Мощность короткого замыкания формула: Расчёт трёхфазного короткого замыкания

Содержание

Расчёт трёхфазного короткого замыкания

а) Изменение тока при коротком замыкании

Рассчитать трёхфазное короткое замыкание — это значит определить токи и напряжения, имеющие место при этом виде повреждения как в точке к. з., так и в отдельных ветвях схемы.

Ток в процессе короткого замыкания не остаётся постоянным, а изменяется, как показано на рис. 1-23. Из этого рисунка видно, что ток, увеличившийся в первый момент времени, затухает до некоторой величины, а затем под действием автоматического регулятора возбуждения (АРВ) достигает установившегося значения.

 

Промежуток времени, в течение которого происходит изменение величины тока к. з., называется переходным процессом. После того как изменение величины тока прекращается и до момента отключения короткого замыкания продолжается установившийся режим к. з. В зависимости от того, производится ли выбор уставок релейной защиты или проверка электрооборудования на термическую и динамическую устойчивость, могут интересовать значения тока в разные моменты времени к.

з.

Поскольку всякая сеть имеет определённые индуктивные сопротивления, препятствующие мгновенному изменению тока при возникновении короткого замыкания, величина его не изменяется скачком, а нарастает по определённому закону от нормального до аварийного значения.

Для упрощения расчёта и анализа ток, проходящий во время переходного процесса к. з., рассматривают как состоящий из двух составляющих: апериодической и периодической.


Апериодической называется постоянная по знаку составляющая тока ia, которая возникает в момент короткого замыкания и сравнительно быстро затухает до нуля (рис. 1-23).

Периодическая составляющая тока к. з. в начальный момент времени Inmo называется начальным током короткого замыкания. Величину начального тока к. з. используют, как правило, для выбора уставок и проверки чувствительности релейной защиты. Начальный ток короткого замыкания называют также сверхпереходным, так как для его подсчёта в схему замещения вводится так называемое сверхпереходное сопротивление генератора  и сверхпереходная э.

д. с.

Установившийся ток к. з. представляет собой периодический ток после окончания переходного процесса, обусловленного как затуханием апериодической составляющей, так и действием АРВ. Полный ток к. з. представляет собой сумму периодической и апериодической составляющих в любой момент переходного процесса. Максимальное мгновенное значение полного тока называется ударным током к. з. и вычисляется при проверке электротехнического оборудования на динамическую устойчивость.

Как уже отмечалось выше, для выбора уставок и проверки чувствительности релейной защиты используется обычно начальный или сверхпереходный ток к. з., расчёт величины которого производится наиболее просто. Используя начальный ток при анализе быстродействующих защит и защит, имеющих небольшие выдержки времени, пренебрегают апериодической составляющей. Допустимость этого очевидна, так как апериодическая составляющая в сетях высокого напряжения затухает очень быстро, за время 0,05—0,2 с, что обычно меньше времени действия рассматриваемых защит.

При к. з. в сети, питающейся от мощной энергосистемы, генераторы которой оснащены АРВ, поддерживающими постоянным напряжение на её шинах, периодическая составляющая тока в процессе к. з. не меняется (рис. 1-23, б). Поэтому расчётное значение начального тока к. з. в этом случае можно использовать для анализа поведения релейной защиты, действующей с любой выдержкой времени.

В сетях же, питающихся от генератора или системы определённой ограниченной мощности, напряжение на шинах которой в процессе к. з. не остаётся постоянным, а изменяется в значительных пределах, начальный и установившийся ток к. з. не равны (рис. 1-23, а). При этом для расчёта защит, имеющих выдержку времени порядка 1—2 с и более, следовало бы использовать установившийся ток к. з. Однако поскольку расчёт установившегося тока к. з. сравнительно сложен, допустимо в большинстве случаев использовать начальный ток к. з. Такое допущение, как правило, не приводит к большой погрешности.

Объясняется это следующим. На величину установившегося тока к. з. значительно большее влияние, чем на величину начального тока, оказывают увеличение переходного сопротивления в месте повреждения, токи нагрузки и другие факторы, не учитываемые обычно при расчёте токов к. з. Поэтому расчёт установившегося тока к. з. может иметь весьма большую погрешность.

Принимая во внимание всё сказанное выше, можно считать целесообразным и в большинстве случаев вполне допустимым использование для анализа релейных защит, действующих с любой выдержкой времени, начального тока к. з. При этом возможное снижение тока в течение короткого замыкания следует учитывать для защит, имеющих выдержку времени, введением в расчёт повышенных коэффициентов надёжности по сравнению с быстродействующими защитами.

б) Определение начального тока к. з. в простой схеме


Поскольку при трёхфазном к. з. (рис. 1-24) э. д. с. и сопротивления во всех фазах равны, все три фазы находятся в одинаковых условиях. Векторная диаграмма для такого короткого замыкания, которое, как известно, называется симметричным, приведена на рис. 1-18, б. Расчёт симметричной цепи может быть существенно упрощён. Действительно, так как все три фазы находятся в одинаковых условиях, достаточно произвести расчёт для одной фазы и результаты его затем распространить на две другие. Расчётная схема при этом будет иметь вид, показанный на рис. 1-24, б. Совершенно очевидно, что даже в рассматриваемом простейшем случае последняя схема значительно проще, чем показанная на рис. 1-24, а.

 

В сложных же электрических цепях, имеющих много параллельных и последовательных ветвей, разница будет ещё более очевидной.

Итак, в симметричной системе расчёт токов и напряжений можно производить только для одной фазы. Расчёт начинается с составления схемы замещения, в которой отдельные элементы расчётной схемы заменяются соответствующими сопротивлениями, а для источников питания указывается их э.

д. с. или напряжение на зажимах. Каждый элемент вводится в схему замещения своими активным и реактивным сопротивлениями. Сопротивления генераторов, трансформаторов, реакторов определяются на основании паспортных данных и вводятся в расчёт, как указано ниже.

Реактивные сопротивления линий электропередачи рассчитываются по специальным формулам или могут приниматься приближенно по следующему выражению:

 

где l — длина участка линии, км; худ — удельное реактивное сопротивление линии, Ом/км, которое можно принимать равным:

 

Активные сопротивления медных и алюминиевых проводов могут быть подсчитаны по известному выражению

 

Допускается при расчётах токов к. з. не учитывать активного сопротивления и вводить в схему замещения только реактивные сопротивления элементов, если суммарное реактивное сопротивление больше чем в 3 раза превышает суммарное активное сопротивление

 

В дальнейшем для упрощения рассуждений будем считать, что условие (1-23), которое, как правило, выполняется для сетей напряжением 110 кВ и выше, действительно, и в расчёты будем вводить только реактивные сопротивления расчётной схемы.

Определение тока к. з. при питании от системы неограниченной мощности. Ток к. з. в расчётной схеме (рис. 1-25) определится согласно следующему выражению, кА:

 

где xрез — результирующее сопротивление до точки к. з., равное в рассматриваемом случае сумме сопротивлений трансформатора и линии, Ом;

 

Uс — междуфазное напряжение на шинах системы неограниченной мощности, кВ.

Под определением система неограниченной мощнoсти подразумевается мощный источник питания, напряжение на шинах которого остаётся постоянным независимо от места к. з. во внешней сети. Сопротивление системы неограниченной мощности принимается равным нулю. Хотя в действительности системы неограниченной мощности быть не может, это понятие широко используют при расчетах коротких замыканий. Можно считать, что рассматриваемая система имеет неограниченную мощность в тех случаях, когда её внутреннее сопротивление много меньше сопротивления внешних элементов, включенных между шинами системы и точкой к.

з.

Пример 1-1. Определить ток. проходящий при трёхфазном к. з. за реактором сопротивлением 0,4 Ом, который подключен к шинам генераторного напряжения 10,5 кВ мощной электростанции.

Решение. Поскольку сопротивление реактора значительно больше, чем сопротивление системы, можно считать, что он подключен к шинам неограниченной мощности.

Тогда

 

Определение тока к. з. при питании от системы ограниченной мощности. Если сопротивление системы, питающей точку короткого замыкания, сравнительно велико, его необходимо учитывать при определении тока к. з. В этом случае в схему замещения вводится дополнительное сопротивление хспст и принимается, что за этим сопротивлением находятся шины неограниченной мощности.

Величина тока к. з. определяется по следующему выражению (рис. 1-26):

 

где xвн — сопротивление цепи короткого замыкания между шинами и точкой к. з.; хсист — сопротивление системы, приведенное к шинам источника.

Сопротивление системы можно определить, если задан ток трёхфазного к. з. на её шинах Iк.з.зад.:

 

Пример 1-2. Определить ток трёхфазного к. з. за сопротивлением 15 Ом линии 110 кВ, питающейся от шин подстанции. Ток трёхфазного к. з. на шинах подстанции, приведенный к напряжению 115 кВ, равен 8 кА.

Решение. Согласно (1-26) определяется хсист:

 

Определяется ток в месте к. з. в соответствии с (1-25):

 

Сопротивление системы при расчётах к. з. может быть задано не током, а мощностью короткого замыкания на шинах подстанции. Мощность короткого замыкания — условная величина, равная

 

где Iк.з. — ток короткого замыкания; Ucp — среднее расчётное напряжение на той ступени трансформации, где вычисляется ток короткого замыкания.

Пример 1-3. Определить ток трёхфазного к. з. за реактором сопротивлением 0,5 Ом. Реактор питается от шин 6,3 кВ подстанции, мощность к. з. на которых равна 300 MB • А.

Решение. Определим сопротивление системы:

 

в) Определение остаточного напряжения

В схеме, приведенной на рис. 1-26, величина остаточного напряжения на шинах определяется согласно следующим выражениям:

 

где x к.з. — сопротивление от шин подстанции, на которых определяется остаточное напряжение, до места к. з., или

 

х — сопротивление от шин источника питания до точки, в которой определяется остаточное напряжение.

Поскольку сопротивление рассматриваемой цепи принято чисто реактивным, в выражения (1-27) и (1-28) входят абсолютные величины, а не векторы.

Пример 1-4. Определить остаточное междуфазное напряжение на шинах подстанции в примере 1-2.

Решение. По первому выражению (1-27):

 

г) Расчёты токов короткого замыкания и напряжений в разветвлённой сети

В сложной разветвлённой сети, для того чтобы определить ток в месте к. з., необходимо предварительно преобразовать схему замещения так, чтобы она имела простой вид, по возможности с одним источником питания и одной ветвью сопротивления. С этой целью производится сложение последовательно и параллельно включенных ветвей, треугольник сопротивлений преобразуется в звезду и наоборот.

Пример 1-5. Преобразовать схему замещения, приведенную на рис. 1-27, определить результирующее сопротивление и ток в месте к. з. Значения сопротивлений указаны на рис. 1-27.

Решение. Преобразование схемы замещения производим в следующей последовательности.

 

Для распределения тока к. з. по ветвям схемы можно воспользоваться формулами, приведенными в табл. 1-1. Распределение токов производится последовательно в обратном порядке начиная с последнего этапа преобразования схемы замещения.

Пример 1-6. Распределить ток к. з. по ветвям схемы, приведенной на рис. 1-27.

Решение. Определим токи в параллельных ветвях 4 и 7 в соответствии с формулами (табл. 1-1):

 

 

Ток I7 проходит по сопротивлению х5 и затем разветвляется по параллельным ветвям х2 и х3:

 

Остаточное напряжение в любой точке разветвлённой схемы может быть определёно путём последовательного суммирования и вычитания падений напряжения в её ветвях.

Пример 1-7. Определить остаточное напряжение в точках а и б схемы, приведенной на рис. 1-27. Решение.

 

Если в схему замещения входят две или несколько э. д. с, точки их приложения объединяются и они заменяются одной эквивалентной э. д. с. (рис. 1-28).

Если э. д. с. источников равны по величине, то эквивалентная э. д. с. будет иметь такую же величину

 

Если же э. д. с. не равны, эквивалентная э. д. с. подсчитывается по следующей формуле:

 

д) Расчёт токов короткого замыкания по паспортным данным реакторов и трансформаторов

Во всех примерах, рассмотренных выше, сопротивления отдельных элементов схемы задавались в омах. Сопротивления же реакторов и трансформаторов в паспортах и каталогах не задаются в омах.

Параметры реактора обычно задаются в процентах как относительная величина падения напряжения в нём при прохождении номинального тока хP, %.

Сопротивление реактора (Ом) можно определить по следующему выражению:

 

гле UHOM и IHOM — номинальное напряжение и ток реактора.

Сопротивление трансформатора также задаётся в процентах как относительная величина падения напряжения в его обмотках при прохождении тока, равного номинальному, uK, %.

Для двухобмоточного трансформатора можно записать сопротивление (Ом):

 

где uK, %, и UHOM, кВ, — указаны выше, а S HOM — номинальная мощность трансформатора, MB• А.

При коротком замыкании за реактором или трансформатором подключенными, к шинам системы неограниченной мощности, ток и мощность к. з. определяются по следующим выражениям:

 

где IHOM — номинальный ток соответствующего реактора или трансформатора.

Пример 1-8. Вычислить максимально возможный ток трёхфазного к. з. за реактором РБA-6-600-4. Реактор имеет следующие параметры: UH = 6 кВ, IH = 600 А, хP = 4%.

Решение. Поскольку требуется определить максимально возможный ток к. з., считаем, что реактор подключен к шинам системы неограниченной мощности.

В соответствии с (1-33) ток к. з. за реактором определится как

 

Пример 1-9. Определить максимально возможный ток и мощность трёхфазного к. з. за понизительным трансформатором: SH = 31,5MB • А, UН1= 115 кВ, UН2 = 6,3 кВ, uK = 10,5%

Решение. Принимая, как и в предыдущем примере, что трансформатор подключен со стороны 115 кВ к шинам системы неограниченной мощности, определяем ток к. з.

Номинальный ток обмотки 6,3 кВ трансформатора равен:

 


1.

5. Мощность короткого замыкания

При выборе выключателей его номинальный ток отключения сопоставляют с величиной тока КЗ, которая имеет место в расчётный момент отключения повреждения. Соответственно, если этот выбор производится по номинальной мощности отключения, то она должна быть сопоставлена с так называемой мощностью КЗ

,

где – ток КЗ в расчётный момент времени,– среднее номинальное напряжение той ступени, где установлен выключатель.

В относительных единицах при мощность равна току, откуда.

Поэтому расчёты можно вести непосредственно для мощностей КЗ. Мощность отключения выключателя по ГОСТу 687-70 даётся при наибольшем рабочем напряжении.

1.6. Влияние отдельных элементов энергосистемы в формировании переходного процесса

Роль отдельных элементов электрической системы в формировании переходного процесса оценивается с энергетической точки зрения, так как основа физических процессов, протекающих в электрических и магнитных цепях – электромагнитные явления, обусловленные наличием электромагнитного поля. Любой режим энергосистемы характеризуется определёнными запасами электромагнитной энергии в её элементах.

Для выражения энергии магнитного поля электрической машины можно воспользоваться уравнением Максвелла для контура

,

где – напряжение на зажимах контура,– сопротивление обмотки,– ток в обмотке,– потокосцепление.

Найдём энергию, запасённую в магнитном поле, выраженную через токи и индуктивности. Для этого предположим, что машина неподвижна, следовательно, собственные и взаимныеиндуктивности постоянны. Полная мощность на зажимах равна

.

Здесь – мощность, рассеиваемая в сопротивлении, а остальные члены выражения представляют собой мощность, запасённую в магнитном поле, так как машина неподвижна.

Учитывая, что и т.д., и интегрируя по времени при нулевых начальных условиях, получаем полную энергию, запасённую в магнитном поле машины:

. (1.30)

Энергия, запасённая в электрическом поле машины, не учитывается, так как она значительно меньше по сравнению с энергией, запасённой в магнитном поле. Так как в дальнейшем рассматриваются процессы только в симметричной машине, можно принять ,. Учитывая также симметрию токов и заменяя мгновенные значения токов на действующие, получим выражение для вычисления действующего значения энергии, запасённой в магнитном поле машины:

. (1.31)

В уравнениях (1.30) и (1.31) не учитывается энергия, запасённая в магнитном поле обмотки возбуждения. Для учёта энергии обмотки возбуждения используется выражение

,

где ,– соответственно индуктивность и ток обмотки возбуждения, приведенные к статорной обмотке. Для генератора ТВВ-500-2, например, значение энергии обмотки возбуждения в режиме холостого хода составляетДж, в нормальном и послеаварийной режимах –Дж. Поскольку параметры статорных и роторных цепей типовых машин – величины одного порядка, можно сделать вывод, что энергия, запасённая в обмотке возбуждения, соизмерима с энергией, запасённой в статорной цепи, поэтому в расчётах энергии магнитных полей генераторов её необходимо учитывать. В режиме КЗ энергия, запасаемая в обмотке машины составляет порядкаДж, таким образом, разность энергий режима КЗ и нормального режима составляетДж.

Для генератора ТВВ-500-2 в качестве блочного используется трансформатор типа ТДЦ-630000/330; его энергия, запасаемая в нормальном режиме, составляет порядка Дж, а в режиме КЗ –Дж. Таким образом, разность энергий в нормальном режиме и режиме КЗ составляетДж.

Для высоковольтной линии энергия электрического и магнитного полей на элементе определяется выражениями:

, , (1.32)

где и– удельные индуктивность и ёмкость линии соответственно.

Интегрируя выражение (1.32) по длине линии, получим выражение для полной энергии магнитного и электрического полей высоковольтной линии:

, .

Учитывая, что ,, и заменяя мгновенные значения токов и напряжений на действующие, получим выражения для действующих значений запасённых энергий:

, .

Предположим, что энергия, вырабатываемая генератором ТВВ-500-2, передаётся с помощью двухцепной ЛЭП, выполненной проводом АСО-600 под напряжением 330 кВ; при этом энергия, запасаемая в магнитном поле линии в нормальном режиме, составляет около Дж, а в режиме КЗ –Дж. Таким образом, разность энергий составляетДж. Следовательно, приращение энергий при возникновении КЗ в энергосистеме в генераторе, трансформаторе и линии электропередачи имеет одинаковый порядок и эти элементы должны быть учтены при анализе переходных процессов в энергосистемах.

Энергия, запасаемая в электрическом поле ЛЭП, на порядок меньше и составляет около Дж.

Аналогичные выражения можно записать для определения величины энергии, запасаемой в электромагнитном поле любого элемента электрической системы.

При быстром переходе от одного установившегося режима к другому количество энергии в полях элементов цепи от предшествующего установившегося не соответствует количеству энергии в полях, которые должны быть в новом установившемся режиме после происшедших изменений, поэтому возникает переходный процесс. Следовательно, разностью энергетических уровней предшествующего нормального режима (н.р) и послеаварийного установившегося режима (п.а.р) каждого элемента электрической системы

можно охарактеризовать роль этого элемента в формировании переходного процесса.

Очевидно, что роль элемента цепи зависит от его удалённости от точки КЗ. На разность энергетических уровней влияет и абсолютное значение запасаемой энергии.

Описанный энергетический подход может быть применён также при эквивалентировании расчётной схемы для определения тех частей схемы, где рассматриваемое КЗ несущественно изменяет предшествующий режим. Эти части схемы могут быть представлены эквивалентными сопротивлениями и ЭДС.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ГЛАВЕ 1

1. Короткие замыкания. Причины, виды, последствия.

2. Назначение расчётов токов КЗ. Основные требования и допущения.

3. Система относительных величин (единиц).

4. Формулы для определения сопротивлений основных элементов энергосистем в именованных единицах.

5. Формулы для определения сопротивлений основных элементов энергосистем в относительных единицах.

6. Модели синхронных генераторов, силовых трансформаторов (автотрансформаторов), линий электропередачи, кабелей, реакторов, электрических двигателей, обобщённой нагрузки, системы для расчёта токов КЗ.

7. Эквивалентные преобразования электрических схем (преобразование двух параллельно включённых источников ЭДС с различными ЭДС и внутренними сопротивлениями, преобразование звезды в треугольник и обратное преобразование).

8. Порядок расчёта тока КЗ в именованных единицах.

9. Порядок расчёта тока КЗ в относительных единицах.

10. Точное и приближённое приведение коэффициентов трансформации при выполнении расчётов токов КЗ.

11. Мощность КЗ.

12. Влияние отдельных элементов энергосистемы в формировании переходного процесса.

13. Порядки величин энергий, запасаемых в генераторах, трансформаторах и линиях электропередачи.

ЗАДАЧИ К ГЛАВЕ 1

ЗАДАЧА 1. Произвести расчёт сверхпереходного тока КЗ при трёхфазном повреждении в точке для схем участков энергосистемы, приведенных на рис.1.16, именованных и относительных базисных единицах с точным и приближённым приведением коэффициентов трансформации. Генераторы до возникновения повреждения работали в номинальном режиме.

Параметры основных элементов схем приведены таблице. Недостающие параметры элементов схемы выбираются в следующем порядке: выбирается количество (количество параллельно включённых элементов должно быть не менее двух, все параллельно работающие элементы рекомендуется выбирать однотипными) и мощность генераторов (ТГ-турбогенераторы, ГГ-гидрогенераторы) электростанции (ЭС), количество и мощность трансформаторов ЭС (суммарная мощность всех трансформаторов ЭС должна быть не менее полной мощности всех генераторов), параметры линии Л1 выбирается по напряжению и мощности ЭС (должна передать всю мощность ЭС), длина линии Л2 выбирается по напряжению обмотки среднего напряжения трёхобмоточного трансформатора или автотрансформатора подстанции (п/ст). Погонные сопротивления линий выбираются из приложения 4.

а)

б)

Рис.1.16 Схемы для контрольного задания 1

№ п.п.

Последняя цифра шифра

Схема на рис.1.11

Тип генераторов

, МВт

Мощность (авто) трансформаторов п/ст, МВА

Сопротивление системы, Ом

1

1

а)

ГГ

190-230

120-150

19

2

2

а)

ТГ

390-450

120-150

17

3

3

а)

ТГ

590-630

200-260

27

4

4

а)

ГГ

750-810

200-260

25

5

5

а)

ГГ

1150-1400

800-1000

29

6

6

а)

ТГ

1600-1800

900-1000

21

7

7

б)

ТГ

50-60

120-140

13

8

8

б)

ТГ

90-100

120-140

15

9

9

б)

ТГ

180-210

150-260

17

10

0

б)

ТГ

390-420

190-260

19

Результаты расчётов токов КЗ представить в виде таблицы.

ЭДС генераторов ЭС

Результирующее сопротивление ветви КЗ

Токи КЗ, кА

Именованные единицы (точное приведение коэффициентов трансформации)

Именованные единицы (приближённое приведение коэффициентов трансформации)

Относительные базисные единицы (точное приведение коэффициентов трансформации)

Относительные базисные единицы (приближённое приведение коэффициентов трансформации)

ЗАДАЧА 2. Произвести расчёт сверхпереходного тока КЗ для заданного участка энергосистемы (рис.1.17) при трёхфазном КЗ в точке в именованных и относительных базисных единицах с точным и приближённым приведением коэффициентов трансформации. Синхронные электродвигатели до возникновения повреждения работали с нагрузкой 90% от номинальной, асинхронные – 80%. Параметры элементов схем приведены таблице. Длина кабеля выбирается по напряжению. Студенты, последняя цифра шифра студенческого билета, которых нечётная – расчёт производят для точки, чётная – для точки.

а)б)

Рис.1.17 Схемы для контрольного задания 2

№ п.п.

Последняя цифра шифра

Схема на рис.1.16

,

МВА

,

МВА

,

МВАр

,

МВА

,

МВт

,

МВт

Ток реактора, кА

1

1

а)

500

50-150

17

11

0,63

2

2

б)

2100

90-140

50,4

70,4

3

3

а)

700

70-150

17

11

0,63

4

4

б)

2300

110-210

51,25

90,63

5

5

а)

700

140-210

17

13

0,63

6

6

б)

2500

160-210

36,3

30,8

7

7

а)

900

150-220

33

15

2,5

8

8

б)

2700

210-300

310,0

51,0

9

9

а)

1500

190-260

67

17

2,5

10

0

б)

2900

260-410

310,0

71,25

Мощность короткого замыкания

Нормальный рабочий режим в системах электроснабжения может внезапно прерваться в результате аварийной ситуации, в частности – короткого замыкания. Подобное состояние возникает из-за поврежденной изоляции элементов сети и электрооборудования. Для того чтобы эффективно противостоять этому явлению, следует хорошо знать его основные параметры, в том числе – мощность короткого замыкания. Этот параметр позволяет вычислить формула, используемая для вычислений тока КЗ.

Виды коротких замыканий

Понятие короткого замыкания заключается в непосредственном непреднамеренном соединении любых двух точек, расположенных на различных фазах, нулевом проводе или земле. Вариантов таких соединений может быть очень много, и все они не предусмотрены нормальными условиями эксплуатации установок, оборудования и сетей.

Среди основных видов КЗ следует отметить однофазное и трехфазное. В первом случае одна из фаз замыкается и взаимодействует с нулевым проводом или землей. Аналогичные явления наблюдаются во время обрывов проводов и одновременных замыканий двух разных фаз.

При трехфазном коротком замыкании хорошо заметна определенная симметрия, так как все фазы находятся в одних и тех же условиях. Поэтому токи в каждой из них будут одинаковыми. Другие виды КЗ относятся к несимметричным, поскольку фазы попадают в неодинаковые условия. В результате, токи и напряжения получаются с искаженной амплитудой, в зависимости от конкретных условий аварии.

Следует учесть, что при коротком замыкании происходит заметное снижение общего электрического сопротивления в системах. Это приводит к резкому увеличению токов во всех ветвях сетей и одновременному снижению напряжения на отдельных участках.

Среди основных причин, вызывающих аварийные ситуации подобного рода, можно выделить следующие:

  • Нарушенная изоляция в токоведущих частях. Причинами становится ее неудовлетворительное состояние, естественное старение, механические повреждения, постоянное воздействие перенапряжений.
  • Поврежденные опоры и провода ЛЭП из-за неудовлетворительного состояния, негативного влияния ураганных ветров, гололеда, раскачивания проводов и т.д.
  • Ошибочные действия персонала при выполнении различных операций. Например, разъединители отключаются, находясь под нагрузкой или включаются на заземление, оставленное по ошибке.

Причинами большинства повреждений являются конструктивные недостатки, несовершенное оборудование, ошибки, допущенные при проектировании и в процессе монтажа. Отрицательную роль играет использование оборудования в ненормативных режимах, неправильный и неудовлетворительный уход за ним.

Изменение тока в аварийном режиме

В аварийном режиме ток теряет свои постоянные характеристики и подвергается заметным изменениям. В самое первое мгновение он резко увеличивается, после чего происходит его затухание до определенной величины. Далее в работу вступает АРВ – автоматический регулятор возбуждения, под влиянием которого ток доходит до установленного уровня. Этот период известен под названием переходного процесса. Временные рамки наступившего короткого замыкания начинаются со времени изменений токового уровня и заканчиваются отсоединением КЗ.

Различные показатели тока на протяжении всего периода используются для исследований динамической и термической устойчивости аппаратуры, избрания нужных уставок релейной защиты.

В любой сети присутствуют различные типы сопротивлений индуктивного типа. В момент возникновения КЗ они создают определенные препятствия и не позволяют току мгновенно переменяться. То есть, изменения все-таки происходят, но не скачкообразно, а в нарастающем порядке от обычного показателя до аварийного.

Для того чтобы упростить расчетную и аналитическую работу, ток в период перехода условно разделяется на две составные части – апериодическую и периодическую. Первая компонента считается неизменной токовой составной частью. Она появляется в самом начале КЗ и довольно скоро снижается до нулевой отметки.

Периодическая токовая часть в начальном периоде получила такое же название тока КЗ. Он тоже называется сверхпереходным, поскольку для его вычислений замещающая схема дополняется сверхпереходным сопротивлением генераторной установки и сверхпереходной ЭДС. Данная величина применяется при назначении уставок или, когда требуется проверить восприимчивость к току релейной защиты.

По завершении переходного периода периодический ток становится постоянно действующим током короткого замыкания. В этот момент как раз затухает апериодическая компонента, и вступает в действие АРВ. Таким образом, полная величина тока КЗ будет состоять из суммы обеих компонент, действующих в каждый временной отрезок переходного процесса. Полный ток с максимальным мгновенным показателем известен, как ударный ток короткого замыкания, рассчитываемый при анализе динамической устойчивости электрооборудования.

Испытания и выбор нужных уставок для защитных устройств

Как уже было отмечено, выбор наиболее подходящих параметров релейной защиты и уставок осуществляется с использованием сверхпереходного или начального тока короткого замыкания. В первую очередь это связано с простотой расчетов данной величины.

Анализируя варианты защиты с быстродействием или небольшими выдержками времени, с использованием начального тока, специалисты обычно не принимают во внимание апериодическую составляющую. Использовать ее в расчетах не имеет смысла, поскольку затухание происходит очень быстро – в течение 0,05-0,2 секунды. Этот промежуток гораздо ниже времени срабатывания рассматриваемых защитных устройств.

Если питание сети осуществляется от мощной энергетической системы, ее генераторы оснащаются автоматическим регулятором возбуждения – АРВ, обеспечивающим поддержку на шинах постоянного напряжения. Когда на этом участке возникает КЗ, величина периодической токовой составляющей остается без изменений. Это дает возможность анализировать с помощью начального тока работу релейной защиты и ее поведение при любых задержках по времени.

В сетях, получающих питание от генераторных установок или систем с установленной ограниченной мощностью, при наступлении КЗ напряжение на шинах уже не будет постоянным, а подвергнется изменениям в широком диапазоне. Величины начального и установившегося токов не будут равны между собой. Теоретически, для расчетов защитных систем можно было бы воспользоваться установившимся током короткого замыкания. Однако сложности с его расчетами привели к тому, что на практике в большинстве случаев применяются показатели начального тока, не вызывая заметных погрешностей.

Подобная ситуация объясняется несколькими факторами. В первую очередь, это увеличенное переходное сопротивление в аварийном месте, оказывающее более сильное влияние на установившийся ток, нежели на начальный. Кроме того, нельзя исключить воздействие нагрузочных токов и других явлений, обычно не принимаемых во внимание при расчетах. В связи с этим, данные по установившемуся току довольно условные, что приводит к большой погрешности в конечном результате.

Мощность КЗ и начальный ток

При возникновении трехфазного КЗ, сопротивление и ЭДС в каждой фазе будут совпадать друг с другом, поскольку для всех фаз соблюдаются совершенно одинаковые условия. Такое замыкание называется симметричным, а его расчеты довольно простые. Вполне достаточно рассчитать одну фазу, а затем полученные результаты применить к двум остальным.

Расчет токов и напряжений в симметричных системах начинается со схемы замещения, составляемой с заменых ее отдельных компонентов соответствующими активными и реактивными сопротивлениями. Источники питания отмечаются с указанием ЭДС или напряжения на выходных клеммах. Трансформаторы, генераторы и другие устройства обладают сопротивлениями, определяемыми в их технических паспортах. Эти данные также вводятся в расчеты.

Особый порядок расчетов токов КЗ применяется при подключении к системам с неограниченной мощностью. В этом случае рассматриваются мощные источники питания, у которых напряжение на шинах не изменяется, вне зависимости от места возникновения короткого замыкания. Показатели сопротивления в таких системах условно принимаются за нулевое значение.

На практике систем с неограниченной мощностью просто не существует, тем не менее, они широко применяются при выполнении расчетов коротких замыканий. Понятие неограниченной мощности актуально лишь когда величина ее внутреннего сопротивления будет значительно ниже сопротивления внешних деталей и компонентов, расположенных между шиной и местом КЗ.

Системы питания с ограниченной мощностью обладают достаточно высоким сопротивлением в точке короткого замыкания. Поэтому его величина обязательно учитывается при расчетах тока КЗ. В некоторых случаях сопротивление системы определяет не ток, а мощность короткого замыкания, присутствующая на шинах подстанции и представляющая собой условную величину.

Негативные последствия коротких замыканий

При возникновении аварийной ситуации, связанной с коротким замыканием, заметно возрастает ток и снижается напряжение. Подобные изменения чаще всего приводят к опасным последствиям:

  • Повышение тока и активное сопротивление цепи способствуют выделению большого количества тепла в течение короткого времени. В совокупности с электрической дугой, высокая температура наносит большие повреждения окружающей обстановке. Чем выше ток и время его действия, тем больше размеры разрушений. Достигая неповрежденного оборудования, поражающие факторы наносят повреждения изоляции и токоведущим частям.
  • Пониженное напряжение вызывает сбой в работе потребителей. Особенно это касается асинхронных двигателей, у которых заметно снижается частота вращения. В некоторых случаях они просто остановятся и перестают работать. Перестают нормально функционировать системы освещения, при работе которых расходуется значительный объем электроэнергии.
  • Увеличенное скольжение приводит к росту потребления реактивной мощности асинхронными агрегатами. После отключения КЗ возникает ее дефицит, и напряжение в сети начинает лавинообразно снижаться, вплоть до полного прекращения работы.
  • Спад напряжения нарушает устойчивую параллельную работу генераторов. В результате, система питания распадается, электроснабжение потребителей прекращается.

мощность короткого замыкания — это… Что такое мощность короткого замыкания?

мощность короткого замыкания
short-circuit power

Большой англо-русский и русско-английский словарь. 2001.

  • мощность континуума
  • мощность котла

Смотреть что такое «мощность короткого замыкания» в других словарях:

  • мощность короткого замыкания — мощность короткого замыкания: Условная величина, равная увеличенному в  раз произведению тока трехфазного короткого замыкания на номинальное напряжение соответствующей электрической сети. [ГОСТ 26522 85, статья 68] Источник …   Словарь-справочник терминов нормативно-технической документации

  • мощность короткого замыкания — Условная величина, равна произведению √3IкU, где Iк значение тока короткого замыкания, U значение номинального междуфазного напряжения сети …   Политехнический терминологический толковый словарь

  • Мощность короткого замыкания контактной машины — 34. Мощность короткого замыкания контактной машины Мощность короткого замыкания Произведение номинального напряжения питающей сети и потребляемого тока контактной машины при коротком замыкании вторичного контура Источник: ГОСТ 22990 78: Машины… …   Словарь-справочник терминов нормативно-технической документации

  • мощность короткого замыкания Ssc — 3.9 мощность короткого замыкания Ssc: Величина мощности короткого замыкания трехфазной системы, рассчитываемая с учетом величин номинального напряжения системы Un и ее полного сопротивления Z в точке общего присоединения:… …   Словарь-справочник терминов нормативно-технической документации

  • потери короткого замыкания — Активная мощность, потребляемая трансформатором при номинальной частоте и расчетной температуре, устанавливающихся при протекании номинального тока (тока ответвления) через линейные выводы одной из обмоток при замкнутых накоротко выводах другой… …   Справочник технического переводчика

  • Потери короткого замыкания — 9.1.28. Потери короткого замыкания Потери к. з. Потери короткого замыкания пары обмоток для двухобмоточного и три значения потерь короткого замыкания для трех пар обмоток: высшего и низшего, высшего и среднего, среднего и низшего напряжений для… …   Словарь-справочник терминов нормативно-технической документации

  • НАПРЯЖЕНИЕ КОРОТКОГО ЗАМЫКАНИЯ — характеристич. величина трансформатора, представляющая собой напряжение, к рое нужно приложить к первичной обмотке, при условии, что вторичная обмотка замкнута накоротко и в ней протекает номин. ток. Н. к. з. составляет 5 12% от номин. напряжения …   Большой энциклопедический политехнический словарь

  • полное сопротивление короткого замыкания пары обмоток — Сопротивление, равное Z = R + jХ, Ом, определяемое при номинальной частоте и расчетной температуре между выводами одной из обмоток пары, при замкнутой накоротко другой обмотке этой пары и разомкнутых остальных обмотках при их наличии. Для… …   Справочник технического переводчика

  • Устройства защиты от сверхтоков (токов короткого замыкания) — 7.2.9. Устройства защиты от сверхтоков (токов короткого замыкания) Отключающая способность устройства (разрывная мощность) должна быть равна, по меньшей мере, току короткого замыкания, предполагаемому в месте установки устройства защиты. Там, где …   Словарь-справочник терминов нормативно-технической документации

  • мощность — 3.6 мощность (power): Мощность может быть выражена терминами «механическая мощность на валу у соединительной муфты турбины» (mechanical shaft power at the turbine coupling), «электрическая мощность турбогенератора» (electrical power of the… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52735-2007: Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением свыше 1 кВ — Терминология ГОСТ Р 52735 2007: Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением свыше 1 кВ оригинал документа: апериодическая составляющая тока короткого замыкания в электроустановке:… …   Словарь-справочник терминов нормативно-технической документации

что это такое, методика расчета

Ток короткого замыкания (short-circuit current) — это сверхток в электрической цепи при коротком замыкании (определение согласно ГОСТ 30331.1-2013). В некоторой нормативной документации используется сокращение «ток КЗ».

Харечко Ю.В. конкретизировал понятие «ток короткого замыкания» следующим образом [2]:

« Ток короткого замыкания представляет собой одну из разновидностей сверхтока. В отличие от тока перегрузки ток короткого замыкания обычно возникает в условиях повреждений, когда повреждается изоляция каких-либо проводящих частей, находящихся под разными электрическими потенциалами, и между ними возникает электрический контакт с пренебрежимо малым полным сопротивлением. В условиях повреждений также возможно замыкание частей, находящихся под напряжением, на открытые и сторонние проводящие части, которые в электроустановках зданий с типами заземления системы TN-S, TN-C-S и TN-C имеют электрическую связь с заземленной нейтралью источника питания. »

« Токи замыкания на землю в системах TN, протекающие по фазным проводникам и защитным или PEN-проводникам, будут сопоставимы с токами однофазных коротких замыканий, которые протекают по фазным проводникам и нейтральным или PEN-проводникам. »

Ток короткого замыкания может также возникнуть в нормальных условиях, когда отсутствуют повреждения, из-за ошибочного соединения проводящих частей с разными электрическими потенциалами, допущенного при монтаже и эксплуатации электроустановки здания. Если ошибочно выполнено электрическое соединение, например, фазного и нейтрального проводников какой-то электрической цепи, то при ее включении по обоим проводникам будет протекать ток однофазного короткого замыкания.

Особенности.

В своей книге [2] Харечко Ю.В. также отразил некоторые особенности, которые касаются понятия «ток короткого замыкания»:

« Величина тока короткого замыкания может многократно (на несколько порядков) превышать значение тока перегрузки и тем более значение номинального тока. Даже кратковременное его воздействие на какие-либо элементы электроустановки зданий может вызвать их механическое повреждение, перегрев, возгорание и, как следствие, явиться причиной пожара в здании. Поэтому электрооборудование в электроустановках зданий, прежде всего – проводники электрических цепей, должно быть надежно защищено от токов короткого замыкания с помощью устройств защиты от сверхтока – автоматических выключателей и плавких предохранителей. »

« Токи короткого замыкания определяют при проектировании электроустановок зданий и учитывают при выборе характеристик электрооборудования. Максимальные токи короткого замыкания всегда соотносят с предельными сверхтоками, которые способны отключить коммутационные устройства и устройства защиты от сверхтока, а также могут пропустить через себя некоторые виды электрооборудования. Минимальные токи короткого замыкания используют для проверки способности устройств защиты от сверхтока выполнить их отключение в течение нормируемого или предпочтительного промежутка времени. »

О методике расчета токов короткого замыкания.

Методики расчета токов короткого замыкания изложены в ГОСТ 28249-93, в стандартах и технических отчетах комплекса МЭК 60909. ГОСТ 28249-93 распространяется на трехфазные электроустановки переменного тока напряжением до 1 кВ, присоединенные к энергосистеме или к автономным источникам электрической энергии. Стандарт устанавливает общую методику расчета токов симметричных и несимметричных коротких замыканий в начальный и произвольный моменты времени с учетом параметров синхронных и асинхронных машин, трансформаторов, реакторов, кабельных и воздушных линий электропередачи, а также шинопроводов.

Комплекс МЭК 60909 применяют для расчета токов короткого замыкания в низковольтных и высоковольтных электроустановках переменного тока частотой 50 или 60 Гц. Однако, как указано в стандарте МЭК 60909-0, электрические системы с напряжением 550 кВ и более, имеющие протяженные линии электропередачи, требуют специального рассмотрения.

Список использованной литературы

  1. ГОСТ 30331.1-2013
  2. Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 4// Приложение к журналу «Библиотека инженера по охране труда». – 2015. – № 6. – 160 c.;

Короткое замыкание | Практическая электроника

Что такое короткое замыкание

Короткое замыкание (КЗ, англ. short curcuit) — незапланированное  соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.

Определение КЗ из “Элементарного учебника физики” Ландсберга

В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.

Как образуется короткое замыкание

Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:

где

I – сила тока в цепи, А

U – напряжение, В

R – сопротивление, Ом

Давайте рассмотрим вот такую схему

Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.

А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ

Что будет дальше, если мы замкнем контакты ключа SA?

В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока. Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления – меньшая сила тока. Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:

Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.

Закон Джоуля-Ленца

Согласно закону Джоуля-Ленца, тепловое действие тока прямо пропорционально квадрату силы тока на данном участке электрической цепи

где

Q – это количество теплоты, которое выделяется на сопротивлении нагрузки Rн . Выражается в Джоулях. 1 Джоуль = 1 Ватт х секунда.

I – сила тока в этой цепи, А

Rн – сопротивление нагрузки, Ом

t – период времени, в течение которого происходит выделение теплоты на нагрузке Rн , секунды

Это означает, что на проводе AB будет выделяться бешеное количество теплоты. Провод резко нагреется от температуры, а потом и сгорит. Все зависит от мощности источника питания.

То есть, если ток при коротком замыкании возрастет в 20 раз, то количество выделяющейся при этом теплоты — примерно в 400 раз! Вот почему бывшая еще мгновение назад мирной электроэнергия превращается в настоящее стихийное бедствие: горит проводка, расплавленный металл проводов поджигает находящиеся рядом предметы, возникают пожары. 

Существуют еще запланированные  и контролируемые КЗ, а также специальное замыкающее оборудование. Например, сварочные аппараты работают как раз на контролируемом КЗ, где требуется большая сила тока для плавки металла.

Основные причины короткого замыкания

Все многообразие причин возникновения коротких замыканий можно свести к следующим:

  • Нарушение изоляции
  • Внешние воздействия
  • Перегрузка сети

Нарушение изоляции вызывается как естественным износом, так и внешним вмешательством. Естественное старение элементов электросети ускоряется за счет длительного теплового воздействия тока (тепловое старение изоляции), агрессивных химических сред.

Внешние воздействия могут быть вызваны грызунами, насекомыми и другими животными. Сюда же относится и человеческий фактор. Это может быть “кривой” электромонтаж, либо несоблюдение техники электробезопасности.

Намного чаще короткое замыкание вызывается перегрузкой сети из-за подключения большого количества потребителей тока. Так, если совокупная мощность одновременно включенных в бытовую сеть электроприборов превышает допустимую нагрузку на проводку, с большой вероятностью произойдет короткое замыкание, так как сила тока в такой цепи начинает превышать допустимое значение. Такое явление можно часто наблюдать в домах со старой проводкой, где провода чаще всего алюминиевые и не рассчитаны на современные мощные электроприборы.

Ток короткого замыкания

Сверхток, образующийся в результате КЗ, называется током короткого замыкания. Как только произошло короткое замыкание в цепи, ток короткого замыкания достигает максимальных значений. После того, как провода начнут греться и плавиться, ток короткого замыкания идет на спад, так как сопротивление проводов в при нагреве возрастает.

Для источников ЭДС ток короткого замыкания может быть вычислен по формуле

где

Iкз – это ток короткого замыкания, А

E – ЭДС источника питания, В

Rвнутр. – внутреннее сопротивление источника ЭДС, Ом

Более подробно про ЭДС и внутреннее сопротивление читайте здесь.

Ниже на рисунке как раз изображен такой источник ЭДС  в виде автомобильного аккумулятора с замкнутыми клеммами

Внутреннее сопротивление автомобильного аккумулятора может достигать значений в доли Ома. Теперь представьте, какой ток короткого замыкания  будет течь через проводник, если закоротить им клеммы аккумулятора. Внутреннее сопротивление аккумулятора зависит от многих факторов. Возьмем среднее значение Rвнутр = 0,1 Ом. Тогда ток короткого замыкания будет равен Iкз =E/Rвнутр. = 12/0,1=120 Ампер. Это очень большое значение.

Виды коротких замыканий

В цепи постоянного тока

В этом случае КЗ бывает, как правило, между напряжением питания, которое чаще всего обозначается как “+”, и общим проводом схемы, который соединяют с “-“. Последствия такого КЗ зависят от мощности источника питания постоянного тока. Если в автомобиле голый плюсовой провод заденет корпус автомобиля, который соединяется с “минусом” аккумулятора, то провода начнут плавится и гореть как спички, при условии если не сработает предохранитель, либо вместо него уже стоит “жучок” – самопальный предохранитель. Ниже на фото вы можете увидеть результат такого КЗ.

В цепи переменного тока

Трехфазное замыкание

Это когда три фазных провода коротнули между собой.

Трехфазное на землю

Здесь все три фазы соединены между собой, да еще и замкнуты на землю

Двухфазное

В этом случае любые две фазы замкнуты между собой

Двухфазное на землю

Любые две фазы замкнуты между собой, да еще и замкнуты на землю

Однофазное на землю

Однофазное на ноль

Эти две ситуации чаще всего бывают в ваших квартирах и домах, так как к простым потребителям идет два провода: фаза и ноль.

В трехфазных сетях наиболее часто происходит однофазное замыкание на землю –  60-70% всех коротких замыканий. Двухфазные КЗ составляют 20-25%. Двойное замыкание фаз на землю происходит в электросетях с изолированной нейтралью и составляет 10-15% всех случаев. До 3-5% занимают трехфазные КЗ, при которых происходит нарушение изоляции между всеми тремя фазами.

В электрических двигателях короткое замыкание чаще всего возникает между обмотками двигателя и его корпусом.

Последствия короткого замыкания

Во время КЗ температура в зоне контакта возрастает до нескольких тысяч градусов. Помимо воспламенения изоляции, расплавления и механических повреждений выключателей и розеток и возгорания проводки, следствием замыкания может стать выход из строя компьютерного и телекоммуникационного оборудования и линий связи, которые находятся рядом, вследствие сильного электромагнитного воздействия.

Но падение напряжения и выход из строя оборудования — не самое опасное последствие. Нередко короткие замыкания становятся причиной разрушительных пожаров, зачастую с человеческими жертвами и огромными экономическими потерями.

Из-за удаленности и большого сопротивления до места замыкания защитное оборудование может не сработать. Бывают ситуации, когда ток недостаточен для срабатывания защиты и отключения напряжения, но в месте КЗ его вполне хватает для расплавления проводов и возникновения источников возгорания. Поэтому, токи коротких замыканий очень важны для расчетов аварийных режимов работы.

Меры, исключающие короткое замыкание

Еще на заре развития электротехники появились плавкие предохранители. Принцип действия подобной защиты очень прост: под влиянием теплового действия тока предохранитель разрушается, тем самым размыкая цепь. Предохранители наиболее часто используются в бытовых электросетях и бытовых электроприборах, электрическом оборудовании транспортных средств и промышленном электрооборудовании до 1000 В. Встречаются они и в цепях с высоковольтным оборудованием.

Вот такие предохранители используются в цепях с малыми токами

вот такие плавкие предохранители вы можете увидеть в автомобилях

А вот эти большие предохранители используются в промышленности, и они уже рассчитаны на очень большие значения токов

Более сложную конструкцию имеют автоматические выключатели, оснащенные электромагнитными и/или тепловыми датчиками. Ниже на фото однофазный автоматический выключатель, а справа – трехфазный

Их принцип действия основан на размыкании цепи при превышении допустимых значений силы тока.

В быту мы чаще всего сталкиваемся со следующими устройствами защиты электросети:

  • Плавкие предохранители (применяются в том числе в бытовых электроприборах).
  • Автоматические выключатели.
  • Стабилизаторы напряжения.
  • Устройства дифференциального тока.

Все вышеперечисленное защитное оборудование относится к устройствам вторичной защиты, действующим по инерционному принципу. На вводе бытовых электросетей наиболее часто устанавливаются автоматические защитные устройства, действующие по адаптивному принципу. Такие устройства можно увидеть возле счетчиков электроэнергии квартир, коттеджей, офисов.

В высоковольтных сетях защита чаще обеспечивается:

  • Устройствами релейной защиты и другим отключающим оборудованием.
  • Понижающими трансформаторами.
  • Распараллеливанием цепей.
  • Токоограничивающими реакторами.

Большинства коротких замыканий можно избежать, если устранить основные причины их возникновения: своевременно ремонтировать или заменять изношенное оборудование, исключить вредные воздействия человека. Не допускать неправильных действий при монтажных и ремонтных работах, соблюдать СНИПы и правила техники безопасности.

Токи короткого замыкания от электродвигателей

Токи двигателя в переходном процессе короткого замыкания. Ток к моменту отключения короткого замыкания

При расчете тока к.з. от двигателей для проверки аппаратов РУ или выбора релейной защиты периодическую составляющую тока от асинхронного двигателя можно определить по упрощенному выражению



где — расчетная постоянная времени периодического тока; — сверхпереходное индуктивное сопротивление, определяемое по кратности пускового тока; — активное сопротивление ротора при номинальном скольжении, приведенное к статору.
Апериодические составляющие тока синхронного и асинхронного двигателя при наибольшем ее начальном значении определяют по выражению

где постоянная времени апериодического тока; — активное сопротивление статорной цепи, включая внешнее сопротивление до точки к. з.
При отсутствии точных параметров значения и для асинхронного двигателя следует принимать по табл. 38-8.
Упрощенное выражение для периодической составляющей тока синхронного двигателя без учета форсйровки возбуждения имеет вид

где — сверхпереходный ток двигателя; — установившийся ток двигателя.
Синхронная э. д. с. примерно пропорциональна току возбуждения в предшествующем режиме:

Для определения периодического и апериодического токов двигателя к моменту отключения к. з. в выражениях токов и следует подставить t=τ — расчетное время отключения.
Периодический ток двигателя к моменту отключения:
— асинхронный двигатель;
-синхронный двигатель.
Апериодический ток двигателя к моменту отключения

Ток короткого замыкания от группы двигателей

На некоторых установках к шинам 3-10 кВ подключен ряд двигателей, в общем случае различных по типу и мощности. При оценке результирующего влияния всех двигателей на ток к. з. в месте повреждения целесообразно все двигатели или отдельные группы их заменить одним эквивалентным двигателем. При эквивалентировании должны быть выполнены условия; периодическая и апериодическая составляющие тока в момент t переходного процесса от группы двигателей и от эквивалентного двигателя должны быть равны друг другу с допустимой погрешностью. При малой продолжительности к. з. (до 0,2 с) можно эквивалентировать совместно группу из синхронных и асинхронных двигателей. В этом случае условия эквивалентирования группы из n двигателей будут:

Сверхпереходный ток эквивалентного двигателя определяют как сумму сверхпереходных токов отдельных двигателей:

Постоянные времени и эквивалентного двигателя следует определять как средневзвешенные величины в зависимости от сверхпереходных токов отдельных двигателей:

Периодическая и апериодическая составляющие тока к. з. от группы двигателей (или эквивалентного двигателя) равны:

При продолжительности к. з. более 0,2 с синхронные двигатели следует учитывать отдельно.

Учет токов короткого замыкания двигателей в установках собственных нужд 3-6 кВ тепловых электростанций

При выборе аппаратов и кабелей сети 3- 6 кВ собственных нужд тепловых станций с мощными блоками следует учитывать подпитку от двигателей с. н. 3-6 кВ. При определенной мощности генератора и пылеугольном топливе состав двигателей с. н. блока примерно одинаков. Это позволяет упростить учет токов к. з. от двигателей с. н.
Использованием изложенного выше метода эквивалентирования двигателей получены параметры эквивалентного двигателя, заменяющего группу двигателей, подключенных к секции с. н. одного блока. Если секция получает питание от трансформатора с расщепленной обмоткой, то учитываются двигатели одной .полусекции, связанные электрически.
В табл. 38-9 приведены параметры эквивалентного двигателя для с. н. блоков 100- 300 МВт. Даны значения ударного коэффициента и коэффициентов и , характеризующие периодический и апериодический токи двигателя к моменту отключения к. з.

Время отключения принято τ=0,1 с. Суммарная номинальная мощность двигателей и суммарный номинальный ток должны быть известны для конкретной станции. При отсутствии точных данных можно принимать номинальную мощность двигателей с. н. 6 кв блока равной 6-8% мощности блока.
По данным табл. 38-9 ток к. з. от двигателей с. н. секции блока определяют следующим образом.
Сверхпереходный ток

где — сумма, номинальных токов двигателей с. н. секции.
Ударный ток

Ток к моменту отключения при t=0,1 с (выключатели ВМП-10, ВМГ-133, ВЭМ-6): периодическая составляющая

апериодическая составляющая

Расчет тока короткого замыкания — журнал IAEI

Время считывания: 11 минут

Один из самых фундаментальных расчетов системы распределения электроэнергии — это вычисление доступного тока короткого замыкания. В выпуске журнала IAEI за сентябрь — октябрь 2012 г. была статья под названием «Переход к основам, максимальный ток повреждения», в которой говорилось на эту тему, но не рассматривались математические выкладки. С тех пор я получил много просьб заняться математикой. Я надеюсь, что эта статья удовлетворит любопытные умы подробностями о вычислении доступного тока короткого замыкания и предоставит некоторые уравнения для изучения студентом.

Доступный ток короткого замыкания

Максимальный доступный ток короткого замыкания является важным параметром для каждой системы распределения электроэнергии, поскольку он обеспечивает точку данных, необходимую для подтверждения того, что оборудование используется в пределах его номинальных характеристик, и что система работает в соответствии с ожиданиями. Имеющийся ток короткого замыкания также используется во многих других приложениях.

Национальный электротехнический кодекс требует эту точку данных для соблюдения таких разделов, как 110.9, рейтинг прерывания; 110.10. Полное сопротивление цепи, номинальные значения тока короткого замыкания и другие характеристики; и 110.24 Доступный ток повреждения. Независимо от того, являетесь ли вы проектировщиком, установщиком или инспектором, в какой-то момент вашей карьеры вы столкнетесь с расчетом доступного тока короткого замыкания. Понимание математики, лежащей в основе этого, и того, как используются расчетные токи короткого замыкания, может только расширить знания и понимание. Это также может помочь нам понять, что эти расчеты должен производить квалифицированный специалист.Итак, ради понимания, я предлагаю эту статью, чтобы помочь вам в этом.

Основы расчета тока короткого замыкания

Все, что вам нужно знать о вычислении токов короткого замыкания, вы изучили на курсах 101, тригонометрии и базовой математике. На рисунке 1 показана простая однолинейная схема, которая вполне может быть вашим основным служебным входом для коммерческой или промышленной установки.

Рисунок 1. Однолинейная диаграмма

Рисунок 2 — это основная принципиальная схема того, что представлено на Рисунке 1, и которая будет использоваться для расчета доступного тока короткого замыкания в любой точке приведенной выше простой однолинейной диаграммы.Инженеры назовут то, что вы видите на Рисунке 2, диаграммой импеданса, поскольку она в основном преобразует каждый компонент на Рисунке 1 выше в значения импеданса. Для тех из вас, кто знаком со схемой 101, то, что вы видите ниже, когда все импедансы сложены вместе, представляет собой «эквивалентную схему Теванина», которая включает в себя импеданс и источник напряжения. Эта базовая схема будет использоваться в этой статье.

Рис. 2. Диаграмма импеданса (схема)

Для расчетов и упрощения нашей работы с этим документом необходимо сделать допущения.

Предположения для трансформатора, который будет использоваться как часть примера для этой статьи, будут включать следующие. Эта информация должна быть доступна при чтении паспортной таблички трансформатора.

Трансформатор кВА 1500
Первичное напряжение 4160 В
Вторичное напряжение 480 В
% Полное сопротивление 5,75%

Предполагается для тока короткого замыкания, доступного для электросети. Для этого упражнения будет использовано 50 000 ампер.Перед проведением исследования с коммунальным предприятием связываются для получения этой информации. Они могут обеспечить доступный ток короткого замыкания одним из нескольких различных способов. Самыми простыми и, вероятно, наиболее заметными данными от электросети будут доступный ток короткого замыкания в кА. Некоторые утилиты могут вместо этого предоставлять данные в виде MVA короткого замыкания. В этой статье будут представлены уравнения для обеих форм ввода, но с учетом доступного тока короткого замыкания 50 кА.

Что касается импеданса проводника, следующие расчеты будут игнорировать сопротивление проводника и использовать только реактивное сопротивление.Это сделает две вещи для этой статьи. Во-первых, это приведет к более высокому току повреждения, чем можно было бы рассчитать, если бы мы приняли во внимание как сопротивление, так и реактивное сопротивление. Во-вторых, это упростит математику. В последнем разделе этой статьи будут представлены результаты анализа, включающие сопротивление и реактивное сопротивление проводников и электросети. Используемые методы отражают методы, используемые в таких программах, как SKM Systems Analysis A-Fault.

Эта статья также не предполагает участия двигателя.Максимальный доступный ток короткого замыкания должен включать все составляющие короткого замыкания. Мы не включаем этот вклад в эти усилия для простоты.

Основные расчеты трансформатора

Самым первым шагом этого процесса является расчет ампер полной нагрузки (FLA) для трансформатора. Еще один базовый расчет, который электротехнику придется выполнять в какой-то момент своей карьеры, и который некоторые выполняют много раз в день. Уравнения для расчета FLA приведены ниже:

FLA Вторичный = кВА
(√3) × (кВсек)
FLA Вторичный = 1500
[(√3) × (0.480)] = 1804 А

Этот трансформатор на 1500 кВА имеет FLA вторичной обмотки 1804 ампер. Этот параметр необходим для выбора вторичных проводов для этого трансформатора. Основываясь на этом FLA и использовании таблицы 310.15 (B) (16) из NEC 2014, проводники, используемые на вторичной обмотке трансформатора, будут иметь количество проводников 5-500 MCM на фазу.

Расчет тока короткого замыкания на вторичной обмотке главного трансформатора

Есть два подхода к вычислению доступного тока короткого замыкания на вторичной обмотке трансформатора.Мы можем рассчитать максимальное количество, которое трансформатор пропустит, как если бы объект выработки электроэнергии был подключен непосредственно к линейной стороне трансформатора, или мы можем рассчитать доступный ток повреждения с учетом предоставленного доступного тока повреждения от электросети. Первый подход, который приводит к максимальной величине тока повреждения, который пропускает трансформатор, называется расчетом «бесконечной шины». Схема, показанная на рисунке 2, может быть перерисована, чтобы включить нулевой импеданс для электросети, что снизит общий импеданс цепи и, таким образом, увеличит значение расчетного тока короткого замыкания.На рис. 3 будет показан максимально допустимый ток короткого замыкания, который может подавать трансформатор.

Рисунок 3. Эквивалентная схема бесконечной шины

На рис. 3 показано только полное сопротивление трансформатора. Уравнение для расчета максимального доступного тока короткого замыкания, который может обеспечить трансформатор, выглядит следующим образом:

Isc = (трансформатор кВА) × 100
(√3) × (вторичный кВ) × (трансформатор% Z)

Используя информацию, указанную выше для примера трансформатора 1500 кВА для этого примера, максимальный доступный ток повреждения, который пропускает этот конкретный трансформатор, составляет 31 378 ампер и рассчитывается следующим образом:

Isc = 1500 × 100
(√3) × (0.480) × (5,75) = 31 378 ампер

Это говорит нам о том, что вторичная обмотка трансформатора не может видеть больше тока повреждения, чем то, что мы рассчитали. На стороне электросети НЕТ изменений, которые могут повлиять на этот доступный ток короткого замыкания до точки, где он будет превышать 31 378 ампер. Единственный способ получить более 31 378 ампер, если мы изменим трансформатор, и новый трансформатор, который предположительно будет таким же по всем другим характеристикам, будет иметь другой% импеданса.На рисунке 4 представлена ​​таблица, которая включает результаты изменения импеданса исследуемого трансформатора +/- 20% с шагом 5% по сравнению со значением импеданса 5,75%, используемым в этом примере. Это показывает, как изменение импеданса трансформатора повлияет на максимально допустимый ток короткого замыкания, который он может пропустить.

Как показано на рисунке 4, изменение трансформатора и изменение его импеданса может оказать значительное влияние на систему. Если бы я рискнул предположить, я бы сказал, что в большинстве случаев коммунальное предприятие, меняющее служебный трансформатор, будет признано предприятием.Задача состоит в том, чтобы владелец объекта или постоянные сотрудники понимали, как это изменение может повлиять на их систему распределения электроэнергии. При внесении изменений следует обновить метки, подобные тем, которые включены в Раздел 110.24 NEC .

Рис. 4. Влияние изменения импеданса (+ / — 20%) трансформатора на 1500 кВА

В этом расчете не учитывается полное сопротивление источника электросети и не учитываются проводники на стороне нагрузки. Давайте теперь исследуем влияние добавления в сеть доступного тока короткого замыкания.

Расчет тока короткого замыкания с учетом тока повреждения сети

Как и в большинстве ситуаций, мы выбираем консервативные ярлыки, консервативные в отношении безопасности, пока не возникнут ситуации, требующие углубления в детали. Вышеупомянутый ярлык для расчета тока повреждения является консервативным, поскольку он НЕ учитывает доступный ток повреждения сети, дающий максимальное значение. При рассмотрении прерывания и других аналогичных номиналов устройства и оборудование, которые могут выдерживать это консервативное значение тока короткого замыкания, не нуждаются в дополнительных исследованиях.Когда новое или существующее оборудование не может справиться с этим консервативно высоким доступным током короткого замыкания, может быть проведен дальнейший подробный анализ или оборудование может быть заменено или рассчитано соответствующим образом. Далее будет рассмотрен вопрос о добавлении полезности при наличии доступного тока короткого замыкания. В частности, 50 кА доступны в коммунальном хозяйстве. Это продемонстрирует, что таким образом можно уменьшить рассчитанные 31 378 ампер.

Ниже приведены два уравнения, которые относятся к наличию кА и наличию MVA короткого замыкания.В этом примере мы будем использовать приведенное ниже уравнение, в котором предполагается, что электросеть предоставила вам доступный ток короткого замыкания в кА.

Принципиальная схема теперь выглядит так, как показано на рисунке 5.

Рис. 5. Принципиальная электрическая схема, которая включает импеданс трансформатора и сетевого источника.

Первым необходимым шагом является преобразование предоставленной электросетью доступной информации о токе повреждения (50 кА) в полное сопротивление источника.
Если кА предоставляется от электросети:

% Z Утилита = КВА Трансформатор × 100
(Isc энергосистема) × (√3) × (кВ первичная)

При коротком замыкании MVA предоставляется коммунальным предприятием:

% Z Утилита = Трансформатор кВА
Короткое замыкание кВА инженерных сетей

Для заданного доступного тока короткого замыкания в 50 кА,% Z сети рассчитывается следующим образом

% Z Утилита = 1500 × 100
(50 000) × (√3) × (4.160) = 0,420

На рисунке 6 показаны значения импеданса источника электросети для различных токов короткого замыкания, доступных для этого конкретного примера. Как отмечалось выше, трансформатор кВА и первичное напряжение будут играть ключевую роль в этих значениях.

Рисунок 6. Значения импеданса сетевого источника для различных уровней доступного тока короткого замыкания в сети

Уравнение для расчета доступного тока короткого замыкания на вторичной обмотке трансформатора, которое включает импеданс электросети, выглядит следующим образом:

Isc = (трансформатор, кВА) × 100)
(√3) × (Вторичный кВ) × [(% Zтрансформатор) + (% Z полезность)]

Добавляя все известные переменные, новый доступный ток повреждения рассчитывается следующим образом:

Isc = 1500 × 100
(√3) × (0.480) × [(5,75) + (0,4164)] = 29 259 А

Если мы сравним расчет бесконечной шины и тот, который включал импеданс источника электросети (доступный ток короткого замыкания 50 000 ампер), мы увидим, что доступный ток короткого замыкания упал с 31 378 ампер до 29 259 ампер, что на 6,8% меньше. в доступном токе короткого замыкания (2119 ампер).

Влияние изменяющегося тока короткого замыкания, доступного в электросети, показано на рисунке 7. В этой таблице показано, как изменяется расчетный доступный ток короткого замыкания при изменении значений тока повреждения источника электросети.Доступный ток короткого замыкания 50 кА используется в качестве значения, с которым сравниваются изменения. Интересно видеть, что увеличение доступного тока короткого замыкания от электросети, если исходная точка составляет 50 кА, не имеет такого большого влияния, как можно было бы подумать. Например, удвоение доступного тока повреждения в электросети с 50 кА до 100 кА увеличивает доступный ток повреждения вторичной обмотки трансформатора только на 3%, или на 1022 ампер. Для большинства устройств защиты от сверхтоков это изменение не должно быть значительным.Я слышал, что некоторые говорят, что мы не должны маркировать оборудование входа для обслуживания, потому что коммунальное предприятие может вносить изменения в коммутацию на стороне линии, что повлияет на номер на этикетке. Рисунок 7 — хороший пример, который показывает, что даже если бесконечная шина не использовалась, изменения на стороне электросети не имеют такого значительного влияния на ток короткого замыкания, как можно было бы подумать.

Рис. 7. Влияние различных токов короткого замыкания, доступных в электросети, на систему распределения электроэнергии.

Напомним, где мы находимся в этом обсуждении, доступные токи замыкания показаны на рисунке 7a.

Следующее, что мы должны рассмотреть, — это провод на вторичной обмотке трансформатора. Это еще больше снизит доступный ток короткого замыкания.

Расчет — после длины проводника

Проводники могут оказывать значительное влияние на доступный ток короткого замыкания. Давайте продолжим анализ этого примера трансформатора 1500 кВА, добавив параллельные проводники 500MCM на стороне нагрузки.

Эквивалентная схема уже представлена ​​как часть рисунка 1.Теперь давайте рассмотрим влияние длины проводника на доступный ток короткого замыкания. Нам понадобится следующее уравнение:

Данные, необходимые для этого примера, взяты из национального электрического кодекса . Из Таблицы 9 NEC 2014 для проводника 500 MCM в стальном трубопроводе найдено, что Xl (реактивное сопротивление) составляет 0,048 Ом / 1000 футов. В этом примере, как указывалось ранее, мы используем только значение реактивного сопротивления, которое приведет к немного более высоким значениям тока короткого замыкания и сделает математические вычисления для этой публикации более приемлемыми.Для трансформатора мощностью 1500 кВА с током полной нагрузки 1804 нам потребуется 5-500 мкс проводов, включенных параллельно на каждую фазу. Расчет производится следующим образом:


уравнение для расчета доступного тока короткого замыкания выглядит следующим образом:

Подставив все известные переменные, мы вычислили ISC следующим образом:

Тот же расчет, предполагающий бесконечную шину без полного сопротивления сети, выглядит следующим образом:

Подводя итог еще раз,

Как можно увидеть здесь, включение дополнительных деталей снижает доступный ток короткого замыкания.В этом случае ток короткого замыкания был снижен с 31 378 ампер до 26 566 ампер, примерно на 15,3%.

Рисунок 8. Сводка расчетов и сравнение с другими инструментами для расчета доступного тока короткого замыкания.

Окончательная калибровка

Итак, мы прошли через расчет доступного тока короткого замыкания для служебного входного оборудования. Мы показали, как короткие пути приводят к консервативным доступным токам короткого замыкания, которые в целях оценки отключающих характеристик и / или оценок SCCR обеспечивают коэффициент безопасности для конструкции.Мы также показали, как можно снизить имеющиеся токи короткого замыкания с помощью более подробного анализа, но это требует больше усилий и знаний. Давайте посмотрим на приведенный выше пример и рассмотрим другие инструменты, которые могут быть доступны.

В нашем распоряжении есть различные инструменты, когда мы рассматриваем возможность расчета доступного тока короткого замыкания. Некоторые из них довольно дороги и требуют использования обученных специалистов. К ним относятся такие программные приложения, как инструменты системного анализа SKM. Эти приложения действительно являются достаточно подробными и предоставляют очень подробные отчеты.Существуют также бесплатные инструменты, такие как калькулятор короткого замыкания Eaton Bussmann FC2. Рисунок 8 суммирует то, что мы сделали выше, И дает сравнение с SKM и с приложением Bussmann FC2. Калькулятор Bussmann FC2 является бесплатным и доступен в Интернете или для любого IPHONE или ANDROID через App Store любого продукта. Посетите www.cooperbussmann.com/fc2 для получения дополнительной информации. Вы заметите, что результат программного обеспечения SKM использует как реальную, так и реактивную составляющие проводника. Значения импеданса были взяты прямо из Таблицы 9 в NEC 2014 для медных проводников в стальном трубопроводе.

Опять же, ни один из примеров, показанных выше и включенных в эту статью, не учитывает вклад двигателя. Это было упражнение, призванное дать некоторую основу для обсуждения токов короткого замыкания, и поэтому простота была нашим другом. Вклад двигателя может быть очень важным для этих расчетов. С точки зрения математики и / или системной схемы, когда вы включаете вклад двигателя, импеданс параллелен импедансу сетевого источника, импедансу трансформатора и импедансу проводника.Это снижает общий импеданс в цепи, показанной на рисунке 2, и, следовательно, увеличивает расчетный ток короткого замыкания. Сброс остается на усмотрение учащегося. (Я всегда хотел это сказать.)

Заключительное слово

Доступный ток короткого замыкания — очень важный параметр, который необходимо учитывать при проектировании, установке и проверке. На рынке доступны инструменты, которые помогают рассчитать доступный ток короткого замыкания. Используйте эти ресурсы для удовлетворения требований NEC и приложений к продукту.

Как всегда, поставьте безопасность на первое место в списке и убедитесь, что вы и окружающие доживете до следующего дня.

Простой метод расчета основных токов короткого замыкания

Чтобы глубже изучить простой способ расчета тока короткого замыкания, мы должны сначала разработать нашу базу знаний по основам анализа короткого замыкания.

«Анализ тока короткого замыкания используется для определения величины тока короткого замыкания, который система способна производить, и сравнения величины величины короткого замыкания с номинальной мощностью отключения устройств защиты от сверхтоков (OCPD).»

Мы всегда должны помнить, что номинальный ток отключения не совпадает с номинальным током короткого замыкания (SCCR). Если вы хотите узнать об этом больше, расскажите нам в комментариях, и мы обсудим это в другом блоге.

В предыдущем блоге мы кратко познакомили вас с «Анализ короткого замыкания» . Если вы еще не проверяли его, прочтите этот блог, а затем вернитесь к этому!

Основная электрическая теорема гласит, что ток короткого замыкания на самом деле зависит от двух наиболее важных параметров:

  1. Полный импеданс от источника до точки повреждения
  2. Номинальное напряжение системы

С помощью основной формулы мы можем легко рассчитать ток короткого замыкания в месте повреждения, и с помощью этих значений мы можем проанализировать систему и установить защитные устройства и защитить объект от любого серьезного повреждения или повреждения.

I_fault = V / Z

Существует множество методов расчета токов короткого замыкания, однако мы дадим вам основное представление о том, как можно рассчитать токи короткого замыкания в простой распределительной системе переменного тока.

Пожалуйста, рассмотрите однолинейную схему (SLD) с электросетью, трансформатором и устройством защиты от перегрузки по току (OCPD) с определенным номиналом отключения по току короткого замыкания.

Давайте сначала поговорим об источнике питания.Обычно мы рассматриваем источник питания или сеть как бесконечную емкость или «Источник имеет бесконечную шину».

Все, что было сказано, это то, что напряжение источника не имеет внутреннего сопротивления. В результате простой расчет становится очень консервативным. Поскольку предполагается, что источник не имеет собственного импеданса, соответствующий ток короткого замыкания будет наихудшим сценарием.

Теперь следующее, что мы видим на нашей однолинейной схеме, — это трансформатор. Импеданс, определяющий величину тока короткого замыкания на вторичной обмотке трансформатора, состоит из двух отдельных импедансов:

«Собственный импеданс плюс импеданс кабеля, подключенного между электросетью и трансформатором.Собственный импеданс трансформатора — это величина его сопротивления протеканию через него тока короткого замыкания ».

Все трансформаторы имеют импеданс, который обычно выражается в процентах от напряжения. Это процент от нормального номинального первичного напряжения, которое должно быть приложено к трансформатору, чтобы вызвать протекание номинального тока полной нагрузки по короткозамкнутой вторичной обмотке.

Что это значит? а почему важен простой расчет?

Мы только что запустили нашу серию видеоблогов Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по проектированию энергосистем.Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, и получите от этого пользу.

Предположим, что если у нас есть понижающий трансформатор 480 В / 220 В с импедансом 5%, это означает, что 5% от 480 В, т.е. 24 В, приложенные к его первичной стороне, вызовут ток номинальной нагрузки во вторичной обмотке. .

Если 5% первичного напряжения вызовут такой ток, то 100% первичного напряжения вызовут 20-кратный (100 деленный на 5) вторичный ток с номинальной полной нагрузкой, протекающий через короткое замыкание на его вторичных выводах.

Очевидно, что чем ниже полное сопротивление трансформатора с заданным номиналом кВА, тем большую величину тока короткого замыкания он может выдать.

Теперь, когда мы понимаем основные переменные, которые определяют токи короткого замыкания, давайте сделаем простой расчет для той же однолинейной схемы, которая упоминалась выше.

Предположим, у нас есть простая система распределения, состоящая из следующих компонентов:

  • Энергосистема, обеспечивающая питание системы
  • Понижающий трансформатор для преобразования уровня напряжения
  • Трансформатор тока для понижения уровня тока, который позже подается на реле
  • Реле для защиты, которое подает сигнал на автоматический выключатель при любом ненормальном состоянии.Ознакомьтесь с курсом Основы защиты энергосистемы Курс, в котором мы кратко обсудили «Типы защитных реле и требования к конструкции».

Считайте, что на главной шине произошло короткое замыкание. Для ясности и упрощения предположим, что сопротивление линии между вторичной обмоткой трансформатора и местом повреждения пренебрежимо мало.

Во время неисправности трансформатор тока определяет величину тока, протекающего через вторичную обмотку трансформатора, что приводит к немедленному срабатыванию реле максимального тока (OC Relay) и подает сигнал на подключенный автоматический выключатель, который срабатывает. со временем разомкнуть его контакты и уберечь рабочий персонал от травм.Таким образом будет защищена система, подключенная к выходу этой шины.

Итак, для правильной работы всех этих защитных устройств нам необходимо определить 2 вещи.

  1. Определить вторичный ток полной нагрузки (Isec)
  2. Определите значение тока короткого замыкания на вторичной стороне трансформатора (Isc)

Для этого мы будем использовать простую формулу. Предположим, сеть имеет номинальную мощность 100 кВА и значение импеданса 2.5%, и мы уже знаем, что 220 вольт доступны на вторичной обмотке трансформатора. Итак,

I_sec = (номинальная мощность источника в кВА) / (напряжение вторичной обмотки трансформатора)

Подставив значения, мы получим;

I_sec = 100000/220

Теперь мы рассчитаем значение тока короткого замыкания на вторичной обмотке трансформатора, это поможет защитному устройству действовать соответствующим образом.

I_sc = ((100%) / ((Импеданс трансформатора (Z%))) * I_sec

Подставив значения, мы получим;

I_sc = (100/2.5) * 454,54

I_sc = 18181,6 А

Ор, 18,18 КА. Это означает, что защитное устройство, которое мы будем использовать, должно иметь мощность короткого замыкания более 20 кА. Это поможет устройству защиты от перегрузки по току (OCPD) безопасно прервать это количество тока короткого замыкания.

В этом блоге вы получили общее представление о том, как рассчитать ток короткого замыкания для малой энергосистемы.

В следующем блоге (посвященном короткому замыканию) мы углубимся и объясним каждый аспект расчета токов короткого замыкания в однофазной и трехфазной энергосистеме.

Надеюсь, вам понравится этот блог, и вы также будете рекомендовать его другим. Если у вас есть вопросы, задавайте их в комментариях.

Расчет тока короткого замыкания любого трансформатора всего за 3 шага

Рассчитайте ток короткого замыкания любого трансформатора всего за 3 шага https://www.theelectricalguy.in/wp-content/uploads/2020/05/rt-circuit-current-of-any-transformer-in-just-3-steps-theelectricalguy-YABHOrP8mr0-1024×576.jpg 1024 576 Гаурав Дж. Гаурав Дж. https://secure.gravatar.com/avatar/87a2d2e0182faacb2e003da0504ad293?s=96&d=mm&r=g

В этом руководстве я объясню три простых шага для расчета тока короткого замыкания любого трансформатора. Это также поможет вам определить номинал автоматического выключателя.Итак, начнем !

Шаг 1

Получите следующую информацию
  • Номинальная мощность трансформатора кВА / МВА (для понимания предположим, что это 100 кВА)
  • Вторичное напряжение (при условии 440 вольт)
  • % Импеданс (Вы получите его из паспортной таблички трансформатора, для нашего примера предположим, что 5% )

Шаг 2

Расчет тока полной нагрузки

Для трехфазного трансформатора используйте следующую формулу

Для однофазного трансформатора используйте следующую формулу

Рассчитаем ток полной нагрузки в нашем примере.

Шаг 3

Рассчитать ток короткого замыкания

Теперь рассчитаем фактический ток короткого замыкания по следующей формуле.

Итак, это наш ток короткого замыкания. Это поможет вам определиться с номиналом автоматического выключателя. В этом случае вам понадобится выключатель с отключающей способностью по току короткого замыкания более 2624,1 А или 2,6 кА.

Вы также можете рассчитать первичный ток любого трансформатора всего за 2 шага, чтобы узнать больше, нажмите здесь.

Расчет тока короткого замыкания — CAPSIM

Исследования электросетей

Исследования энергосистем

Моделирование


Вы можете связаться со специалистом CAPSIM по этому направлению:
— По электронной почте
— По телефону: +33 (0) 4 42 63 61 18
Справочная информация:
В любой точке электросети существует риск возникновения короткого замыкания.Такие короткие замыкания немедленно вызывают циркуляцию больших токов, исходящих как от источников питания, так и от некоторых нагрузок (повторная инжекция). Они могут привести к серьезным авариям на промышленных объектах (травмы, пожар и т. Д.).
Модификация сети электроснабжения (передающая или распределительная сеть), электроустановки или рабочих конфигураций может привести к изменению уровней тока короткого замыкания.

Требование:
Поэтому важно рассчитать значения токов короткого замыкания, которые могут возникнуть в каждой точке сети и при всех возможных конфигурациях, чтобы иметь возможность определить размеры распределительного оборудования (кабели, трансформаторы, панели). , так далее.) и установить настройки устройств защиты.

Принцип обслуживания:
Capsim выполняет расчеты тока короткого замыкания с помощью численного моделирования, моделируя всю соответствующую сеть и учитывая различные влияющие параметры: мощность короткого замыкания источника питания, нормальные / аварийные режимы, коэффициент нагрузки, повторное включение нагрузки от двигатели, конфигурации питания и т. д. Эти расчеты выполняются в соответствии с применимыми нормами и стандартами, в частности, IEC 60909, IEC, IEC 61363 NFC 13200, UTE C13-205, ANSI C37 013.
Эти исследования выполняются на сетях напряжения, от уровня LV до HVB, и, возможно, включая автономные генераторы.

Результат:
Все характеристики короткого замыкания рассчитаны:
— IP: пиковый асимметричный ток
— Ik: начальный симметричный ток, действующее значение
— Ik: длительный ток, эффективное значение
— Ith: эквивалентный тепловой ток
— Ib: ток отключения
— Idc: асимметричный компонент
Данные используются для определения размеров оборудования, а также для настройки устройств защиты (см. Исследование селективности)

Соответствующее достижение:


Расчет короткого замыкания для сети

Расчет короткого замыкания с трансформатором и сопротивление источника — дуговая вспышка и электроэнергетика, обучение

Расчеты короткого замыкания — импеданс трансформатора и источника

Расчет короткого замыкания бесконечной шины можно использовать для определения максимального тока короткого замыкания на вторичной стороне трансформатора, используя только данные с паспортной таблички трансформатора.Это хороший (и простой) метод определения МАКСИМАЛЬНОГО тока короткого замыкания через трансформатор наихудшего случая, поскольку он игнорирует импеданс источника / электросети. Игнорирование импеданса источника означает, что оно предполагается равным нулю, а напряжение, деленное на ноль, равно бесконечности, отсюда часто используется термин «бесконечная шина» или «бесконечный источник».

В статье my Infinite Bus Article на сайте brainfiller.com метод бесконечной шины проиллюстрирован для расчета максимального тока короткого замыкания наихудшего случая на 480 В вторичной обмотке трансформатора на 1500 кВА.Использование метода «бесконечной шины» или «наихудшего случая» показало доступный ток короткого замыкания 31 374 А.

Однако что, если вы оцениваете адекватность панели на вторичной обмотке с номиналом короткого замыкания 30 000 ампер? При подходе с бесконечной шиной это будет означать, что панель имеет неадекватный рейтинг прерывания. Но так ли это на самом деле? Это могло быть дорогостоящим выводом, основанным на предполагаемых (бесконечных первичных) данных.

Еще одна проблема, связанная с использованием подхода с бесконечной шиной, заключается в том, следует ли использовать расчеты короткого замыкания для исследования вспышки дуги.Это то, что я обсуждаю в моем классе обучения вспышке дуги об использовании IEEE 1584 для выполнения расчетов вспышки дуги.

При исследовании вспышки дуги более высокий ток короткого замыкания может привести к наихудшему случаю падающей энергии, но это не всегда так. Возможно, что более низкий ток короткого замыкания может привести к увеличению времени работы защитного устройства, что приведет к увеличению продолжительности вспышки дуги и увеличению общей падающей энергии.

Чтобы обеспечить более точные расчеты короткого замыкания, необходимо включить импеданс источника.Давайте посмотрим, как учесть влияние фактического тока короткого замыкания источника и эквивалентного импеданса источника. Чтобы учесть полное сопротивление источника, можно использовать ту же формулу, которая использовалась для решения с бесконечной шиной, но необходимо добавить еще несколько шагов.

Формула бесконечной шины основана на импедансе трансформатора, как показано ниже. Он игнорирует импеданс источника:

SCA вторичный = x (FLA вторичный x 100) / (% Z трансформатор )

Импеданс источника и трансформатора

Фактический ток короткого замыкания, доступный на вторичных выводах трансформатора, зависит не только от импеданса трансформатора, но и от того, насколько силен источник на первичной обмотке трансформатора.Трансформатор, подключенный к сильному источнику, например, близко к основной подстанции, будет иметь больший вторичный ток короткого замыкания, чем если бы тот же трансформатор был подключен к слабому источнику, например, к длинной распределительной линии в сельской местности.

Чтобы учесть силу / слабость импеданса источника, нам нужно только добавить одну дополнительную переменную,% Z source к предыдущему уравнению.

Новое уравнение будет:

SCA вторичный = (FLA вторичный x 100) / (% Z трансформатор +% Z источник )

При добавлении источника% Z к трансформатору% Z включается сила источника.Более сильный источник будет иметь меньшее значение для% Z источника , а более слабый источник будет иметь большее значение.

Процедура расчета аналогична расчету бесконечной шины, но теперь мы должны добавить дополнительный шаг расчета полного сопротивления источника:

Шаг 1 — Для расчета эквивалентного полного сопротивления источника:

% Z источник = (кВА трансформатор / кВА короткое замыкание ) x 100

где:

кВА короткое замыкание = кВ L-L x Sqrt (3) x SCA первичный

Это кажется достаточно простым, но где взять первичный SCA ? Отличный вопрос! Если трансформатор планируется подключить к системе энергоснабжения, обычно источником этой информации является энергокомпания.Лучше всего начать с определения того, кто является представителем учетной записи коммунального предприятия, и спросить, могут ли они либо предоставить вам информацию, либо направить вас к тому, кто может располагать этой информацией.

Если трансформатор не подключен напрямую к электросети, но находится дальше по течению в системе распределения электроэнергии, вам потребуется выполнить расчеты короткого замыкания для восходящей части системы. Это означает, что кому-то (возможно, вам) придется выполнить расчеты короткого замыкания от электросети до системы распределения электроэнергии.

Если вы не можете определить какую-либо из этой информации и беспокоитесь о наихудшем случае короткого замыкания наивысшей величины, вы всегда можете по умолчанию использовать более простой и обычно более консервативный расчет бесконечной шины.

Будьте осторожны! Бесконечные вычисления шины хороши для оценки максимального тока короткого замыкания через трансформатор наихудшего случая (без учета вклада двигателя и допусков импеданса для трансформаторов, еще не поставленных / испытанных). 2 / МВА трансформатор

kV L-L2 в числителе и знаменателе компенсируют друг друга, и у вас остается:

% Z источник = [(1 / MVA короткое замыкание ) / (1 / MVA трансформатор )] x 100

, который становится:

% Z источник = (трансформатор MVA / MVA короткое замыкание ) x 100

или в нашем случае мы используем Kilo вместо Mega, поэтому наши числа масштабируются на 1000:

% Z источник = (кВА трансформатор / кВА короткое замыкание ) x 100

Шаг 2 — Рассчитайте номинальный вторичный ток полной нагрузки трансформатора:

FLA вторичный = кВА 3 фазы / (кВ L-L x Sqrt (3))

Шаг 3 — Рассчитайте ток короткого замыкания на вторичной шине трансформатора, но на этот раз мы используем импеданс трансформатора И импеданс источника.

SCA вторичный = (FLA вторичный x 100) / (% Z трансформатор +% Z источник )

Вот пример расчета :

Допустим, у нас есть трансформатор мощностью 1500 кВА с вторичным напряжением 480Y / 277В, первичным напряжением 13,2 кВ L-L и импедансом 5,75%. Предположим, коммунальное предприятие сообщает нам, что их максимальный ток короткого замыкания на первичной обмотке трансформатора составляет 6740 А при 13.2 кВ.

Шаг 1 — Расчет импеданса источника:

кВА короткое замыкание = 6740 А x 13,2 кВ L-L x sqrt (3)

кВА короткое замыкание = 154097 кВА

(некоторые коммунальные предприятия могут называть это 154 МВА)

% Z источник = (1500 кВА / 154097 кВА) x 100

% Z источник = 0,97%

Шаг 2 — Как и в прошлом месяце, рассчитайте номинальный вторичный ток полной нагрузки трансформатора.

FLA вторичный = 1500 кВА / (0,48 кВ L-L x Sqrt (3))

FLA вторичный = 1804 А

Шаг 3 — Рассчитайте ток короткого замыкания на вторичной шине трансформатора.

SCA вторичный = 1804 А x 100 / (5,75% + 0,97%)

SCA вторичный = 26 845 А

Если бы этот расчет не учитывал источник и предполагал, что он бесконечен, ток короткого замыкания во вторичной обмотке будет

.

SCA вторичный = 31 374 А

Вы можете видеть, что учет импеданса источника (силы источника) существенно влияет на величину тока короткого замыкания на вторичных выводах трансформатора.

Все перечисленные выше переменные:

FLA вторичный = вторичный ток полной нагрузки

кВ L-L2 = Вторичное напряжение в кВ

кВА 3 фазы = трансформатор трехфазный кВА самоохлаждаемый

Квадрат (3) = квадратный корень из трех (1,73)

% Z трансформатор = процентное сопротивление трансформатора

% Z источник = импеданс источника в процентах относительно базы трансформатора

кВА короткое замыкание = короткое замыкание мощность

SCA вторичный = ток 3-фазного короткого замыкания на вторичной шине

SCA первичный = ток 3-фазного короткого замыкания на первичной шине

Еще несколько слов предостережения! Полное сопротивление трансформатора должно соответствовать действительной паспортной табличке, а не предполагаемому значению.Импедансы трансформаторов, которые еще не были построены или испытаны, могут отличаться на +/- 7,5% от указанного полного сопротивления. Приведенный выше расчет не включает вклад двигателя, который также необходимо учитывать.

Сложение импедансов источника и трансформатора, как мы только что сделали, хорошо для близкого приближения, но не идеально. Импедансы должны быть добавлены с использованием векторного сложения, что означает разделение каждого импеданса на его соответствующие значения X и R и объединение отдельных членов для определения истинной величины общего импеданса.Отношение X / R обсуждается в статье X / R .

Отлично! Начинается заполнение мозгов!

курсов PDH онлайн. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экология или экономия энергии.

курсов.

Russell Bailey, P.E.

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова . Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании веб-сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей компании

имя другим на работе. «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что уже знаком с

с деталями Канзас

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на изучение

материал «.

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения. «

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент для ознакомления с курсом

материалов до оплаты и

получает викторину «

Арвин Свангер, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курсов.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам.

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании каких-то неясных раздел

законов, которые не применяются

до «нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация. «

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

Доступно и просто

использовать. Большое спасибо. «

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев предоставлено.

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

испытание потребовало исследования в

документ но ответы были

в наличии. «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

курсов. Процесс прост, и

намного эффективнее, чем

приходится путешествовать. «

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для Professional

.

Инженеры получат блоки PDH

в любое время.Очень удобно »

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время искать где

получить мои кредиты от. «

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теорий. «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

до метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и сдать

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40% «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительно

аттестат. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими, а

хорошо организовано. «

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна. «

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса по этике в Нью-Джерси были очень хорошими.

хорошо подготовлены. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор везде и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, никакой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и демонстрировали понимание

материала. Полная

и комплексное.

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по моей линии

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличное освежение ».

Luan Mane, P.E.

Conneticut

«Мне нравится, как зарегистрироваться и читать материалы в автономном режиме, а затем

Вернись, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

Использование в реальных жизненных ситуациях «

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом вернуться.

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат . Спасибо за создание

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для просмотра содержания

и пригодность, до

имея платить за

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в онлайн-викторине и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по

.

много разные технические зоны за пределами

по своей специализации без

приходится путешествовать.»

Гектор Герреро, П.Е.

Грузия

Интегрированный метод расчета потока мощности и короткого замыкания для распределительной сети с распределенной генерацией на основе инвертора

Расчет потока мощности и расчет короткого замыкания являются основой теоретических исследований для распределительной сети с распределенной генерацией на основе инвертора. В этой статье анализируется сходство эквивалентной модели для распределенной генерации на основе инвертора в нормальных и аварийных условиях распределительной сети, а также различия между расчетом потока мощности и короткого замыкания.Затем предлагается интегрированный метод расчета перетока мощности и короткого замыкания для распределительной сети с распределенной генерацией на основе инвертора. Предлагаемый метод позволяет распределенной генерации на основе инвертора быть эквивалентной шине, что делает его пригодным для расчета потока мощности распределительной сети с распределенной генерацией на основе инвертора с ограничением тока. В этой статье также может быть рассмотрена возможность переключения на низкое напряжение распределенной генерации на основе инвертора.Наконец, некоторые тесты для расчета расхода мощности и тока короткого замыкания выполняются в распределительной сети с 33 шинами. Результаты расчетов предлагаемого метода в данной статье противопоставляются результатам традиционного метода и метода моделирования, результаты которых подтвердили эффективность интегрированного метода, предложенного в данной статье.

1. Введение

Зарезервированная ограниченность и разрушение окружающей среды ископаемыми источниками энергии постепенно сделали применение распределенной генерации (ДГ) широко распространенным [1].Подключенный к сети DG в распределительной сети может снизить потери ископаемой энергии и сетевых линий, а также улучшить использование энергии и надежность потребителей. Однако в то же время DG приносит и некоторые неблагоприятные последствия. Например, в нормальных условиях работы распределительной сети электрические состояния распределительной сети будут изменяться из-за случайного выхода мощности от РГ. А изменение установленного положения и установленной мощности ДГ может иметь неблагоприятные последствия для напряжения и потерь.При аварийном срабатывании распределительной сети величина и направление тока короткого замыкания, протекающего по линии, также могут быть изменены, и могут произойти неправильное срабатывание и отказ традиционной трехсекционной токовой защиты [2, 3]. Расчет расхода мощности и короткого замыкания является основой для анализа нормального и аварийного состояния распределительной сети, соответственно. Поэтому важно изучить расчет потока мощности и короткого замыкания для исследования распределительной сети с ДГ.

РГ в распределительной сети в основном делятся на РГ на базе генератора и РГ на основе инвертора, из которых ДГ на основе инвертора широко применяется в распределительных сетях, таких как фотоэлектрические (PV), синхронные генераторы с постоянными магнитами (PMSG) и накопители энергии. система (ESS). Поэтому важно изучить методы расчета потока мощности и короткого замыкания для распределительной сети с РГ на основе инвертора. В качестве предмета исследования в этой статье, DG, упомянутый ниже, без дополнительных инструкций, выражается как DG на основе инвертора.

Как при расчете потока мощности, так и при расчете короткого замыкания, исследования в настоящее время в основном состоят в построении эквивалентной модели РГ на основе инвертора и предложении соответствующего метода расчета. В отличие от генератора на основе генератора, в выходной характеристике генератора на основе инвертора в основном доминирует его блок управления. При расчете потока мощности эквивалентные модели ДГ под различным управлением различаются. При управлении постоянной мощностью DG должен быть эквивалентен шине, тогда как при управлении постоянным напряжением DG должен быть эквивалентен шине PV, если выходная реактивная мощность от DG находится в пределах.Если реактивная мощность на выходе из ДГ превышает установленный предел, ДГ должен быть эквивалентен шине [4, 5]. Следовательно, эквивалентная модель DG на основе инвертора в основном моделируется как шина или шина PV. А для метода расчета обычно используются метод обратной / прямой развертки и метод Ньютона, аналогичный традиционному расчету потока мощности [6–8].

При расчете короткого замыкания существующие эквивалентные неисправности модели DG на основе инвертора имели следующие три формы. При допущении постоянной активной и реактивной мощности на выходе из РГ во время короткого замыкания, РГ должен быть эквивалентен модели постоянной мощности [9].В соответствии с характеристикой ограничения тока инвертора, DG должен войти в состояние ограничения тока во время неисправности. В результате ДГ может быть приблизительно эквивалентен источнику постоянного тока [10, 11]. Эквивалент неисправности модели DG на основе инвертора определяется путем оценки текущего состояния ограничения DG. ДГ, входящий в состояние ограничения тока, эквивалентен модели постоянного тока. И наоборот, DG эквивалентен модели постоянной мощности [12, 13]. Что касается метода расчета короткого замыкания, обычно применяется теорема суперпозиции, которая вычисляет нормальную составляющую и составляющую неисправности распределительной сети, соответственно, и накладывает их [14].

Из представленных выше исследований видно, что при расчете потока мощности эквивалентная модель ДГ на основе инвертора обрабатывается идеально. Текущее состояние ограничения DG на основе инвертора не рассматривалось. Например, DG может войти в состояние ограничения тока, когда стабильность напряжения распределительной сети анализируется с расчетом потока мощности для нагрузок, которые слишком сильно увеличиваются. В этом случае цели управления инвертором не могут быть соблюдены. Следовательно, если DG на основе инвертора все еще моделируется как шина PV, влияние DG на поток мощности не может быть правильно учтено.Точно так же при расчете короткого замыкания DG может войти в состояние ограничения тока, а также для пониженного напряжения в точке общего соединения (PCC) во время повреждения. На данный момент ДГ на основе инвертора должен быть эквивалентен источнику тока, о чем уже упоминалось в некоторых исследованиях. Но предлагаемые в этих исследованиях модели источников тока идеально подходят для упрощенного анализа регулирования токового выхода. Кроме того, многие генераторы инверторного типа в настоящее время сконфигурированы с контролем сквозного переключения при низком напряжении (LVRT) [15].Следовательно, следует изучить эквивалентную отказоустойчивую модель ДГ на основе инвертора под управлением LVRT.

В этой статье сначала анализируется эквивалентная модель ДГ на основе инвертора в нормальных и аварийных условиях работы распределительной сети, а также разница между расчетом потока мощности и короткого замыкания. Затем предлагается интегрированный метод расчета потока мощности и короткого замыкания распределительной сети с РГ на основе инвертора в соответствии с сходством между эквивалентными моделями РГ на основе инвертора в нормальных и аварийных условиях эксплуатации.Наконец, предлагаемый метод проверяется на примере. Интегральный метод расчета удобно использовать для расчета потока мощности или тока короткого замыкания в практической инженерии.

2. Эквивалентная модель DG на основе инвертора

Выходные характеристики DG на основе инвертора в нормальных и аварийных условиях работы распределительной сети связаны со стратегией управления инвертором. Обычно применяется двухконтурное управление, при котором целями управления по внешнему контуру обычно являются постоянная активная и реактивная мощность или постоянное напряжение постоянного тока и реактивная мощность.Выходные сигналы из внешнего контура являются опорными сигналами внутреннего кольца, которые в основном принимают независимое управление [16, 17]. Принцип управления инвертором с функцией ограничения тока, который ориентирует ось на вектор напряжения сети, показан на рисунке 1.


На рисунке 1,,, и являются эталонами активной мощности, реактивной мощности и постоянного напряжения, соответственно. , и — фактические значения активной мощности, реактивной мощности и постоянного напряжения соответственно. — напряжение PCC ДГ. , — составляющие выходного тока инвертора соответственно., являются ссылками на и, соответственно. прямоугольная частота и является индуктивностью фильтра на стороне переменного тока.

Таким образом, какой бы ни была цель управления внешним контуром, управление внутренним контуром для инвертора неизменно является текущим. Согласно теории мгновенной мощности, обмен активной и реактивной мощностью между РГ и сетью можно рассчитать с помощью [18]

РГ на основе инвертора обычно работает при постоянном регулировании мощности в нормальных рабочих условиях. В этом случае он может быть эквивалентен шине, потому что активная и реактивная мощность на выходе из DG известны.Однако распределительная сеть с большими нагрузками снизит сетевое напряжение. В этот момент ток по оси и по оси увеличится в соответствии с (1), а максимальный выходной ток от DG обычно меньше, чем в 1,2 ~ 1,5 раза от его номинального тока в соответствии с его максимально допустимым порогом тока. После того, как инвертор перейдет в состояние ограничения тока, величина выходного тока DG будет постоянной. Наряду с уменьшением напряжения, выходная мощность от DG не может соответствовать постоянному контролю мощности, что означает, что DG больше не может быть эквивалентным шине.В условиях неисправной работы распределительной сети DG может войти в состояние ограничения тока таким же легким способом из-за пониженного напряжения PCC, вызванного неисправностью.

После того, как инвертор переходит в состояние ограничения тока, величина выходного тока от DG равна. В режиме управления коэффициентом мощности блока разность фаз между выходным током и напряжением PCC DG составляет 0 °, в то время как в режиме управления коэффициентом мощности без блока коэффициент мощности задается нормально, что означает, что разность фаз известна.Соответственно, DG может быть эквивалентен шине в состоянии ограничения тока. есть и — разность фаз между выходным током и напряжением PCC DG. Следовательно, эквивалентная модель DG на основе инвертора должна быть изменена с шины на шину, когда инвертор переходит в состояние ограничения тока как при расчете потока мощности, так и при расчете короткого замыкания.

3. Разница между расчетом короткого замыкания и расчетом потока мощности

Анализ эквивалентных моделей РГ на основе инвертора в нормальных и аварийных условиях распределительной сети позволяет увидеть, что сходство между ними состоит в том, что РГ следует моделировать. как и шины, соответственно, до и после перехода инвертора в состояние ограничения тока.Следовательно, в этой статье предлагается интегрированный метод расчета потока мощности и короткого замыкания, который использует идею расчета потока мощности в расчетах короткого замыкания. Этот метод позволяет рассчитать как поток мощности, так и ток короткого замыкания в распределительной сети. Поскольку метод расчета потока мощности в этой статье применим только к симметричной системе, основанный на нем метод интегрированного расчета применим только к расчету симметричного повреждения. Кроме того, сам расчет короткого замыкания отличается от расчета потока мощности, поэтому при расчете короткого замыкания необходимо решить следующие две проблемы.

3.1. Модификация матрицы полной проводимости шины для распределительной сети

При расчете трехфазного короткого замыкания матрица полной проводимости узла должна быть изменена по следующим трем причинам.

(1) Модель нагрузки . Нагрузки распределительной сети обычно не учитываются при расчете трехфазного симметричного короткого замыкания. Если необходимо принять во внимание влияние нагрузок на ток короткого замыкания, модель нагрузки должна быть изменена с модели постоянной мощности на модель постоянного импеданса.Это связано с тем, что расчет не будет сходиться из-за несбалансированных потоков мощности в распределительной сети ниже по течению точки повреждения. Затем матрица пропускной способности шины распределительной сети должна быть изменена после изменения модели нагрузок. При расчете короткого замыкания в этой статье не учитывались нагрузки распределительной сети.

(2) Сопротивление заземления . Поскольку точка неисправности существует только в состоянии неисправности распределительной сети, схемные структуры распределительной сети в нормальных и неисправных условиях различаются.В состоянии неисправности неисправность происходит где-то в распределительной сети, что означает, что заземленная ветвь подключается к точке повреждения, как показано на Рисунке 2. На Рисунке 2 показано сопротивление заземления (при идеальном металлическом коротком замыкании).


Из рисунка 2 видно, что в точке повреждения имеется новая добавленная проводимость заземления. Таким образом, при расчете короткого замыкания необходимо изменить внутреннюю проводимость точки повреждения в соответствии со следующим уравнением: где и — коэффициент сопротивления шины распределительной сети после аварии и перед аварией, соответственно.

(3) DG ниже точки разлома . В распределительной сети неисправность может произойти в любом месте линии. Если в одной и той же распределительной сети имеется несколько DG, DG можно разделить на две категории: DG перед точкой разлома и DG ниже точки разлома. В прошлом методе расчета короткого замыкания распределительной сети с РГ вклад тока короткого замыкания от РГ после точки короткого замыкания в целом не учитывался [19].Это связано с тем, что мощность РГ в распределительной сети мала. Следовательно, РГ ниже точки повреждения будет отключен от распределительной сети под защитой от низкого напряжения. Хотя DG все еще подключается к распределительной сети, ток короткого замыкания от DG достаточно мал, поэтому обычно учитывается только вклад тока короткого замыкания от DG перед точкой повреждения.

Тем не менее, ток короткого замыкания от DG ниже точки повреждения будет больше, если в этой области установлено больше DG.Кроме того, DG просят поддерживать подключение к сети в течение определенного периода времени во время неисправности. Следовательно, не следует игнорировать вклад тока короткого замыкания от ДГ после точки повреждения.

Например, DG на Рисунке 2 расположен ниже по потоку от точки повреждения, а между точкой повреждения и DG образуется изолированная цепь. В этот момент выходной ток от DG не соответствует своей цели управления, поскольку выходные характеристики DG связаны только с характеристиками полного сопротивления линии.Чтобы упростить расчет, DG после точки повреждения следует рассматривать как источник тока и моделировать как шину с,. Затем параметры линий между DG и точкой повреждения должны быть обновлены от комплексного импеданса до значения модуля импеданса (). И матрица пропускной способности шины распределительной сети должна быть изменена.

3.2. Эквивалентная модель неисправности LVRT DG

Как в нормальных, так и в аварийных условиях работы распределительной сети, эквивалентная модель DG на основе инвертора, упомянутая выше, анализируется на основе предположения DG при постоянной мощности.Однако для того, чтобы в полной мере использовать реактивную мощность инвертора при возникновении неисправности, ДГ обычно имеет возможность LVRT [20]. Эквивалентная неисправности модель ДГ с управлением LVRT более сложна, поскольку выходная реактивная мощность от ДГ и переменная.

Важно отметить, что выходные характеристики РГ после точки повреждения связаны только с характеристиками полного сопротивления линии, поэтому модель LVRT может применяться только к РГ перед точкой повреждения.Чтобы учесть вклад тока короткого замыкания от РГ с управлением LVRT, необходимо проанализировать эквивалентную LVRT модель РГ на основе инвертора.

Хотя стандарты LVRT для различных типов инверторных генераторов различаются, идея управления у них одинакова. При возникновении неисправности в распределительной сети, принимает ли DG управление LVRT или нет, решает напряжение PCC, обнаруженное системой управления. При управлении LVRT опорное значение реактивного тока системы управления регулируется в соответствии с напряжением PCC.Тогда можно также отрегулировать выходную реактивную мощность от ДГ. В этой статье модель DG, эквивалентная неисправности LVRT, описывается следующим образом.

(1) . В этой ситуации DG по-прежнему поддерживает исходное постоянное управление мощностью, и управление LVRT не может быть включено. Модель эквивалента неисправности — это напряжение PCC DG, активная мощность и выходная реактивная мощность DG, соответственно, и и — выходная активная и реактивная мощность DG перед отказом.

(2) .В этой ситуации напряжение PCC DG падает ниже 0,9 о.е., и DG начинает выводить ток реактивной мощности в соответствии со следующим выражением: где — номинальный ток на единицу DG на основе инвертора. — коэффициент регулировки напряжения на выходе реактивной мощности по току от ДГ. Например, означает, что напряжение упало на 1% относительно 1 о.е. выходной ток реактивной мощности от ДГ увеличился на 2% от номинального тока. При увеличении выходного реактивного тока от DG, DG может перейти в состояние ограничения тока из-за максимально допустимого порогового значения тока.Оценка текущего состояния ограничения является ключом к преобразованию DG в шину из шины. Статус ограничения тока может быть определен с помощью следующего уравнения:

Если (5) не выполняется, DG не ограничивается по току. DG все еще может быть эквивалентом bus. Эквивалентная модель неисправности —

Если выполняется (5), DG ограничен по току. ДГ надо переоборудовать в автобус. Модель, эквивалентная неисправности:

(3) . В этой ситуации напряжение PCC DG падает ниже 0.4 о.е. Для адекватной поддержки напряжения в распределительной сети РГ должен выдавать только ток реактивной мощности. В этот момент разность фаз между выходным током и напряжением PCC DG составляет 90 °. Эквивалентную модель DG можно смоделировать напрямую как шину. Эквивалентная модель неисправности —

Из эквивалентной LVRT модели DG видно, что она связана с напряжением PCC DG в состоянии ограничения тока и в состоянии без ограничения тока. Кроме того, независимо от того, включен регулятор LVRT или нет, эквивалентные неисправности модели DG аналогичны.Обе модели, эквивалентные неисправности, могут быть смоделированы как шины и, соответственно, до и после перехода инвертора в состояние ограничения тока. Следовательно, идея расчета потока мощности может быть использована для расчета короткого замыкания под управлением LVRT аналогичным образом.

4. Интегрированный метод расчета

Согласно анализу эквивалентной модели для DG на основе инвертора в нормальных и аварийных условиях работы распределительной сети, можно увидеть, что DG должен был быть преобразован в шину в некоторых сценариях работы.Метод интегрированного расчета, предложенный в этой статье, использует идею расчета потока мощности для расчета тока короткого замыкания. Однако ранее использовавшийся метод расчета потока мощности не позволял рассчитать поток мощности распределительной сети с шиной напрямую. Следовательно, в этом разделе анализируется состояние преобразования типа шины и изучается метод расчета потока мощности распределительной сети с шиной.

4.1. Состояние переключения типа шины

В начале расчета текущее состояние DG неизвестно.Следовательно, следует предположить, что, когда DG поддерживает постоянный контроль мощности в настоящее время, выходной ток от DG рассчитывается в соответствии с результатами предыдущего традиционного метода расчета потока мощности по (9) следующим образом: где — установленное значение выходной комплексной мощности из ДГ в автобусе, под контролем. — напряжение PCC ДГ. Если, DG на шине переходит в состояние ограничения тока и должен быть переключен на. зависит от коэффициента выходной мощности ДГ.

4.2. Метод расчета потока мощности распределительной сети с шиной

Для шины в распределительной сети известны только ее вводимый ток и разность фаз между и напряжением PCC.Важно отметить, что DG можно смоделировать как шину с while и как шину с while. Но эти два типа шины применимы только к особым случаям, которые или. В большинстве случаев DG с ограничением по току может быть смоделирован как шина, а уравнение мощности шины шины может быть выражено как где шина, — амплитуда напряжения, — разность фаз между шиной и шиной, и — действительная и мнимая составляющие матрица пропускной способности шины.

Позвольте быть количество автобусов и количество автобусов; отсюда и количество автобусов.Системные уравнения баланса мощности для автобусов и получаются следующим образом: где in и, а in и. Другими словами, нижний индекс 1 представляет шину, а нижний индекс 2 представляет шину. Из (11) видно, что существуют уравнения, и количество неизвестных также включает амплитуду и фазу напряжения каждой шины, за исключением резервной шины. Следовательно, количество уравнений равно количеству неизвестных, и расчет потока мощности распределительной сети с шиной может быть решен.Уравнение (11) является нелинейным уравнением, которое необходимо решить, поэтому в этой статье принят общий метод Ньютона.

Ключевой проблемой при решении потока мощности методом Ньютона является формирование и вычисление поправочных уравнений. В соответствии с процессом решения метода Ньютона поправочные уравнения формируются следующим образом.

Основное внимание при решении корректирующих уравнений уделяется формированию матрицы Якоби. Из-за появления шины при вычислении потока мощности матрица Якоби предыдущего метода расчета потока мощности не может использоваться напрямую.Из (12) можно найти, что матрица Якоби состоит из четырех подматриц, которые равны. Согласно теории метода Ньютона, выражения диагональных элементов в и отличаются от традиционного метода расчета потока мощности из-за введения шины. Конкретные выражения показаны следующим образом:

Диагональные элементы —

Диагональные элементы —

Начальные значения амплитуды и фазы напряжения каждой шины должны быть заданы, соответственно, после формирования матрицы Якоби, которые равны и.По начальным значениям можно получить векторы ошибок,, и. Затем следующую амплитуду и фазу напряжения можно рассчитать согласно (15) и (16) следующим образом:

Затем подставив (16) в (15), чтобы продолжить итерационный расчет, пока и, амплитуда и фаза напряжения каждой шины не сможет быть полученным. Кроме того, выходная мощность преобразователя с ограничением тока на основе DG может быть решена с помощью

4.3. Блок-схема интегрированного метода расчета потока мощности и короткого замыкания

В этой статье необходимо отметить два момента в предложенном методе расчета интегрированного потока мощности и короткого замыкания.Во-первых, существуют некоторые различия между расчетом короткого замыкания и потока мощности, поэтому матрица проводимости шины распределительной сети и соответствующая эквивалентная модель неисправности DG должны быть изменены для расчета короткого замыкания. Во-вторых, если в одной и той же распределительной сети имеется несколько DG, на эквивалентные модели остальных DG может повлиять изменение напряжения из-за того, что эквивалентная модель одного DG изменилась с шины на шину. По этой причине итерационный процесс должен быть прекращен до тех пор, пока эквивалентная модель каждого DG не перестанет меняться.Конкретная блок-схема интегрированного метода расчета потока мощности и короткого замыкания показана на рисунке 3.


5. Примеры и анализ

В этой статье численный расчет выполняется в распределительной сети с 33 шинами, номинальное напряжение которой составляет 10 кВ. Предполагается, что одни и те же ДГ на основе инвертора подключены к шинам 11, 17, 28 и 33 соответственно, как показано на рисунке 4, мощность которых составляет 0,5 МВт. Номинальный ток на единицу ДГ составляет 5 о.е., исходя из того, что базовая мощность и базовое напряжение составляют 100 кВА и 10 кВ.Предполагается, что ДГ работают в заниженных условиях в режиме единичного коэффициента мощности, а их максимальный выходной ток в 1,2 раза превышает номинальный ток, что составляет 6 о.е. Шина 1 — это свободная шина, амплитуда напряжения которой равна 1 о.е., а фазовый угол напряжения равен 0 °. Затем следует выполнить расчет потока мощности и расчет короткого замыкания в этой испытательной системе с использованием метода интегрированных расчетов, предложенного в этой статье, для проверки его эффективности.


5.1. Расчет потока мощности

Для получения DG с ограничением тока нагрузки в распределительной сети должны быть увеличены до 1.В 8 раз больше исходного значения для получения более низкого напряжения при расчете потока мощности. В соответствии с процессом расчета расчет начинается с DG, эквивалентного шине, и оценивается текущее состояние ограничения DG. Среднеквадратичные значения напряжения PCC и выходного тока каждого DG получены, как показано в таблице 1. В этой статье все результаты вычислений выражены в единицах (pu).


DG no. DG1 DG2 DG3 DG4

Напряжение / pu 0.8612 0,8448 0,8573 0,8198
Ток / о.е. 5,8058 5,9189 5,8320 6,0987

1 Из результатов расчета в таблице видно, что только DG4 переходит в текущее состояние ограничения. Соответственно, DG4 не может поддерживать постоянную выходную мощность и должен быть эквивалентен шине. Затем, в соответствии с процессом вычисления, RMS напряжения PCC и выходного тока каждого DG получают методом расчета потока мощности с шиной до тех пор, пока эквивалентные модели каждого DG не перестанут меняться.Результаты расчетов показаны в таблице 2, а профиль напряжения распределительной сети показан на рисунке 5.


DG no. DG1 DG2 DG3 DG4

Напряжение / pu 0,8609 0,8445 0,8569 0,8191
Ток / pu 5,80 5.8349 6,0000


Чтобы проверить, можно ли правильно рассчитать поток мощности распределительной сети с шиной с помощью интегрированного метода расчета, предложенного в этой статье, метод, основанный на расчетах Принято сравнение результатов интегрированного метода расчета и традиционного метода расчета. Поскольку значения DG в состоянии ограничения тока неизвестны, используется метод инверсии.Конкретно, значения DG в состоянии ограничения тока и поток мощности распределительной сети сначала рассчитываются методом потока мощности с шиной. Затем традиционный метод расчета используется для расчета потока мощности с расчетными значениями. Правильность предложенного интегрального метода можно проверить, если потоки мощности, рассчитанные двумя методами, совпадают. В этом случае поток мощности распределительной сети и выход активной мощности от DG4 с ограничением по току сначала рассчитываются интегрированным методом.Расчетная выходная активная мощность DG4 составляет 4,9146 о.е. Затем поток мощности снова рассчитывается традиционным методом расчета потока мощности с DG4, смоделированным как шина, активная мощность которого равна pu. Наконец, максимальная абсолютная погрешность напряжения каждой шины, рассчитанная двумя методами, составляет. Так что предлагаемый комплексный метод в этой статье является правильным.

5.2. Расчет короткого замыкания для DG без управления LVRT

Аналогичным образом, ток короткого замыкания рассчитывается с помощью метода интегрированных расчетов, предложенного в этой статье, в той же распределительной сети с 33 шинами.Трехфазные замыкания на землю с сопротивлением заземления равны 0, которые установлены на шинах 9, 18 и 31 соответственно, как показано на рисунке 6. Положения замыкания, установленные в этой статье, можно разделить на следующие четыре случая. Все ДГ в распределительной сети находятся выше точки разлома (f2), некоторые ДГ находятся ниже точки разлома (f1 и f3), неисправность возникает в магистральной линии (f1 и f2), а неисправность — в ответвлении (f3). ). Согласно процессу расчета, DG перед точкой неисправности эквивалентен шине, а DG ниже точки неисправности эквивалентен шине при первом вычислении.Выходной ток от ДГ получается, как показано в Таблице 3.


Выходной ток короткого замыкания / pu Точка неисправности
f1 f2 f3

DG1 6 8,3929 6,8759
DG2 6 50,9485 6,5835
DG3 9.2628 5,7244 11,7298
DG4 8,8464 5,6192 6


Из результатов расчета видно, что DG в распределительной сети Легко войти в текущее состояние ограничения во время неисправностей. Если DG перед точкой повреждения переходит в состояние ограничения тока, его эквивалентная модель неисправности должна быть преобразована в шину. В этом случае выходной ток от ДГ с ограничением по току равен и для ДГ без управления LVRT.Затем процесс расчета продолжается до тех пор, пока эквивалентные модели каждого DG не перестанут меняться. Вычисляются токи короткого замыкания f1, f2 и f3. Более того, симуляция этого примера построена в MATLAB / Simulink. Результаты расчетов методом интегрированного расчета сравниваются с результатами расчетов методом моделирования в MATLAB / Simulink, их результаты показаны в Таблице 4.


Ток короткого замыкания / о.е. Точка неисправности
f1 f2 f3

Расчет 212.45 77,74 143,97
Моделирование 210,79 77,54 143,98
Ошибка / 100% 0,79% 0,25% 0,007%

Из данных в Таблице 4 видно, что результаты, основанные на интегрированном методе расчета, предложенном в этой статье, аналогичны результатам моделирования, и ошибки между ними разумны, благодаря чему эффективность и правильность предложенного метода проверены.Кроме того, результаты расчета части напряжения на шине распределительной сети представлены в таблице 5.


Напряжение шины / о.у. Точка неисправности
f1 f2 f3

3 0,8751 0,9626 0,9192
6 0,5072 0,8499 0,6798
9 0 0.6781 0,7020
11 0,0181 0,5788 0,7166
14 0,0371 0,3524 0,7305
17 0,0603 0,0724 18 0,0603 0 0,7461
28 0,5253 0,8673 0,4173
31 0.5387 0,8801 0
33 0,5426 0,8838 0,0068

5.3. Расчет короткого замыкания для DG с управлением LVRT

В этом случае DG перед точкой неисправности эквивалентен шине, а DG после точки неисправности сначала аналогичным образом эквивалентен шине. Расчетные токовые выходы от РГ такие же, как в таблице 3.Затем по результатам расчета оценивается текущее состояние ограничения ДГ перед точкой повреждения. В соответствии с эквивалентной моделью LVRT вычисляются выходной ток и разность фаз между выходным током и напряжением PCC ДГ в состоянии ограничения тока, а также вычисляются выходная активная и реактивная мощность ДГ в состоянии без ограничения тока. Затем процесс расчета продолжается до тех пор, пока эквивалентные модели каждого DG не перестанут меняться. В этой статье токи короткого замыкания трех видов повреждений рассчитываются в соответствии с интегрированным методом расчета.Более того, симуляция этого примера построена с помощью MATLAB / Simulink. Результаты расчетов методом интегрированного расчета сравниваются с результатами расчетов методом моделирования в MATLAB / Simulink, их результаты показаны в Таблице 6.

2

Ток короткого замыкания / о.е. Точка неисправности
f1 f2 f3

Расчет 211 77.42 144,80
Моделирование 211,28 77,54 145,69
Ошибка / 100% 0,13% 0,15% 0,61%

041

Из данных в Таблице 6 видно, что результаты, основанные на методе интегрированного расчета, аналогичны результатам моделирования, и ошибки между ними разумны. Кроме того, результаты расчета части напряжения на шине распределительной сети приведены в таблице 7.


Напряжение на шине / pu Точка неисправности
f1 f2 f3

3 0,8757 0,963019
6 0,5102 0,8519 0,6839
9 0 0,6822 0,7172
11 0.0182 0,5830 0,7320
14 0,0371 0,3539 0,7479
17 0,0603 0,0721 0,7689
18 0,0603
28 0,5330 0,8698 0,4199
31 0,5507 0,8829 0
33 0.5573 0,8868 0,0068

Из результатов расчета короткого замыкания в таблицах 5 и 7 видно, что напряжения на шине при расчете короткого замыкания DG с управлением LVRT больше чем без контроля LVRT. Указывается, что управление LVRT оказывает все большее влияние на напряжение на шине, что отражает его преимущество в случае неисправности распределительной сети.

6. Заключение

В соответствии с теоретическим анализом и проверкой моделирования для интегрированного метода расчета потока мощности и короткого замыкания распределительной сети с ДГ на основе инвертора, можно сделать следующие выводы: (1) Эквивалентные модели для ДГ на основе инвертора. при нормальных и аварийных условиях распределительные сети похожи друг на друга.Обе эквивалентные модели могут быть смоделированы как шины и, соответственно, до и после перехода инвертора в состояние ограничения тока. Следовательно, поток мощности и ток короткого замыкания могут быть рассчитаны таким же образом с помощью интегрированного метода расчета потока мощности и короткого замыкания. (2) Если распределительная сеть имеет шину, выражения элементов, относящихся к шине, в матрице Якоби, являющейся частью Корректирующее уравнение для расчета потока мощности отличается от уравнения для традиционного расчета потока мощности.Выражения следует преобразовать в соответствии с уравнениями баланса мощности автобуса. Затем можно завершить расчет потока мощности путем решения уравнений коррекции. (3) Управление LVRT — это обычное управление DG, когда в распределительной сети происходит неисправность. Следовательно, необходимо проанализировать эквивалентную модель LVRT, которая является более сложной, чем эквивалентная модель в условиях нормальной эксплуатации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *