуться к оглавлению

Разнообразие кабельной продукции

Конструкция кабеля связи

Конструкция кабеля связи: 1. Жила – мягкая медная проволока. 2. Сплошная полиэтиленовая изоляция. 3. Поясная изоляция – лента ПЭТФ. 4. Экран из алюмополимерной ленты с медной луженой контактной проволокой. 5. Оболочка из ПЭ.

Различаются кабели связи, общего применения, силовые, контрольные, распределительные, радиочастотные и множества других типов и марок. Такая продукция может различаться не только по функциям, но и по своим конструктивным и физическим характеристикам, разработанным применительно к средам, в которых предполагается ее использование. Разнообразные потребности в проводных материалах для всевозможных нужд привели к созданию различных модификаций существующих и уже востребованных типов кабелей. К примеру, для строительства подземных распределительных телефонных сетей непосредственно в грунте конструкцию применяемых в телефонной канализации кабелей дополнительно усиливают, заключая их сердечник в металлические ленты брони. Или для защиты жил кабеля от внешних токов помещают его сердечник в алюминиевую оболочку.

Вернуться к оглавлению

Все о фундаменте, его видах и особенностях – moifundament.ru.

Изолирующие материалы и сопротивление изоляции

Применяемые для создания проводной продукции материалы, в том числе изолирующие, не в последнюю очередь зависят от того, для использования в каких условиях и в каких средах изготавливается конкретный вид и марка изделия. К примеру, для изолирования токопроводящих жил в условиях высоких температур больше подходит резина, устойчивая к температурным воздействиям, чем другие материалы типа обычной пластмассы.

Разнообразие кабельной продукции

Разнообразные изолирующие материалы позволяют производить кабели под конкретные нужды потребителя.

Таким образом, изолирование составных элементов кабельной продукции – это конструктивная защита его токопроводящих жил от взаимных и внешних электрических влияний, от появления наводок и утечек до короткого замыкания. Величину этого параметра для каждой жилы и всего сердечника в целом характеризует величина сопротивления постоянному току в цепи между жилой (жилами) и возможным источником влияния, например, землей. Поэтому для определения защищенности, работоспособности кабельной продукции применяется термин «сопротивление изоляции». Для контроля исправности кабельных пар используются такие понятия, как сопротивление изоляции между жилами и металлическим экраном кабеля.

Диэлектрические материалы, используемые в кабелях для создания изоляционных покрытий, с течением времени теряют свои свойства за счет старения. Кроме того, от физического воздействия они могут просто разрушиться. Чтобы определить, изменились ли параметры изоляционного покрытия и в каких пределах, необходима для сравнения некоторая отправная точка – норма на параметр изделия, установленная изготовителем.

Вернуться к оглавлению

Нормирование сопротивления изоляции постоянному току

Таблица данных по уровню изоляции

Таблица данных по уровню изоляции.

Сопротивление изоляции для различных марок кабеля как определенная величина одного из основных параметров изделия закладывается в ТУ или ГОСТ на изготовление конкретной кабельной продукции. На отгружаемую к реализации продукцию должен прилагаться паспорт с ее электрическими параметрами. К примеру, норма сопротивления изоляции для кабелей связи дается в приведении к 1 км длины, причем данные указываются для температуры окружающей среды +20°C.

Норма для кабелей связи городских низкочастотных – не менее 5000 МОм/км. Для коаксиальных и магистральных симметричных кабелей норма сопротивления изоляции достигает 10000 МОм/км. Практически использовать паспортные данные сопротивления изоляции при оценке состояния проверяемого кабеля можно только в пересчете их к длине реального куска кабеля. Если участок кабеля больше километра, то норматив делится на эту длину. Если меньше, то, наоборот, умножается. Полученные таким путем расчетные цифры могут применяться для оценки кабельной линии.

Измерительные работы

При проведении измерительных работ следует учитывать погодные условия , которые влияют на получаемые данные.

Однако не стоит забывать о том, что паспортные данные приводятся для температуры +20°C, поэтому следует учитывать поправки при проведении контрольных измерений на температуру и влажность. К примеру, при проведении контрольных измерений в сырую, дождливую погоду можно получить данные, которые будут ниже действительного сопротивления изоляции кабеля только за счет влажной поверхности контактных колодок или распределительных (оконечных) устройств. В таких случаях имеет смысл просушить поверхности с клеммами, на которые распаяны жилы измеряемого кабеля.

Для некоторых марок кабелей, имеющих алюминиевую оболочку и шланговое полиэтиленовое покрытие, нормируется сопротивление изоляции между оболочкой и землей. Норма на такое сопротивление изоляции – не менее 20 МОм/км. Для использования в реальной работе указанного норматива его также следует пересчитывать под действительную длину участка.

Для силовой кабельной продукции действуют следующие положения по сопротивлению изоляции постоянному току:

  1. Для силовых кабелей, применяемых в сетях с напряжением более 1000 В, величина указанного параметра не нормируется, но не может быть менее 10 МОм.
  2. Для силовых кабелей, применяемых в сетях с напряжением менее 1000 В, величина параметра не должна быть менее 0,5 МОм.

Для контрольных кабелей величина норматива не должна принимать значения менее 1 МОм.

Вернуться к оглавлению

Контроль над изоляцией кабелей

Сопротивление изоляции кабеля является одним из основных показателей его работоспособного состояния, поэтому проверочные измерения изоляции электрических и электротехнических сетей являются обязательными. Для каждой отрасли директивными материалами определены периодичность и порядок проведения таких контрольных измерений.

К примеру, измерения сопротивления изоляции электрического оборудования, электрических сетей различного уровня и применения проводят специальными приборами, называемыми мегаомметрами, а измерения сопротивления изоляции линий связи проводят предназначенными для этого кабельными мостами. Указанные приборы имеют высокое выходное напряжение (до 2500 В), что предъявляет особые требования к обеспечению выполнения правил охраны труда и техники безопасности при производстве подобных измерений.

Мегаомметр

Мегаомметр – специальный прибор для измерения сопротивления изоляции электрических сетей.

В соответствии с действующими регламентными документами, измерения изоляции должны проводиться:

  • для мобильных электроустановок не реже одного раза в 6 месяцев;
  • для наружных электроустановок, кабелей и проводов в особо опасных помещениях не реже одного раза в 12 месяцев;
  • для остальных видов оборудования и сетей не реже одного раза в 36 месяцев.

Иными словами, измерение сопротивления изоляции электропроводки в магазине или в офисе должно проводиться не реже одного раза в 3 года.

По результатам проведенных измерений составляют соответствующий акт, в котором фиксируют полученные данные.

Сравнивая известную норму на сопротивление изоляции электрической сети с полученными результатами измерений, делают вывод о ее работоспособности. Если измеренное сопротивление изоляции постоянному току не соответствует норме, то проверяемая сеть выводится в ремонт до восстановления ее рабочих параметров. Подтверждением окончания ремонтных работ и правомерности ввода сети в эксплуатацию будет являться протокол итоговых послеремонтных измерений сопротивления изоляции.

В связи с тем, что сопротивление изоляции по постоянному току для линий связи нормируется более жестко, то и алгоритм контроля над его состоянием несколько иной. Контрольные измерения этого параметра для линий, не стоящих под избыточным воздушным давлением, проводятся весной, перед началом ремонтного сезона, с тем, чтобы можно было спланировать соответствующие ремонтные работы, если состояние кабельной линии не нормальное.

Ремонт считается законченным, а кабельная линия работоспособной, если итоговые измерения ее параметров подтверждают соответствие сопротивления изоляции участка сети установленной норме (в пересчете на реальную длину).

Методики производства указанных выше измерений имеют некоторые специфические особенности, характерные для силовых сетей и для линий связи. К примеру, при измерении сопротивления изоляции электросети офиса или магазина прибор мегаомметр подключают к измеряемой сети в точках «жила» и «земля», не отсоединяя от нее отводы к розеткам и переключателям.

Сопротивление изоляции линейных элементов линий связи измеряют по схемам «жила-жила» и «жила (все жилы)-земля», предварительно отключив полностью все жилы измеряемой кабельной продукции от любых контактов с аппаратурой. То есть измерение проводят в режиме холостого хода.

Однако перед проведением любых измерений обязательно следует убедиться в отсутствии на измеряемой линии мешающего или опасного напряжения и принять соответствующие меры по защите как измерителя, так и других людей, имеющих доступ к измеряемым цепям. После окончания измерений необходимо снять с измеренных жил остаточный электрический заряд.

В итоге для содержания в исправном состоянии проводного линейного хозяйства и электроустановок достаточно выполнять установленные регламенты и вовремя контролировать такой важный параметр, как сопротивление изоляции постоянному току. Применяя соответствующие нормы, следует помнить о соотношении величины сопротивления изоляции и длины участка. То есть чем длиннее участок проводной линии, тем меньше для него норма по изоляции.

Нормы изоляции и измерения сопротивления кабелей

От качества изоляции напрямую зависит безопасность электросети и всей установки. Регулярный осмотр и тестовые испытания позволяют выявить возможные неисправности и таким образом, предотвратить возникновение серьезных аварийных ситуаций. Специалисты выполняют различные манипуляции при помощи приборов и, сравнив полученные данные с установленными требованиями, могут позволить им выполнить ремонтные работы частичные или капитальные.

Суть измерений

Сопротивление изоляции – физическое определение свойства материала не пропускать электрический ток. У каждого материала свои предельные значения, которые подвергаются испытаниям согласно графику, установленному ПУЭ и ПТЭЭП. Условно существует три типа проверок: на заводе изготовителе, на месте установки перед началом монтажа и в процессе эксплуатации. При этом дефекты возможны и в условиях производства, и в процессе использования. Во втором случае неисправностей возникает больше, поскольку система регулярно подвергается агрессивному воздействию окружающей среды, химических реагентов, кислой почвы и даже грызунов. Эти негативные факторы влекут за собой повреждение изоляционного слоя и, как следствие, возникновение угрозы безопасности и жизнедеятельности человека.

Важно отметить, что повреждения могут быть очевидными, например, заметная пробоина твердой оболочки, так и невидимыми для человеческого глаза. Во втором случае не обойтись без испытаний сотрудниками электролаборатории, которые с помощью технического оборудования и замеров показателей, выявят наличие утечки и степень неисправности системы.

Измерения изоляции должны осуществляться не реже 1 раза в год, а иногда и чаще, в зависимости от состояния системы, окружающей среды, наличия внеплановых ремонтных работ, вскапывания грунта вблизи объекта и пр. После выполненных измерений, все данные документально фиксируются, для владельца составляется акт, который также должен быть завизирован руководителем лаборатории. В дальнейшем эти документы могут быть предъявлены в ходе проверок вышестоящими инстанциями.

Используемые приборы

Измерения сопротивления кабелей осуществляются с помощью щитовых измерителей или мегомметров. Вторые предпочтительнее, поскольку его устройство схоже с простым омметром, за исключением более высокого напряжения. Однако при работе с любым устройством следует иметь в виду степень погрешности данных, которую также можно высчитать. Выделяют аналоговые и цифровые приборы. Аналоговые признаны устаревшими, однако в надежности не уступают ни одному современному аналогу. Мегомметры аналоговые работают по магнитоэлектрическому принципу: чем больше значение тока проходит, тем сильнее отклоняется динамическая стрелка. Цифровые устройства сильнее адаптированы под современные устройства работы, они легче и могут работать от сетевого адаптора. Принцип работы заключается в сравнении полученного значения с нормативным.

Перед началом испытаний

Все тестовые манипуляции следует проводить в строгом соблюдении инструкций и техники безопасности. Так, измерительные приборы должны быть исправны. Рекомендуемые погодные условия: сухая и теплая погода, в противном случае, в сырой и дождливой обстановке полученные данные будут с большой долей погрешности. Кроме того, сырой грунт и высокая влажность во время диагностики не безопасны для человека. Также, измеряемый объект обязательно отключается от питания, после чего снимается остаточный заряд. Все электрические приборы должны быть сняты. Приступать к работе можно только удостоверившись в отсутствии напряжения на измеряемом участке!

Принцип испытания

Все действия в процессе испытаний проходят в соответствии с Правилами устройства электроустановок. Через сеть пускается напряжение среднего значения и каждая линия тестируется относительно других проводов, связанных друг с другом, а также относительно земли, без подключения других линий к занулению. Помимо этого, полученные данные обязательно сравниваются с нормами, установленными ПУЭ и ПТЭЭП. Важно помнить, что все манипуляции выполняются строго в средствах индивидуальной защиты, а прикасаться к токоведущим частям во время работы, даже в диэлектрических перчатках, запрещено.

Допустимые значения

Полученные значения испытаний не должны сильно отличаться от установленных норм, а также величин, заложенных заводом-изготовителем электротехнической продукции. Между собой изделия делятся на силовые, контрольные, распределительные и общего применения и различаются как конструктивно, так и по физическим параметрам.

Сопротивление измеряется в Омах либо Мегаомах. Для разных объектов и разного типа кабелей показатель сопротивления свой. Так, принято считать, что для кабеля, проложенного в помещении с хорошими условиями среды, норма сопротивления изоляции должна составлять 0,5 МОм, для контрольных проводов – 1 Мом, для Проводов электрической сети с напряжением выше 1 кВ – 10 МОм, для магистральных проводов – 1 МОм, для электромоторов и приборов с напряжением до 400 В – 0,5 МОм.

Сопротивление изоляции кабеля

СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ

Insulation Resistance of a Cable. why cables are insulated? Insulation Resistance of a Cable. why cables are insulated?

ПОЧЕМУ КАБЕЛИ ИЗОЛИРОВАНЫ? ВВЕДЕНИЕ

За исключением кабелей передачи энергии, которые находятся на электрических опорах, почти все кабели, которые используются сегодня, изолированы. Уровень или степень сопротивления изоляции кабеля зависит от цели, для которой кабель был разработан. Помимо экономии энергии от потери или рассеивания в окружающую среду, одна из важнейших причин , почему кабели изолированы, — это спасти нас от опасности поражения электрическим током.

Электричество очень опасно. Первое прикосновение может быть последним прикосновением и никогда не дает ни единого шанса. Легкое прикосновение к кабелю, по которому проходит электрический ток, может привести к несчастному случаю со смертельным исходом. Наше тело частично проводит электричество. Когда наше тело соприкасается с проводником с током, электрический ток будет стремиться течь от проводника, а затем к нашему телу. Наше тело, будучи частичным проводником, не сможет проводить электрический ток. Когда ток слишком силен, чем может выдержать наше тело, он убивает человека, это вопрос.

Чтобы избежать подобных аварий в наших домах, возникла необходимость в изоляции кабелей. Изоляция предотвращает утечку тока, а также не дойдет до нас, тем самым предотвращая поражение электрическим током.

ЧТО ТАКОЕ ИЗОЛЯТОР?

Изолятор — это материал или вещество, не проводящее тепло или электричество. Изоляторы не проводят тепло или электричество, потому что в них нет свободно движущихся электронов. Считается, что проводники изолированы, если они покрыты изоляционными материалами, такими как ПВХ и т. Д.Процесс называется изоляцией. Изолятор вокруг проводника предотвращает утечку электроэнергии и сигналов в окружающую среду.

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ИЗОЛИРОВАННЫЕ МАТЕРИАЛЫ

Повышение температуры увеличивает сопротивление в проводниках, в то время как сопротивление уменьшается с повышением температуры в полупроводниках, а также в изоляторах. Повышение температуры может сделать полупроводник хорошим проводником, а изолятор — полупроводником.

СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ

Жилы кабеля снабжены изоляцией подходящей толщины, чтобы избежать утечки тока.Толщина любого кабеля зависит от назначения его конструкции. Путь утечки тока в таком кабеле радиальный. Сопротивление или противодействие, обеспечиваемое изоляцией току, также радиально по всей ее длине.

Для одножильной жилы кабеля с радиусом r 1 , радиусом внутренней оболочки r 2 , длиной l и удельным сопротивлением изоляционного материала ρ периметр жилы равен 2πr l . Толщина изоляции указывается как dr.

R ins = ρdr / 2πr l

После интеграции мы будем иметь:

R ins = ρ / 2π l [loge r 2 / r 2 ]

R ins обратно пропорционально 1/ l в отличие от R = ρ l . Где ρ (rho) — постоянная, известная как удельное сопротивление .
Существуют кабели, которые имеют более одного изоляционного слоя и более одной жилы.Главный провод, находящийся в центре, служит основным проводником. Другая жила служит для заземления и предотвращения выхода электромагнитных волн и излучения из кабеля. Он служит щитом. Кабели в этой категории — это коаксиальные кабели.

Коаксиальный кабель передает электрический сигнал с помощью внутреннего проводника (внутренний или основной проводник может быть любым хорошим проводником, но в основном предпочтительна медь из-за ее низкого удельного сопротивления, медь также может быть покрыта гальваническим покрытием) содержится в основном в корпусе из ПВХ.Перед внешним корпусом из ПВХ расположены два или более других изолятора с алюминиевой фольгой или медной жилой между ними. Кабели защищены от внешних воздействий наружным корпусом из ПВХ. В то время как напряжение проходит через внутренний проводник, экран или корпус практически не пропускают напряжение.

Преимущество коаксиальной конструкции заключается в том, что электрическое и магнитное поля ограничены диэлектриком с небольшой утечкой за пределы экрана. Благодаря уровню изоляции в кабелях, который предотвращает проникновение внешних электромагнитных полей и излучений в них, исключаются помехи.Поскольку проводники большого диаметра имеют меньшее сопротивление, утечка электромагнитного поля будет меньше. То же самое и с кабелями с большей изоляцией. Зная, что более слабые сигналы легко прерываются небольшими помехами, кабели с большим количеством слоев изоляции всегда являются хорошим выбором для передачи таких сигналов.

ХАРАКТЕРИСТИКИ ИЗОЛИРОВАННОГО КАБЕЛЯ

Отметив, что сопротивление изоляции кабеля определяется его конструктивным назначением, есть некоторые факторы, которые инженер должен учесть перед проектированием кабеля.Коаксиальные кабели потребуют большей изоляции, потому что кабель не только предотвращает утечку мощности, но и задерживает электромагнитное излучение. Утеплитель варьируется от одного слоя до двух, трех или четырех. Кабели предназначены для разных целей.

Ниже приведены некоторые характеристики изолированных кабелей;

  • Термостойкие кабели
  • Высокая стойкость изоляции
  • Высокая устойчивость к порезам, разрывам и истиранию
  • Улучшенные механические и электрические свойства
  • Устойчивость к маслам, растворителям и химическим веществам
  • Устойчивость к озону и погодным условиям.
.

Руководство для начинающих по тестированию сопротивления изоляции

Мегомметр 1 кВ, обычно используемый в полевых условиях для проверки электрической изоляции. Фотография: Megger

.

С помощью мегомметра можно выполнить три различных теста. Хорошее понимание этих распространенных методов испытаний является важным инструментом для определения состояния и качества электрической изоляции.

Испытания обычно проводятся путем приложения напряжения постоянного тока (dc) к тестируемому проводнику и измерения тока, протекающего через изоляцию (называемого «током утечки») в нетоковедущие металлические части оборудования.

1.) Кратковременный или точечный тест

Кратковременный или точечный тест используется для электрических устройств с очень малой емкостью, таких как короткая проводка в доме или электрическая панель.

Поскольку крупное оборудование, как правило, более емкостное, этот тест следует использовать только в качестве приблизительного ориентира для определения качества изоляции при отсутствии базовых показателей. Важно отметить, что на показания влияют температура и влажность, а также состояние изоляции.

В этом методе просто подключите мегомметр к проверяемой изоляции и подайте правильное испытательное напряжение в течение короткого определенного периода времени (обычно рекомендуется 60 секунд).

Регистрируя эти измерения с течением времени, вы получаете лучшую основу для оценки фактического состояния изоляции. Любой устойчивый нисходящий тренд обычно является верным предупреждением о предстоящих проблемах, даже если значения могут быть выше предлагаемых минимальных значений.

Периодические показания ниже рекомендуемых значений могут быть приемлемыми, если они согласованы.Рекомендуемые значения сопротивления изоляции при отсутствии стандартов производителя см. В спецификациях технического обслуживания ANSI / NETA.

Правило одного мегомма

Как правило, сопротивление изоляции должно составлять приблизительно один МОм на каждые 1000 вольт рабочего напряжения, при минимальном значении один МОм. Это то, что известно как «правило одного мегаома».

Например, двигатель с номинальным напряжением 5000 В должен иметь минимальное сопротивление изоляции 5 МОм.На практике показания в МОм должны быть намного выше этого минимального значения, если изоляция новая или в хорошем состоянии.


2.) Метод сопротивления времени

В отличие от теста с точечным считыванием, метод временного сопротивления практически не зависит от температуры и часто может дать вам окончательную информацию без учета прошлых тестов.

Этот метод испытания иногда также называют «испытанием на абсорбцию», поскольку он основан на абсорбционном эффекте хорошей изоляции по сравнению с эффектом влажной или загрязненной изоляции, что дает вам более четкое представление о качестве изоляции, даже если точечное считывание показывает приемлемое состояние.

В этом методе подключайте мегомметр так же, как при кратковременном или точечном тесте, снимая последовательные показания в определенное время и отмечая различия в показаниях.

Typical curves showing dielectric absorption effect in a time-resistance test, made on capacitive equipment such as a large motor winding. Photo Credit: Megger US.

Типичные кривые, показывающие эффект диэлектрической абсорбции при испытании «сопротивление времени», выполненном на емкостном оборудовании, таком как обмотка большого двигателя. Фото: Megger US.

Хорошая изоляция показывает постоянное увеличение сопротивления в течение определенного периода времени (примерно от 5 до 10 минут) — это вызвано зарядами, которые образуются на пластинах конденсатора и притягивают заряды противоположной полярности в изоляции, вызывая эти заряды двигаться и, таким образом, потреблять ток.Хорошая изоляция показывает этот эффект заряда в течение периода времени, намного большего, чем время, необходимое для зарядки емкости изоляции.

Проведение испытаний на временное сопротивление больших распределительных устройств, трансформаторов, вводов, двигателей и кабелей — особенно при более высоких напряжениях — требует высоких диапазонов сопротивления изоляции и чистых, постоянных испытательных напряжений. Эти типы оборудования следует проверять с помощью мегомметра, работающего от сети.


3.) Коэффициент диэлектрической абсорбции и индекс поляризации

Отношение двух показаний сопротивления времени (например, 60-секундное показание, деленное на 30-секундное показание) называется коэффициентом диэлектрического поглощения .Если соотношение равно 10-минутному показанию, разделенному на 1-минутное показание, значение называется индексом поляризации .

Эти значения очень полезны для определения качества изоляции. При использовании ручных измерительных приборов намного проще провести тест всего за 60 секунд, сняв первое показание через 30 секунд.

Вы получите наилучшие результаты, выполнив 10-минутный тест с использованием линейного тестового набора, сняв показания через 1 и 10 минут для получения индекса поляризации.Вы можете применить это значение к приведенной ниже таблице, чтобы получить относительное состояние изоляции.

Любое значение индекса поляризации менее 1.0 должно быть исследовано в соответствии со стандартами приемки и обслуживания NETA / ANSI.

Состояние изоляции Коэффициент диэлектрической абсорбции Индекс поляризации
Опасно Ниже 1.00
Сомнительно / Плохо от 1,00 до 1,25 от 1,00 до 2,00 ***
Хорошо от 1,40 до 1,60 от 2,00 до 4,00
Отлично Более 1,60 ** Выше 4,00 **

* Эти значения следует рассматривать как предварительные и относительные — при условии наличия опыта применения метода сопротивления времени в течение определенного периода времени.

** В некоторых случаях для двигателей значения, примерно на 20% превышающие указанные здесь, указывают на сухую хрупкую обмотку, которая выйдет из строя при ударах или во время пусков. Для профилактического обслуживания обмотку двигателя необходимо очистить, обработать и высушить для восстановления гибкости обмотки.

*** Эти результаты будут удовлетворительными для оборудования с очень низкой емкостью, такого как короткие участки домашней электропроводки.


Список литературы

Комментарии

Всего комментариев: 1

Оставить комментарий Войдите или зарегистрируйтесь, чтобы оставить комментарий..

Измерение сопротивления изоляции — Центр электротехники

Это измерение важно для определения состояния обмотки электродвигателя, электрических кабелей, электроустановки, трансформатора, выключателя, нагревателя и электрического оборудования.

Исходя из данных сопротивления изоляции, мы можем сделать идеальное и четкое решение, находится ли электрическое оборудование в хорошем состоянии или нет.

Проверка сопротивления изоляции также может помочь избежать серьезных повреждений, пожара или поражения электрическим током людей и людей.Это также может защитить и продлить срок службы электрооборудования. Мы можем раньше обнаружить любые отклонения от нормы, быстро устранить их и избежать серьезных повреждений.

Метод измерения сопротивления изоляции

На этот раз я хочу рассказать о том, как выполнять проверку сопротивления изоляции для общего электрического оборудования, такого как двигатель, трансформатор и кабели. Я подробно объясняю, шаг за шагом, как выполнять тестирование для каждого оборудования.

1) Электродвигатель

Для электродвигателя мы использовали тестер изоляции, чтобы измерить сопротивление обмотки двигателя с заземлением (E).

(a) Для номинального напряжения ниже 1000 В, измеренного при 500 В постоянного тока с помощью измерителя сопротивления изоляции.

(b) Для номинального напряжения выше 1000 В, измеренного при 1000 В постоянного тока с помощью измерителя сопротивления изоляции.

(c) В соответствии с пунктом 9.3 IEEE 43 должна применяться следующая формула:

(Номинальное напряжение (В) / 1000) + 1

Из приведенной ниже таблицы сравните измеренное значение сопротивления с минимальным уровнем сопротивления обмотки, мы сможем определить, хорошее или плохое состояние обмотки.

2) Трансформатор

Для измерения сопротивления изоляции трансформатора мы также использовали тестер изоляции. Для проверки однофазных трансформаторов нам необходимо проверить обмотку на обмотку и обмотку на землю (E).

Для трехфазных трансформаторов нам необходимо испытать обмотку (L1, L2, L3) с заменой заземления для трансформатора треугольником или обмотку (L1, L2, L3) с заземлением (E) и нейтралью (N) для трансформаторов звездой. сопротивление изоляции используйте следующую формулу:

3) Электрический кабель и проводка

Для проверки изоляции нам необходимо отключить панель или оборудование и изолировать их от источника питания.Проводку и кабели необходимо проверить друг на друга (между фазами) с помощью кабеля заземления (E). Ассоциация инженеров по изолированным силовым кабелям (IPCEA) предоставляет формулу для определения минимальных значений сопротивления изоляции.

R = K x Лог 10 (D / d)

R — МОм на 1000 футов (305 метров) кабеля. На основе испытательного напряжения постоянного тока 500 В, приложенного в течение одной минуты при температуре 15,6 ° C (60 ° F))
K — Постоянная изоляционного материала (например: лакированный Cambric-2460, термопластичный полиэтилен-50000, композитный полиэтилен-30000)
D — Наружный диаметр изоляции жилы для одножильных проводов и кабелей (D = d + 2c + 2b диаметр одножильного кабеля)
d — Диаметр жилы
c — Толщина изоляции жилы
b — Толщина изоляции оболочки

Подробнее о том, как использовать тестер изоляции, читайте в моем последнем посте: Как использовать тестер изоляции?

.

Испытания кабелей низкого и высокого напряжения

Испытания кабелей низкого и высокого напряжения

Распределительные кабели низкого напряжения из сшитого полиэтилена:

Сопротивление изоляции:

  • Кабели должны быть проверены на сопротивление изоляции с помощью прибора для проверки изоляции (например, мегомметра) при 1000 В в течение 1 минуты.
  • Минимальное сопротивление изоляции относительно земли или между фазами должно составлять 100 МОм.
  • Прибор, используемый для этого измерения, должен иметь минимальное разрешение 10 МОм в диапазоне от 0 до 500 МОм.
  • По завершении испытания сопротивления изоляции НН нейтрали должны быть подключены к заземляющим стержням.

Тест фазирования:

  • Правильность фазировки всех цепей низкого напряжения должна быть проверена во всех местах, где кабели низкого напряжения подключаются к основаниям предохранителей и где любой кабель низкого напряжения проходит от точки к точке.
  • Это испытание должно проводиться с помощью прибора, предназначенного для этой цели. Напряжение сети с частотой 240 В для этого теста неприемлемо.
  • Нейтральный провод должен быть подключен к заземляющему стержню для этого испытания.

Проверка целостности (сопротивление болтовых соединений):

  • Для петлевых низковольтных систем испытание на непрерывность должно проводиться на каждой низковольтной цепи, чтобы убедиться, что все болтовые соединения являются полными и адекватными.Испытание проводится следующим образом:
  • (1) На трансформаторе прочно соедините все 4 проводника вместе
  • (2) Выполните проверку непрерывности в каждой точке, где есть предоставление услуги или открытая точка. В предохранительной стойке обслуживания нижний ряд оснований предохранителей должен быть точкой, в которой проводится испытание, поскольку это самый дальний участок сети.
  • Разница между показаниями каждого фазного проводника и нейтрали для каждого отдельного испытания не должна превышать 10% друг от друга.Любая разница, превышающая указанную, может указывать на слабое или грязное соединение и требует дальнейшего изучения.
  • Прибор, используемый для этого измерения, должен иметь разрешение до второго десятичного знака в диапазоне от 0 до 5 Ом.
  • Типичным прибором может быть заземление типа «мегомметр», учитывающее значения сопротивления измерительных проводов.

Испытание сопротивления заземления:

  • В любой воздушной или подземной сети сопротивление заземления в любой точке по длине фидера низкого напряжения должно иметь максимальное сопротивление 10 Ом до подключения к существующей сети.
  • В любой воздушной или подземной сети полное сопротивление земли должно быть менее 1 Ом до подключения к существующей сети.

Кабели из сшитого полиэтилена 11 кВ И 33 кВ :

Тест фазирования

  • Правильность фазирования всех цепей высокого напряжения должна быть проверена во всех местах, где были заделаны кабели высокого напряжения.
  • Это испытание должно проводиться с помощью прибора, предназначенного для этой цели.Частота сети 240 В неприемлема для выполнения этого теста. Испытание может проводиться либо на проволочных экранах, либо на алюминиевых проводниках.
  • Если испытание проводится на экранах проводов, они должны быть отключены от земли.

Сопротивление изоляции внешней оболочки (испытание экрана экрана)

  • Целью испытания является определение прочности внешней полиэтиленовой оболочки против проникновения воды, механических повреждений и нападения термитов.
  • Значения ниже 0,5 МОм (500 кОм) могут указывать на повреждение оболочки. Значения от 1,0 до 10 МОм могут не указывать на повреждение в одном месте. Поиск неисправностей часто бывает очень трудным. В новых кабелях требуются значения более 100 МОм.
  • Целостность внешней оболочки должна быть проверена после заглубления кабелей тестером изоляции (Megger) при 1000 Вольт.
  • Испытание должно проводиться в течение 1 минуты между экраном каждого провода и землей после соединения кабеля и установки концевых заделок.
  • Для кабелей после ремонта сопротивление должно быть не менее 10 МОм.
  • Если цепи высоковольтного кабеля разрезаются и присоединяются к новым цепям, испытание оболочки должно проводиться на существующей старой цепи перед присоединением к новому кабелю.

Высоковольтное испытание уже эксплуатируемых или находящихся под напряжением кабелей из сшитого полиэтилена

За исключением новых кабелей, испытания при напряжении выше 5,0 кВ не разрешены

  • Исследования, проведенные при испытании кабелей с изоляцией из сшитого полиэтилена постоянным током, теперь показывают, что
  • Испытания на постоянном токе свыше 5 кВ кабелей из сшитого полиэтилена, выдержанного в полевых условиях, обычно ускоряют рост водяных деревьев и сокращают срок службы.
  • 5 кВ не считается «Испытанием постоянного высокого напряжения». Испытательные напряжения для испытаний кабелей из сшитого полиэтилена теперь ограничены до 5 кВ после ремонта и 10 кВ для новых установок.
  • Megger 5 кВ пригоден для испытания кабелей 5 кВ после ремонта.
  • Изменения в этом разделе также сделают возможным испытание отремонтированного кабеля ремонтными бригадами и его немедленное возвращение в эксплуатацию.

Приложение

Тестовое напряжение

Критерии

После ремонта — Ножны

1 кВ мегомметр 1 минута

10 МОм мин.

После ремонта — Утеплитель

5 кВ мегомметр, 1 минута

1000 МОм мин.

После ремонта — Утеплитель

5 кВ постоянного тока, 1 минута

5,0 мкА (микроампер) макс.

Высоковольтное испытание нового кабеля из сшитого полиэтилена:

  • Перед выполнением этого теста провода экрана должны быть подключены к постоянному заземлению.
  • Кабель должен быть испытан при испытательном напряжении, и критерии прохождения должны соответствовать следующей таблице:

Приложение

Тестовое напряжение

Критерии

Новые кабели — Оболочка

1 кВ мегомметр 1 минута

100 мОм мин.

Новые кабели — изоляция

10 кВ постоянного тока 15 минут

1.0 мкА (микроампер) макс

Новые кабели — изоляция

10 кВ постоянного тока 15 минут

1000 мОм мин.
  • Если проводятся дальнейшие ремонтные работы, и они требуют установки дополнительных соединений, всю процедуру испытаний высокого напряжения необходимо повторить.

Альтернативные требования к испытаниям на высокое напряжение изоляции для кабелей 11 кВ

  • В тех случаях, когда проведение высоковольтных испытаний нецелесообразно, требования к испытаниям изоляции (от жилы к экрану) могут быть ограничены испытанием на условие «безопасность для подачи энергии».Следующий список обстоятельств и условий должен быть соблюден как минимальное требование:
  • Напряжение кабельной цепи должно быть 11кВ,
  • Продолжительность отключения сети не более 48 часов,
  • Работы должны включать расширение или ремонт существующих цепей,
  • Испытание изоляции должно проводиться в течение 1 минуты между каждыми
  • Фазная жила
  • и экран с тестером изоляции минимум на 1000 В (мегомметр),
  • Обычно результат теста должен быть порядка 1000 МОм.

Кабели с бумажной изоляцией:

Испытания кабелей низкого напряжения

  • Испытание сопротивления изоляции следует проводить с помощью мегомметра на 1000 вольт. Результаты испытаний до 10 МОм на старых кабельных цепях являются обычным явлением и поэтому считаются безопасными для энергии.

Испытание кабелей 11 кВ и 33 кВ между жилами и землей

  • Для трехжильных кабелей с лентами испытание любой жилы должно проводиться между жилой и свинцовой оболочкой, при этом оставшиеся две жилы должны быть заземлены.
  • Испытательные напряжения и критерии прохождения должны соответствовать приведенной ниже таблице.

Приложение

Тестовое напряжение

Критерии

11кВ новые кабели

5 кВ мегомметр, 1 минута

100 МОм.

11кВ после ремонта

5 кВ мегомметр, 1 минута

100 МОм.

33кВ — ТФ не подключены

5 кВ мегомметр, 1 минута

1000 МОм.

33кВ — с подключенными ТП

5 кВ мегомметр, 1 минута

15 МОм.

КАБЕЛИ ИЗ СПЭ, 66 кВ

Испытание сердечника на оболочку после ремонта:

  • После ремонта кабель с изоляцией из сшитого полиэтилена на 66 кВ должен быть запитан с промышленной частотой в течение 24 часов без нагрузки.Тестирование постоянного тока не допускается.
  • Коробка перемычки оболочки кабеля / система перекрестных соединений должна быть приведена в нормальное состояние.

Тест целостности внешней оболочки:

  • Должно быть проведено испытание сопротивления изоляции между металлической оболочкой и землей. Противотермитный барьер должен быть соединен с металлической оболочкой, а испытание изоляции должно быть заземлено.
  • Испытательное напряжение, прикладываемое в течение 1 минуты, должно составлять 5 кВ постоянного тока с помощью высоковольтного испытательного комплекта или измерителя сопротивления изоляции (Megger).

Ссылки:

Нравится:

Нравится Загрузка …

Связанные

О компании Jignesh.Parmar (B.E, Mtech, MIE, FIE, CEng)
Джигнеш Пармар закончил M.Tech (Power System Control), B.E (Electric). Он является членом Института инженеров (MIE) и CEng, Индия. Членский номер: M-1473586. Он имеет более чем 16-летний опыт работы в сфере передачи, распределения, обнаружения кражи электроэнергии, технического обслуживания и электротехнических проектов (планирование-проектирование-технический обзор-координация-выполнение).В настоящее время он является сотрудником одной из ведущих бизнес-групп в качестве заместителя менеджера в Ахмедабаде, Индия. Он опубликовал ряд технических статей в журналах «Электрическое зеркало», «Электрическая Индия», «Освещение Индии», «Умная энергия», «Промышленный Электрикс» (австралийские энергетические публикации). Он является внештатным программистом Advance Excel и разрабатывает полезные базовые электрические программы Excel в соответствии с кодами IS, NEC, IEC, IEEE. Он технический блоггер и знает английский, хинди, гуджарати, французский языки.Он хочет поделиться своим опытом и знаниями и помочь техническим энтузиастам найти подходящие решения и обновить свои знания по различным инженерным темам.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *