Мощность рассеивания резистора формула: Как рассчитать мощность рассеивания резистора | Энергофиксик

Содержание

Как рассчитать мощность рассеивания резистора | Энергофиксик

Резистор — это один из главных радиоэлементов, у которого есть целый ряд важнейших параметров. Сегодня речь пойдет о мощности рассеивания, ведь этот параметр отвечает за надежную и стабильную работу любого резистора.

Что такое мощность и рассеиваемая мощность

Для начала давайте освежим в памяти, что такое мощность постоянного тока, для этого следует вспомнить очень простую формулу:

Из выше представленного выражения вполне ясно, что мощность зависит от таких величин как напряжение и ток.

Если мы рассмотрим реальную схему, то в процессе ее работы через резисторы, расположенные в схеме, будет протекать ток определенной величины, а так как они (резисторы) обладают определенным сопротивлением, то под действием тока на резисторе будет выделяться тепло. Это тепло и есть та мощность, которая рассеивается на резисторе.

Так вот, если мы в схему установим резистор с меньшей мощностью рассеивания, чем это требуется, то резистор будет перегреваться. Это приведет к его быстрому выходу из строя.

Поэтому очень важно соблюдать следующее правило: заменяемый резистор должен соответствовать по мощности рассеивания сгоревшему резистору, либо этот параметр должен быть больше, но никак не меньше.

Все выпускаемые резисторы соответствуют стандартному ряду, который выглядит так:

1. 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, и более

Обычно, соблюдается следующее правило: чем больший размер у резистора, тем на большую рассеиваемую мощность он рассчитан.

Давайте рассмотрим пример. Допустим нам нужно установить резистор с сопротивлением 100 Ом, а ток через него будет протекать 0,1 Ампер.

Для того, чтобы рассчитать требуемую мощность рассеивания нашего резистора воспользуемся следующей формулой:

Итак, получается, что в данном примере нам потребуется резистор с мощностью рассеивания в один Ватт.

Примечание. Для стабильной и надежной работы следует обязательно брать резистор с запасом по мощности рассеивания. Это позволит обеспечить требуемую надежность и долговечность работы схемы.

Но что делать, если вы не знаете, какой ток будет протекать через резистор. Для расчета требуемой мощности рассеивания можно воспользоваться уже другой формулой:

Все вышеперечисленное справедливо для того случая, когда нужно заменить единичный резистор, но довольно часто в схемах можно найти так называемой составной резистор (несколько резисторов соединены параллельно, последовательно или же смешанно).

Итак, давайте для начала рассмотрим последовательное соединение.

При последовательном соединении через резисторы будет протекать одинаковый ток. И получается если нам нужно найти замену резистору на 100 Ом, через который протекает ток в 0,1 А и он рассчитан на мощность рассеивания в 1 Вт, его можно заменить двумя последовательно соединенными резисторами на 80 Ом и 20 Ом.

Если воспользоваться выше представленными формулами и рассчитать на какую мощность должен быть рассчитан каждый резистор, то получим следующий результат:

R1 – 20 Ом (0,2 Вт)

R2 – 80 Ом (0,8 Вт)

Теперь смотрим таблицу со стандартным рядом и выбираем ближайший наибольший номинал. Получается, что в нашем случае подойдут резисторы с мощностью рассеивания R1 – 0.5 Вт, R2 – 1 Вт.

При параллельном же соединении учитывайте тот факт, что через резистор с меньшим сопротивлением будет течь больший ток.

Смешанное соединение на практике практически не используется.

Как обойтись без расчетов

В принципе можно обойтись без формул и подсчетов, достаточно следовать следующему правилу:

Мощность каждого резистора, который входит в составляемую цепь (параллельную или последовательную) должен быть равен мощности рассеивания заменяемого резистора. Проще говоря, если вы хотите заменить резистор на 1 Вт составным резистором, то каждый из них должен быть не менее 1 Вт по мощности рассеивания.

Это все, что я хотел вам рассказать о расчете мощности рассеивания резистора и правилах его замены. Если статья оказалась вам полезна, то оцените ее лайком и спасибо за ваше внимание!

Мощность резистора по размеру

Внезапно, возникла проблема: на резисторах мощностью до 2 Вт не указана их мощность. А всё потому, что их мощность определяется размером:

Таблица размер-мощность аксиальных (цилиндрических) резисторов. Начиная с 1 Вт и выше мощность резистора на схемах обозначается римскими цифрами (I, II, III, V и т. д.)

Но, всё не так однозначно. Бывают резисторы одинаковой мощности разного размера и разной мощности одинакового размера:

Аксиальные (с осевыми выводами) резисторы с внезапной маркировкой на них мощности ваттах (W)

Мощность чип-резисторов тоже связана с их размером:

Правая часть второй колонки (код типоразмера, состоящий из 4-х цифр) — кодирует длину (первые две цифры) и ширину (вторые две цифры) детали в 1/100 долях дюйма (точнее в 1/1000, а между двумя цифрами подразумевается десятичная точка)

Значения мощности в третьей колонке указаны при температуре 70°С и это некие «стандартные» значения, которые являются «круглыми» долями одного ватта: 0.031 — это 1/32 ватта, 0.05 — 1/20, 0.063 — 1/16 и т. д. Также у разных производителей существуют резисторы такого же размера повышенной мощности [Panasonic High Power SMD Resistors] и пониженной [зато плоские; Thick Film Chip Resistors].

Что такое мощность резистора?

Вообще, мощность (измеряемая в ваттах) — это энергия (измеряемая в джоулях), передаваемая (или потребляемая, или отдаваемая) в секунду. Энергия электрического тока в проводнике состоит из кинетической энергии скорости электронов и их количества (сила тока, I), и потенциальной энергии сжатости электронного газа (напряжение, U). Мощность электрического тока, проходящего через резистор, определяется по формуле 

P=U·I=R·I2, где U — падение напряжения на выводах резистора, R — заявленное сопротивление резистора.

Электроны врезаются в молекулы полупроводника-резистора и нагревают их (увеличивают амплитуду колебаний), энергия электронного тока частично переходит в тепловую энергию нагрева резистора. Резистор рассеивает это тепло в окружающую среду (воздух), спасаясь от перегрева, и чем быстрее он это делает (чем больше джоулей тепла в секунду отдаёт во вне) тем больше его мощность [рассеивания] и тем более мощный ток он может через себя пропустить.

Соответственно, резистор тем мощнее, чем больше поверхность его тушки (или радиатора, к которому он привинчен), чем холоднее и плотнее окружающая среда (воздух, вода, масло), чем большую температуру разогрева себя, любимого, может выдержать резистор.

Так вот, мощность резистора — это максимальная мощность тока, проходящего через резистор, которую резистор выдерживает бесконечно долго, не ломаясь от перегрева и не меняя слишком сильно своего исходного (номинального; при 25°С) сопротивления.

Как же может сломаться резистор, если он сделан из таких материалов как графит (температура плавления >3800°С), керамика (>2800°С), сплава «константан» (=1260°С), нихрома, … ?  Ломаются резисторы обычно путём трескания напополам их тщедушного тельца или отваливания (отгорания) от тела колпачков-выводов на концах. Обугливание краски

Мощный резистор, целый, но обуглилась краска на нём, так что пропала маркировка

поломкой не считается. Но чтобы не терять маркировку, в последнее время стало модно запихивать  резистор мощностью ≥ 3 Вт в керамический параллелепипед, который снаружи выглядит как новый даже после многих лет напряжённой работы-разогрева резистора.

Т.к. мощный резистор сильно греется, по сути печка, нагревательный элемент, то его обычно на платах подвешивают в пространстве на длинных ножках,

Дистанцирование мощного резистора от платы

чтобы удалить от деталей на плате, особенно от и без того бодро иссыхающих со временем электролитических конденсаторов.

Полезные ссылки:

  1. Параметры чип-резисторов — даташит от Panasonic
  2. Мощность-размер советских резисторов (МЛТ, ВС, КИМ, УЛМ) — картинка-скан таблицы

Мощность рассеивания резистора для светодиода. Расчет сопротивления для светодиода

Светодиод — прибор, который при прохождении через него тока излучает свет.

В зависимости от типа используемого материала для изготовления прибора, светодиоды могут излучать свет различного цвета. Эти миниатюрные, надежные, экономичные приборы используются в технике, для освещения и в рекламных целях.

Светодиод обладает такой же вольтамперной характеристикой, как и обычный полупроводниковый диод. При этом при повышении прямого напряжения на светодиоде проходящий через него ток резко возрастает.

Например, для зеленого светодиода типа WP710A10LGD компании Kingbright при изменении приложенного прямого напряжения от 1,9 В до 2 В ток меняется в 5 раз и достигает 10 мА. Поэтому при прямом подключении светодиода к источнику напряжения при небольшом изменении напряжения ток светодиода может возрасти до очень большого значения, что приведет к сгоранию p-n перехода и светодиода.

осуществлена с применением букв и цифр, с помощью которых можно определить качественные характеристики устройств.

Поэтому при параллельном включении светодиодов обычно к каждому прибору последовательно подключают свой ограничивающий резистор. Расчет сопротивления и мощности такого резистора ничем не отличается от ранее рассмотренного случая.

При последовательном включении светодиодов необходимо включать приборы одного типа.

Кроме того, надо учитывать то, что напряжение источника должно быть не меньше суммарного рабочего напряжения всей группы светодиодов.

Расчет токоограничивающего резистора для светодиодов последовательного включения считаются также, как и раньше. Исключение состоит в том, что при вычислении вместо величины Uсв используется величина Uсв*N. В данном случае N — это количество включенных приборов.

Выводы:

  1. Светодиоды — широко распространенные приборы, используемые в технике, для освещения и рекламы.
  2. Во избежание выхода из строя светодиодов из-за их чувствительности к изменениям напряжения для них часто используют ограничивающие резисторы.
  3. Расчет значения сопротивления ограничивающего резистора делается на основе закона Ома.

Расчет резистора для подключения светодиодов на видео

(светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

  • V — напряжение источника питания
  • V LED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:


Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла.

Поэтому, зачастую используются более сложные схемы () которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:


примечание: разделителем десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора = (U U F )/ I F

  • U – источник питания;
  • U F – прямое напряжение светодиода;
  • I F – ток светодиода (в миллиамперах).

Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем или соединения нескольких резисторов.

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство:

или его интерпретация

U= I*R+I*R LED .

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), R LED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение R LED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего R LED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: R=(U-U LED)/I, Ом

U LED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (U LED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания (рис.3).

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

R=U/I max =5В/0,05А=100 Ом

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

P=I 2 *R=(U R)2/R

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5В. Cree XM–L с бином T6 имеет такие параметры: типовое U LED =2,9В и максимальное U LED =3,5В при токе I LED =0,7А. Узнать больше о данном светодиоде можно здесь. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности.

R=(U-U LED)/I=(5-2,9)/0,7=3 Ом

Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

P=I 2 *R=0,72*3=1,47 Вт

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

η= P LED /P= U LED / U=2,9/5=0,58 или 58%

Led smd 5050

По аналогии с первым примером разберемся, какой нужен резистор для smd светодиода 5050.

Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов. Подробные данные о smd 5050 можно найти здесь.

Если LED smd 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого smd 5050 с параметрами: типовое U LED =3,3В при токе одного чипа I LED =0,02А.

R=(5-3,3)/(0,02*3)=28,3 Ом

Ближайшее стандартное значение – 30 Ом.

P=(0,02*3)2*30=0,1 Вт

η=3,3/5=0,66 или 66%

Принимаем к монтажу ограничительный резистор мощностью 0,25Вт и сопротивлением в 30 Ом±5%.

У RGB светодиода smd 5050 будет различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Светодиоды в наши дни нашли применение практически во всех областях деятельности человека. Но, несмотря на это, для большинства обычных потребителей совершенно неясно, благодаря чему и какие законы действуют при работе светодиодов. Если такой человек захочет устроить освещение посредством таких устройств, то множества вопросов и поиска решения проблем не избежать. И главным вопросом будет — «Что это за штука такая – резисторы, и для чего они требуются светодиодам?»

Резистор — это одна из составляющих электрической сети , характеризующаяся своей пассивностью и в лучшем случае, отличающаяся показателем сопротивления электротоку. То есть, в любое время для такого устройства должен быть справедлив закон Ома.

Главное предназначение устройств — способность энергично сопротивляться электрическому току. Благодаря этому качеству, резисторы нашли широкое применение при необходимости устройства искусственного освещения, в том числе и с использованием светодиодов.

Для чего необходимо использование резисторов в случае устройства светодиодного освещения?

Большинству потребителей известно, что обыкновенная лампочка накаливания даёт свет при её прямом подключении к какому-либо источнику питания. Лампочка может работать на протяжении длительного времени и перегорает лишь тогда, когда по причине подачи слишком высокого напряжения чрезмерно нагревается накаливающая нить. В таком случае лампочка, некоторым образом, реализует функцию резистора, потому как прохождение электротока через неё затруднительно, но чем выше подаваемое напряжение, тем легче току удаётся преодолеть сопротивление лампочки. Конечно же, ставить в один ряд такую сложную полупроводниковую деталь, как светодиод и обыкновенную лампочку накаливания нельзя.

Важно знать, что светодиод – это такой электрический прибор , для функционирования которого предпочтительнее не сама сила тока, а напряжение, имеющееся в сети. Например, если таким устройством выбрано напряжение 1,8 В, а к нему приходит 2 В, то, вероятнее всего, он перегорит – если вовремя не снизить напряжение до требующегося приспособлению уровня. Вот именно с этой целью и требуется резистор, посредством которого осуществляется стабилизация использующегося источника питания, чтобы подаваемое им напряжение не вывело устройство из строя.

В связи с этим крайне важно:

  • определиться, какого типа резистор требуется;
  • определить необходимость использования для конкретного прибора индивидуального резистора, для чего требуется расчёт;
  • учесть вид соединения источников света;
  • планируемое число светодиодов в осветительной системе.

Схемы соединения

При последовательной схеме расстановки светодиодов, когда они располагаются один за одним, обычно хватает одного резистора, если получится правильно рассчитать его сопротивление. Это объясняется тем, что в электрической цепи имеется один и тот же ток , в каждом месте установки электрических приборов.

Но в случае параллельного соединения, для каждого светодиода требуется свой резистор. Если пренебречь этим требованием, то все напряжение придётся тянуть одному, так называемому «ограничивающему» светодиоду, то есть тому, которому необходимо наименьшее напряжение. Он слишком быстро выйдет из строя , при этом напряжение будет подано на следующий в цепи прибор, который точно так же скоропостижно перегорит. Такой поворот событий недопустим, следовательно, в случае параллельного подключения какого-либо числа светодиодов требуется использование такого же количества резисторов, характеристики которых подбираются расчётом.

Расчёт резисторов для светодиодов

При правильном понимании физики процесса, расчёт сопротивления и мощности данных устройств нельзя назвать невыполнимой задачей, с которой не под силу справиться обычному человеку. Для расчёта требующегося сопротивления резисторов, нужно обязательно учесть следующие моменты:

Расчёт резисторов при помощи специального калькулятора

Обычно, расчёт сопротивления таких приспособлений, требующихся для какого-либо светодиода, производится посредством специально предназначенного для этих целей калькуляторов. Такие калькуляторы, удобные и высокоэффективные, не нужно откуда-то скачивать и устанавливать – рассчитать резистор вполне можно и в онлайн-режиме.

Калькулятор расчёта резисторов позволяет с высокой точностью определить требуемую мощность и показатель сопротивления резистора, устанавливающегося в светодиодную цепь.

Для расчёта требующегося сопротивления необходимо в соответствующие строки онлайн-калькулятора внести:

  • напряжение питания светодиода;
  • номинальное напряжение светодиода;
  • номинальный ток.

Далее, требуется выбрать использующуюся схему соединения, а также необходимое число светодиодов.

После нажатия соответствующей кнопки выполняется расчёт и на экран монитора выводятся полученные расчётные данные , при помощи которых можно в дальнейшем без особого труда организовать искусственное светодиодное освещение.

Также в онлайн-калькуляторах имеется некоторая база, содержащая данные о светодиодах и их параметрах. Представлена возможность расчёта:

  • номинала приспособления;
  • цветовой маркировки;
  • потребляемого цепью тока;
  • рассеиваемой мощности.

Человек, не сильно разбирающийся в электрике и физике, в большинстве случаев не сможет самостоятельно рассчитать устройства для светодиодов. По этой причине, проведение расчётов при помощи функционального и удобного онлайн-калькулятора – неоценимая помощь для обычных людей , не владеющих методикой расчётов с применением физических формул.

Большинство известных производителей светодиодов и созданных на их основе лент, на своих официальных сайтах выкладывают и собственный онлайн-калькулятор , с помощью которого можно не только подобрать требующиеся резисторы и светодиоды, но и вычислить параметры использующихся токовых приборов в различных режимах эксплуатации при переменных значениях тока, температуры, подаваемого напряжения и пр.

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)- полупроводниковый прибор, излучающий не когерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.


Светодиод будет «гореть» только при прямом включении , как показано на рисунке

При обратном включении светодиод «гореть» не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Не трудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется «рабочей» зоной, так как именно здесь обеспечивается работа светодиода.



1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Что бы правильно подключить светодиод в самом простом случае необходимо подключить его через токоограничивающий резистор.

Пример 1

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

Тоесть надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Пример 1.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчёт: 3 светодиода на 3 вольта = 9 вольт, то есть 15-вольтового источника достаточно для последовательного включения светодиодов


Расчёт аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода

Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 2.

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчёт: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчёт токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчёт токоограничительных резисторов для каждой ветви.


R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Пример 3.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем своё собственное сопротивление

Например имеются 5 разных светодиодов:
1ый красный напряжение 3 вольта 20 мА
2ой зелёный напряжение 2.5 вольта 20 мА
3ий синий напряжение 3 вольта 50 мА
4ый белый напряжение 2.7 вольта 50 мА
5ый жёлтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1ый и 2ой
2) 3ий и 4ый
3) 5ый


рассчитываем для каждой ветви резисторы

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

ВАЖНОЕ ЗАМЕЧАНИЕ!!!

При подсчёте токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.


Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определённый разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведённых выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

ВАЖНОЕ ЗАМЕЧАНИЕ!!!

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит пр и немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Особенности выбора и применения резисторов в силовой технике

Кажущаяся простота и очевидность применения резисторов создает у разработчиков силовой преобразовательной аппаратуры обманчивое впечатление малого влияния резисторов, как крайне простых, с точки зрения схемотехники, приборов на результирующую надежность разрабатываемого устройства. Однако это не так, и применение резисторов, как и любых других компонентов, требует тщательного подхода к выбору типов и обеспечению благоприятных условий работы.

Для лучшего понимания особенностей работы резисторов обратимся к базовым понятиям. Резистор, как элемент электрической цепи, служит для создания сопротивления протеканию электрического тока. В идеальном случае работа резистора определяется фундаментальным законом, установленным немецким физиком Георгом Симоном Омом и носящим его имя:

где R — электрическое сопротивление участка цепи; U — напряжение, приложенное к участку цепи; I — ток, протекающий в цепи.

При протекании тока через резистор энергия упорядоченного движения носителей заряда превращается в тепловую и рассеивается в окружающем пространстве за счет теплопередачи и излучения. Мощность, выделяемая в резисторе, может быть определена по формуле, следующей из закона Ома:

или

Здесь P — мощность, выделяемая в участке цепи; R — электрическое сопротивление участка цепи; U — напряжение, приложенное к участку цепи; I — ток, протекающий в цепи.

Мощность, выделяемая в резисторе, вызывает рост его температуры. Максимальная температура, которую резистор может выдерживать без повреждений, зависит от конструкции резистора и применяемых материалов — как собственно резистивного элемента, так и его арматуры. Именно максимальная температура наиболее горячего участка резистора определяет ту мощность, которую резистор способен рассеивать.

В зависимости от условий, в которых находится резистор (температура, влажность, давление окружающего воздуха и скорость его движения), одна и та же рассеиваемая мощность вызывает различный прирост температуры прибора, поэтому при выборе резистора важно не только определить выделяемую мощность, но и условия его работы. Номинальная мощность резистора определяется как мощность, рассеиваемая прибором без превышения предельно допустимой температуры при естественном воздушном охлаждении на высоте 0 м над уровнем моря при температуре воздуха 25 °С.

При эксплуатации резистора следует помнить, что выделяемая мощность имеет квадратичную зависимость от приложенного к резистору напряжения или от протекающего тока (рис. 1).

Рис. 1. Зависимость выделяемой мощности от напряжения (тока) резистора

Это означает, что небольшой рост напряжения или тока в цепи вызовет существенный рост рассеиваемой мощности, которая может превзойти максимально допустимую для примененного резистора, что приведет к выходу прибора из строя. Поэтому при выборе резистора важно не только знать номинальные ток и напряжение для него, но и учитывать возможные продолжительные отклонения, в частности из-за колебаний напряжения питающей сети.

Если мощность, рассеиваемая резистором, постоянна, то через некоторое время температура резистора стабилизируется (когда количество тепла, выделяемого в резисторе, станет равным количеству тепла, отдаваемого резистором в окружающую среду посредством излучения, конвекции и теплопередачи конструкции). Чем больше физический размер резистора, тем эффективнее происходит процесс отдачи тепла и тем ниже будет равновесная температура при одной и той же выделяемой мощности. Кроме того, эффективность излучения, конвекции и теплопередачи существенно зависит от конструкции резистора, применяемых материалов и условий охлаждения.

Приводимые в справочных материалах величины максимальной рассеиваемой мощности резисторов относятся к условиям естественного охлаждения. На сегодняшний день существует ряд стандартов, регламентирующих метод определения максимально допустимой мощности рассеяния резисторов исходя из температуры перегрева наиболее горячего участка резистора. Ведущие производители мощных резисторов (Danotherm, Ohmite, Arcol, SIR и др.) при нормировании мощности своих приборов обычно руководствуются рекомендациями National Electrical Manufacturers Association (NEMA) и Underwriters Laboratories, Inc. (UL). Согласно таковым, максимально допустимая мощность при естественном охлаждении для резистора заданных физических характеристик и размеров, определяется как мощность, вызывающая температуру (измеренную термопарой) перегрева наиболее горячего участка резистора в 300 °С при температуре окружающего воздуха 40 °С. Измерение производится при неподвижном воздухе в условиях свободной конвекции и удалении резистора от ближайшего объекта (в частности, стен, панелей, приборов) не менее чем на 35 см.

Несколько иные условия измерений определяет стандарт MIL-R-26, первоначально разработанный для проволочных резисторов военного и аэрокосмического применения, а затем распространенный и на приборы промышленного и коммерческого назначения. Согласно этому стандарту максимальная температура нагрева наиболее горячего участка резистора устанавливается равной 350 °С при температуре окружающего воздуха 25 °С. Таким образом, соответствующая температура перегрева составляет 325 °С.

На рис. 2 показаны усредненные графики зависимости температуры перегрева резисторов по различным стандартам в зависимости от относительной рассеиваемой мощности.

Рис. 2. Зависимость температуры перегрева резистора от относительной рассеиваемой мощности

В первом приближении температура резистора зависит от площади его поверхности, а также (в меньшей степени) от ряда других факторов, таких как теплопроводность основания и покрытия резистора, эффективность излучения поверхности, отношения длины резистора к его диаметру, теплопередача через выводы и средства монтажа.

Максимально допустимая температура резистора будет определяться свойствами его конструктивных материалов и является предельной величиной, при превышении которой прибор может потерять работоспособность. В общем случае на данную величину можно ориентироваться только для расчета предельных режимов работы устройства.

В нормальных условиях эксплуатации следует принимать во внимание не только и не столько физическое функционирование резистора, но и другие параметры, такие как изменение сопротивления при росте температуры, нагрев окружающих резистор устройств за счет выделяемого им тепла, зависимость сопротивления от влажности окружающего воздуха (особенно для резисторов открытых типов), изменение характеристик при циклической нагрузке и т. п.

Если температура окружающей среды отличается (в сторону увеличения) от 25 °С (или 40 °С), то рассеиваемая резистором мощность должна быть соответственно снижена до значений, при которых не превышается максимально допустимая температура нагрева прибора. На рис. 3 изображены графики зависимости относительной рассеиваемой мощности резисторов от температуры окружающего воздуха согласно рекомендациям NEMA, UL и MIL-R-26 (U-EIA).

Рис. 3. Зависимость относительной мощности рассеяния резистора от температуры окружающего воздуха

При построении данных зависимостей принимается, что температура перегрева не зависит от величины температуры окружающей среды. Однако это не совсем верно. Точный расчет должен учитывать повышение эффективности излучения с ростом температуры согласно законам Стефана-Больцмана и Вина. Но вклад, вносимый за счет этого при невысоких температурах (до 1000–1500 °С) весьма невелик, и его можно не учитывать в подавляющем большинстве конструктивных расчетов.

Для некоторых типов резисторов в справочных данных указывается предельно допустимая тепловая нагрузка поверхности. Для большинства типов проволочных резисторов она составляет от 0,7 Вт/см2 (для резисторов большого размера на мощности более 150–200 Вт) до 2 Вт/см2 (для небольших резисторов с мощностью 10–20 Вт). Эту величину удобно использовать при расчете работы резистора в качестве нагревательного элемента.

Следует обратить внимание на то, что в рекомендациях по определению максимальной мощности резисторов не указано расположение резистора относительно поверхности земли. Но имеется точное указание на то, что температура измеряется для наиболее горячего участка резистора. У горизонтально расположенного трубчатого проволочного резистора с равномерной намоткой резистивного элемента температура в районе середины прибора может быть в 1,5–2,5 раза выше, чем температура у торцов (в зависимости от способа крепления). При вертикальном расположении зона максимального нагрева смещается вверх на 3–10% длины резистора, а верхний торец имеет бульшую температуру, чем нижний. Это вызывает некоторое увеличение механических напряжений в конструкции прибора и может снизить его надежность. Поэтому при прочих равных условиях всегда следует предпочитать горизонтальное расположение резисторов, за исключением специально предназначенных для вертикального монтажа приборов, например в теплоотводящих корпусах из алюминиевого профиля. Для ряда особых случаев применения (например, в качестве равномерного источника тепла) выпускаются специальные резисторы с неравномерной намоткой резистивного элемента (более частая у краев и редкая в середине), у которых температура практически постоянна по всей длине прибора.

Рассмотрим подробнее основные факторы, определяющие температуру резистора, либо, с другой стороны, требуемую величину номинальной мощности, при которой температура не превышает заданной:

1. Температура окружающей среды

Повышение температуры окружающей среды вызывает соответствующее снижение допустимой температуры перегрева и соответствующей ей мощности рассеяния. График зависимости относительной допустимой мощности рассеяния от температуры окружающей среды приведен выше, на рис. 3. Если температура окружающей среды ниже той, для которой была определена максимальная мощность рассеяния (25 °С или 40 °С), то в ряде случаев можно допустить повышение максимальной мощности выше типовой величины, но при этом необходимо дополнительно уточнять возможности резистора по работе с токами, превышающими номинальный. Превышение тока резистора в данном случае может вызвать не увеличение его температуры выше предельно допустимой, а разрушение внешних и внутренних контактов (места соединения резистивного элемента с выводами) и локальные перегревы и плавление резистивного элемента.

2. Монтаж в закрытом корпусе

Монтаж резистора в корпусе ухудшает условия отвода тепла за счет излучения (часть излучения отражается стенками корпуса, остальная часть излучается как в окружающее, так и во внутреннее пространство корпуса), а также за счет конвекции (корпус нарушает конвекционный ток воздуха и преграждает доступ холодного воздуха к резистору). Существенное влияние на температуру резистора, помещенного в корпус, оказывают размер, толщина стенок, их материал и наличие перфорации и окраски поверхности. Ухудшение условий работы резистора при помещении в корпус хорошо демонстрируют графики на рис. 4.

Рис. 4. Зависимость температуры перегрева резистора от мощности при монтаже в свободном пространстве и в корпусах разного размера

3. Монтаж групп резисторов

Резисторы, монтируемые на малом расстоянии друг от друга, при работе разогреваются сильнее, чем одиночный резистор при такой же рассеиваемой мощности (на каждом из резисторов группы). Это происходит за счет взаимного нагрева резисторов излучением и увеличением количества тепла, приходящегося на единицу объема охлаждающего воздуха при естественной конвекции. Для того чтобы температура резисторов, работающих в группе, не превысила допустимого значения, необходимо снижать мощность, приходящуюся на каждый из приборов по отношению к максимально допустимой для одного свободно установленного резистора. Рис. 5 дает представление о порядке требуемого снижения мощности рассеяния на каждом из резисторов в зависимости от количества резисторов в группе и расстояний между ними.

Рис. 5. Зависимость допустимой мощности рассеяния каждого резистора в группе от количества резисторов и расстояний между ними

4. Высота над уровнем моря

Количество тепла, отводимого от резистора за счет конвекции воздуха, зависит от плотности последнего. Чем более разрежен воздух, тем меньшее количество тепла он способен отвести. При подъеме в атмосфере плотность воздуха снижается, а это означает, что максимальная мощность рассеяния резисторов будет снижаться. На высотах более 20 000 м плотность воздуха уже настолько мала, что конвективный отвод тепла перестает играть сколько-нибудь заметную роль в общем тепловом балансе резистора и тепло отводится только за счет излучения и теплопередачи элементам конструкции. На рис. 6 представлен график зависимости относительной мощности рассеяния резистора от высоты его размещения (над уровнем моря).

Рис. 6. Зависимость относительной допустимой мощности рассеяния резистора от высоты над уровнем моря

5. Работа в импульсных режимах

Если ток через резистор протекает не постоянно, а в течение определенных интервалов времени, а в остальные моменты резистор обесточен, то количество тепла, выделяемое в течение значительного промежутка времени, будет меньше, чем при непрерывной работе. «Усреднение» по времени происходит за счет теплоемкости конструкции, монтажных элементов и окружающего воздуха. В результате температура резистора не превышает максимально допустимую даже при импульсных мощностях, многократно превышающих максимальную мощность непрерывного режима. Величина допустимой импульсной мощности зависит как от конструктивных особенностей резистора (теплоемкость и теплопроводность конструкции), так и от длительности импульса и соотношения длительностей импульса и паузы (скважности). На рис. 7 приведены зависимости относительной допустимой импульсной рассеиваемой мощности для резисторов различных типов, определенные согласно рекомендациям NEMA для пусковых и тормозных резисторов.

Рис. 7. Зависимость относительной импульсной допустимой мощности рассеяния резистора от скважности импульсов тока для стандартного пускового режима электродвигателя

Для ряда типов резисторов импульсная мощность ограничена не допустимым перегревом, а максимальной величиной рабочего тока резистора, при превышении которой возможны повреждения резистивного элемента и выводов за счет локальных перегревов.

Графики на рис. 8 дают представление о процессе нагрева резисторов разных типов импульсом тока и построены в координатах времени импульса, необходимого для нагрева резистора до максимально допустимой температуры и импульсной мощности.

Рис. 8. Зависимость времени, требуемого для нагрева резистора до максимально допустимой температуры от относительной импульсной рассеиваемой мощности

С помощью зависимостей, представленных на рис. 9, можно определить соотношение длительностей импульса и паузы тока через трубчатые резисторы, нагревающего приборы до максимально допустимой температуры для различных абсолютных длительностей и различных относительных импульсных мощностей (в процентах от максимально допустимой мощности рассеяния непрерывного режима).

Рис. 9. Зависимость времен импульса и паузы тока и их соотношений, требуемых для разогрева резистора до максимально допустимой температуры от импульсной мощности

Рассмотренные выше особенности импульсных режимов относятся к типовым импульсным режимам, имеющим место при применении резисторов в цепях пуска и торможения электродвигателей, где времена воздействия значительных токов исчисляются единицами и десятками секунд, а паузы — от единиц секунд до многих часов.

Для импульсных токов малых длительностей (0,1–0,5 с и менее) импульсные характеристики будут существенно отличаться от приведенных выше, поскольку в большей мере будут определяться теплофизическими свойствами резистивного элемента, нежели теплоемкостью всего резистора в целом. При еще меньших длительностях импульсов (менее единиц миллисекунд) важную роль начинает играть индуктивность резистора, увеличивающая полное сопротивление резистора в области малых времен. Для применения на частотах более 1–3 кГц (длительности импульсов менее 1 мс) изготавливаются специальные резисторы с бифилярной намоткой, резко снижающей собственную индуктивность резистора, либо поверхностные и объемные резисторы на основе проводящих пленок.

6. Принудительное охлаждение

Принудительный обдув резисторов резко увеличивает количество охлаждающего воздуха по сравнению с естественным конвективным потоком и, тем самым, позволяет повысить эффективность отвода выделяемого тепла. Это очень простой и крайне эффективный способ повышения допустимой мощности рассеяния резисторов. На рис. 10 приведена зависимость относительной допустимой мощности рассеяния от скорости воздуха, охлаждающего резистор.

Рис. 10. Зависимость относительной допустимой мощности рассеяния резистора от скорости охлаждающего воздуха

Об эффективности этой простой меры можно судить хотя бы по тому, что при скорости воздуха всего 2,5 м/с мощность, рассеиваемая резистором без перегрева, более чем вдвое превышает его максимальную мощность при естественном охлаждении. Если резисторы работают, например, в системах реостатного торможения электроподвижного состава, то с целью экономии электроэнергии возможно применение не постоянного обдува, а связанного с процессом торможения, когда вентиляторы подключаются параллельно тормозному резистору или его отводу. Такие схемы охлаждения тормозных резисторов применены на ряде магистральных электровозов отечественного и зарубежного производства.

7. Ограничение температуры резисторов

В ряде случаев, с целью повышения надежности и увеличения срока аппаратуры, рабочую температуру резисторов выбирают ниже максимально допустимой. Снижение температуры поверхности резистора в 2 раза по отношению к максимально допустимой увеличивает надежность работы резистора от 4 до 100 раз (в зависимости от типа), а также снижает температуру внутри устройства, в котором резистор установлен, что также является крайне благоприятным фактором. К сожалению, снижение температуры тепловыделяющих элементов, при прочих равных условиях, всегда связано с увеличением их физических габаритов, поэтому данную меру можно рекомендовать, только если это допускается массогабаритными показателями аппаратуры.

Учитывая все вышесказанное, для первичного выбора резистора можно рекомендовать воспользоваться данными мнемонической таблицы, приведенной на рис. 11. В каждой из 7 граф таблицы приведены значения коэффициентов для различных условий окружающей среды и режима работы. Если известна (из расчета электрической схемы) мощность, рассеиваемая на резисторе, то, умножив ее на коэффициенты, определенные из таблицы и соответствующие условиям и режимам работы, можно получить величину номинальной мощности резистора, который следует применить в данной схеме в данных условиях.

Рис. 11. Таблица для определения требуемой номинальной мощности резистора

В качестве примера определим номинальную мощность резистора для системы пуска электродвигателя. Импульсная мощность, выделяемая на резисторах согласно расчету, составляет 1 кВт (300% от номинальной), рассеивается на группе из 4 резисторов (250 Вт на резистор), температура окружающего воздуха составляет +60 °С, резисторы смонтированы в открытой стойке, расстояние между резисторами 5 см, предполагается возможность работы устройства на высоте до 4000 м над уровнем моря, охлаждение естественное конвекционное, температура резисторов ограничена величиной 250 °С.

Определяем из таблицы соответствующие коэффициенты:

Номинальная мощность каждого из резисторов группы составит:

Таким образом, номинальная мощность каждого из резисторов в группе должна составлять не менее 160 Вт.

Разумеется, расчет номинальной мощности с помощью данной таблицы является приблизительным, поскольку не учитывает многие дополнительные факторы, тем не менее, его погрешность достаточно невелика и позволяет быстро определить мощность требуемого резистора, а исходя из нее — и конкретный тип применяемого прибора.

Несмотря на то, что резисторы, по сути, являются простейшими элементами электрических цепей, от правильного выбора их типов и условий эксплуатации во многом зависит надежность, себестоимость и эксплуатационные качества аппаратуры, а правильный выбор резисторов для силовых преобразовательных устройств, выполненный на этапе проектирования, во многом определит коммерческую судьбу аппаратуры.

При подготовке статьи были использованы информационные материалы компаний Danotherm (Дания), Arcol (Великобритания), Ohmite (США), S.I.R. (Италия).

Литература
  1. www.danotherm.com/
  2. www.ohmite.com/
  3. www.sirresistor.it/
  4. www.arcolresistors.com/
  5. Резисторы: Справочник / Под ред. И. И. Чертверткова. М.: Энергоиздат. 1981.
  6. ГОСТ 24238-84 Резисторы постоянные. Общие технические условия.
  7. ГОСТ 28608-90 (МЭК 115-1-82) Резисторы постоянные для электронной аппаратуры.

Определение мощности резистора: можно ли узнать по размеру детали

Главная База знаний Электроника

Резисторы есть в любой электрической схеме. Но в разных схемах протекают различной величины ток. Не могут же одни и те же элементы работать при 0,1 А и при 100 А. Ведь при прохождении тока сопротивление греется.

Чем выше ток, тем более интенсивный нагрев. Значит, и резисторы должны быть на разную величину тока. Так и есть. Отображает их способность работать при различных токах такой параметр, как мощность резистора. На деталях покрупнее она указывается прямо на корпусе.

Для мелких корпусов есть другой метод определения (см. ниже).

Что такое мощность резистора

Мощность определяется как произведение силы тока на сопротивление: P = I * R и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.

Как определить мощность резистора по внешнему виду: надо знать соответствие размеров и мощностей

Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий. При этом, нагрев не должен слишком сильно влиять на сопротивление резистора.

Стандартный ряд мощностей резисторов и их обозначение на схемах

Обратите внимание, что резисторы одного номинала могут быть с разной мощностью рассеивания. Этот параметр зависит от технологии изготовления, материала корпуса. Есть определенный ряд мощностей и их графическое обозначение по ГОСТу.

Графическое обозначение мощности резисторов на схеме — черточки и римские цифры, нанесенные на поверхность сопротивления. Самое малое стандартное значение 0,05 Вт, самое большое — 25 Вт, но есть и более мощные. Но это уже специальная элементная база и в бытовой аппаратуре не встречается.

Как обозначаются мощность маломощных резисторов надо просто запомнить. Это косые линии на прямоугольниках, которыми обозначают сопротивления на схемах.

Количество косых черточек обозначает количество четвертей дюйма. При номиналах сопротивлений от 1 Вт на изображении ставятся римские цифры: I, II, III, V, VI и т.д.

Цифра эта и обозначает мощность резистора в ваттах. Тут немного проще, так как соответствие прямое.

Как определить по внешнему виду

На принципиальной схеме указана нужная мощность резистора — тут все понятно. Но как определить мощность сопротивления по внешнему виду на печатной плате? Вообще, чем больше размер корпуса, тем больше тепла он рассеивает. На достаточно крупных по размеру сопротивлениях указывается номинальное сопротивление и его мощность в ваттах.

Тут есть некоторая путаница, но не все так страшно. На отечественных сопротивлениях рядом с цифрой ставят букву В. В зарубежных ставят W. Но эти буквы есть не всегда. В импортных может стоять V или SW перед цифрой. Еще в импортных может тоже стоять буква B, а в отечественных МЛТ может не стоять ничего или буква W. Запутанная история, конечно. Но с опытом появляется хоть какая-то ясность.

Как определить мощность резистора: стоит в маркировке

А ведь есть маленькие резисторы, на которых и номинал-то с трудом помещается. В импортных он нанесен цветными полосками. Как у них узнать мощность рассеивания?

В старом ГОСТе была таблица соответствий размеров и мощностей. Резисторы отечественного производства по прежнему делают в соответствии с этой таблицей. Импортные, кстати, тоже, но они по размерам чуть меньше отечественных.

Тем не менее их также можно идентифицировать. Если сомневаетесь, к какой группе отнести конкретный экземпляр, лучше считать что он имеет более низкую способность рассеивать тепло. Меньше шансов, что деталь скоро перегорит.

Тип резистора Диаметр, мм Длинна, ммРассеиваемая мощность, Вт
ВС2,57,00,125
УЛМ, ВС5,516,50,25
ВС5,526,50,5
7,630,51
9,848,52
25755
3012010
КИМ1,83,80,05
2,580,125
МЛТ260,125
370,125
4,210,80,5
6,6131
8,618,52

С размерами сопротивлений и их мощностью вроде понятно. Не все так однозначно. Есть резисторы большого размера с малой рассеивающей способностью и наоборот. Но в таких случаях, проставляют этот параметр в маркировке.

Мощность SMD-резисторов

SMD-компоненты предназначены для поверхностного монтажа и имеют миниатюрные размеры. Мощность резисторов SMD определяется по размерам. Также она есть в характеристиках, но необходимо знать серию и производителя. Таблица мощности СМД резисторов содержит наиболее часто встречающиеся номиналы.

Размеры SMD-резисторов — вот по какому признаку можно определить мощность этих элементов

Код imperialКод metrikДлинна inch/mmШирина inch/mmВысота inch/mmМощность, Вт
020106030,024/0,60,012/0,30,01/0,251/20 (0,05)
040210050,04/1,00,02/0,50,014/0,351/16 (0,062)
060316080,06/1,550,03/0,850,018/0,451/10 (0,10)
080521120,08/2,00,05/1,20,018/0,451/8 (0,125)
120632160,12/3,20,06/1,60,022/0,551/4 (0,25)
121032250,12/3,20,10/2,50,022/0,551/2 (0,50)
121832460,12/3,20,18/4,60,022/0,551,0
201050250,20/2,00,10/2,50,024/0,63/4 (0,75)
251263320,25/6,30,12/3,20,024/0,61,0

В общем-то, у этого типа радиоэлементов нет другого оперативного способа определения тока, при котором они могут работать, кроме как по размерам. Можно узнать по характеристикам, но их найти не всегда просто.

Как рассчитать мощность резистора в схеме

Чтобы рассчитать мощность резисторов в схеме, кроме сопротивления (R) необходимо знать силу тока (I). На основании этих данных можно рассчитать мощность. Формула обычная: P = I² * R. Квадрат силы тока умножить на сопротивление. Силу тока подставляем в Амперах, сопротивление — в Омах.

Если номинал написан в килоомах (кОм) или мегаомах (мОм),  его переводим в Омы. Это важно, иначе будет неправильная цифра.

Схема последовательного соединения резисторов

Для примера рассмотрим схему на рисунке выше. Последовательное соединение сопротивлений характерно тем, что через каждый отдельный резистор цепи протекает одинаковый ток.

Значит мощность сопротивлений будет одинаковой. Последовательно соединенные сопротивления просто суммируется: 200 Ом + 100 Ом + 51 Ом + 39 Ом = 390 Ом. Ток рассчитаем по формуле: I = U/R.

Подставляем данные: I = 100 В / 390 Ом = 0,256 А.

По расчетным данным определяем суммарную мощность сопротивлений: P = 0,256² * 390 Ом = 25,549 Вт.  Аналогично рассчитывается мощность каждого из резисторов. Например, рассчитаем мощность резистора R2 на схеме. Ток мы знаем, его номинал тоже.

Получаем: 0,256А² * 100 Ом = 6,55 Вт. То есть, мощность этого резистора должна быть не ниже 7 Вт. Брать с более низкой мощностью точно не стоит — быстро перегорит.

Если позволяет конструктив прибора, то можно поставить резистор большей мощности, например, на 10 Вт.

Есть резисторы серии МЛТ, в которых мощность рассеивания тепла указана сразу после названия серии без каких-либо букв. В данном случае — МЛТ-2 означает, что мощность этого экземпляра 2 Вт, а номинал 6,8 кОм.

При параллельном подключении расчет аналогичен. Нужно только правильно рассчитать ток, но это тема другой статьи. А формула расчета мощности резистора от типа соединения не зависит.

Как подобрать резистор на замену

Если вам необходимо поменять резистор, брать надо либо той же мощности, либо выше. Ни в коем случае не ниже — ведь резистор и без того вышел из строя. Происходит это обычно из-за перегрева. Так что установка резистора меньшей мощности исключена. Вернее, вы его поставить можете. Но будьте готовы к тому, что скоро его снова придется менять.

Примерно определить мощность резистора можно по размерам

Если место на плате позволяет, лучше поставить деталь с большей мощностью рассеивания, чем была у заменяемой детали. Или поднять резистор той же мощности повыше (можно вообще не подрезать выводы) — чтобы охлаждение было лучше. В общем, при замене резистора, мощность берем либо ту же, либо выше на шаг.

Источник: https://elektroznatok.ru/info/elektronika/moshhnost-rezistora

Мощность SMD резистора. Как узнать?

Радиоэлектроника для начинающих

Также, как и выводные резисторы, SMD-резисторы для монтажа на поверхность рассчитаны на определённую мощность рассеивания. Но, как её узнать?

На самом деле, определить мощность SMD резистора не так уж и сложно. Мощность рядовых чип-резисторов, которых в современной электронике огромное множество, можно определить исходя из их размеров.

Далее представлена таблица №1, в которой указано соответствие типоразмера SMD-резистора и его мощности рассеивания. Отмечу, что в таблице указан типоразмер в дюймовой системе кодировки, а реальные размеры указаны в миллиметрах (длина и ширина). Сделано это исходя из удобства.

Дело в том, что до сих пор наибольшее распространение получила система кодирования типоразмера чип-резисторов в дюймах. Её используют все: производители, поставщики и магазины. А для того, чтобы определить типоразмер, а, следовательно, и мощность, мы должны замерить длину и ширину резистора обычной линейкой или другим более точным инструментом, шкала которого проградуирована в миллиметрах.

Если у вас на руках имеется SMD-резистор, мощность которого требуется узнать, то, сделав замеры обычной линейкой, можно быстро определить его типоразмер и соответствующую ему мощность рассеивания.

Таблица №1. Соответствие мощности SMD-резистора и его типоразмера.

Типоразмер (дюймовый, inch)Мощность (Power Rating at 70°C)Мощность, Вт.Длина (L) /Ширина (W), мм.
00751/50W0,02 Вт0,3/0,15
010051/32W0,03 Вт0,4/0,2
02011/20W0,05 Вт0,6/0,3
04021/16W, 1/8W0,063 Вт; 0,125 Вт1,0/0,5
06031/10W, 1/5W0,1 Вт; 0,2 Вт1,6/0,8
08051/8W, 1/4W0,125 Вт; 0,25 Вт2,0/1,25
12061/4W, 1/2W0,25 Вт; 0,5 Вт3,2/1,6
12101/2W0,5 Вт3,2/2,5
12181W; 1,5W1 Вт; 1,5 Вт3,2/4,8
18121/2W, 3/4W0,5 Вт; 0,75 Вт4,5/3,2
20103/4W0,75 Вт5,0/2,5
25121W; 1,5W; 2W1 Вт; 1,5 Вт; 2 Вт6,4/3,2
Мощность SMD-резисторов с широкими электродами (Long side termination chip resistors)
04060,25…0,3W0,25…0,3 Вт1,0/1,6
06120,75…1W0,75…1 Вт1,6/3,2
10201W1 Вт2,5/5,0
12181W1 Вт3,2/4,6
12252W2 Вт3,2/6,4

В таблице №1 также указаны типовые мощности и для SMD-резисторов с широкими боковыми электродами (выводами). В документации такие резисторы называются Long Side Termination Chip Resistors или Wide Terminal Chip Resistors.

Хочу обратить внимание на то, что в колонке (Мощность, Power Rating at 70°C) для некоторых типоразмеров указано несколько значений мощности. Дело в том, что производители выпускают разные серии SMD-резисторов. В одной серии мощность резисторов для типоразмера 1206 нормирована на уровне 0,5 Вт, а в другой 0,25 Вт.

Например, чип-резисторы серии CRM фирмы Bourns® рассчитаны на повышенную мощность: CRM0805 (0,25W), CRM1206 (0,5W), CRM2010 (1W). Используются такие в импульсных источниках питания в качестве токовых датчиков, токоограничительных резисторов, снабберов (демпфирующих резисторов).

Такое положение дел нужно учитывать, если вы собираетесь использовать резистор, мощность которого была определена исходя из размеров. При этом, нужно остановиться на наименьшем значении мощности, взятом из таблицы №1.

Если этим пренебречь, то может случится так, что вам попадётся резистор с меньшей мощностью, например, 0,25W вместо 0,5W, а это уже чревато его перегревом и выходом из строя при работе в реальной схеме.

Хотелось бы отметить, что сведения в таблице №1 в основном относятся к стандартным SMD-резисторам, то есть таким, которые широко и в большом количестве используются при производстве электроники.

Как правило, это чип резисторы на основе толстой плёнки (thick film chip resistors), так как они являются самыми дешёвыми, и, как следствие, самыми распространёнными. Примером могут служить серии стандартных толстоплёночных SMD резисторов D/CRCW e3 (Vishay®), ERJ (Panasonic) или RC (Yageo).

Не секрет, что существует огромное количество узкоспециализированных SMD-резисторов, которые имеют свои особенности.

К таким можно отнести резисторы, которые работают при повышенных температурах (до 230°C), в условии агрессивной среды (Antisulfur), миллиомные чип резисторы, SMD резисторы-перемычки.

Если такие резисторы и встречаются на печатных платах от потребительской электроники, то, как правило, их количество невелико, они применяются в определённых цепях электронных схем.

Их характеристики, в том числе и мощность рассеивания, может существенно отличатся от усреднённых значений, которые приведены в таблице №1 и являются типовыми для стандартных SMD-резисторов, количество которых в электронной схеме может быть просто огромным.

Типовые мощности тонкоплёночных резисторов (Thin film chip resistors) также соответствуют значениям из таблицы №1. Резисторы для некоторых областей применения, например, для автомобильной электроники (avtomotive grade), могут иметь мощность чуть выше той, что указана в таблице №1.

Как узнать мощность резисторных SMD-сборок?

Для резисторных SMD-сборок мощность в технической документации указывается на элемент (per element), а иногда ещё и на сборку вцелом (per package). Обычно, чип-сборка состоит из набора 2, 4, или 8 резисторов стандартного типоразмера. Например, набор типоразмера 0408 соответствует четырём SMD резисторам типоразмера 0402.

Так вот, типовая мощность одного резистора в такой сборке мало чем отличается от стандартной мощности отдельного SMD-резистора такого же типоразмера.

Так, для резисторных SMD-сборок 0202 (0201 × 2) мощность на элемент обычно составляет 0,03W (1/32W). Для тех, кто ещё не знает, сборка типоразмера 0202, – это два резистора 0201 в наборе.

Для сборок 0404 (0402 × 2), 0408 (0402 × 4) мощность на элемент обычно не превышает значения в 0,063W (1/16W).

Для сборок 0606 (0603 × 2), 0612 (0603 × 4), 0616 (0602 × 8) мощность на элемент составляет 0,063…0,125W.

Чип-сборка типоразмера 0612 на 4 резистора с выводами типа convex (т.е. выпуклыми). Мощность на элемент 0,1W.

На следующем фото резисторная чип-сборка 8×1206 с материнской платы старого, но очень крутого промышленного компьютера. На современных платах наборы такого типоразмера встречаются очень редко.

Ориентировочная мощность такой сборки 0,25W на элемент. Это если исходить из соображения, что типовая мощность для типоразмера 1206 составляет минимум 0,25W.

Хотя, стоит иметь ввиду, что в документации на стандартные современные сборки типоразмера 4×1206 минимальная мощность обычно 0,125W (1/8W) на элемент, что в 2 раза меньше. Так что, тут можно и поспорить, но я всё же остановлюсь на значении в 0,25W.

В англоязычной тех. документации мощность рассеивания называется Power Dissipation (иногда Rated dissipation), а обозначается как P70. Нижнему индексу (70) соответствует температура окружающей среды, при которой резистор способен долговременно выдерживать указанную мощность.

Каждая серия резисторов рассчитана на работу в определённом интервале температур. В большинстве своём, рабочая температура обычных чип-резисторов на основе толстой плёнки (thick film) лежит в интервале от -55°C до +155°C. Но, для микроминиатюрных типоразмеров от 0075 до 0201 максимальная температура, как правило, ограничена на уровне +125°C.

Как уже говорилось, в технической документации мощность SMD-резисторов указывается для температуры окружающей среды +70°C. Если резистор, эксплуатируется при температуре выше +70°C, то мощность, которая выделяется на нём в процессе работы должна быть снижена. Проще говоря, при повышенной температуре резистор просто не успевает охлаждаться.

На графике снижения мощности (Power Derating Curve) по шкале Rated Load (%) указан процент от номинальной мощности, которую способен выдержать SMD-резистор при соответствующей температуре окружающей среды (Ambient Temperature, °C).

Так, при температуре в +120°C мощность должна быть снижена до уровня 40% для изделий, рассчитанных на работу в температурном диапазоне -55°C…+155°C. Если у нас резистор на 1 ватт, то при данной температуре он способен долговременно выдерживать мощность в 0,4 ватта. Нетрудно заметить, что температура в 155°C соответствует нулевой мощности.

Приведённый график является типовым для стандартных толстоплёночных резисторов. Для специализированных SMD-резисторов график снижения мощности может существенно отличаться. Например, так он выглядит для резисторов серии PHT (Vishay).

Это высокостабильные тонкоплёночные чип резисторы для работы при повышенной температуре окружающей среды (от -55°C до +215°C). Даже к установке таких резисторов на печатную плату предъявляются определённые требования, чтобы эффективно отводить тепло от резистивного слоя.

Мощные SMD-резисторы

Существует мнение, что максимальная мощность рассеивания SMD резисторов ограничена их физическими размерами и параметрами резистивного слоя, например, сечением. И это так. Несмотря на это, среди резисторов для поверхностного монтажа есть и модели повышенной мощности.

К таким можно отнести чип резисторы серии PCAN (Vishay). Особенностью данных резисторов является подложка из нитрида алюминия (aluminum nitride, AlN), которая обладает повышенной теплопроводностью.

90% тепла от резистивного слоя SMD-резистора проходит через тело компонента, то есть через его подложку (substrate). Керамика на основе алюмонитрида (нитрида алюминия) обладает высокой теплопроводностью, что позволяет быстрее отводить тепло от резистивного слоя.

К тому же, керамика на основе алюмонитрида нетоксична.

Кроме этого нижняя часть контактных электродов данных чип-резисторов имеет увеличенную площадь, за счёт которой удаётся уменьшить тепловое сопротивление между проводящим слоем резистора и контактными площадками на печатной плате.

Такое сочетание технических решений позволяет преодолеть мощностные ограничения для стандартных типоразмеров смд-резисторов. Для сравнения, приведу значения мощности рассеивания для четырёх типоразмеров, доступных в данной серии.

Тонкоплёночные прецизионные чип резисторы повышенной мощности серии PCAN (Vishay)
Типоразмер, inchМощность, W
06030,5
08051
12062
25126

Как видим, для типоразмера 2512 мощность составляет 6 Вт. Стандартный SMD-резистор такого же типоразмера, как правило, имеет мощность не более 1 или 2 Вт.

Так же есть чип-резисторы с более скромными характеристиками, например, серии PHP (Vishay). В ней уже используется подложка из рядового, хотя, и высокочистого оксида алюминия (alumina, Al2O3), который широко используется в качестве материала для подложки в стандартных SMD-резисторах.

Из особенностей: увеличенная площадь нижних электродов Wraparound-типа. Допустимая мощность для типоразмера 2512 данной серии составляет 2,5 Вт. Это на 0,5…1,5 ватта больше, чем у стандартных резисторов аналогичного размера.

Работа чип-резисторов на таких мощностях возможна с одной оговоркой, – это соблюдение правил монтажа на печатную плату. Об этом прямо сообщается в технической документации на серию.

Какие бы технические ухищрения не использовались для увеличения мощностных характеристик SMD-резисторов, но тепло всё равно отводить куда-то надо. Именно поэтому, к таким резисторам предъявляются особые требования монтажа их на плату.

Основными способами отвода избытка тепла от резистивного слоя SMD-резистора являются соединительные контакты медных проводников, поверхность печатной платы и внешнее охлаждение.

В печатных платах под поверхностный монтаж элементов, избытки тепла от элементов отводятся в толщу платы и медные полигоны, которые служат своеобразным радиатором. В некоторых случаях может применятся принудительное внешнее охлаждение (например, вентиляторы).

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/moshchnost-smd-rezistorov.html

Как определить мощность резистора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Резистор является самым используемым радиокомпонентом, без которого не обходится ни одна электронная схема. Основными параметрами резистора являются электрическое сопротивление, мощность и допуск.

Если с сопротивлением и допуском все понятно, то определение мощности малогабаритных резисторов вызывает некоторые трудности, особенно на первых порах занятием радиолюбительством.

В статье о цветовой и цифровой маркировке резисторов я уже рассказывал о мощности резисторов, но судя по Вашим м, этот параметр был раскрыт не полностью.

В этой статье я постараюсь устранить этот пробел.

Итак.

Резисторы бывают разного устройства и конструкции, но в большинстве случаев они представляют собой небольшой цилиндр из фарфора или какого-нибудь другого изолятора, на который нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением. В других конструкция на цилиндр наматывается требуемое количество витков тонкой проволоки из сплавов, обладающих большим сопротивлением.

Резисторы применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока.

Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора в ваттах (Вт): двойной косой чертой обозначают резистор мощностью 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римской цифрой обозначается мощность от 1 Вт и выше.

Как правило, резисторы разной мощности отличаются размерами и чем больше мощность резистора, тем размер его больше. На крупногабаритных резисторах величина мощности указывается на корпусе в виде цифрового значения, а вот малогабаритные резисторы приходится определять на «глаз».

Но все же определить мощность того или иного резистора не так уж и трудно, так как габаритные размеры соответствуют стандарту, которого стараются придерживаться все производители электронных компонентов. В Советском Союзе даже выпускались таблицы для определения мощности резисторов по их размерам: диаметру и длине.

На отечественных резисторах типа МЛТ и некоторых зарубежных мощностью 1Вт и выше величина мощности указывается на корпусе цифровым значением. На остальных импортных резисторах рядом с цифрой дополнительно ставят латинскую букву W.

Правда, встречаются некоторые зарубежные экземпляры, где после цифрового значения может стоять другая буква. Как правило, подобную маркировку ставит производитель, который сам изготавливает некоторые компоненты для своей аппаратуры, не придерживаясь стандартов.

Однако с размерами есть небольшой нюанс, который надо знать: габариты отечественных и импортных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.

Это объясняется тем, что отечественные радиокомпоненты выпускаются с некоторым запасом по мощности, тогда как у зарубежных аналогов такого запаса нет. Поэтому при замене отечественных резисторов зарубежными, зарубежный аналог следует брать на порядок мощнее.

Есть еще один тип резисторов, выпускаемые как зарубежными, так и отечественными производителями, габариты которых не подходят под стандартные размеры. Как правило, это низкоомные высокоточные резисторы, имеющие допуск по номинальному сопротивлению от 1% и ниже. Такие резисторы применяются в измерительных приборах, медицинском, военном или высокоточном оборудовании.

Если с крупногабаритными резисторами все понятно, то малогабаритные резисторы мощностью 0,5 Вт и ниже приходится различать только исходя из их размеров. Но и в этом случае сложного ничего нет, так как на первое время достаточно в качестве образца иметь по одному резистору с мощностями от 0,125Вт до 0,5Вт, чтобы сравнивать их с искомыми резисторами.

А в дальнейшем, когда придет опыт, Вы сможете без труда определять мощность резисторов по их габаритам.

Ну и в довершении статьи картинка с резисторами отечественного и зарубежного производства в порядке возрастания их мощности. А чтобы легче было ориентироваться в габаритах, на каждой картинке предоставлена спичка, относительно которой можно судить о размерах того или иного резистора.

И еще надо сказать о замене: резистор мощностью 0,125Вт можно заменить резистором мощностью 0,125Вт и выше. Лишь бы позволял размер платы. А вот резистор мощностью 0,5Вт нельзя заменить резисторами 0,125Вт и 0,25Вт, так как их мощность меньше и в процессе работы они могут перегреться и выйти из строя.

  • И по традиции видеоролик, где показывается еще один вариант определения мощности резисторов.
  • Удачи!

Источник: https://sesaga.ru/kak-opredelit-moshhnost-rezistora.html

Как проверить резистор мультиметром

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора.

Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального.

Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром.

Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления.

Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Режим прозвонки

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем.

Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице.

Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

КодЗначениеКодЗначениеКодЗначениеКодЗначениеКодЗначениеКодЗначение
011001714733215493166546481681
021021815034221503246647582698
031051915435226513326748783715
041072015836232523406849984732
051102116237237533486951185750
061132216538243543577052386768
071152316939249553657153687787
081182417440255563747254988806
091212517841261573837356289825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634437964995953
161433221048309644538066596976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Переменный резистор

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

  • Мультиметр включают в режим измерения.
  • Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
  • Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.

Видео: как проверить резистор мультиметром

Другие материалы по теме

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://www.RadioElementy.ru/articles/kak-proverit-rezistor-multimetrom/

Все о резисторах. Определение, типы резисторов и их номинал

КатегорииСправочная Статьи для новичков

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току. Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе.

В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток.

Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм, мОм и гОм.

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

  • 1кОм = 1000 Ом;
  • 1 мОм = 1000 кОм;
  • 1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные.

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (цветовая маркировка резисторов). Как узнать номинал резистора по цветовой маркировке, можем узнать из этой статьи.

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R – означает, что номинал резистора будет измеряться в Омах. Очень важным является позиция этой буквы. Если на резисторе надпить типа 12R то номинал резистора будет 12Ом. Если же буква будет в начале R12, то сопротивление будет 0,12Ом. Также возможно обозначение типа 12R1, что будет означать 12,1 Ом.
  2. Буква K – означает, что номинал резистора будет измеряться в кОмах. Действуют теже правила что и для предыдущего примера. 12K = 12кОм, K12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М– означает, что номинал резистора будет измеряться в мОмах. 12М = 12мОм, М12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала.

При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала.

Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

Мощность резисторов

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Обозначение мощности резисторов на схеме

Резисторы разной мощности

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные.

С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники.

Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.

Переменный резистор

Подстроечные резисторы

Если на переменном резисторе написано что он имеет номинал 10кОм, то это означает, что он производит регулировку в пределах от до 10 кОм. В среднем положении ручки его номинал будет приблизительно около 5 кОм, в крайнем или 0 или 10 кОм.

Если Вам необходимо рассчитать номинал своего резистора, то советуем Вам воспользоватся нашим онлайн калькулятором цветовой маркировки резисторов.


Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме . (4

Источник: https://my-chip.info/vse-o-rezistorax-opredelenie-tipy-rezistorov-i-ix-nominal/

Что такое мощность резистора? | joyta.ru

Номинальная мощность резистора определяет, какое максимальное количество энергии может рассеять резистор без риска перегрева.

Как вытекает из закона Ома, электрическая мощность связана с напряжением и током:

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…

 P = I * U

Если электрическая мощность, выделяемая на резисторе, не превышает его номинальную рассеиваемую мощность, температура резистора будет стабильной. Следует отметить, что температура на самом резисторе распределена не равномерно. Его корпус немного теплее, чем выводы, а самая высокая температура в центре корпуса.

Чем выше скорость теплоотдачи в окружающую среду, тем ниже температура на резисторе. Крупные резисторы с большой площадью поверхности, как правило, могут рассеивать значительное количество тепловой мощности.

Если мощность выделяемая на резисторе превышает его номинальную мощность, то резистор может быть поврежден. Это может иметь несколько последствий:

  • изменение значения сопротивления,
  • снижение срока службы,
  • полный выход из строя в результате обрыва цепи,
  • в экстремальных случаях чрезмерная мощность может даже стать причиной возгорания.

Определение: мощность резистора — номинальная мощность, которую может рассеять резистор, сохраняя при этом свою работоспособность.

Мощность резистора

Номинальная мощность резистора определяется для определенной температуры окружающей среды на открытом воздухе. Обратите внимание, что на практике количество энергии, которую резистор может рассеять без повреждения  сильно зависит от условий эксплуатации и, следовательно, не равна номинальной мощности.

Например, повышение температуры окружающей среды может значительно уменьшить номинальную мощность резистора.

Стенд для пайки со светодиодной подсветкой

Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…

Это следует учитывать при разработке схем. Обычно резисторы рассчитаны для работы при температуре до 70°С, выше этого значения резистор значительно снижает свою номинальную рассеиваемую мощность. Это иллюстрируется кривой ухудшения параметров.

Наряду с влиянием температуры окружающей среды, есть еще несколько факторов, влияющих на изменение номинального значения мощности резистора. Наиболее важные факторы приведены ниже:

Корпус

Скорость теплоотдачи ограничивается из-за установки резистора в корпус прибора. Корпус ограничивает воздушный поток и, следовательно, отвод тепла путем конвекции. Излучаемое тепло будет удаляться неэффективно, потому что стенки корпуса действуют как тепловой барьер. Влияние корпуса на степень потери тепла сильно зависит от размера, формы, материала и толщины стенок.

Принудительное охлаждение

Увеличение теплопередачи посредством принудительной конвекции позволяет получить более высокую рассеиваемую мощность, чем путем обычной естественной конвекции.

Это может быть достигнуто путем создания воздушного потока, или даже жидкостным охлаждением. Некоторые мощные резисторы имеют ребристый корпус, чтобы создать большую поверхность для рассеивания тепла.

Группировка компонентов

На печатной плате резисторы зачастую расположены близко друг к другу. В таком случае тепловое излучение одного резистора будет оказывать влияние на показатель мощности рядом расположенных резисторов.

В заключении хотелось бы отметить, что для большинства электронных схем номинальная мощность резисторов не является ключевым параметром, поскольку эти резисторы рассеивают малое количество энергии от одного ватта и меньше.

Однако в силовой электронике мощность является важной характеристикой. Типичной областью применения мощных резисторов являются источники питания, динамические тормоза, преобразователи мощности, усилители и нагреватели.

можно ли узнать по размеру детали, расшифровки маркировок

У любого резистора, выпускаемого в промышленных условиях, существует порядка десяти параметров, на которые необходимо обращать внимание при его выборе. Среди основных находится мощность элемента. На неё нельзя не посмотреть при выборе нужной детали. Для этого нужно понимать, как узнать мощность резистора.

Внешний вид резистора

Дополнительная информация. Зачастую резистор называют даже в учебниках сопротивлением. Это происходит из-за того, что это его основной параметр.

Скорость потребления энергии резистором

Призвав на помощь школьный курс физики, необходимо вспомнить формулу мощности в электротехнике:

P=U*I.

Из рассмотрения её видно, что мощность напрямую зависит от силы направленного движения частиц и напряжения. Формула тока, проходящего через деталь, определяется из Закона Ома для участка цепи:

I=U/R.

Отсюда видно, что падение напряжения определяется сопротивлением резистора и силой тока, проходящего через него.

Важно! Падение напряжения – это величина оставшегося потенциала на концах резистора от поданного на него.

У всех металлов есть параметр, зависящий от его структуры, – удельное сопротивление. Когда электроны протекают через проводящий элемент, они преодолевают частицы, образующие металл. Это преодоление мешает движению тока. Т.е. чем плотнее металл, тем труднее направленным частицам течь. Мощность выделяется в процессе взаимодействия тока и элементов металла в форме тепла. Не всегда этого добиваются, т.к. КПД устройств от этого уменьшается, хотя в нагревательных элементах данное свойство требуется.

Вернемся к резисторам. Их, в первую очередь, используют для лимитирования тока при запитке потребителя. Из представленного выражения видно, что сила тока напрямую зависит от падения напряжения. Т.е. напряжение ниже – ток ниже. Избыточный потенциал «переваривается» деталью с появлением тепловыделения на ней. Значение мощности его при этом считается по приведённой выше формуле, где U – величина «переваренных» на детале вольт, а I – проходящий сквозь него ток.

Закон Джоуля-Ленца:

ω = j • E = ϭE2, где ω – величина тепловой энергии, появляющейся в единице объема; E и j – напряжённость и плотность электрического поля; ϭ – электропроводность внешнего окружения. Именно по нему определяется выделенное на элементе тепло.

Как определить мощность резистора

Рассмотрим пример:

  • Номинал детали – 2 Ом;
  • Поданный от внешнего источника потенциал – 24В.

Решение:

  • I=24/2=12А;
  • Р=24*12=244 Вт.

Необходимо отметить, что значения в этом примере взяты абсолютно произвольные.

Типы и обозначение резисторов

Зачастую мощности сопротивлений стандартны: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5. Это классические номиналы рассматриваемых устройств. Встречаются и нестандартные величины, которые требуются для конкретных случаев. Когда происходит процесс сборки схем, элементы выбирают, зная порядковые номера схем. Сопротивление и мощность указываются только по специальному запросу. Для моментального «узнавания» деталей на принципиальных схемах существуют специальные графические обозначения. Они чётко регламентируются ГОСТом.

Условные обозначения резисторов

Обычно характеристики и название необходимого для применения резистора указывают в спецификациях к заказу. Могут также регламентировать разрешённый допуск отклонения в %.

На первом рис. видно, что сопротивления сильно различаются внешне по форме и размерам. Есть прямая зависимость размера от мощности: чем больше элемент, тем выше его мощность. Это связано с тем, что при протекании тока сквозь сопротивление с большей поверхностной площади тепло в окружающую среду отдается быстрее (при условии, что это воздушная среда).

Дополнительная информация. По достижении предельной температуры нагрева на детали начинает выгорать наружный слой с нанесённой маркировкой. Это является первым признаком неправильной работы схемы. Если не принять меры, рассеиваемая энергия останется недостаточной, и далее выгорит внутренний (резистивный) слой. Элемент выйдет из строя.

Нагрев резисторов

При выборе нужного сопротивления по мощности необходимо внимательно посмотреть на способность его нормальной работы в требуемой температуре воздуха. Для верного использования элемента производители её всегда указывают. Мощность рассеивания резисторов прямо зависит от его возможностей по своевременной отдаче тепла без перегрева. Поэтому чем ниже температура окружающей среды, тем эффективнее и дольше без выхода из строя будет работать определённый элемент.

Нельзя допускать слишком высокой температуры вокруг сопротивления. Рабочей температурой для большинства из них является промежуток – 19-26 градусов.

Зачастую под рукой может не оказаться элемента с нужной размерностью для сборки конкретной электрической схемы с характеристикой по мощности. При наличии более мощных есть возможность установить их без потери качества. Главное, чтобы размеры соответствовали собираемому устройству. А вот при наличии устройств только меньшего номинала может возникнуть проблема.

Однако и это тоже решаемый вопрос. Особенно если знать правила состыковки сопротивлений: последовательного и параллельного.

Последовательное сочетание характеризуется тем, что сумма потенциалов состоит из потенциалов на единичном подсоединенном элементе. Ток же, протекающий в цепи, равен току ЛЮБОГО резистора. Т.е. в схеме с последовательным соединением напряжения на деталях разные, а токи одинаковые.

Параллельное соединение характеризуется тем, что, наоборот, потенциал на всех элементах одинаковый, а у тока, идущего через единичную ветку, зависимость обратна её резистивному сопротивлению. Здесь общий ток сети складывается из отдельных токов всех ветвей схемы.

Законы последовательного и параллельного соединения

При отсутствии, например, сопротивления 200 Ом на 1 Вт практически всегда допускается замена на две единицы по 100 Ом на 0,5 Вт последовательно, либо две единицы 400 Ом и 0,5 Вт, поставленных в параллель.

«Практически всегда» написано неспроста. Элементы не все хорошо справляются с ударными токами. В схемах, которые производят зарядку конденсаторов с очень серьёзной ёмкостью, вначале происходит огромная ударная нагрузка. Такой режим повреждает неподготовленный изоляционный слой детали. Это выясняется исключительно эмпирическим путём и долгих расчётов. Однако такими сложными вычислениями и наблюдениями все пренебрегают.

Сопротивление – главная характеристика рассматриваемого элемента, однако без знания параметров мощности выбрать его для установки в принципиальную схему не получится. В противном случае, будет происходить перегрев детали и выход её из строя. Если есть сомнения, то необходимо применить резистор увеличенной мощности для перестраховки.

Видео

Оцените статью:

Основы: Рассеивание мощности и электронные компоненты

Постоянно существующей проблемой в проектировании электронных схем является выбор подходящих компонентов, которые не только выполняют свои намеченные задачи, но и выживут в предсказуемых условиях эксплуатации. Большая часть этого процесса — убедиться, что ваши компоненты будут оставаться в пределах своих безопасных рабочих ограничений с точки зрения тока, напряжения и мощности. Из этих трех «силовая» часть часто является самой сложной (как для новичков, так и для экспертов), потому что безопасная рабочая зона может очень сильно зависеть от особенностей ситуации.

Далее мы познакомим вас с некоторыми основными концепциями рассеяния мощности в электронных компонентах, чтобы понять, как выбирать компоненты для простых схем с учетом ограничений мощности.

— НАЧАЛО ПРОСТОГО —

Давайте начнем с одной из простейших схем, которую только можно вообразить: батарея, подключенная к единственному резистору:

Здесь у нас одна батарея на 9 В и одна батарея на 100? (100 Ом) резистор, соединенный проводами, чтобы сформировать полную цепь.

Достаточно просто, правда? Но теперь вопрос: если вы действительно хотите построить эту схему, насколько «большой» из 100? резистор нужно ли использовать, чтобы убедиться, что он не перегревается? То есть, можем ли мы просто использовать «обычный» резистор ¼ W, как показано ниже, или нам нужно увеличить?

Чтобы это выяснить, нам необходимо рассчитать мощность, рассеиваемую резистором.
Вот общее правило для расчета рассеиваемой мощности:

Правило питания: P = I × В
Если ток I протекает через данный элемент в вашей цепи, теряя при этом напряжение В , то мощность, рассеиваемая этой схемой Элемент является произведением этого тока и напряжения: P = I × V .

Помимо :
Каким образом ток, умноженный на напряжение, может дать нам измерение «мощности»?

Чтобы понять это, нам нужно помнить, что физически представляют ток и напряжение.

Электрический ток — это скорость прохождения электрического заряда через цепь, обычно выражаемая в амперах, где 1 ампер = 1 кулон в секунду. (Кулон — это единица измерения электрического заряда в системе СИ.)

Напряжение или, более формально, электрический потенциал — это потенциальная энергия на единицу электрического заряда через рассматриваемый элемент схемы.В большинстве случаев вы можете думать об этом как о количестве энергии, которое «расходуется» в элементе на единицу проходящего заряда. Электрический потенциал обычно измеряется в вольтах, где 1 вольт = 1 джоуль на кулон. (Джоуль — единица энергии в системе СИ.)

Итак, если мы возьмем ток, умноженный на напряжение, это даст нам количество энергии, которое «израсходовано» в элементе на единицу заряда, умноженное на количество этих единиц заряда, проходящих через элемент в секунду. :

1 ампер × 1 вольт =
1 (кулон / секунда) × 1 (джоуль / кулон) =
1 джоуль / секунда

Результирующая величина выражается в единицах один джоуль в секунду: скорость потока энергии, более известная как мощность.Единица измерения мощности в системе СИ — ватт, где 1 ватт = 1 джоуль в секунду.

Итак, у нас есть

1 ампер × 1 вольт = 1 ватт

Снова на нашу трассу! Чтобы использовать правило мощности ( P = I × V ), нам нужно знать как ток через резистор, так и напряжение на резисторе.

Во-первых, мы используем закон Ома ( V = I × R ), чтобы найти ток через резистор.
• Напряжение на резисторе В = 9 В.
• Сопротивление резистора R = 100 Ом.

Следовательно, ток через резистор равен:

I = В / R = 9 В / 100? = 90 мА

Затем мы можем использовать правило мощности ( P = I × V ), чтобы найти мощность, рассеиваемую резистором.
• Ток через резистор I = 90 мА.
• Напряжение на резисторе В = 9 В.

Следовательно, мощность, рассеиваемая в резисторе, составляет:

P = I × В = 90 мА × 9 В = 0,81 Вт

Так вы можете использовать резистор на 1/4 Вт?

Нет, потому что он, скорее всего, выйдет из строя из-за перегрева.
100? резистор в этой схеме должен быть рассчитан не менее чем на 0,81 Вт. Обычно выбирается следующий больший доступный размер, в данном случае 1 Вт.

Резистор мощностью 1 Вт обычно поставляется в гораздо более крупном физическом корпусе, как показано здесь:

(1 Вт, резистор 51 Ом, для сравнения размеров.)

Поскольку резистор на 1 Вт физически намного больше, он должен быть в состоянии справиться с рассеиванием большей мощности за счет большей площади поверхности и более широких выводов. (Он все еще может сильно нагреваться на ощупь, но не должен нагреваться настолько, чтобы выйти из строя.)

Вот альтернативное расположение, которое работает с четырьмя 25? резисторы в серии (а в сумме все равно 100?).В этом случае ток через каждый резистор по-прежнему составляет 90 мА. Но, поскольку на каждом резисторе есть только четверть напряжения, на каждом резисторе рассеивается только четверть мощности. Для такой схемы достаточно, чтобы четыре резистора были рассчитаны на 1/4 Вт.

В сторону: прорабатываем этот пример.

Поскольку четыре резистора включены последовательно, мы можем сложить их значения, чтобы получить их общее сопротивление, равное 100 Ом. Использование закона Ома с этим общим сопротивлением снова дает нам ток 90 мА.И снова, поскольку резисторы включены последовательно, одинаковый ток (90 мА) должен протекать через каждый обратно к батарее. Напряжение через каждые 25? резистор тогда В = I × R , или 90 мА × 25? = 2,25 В. (Чтобы еще раз убедиться, что это разумно, обратите внимание, что напряжения на четырех резисторах в сумме составляют 4 × 2,25 В = 9 В.)

Мощность на каждого человека 25? резистор P = I × В = 90 мА × 2,25 В? 0,20 Вт, безопасный уровень для использования с резистором 1/4 Вт.Интуитивно понятно, что если разделить 100? резистор на четыре равные части, каждая из которых должна рассеивать четверть общей мощности.

— ЗА РЕЗИСТОРАМИ —

Для нашего следующего примера давайте рассмотрим следующую ситуацию: предположим, что у вас есть схема, которая принимает входной сигнал от источника питания 9 В и имеет встроенный линейный регулятор для понижения напряжения до 5 В, где все работает. Ваша нагрузка на конце 5 В может достигать 1 А.

Как выглядит мощность в этой ситуации?

Регулятор, по сути, действует как большой переменный резистор, который регулирует свое сопротивление по мере необходимости для поддержания постоянного выходного напряжения 5 В. Когда выходная нагрузка составляет 1 А, выходная мощность, обеспечиваемая регулятором, составляет 5 В × 1 А = 5 Вт, а мощность, потребляемая в цепи источником питания 9 В, составляет 9 Вт. Напряжение, падающее на стабилизаторе. составляет 4 В, а при 1 А, это означает, что 4 Вт рассеивается линейным регулятором — также разница между входной и выходной мощностью.

В каждой части этой схемы соотношение мощности задается следующим образом: P = I × V . Две части — регулятор и нагрузка — это места, где рассеивается мощность. А в части цепи, подключенной к источнику питания, P = I × V описывает подачу мощности в систему — напряжение увеличивается на по мере прохождения тока по источнику питания.

Кроме того, стоит отметить, что мы, , не сказали , какая нагрузка тянет этот 1 А.Энергия потребляется, но это не обязательно означает, что она преобразуется в (просто) тепловую энергию — например, это может быть питание двигателя или набора зарядных устройств для аккумуляторов.

Помимо:
Хотя такая установка линейного регулятора напряжения, как эта, является очень распространенной схемой для электроники , стоит отметить, что это также невероятно неэффективная схема : 4/9 входной мощности просто сгорает. как тепло, даже при работе на более низких токах.

— КОГДА НЕТ ПРОСТОЙ СПЕЦИФИКАЦИИ «МОЩНОСТЬ» —

Далее, немного более сложная часть: убедиться, что ваш регулятор может справиться с мощностью. В то время как на резисторах четко указана их мощность, на линейных регуляторах это не всегда. В нашем примере с регулятором выше предположим, что мы используем регулятор L7805ABV от ST (техническое описание здесь).


(Фото: типичный корпус TO-220, тип, который обычно используется для линейных регуляторов средней мощности)

L7805ABV — линейный стабилизатор 5 В в корпусе TO-220 (аналогичный показанному выше), рассчитанный на 1.Выходной ток 5 А и входное напряжение до 35 В.

Наивно, вы можете предположить, что вы можете подключить это прямо к входу 35 В и рассчитывать на выход 1,5 А, что означает, что регулятор будет излучать мощность 30 В * 1,5 А = 45 Вт. Но это крошечный пластиковый пакет; на самом деле он не может справиться с такой большой мощностью. Если вы посмотрите таблицу данных в разделе «Абсолютные максимальные характеристики», чтобы попытаться определить, с какой мощностью он может справиться, все, что там написано, является «внутренне ограниченным», что само по себе далеко не ясно.

Оказывается, существует фактическая номинальная мощность, но обычно она несколько «спрятана» в таблице данных. Вы можете понять это, просмотрев пару связанных спецификаций:

• T OP , Диапазон рабочих температур перехода: от -40 до 125 ° C

• R thJA , Термическое сопротивление переход-окружающая среда: 50 ° C / Вт

• R thJC , Термическое сопротивление переходной коробки: 5 ° C / Вт

Рабочий диапазон температур перехода, T OP , определяет, насколько горячим может быть «переход» — активная часть интегральной схемы регулятора, прежде чем он перейдет в режим теплового отключения.(Тепловое отключение — это внутренний предел, который делает мощность регулятора «внутренне ограниченной».) Для нас это максимум 125 ° C.

Тепловое сопротивление переход-окружающая среда R thJA (часто обозначается как? JA ), сообщает нам, насколько нагревается переход, когда (1) регулятор рассеивает заданное количество мощности и (2) регулятор находится внутри на открытом воздухе при заданной температуре окружающей среды. Предположим, нам нужно спроектировать наш регулятор для работы только в скромных коммерческих условиях, температура которых не превышает 60 ° C.Если нам нужно поддерживать температуру перехода ниже 125 ° C, то максимальное повышение температуры, которое мы можем допустить, составляет 65 ° C. Если у нас есть R thJA 50 ° C / Вт, то максимальная рассеиваемая мощность, которую мы можем допустить, составляет 65/50 = 1,3 Вт, если мы хотим предотвратить отключение регулятора из-за перегрева. Это значительно ниже 4 Вт, которые можно было бы ожидать при токе нагрузки 1 А. Фактически, мы можем выдержать только 1,3 Вт / 4 В = 325 мА среднего выходного тока, не отправляя регулятор в состояние теплового отключения.

Это, однако, относится к случаю, когда ТО-220 излучает в окружающий воздух — почти наихудшая ситуация. Если мы сможем добавить радиатор или иным образом охладить регулятор, мы сможем добиться большего.

Противоположный конец спектра представлен другой термической спецификацией: корпус с термическим сопротивлением, R thJC . Это указывает, какую разницу температур можно ожидать между переходом и внешней стороной корпуса TO-220: всего 5 ° C / Вт. Это соответствующий номер , если вы можете быстро отвести тепло от корпуса, например, если у вас есть очень хороший радиатор, подключенный к внешней стороне корпуса TO-220.С большим радиатором и идеальным соединением с этим радиатором при мощности 4 Вт температура перехода повысится всего на 20 ° C по сравнению с температурой вашего радиатора. Это представляет собой абсолютный минимум нагрева, который можно ожидать в идеальных условиях.

В зависимости от технических требований вы можете начать с этого момента, чтобы построить полный бюджет мощности, чтобы учесть теплопроводность каждого элемента вашей системы, от самого регулятора до термоинтерфейсной площадки между ним и радиатором, к тепловой связи радиатора с окружающим воздухом.Затем вы можете проверить соединения и относительную температуру каждого компонента с помощью бесконтактного инфракрасного термометра с точечным считыванием. Но часто бывает лучше переоценить ситуацию и посмотреть, есть ли лучший способ сделать это.

В данной ситуации можно рассмотреть вопрос о переходе на стабилизатор для поверхностного монтажа, который обеспечивает лучшую управляемость по мощности (за счет использования печатной платы в качестве радиатора), или, возможно, стоит подумать о добавлении силового резистора (или стабилитрона) до стабилизатор для снижения большей части напряжения за пределами корпуса регулятора , уменьшая нагрузку на него.Или, что еще лучше, посмотрите, есть ли способ построить вашу схему без каскада линейного регулятора с потерями.

— ПОСЛЕ СЛОВА —

Мы рассмотрели основы понимания рассеяния мощности в нескольких простых схемах постоянного тока.

Принципы, которые мы рассмотрели, являются довольно общими и могут использоваться для понимания энергопотребления в большинстве типов пассивных элементов и даже в большинстве типов интегральных схем. Однако существуют реальные ограничения, и можно потратить всю жизнь на изучение нюансов энергопотребления, особенно при более низких токах или высоких частотах, когда малые потери, которыми мы пренебрегли, становятся важными.

В цепях переменного тока многие вещи ведут себя по-разному, но правило мощности все еще сохраняется в большинстве случаев: P (t) = I (t) × В (t) для изменяющихся во времени тока и напряжения. И не все регуляторы работают с потерями: импульсные источники питания могут преобразовывать (например) 9 В постоянного тока в 5 В постоянного тока с КПД 90% или выше — это означает, что при хорошем дизайне может потребоваться всего около 0,6 А при 9 В для производят 5 В при 1 А. Но это уже отдельная история.

тепла, рассеиваемого резисторами | Блестящая вики по математике и науке

Из микроскопической интерпретации закона Ома сопротивление в классической формуле V = IRV = IRV = IR для тока в цепи при заданном управляющем напряжении может быть расширено как:

V = I (mne2τ) La, V = I (\ frac {m} {n {e} ^ {2} \ tau}) \ frac {L} {a}, V = I (ne2τm) aL,

, где mmm и eee — масса и заряд электрона соответственно, LLL и aaa — длина и площадь проводящего материала, составляющего резистор, nnn — плотность носителей заряда, а τ \ tau τ — интервал времени между два столкновения электронов в резисторе.Сопротивление также можно расширить до:

R = ρLA, R = \ frac {\ rho L} {A}, R = AρL,

, где ρ \ rhoρ — удельное сопротивление , — свойство материала резистора, а LLL и AAA — длина и площадь поперечного сечения резистора соответственно.

Неупругие столкновения электронов, движущихся по проводнику, являются причиной сопротивления. Кристаллическая структура атомов металла в проводнике препятствует прохождению через него электронов. В любой данный момент электроны имеют определенную вероятность неупругого рассеяния от металлической решетки, передавая часть своей энергии решетке в виде кинетической энергии, т.е.е. высокая температура. Это рассеяние тепла в решетке, называемое нагревом Джоулей , является источником рассеивания мощности в резисторе. Обратите внимание, что хотя межэлектронные столкновения могут давать свою собственную связанную тепловую энергию движения, эта энергия остается внутренней по отношению к системе до тех пор, пока она не рассеивается в металлической решетке, которая не переносит ток.

Расчет среднего времени свободного пробега электронов, движущихся по проводнику, показывает, что электроны проходят через большое количество узлов решетки, прежде чем существенно взаимодействуют с катионами металлов.Объяснение этому факту исходит из квантовой механики и дуализма волна-частица. Из-за волновой природы электрона электроны могут распространяться без неупругого рассеяния на большее расстояние через решетку, чем ожидалось, и вероятность рассеяния намного более чувствительна к дефектам решетки, чем плотность решетки.

3.5: Рассеиваемая мощность в цепях резисторов

Задачи обучения

  • Рассеиваемая мощность в цепях резисторов.

Мы можем найти напряжения и токи в простых схемах, содержащих резисторы и источники напряжения или тока. Мы должны проверить, подчиняются ли эти переменные схемы принципу сохранения энергии: поскольку схема является замкнутой системой, она не должна рассеивать или создавать энергию. На данный момент наш подход состоит в том, чтобы сначала исследовать потребление / создание мощности цепи резистора . Позже мы докажем , что из-за KVL и KCL все цепи сохраняют электроэнергию.

Как определено на [ссылка], мгновенная мощность, потребляемая / создаваемая каждым элементом схемы, равна произведению его напряжения и тока. Общая мощность, потребляемая / создаваемая цепью, равна сумме мощностей каждого элемента.

\ [P = \ sum_ {k} v_ {k} i_ {k} \]

Напомним, что ток и напряжение каждого элемента должны соответствовать соглашению, согласно которому положительный ток определен для входа на клемму положительного напряжения. При таком соглашении положительное значение v k i k соответствует потребляемой мощности, отрицательное значение — создаваемой мощности.Поскольку общая мощность в цепи должна быть равна нулю ( P = 0), некоторые элементы схемы должны создавать мощность, а другие потреблять ее.

Рассмотреть простую последовательную схему следует в [ссылка]. {2} \]

Следовательно, этот резистор рассеивает мощность, потому что P 2 положительный.{2} Р \]

Поскольку резисторы имеют положительное значение, резисторы всегда рассеивают мощность . Но куда девается мощность резистора? При сохранении мощности рассеиваемая мощность должна где-то поглощаться. Ответ не предсказывается непосредственно теорией цепей, но физикой. Ток, протекающий через резистор, нагревает его; его мощность рассеивается теплом.

Удельное сопротивление

Физический провод имеет сопротивление и, следовательно, рассеивает мощность (нагревается, как резистор в цепи).Фактически, сопротивление провода длиной L и площадью поперечного сечения A, определяется как:

\ [R = \ frac {\ rho L} {A} \]

Величина ρ известна как удельное сопротивление и представляет сопротивление материала единичной длины с единичной площадью поперечного сечения, составляющего провод. { 2} \]

Мы пришли к выводу, что оба резистора в нашей примерной схеме потребляют мощность, что указывает на источник напряжения как на производителя энергии.{2} \]

Это довольно общий результат: источники вырабатывают энергию, а элементы схемы, особенно резисторы, потребляют ее.

Но где источники берут энергию? Опять же, теория цепей не моделирует построение источников, но теория утверждает, что все источников должны получать энергию для работы.

Рассеиваемая мощность в цепях | CircuitBread

В обычном разговоре мощность часто заменяется множеством похожих, но на самом деле разных слов — энергия очень важна.Мощность — это количество энергии, которое расходуется за определенный период времени. Хотя мощность встречается во многих различных областях, например, в лошадиных силах в автомобилях, в электротехнике и электронике она чаще всего измеряется в ваттах. В электронике рассеиваемая мощность обычно является мерой того, сколько тепла выделяется из-за неэффективности схемы. Хотя есть исключения из этого правила, например, для нагревателей, мы хотели бы сосредоточиться на рассеивании мощности в резисторах или других компонентах.

Как найти рассеиваемую мощность с помощью резисторов

Формула для мощности довольно проста:

Рассчитайте мощность, умножив напряжение и ток

Если вы знаете падение напряжения на компоненте и ток через него, вы можете вычислить рассеиваемая мощность с помощью элементарной математики. Однако, если у вас нет одной из этих двух переменных, надежда не потеряна. Используя закон Ома, мы знаем

Вычислить напряжение, умножив ток на сопротивление Вычислить ток через деление напряжения на сопротивление

Таким образом, мы можем изменить это уравнение мощности на:

Мощность равна квадрату тока, умноженному на сопротивление Мощность равна квадрату напряжения, деленному на сопротивление

Рассеиваемая мощность в запоминающих устройствах

Есть два компонента, которые новички иногда по ошибке пытаются вычислить, чтобы определить рассеиваемую мощность.Идеальные конденсаторы и катушки индуктивности не рассеивают энергию — они являются запоминающими устройствами. Хотя иногда конденсаторы и катушки индуктивности имеют напряжение на них и ток через них, они находятся в процессе зарядки или разрядки, и мощность не рассеивается. Обратите внимание на термин «идеальные» — на самом деле они имеют последовательное сопротивление, которое вызывает небольшое рассеивание мощности, но в большинстве случаев им можно пренебречь.

Потери мощности при переключении

Высокоэффективные источники питания, а также чрезвычайно эффективные усилители класса D используют высокоскоростное переключение для достижения своей эффективности.Теоретически усилители класса D могут достичь 100% эффективности, но на самом деле они теряют мощность при переключении между включением и выключением.

Иллюстрация, когда мощность рассеивается.

Когда переключатель разомкнут, даже при очень высоком напряжении ток отсутствует. При P = IV мощность отсутствует, если I равно нулю. Когда переключатель замкнут, даже при высоком токе на переключателе нет напряжения. Итак, опять же, если I велико, а V равно нулю, рассеиваемая мощность отсутствует. Но пока переключатель меняет состояние, сопротивление изменяется между «0» и «∞», и именно во время этого перехода мощность рассеивается.

Рассеивание мощности всегда хорошо?

Конечно! Хотя электрическое отопление неэффективно, оно очень простое. Проволока сопротивления, как и нихром, является основой большинства промышленных обогревателей, тостеров и фенов. Крайне неэффективные лампы накаливания годами использовались людьми в качестве недорогих обогревателей в небольших помещениях. Итак, если ваша цель — тепло, то речь идет не столько о снижении рассеиваемой мощности, сколько о его контроле и безопасном использовании.

Общие советы по рассеиванию мощности

  • Убедитесь, что ваши резисторы рассчитаны на правильную мощность. В отличие от еды, электроника не становится лучше после приготовления.
  • Убедитесь, что рейтинги ИС включают или не включают радиаторы, и спланируйте соответственно. Если у вас есть TO-220, их мощность рассеивания значительно увеличивается с помощью радиатора.
  • При проектировании печатных плат убедитесь, что ваши дорожки достаточно большие, чтобы иметь достаточно низкое сопротивление, чтобы они не становились слишком горячими.Для этого у нас есть калькулятор.

Калькулятор ширины следа печатной платы

  • При создании схемы переключения уменьшите время переключения насколько это возможно. Это достигается за счет максимально возможного увеличения скорости нарастания, что достигается за счет уменьшения емкости линии.

Энергетика и энергия

  • Изучив этот раздел, вы сможете:
  • Выполните расчеты мощности, напряжения, тока и сопротивления.
  • • с использованием соответствующих единиц и подразделов.
  • Различайте мощность и энергию в электрических цепях.

Мощность резисторов

Когда через резистор протекает ток, электрическая энергия преобразуется в ТЕПЛОВУЮ энергию. Тепло, генерируемое в компонентах цепи, каждый из которых обладает хотя бы некоторым сопротивлением, рассеивается в воздухе вокруг компонентов. Скорость рассеивания тепла называется МОЩНОСТЬЮ, обозначается буквой P и измеряется в ваттах (Вт).

Количество рассеиваемой мощности может быть вычислено с использованием любых двух величин, используемых в расчетах по закону Ома. Помните, как и в любой формуле, в формуле должны использоваться ОСНОВНЫЕ КОЛИЧЕСТВА, то есть ВОЛЬТЫ, ОМЫ и АМПЕРЫ (не милли, мег и т. Д.).

Чтобы найти мощность P, используя V и I

Чтобы найти мощность P, используя V и R

Чтобы найти мощность P, используя I и R

Перед тем как начать, подумайте об этих нескольких советах, они облегчат задачу, если следовать им.

1. Разработайте ответы с помощью карандаша и бумаги; в противном случае легко запутаться на полпути и получить неправильный ответ.

2. Конечно, ответ — это не просто число, это будет определенное количество ватт (или несколько или несколько единиц ватт). Не забудьте указать правильную единицу измерения (например, Вт или мВт и т. Д.), А также число, иначе ответ не имеет смысла.

3. Преобразуйте все вспомогательные единицы, такие как мВ или кОм, в ватты, указав их в соответствующей формуле.Ошибка здесь даст действительно глупые ответы, в тысячи раз слишком большие или слишком маленькие.

4. Хотя структура этих формул мощности кажется очень похожей на формулы закона Ома, есть небольшое различие — они содержат некоторые элементы в квадрате (I 2 и V 2 ). Будьте очень осторожны при использовании трюка с треугольником для транспонирования этих формул. Если вам нужно связать мощность с сопротивлением, то I или V необходимо возвести в квадрат (умножить на себя). Однако вы можете построить треугольник, который соответствует любой из формул для получения R, как показано ниже.

Не забудьте загрузить нашу брошюру «Подсказки по математике», в которой показано, как использовать калькулятор с показателями степени и инженерной нотацией, чтобы работать с этими частями и каждый раз получать правильный ответ.

У вас нет научного калькулятора? Буклет «Подсказки по математике» объясняет, что вам нужно (и что вам не нужно, чтобы не тратить деньги без надобности). Если вы не хотите покупать научный калькулятор, вы всегда можете получить его бесплатно в сети.Пользователи ПК могут попробовать Calc98 на сайте www.calculator.org/download.html. Какой бы калькулятор вы ни выбрали, прочтите инструкции, чтобы ознакомиться с методами работы, которые вам следует использовать, поскольку они варьируются от калькулятора к калькулятору.

Важно помнить о влиянии рассеивания мощности в компонентах: чем больше мощность, тем больше тепла должно рассеиваться компонентом. Обычно это означает, что компоненты, рассеивающие большое количество энергии, нагреваются, а также они будут значительно больше по размеру, чем типы с низким энергопотреблением.Если компоненту требуется рассеивать больше энергии, чем он предназначен, он не сможет достаточно быстро избавиться от выделяемого тепла. Его температура повысится, и перегрев может вызвать полный отказ компонента и, возможно, повреждение других компонентов и самой печатной платы (PCB). В качестве меры предосторожности резисторы большой мощности часто устанавливают вне печатной платы с помощью более длинных выводных проводов, заключенных в керамические гильзы. Резисторы с проволочной обмоткой большой мощности могут даже быть заключены в металлический радиатор и прикреплены болтами к большой металлической поверхности, такой как корпус оборудования, чтобы избавиться от нежелательного тепла.Примеры резисторов большой мощности показаны на странице конструкции резистора.

Компоненты, такие как резисторы, имеют определенную номинальную мощность, указанную производителем (в ваттах или милливаттах). Этот рейтинг (параметр) необходимо проверять при замене компонента, чтобы не произошло завышения рейтинга. Это важный фактор безопасности при обслуживании электронного оборудования.

TIP

Тепло, выделяемое резисторами большой мощности, является основной причиной преждевременного выхода из строя многих цепей.Либо сам резистор выходит из строя из-за «разомкнутой цепи», особенно в резисторах с проволочной обмоткой. В резисторах из углеродного состава длительный перегрев может привести к изменению значения. Это может увеличиваться в типах с высоким сопротивлением или более опасно уменьшаться (позволяя увеличить ток) в типах с низким сопротивлением. Увеличение тока, вызванное этим уменьшением сопротивления, только ускоряет процесс, и в конечном итоге резистор (а иногда и другие связанные компоненты) сгорает!

Энергия в резисторах

Если определенное количество мощности рассеивается в течение определенного времени, то ЭНЕРГИЯ рассеивается.Энергия (мощность x время) измеряется в Джоулях, и, включив время (t) в формулы мощности, можно рассчитать энергию, рассеиваемую компонентом или схемой.

Рассеиваемая энергия = Pt или VIt или V 2 t / R или даже I 2 Rt Джоули

Обратите внимание, что в формулах для энергии такие величины, как мощность, время, сопротивление, ток и напряжение, должны быть преобразованы в их основные единицы, например Ватты, секунды, Ом, Амперы, Вольт и т. Д.Никаких дополнительных единиц или нескольких единиц! Как описано в буклете «Советы по математике».

Все вышеперечисленные единицы являются частью интегрированной системы международно стандартизированных единиц; Система S.I. (Système International d´Unités). Эта система устанавливает основные единицы для любых электрических, механических и физических свойств и их отношения друг к другу. Он также включает в себя стандартную форму кратных и подкратных чисел, описанную в буклете «Подсказки по математике».

ресурсов

Последовательная цепь

Глобусы, соединенные последовательно

В последовательной цепи одна за другой подключены две или более нагрузки.

У тока есть только один путь, по которому оно может течь.

Примером последовательной схемы является набор огней на елку. Все шары ставятся один за другим.

Путь только один, поэтому ток будет одинаковым в любой точке цепи.

Принципиальная схема, показывающая три последовательно включенных резистора

Общее сопротивление в последовательной цепи будет равно сумме каждого отдельного сопротивления в цепи.

Чем больше нагрузок помещено в цепь, тем больше сопротивление.

Общее сопротивление для последовательной цепи рассчитывается по следующей формуле:

R T = R 1 + R 2 + R 3

Закон напряжения Кирхгофа

Вольтметр на каждом резисторе в последовательной цепи t

Закон Кирхгофа расширяет закон Ома в отношении напряжений на сопротивлениях в последовательной цепи.Общее напряжение питания будет равно сумме падений напряжения на каждом резисторе.

Общее падение напряжения (В T ) рассчитывается по формуле:

В Т = В 1 + В 2 + В 3

Если известны как ток, так и каждое значение сопротивления, то можно использовать закон Ома для расчета падения напряжения на каждом резисторе.

Например:

В 1 = IR 1

Рассеиваемая мощность

Мощность, рассеиваемая в последовательной цепи, зависит от напряжения питания, приложенного к цепи, и тока, протекающего в цепи.Ток зависит от общего сопротивления цепи.

Из раздела о мощности вы знаете формулу рассеиваемой мощности:

P = VI

Мощность, рассеиваемая в каждом отдельном компоненте, зависит от сопротивления компонента. Общая рассеиваемая мощность будет равна сумме мощности, рассеиваемой каждым отдельным сопротивлением. В зависимости от известных значений комбинации формулы мощности, а также закона Ома могут использоваться для расчета рассеиваемой мощности (или любого другого неизвестного значения).

Пример

На схеме выше, если значения:

В Т = 20 В

R 1 = 50 Ом

R 2 = 20 Ом

R 3 = 100 Ом

Общее сопротивление можно рассчитать следующим образом:

R T = R 1 + R 2 + R 3

R T = 50 + 20 + 100

R T = 170 Ом

Какая общая рассеиваемая мощность?

Вы можете рассчитать текущий расход, а затем рассчитать мощность.Вместо этого вы можете использовать подстановку, чтобы получить формулу.

В формуле P = VI замените I на V T / R T , чтобы получить формулу

P T = V T x V T / R T , что совпадает с

P T = V T 2 / R T

P T = 20 2 /170

P T = 0,235 Вт или 235 мВт

Как рассчитать мощность и энергию в RC-цепи

Этот пост описывает, как рассчитать мощность и энергию в RC-цепи.Энергопотребление и рассеиваемая мощность — очень важные характеристики цифровой схемы.

Рассмотрим простую RC-цепь с источником напряжения, как показано ниже.

Из предыдущих сообщений мы знаем, что мощность, подаваемая на элемент схемы, равна p (t) = v (t) i (t). Резистор и конденсатор выполняют разные функции с точки зрения мощности в цепи: резистор — рассеивает энергию, а конденсатор — накапливает энергию.

Таким образом, мгновенная мощность от источника равна p (t) = Vi (t).Ток здесь i (t) = V – vC (t) R. Мы уже знаем, что для этой схемы напряжение на конденсаторе vC (t) = V (1 – e – tRC). Тогда для мощности имеем p (t) = V2R – V2R (1 – e – tRC) = V2Re – tRC.

Тогда мы можем найти, что энергия, подаваемая источником ω = ∫0Tp (t) dt, если T = ∞, то подводимая энергия равна ω = CV2. Энергия, запасаемая конденсатором, равна ωC (t) = CV2 (t) 2 = CV22. Мгновенная мощность на резисторе p (t) = Ri (t) 2 = V2Re – 2tRC. Чтобы найти энергию, рассеиваемую резистором, составьте ω = ∫0∞V2Re – 2tRCdt = CV22.

Рассмотрим схему с переключателем, выдающую ступенчатый сигнал, изображенную ниже.

Итак, здесь у нас есть две ситуации — когда конденсатор заряжается и когда конденсаторы разряжены. Он заряжается от источника, когда переключатель замкнут, а резисторы R1 и R2 рассеивают энергию. Когда переключатель разомкнут, конденсатор разряжается через резистор R2.

Средняя мощность — это общее количество энергии, рассеиваемой в течение определенного интервала времени, деленное на длину интервала времени T, то есть p = ωT. Где ω (t) = ∫0Tp (t) dt.

Когда переключатель включен, мы можем преобразовать схему, используя теорему Теневена, мы имеем следующую эквивалентную схему:

Здесь VTH = VR2R1 + R2, а RTH = R1R2R1 + R2.Как мы уже рассматривали ранее, полное решение в этом случае будет суммой однородного решения и частного решения.

Однородное решение здесь vC (t) = VTH (1 – e – tCRTH). Общая мощность, рассеиваемая резисторами, будет суммой мощности, рассеиваемой на резисторах R1 и R2. В этом случае p (t) = (V – v C ) 2R1 + vC2R2, где vC = VTH (1 – e – tCRTH).

Используя формулу для мощности, мы можем найти энергию, рассеиваемую в цепи в течение периода времени 0 → T1 равно ω0 → T1 = ∫0T1 (V – VTH (1 – e – tCRTH) 2R1 + VTH (1 – e – tCRTH) 2R2 ) dt.После упрощения и перестановки имеем ω0 → T1 = V2R1 + R2T1 + V2THC2.

В течение интервала времени T1 → T2 переключатель схемы размыкается, конденсатор разряжается, а резистор R2 рассеивает энергию. Прямо при пуске конденсатора напряжение VTH. Напряжение конденсатора будет изменяться со временем по формуле vC (t) = VTHe – tR2C.

Мгновенная мощность, рассеиваемая в цепи p (t) = vCvcR2 = VTh3R2e – 2tR2C, энергия здесь ωT1 → T2 = ∫T1T2p (t) dt = CV2Th3 (1 – e – 2T2CR2) ≈Cv2Th3.

Полная рассеиваемая энергия складывается из ω = ω0 → T1 + ωT1 → T2 = V2R1 + R2T1 + v2TH.Средняя рассеиваемая мощность за период времени T = T1 + T2 равна p¯ = ωT = V2R1 + R2T1T + v2THT.

Среднюю мощность можно разделить на статическую и динамическую: pstatic = V2 (R1 + R2) T1T, pdynamic = Cv2THT.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *