Мотор на постоянных магнитах – Синхронный двигатель с постоянными магнитами

Содержание

Нетрадиционные моторы на постоянных магнитах

Эта статья посвящена рассмотрению моторов, работающих на постоянных магнитах, с помощью которых предпринимаются попытки получить КПД>1 путем изменения конфигурации схемы соединений, схем электронных переключателей и магнитных конфигураций. Представлено несколько конструкций, которые можно рассматривать в качестве традиционных, а также несколько конструкций, которые представляются перспективными. Надеемся, что эта статья поможет читателю разобраться в сущности данных устройств перед началом инвестирования подобных изобретений или получением инвестиций на их производство. Информацию о патентах США можно найти на сайте http://www.uspto.gov.

Введение

Статья, посвященная моторам, работающим на постоянных магнитах, не может считаться полной без предварительного обзора основных конструкций, которые представлены на современном рынке. Промышленные моторы, работающие на постоянных магнитах, обязательно являются двигателями постоянного тока, так как используемые в них магниты постоянно поляризуются перед сборкой. Многие щеточные моторы, работающие на постоянных магнитах, подключаются к бесщеточным электродвигателям, что способно снизить силу трения и изнашиваемость механизма. Бесщеточные моторы включают в себя электронную коммутацию или шаговые электромоторы. Шаговый электромотор, часто применяемый в автомобильной промышленности, содержит более длительный рабочий вращающий момент на единицу объема, по сравнению с другими электромоторами. Однако обычно скорость подобных моторов значительно ниже. Конструкция электронного переключателя может быть использована в переключаемом реактивном синхронном электродвигателе. В наружном статоре подобного электродвигателя вместо дорогостоящих постоянных магнитов используется мягкий металл, в результате чего получается внутренний постоянный электромагнитный ротор.

По закону Фарадея, вращающий момент в основном возникает из-за тока в обкладках бесщеточных двигателей. В идеальном моторе, работающем на постоянных магнитах, линейный вращающий момент противопоставлен кривой частоты вращения. В моторе на постоянных магнитах конструкции как внешнего, так и внутреннего ротора являются стандартными.

Чтобы обратить внимание на многие проблемы, связанные с рассматриваемыми моторами, в справочнике [1] говорится о существовании «очень важной взаимосвязи между моментом вращения и обратной электродвижущей силой (эдс), чему иногда не придается значения». Это явление связано с электродвижущей силой (эдс), которая создается путем применения изменяющегося магнитного поля (dB/dt). Пользуясь технической терминологией, можно сказать, что «постоянная вращающего момента» (N-m/amp) равняется «постоянной обратной эдс» (V/рад/сек). Напряжение на зажимах двигателя равняется разности обратной эдс и активного (омического) падения напряжения, что обусловлено наличием внутреннего сопротивления. (Например, V=8,3 V, обратная эдс=7,5V, активное (омическое) падение напряжения=0,8V). Этот физический принцип, заставляет нас обратиться к закону Ленца, который был открыт в 1834г., через три года после того, как Фарадеем был изобретен униполярный генератор. Противоречивая структура закона Ленца, также как используемое в нем понятие «обратной эдс», являются частью так называемого физического закона Фарадея, на основе которого действует вращающийся электропривод. Обратная эдс — это реакция переменного тока в цепи. Другими словами, изменяющееся магнитное поле естественно порождает обратную эдс, так как они эквивалентны.

Таким образом, прежде чем приступать к изготовлению подобных конструкций, необходимо тщательно проанализировать закон Фарадея. Многие научные статьи, такие как «Закон Фарадея — Количественные эксперименты» [2] способны убедить экспериментатора, занимающегося новой энергетикой, в том, что изменение, происходящее в потоке и вызывающее обратную электродвижущую силу (эдс), по существу равно самой обратной эдс. Этого нельзя избежать при получении избыточной энергии, до тех пор, пока количество изменений магнитного потока во времени остается непостоянным. Это две стороны одной медали. Входная энергия, вырабатываемая в двигателе, конструкция которого содержит катушку индуктивности, естественным образом будет равна выходной энергии. Кроме того, по отношению к «электрической индукции» изменяемый поток «индуцирует» обратную эдс.

Двигатели с переключаемым магнитным сопротивлением

При исследовании альтернативного метода индуцированного движения в преобразователе постоянного магнитного движения Эклина (патент № 3,879,622) используются вращающиеся клапаны для переменного экранирования полюсов подковообразного магнита. В патенте Эклина №4,567,407 ( «Экранирующий унифицированный мотор- генератор переменного тока, обладающий постоянной обкладкой и полем») повторно высказывается идея о переключении магнитного поля путем «переключения магнитного потока». Эта идея является общей для моторов подобного рода. В качестве иллюстрации этого принципа Эклин приводит следующую мысль: «Роторы большинства современных генераторов отталкиваются по мере их приближения к статору и снова притягиваются статором, как только минуют его, в соответствии с законом Ленца. Таким образом, большинство роторов сталкиваются с постоянными неконсервативными рабочими силами, и поэтому современные генераторы требуют наличия постоянного входного вращающего момента». Однако «стальной ротор унифицированного генератора переменного тока с переключением потока фактически способствует входному вращающему моменту для половины каждого поворота, так как ротор всегда притягивается, но никогда не отталкивается. Подобная конструкция позволяет некоторой части тока, подведенного к обкладкам двигателя, подавать питание через сплошную линию магнитной индукции к выходным обмоткам переменного тока…» К сожалению, Эклину пока не удалось сконструировать самозапускающуюся машину.

В связи с рассматриваемой проблемой стоит упомянуть патент Ричардсона №4,077,001, в котором раскрывается сущность движения якоря с низким магнитным сопротивлением как в контакте, так и вне его на концах магнита (стр.8, строка 35). Наконец, можно привести патент Монро №3,670,189, где рассматривается схожий принцип, в котором, однако, пропускание магнитного потока игается с помощью прохождения полюсов ротора между постоянными магнитами полюсов статора. Требование 1, заявленное в этом патенте, по своему объему и детальности кажется удовлетворительным для доказательства патентоспособности, однако, его эффективность остается под вопросом.

Кажется неправдоподобным, что, являясь замкнутой системой, мотор с переключаемым магнитным сопротивлением способен стать самозапускающимся. Многие примеры доказывают, что небольшой электромагнит необходим для приведения работы якоря в синхронизированный ритм. Магнитный двигатель Ванкеля [3] в своих общих чертах может быть приведен для сравнения с представленным типом изобретения. Патент Джаффе №3,567,979 также может использоваться для сравнения. Патент Минато №5,594,289, подобный магнитному двигателю Ванкеля, является достаточно интригующим для многих исследователей.

Изобретения, подобные мотору Ньюмана (патентная заявка США №06/179,474), позволили обнаружить тот факт, что нелинейный эффект, такой как импульсное напряжение, благоприятен для преодоления эффекта сохранения силы Лоренца по закону Ленца. Кроме того, сходным является механический аналог инерциального двигателя Торнсона, в котором используется нелинейная ударная сила для передачи импульса вдоль оси перпендикулярно плоскости вращения. Магнитное поле содержит момент импульса, который становится очевидным при определенных условиях, например, при парадоксе диска Фейнмана, где он сохраняется. Импульсный способ может быть выгодно использован в данном моторе с магнитным переключаемым сопротивлением, при условии, если переключение поля будет производиться достаточно быстро при стремительном нарастания мощности. Тем не менее, необходимы дополнительные исследования по этой проблеме.

Наиболее удачным вариантом переключаемого реактивного электромотора является устройство Гарольда Аспдена (патент №4,975,608), который оптимизирует пропускную способность входного устройства катушки и работу над изломом B-H кривой. Переключаемые реактивные двигатели также объясняются в [4].

 

 

 

Мотор Адамса получил широкое признание. Например, в журнале Nexus был опубликован одобрительный отзыв, в котором это изобретение называется первым из когда-либо наблюдавшихся двигателей свободной энергии. Однако работа этой машины может быть полностью объяснена законом Фарадея. Генерация импульсов в смежных катушках, приводящих в движение намагниченный ротор, фактически происходит по той же схеме, что и в стандартном переключаемом реактивном моторе.

Замедление, о котором Адамс говорит в одном из своих Интернет сообщений, посвященных обсуждению изобретения, может объясняться экспонентным напряжением (L di/dt) обратной эдс. Одним из последних добавлений к этой категории изобретений, которые подтверждают успешность работы мотора Адамса, является международная патентная заявка №00/28656, присужденная в мае 2000г. изобретателям Бритс и Кристи, (генератор LUTEC). Простота этого двигателя легко объясняется наличием переключаемых катушек и постоянного магнита на роторе. Кроме того, в патенте содержится пояснение о том, что «постоянный ток, подводимый к катушкам статора, производит силу магнитного отталкивания и является единственным током, подводимым снаружи ко всей системе для создания совокупного движения…» Хорошо известным является тот факт, что все моторы работают по этому принципу. На странице 21 указанного патента содержится объяснение конструкции, где изобретатели выражают желание «максимизировать воздействие обратной эдс, которое способствует поддержанию вращения ротора/якоря электромагнита в одном направлении». Работа всех моторов данной категории с переключаемым полем направлена на получение этого эффекта. Рисунок 4А, представленный в патенте Бритс и Кристи, раскрывает источники напряжения «VA, VB и VC». Затем на странице 10 приводится следующее утверждение: «В это время ток подводится от источника питания VA и продолжает подводиться, пока щетка 18 не перестает взаимодействовать с контактами с 14 по 17». Нет ничего необычного в том, что эту конструкцию можно сравнить с более сложными попытками, ранее упомянутыми в настоящей статье. Все эти моторы требуют наличия электрического источника питания, и ни один из них не является самозапускающимся.

Подтверждает заявление о том, что была получена свободна энергия то, что работающая катушка (в импульсном режиме) при прохождении мимо постоянного магнитного поля (магнита) не использует для создания тока аккумуляторную батарейку.  Вместо этого было предложено использовать проводники Вейганда  [5], а это вызовет колоссальный Баркгаузеновский скачок при выравнивании магнитного домена, а импульс приобретет очень четкую форму. Если применить к катушке проводник Вейганда, то он создаст для нее достаточно большой импульс в несколько вольт, когда она будет проходить изменяющееся внешнее магнитное поле порога определенной высоты. Таким образом, для этого импульсного генератора входная электрическая энергия не нужна вовсе.

Тороидальный мотор

По сравнению с существующими на современном рынке двигателями, необычную конструкцию тороидального мотора можно сравнить с устройством, описанным в патенте Лангли (№4,547,713). Данный мотор содержит двухполюсный ротор, расположенный в центре тороида. Если выбрана однополюсная конструкция (например, с северными полюсами на каждом конце ротора), то полученное устройство будет напоминать радиальное магнитное поле для ротора, использованного в патенте Ван Гила (№5,600,189). В патенте Брауна №4,438,362, права на который принадлежат компании Ротрон, для изготовления ротора в тороидальном разряднике используются разнообразные намагничивающиеся сегменты. Наиболее ярким примером вращающегося тороидального мотора является устройство, описанное в патенте Юинга (№5,625,241), который также напоминает уже упомянутое изобретение Лангли. На основе процесса магнитного отталкивания в изобретении Юинга используется поворотный механизм с микропроцессорным управлением в основном для того, чтобы воспользоваться преимуществом, предоставляемым законом Ленца, а также с тем, чтобы преодолеть обратную эдс. Демонстрацию работы изобретения Юинга можно увидеть на коммерческом видео «Free Energy: The Race to Zero Point». Является ли это изобретение наиболее высокоэффективным из всех двигателей, в настоящее время представленных на рынке, остается под вопросом. Как утверждается в патенте: «функционирование устройства в качестве двигателя также возможно при использовании импульсного источника постоянного тока». Конструкция также содержит программируемое логическое устройство управления и схему управления мощностью, которые по предположению изобретателей должны сделать его более эффективным, чем 100%.

Даже если модели мотора докажут свою эффективность в получении вращающегося момента или преобразования силы, то из-за движущихся внутри них магнитов эти устройства могут остаться без практического применения. Коммерческая реализация этих типов моторов может быть невыгодной, так как на современном рынке существует множество конкурентоспособных конструкций.

Линейные моторы

Тема линейных индукционных моторов широко освещена в литературе. В издании [6] объясняется, что эти моторы являются подобными стандартным асинхронным двигателям, в которых ротор и статор демонтированы и помещены вне плоскости. Автор книги «Движение без колес» Лэйтвайт известен созданием монорельсовых конструкций, предназначенных для поездов Англии и разработанных на основе линейных асинхронных моторов.

Патент Хартмана №4,215,330 представляет собой пример одного из устройств, в котором с помощью линейного мотора достигнуто перемещение стального шара вверх по намагниченной плоскости приблизительно на 10 уровней. Другое изобретение из этой категории описано в патенте Джонсона (№5,402,021), в котором использован постоянный дуговой магнит, установленный на четырехколесной тележке. Этот магнит подвергается воздействию со стороны параллельного конвейера с зафиксированными переменными магнитами. Еще одним не менее удивительным изобретением является устройство, описанное в другом патенте Джонсона (№4,877,983) и успешная работа которого наблюдалась в замкнутом контуре в течение нескольких часов. Необходимо отметить, что генераторная катушка может быть размещена в непосредственной близости от движущегося элемента, так чтобы каждый его пробег сопровождался электрическим импульсом для зарядки батареи. Устройство Хартмана также может быть сконструировано как круговой конвейер, что позволяет продемонстрировать вечное движение первого порядка.

Патент Хартмана основывается на том же принципе, что и известный эксперимент с электронным спином, который в физике принято называть экспериментом Стерна-Герлаха. В неоднородном магнитном поле воздействие на некий объект с помощью магнитного момента вращения происходит за счет градиента потенциальной энергии. В любом учебнике физики можно найти указание на то, что этот тип поля, сильный на одном конце и слабый на другом, способствует возникновению однонаправленной силы, обращенной в сторону магнитного объекта и равного dB/dx. Таким образом, сила, толкающая шар по намагниченной плоскости на 10 уровней вверх в направлении, полностью согласуется с законами физики.

Используя промышленые качественные магниты (включая сверхпроводящие магниты, при температуре окружающей среды, разработка которых в настоящее время находится на завершающей стадии), будет возможна демонстрация перевозки грузов, обладающих статочно большой массой, без затрат электричества на техническое обслуживание. Сверхпроводящие магниты обладают необычной способностью годами сохранять исходное намагниченное поле, не требуя периодической подачи питания для восстановления напряженности исходного поля. Примеры того положения, которое сложилось на современном рынке в области разработки сверхпроводниковых магнитов, приведены в патенте Охниши №5,350,958 (недостаток мощности, производимой криогенной техникой и системами освещения), а также в переизданной статье, посвященной магнитной левитации [7].

Статический электромагнитный момент импульса

В провокационном эксперименте с использованием цилиндрического конденсатора исследователи Грэм и Лахоз [8] развивают идею, опубликованную Эйнштейном и Лаубом в 1908 году, в которой говорится о необходимости наличия дополнительного периода времени для сохранения принципа действия и противодействия. Цитируемая исследователями статья была переведена и опубликована в моей книге [9], представленной ниже. Грэм и Лахоз подчеркивают, что существует «реальная плотность момента импульса», и предлагают способ наблюдения этого энергетического эффекта в постоянных магнитах и электретах.

Эта работа является вдохновляющим и впечатляющим исследованием, использующим данные, основанные на работах Эйнштейна и Минковского. Это исследование может иметь непосредственное применение при создании, как униполярного генератора, так и магнитного преобразователя энергии, описанного ниже. Данная возможность обусловлена тем, что оба устройства обладают аксиальным магнитным и радиальным электрическим полями, подобно цилиндрическому конденсатору, использовавшемуся в эксперименте Грэма и Лахоза.

Униполярный мотор

В книге [9] подробно описываются экспериментальные исследования и история изобретения, сделанного Фарадеем. Кроме того, уделяется внимание тому вкладу, которое привнес в данное исследование Тесла. Однако в недавнем времени был предложен ряд новых конструкторских решений униполярного двигателя с несколькими роторами, который можно сравнить с изобретением Дж. Р.Р. Серла.

Возобновление интереса к устройству Серла также должно привлечь внимание к униполярным двигателям. Предварительный анализ позволяет обнаружить существование двух различных явлений, происходящих одновременно в униполярном двигателе. Одно из явлений можно назвать эффектом «вращения» (№1), а второй — эффектом «свертывания» (№2). Первый эффект может быть представлен в качестве намагниченных сегментов некоего воображаемого сплошного кольца, которые вращаются вокруг общего центра. Примерные варианты конструкций, позволяющих произвести сегментацию ротора униполярного генератора, представлены в [9].

С учетом предложенной модели может быть рассчитан эффект №1 для силовых магнитов Тесла, которые намагничиваются по оси и распологаются вблизи одиночного кольца с диаметром 1 метр. При этом эдс, образующаяся вдоль каждого ролика, составляет более 2V (электрическое поле, направленное радиально из внешнего диаметра роликов к внешнему диаметру смежного кольца) при частоте вращения роликов 500 оборотов в минуту. Стоит отметить, что эффект №1 не зависит от вращения магнита. Магнитное поле в униполярном генераторе связано с пространством, а не с магнитом, поэтому вращение не будет оказывать влияния на эффект силы Лоренца, имеющий место при работе этого универсального униполярного генератора [10].

Эффект №2, имеющий место внутри каждого роликового магнита, описан в [11], где каждый ролик рассматривается как небольшой униполярный генератор. Этот эффект признается чем-то более слабым, так как электричество вырабатывается от центра каждого ролика к периферии. Эта конструкция напоминает униполярный генератор Тесла [12], в котором вращающийся приводной ремень связывает внешний край кольцевого магнита. При вращении роликов, имеющих диаметр, приблизительно равный одной десятой метра, которое осуществляется вокруг кольца с диаметром 1 метр и при отсутствии буксировки роликов, вырабатываемое напряжение будет равно 0,5 Вольт. Конструкция кольцевого магнетика, предложенная Серлом, будет способствовать усилению B-поля ролика.

Необходимо отметить, что принцип наложения применим к обоим этим эффектам. Эффект №1 представляет собой однородное электронное поле, существующее по диаметру ролика. Эффект №2 — это радиальный эффект, что уже было отмечено выше [13]. Однако фактически только эдс, действующая в сегменте ролика между двумя контактами, то есть между центром ролика и его краем, который соприкасается с кольцом, будет способствовать возникновению электрического тока в любой внешней цепи. Понимание данного факта означает, что эффективное напряжение, возникающее при эффекте №1 составит половину существующей эдс, или чуть больше 1 Вольт, что примерно в два раза больше, чем вырабатываемое при эффекте №2. При применении наложения в ограниченном пространстве мы также обнаружим, что два эффекта противостоят друг другу, и две эдс должны вычитаться. Результатом этого анализа является то, что примерно 0,5 Вольт регулируемой эдс будет представлено для выработки электричества в отдельной установке, содержащей ролики и кольцо с диаметром 1 метр. При получении тока возникает эффект шарикоподшипникового двигателя [14], который фактически толкает ролики, допуская приобретение роликовыми магнитами значительной электропроводности. (Автор благодарит за данное замечание Пола Ла Виолетте).

В связанной с данной темой работе [15] исследователями Рощиным и Годиным были опубликованы результаты экспериментов с изобретенным ими однокольцевым устройством, названным «Преобразователем магнитной энергии» и имеющим вращающиеся магниты на подшипниках. Устройство было сконструировано как усовершенствование изобретения Серла. Анализ автора этой статьи, приведенный выше, не зависит от того, какие металлы использовались для изготовления колец в конструкции Рощина и Година. Их открытия достаточно убедительны и детальны, что позволит возобновить интерес многих исследователей к этому типу моторов.

 

Заключение

Итак, существует несколько моторов на постоянных магнитах, которые могут способствовать появлению вечного двигателя с кпд, превышающим 100%. Естественно, необходимо принимать во внимание концепции сохранения энергии, а также должен исследоваться источник предполагаемой дополнительной энергии. Если градиенты постоянного магнитного поля претендуют на появление однонаправленной силы, как это утверждается в учебниках, то наступит момент, когда они будут приняты для выработки полезной энергии. Конфигурация роликового магнита, который в настоящее время принято называть «преобразователем магнитной энергии», также представляет собой уникальную конструкцию магнитного мотора. Проиллюстрированное Рощиным и Годиным в Российском патенте №2155435 устройство является магнитным электродвигателем-генератором, который демонстрирует возможность выработки дополнительной энергии. Так как работа устройства основана на циркулировании цилиндрических магнитов, вращающихся вокруг кольца, то конструкция фактически представляет собой скорее генератор, чем мотор. Однако это устройство является действующим мотором, так как для запуска отдельного электрогенератора используется вращающий момент, вырабатываемый самоподдерживающимся движением магнитов.

Литература

1.      Motion Control Handbook (Designfax, May, 1989, p.33)

2.      «Faraday’s Law — Quantitative Experiments», Amer. Jour. Phys.,

V.54, N.5, May, 1986, p. 422

3.      Popular Science, June, 1979

4.      IEEE Spectrum 1/97

5.      Popular Science (Популярная наука), May, 1979

6.      Schaum’s Outline Series, Theory and Problems of Electric

Machines andElectromechanics (Теория и проблемы электрических

машин и электромеханики) (McGraw Hill, 1981)

7.      IEEE Spectrum, July, 1997

8.      Nature, V. 285, No 15, May, 1980

9.      Thomas Valone, The Homopolar Handbook

10.   Ibidem, p. 10

11.   Electric Spacecraft Journal, Issue 12, 1994

12.   Thomas Valone, The Homopolar Handbook, p. 81

13.   Ibidem, p. 81

14.   Ibidem, p. 54

Tech. Phys. Lett., V. 26, #12, 2000, p.1105-07

 

Томас Валон  Integrity Research Institute, www.integrityresearchinstitute.org

1220 L St. NW, Suite 100-232, Washington, DC 20005

Email: [email protected]

 

 

zaryad.com

обзор, принцип работы. Двигатель на магнитах

Возможность получения свободной энергии для многих учёных в мире является одним из камней преткновения. На сегодняшний день получение такой энергии осуществляется за счёт альтернативной энергетики. Природная энергия преобразовывается альтернативными источниками энергии в привычную для людей тепловую и электрическую. При этом такие источники обладают основным недостатком — зависимостью от погодных условий. Подобных недостатков лишены бестопливные двигатели, а именно — двигатель Москвина.

Двигатель Москвина

Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.

Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.

Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.

Бестопливный двигатель на магнитах

Работа различных предприятий и оборудования, как и каждодневный быт современного человека, зависит от наличия электрической энергии. Инновационные технологии позволяют практически полностью отказаться от использования подобной энергии и устранить привязку к определённому месту. Одна из подобных технологий позволила создать бестопливный двигатель на постоянных магнитах.

Принцип работы магнитного электрогенератора

Вечные двигатели делятся на две категории: первого и второго порядка. Под первым типом подразумевают оборудование, способное вырабатывать энергию из воздушного потока. Двигателям второго порядка для работы требуется поступление природной энергии, — воды, солнечных лучей или ветра — которая преобразуется в электрический ток. Несмотря на существующие законы физики, учёные смогли создать вечный бестопливный двигатель в Китае, который функционирует за счёт производимой магнитным полем энергии.

Разновидности магнитных двигателей

На данный момент выделяют несколько видов магнитных двигателей, для работы каждого из которых требуется магнитное поле. Единственное различие между ними — конструкция и принцип работы. Двигатели на магнитах не могут существовать вечно, поскольку любые магниты теряют свои свойства спустя несколько сотен лет.

Самая простая модель — двигатель Лоренца, который реально собрать в домашних условиях. Для него характерно антигравитационное свойство. Конструкция двигателя строится на двух дисках с разным зарядом, которые соединены посредством источника питания. Устанавливают её в полусферический экран, который начинает вращаться. Такой сверхпроводник позволяет легко и быстро создать магнитное поле.

Более сложной конструкцией является магнитный двигатель Серла.

Асинхронный магнитный двигатель

Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.

Двигатель Лазарева

Единственным работающим на сегодняшний день ВД2 является мощный роторный кольцар — двигатель, созданный Лазаревым. Изобретение учёного отличается простой конструкцией, благодаря чему его можно собрать в домашних условиях при помощи подручных средств. Согласно схеме бестопливного двигателя, используемую для его создания ёмкость делят на две равные части посредством специальной перегородки — керамического диска, к которому крепят трубку. Внутри ёмкости должна находиться жидкость — бензин либо обычная вода. Работа электрогенераторов такого типа основывается на переходе жидкости в нижнюю зону ёмкости через перегородку и её постепенном поступлении наверх. Движение раствора осуществляется без воздействия окружающей среды. Обязательное условие конструкции — под капающей жидкостью должно размещаться небольшое колёсико. Данная технология легла в основу самой простой модели электродвигателя на магнитах. Конструкция такого двигателя подразумевает наличие под капельницей колёсика с закреплёнными на его лопастях маленькими магнитами. Магнитное поле возникает только в том случае, если жидкость перекачивается колёсиком на большой скорости.

Двигатель Шкондина

Немалым шагом в эволюции технологий стало создание Шкондиным линейного двигателя. Его конструкция представляет собой колесо в колесе, которая широко применяется в транспортной промышленности. Принцип работы системы строится на абсолютном отталкивании. Такой двигатель на неодимовых магнитах может быть установлен в любом автомобиле.

Двигатель Перендева

Альтернативный двигатель высокого качества был создан Перендевым и представлял собой устройство, которое для производства энергии использовало только магниты. Конструкция такого двигателя включает в себя статичный и динамичный круги, на которые устанавливаются магниты. Внутренний круг беспрерывно вращается за счёт самооталкивающей свободной силы. В связи с этим бестопливный двигатель на магнитах такого типа считается наиболее выгодным в эксплуатации.

Создание магнитного двигателя в домашних условиях

Магнитный генератор можно собрать в домашних условиях. Для его создания используются три вала, соединённых друг с другом. Расположенный в центре вал обязательно поворачивается к остальным двум перпендикулярно. К середине вала крепится специальный люцитовый диск диаметром четыре дюйма. К другим валам крепятся аналогичные диски меньшего диаметра. На них размещают магниты: восемь посередине и по четыре с каждой стороны. Основанием конструкции может выступить алюминиевый брусок, который ускоряет работу двигателя.

Преимущества магнитных двигателей

К основным достоинствам подобных конструкций относят следующее:

  1. Экономия топлива.
  2. Полностью автономная работа и отсутствие необходимости в источнике электроэнергии.
  3. Можно использовать в любом месте.
  4. Высокая выходная мощность.
  5. Использование гравитационных двигателей до их полного износа с постоянным получением максимального количества энергии.

Недостатки двигателей

Несмотря на имеющиеся преимущества, у бестопливных генераторов есть и свои минусы:

  1. При длительном нахождении рядом с работающим двигателем человек может отмечать ухудшение самочувствия.
  2. Для функционирования многих моделей, в том числе и китайского двигателя, требуется создание специальных условий.
  3. Готовый двигатель подключить в некоторых случаях довольно сложно.
  4. Высокая стоимость бестопливных китайских двигателей.

Двигатель Алексеенко

Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на энергии магнитных полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50–100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.

Создатели бестопливных генераторов

Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.

Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90оС сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.

Мнение учёных: создание бестопливного генератора невозможно

Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.

Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.

На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.

Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.

Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.

fb.ru

Магнитный двигатель своими руками

В чем преимущества и минусы работающих двигателей на магнитной энергии.

Практически все происходящее в нашем быту целиком зависит от электроэнергии, однако существуют некоторые технологии, позволяющие совсем избавиться от проводной энергии. Давайте вместе рассмотрим, можно ли изготовить магнитный двигатель своими руками, в чем состоит принцип его работы, как он устроен.

Принцип работы магнитного двигателя

Сейчас существует понятие, что вечные двигатели могут быть первого и второго вида. К первому относятся устройства, производящие самостоятельно энергию – как бы из воздуха, а вот второй вариант – двигатели, получающие эту энергию извне, в ее качестве выступает вода, солнечные лучи, ветер, а затем устройство преобразовывает полученную энергию в электричество. Если рассматривать законы термодинамики, то каждая из этих теорий практически неосуществима, однако с подобным утверждением совершенно не согласны некоторые ученые. Именно они начали разрабатывать вечные двигатели, относящиеся ко второму типу, работающие на получаемой от магнитного поля энергии.

Разрабатывали подобный «вечный двигатель» множество ученых, причем во разное время. Если рассматривать конкретнее, то наибольший вклад в такое дело, как развитие теории создания магнитного двигателя совершили Василий Шкондин, Николай Лазарев, Никола Тесла. Помимо них хорошо известны разработки Перендева, Минато, Говарда Джонсона, Лоренца.

Все они доказывали, что силы, заключенные в постоянных магнитах, имеют огромную, постоянно возобновляемую энергию, которая пополняется из мирового эфира. Тем не менее, суть работы постоянных магнитов, а также их действительно аномальную энергетику никто на планете до сих пор не изучил. Именно поэтому так никто не смог пока достаточно эффективно применить магнитное поле для того, чтобы получить действительно полезную энергию.

Сейчас еще никто не смог создать полноценного магнитного двигателя, однако существует достаточное количество весьма правдоподобных устройств, мифов и теорий, даже вполне обоснованных научных работ, которые посвящены разработке магнитного двигателя. Всем известно, что для сдвига притянутых постоянных магнитов требуется значительно меньше усилий, нежели для того, чтобы их оторвать один от другого. Именно это явление чаще всего используется, чтобы создать настоящий «вечный» линейный двигатель на основе магнитной энергии.

Каким должен быть настоящий магнитный двигатель

В общем, выглядит подобное устройство следующим образом.

  1. Катушка индуктивности.
  2. Магнит подвижный.
  3. Пазы катушек.
  4. Центральная ось;
  5. Шарикоподшипник;
  6. Стойки.
  7. Диски;
  8. Постоянные магниты;
  9. Закрывающие магниты диски;
  10. Шкив;
  11. Приводной ремень.
  12. Магнитный двигатель.

Любое устройство, которое изготовлено на подобном принципе, вполне успешно может быть использовано для выработки по-настоящему аномальной электрической и механической энергии. Причем, если применять его как генераторный электрический узел – то он способен вырабатывать электроэнергию такой мощности, которая существенно превышает аналогичное изделие, в виде механического приводного двигателя.

Теперь разберем подробнее, что вообще представляет из себя магнитный двигатель, а также почему множество людей пытаются разработать и воплотить в реальность эту конструкцию, видя именно в ней заманчивое будущее. Действительно настоящий двигатель этой конструкции должен функционировать исключительно только на магнитах, при этом используя непосредственно для перемещения всех внутренних механизмов их постоянно выделяемую энергию.

Важно: основной проблемой разнообразных конструкций основанных именно на использовании постоянных магнитов, становится то, что они склонны стремиться к статическому положению, именуемому равновесием.

Когда рядом привинтить два достаточно сильных магнита, то они двигаться будут только до момента, когда будет достигнуто на минимально возможной удаленности максимальное притяжение между полюсами. В реальности они просто друг к другу повернутся. Поэтому каждый изобретатель разнообразных магнитных двигателей пытается сделать переменным притяжение магнитов за счет механических свойств самого двигателя или использует функцию своеобразного экранирования.

При этом магнитные двигатели в чистом виде очень неплохи по своей сущности. А если добавить к ним реле и управляющий контур, использовать гравитацию земли и дисбаланс, то они становятся действительно идеальными. Их смело можно именовать «вечными» источниками поставляемой бесплатной энергии! Есть сотни примеров всевозможных магнитных двигателей, начиная от наиболее примитивных, которые можно собрать собственноручно и заканчивая японскими серийными экземплярами.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

 

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Многие верят, что очень скоро наступит время, когда мощную энергию человечество сможет получать без использования газа и нефтепродуктов. На самом деле гигаватты электроэнергии, которая будет совершенно бесплатной, можно получать, если руководствоваться только магнетизмом, законами электростатики, силы тяготения и постулатами Архимеда. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

econet.ru

Мифы и реальность про магнитный двигатель

Экология познания.Наука и техника:В настоящее время магнитного двигателя до сих пор не создано, однако существует множество правдоподобных теорий, мифов, устройств даже вполне серьезных научных работ посвященных тематике магнитного двигателя.

В настоящее время магнитного двигателя до сих пор не создано, однако существует множество правдоподобных теорий, мифов, устройств даже вполне серьезных научных работ посвященных тематике магнитного двигателя.

Сначала надо понять, что из себя должен представлять магнитный двигатель в целом. Почему так много людей занимающихся разработкой магнитного двигателя видят в нем будущее?

Обычный электромотор – это не магнитный двигатель. Это устройство которое использует магнитные свойства материалов, но все таки движется за счет электрического тока.

Настоящий магнитный двигатель работает исключительно на магнитах, используя их постоянную энергию для перемещения своих механизмов.

Прообраз магнитного двигателя можно встретить в каждом втором офисе ввиде всевозможных качающихся и крутящихся сувениров – там тоже используется сила постоянных магнитов для поддержания «вечности» движения. Однако и батарейки там тоже есть.

Главной проблемой всевозможных устройств основанных на постоянных магнитах является то, что магниты склонны к статическому положению равновесия. Если привинтить рядом два сильных магнита они будут находиться в движении ровно до того момента, пока не будет достигнуто максимально возможное притяжении на минимально возможном расстоянии между полюсами. Они просто повернутся друг к другу.

Поэтому все изобреатели магнитных двигателей стараются либо сделать притяжения магнитов переменным за счет механики самого двигателя, либо прибегают к экранированию.

Чисто магнитные двигатели сами по себе очень неплохи. А с добавлением управляющих контуров, реле, или использующие дисбаланс  и гравитацию земли, становятся вообще идеальными и “вечными” источниками дармовой энергии!

Нашёл несколько работающих примеров различных магнитных двигателей, от самых простых собранных на коленке до чуть ли не готовых серийных японских образцов. Самый страшный ночной кошмар Чубайса и глобальной мафии – смотрим. опубликовано econet.ru

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

econet.ru

Бесколлекторные двигатели с постоянным магнитом

Применение больших двигателей переменного тока с постоянным магнитом (ПМ) при решении серьезных промышленных и оборонных задач становится более заметным. Их количество ограничено скорее рядом рыночных проблем, чем технологией. Большая плотность мощности и эффективность — вот главные преимущества таких двигателей.

Показанный во время испытаний 11,4 МВт высокоскоростной (6225 об/мин) бесколлекторный двигатель с ПМ от Canopy Technologies (DRS и Elliot) относится к семейству двигателей, которое охватывает диапазон мощностей 4-32 МВт. Он предназначен для промышленного применения

Бесколлекторные двигатели с постоянным магнитом (ПМ) лучше известны в отраслях, где требуются сравнительно небольшие габариты и низкая потребляемая мощность. Такие двигатели могут иметь практически любой размер без каких-либо технологических ограничений. Большие бесколлекторные двигатели с ПМ не являются чем-то совершенно новым. Они поставляются отдельными производителями, стремящимися преодолеть экономические трудности, которые еще недавно ограничивали ассортимент таких двигателей.

Большие бесколлекторные двигатели с ПМ имеют ряд преимуществ, среди которых можно назвать большую плотность мощности и высокую эффективность из-за отсутствия потерь в роторе. Выгоды от их использования связаны с ценой, поскольку затраты на производство и стоимость материалов, включая высокоэффективные магниты, быстро растут. Для управления бесколлекторными двигателями с ПМ также необходим частотно-регулируемый привод (VFD). Тем не менее, анализ показателей затрат и результатов показывает, что двигатели с ПМ более предпочтительны по сравнению с альтернативными технологиями (см. ниже) для отраслей промышленности с тяжелым режимом работы, судовых двигателей, в военной/ оборонной области и в других секторах, число которых постоянно растет.

Всесторонний анализ потенциального применения является главным для обоснования затрат и результатов. Этому могут помочь недавние улучшения. Известная эксплуатационная готовность приводов в сочетании с такой существенной тенденцией, как снижение цены на приводы и магнитные материалы наводит на мысль о том, что все больше таких двигателей будет эксплуатироваться в ближайшем будущем. Лучшая осведомленность пользователей о больших двигателях с ПМ будет способствовать такому росту применения.

Приводы и магниты дают импульс к развитию

Компания DRS Technologies Inc., известный разработчик и производитель больших бесколлекторных двигателей с ПМ, начала применять некоторые из своих разработок в области силовых систем в оборонной промышленности, на промышленных предприятиях, на судах и на транспорте. Усовершенствования в области технологии магнитов и частотно-регулируемых приводов, необходимых для запуска и работы двигателей с ПМ, позволили создать двигатели больших размеров. Приводы, использующиеся в DRS, являются приводами высокого напряжения (1,5-6,6 кВ) с широтно-импульсной модуляцией (ШИМ) и векторным или бездатчико-вым векторным управлением.

Размер вала является реальным индикатором высокого выходного крутящего момента (1600 Нм в длительном режиме; 4100 Нм – в пиковом) бесколлекторного двигателя с ПМ от Powertec мощностью 300 кВт в непрерывном режиме с внешним диаметром, уменьшенным до 40 см (слева). Считается, что он был первым большим бесколлекторным двигателем, который прошел испытания на удар Navy Mil-S-901D. Блок со станиной NEMA 259T от Powertec создает крутящий момент 1000 Нм для перемещения по азимуту системыAdvanced Gun System в новых Stealth Destroyers ВМС США (справа)

Эдгар С. Тэкстон, главный инженер и руководитель отдела проектирования систем в компании DRS Power Technologies, отмечает, что в последние десять лет произошло значительное улучшение надежности VFD наряду с увеличением номинальной мощности, которая может достигать 60 МВт и более. Увеличение мощности отчасти связано с появлением современных устройств коммутации мощности, таких как биполярные транзисторы с изолированным затвором (IGBT) и тиристоры с полным управлением по затвору (IGCT). «Двигатели с ПМ в полной мере проявляют себя в тех областях, где необходимы VFD или там, где управление с регулируемой частотой дает преимущества в эксплуатации, которые перевешивают высокую стоимость VFD» — говорит Э. С. Тэкстон.

Если говорить о магнитных материалах, нужно отметить, что их коррозионная стойкость, механические свойства и температурный диапазон значительно улучшились. В результате машины с ПМ могут эксплуатироваться как в отраслях промышленности с тяжелым режимом работы, так и в военной области. «Стоимость постоянных магнитов из редкоземельных металлов за последние десять лет снизилась в пять раз, в то время как соответствующая удельная намагничивающая сила возросла в три раза» — поясняет Тэкстон. Это означает улучшение показателей соотношения затрат и результатов в 15 раз и является существенным для постоянной «доступности по цене».

В DRS Technologies считают, что по своим возможностям конструкция их бесколлекторного двигателя с ПМ с более высоким числом полюсов превосходит альтернативный синхронный двигатель. К его преимуществам относится уменьшение веса и габаритов

Еще одна компания, имеющая длительную историю производства высокоэффективных бесколлекторных двигателей с ПМ (и приводов) — это Powertec Industrial Motors Inc. В настоящее время она достигла уровня 300 кВт для стандартной продукции. Основные области применения связаны с военной и оборонной отраслями, а также с применением в промышленном производстве с взрывоопасными условиями. Одно время компания производила бесколлекторные двигатели постоянного тока мощностью до 450 кВт. В этих машинах с наружным диаметром около 65 см использовались ферритовые постоянные магниты. Они поставлялись с воздушным или жидкостным охлаждением. Такие двигатели относятся к заказной продукции, и в настоящее время серийно не выпускаются. В 2006 г. планируется выпустить новую модель мощностью до 750 кВт.

В Powertec согласны с тем, что между двигателями и приводами существует определенная взаимосвязь. Раньше большие мощные IGBT-приводы, способные работать с бесколлекторными двигателями, были недоступны из-за высоких цен. «За последние пять лет это положение существенно изменилось. Теперь такие приводы стали доступнее по более приемлемым ценам’,’- отмечает Эд Ли, главный исполнительный директор Powertec. Для управления двигателями в компании используются низковольтные приводы (до 600В).

Тем не менее, в Powertec считают, что причины нехватки больших двигателей с ПМ связаны в большей мере с рыночными, а не с технологическими факторами. «Несмотря на то, что большие двигатели с ПМ доступны, они имеют высокую стоимость по сравнению со стандартными двигателями. По этой причине, вне зависимости от того, что эффективность, меньшие габариты (высокая плотность мощности) и более высокие динамические характеристики являются важными при эксплуатации, покупатель не будет тратить лишние деньги», — утверждает Ли. В результате этого производителей таких двигателей все еще не так много.

На сегодняшний день, отмечает Ли, в промышленных двигателях используются два наиболее доступных редкоземельных магнитных материала:
— неодим-железо-бор (Nd-Fe-B) и самарий-кобальт. Они близки по магнитной проницаемости, однако самарий имеет лучшие характеристики при высокой температуре. Несмотря на то, что цена на магниты из Nd-Fe-B за последние пять-семь лет существенно снизилась, этот материал остается более дорогостоящим по сравнению с равноценными материалами, которые используются в роторах асинхронного двигателей переменного тока. «Стоимость магнита и низкий объем производства оказывают влияние на то, что цена бесколлекторных двигателей с ПМ остается высокой. Это, соответственно, оказывает влияние на недостаточный спрос на эти двигатели» — делает вывод Ли.

Высокий крутящий момент

В Automation & Drives Div. Siemens AG считают, что большие двигатели с ПМ в основном применяются для работы с высоким крутящим моментом. Такие двигатели имеют конструкцию с непосредственным приводом (без коробки передач). «Это связано с тем, что, заботясь о сокращении издержек производства, производители все больше внимания уделяют снижению расходов на техническое обслуживание своих фондов», — поясняет Роберт Ленинг, менеджер по большим двигателям переменного тока в Siemens A&D Large Drives Div. «Один из шагов в данном направлении — это использование технологии прямого привода, которая позволяет обходиться без коробки скоростей, — отмечает Ленинг. — По сравнению с двигателями коробки скоростей требуют более тщательного обслуживания и пристального наблюдения, они также имеют более низкий ресурс работы».

Далее он указывает на низкоскоростную модель высокомоментных двигателей от Siemens, замечая: «По нашему мнению, большие двигатели с ПМ с номинальной частотой вращения от 800 до почти 5000 об/мин не имеют реальных преимуществ перед стандартными асинхронными машинами’.’ Технология на основе ПМ также может быть «интересна» для электродвигателей с высоким числом оборотов, например 10000 об/мин и выше. В этом случае их эффективность выше, чем у асинхронных двигателей. По его словам, однако, применение двигателей с данной технологией в этой области обычно очень специфично.
Ленинг упоминает также, что стоимость высокоэффективных магнитов снижается, что делает технологию двигателя с ПМ более привлекательной. Несмотря на это, полная технология прямого привода пока еще дороже по сравнению с асинхронными двигателями. «Следовательно, двигатели с ПМ вряд ли заменят в обозримом будущем традиционные асинхронные двигатели для стандартных приложений»,- говорит он, отмечая также усовершенствование средств проектирования и «ноу-хау» для разработки двигателей с ПМ, на котором основана эта линейка устройств.

В Yaskawa Electric соглашаются с мнением, что не существует технических барьеров для создания больших бесколлекторных двигателей с ПМ в диапазоне до 100 кВт. Проблемы в основном носят экономический характер. Обсуждения с потребителями и ссылки на мощные двигатели встречаются часто, однако это изделие не относится к числу типовых или «серийных» Yaskawa предоставляет экономические характеристики и обеспечивает надежность технологии двигателя с внутренним постоянным магнитом (IPM), использующейся в мощных двигателях на протяжении нескольких лет. Кроме этого, компания использует серводвигатели с IPM в своих станках (последнюю статью о серводвигателях с IPM см.: Control Engineering Россия, 2006 г., № 2, стр. 17-21).

Являясь частью новой линейки продукта HT-direct от Siemens, этот бесколлекторный двигатель с ПМ с водяным охлаждением имеет номинальный диапазон крутящего момента 18000 Нм при напряжении 690 В. Выпуск двигателей HT-direct запланирован на июнь 2006 г. Они также будут поставляться с вариантом воздушного охлаждения

На производителей этих устройств все большее влияние оказывает экономическая необходимость сокращения времени вывода нового изделия на рынок. В компании утверждают, что для того, чтобы помочь потребителям извлечь выгоду из применения цифровых сервосистем в процессах и механизмах с высокой мощностью, Yaskawa распространяет технологию двигателей с IPM на свое производственное оборудование для повышения номинальной мощности.

Итальянская компания Oemer Motori Elettrici Spa — еще один производитель, больших бесколлекторных двигателей с ПМ. Компания, в частности, предлагает безредукторные электродвигатели с большим пусковым моментом с диапазоном мощности до 300 кВт и числом оборотов до 500 об/мин, трехфазные серводвигатели с жидкостным охлаждением мощностью до 318 кВт при 5000 об/мин, и высокопроизводительные блоки, которые достигают мощности на выходе свыше 1 МВт при номинальной скорости до 2600 об/мин для скоростных промышленных приложений. Линейка продукции Oemer была представлена на выставке SPS/IPC/Drives в Германии в ноябре 2005 г.

Большое число преимуществ

По данным DRS Technologies двигатели с ПМ на 1-2% превосходят по КПД асинхронные двигатели и синхронные двигатели при полной нагрузке и на 10-15% — при неполной нагрузке. Эффективность обеспечивается за счет полного возбуждения ротора без тока и отсутствия соответствующих потерь на всех скоростях. В качестве примера Тэкстон приводит низкоскоростной двигатель корабельной силовой установки, достигающий поразительного КПД -99,3%!

При этом упрощается охлаждение двигателя, поскольку тепло, исходящее от ротора, незначительно. Охлаждение необходимо только для статора и, поскольку он является «внешней структурой» более предпочтительным становится водяное охлаждение. Упрощение схемы охлаждения также приводит к гибкой геометрии двигателя. «Машины с ПМ поддерживают намного более широкий диапазон соотношений размеров, чем стандартные двигатели. Возможны короткие, с большим диаметром и длинные, узкие машины, так же как и радиальные (традиционные) и аксиальные (дисковые) модели с воздушным зазором», — говорит он.

Габариты и вес компактных бесколлекторных двигателей с ПМ уменьшаются на 1/2 — 1/3 по сравнению с габаритами традиционных двигателей. Кроме того, их характеризует простота, поскольку обмотка есть только у статора, что увеличивает надежность. В отличие от этого асинхронные двигатели имеют роторную и статорную обмотку, в то время как синхронные двигатели с фазным полем (WFS) конструктивно еще более сложны. Они включают основной статор, основной ротор, ротор-возбудитель, обмотки статора-возбудителя и, в большинстве случаев, вращающийся выпрямитель, поясняет Тэкстон.

В DRS Technologies продемонстрировали опытные образцы двигателей с ПМ, которые достигают более высокой мощности для заданной скорости по сравнению с традиционными машинами, что дает большую гибкость в согласовании нагрузки и избавляет от необходимости использования передаточных механизмов (в конструкции двигателя с прямым приводом). «Двигатели с ПМ имеют ту же стоимость, что и стандартные машины. До тех пор, пока есть необходимость использовать VFD, существует минимальное основание для выбора стандартной машины»,- продолжает Такстон.

В Powertec преимущества больших бесколлекторных двигателей видят в более высоком КПД, высокой плотности мощности (меньшем объеме, приходящемся на выходную мощность) и в более высоких динамических характеристиках. КПД бесколлекторных двигателей с ПМ на 3% превосходит аналогичный показатель асинхронных двигателей переменного тока. Ли указывает на то, что эта разница может быть и меньше, если будут предприняты все меры для минимизации потерь в асинхронных двигателях (как это сделано, например, в особых энергосберегающих конструкциях).

«Однако такие асинхронные двигатели с низким скольжением вряд ли будут удобными для работы прямо от сети без привода из-за очень высокого начального тока и пониженного пускового момента, — добавляет Ли. — С другой стороны, бесколлекторные двигатели с ПМ также не могут работать прямо от сети, поскольку они должны подключаться при определенном положении вала».

В Siemens главные преимущества применения больших бесколлекторных двигателей с ПМ видят в более низких эксплуатационных расходах, более высокой общей работоспособности системы и меньшей рабочей площади. Отсутствие коробки скоростей помогает в различных областях: более низкие расходы на техническое обслуживание и более высокая эффективность электропривода, благодаря меньшим потерям мощности, а также меньшая сложность системы.

Проблемы управления, большее число полюсов

Управление большими двигателями с ПМ не представляет особых сложностей. Приводы с ШИМ сейчас обеспечивают уровень управления, соответствующий решению ответственных задач промышленного производства, а также позволяют снизить мощность гармоник
системы и повысить коэффициент мощности.

По мнению Тэкстона из DRS высокая плотность мощности для большинства бесколлекторных двигателей с ПМ обусловлена большим, чем у стандартных двигателей, числом полюсов. «Двигатели с ПМ могут иметь в три раза больше полюсов, чем WFS-двигатель того же диаметра». Это позволяет сделать двигатель более легким, малогабаритным и с более гибкой геометрией.

Вместе с тем, наличие большего числа полюсов означает, что VFD способен вырабатывать более высокие частоты. Для определенной скорости и двигателя с ПМ показатель 415 Гц на входе не является исключительным. «У высокоскоростных мощных двигателей этот показатель может быть основным для разработки топологии сетиУГВ, также как и диапазон частот устройств управления»,- добавляет к сказанному Тэкстон.

В Powertec отмечают, что помимо необходимости коммутации бесколлекторного двигателя с ПМ с учетом его положения, другие проблемы в управлении этими двигателями такие же, что и у асинхронных двигателей той же мощности. По словам Ли, около половины используемых в настоящее время приводов настраиваются на тип двигателя с помощью программных алгоритмов управления коммутацией для бесколлекторных двигателей и управления скольжением для асинхронных двигателей.

«Эта процедура сведена к выбору в меню», — утверждает Ли. Он ссылается на способность бесколлекторного двигателя работать в качестве генератора с возбуждением от ПМ. «Там, где благодаря установке режима высоких скоростей имеют место скорости двигателя выше «базовой скорости’,’ генерируемое напряжение может значительно превысить допустимый уровень, предусмотренный конструкцией шины’,’- утверждает Ли. Это может нанести вред только в некоторых редких случаях, но должно быть согласовано при установке.

В Siemens сходятся во мнении, что проблемы управления не отличаются существенно от тех же проблем с асинхронными двигателями. Бесколлекторные двигатели с ПМ работают под управлением VFD с незначительно измененным алгоритмом программы.

Примеры использования

В DRS Technologies недавно прошел испытания на полной мощности в 36,5 МВт, 127 об/мин корабельный двигатель для ВМС США, который создавал крутящий момент более 2700000 Нм. В Canopy Technologies LLC, совместном предприятии DRS и Elliott Company Inc. (50/50), которое является ведущим производителем скоростного электропривода, завершено испытание промышленного двигателя (первое фото) мощностью 11,4 МВт (6225 об/мин).Утверждается, что это два самых мощных двигателя с ПМ в мире. Большие высокоэффективные двигатели с ПМ находят наилучшее применение в больших морских судах. Их использование особенно привлекательно из-за растущей стоимости топлива. DRS также производит высокоэффективные двигатели с ПМ, которые, как сообщается, достигают свыше 1,65 кВт/кг в диапазоне мощностей 380-750 кВт.

Среди множества сфер применения Powertec упоминает новую Advanced Gun System ВМС США для программы Stealth Destroyer, где используется множество больших высокодинамичных бесколлекторных двигателей с ПМ. Двигатель поднятия по высоте, имеющий диаметр всего 30 см, развивает крутящий момент более 1080 Нм при пиковой скорости 2000 об/мин (свыше 220 кВт в пике). По данным Powertec ВМС рекомендует использование бесколлекторных двигателей там, где это только возможно — в новых или модернизируемых приложениях — благодаря их меньшим размерам и массе.

Еще одна сфера применения включает надежное управление азимутом и углом места гигантской антенны весом 1800 т, входящей в систему Missile Defense Antenna. Для обеспечения необходимой мощности и высокой динамики были поставлены восемь бесколлекторных двигателей мощностью 170 кВт, управляющие азимутом, и четыре двигателя мощностью 37 кВт, управляющие углом места. Таким образом, общая мощность двигателей составляла 1500 кВт.

Двигатель с воздушным охлаждением от Powertec мощностью 300 кВт со станиной NEMA 3213T (40 см в диаметре), показанный ранее — это иллюстрация компактности этих машин. Вентилятор и распределительная коробка показаны в пропорции с реальным двигателем. Распределительная коробка кажется огромной из-за требований NEMA к ее объему при подключении многочисленных проводов.

Состояние технологии бесколлекторных двигателей с ПМ представляет собой своего рода головоломку. Несколько лет назад журнал Control Engineering отмечал, что по мере роста спроса могли бы производиться все более мощные двигатели. В журнале был поставлен вопрос: «Если такие двигатели будут созданы, появятся ли пользователи?» Эд Ли из Powertec формулирует эту мысль таким образом: «По мере того, как все большее число потребителей захотят иметь и начнут приобретать эти двигатели, тем большее количество двигателей более крупных размеров появится на рынке».

Facebook

Twitter

Вконтакте

Google+

controlengrussia.com

АЛЬТЕРНАТИВНЫЕ РЕШЕНИЯ — RU: ИМПУЛЬСНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ СВОИМИ РУКАМИ

ИМПУЛЬСНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ — RU,

НОВЫЙ ВАРИАНТ

Действующий макет магнитного двигателя МД-500-RU со скоростью

вращения до 500 об/мин.

Ивестны седующие варианты магнитных двигателей (ДМ):

1. Магнитные двигатели, работающий только за счет сил взаимодействия магнитных полей, без устройства управления (синхронизации), т.е. без потребления энергии от внешнего источника.«Perendev», Wankel и др.

2. Имнульсные магнитные двигатели, работающие за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которых требуется внешний источник питания.

Применение устройств управления позволяет получить на валу МД повышенную величину мощности, в сравнении с МД, указанными выше. Этот вид МД легче в изготовлении и настройке на режим максимальной скорости вращения.
3. Манитные двигатели использующие 1 и 2 варианты, например МД Нarry Paul Sprain,  Минато и другие.

***

Макет доработанного варианта работающего импульсного магнитного двигателя
 (МД-RU)

с устройством управления (синхронизации),обеспечивающий скорость вращения до 500 об/мин.

1. Технические параметры двигателя МД_RU:.

Число магнитов 8, 600Гс.
Электромагнит 1 шт.
Радиус R диска 0,08м.
Масса m диска 0,75 кг.

Скорость вращения диска 500 об/мин.

Число оборотов в секунду 8,333 об/сек..
Период вращения диска 0.12 сек. ( 60сек/500 об/мин= 0,12сек).
Угловая скорость диска ω = 6,28/0,12 = 6,28/(60/500) = 52,35 рад./sec.
Линейная скорость диска V = R* ω = 0,08*52,35 = 4,188 m/сек.
2.Вычисление основных энергетических показателей МД.
Полный момент инерции диска:
Jпми = 0,5 * mкг *R2 = 0,5*0,75*(0,08) 2 = 0,0024[кг *m2].
Кенетическая энергия Wke на валу двигателя:
Wke = 0,5*Jпми* ω2 = 0,5*0,0024*(52,35) 2 = 3,288 дж/сек= 3,288 Вт*сек.
При вычислениях использовался «Справочник по физике», Б.М.Яворский и А.А. Детлаф, и БСЭ.

3. Получив результат вычисления кинетической энергии на валу диска (ротора) в

Ваттах (3,288), для вычисления энергетической эффективности этого вида МД,

необходимо вычислить мощность, потребляемую устройством управления (синхронизации). Мощность потребляемая устройством управления (синхронизации) в ваттах, приведенная к 1 секунде:

в течение одной секунды устройство управления потребляет ток напротяжении 0,333 сек, т.к. за проход одного магнита электромагнит потребляет ток в течении 0,005 сек., магнитов 8, за одну секунду происходит 8,33 оборота, поэтому время потреблен ия тока устройством управления равно произведению:

0,005*8*8,33 об/сек = 0,333сек.
-Напряжения питания устройства управления 12В.
-Ток, потребляемый устройством 0,13 А.
-Время потребления тока на протяжении 1 секунды равно — 0,333 сек.
Следовательно мощность Руу, потребляемая устройством за 1 секунду непрерывного вращения диска составит:
Pуу = U* A = 12 * 0,13А * 0,333 сек. = 0,519 Вт*сек.
Это в (3,288 Вт*сек) /(0,519 Вт *сек) = 6,33 раз больше энергии потребляемой устройством управления.


   Фрагмент конструкции МД.

 4. ВЫВОДЫ:
Очевидно, что магнитный двигатель, работающий за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которого требуется внешний источник питания, потребляемая мощность от которого значительно меньше мощности на валу МД. 

5. Признаком нормальной работы магнитного двигателя является то, что если его, после подготовке к работе, слегка подтолкнуть, — он, далее, сам начнет раскручиваться до своей максимальной скорости.
6. Надо иметь в виду,  этот вид  двигателя вращался со скоростью 500 об/мин. без нагрузки на валу. Для получения на его основе генератора электрического напряжения на его ось вращения следует насадить генератор постоянного или переменного тока. При этом  скорость вращения, естественно, уменьшится в зависимости от силы магнитного сцепления в зазоре стотор — ротор используемого генератора.

7. Изготовление магнитного двигателя требует наличие материально – технической и инструментальной базы, без которой, практически, не возможно изготовление устройств подобного рода. Это видно из описания  патентов и других источников информации по
рассматриваемой теме.

При этом, наиболее походящие виды NdFeB — магнитов можно найти на сайте http://www.magnitos.ru/.Для подобного вида МД наиболее подходящими являются магниты «средний квадрат»
К-40-04-02-N (длиной до 40 x 4 x 2 mm) с намагничиванием N40 и сцеплением 1 — 2 kg.
***

8. Рассмотренный вид магнитного двигаеля с устройством синхронизации

(управления включением электромагнита) отностися к наиболее доступному в изготовленении  вида  МД, которые называют импульсными магнитнами двигателями.  На рисунке приведен  один  из  известных  вариантов импульсных МД с электромагнитом, «выполняющим роль поршня»,  похожий на  игрушку. В реальной полезной  модели  диаметр колеса (маховика), например, велосипедного колеса,  должен  быть не менее метра  и, соответственно,   длинее  путь  перемещения  сердечника  электромагнита.


Создание импульсного МД — это только 50% пути  до достижения  цели — изготовления  источника электрической энергии с повышенным кпд. Скорость и момент вращения на оси МД должены быть достаточными для вращения генератора постоянного или переменного тока и получения максимального значения получаемой мощности на выходе,  которая  так  же зависит и  от скорости вращения.

8. Аналогичные МД:
1. Magnetic Wankel Motor,http://www.syscoil.org/index.php?cmd=nav&cid=116
Мощность этой модели достаточна только для того,  чтобы колыхать воздух, тем не менее, она подсказывает путь к достижению цели.
2. НARRY PAUL SPRAIN
http://www.youtube.com/watch?v=mCANbMBujjQ&mode=related&search;

Это двигатель, аналогичный Magnetic Wankel Motor, но значительно большего размера  и  с устройством управления (синхронизации) с  мощностью на валу 6 Вт*сек.


3. Вечный двигатель «PERENDEV»
Многие не верят, а он работает!
См: http://www.perendev-power.ru/
Патент МД «PERENDEV»:
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2006045333&F=0
Двигатель — генератор на 100 кВт стоит 24 000 евро.
Дорого, поэтому некоторые умельцы изготавливают его своими руками в масшабе 1/4
(фото приведено выше).

Рисунок действущего макета  разработанного  импульсного магнитного двигателя
МД-500-RU,  дополненного  асинхронным генераторм  переменного тока.

Новые конструкции вечных магнитных двигателей:
1. http://www.youtube.com/watch?v=9qF3v9LZmfQ&feature=related

Из перевода комментарий и ответов автора следует:

Автор магнитного двигателя (perpetuum) использует двигатель вентилятора, на ось которого насажено колесо с постоянными магнитами и две или три неподвижные катушки, которые наматывается в два провода.

К выводам каждой катушки подключен транзистор. Катушки содержат магнитный сердечник. Магниты колеса, проскакивая мимо катушек с магнитами, наводит в них эдс, достаточную для возникновения генерации в цепи катушка-транзистор, далее напряжение генератора через,  предположительно,   согласующее устройство поступает на обмотки двигателя,  вращающего колесо и т.д.

Подробности своего perpetuum автор изобретения не раскрывает, за что его называют шарлатаном. Ну как обычно.

Магнитный двигатель LEGO (perpetuum).

Он выполнен на базе элементов из набора для конструирования LEGO.

При медленной прокрутки видео – становится понятным почему эта штуковина вращается  непрерывно.

3. «Запрещённая конструкция» вечного двигателя с двумя поршнями.  Вопреки известному «не может быть», медленно, — но вращается.

В нем одновременное использование гравитации и взаимодействия магнитов.

4.Гравитационно-магнитный двигатель.

На вид очень простое устройство, но не известно, потянет ли оно генератор

постоянного или переменного тока ? Ведь простого вращения колеса не достаточно.

Приведенные виды магнитных двигателей (с пометкой: perpetuum), если даже они работают, — очень маломощны. Поэтому, чтобы они стали эффективными для практического применения их размеры неизбежно придется увеличивать, при этом, они не должны потерять свое важное свойство: непрерывно вращаться.

+++

Страная «качалка» сербского изобретателя В.Милковича , которая, как ни странно, — работает.
http://www.veljkomilkovic.com/OscilacijeEng.html

Краткий перевод:
Простой механизм с новыми механическими эффектами, представляющим собой источник энергии. Машина имеет только две основных части: огромный рычаг на оси и маятник. Взаимодействие двухступенчатого рычага умножает входную энергию удобную для полезной работы (механический молот, пресса, насос, электрический генератор…). Для полного ознакомления с научными исследованиями смотрите видио.


1 — «Наковальня», 2 — Механический молот с маятником, 3 – Ось рычага молота, 4 — Физический маятник.
Наилучшие результаты были достигнуты, когда ось рычага и маятника находятся на
одной и той же высоте, но немного выше центра массы, как показано на рисунке.
В машине используется различие в потенциальной энергии между состоянием невесомости в положении ( вверху) и состоянием максимальной силы (усилия) (внизу) в течение процесса генерации энергии маятником. Это истина для центробежной силы, для которой сила равна нулю в верхней позиции и достигает наибольшего значения в нижней позиции, в которой скорость максимальна. Физический маятник использован как главное звено генератора с рычагом и маятником.
После многих лет испытаний, консультаций и общественных презентаций, много
было сказано об этой машине. Простота конструкции для самостоятельного изготовления в домашних условиях.
Эффективность модели может быть за счет повышения массы, как отношение веса (массы) рычага к поверхности молота, ударяющего по «наковальне».
Согласно теории генерации, колебательные перемещения «качалки» трудно поддаются анализу.
***
Испытания указали на важное значение процесса синхронизации частоты в каждой модели. Генерация физического маятника должна происходить с первого запуска и далее поддерживаться самостоятельно, но только при определенной скорости, в противном случае входная энергия будет затухать и исчезнет.
Молот более эффективно работает с коротким маятником (в насосе), но длительно (наиболее долго) работают с удлиненным маятником.
Дополнительное ускорение маятника является следствием силы тяжести. Если обратиться

к формуле: Ек = М(V1 +V 2)/2

и провести вычисления избытока энергии становится понятным, что он обусловлен потенциальной энергией гравитации. Кинетическая энергия может быть повышена  путем увеличения тяжести (массы).

Демонстрация работы устройства.
***

РУССКАЯ  КАЧАЛКА (резонансная качалка RU)

http://www.001-lab.com/001lab/index.php?topic=140.0
Cм.
RE Магнитогравитационные установки
Reply #14 : Март 02, 2010, 05:27:22
Видео: Работа в резонансе.rar (2955.44 Кб — загружено 185 раз.)
Работает!!!

ГЕНЕРАТОРЫ С ИЗБЫТОЧНОЙ ЭНЕРГИЕЙ (TORS TT)
НОВОЕ НАПРАВЛЕНИЕ В СОЗДАНИИ ГЕНЕРАТОРОВ СВОБОДНЙ ЭНЕРГИИ

1. Известная схема устройства на базе изобретения Эдвина Грея, которое заряжает аккумулятор Е1 от которого оно и питается или внешний акккумулятор Е2, переключением элемента S2а — S2б. Т1,Т2 — мультивибратор (можно выполнить на ИМС), запускающий гнератор высоковольтных колбений на Т3, Т4 и Т5.
L2, L3 — понижающий трансформатор, далее выпрямитель на D3, D4.
и трансформатр L2 — L3 можно вставит ферритовый сердечник (600 -1000 мп).
Элементы, заключенные в зеленый прямоугольник похожи на так называемую «конверсионную элементную трубку». В качестве искрового разрядника можно использовать обычную автомобильную свечу, а в качестве автотрансформатора (L1) – автомобильную катушку зажигания.
Другие схемные решения можно найти  на youtube.com  в видеоматериалах  по генераторам «свободной энергии», т.н. TROS,  amplifier  и  др.  со  схемами  этого вида генераторов энергии.  Схемы генераторов избыточной энергии TORS TT, это когда потребляемая генератором мощность, предположительно, значительно меньше энергии выделяемой в нагрузке.

2. Очень интересный генератор Joule Thief избыточной энергии, работает от 1,5В, а питает лампы накаливания.

http://4.bp.blogspot.com/_iB7zWfiuCPc/TCw8_UQgJII/AAAAAAAAAf8/xs7eZ4680SY/s1600/Joule+Thief+Circuit+-2___.JPG

3. Наибольший интерес представляет генератор свободной энергии, работающий от источника постоянного тока 12 — 15В, который на выходе «тянет» несколько ламп накаливания на 220В.
http://www.youtube.com/watch?v=Y_kCVhG-jl0&feature=player_embedded
Однако, автор не раскрывает технические особенности изготовления этого вида генератора электрической энергии, с так называемой самозапиткой.
Кадр из этого видео ролика.

Для кого создают талантливые искатели «свободной энергии» подобные устройства?


Для себя, для потенциального инвестора или для кого — то еще ? Работа, как правило, закачивается известной формулировкой: получил «техническое чудо», но никому не скажу как.
Тем не менее над этим видом герератора с самозапиткой стоит поработать.
Он содержит источник постоянного тока на 15-20 В, конденсатор 4700мкФ, включенный параллельно источнику питания, транзисторный генератор высокого напряжения (2-5кВ), резрядник и катушку, содержащую несколько обмоток, намотанных на сердачник
собранный из ферритовых колец (D~ 40мм). С ней придется разбираться, искать аналогичную конструкцию из множества подобных. Естественно, если будет желание.
Катушку, аналогичную используемой можно посмотреть на: http://jnaudin.free.fr/kapagen/replications.htm
http://www.001-lab.com/001lab/index.php?topic=24.0
УСПЕХОВ!

4. Достоверная схема генератора Капанадзе
Подробности на http://www.youtube.com/watch?v=tyy4ZpZKBmw&feature=related

5. Ниже набросок СхЭ генератора Naudin. Анализ схемы вызывает некоторые сомнения. Возникает естественный вопрос: какую мощность потребляет транс, например, от микроволновой печи (220/2300В), вставленный в генератор «свободной энергии» и какую мощность получаем на выходе в виде свечения ламп накаливания? Если транс от микроволновки, то его входная потребляемая мощность 1400 Вт, а выходная по СВЧ 800 — 900 Вт, при кпд магнетрона порядка 0.65. Поэтому, подключенные ко вторичной обмотке (2300В) через разрядник и небольшую индуктивность — лампы могут полыхать и не только от выходного напряжения вторичной обмотки и весьма прилично.

С этим варианотом схемы могут быть затруднения с достижением положительного эффекта.
Элемент, обозначаемый буквами МОТ — это сетевой трансформатор 220/2000 … 2300В,
в большинстве сучаев от микроволновой печи, Рвхода до 1400Вт, Рпо выходу (СВЧ) 800Вт.
                                     

ПОЛУЧЕНИЕ ВОДОРОДА C ИСПОЛЬЗОВАНИЕМ ЧАСТОТЫ РЕЗОНАНСА  ВОДЫ

             ВОДОРОД МОЖНО ПОЛУЧАТЬ ОБЛУЧЕНИЕМ ВОДЫ ВЧ КОЛЕБАНИЕМ.

http://peswiki.com/index.php/Directory:John_Kanzius_Produces_Hydrogen_from_Salt_Water_Using_Radio_Waves
John Kanzius
The authors have shown that NaCl-h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised RF radiofrequency beam at at room temperature, generate an intimate mixture of hydrogen and oxygen which can be ignited and burned with a steady flamePatent of John Kanzius…

Преревод:
John_Kanzius показал, что раствор NaCl-h3O с концентрацией, колеблющейся от 1 до 30%, когда его облучают направленным поляризованным (polarised radiofrequency) ВЧ излучением с частотой, равной резонансной частоте раствора, порядка 13,56 МГц, при комнатной температуре начинает выделять водород, который в смеси с кислородом, начинает устойчиво гореть. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия.
Удельная теплота сгорания водорода: 120 Мдж/кг или 28000 ккал/кг.

Пример схемы ВЧ генератора:

Катушка диаметром 30-40 мм изготавливается из одножильного изолированного провода диаметром 1 мм, число витков 4-5 (подбирается экспериментально). Питание 15 – 20В подключить у правому концу дросселя 200 мкГ. Настойка в резонанс производится переменным конденсатором. Катушка наматывается поверх  сосуда с соленой водой  цилиндрической формы. Сосуд  на 75-80% заливается соленой водой и плотно закрывается крышкой  с патрубком для отвода водорода, у  выхода,  трубка заполняется ватой для предотвращения  свободного проникновения  кислорода в сосуд.

***
Подробнее можно посмотреть на:
http://www.scribd.com/doc/36600371/Kanzius-Hydrogen-by-RF
Observations of polarised RF radiation catalysis of dissociation of h3O–NaCl solutions
R. Roy, M. L. Rao and J. Kanzius. The authors have shown that NaCl–h3O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised radiofrequency beam at 13,56 MHz…

Ответ на вопрос читателя:
Я получал водород, заливая водным раствором едкого натра (Na2CO3) пластину алюминия (100 х100 х 1мм). В воде кальцинированная сода реагирует с водой
2CO3− + h3O ↔ HCO3− + OH−   и образует гидроксил ОН, который очищает алюминий от пленки. Далее начинается известная реакция:
2Аl + 3Н2О = A12О3 + 3h3  с выделением тепла  и  интенсивным выделением водорода, схожая с кипением воды. Реакция проходит без электролиза!

Эксперимент следует проводить осторожно, чтобы не произошло возгорание и взрыв водорода. Или сразу предусмотреть отвод водорода из накрытого крышкой сосуда с рабочими компонентами. В процессе реакции выделения водорода, через некоторое время, алюминиевая пластина начинает покрывается отходами реакции хлоридом кальция CaCl2 и окисью алюминия A12О3. Интенсивность химической реакции через некоторое время начнет снижаться.
Для поддержания её интенсивности следует удалить отходы, заменить раствор едкого натра и алюминиевую пластину на другую. Использованную, после очистки можно, применять снова и т.д. до полного их разрушения. Если применять дюраль, реакция протекает с выделением тепла.
***
Аналогичная разработка:
Your house can be warmed up this way. (Ваш дом может быть обогрет этим способом)
Изобретатель Mr. Francois P. Cornish. Европейский патент №0055134А1 от 30.06.1982, применительно к бензиновому двигателю,  он позволяет  машине  нормально двигаться, используя вместо бензина,  воду и небольшое количество алюминия.
Mr. Francois P.   в своем устройстве, использовал электролиз (при 5-10 кВ) в воде с алюминиевой проволокой, которую предварительно очищал от окиси до введения её в камеру, из которой по трубке отводил водород и подавал его в велосипедный двигатель.


Здесь отходом реакции является A12О3.
                                      
                                                      Конструкция этой штуковины
Возник вопрос, что дороже на 100 км пути — бензин или алюминий с высоковольтным источником и аккумулятором?
Если «люмнь» со свалки или из отходов куханной посуды, то будет дешево.
***
Дополнительно, можете посмотреть  подобное устройство здесь: http://macmep.h22.ru/main_gaz.htm
и здесь: «Простой народный способ получения водорода»
http://new-energy21.ru/content/view/710/179/,
а здесь http://www.vodorod.net/  — информация о генераторе водорода за 100 баксов. Я бы не покупал, т.к. на видео не видно явного возгорания водорода на выходе бидона с компонентами для электролиза.

magnets-motor.blogspot.com

Магнитный двигатель Измалкова | Проект Заряд

Самовращающийся двигатель на постоянных магнитах Измалкова Германа Ивановича. Украинского изобретателя, имеющего на своем счету более трехсот изобретений, на многие из которых автор имеет патенты и авторские свидетельства.

 

Эта заявка подана совсем недавно. Она является очень перспективной. В дополнение к данному изобретению, есть еще  центробежное тормозное устройство, которое не позволит этому магнитному двигателю, запущенному без нагрузки, набрать разрушительных оборотов,

На чертеже схематично показан магнитный двигатель, общий вид.

Предложенный магнитный двигатель состоит из ротора 1 с валом 2, на котором по эксцентрической окружности равномерно расположены постоянные магниты 3 одноименными полюсами по радиусу в одну строну, а на статоре 4 таким же образом по окружности расположены тоже постоянные магниты 5, но их количество на единицу меньше, чем количество постоянных магнитов 3 на роторе 1 и при этом это устройство выполнено совместно несколько раз (на чертеже не показано) и все роторы 1 установлены на общем валу 2, но магниты 3 на каждом последующем роторе 1 повернуты относительно магнитов 3 предыдущего ротора 1 на угол, равный углу хорды, занимающей расстояние между магнитами 3, деленному на количество роторов 1, статоры 4 повернуты таким же образом на угол, равный окружности, деленной на количество статоров 4. Предложенный магнитный двигатель работает за счет взаимодействия через их магнитные силы постоянных магнитов 3 с постоянными магнитами 5, при этом в момент наложения магнита 3 самого удаленного по концентрической окружности от оси вращения в случае, если полярности, направленные навстречу друг другу магнитов 3 и 5, разные, и самого приближенного к оси вращения магнита 3 в случае, если эти полярности одинаковые, возникают состояния «мертвых точек» и взаимодействия этих двух постоянных магнитов: магнита 3 и магнита 5 тормозят вращение каждого этого ротора 1, для создания крутящего момента на валу 2, и чтобы этот вал 2 вращался бесконечно долго вся эта конструкция выполнена, именно, таким образом.

 

Основанная еще в 1995 году компания производящая черный и нержавеющий металлопрокат, на сегодняшний день, является одной из крупнейших фирм Санкт-Петербурга. Также имеется производство металлоконструкций и порошковой окраски металлических изделий, а  заказанная у нас резка листа, будет выполнена качественно и в срок.

zaryad.com

Добавить комментарий

Ваш адрес email не будет опубликован.