Назначение и устройство конденсатора: Конденсаторы: назначение, устройство, принцип действия

Содержание

Конденсаторы: назначение, устройство, принцип действия

Конденсаторы, наряду с резисторами, являются одними из самых распространенных элементов в радиотехнических и электронных устройствах. Практически не существует устройств, в которых бы не применялись конденсаторы. Прежде всего, конденсаторы используются в качестве фильтров в выпрямителях и стабилизаторах напряжения (любой блок питания содержит в себе конденсаторы). Конденсаторы позволяют создавать временные интервалы необходимой выдержки и частоты в аналоговых схемах различных генераторов.

Первый прототип современного конденсатора появился в середине 18 века в Нидерландах. Питер ван Мушенбрук в своих опытах использовал стеклянную банку, выложенную внутри и снаружи оловянной фольгой (алюминий в те времена не использовался), заряд которой осуществлялся электрофорной машиной (единственный источник получения электрического тока в те времена). Позднее это устройство назовут лейденской банкой.

Рисунок 1

Устройство современного конденсатора аналогично устройству лейденской банки: две обкладки, между которыми находится диэлектрик. Емкость плоского конденсатора (измеряется в Фарадах) зависит от площади пластин (S), расстояния между пластинами (d) и диэлектрической проницаемости среды (ε). Геометрическая форма пластин конденсаторов может быть различной: для металлобумажных конденсаторов пластины выполняются в виде алюминиевой фольги свернутой вместе с диэлектриком в один клубок.

Рисунок 2

Приведенная формула для расчета емкости конденсаторов позволяет сделать вывод о том, что два проводника, расположенных рядом, обладают электрической емкостью. Это свойство проводников широко применяется в высокочастотной технике, при этом конденсаторы делаются в виде дорожек на печатной плате или в виде двух проводников.

Помимо емкости С, любой кабель характеризуется электрическим сопротивлением R. Как известно, RC-цепочка выступает в качестве интегрирующего звена в электронных схемах (рисунок 3). При входном импульсном сигнале на выходе сигнал искажается или, для сигналов незначительной мощности, может просто исчезнуть.

Рисунок 3

Из истории: первая попытка проложить трансатлантическую связь была предпринята в 1857 году. Однако, ученые не учли возможные искажения сигналов, которые могли возникнуть в кабеле, длиной более 4000 км. В результате телеграфный код в виде точек и тире, а по сути те же прямоугольные импульсы, искажались так, что на другом конце разобрать послание не удавалось. Лишь в 1865 году У. Томпсон предложил технологию передачи сигналов на дальние расстояния.

Диэлектрическая проницаемость среды ε и ток утечки

Увеличение диэлектрической проницаемости ε, исходя из формулы для расчета емкости конденсатора, повлечет возрастание емкости конденсатора. В большинстве случаев, в качестве диэлектриков в конденсаторах используются лавсан, полиэтилен или просто воздух. Если заменить эти диэлектрики, например спиртом или ацетоном, у которых диэлектрическая проницаемость существенно больше, то емкость конденсатора возрастет в 15…20 раз. Однако, диэлектрики с большой проницаемостью обладают достаточно высокой проводимостью, которая влияет на время разряда конденсатора через себя. Для описания этого свойства конденсаторов ввели термин тока утечки. Поэтому диэлектрики в конденсаторах характеризуются не только диэлектрической проводимостью, но и током утечки.

Электролитические конденсаторы

Электролитические конденсаторы обладают наибольшей удельной емкостью, среди всех типов конденсаторов. Емкость таких элементов может достигать 100 000 мкФ, а рабочее напряжение – до 600 В. Электролитические конденсаторы применяются в низкочастотных схемах и фильтрах блоков питания. Большая емкость электролитических конденсаторов предполагает и существенные размеры таких элементов (рисунок 4).

Рисунок 4

Электролитические конденсаторы могут хранить накопленную энергию несколько лет, однако они достаточно чувствительны к возможным перенапряжениям в цепи. При больших напряжениях или неправильном использовании (включении обычного электролитического конденсатора в цепь переменного тока) конденсаторы нагреваются, а затем просто взрываются. Особенно взрыву подвержены старые советские конденсаторы.

Принцип действия конденсаторов

Основные принципы при работе конденсаторов рассмотрим на примере простой схемы (рисунок 5). В качестве конденсатора лучше использовать электролитический конденсатор большой емкости.

Рисунок 5

Работа схемы: для начала необходимо зарядить конденсатор от источника питания через резистор R (график заряда конденсатора изображен на рисунке 6). Напряжение заряда возрастает по экспоненте, а ток заряда – спадает по экспоненте. Время полного заряда конденсатора определяется произведением емкости самого конденсатора С, величины сопротивления R и постоянной составляющей (для рассматриваемого примера t=5*C*R=5*500*0.002= 5 секунд). Далее переключатель SA переводится во второе положение, что соответствует разряду конденсатора через нагрузку (лампу накаливания). График разряда конденсатора приведен на рисунке 7.

Рисунок 6

Рисунок 7

Рассмотрим еще одну схему включения конденсатора (рисунок 8). При замыкании контакта SA произойдет кратковременная вспышка лампочки EL. Повторное замыкание контакта к вспышке не приведет, так конденсатор уже зарядился.

Рисунок 8

Конденсаторы в блоках питания

Всем электронным устройствам необходимо постоянное напряжения для питания и работы. Любой блок питания состоит из трансформатора, выпрямителя (однополупериодного или длвухполупериодного) и фильтра (рисунок 9).

Рисунок 9

Подбор необходимого конденсатора для указанных схем можно выполнять исходя из следующих соотношений:

— для двухполупериодного выпрямителя

[size=16]

C = Po / 2∙U∙f∙dU

где C — емкость конденсатора Ф, Po — мощность нагрузки Вт, U — напряжение на выходе выпрямителя В, f — частота переменного напряжения Гц, dU — амплитуда пульсаций В.

— для однополупериодного выпрямителя

C = Po / U∙f∙dU

— для трехфазного выпрямителя

C = Po / 3∙U∙f∙dU

Суперконденсатор – ионистор

Ионистор – новый класс электролитических конденсаторов (рисунок 10).

Рисунок 10

Ионисторы, по своим характеристикам сходны с обычными аккумуляторами. Заряд такого устройства происходит за несколько минут, а срок службы может превысить 40 000 часов.

Статьи по теме:
Про резисторы для начинающих заниматься электроникой

Что такое конденсатор, типы конденсаторов и их обозначение на схемах. Конденсаторы: назначение, устройство, принцип действия

Накопление и преобразование электрической энергии можно отнести к базовым задачам, которые решают вспомогательные элементы радиоаппаратуры. Конденсатор относится к пассивным компонентам и выступает своего рода емкостью для поступающего заряда. Конструкция стандартных устройств предусматривает наличие пластинчатых электродов, которые разделяются тонкими диэлектриками. Более сложные типы конденсаторов могут содержать несколько электродных слоев, формирующих цилиндрическую намотку. Есть и другие отличительные признаки, обуславливающие возможности применения элементов для той или иной аппаратуры.

Назначение конденсаторов

На сегодняшний день едва ли найдется область радиотехники, в которой бы не использовались данные устройства. Наиболее распространены комбинации конденсаторов с резисторами и катушками индуктивности, участвующие в построении электрических цепей. Такие узлы поддерживают функции частотных фильтров, колебательных контуров и линий с обратной связью. Еще одна их распространенная задача — сглаживание пульсаций напряжения, требуемое во вторичных источниках энергоснабжения. В лазерных установках, системах вспышки и магнитных ускорителях электрический конденсатор используется для выдачи разового заряда с большим показателем мощности. И напротив, электротехнические приборы оснащаются данными элементами с целью компенсации реактивной мощностной энергии. Хотя такие элементы нельзя рассматривать в качестве полноценных емкостных накопителей энергии, в некоторых системах они выступают и как носители информации.

Маркировка устройств

Для визуального определения принадлежности конденсатора к той или иной категории используются специальные обозначения. В первую очередь указывается емкостный потенциал, выражаемый микрофарадами (мкФ). Могут применяться и другие единицы измерения, о чем также будет свидетельствовать соответствующая маркировка. Не всегда отмечается тип используемого в конструкции материала — как правило, без маркировки выпускаются керамические и пленочные неполярные модели. В свою очередь, обозначение танталовых конденсаторов соответствует резисторам — за исключением наличия знака µ и цифр 104 или 107. Такие устройства могут иметь оранжевый, желтый или черный цвет. В знаковой маркировке также указываются размерные параметры и емкость. Высоковольтные и электролитические модели помечаются величиной максимального напряжения, а для переменных конденсаторов указывается диапазон емкости.

Основные характеристики

Главным рабочим параметром является емкость, от которой зависит способность конкретной модели накапливать заряд. Следует разделять номинальную и фактическую емкость, так как на практике использования вторая величина может быть меньше. Диапазон значений по объему может варьироваться от 1 до 50 мкФ, а в некоторых случаях максимум достигает и 10 000 мкФ. Важен и показатель энергетической плотности, во многом определяемый конструкцией изделия. Наибольшей плотностью характеризуются крупноформатные типы конденсаторов, у которых масса обкладки с электролитом существенно превышает вес корпуса. К примеру, при емкости в 10 000 мкФ с напряжением в 0,45 кВт и массой порядка 2 кг плотность может достигать 600-800 Дж/кг. Как раз такие модели выгодно использовать для длительного хранения энергии. Помимо этого, рабочие свойства конденсаторов определяются допуском. Речь идет как раз о погрешности в соотношении показателей реальной и номинальной емкости. Данная величина выражается в процентах и в среднем составляет 20-30 %. В некоторых направлениях радиотехники применяются изделия с 1 % допуска.

Керамические конденсаторы

Это устройства, базирующиеся на дисковых керамических элементах с диэлектриками из титаната бария. Такой конденсатор можно использовать в системах с напряжением до 50 000 В, но важно учитывать, что он имеет минимальную температурную стабильность и широкий спектр изменения емкости. Среди достоинств можно отметить небольшие утечки тока, скромные размеры (при большой емкости заряда) и способность работать на высокой частоте. Что касается назначения, то керамические конденсаторы применяются в цепях с пульсирующим, переменным и постоянным током. Чаще всего используют модели емкостью до 0,5 мкФ. В процессе работы конденсатор этого типа хорошо справляется с внешними нагрузками, среди которых механические удары. Нельзя сказать, что керамический корпус отличается большим эксплуатационным сроком и долговечностью, однако в заявленный период технические свойства поддерживает стабильно.

Полиэстеровые модели

На схемах устройства данного типа обозначаются маркировкой K73-17 или CL21. Их оболочку формирует металлизированная пленка, а для корпуса используется эпоксидный компаунд. Как раз наличие этого наполнителя в конструкции делает полиэстеровые конденсаторы устойчивыми к температурным, физическим и химическим воздействиям. Этот набор эксплуатационных качеств обусловил и широкое распространение конденсаторов типа K73-17 в производстве светотехнических приборов. Средняя емкость устройства составляет 15 мкФ при максимальном напряжении порядка 1500 В. Характеристики скромные, но это не мешает применять конденсатор в тех же цепях с импульсным и переменным током. К тому же и низкая стоимость устройства способствует его популярности на радиорынке.

Конденсатор на основе полипропилена

Тоже вариант относительно недорогого накопителя электрического заряда, который при этом отличается низким коэффициентом потерь и высокой диэлектрической прочностью. К плюсам можно отнести и оптимальную гигроскопичность. То есть один из главных врагов радиоэлементов в виде влажности полипропиленовым конденсаторам не страшен. В качестве изоляторов применяется металлизированная пленка или полоски фольги. В новейших версиях используют и технологию самовосстанавливающейся оболочки, что повышает надежность и долговечность конденсатора.

Устройство может работать на повышенных частотах с сохранением достаточной мощности. Это качество позволяет использовать конденсаторы в системах индукционного обогрева, дополненных водяным охлаждением. Распространено и применение таких элементов в оснастке электромоторов на 220 В. В данном случае они выступают как пусковые компоненты. Эту функцию лучше всего реализуют модели с рабочей емкостью в диапазоне 1-100 мкФ и напряжением в 440 В. Но и это не единственные накопители на синтетической основе. Какие бывают конденсаторы из термопластиков? Внимания заслуживают полисульфоновые и поликарбонатные элементы. Первые отличаются низким влагопоглощением и способностью поддерживать высокое напряжение при температурных перепадах, а вторые в процессе работы демонстрируют оптимальную электротехническую стабильность.

Танталовые конденсаторы

Основу устройства формирует пентоксид тантала с оксидным электролитическим наполнением. Конденсатор отличается высоким отношением емкости к объему, широким спектром поддерживаемых температур и компактностью. Используют такие компоненты в мелком приборостроении, компьютерах и другой вычислительной технике. В этом семействе можно выделить следующие типы конденсаторов: полярные и неполярные, твердотельные, жидкостные. Наиболее привлекательные по эксплуатационным качествам именно твердотельные устройства, так как они характеризуются способностью поддерживать большое напряжение. Однако в условиях критического превышения допустимой величины тока они могут выходить из строя. Емкость танталовых моделей составляет 1000 мкФ, но по сравнению с электролитическими аналогами их собственная индуктивность гораздо ниже, что допускает возможность применения элемента на высоких частотах.

Особенности высоковольтных моделей

Элементы такого типа могут применяться в системах с высокими показателями напряжения, достигающими 15 000 В. При этом емкость у высоковольтных конденсаторов небольшая — порядка 50-100 нФ. В качестве диэлектрического материала чаще используется керамика. Благодаря этой основе выдерживаются большие нагрузки напряжения, а корпус защищает начинку от пробоев пластин.

Распространены и стеклянные вакуумные изделия, также поддерживающие напряжение более 10 000 В. Они представляют собой колбы с концентрическими электродами, в процессе работы обеспечивающими небольшие частотные потери. Применяют высоковольтные конденсаторы такого типа для решения ответственных радиочастотных задач с индуктивным нагревом. Но стоят такие компоненты дороже, отличаются хрупкостью и большими размерами.

Многослойные и однослойные конструкции

Обычно данную классификацию применяют в отношении конденсаторов, выполненных из керамики. Так, однослойные конденсаторы (дисковые) имеют простое устройство, но это не сказывается на уменьшении размеров. В большинстве случаев они массивнее, чем многослойные аналоги. В итоге увеличивается емкость устройства, но крупные размеры все же ограничивают их распространение в отдельных областях.

Что касается многослойных элементов, то они по эксплуатационным качествам в целом схожи с дисковыми, но потенциал накопителей еще выше. Также существенное преимущество заключается в надежности и долговечности. Форм-фактор, в котором выполняются многослойные конденсаторы, делает их менее чувствительными к агрессивным средам, что расширяет область применения. Такие компоненты преимущественно используют в дорогой профессиональной аппаратуре.

Масляные конденсаторы с пропитками

Это отдельная группа радиотехнических элементов, в основе которых находятся бумажные наполнители. Они обрабатываются специальными растворами наподобие воска и эпоксидных смол. Какие бывают конденсаторы масляного типа? Принципиально отличаются модели для постоянного и переменного тока. Первые используются в целях частотной фильтрации, повышения напряжения и устранения электрической дуги. Конденсаторы на масляной пропитке для систем с переменным током применяют в промышленности. Такое устройство располагает большой емкостью и может справляться с большими пиковыми нагрузками. Как правило, его используют в качестве пускового компонента для электромоторов. К дополнительным функциям можно отнести разделение фаз, коррекцию мощности и выравнивание напряжения.

Негативные факторы применения конденсаторов

Одной из главных проблем использования конденсаторов является высокая вероятность взрыва при перегревах, которые происходят из-за больших утечек. Также повысить риск поломки элемента могут близко расположенные радиаторы с высоким тепловым излучением. Какие типы конденсаторов наиболее подвержены взрывам? Чаще всего это происходит с электролитическими устройствами, обеспеченными ненадежными корпусами. Оптимизация конструкции с целью уменьшения размеров изделия заставляет производителей использовать тонкие оболочки, поэтому может иметь место разлет частей конденсатора и разбрызгивание электролита при сильном перегреве или в условиях повышенного внутреннего давления.

Заключение

И простейшие однослойные, и многослойные высоковольтные модели конденсаторов выполняют важные для радиоаппаратуры задачи. Как минимум они корректируют параметры тока, что при схожих размерах не может обеспечить ни один другой технический компонент. В то же время электрический конденсатор вовсе не является идеальным решением, что обуславливает постоянные поиски новых форматов его исполнения. Производители сложной аппаратуры экспериментируют с конструкциями, наполнителями и физическими свойствами, стараясь предлагать оптимальные потребительские качества данного устройства.

Среди наиболее важных целевых параметров в этом плане можно назвать устойчивость конденсатора к нагрузкам, широкие рабочие диапазоны, минимальное радиационное воздействие и высокий срок службы.

Конденсатор — это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

Резонансная частота конденсатора равна: f р = 1/ (2∏ ∙ √ L с ∙ C

) .

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·10 6 пФ = 1·10 −6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10 −9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 — 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность . Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура — основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок:

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.

Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.

Классификация

Конденсаторы делятся на виды по следующим факторам.

Назначению
  • Общего назначения . Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
  • Специальные . Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.
Изменению емкости
  • Постоянной емкости . Не имеют возможности изменения емкости.
  • Переменной емкости . Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся:
    Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости.
    Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами , от температуры – термоконденсаторами .
Способу защиты
  • Незащищенные работают в обычных условиях, не имеют никакой защиты.
  • Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
  • Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
  • Изолированные конденсаторы выполнены в закрытом корпусе.
  • Уплотненные имеют корпус, заполненный специальными материалами.
  • Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.
Виду монтажа
  • Навесные делятся на несколько видов с;
    — ленточными выводами;
    — опорным винтом;
    — круглыми электродами;
    — радиальными или аксиальными выводами.
  • Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
  • Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
  • Конденсаторы, предназначенные для поверхностной установки , имеют особенность конструкции: части корпуса являются выводами.
  • Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.
По материалу диэлектрика

Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры. Рассмотрим виды конденсаторов, которые имеют различные материалы диэлектрика.

  • Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
  • Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
  • Высокочастотные модели содержат пленки из фторопласта и полистирола.
  • Импульсные модели высокого напряжения имеют изолятор из комбинированных материалов.
  • В конденсаторах постоянного напряжени я в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
  • Низковольтные модели работают при напряжении до 1,6 кВ.
  • Высоковольтные модели функционируют при напряжении свыше 1,6 кВ.
  • Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
  • Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
  • Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
  • Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой .
Форме пластин
  • Сферические.
  • Плоские.
  • Цилиндрические.
Полярности
  • Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
  • Неполярные конденсаторы могут включаться в схему без соблюдения полярности.
Конструктивные особенности

Рассмотренные выше виды конденсаторов далеко не все имеют большую популярность. Поэтому подробнее рассмотрим конструктивные особенности наиболее применяемых видов конденсаторов.

Воздушные виды конденсаторов

В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.

Керамические

Такие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.

Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.

Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.

Пленочные

В таких моделях в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.

Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.

Параметры пленочных конденсаторов
  • Применяются для резонансных цепей.
  • Наименьший ток утечки.
  • Малая емкость.
  • Высокая прочность.
  • Выдерживают большой ток.
  • Устойчивы к электрическому пробою (выдерживают большое напряжение).
  • Наибольшая эксплуатационная температура до 125 градусов.
Полимерные

Эти модели имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.

Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.

Электролитические

От бумажных моделей электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.

Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.

Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.

К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.

Танталовые электролитические

Устройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.

Параметры
  • Незначительный ток утечки, в отличие от алюминиевых видов.
  • Малые размеры.
  • Невосприимчивость к внешним воздействиям.
  • Малое активное сопротивление.
  • Высокая чувствительность при ошибочном подключении полюсов.
Алюминиевые электролитические

Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.

Параметры
  • Большая емкость.
  • Корректная работа только на низких частотах.
  • Повышенное соотношение емкости и размера: конденсаторы других видов при одной емкости имели бы большие размеры.
  • Большая утечка тока.
  • Низкая индуктивность.
Бумажные

Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.

Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.

Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Конденсаторы

Надо сказать, что конденсатор , как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсатор это две металлических пластинки и воздух между ними . Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного .

Конденсаторы бывают постоянные, подстроечные, переменные и электролитические . Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные , слюдяные , керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость . Она измеряется в микро -, нано — и пикофарадах . На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мF , нанофарады – нф, Н или п , пикофарады – пф или pf . Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке , которая может содержать полосы, кольца или точки . Маркируемые параметры: номинальная емкость ; множитель ; допускаемое отклонение напряжения ; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт). В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):


(в таблице ошибка, должно быть: 100 10 пикофарад 0,01 нанофарада 0,00001 мкф(!) )


При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три — емкость в пикофарадах (pF):


Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы . Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик. Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны , поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы , хотя применяются они довольно редко. Существую еще и танталовые конденсаторы , которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают .
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения .

назначение, устройство, принцип действия. §52. Конденсаторы, их назначение и устройство

Конденсатор, видимо, есть самый первый прибор, с помощью которого научились достаточно долго удерживать электрические заряды в одном месте.

Если зарядить какой-нибудь диэлектрик трением, например, ту же классическую расческу, потерев ее шерстью, то заряд на ее поверхности останется на некоторое время. Однако ни накопить его, ни как-то использовать не удастся: кроме пары-тройки фокусов с притягиванием к расческе всякого мусора, ничего не выйдет. Металл же зарядить трением вообще невозможно. Все заряды, которые были бы как-то им приняты, на поверхности не удерживаются, а разбегаются сразу по всей массе применяемого металла. Или сбегают с него, благодаря большой площади контакта с воздухом, всегда содержащим влагу, что делает задачу невозможной.

Удалось придумать накопление электричества благодаря свойству притяжения друг к другу зарядов разного знака. Если два листочка из фольги прижать друг к другу, проложив между ними тонкий слой хорошего диэлектрика, то такой сэндвич можно зарядить, прикоснувшись телами, содержащими заряды разного знака, к разным листочкам фольги. Заряды разного знака притягиваются друг к другу и обязательно побегут в фольге навстречу друг другу. Они бы и разрядились, не будь между слоями фольги диэлектрика. И заряды только растекутся каждый по своему листу фольги и, притягиваясь друг к другу, будут находиться в ней достаточно долго.

Вот это и называется конденсатор. Чем больше площадь фольги — тем больше емкость. Чтобы добиться большой площади, фольгу с изолятором сворачивают рулоном — две ленты фольги и две ленты бумаги — и помещают в банку, выводя наружу от каждой ленты по контакту. Снаружи банка запаивается, чтобы предотвратить поступление влаги внутрь. Вездесущая влага же и является причиной, по которой бумажную ленту пропитывают парафином.

а) устройство, б) внешний вид

1 – фольговые обкладки, 2 – внутренние выводы обкладок,
3 – парафинированная бумага, 4 – металлический корпус, 5 – провод

На рисунке изображено, как устроен простейший фольговый автомобильный конденсатор. У него один контакт выведен от одной обкладки наружу проводом, а другим является металлический корпус, внутри присоединенный ко второй обкладке.

Работа конденсатора в электрической цепи

Уже давно мы отошли от понимания электричества в терминах движения, действия зарядов и так далее. Теперь мы мыслим понятиями электрических цепей, где обычными вещами являются напряжения, токи, мощность. И к рассмотрению поведения зарядов прибегаем только, чтобы понять, как работает в цепи какое-нибудь устройство.

Например, конденсатор в простейшей цепи постоянного электрического тока является просто разрывом. Обкладки ведь не соприкасаются друг с другом. Поэтому, чтобы понять принцип действия конденсатора в цепи, придется все-таки вернуться к поведению зарядов.

Зарядка конденсатора

Соберем простую электрическую цепь, состоящую из аккумулятора, конденсатора, резистора и переключателя.

ε c – ЭДС аккумулятора, C – конденсатор, R – резистор, K – переключатель

Когда переключатель никуда не включен, тока в цепи нет. Если подключить его к контакту 1, то напряжение с аккумулятора попадет на конденсатор. Конденсатор начнет заряжаться настолько, насколько хватит его емкости. В цепи потечет ток заряда, который сначала будет довольно большим, а по мере зарядки конденсатора будет уменьшаться, пока совсем не сойдет на нуль.

Конденсатор при этом приобретет заряд такого же знака, как и сам аккумулятор. Разомкнув теперь переключатель К, получим разорванную цепь, но в ней стало два источник энергии: аккумулятор и конденсатор.

Разрядка конденсатора

Если теперь перевести переключатель в положение 2, то заряд, накопленный на обкладках конденсатора, начнет разряжаться через сопротивление R.

Причем, сначала, при максимальном напряжении, и ток будет максимальным, величину которого можно вычислить, зная напряжение на конденсаторе, по закону Ома. Ток будет течь, то есть конденсатор будет разряжаться, а напряжение его падать. Соответственно и ток будет все меньше и меньше. И когда в конденсаторе заряда совсем не останется, ток прекратится.

У ситуации, описанной в этих двух случаях, есть интересные особенности:

  1. Электрическая батарея постоянного напряжения, работая в цепи с конденсатором, дает, тем не менее, переменный ток: при зарядке он изменяется от максимального значения до 0.
  2. Конденсатор, имея некоторый заряд, при разряжении через резистор, даст тоже переменный ток, изменяющийся от максимального значения до 0.
  3. В обоих случаях после непродолжительного действия ток прекращается. Конденсатор в обоих случаях после этого демонстрирует разрыв в цепи — ток больше не течет.

Описанные процессы называются переходными. Они имеют место в электрических цепях с постоянным напряжением питания, когда в них установлены реактивные элементы. После прохождения переходных процессов реактивные элементы перестают влиять на режимы токов и напряжений в электрической цепи. Время, в течение которого переходный процесс завершается, зависит как от емкости конденсатора C, так и от активного сопротивления нагрузки R. Очевидно, что чем они больше, тем больше нужен и интервал времени, пока переходный процесс не завершится.

Параметр, характеризующий время переходного процесса, называется «постоянной времени» для данной схемы, обозначается греческой буквой «тау»:

Произведение сопротивления в омах на емкость в фарадах, если рассмотреть внимательно эти единицы измерения, действительно дает величину в секундах.

Однако переходный процесс разрядки конденсатора — это процесс плавный. То есть, грубо говоря, он не заканчивается никогда.

U c – напряжение на конденсаторе (вольт), U 0 – первоначальное напряжение заряженного конденсатора, t – время (сек)

На рисунке видно, что конденсатор будет разряжаться «всегда», так как чем меньше на нем остается зарядов, тем меньший ток будет бежать по цепи, следовательно, тем медленнее будет идти процесс разрядки. Процесс экспоненциальный. По времени отложены значения в секундах величин, кратных постоянной времени. С некоторых значений можно считать процесс практически законченным, например, при 5t, когда напряжения на конденсаторе осталось порядка 0,7%.

Режим, когда переходный процесс завершен, называется стационарным, или режимом постоянного тока.

Принцип работы на переменном напряжении

Так же, как в механике масса обладает свойством инерции, в электричестве заряд в конденсаторе тоже проявляет инерционность. Действительно, при любых электрических процессах он начинает подзаряжаться (если напряжение на его контактах имеет такую же полярность, как и заряд в нем) или разряжаться (если полярность противоположная). Это влияет на картину токов в цепи, а на синусоидальном токе проявляется как сдвиг фазы между напряжением и током.

Фактически в цепи переменного тока непрерывно происходит переходный процесс.

Переменное напряжение U то подзаряжает, то разряжает конденсатор, в результате этого в нем течет ток I, сдвинутый по времени на 90° от периода колебаний напряжения.

Считается, что конденсатор пропускает переменный ток, причем введен параметр «кажущееся сопротивление конденсатора». Он зависит от емкости конденсатора С и от частоты переменного напряжения ω.

Это реактивное сопротивление, которое используется в расчетах цепей, содержащих инерционные, реактивные компоненты. То есть везде, где применяются конденсаторы и катушки индуктивности.

Назначение компонента

Из рассмотренных свойств ясно, что нужны конденсаторы не как источники электрического питания, а именно как реактивные элементы схем, чтобы создавать определенные режимы переменного/импульсного тока.

Используются конденсаторы настолько многообразно, что здесь, на уровне «конденсатор для чайников», можно перечислить только бегло их применение:

  • В выпрямителях служат для сглаживания пульсаций тока.
  • В фильтрах (совместно с резисторами и/или индуктивностями) выступают в роли частотно зависимого элемента для выделения или гашения определенной полосы частот.
  • В колебательных контурах используется конденсатор, работающий при генерации синусоидального напряжения.
  • Несут функцию накопителя в устройствах, где нужно обеспечить мгновенное выделение большой энергии в виде импульса — например, в фотовспышках, лазерах и т.д.
  • Используются в схемах точного управления временными событиями с использованием простейших по строению RC-цепей — реле времени, генераторы одиночных импульсов и т.д.
  • Фазосдвигающий конденсатор применяется в схемах питания синхронных и асинхронных, а также однофазных и трехфазных двигателей переменного тока.

Кроме собственно прибора «конденсатор», вполне успешно используются в технике явления, в основе которых лежит электрическая емкость.

Уровень можно измерить, используя факт того, что жидкость, поднимаясь в датчике между проводниками, играющими роль обкладок, меняет диэлектрическую проницаемость среды, а, следовательно, и емкость прибора, что он и показывает как изменение уровня.

Аналогично этому, сверхмалые толщины можно измерять, меняя расстояние между двумя проводниками-обкладками или их эффективную площадь.

В электронике используется множество различных деталей, которые вместе позволяют осуществлять целый ряд действий. Одной из них является конденсатор. И в рамках статьи будет вестись речь о том, что это за механизм, как работает, для чего нужен конденсатор и что он делает в схемах.

Что называется конденсатором?

Конденсатор — это пассивное электрическое устройство, которое в схемах может выполнять различные задачи благодаря умению копить заряд и энергию электрического поля. Но главный спектр применения — это в фильтрах выпрямителей и стабилизаторов. Так, благодаря конденсаторам осуществляется передача сигнала между усилительными каскадами, задаются временные интервалы для выдержки времени, строят фильтры высоких и низких частот. Благодаря своим свойствам он также используется для подборки частоты в разных генераторах.

Данный вид конденсаторов может похвастаться емкостью, которая составляет несколько сотен микрофарад. По подобному принципу устроены и другие представители семейства этой детали электроники. А как проверить конденсатор и убедиться, что реальное положение дел соответствует надписям? Наиболее простой способ — воспользоваться цифровым мультиметром. Также ответ на вопрос, как проверить конденсатор, может дать омметр.

Принцип действия и для чего нужен конденсатор

Из обозначения и схематического изображения можно сделать заключение, что в качестве простейшего конденсатора могут выступить даже две металлические пластины, расположенные рядом. В качестве диэлектрика при этом справится воздух. Теоретически нет никакого ограничения на площадь пластин и расстояние между ними. Поэтому даже при разводе на огромные расстояния и уменьшении их размера, пускай и незначительная, но какая-то емкость сохраняется.

Такое свойство нашло использование в высокочастотной технике. Так, их научились делать даже в виде обычных дорожек печатного монтажа, а также просто скручивая два провода, которые находятся в полиэтиленовой изоляции. При использовании кабеля емкость конденсатора (мкф) увеличивается вместе с длиной. Но следует понимать, что если передаваемый импульс короткий, а провод длинный, то он может просто не дойти до точки назначения. Может использоваться конденсатор в цепи постоянного и переменного тока.

Накопление энергии

При увеличении емкости конденсатора такие процессы, как заряд и разряд протекают медленно. Напряжение на данном электрическом устройстве растёт по кривой линии, которая в математике называется экспонентой. Со временем напряжение конденсатора увеличится от значения в 0В до уровня источника питания (если не перегорит из-за слишком высоких значений последнего).

Электролитический конденсатор

На данный момент самой большой удельной емкостью при соотношении этого показателя и объема детали могут похвастаться электролитические конденсаторы. Их показатель вместимости достигает значений в 100 тысяч микрофарад, а рабочее напряжение до 600 В. Но работают они хорошо исключительно на низких частотах. Для чего нужен конденсатор такого типа? Основная сфера применения — фильтры Электролитические конденсаторы в схемы всегда включаются с соблюдением полярности. Электроды делают из тонкой пленки (которая сделана из оксида металлов). Так как тонкий слой воздуха между ними не является достаточно хорошим изолятором, то также сюда добавляется слой электролита (в качестве него выступают концентрированные растворы щелочей или кислот).

Суперконденсатор

Это новый класс электролитических конденсаторов, который называют ионисторами. Его свойства делают его похожим на аккумулятор, хотя и накладываются определённые ограничения. Так, их преимущество заключается в коротком времени заряда (обычно несколько минут). Для чего нужен конденсатор такого типа? Ионисторы используются как резервные источники питания. При изготовлении они получаются неполярными, и где плюс, а где минус, определяется первой зарядкой (на заводе-производителе).

Значительное влияние на работоспособность оказывает температура и номинальное напряжение. Так, при 70˚C и 0,8 мощности дадут только 500 часов работы. При уменьшении напряжения до 0,6 от номинала, а температуры до 40 градусов срок его службы увеличится до 40 тысяч часов. Найти ионисторы можно в микросхемах памяти или электронных часах. Но вместе с этим имеют неплохие перспективы их использования в солнечных батареях.

С тех пор, как фон Клейст – не военачальник, священник – решил ухватить рукой банку (бутылку), заполненную водой, с опущенным туда электродом, прошло немало времени. Конструкций конденсаторов сегодня великое множество. Бессильны обещать рассмотреть 100%, дадим понятие о принципах работы конденсатора, технических характеристиках. Надеемся, обзор выйдет удачным.

Осторожно, работает конденсатор: история лейденской банки

Проще начать статическим зарядом. Отмечено учеными, проводник способен накапливать поверхностью электричество. Плотность распределения одинакова по площади. Ключевое отличие металлов от диэлектриков, накапливающих заряд. Обживая кусок железа, носители тока стремятся занять крайнее положение, отталкиваясь взаимно. В результате скапливаются равномерно по поверхности.

На принципе созданы генераторы, способные копить заряд потенциалом единицы миллионов вольт. При прикосновении к токонесущей части человек попросту испепелится. Аналогично действуют конденсаторы. Сформированы проводниками, площадь которых сильно увеличена. Достигается различными методами. В электролитических конденсаторах алюминиевая фольга скатывается рулоном. Небольшой цилиндр содержит метры металлической ленты.

Поясним работу. Когда на металлической (проводящей поверхности) появляется заряд, начинается поверхностное распределение. В 1745 году священник-юрист Эвальд Юрген фон Клейст обнаружил: удерживая в руках банку с водой, запасает внутри электричество. Ладонь служит проводящей обкладкой, объем жидкости (по внешней поверхности) — другой. Стекло выступает диэлектрическим барьером. При опускании в воду электрода носители стремятся занять крайнее положение, бороздя поверхность. Через стекло поле действует на ладонь, ответно начинаются схожие процессы (заряд притягивает носители противоположного знака).

Позже емкость догадались обернуть фольгой, получилась лейденская банка – первый дееспособный конденсатор на Земле, изобретенный человеком. Произошло, когда Питер ван Мушенбрук впечатлился силой полученного в процессе опыта ударом электричества. Стало понятно: опыты небезопасны, руку следует заменить. Ученые писал: второй раз избегает испытывать судьбу ради королевства Франции. Датчанин Даниэль Гралат стал первым догадавшимся соединить лейденские банки параллельно, обеспечивая более высокую емкость системе. Напоминает современный свинцовый аккумулятор задумкой.

Смешно, подобные устройства использовались вплоть до 1900 года, входящая в обиход радиосвязь вынудила искать новые пути решения проблемы, использовались сравнительно высокие частоты электрических сигналов. В результате появились первые бумажные конденсаторы, маслянистое полотно отделяло друг от друга две обкладки свернутой цилиндром фольги. Постепенно с развитием производства в качестве изоляторов стали применяться иные материалы:

  1. Керамика;
  2. Слюда;
  3. Бумага.

Истинный прорыв в конструировании конденсаторов произошел, когда люди догадались диэлектрик заменить слоем оксида окисленной поверхности металла. Сказанное касается электролитических конденсаторов. Один цилиндр фольги покрыт оксидом. Чаще сегодня используется травление (намеренное окисление материала действием агрессивных сред), если требования технических характеристик велики, применяется анодирование. Позволяя получить гладкую поверхность, плотно прилегающую к электроду противоположного знака.

Обкладками выступают оксидированная фольга и бумага, пропитанная электролитом. Разделены тончайшим слоем оксида, позволяя получить потрясающие емкости, единицы-десятки микрофарад сравнительно малого объема. Технические характеристики конденсаторов просто потрясающие. Второй рулон алюминиевой фольги послужит простым проводником электричества, считается одним контактом. Оксид характеризуется удивительным свойством – проводит ток в одном направлении. При подключении электролитического конденсатора неправильной стороной происходит взрыв (разрушение диэлектрика, закипание электролита, образование пара, разрыв корпуса).

Отказываясь служить диэлектриком, разделяющий слой становится проводником. Из-за резкого повышения температуры области начинается лавинообразная реакция меж металлом и электролитом, конденсатор взбухает. Видели многие радиолюбители, избегаем рассказывать, процессе мало веселого предоставит внимательному зрителю.

Зачем конденсатору диэлектрик

Было замечено: если поместить меж пластинами конденсатора изолирующий материал, емкость возрастает. Долго ломали головы ученые мужи, было раскрыто понятие диэлектрической проницаемости. Оказывается, согласно теореме Гаусса можно связать с емкостью конденсатора напряженность поля обкладок. Получается, изолятор обеспечивает накопление зарядов металлами, собирая поверхностью носители противоположного знака. Полагаем, читатели догадались: те создают поле, направленное навстречу исходному, вызывая ослабление, повышающее вместимость конструкции.

Диэлектрик конденсатора

Таблицы показывают: бумага, керамика выглядят не лучшими материалами. Значения серной кислоты достигают 150 единиц, почти на два порядка выше. Причем в чистом виде вещество признано изолятором. Вероятно, настанет день, когда принцип действия конденсатора будет реализован не раствором, а серной кислотой. Известные свинцовые аккумуляторы по-другому запасают энергию (реакция). Рассмотренные варианты не единственные, распространены шире.

Глобально конденсаторы поделим двумя семействами:

  1. Электролитические (полярные).
  2. Неполярные.

Рассказывали обустройство первых. Разница ограничивается материалом обкладок. Оксид титана снабжен диэлектрической проницаемостью близкой сотне. Понятно, материал предпочтительней для создания высококлассных изделий. Стоимость кусается. Титанат бария демонстрирует диэлектрическую проницаемость повыше. Практически любой конденсатор сформирован обкладками. Диэлектрик добавляет емкости изделию. Чаще лучшие модели конденсаторов содержат ценные металлы: палладий, платину.

Маркировка, технические характеристики конденсаторов

Маркировка конденсаторов содержит параметр максимально допустимого рабочего напряжения. Обозначение приводится согласно ГОСТ 25486, затем уточнения достигают отраслевых стандартов. Например, номинал проставляется согласно ГОСТ 28364. Отдельного стандарта по электролитическим конденсаторам найти практически невозможно. Однако авторы сделали, читателям предлагаем проштудировать ГОСТ 27550. На корпусе любые виды конденсаторов содержат маркировку:

Маркировка корпуса

  • Логотип изготовителя.
  • Тип конденсатора.

Сложно сказать определенно, большинство электролитических конденсаторов снабжены маркировкой-литерой К, несколькими цифрами, часто разделенными дефисом. Следуя логике, найдем в интернете соответствующий стандарт либо другие материалы.

  • По правилам ГОСТ 28364, номинал состоит из 3-5 символов, присутствует буква.

П означает приставку пико, н – нано, мк – микро. Если номинал дополнен дробной частью, занимает последнее место, вослед литере. Емкостной ряд (неполный) значений приводится ГОСТ 28364 на примерах. Выполняются нормы этого стандарта практически? Не для электролитических конденсаторов. Вызвано, по-видимому, большими номиналами. Запросто на К50-6 встретите надпись наподобие 2000 мкФ. Согласно ГОСТ 28364, должно выглядеть наподобие 2м0. Для электролитических конденсаторов применяется ГОСТ 11076. Наряду с кодированными обозначениями (ГОСТ 28364) допускается традиционная запись (2000 мкФ). Видите, назначение конденсаторов часто определяет способ маркировки. Электролитические часто выступают составной частью фильтров цепи питания. Здесь нужен больший номинал, функциональность сильно отличается принципа действия конденсаторов разделительных ветвей цепей переменного тока.

  • Если по былым нормам рабочее напряжение маркировкой конденсатора ставилось на первое место, в современных моделях наоборот. Обозначение выражено вольтами.

Обозначения электролитического конденсатора

Подразумевается рабочее напряжение, не пробивное. Конденсаторные установки легко сгорают, сожженные повышенными значениями. Тоньше слой диэлектрика, проще происходит пробой. Существует противоречие между дистанцией, разделяющей обкладки (меньше — выше номинал) и желанием повысить рабочее напряжение.

  • Допустимое отклонение емкости чаще замалчиваются.

Процесс старения выводит номинал за рабочие пределы. Можно сказать, что то, для чего нужен конденсатор, не изготовишь при помощи просроченных изделий. Однако радиолюбители делают по-своему. Прозванивают конденсатор, определяют новый номинал, заручившись помощью тестера, пользуются.

  • Литера В стоит для конденсаторов всеклиматического исполнения.
  • Перед зарядкой конденсатора попробуйте понять, полярный ли (электролитический).

Изделие способно взорваться. Разумеется, полярный конденсатор нельзя включать в цепь переменного тока. Единого типа маркировки не предусмотрено, оговаривается бумаги: требования могут быть указаны отраслевыми техническими условиями. Например, знаки плюса/минуса. На импортных изделиях отрицательный полюс помечается светлой полосой темного корпуса.

  • Обозначение довершается датой выпуска (месяц, год), ценой.

Понятно, последнее при современных экономических условиях неактуально.

Обратите внимание, конденсатор способен долго хранить заряд. Чревато опасностью получить удар током. Любой ремонтник, работающий с радиоаппаратурой, знает: началу ремонта импульсного блока питания предшествует процесс разрядки конденсатора. Чаще делается при помощи запрещенной стандартами лампочки, вкрученной в патрон. Два оголенных провода замыкают на токонесущие части цепи, импульс на короткое время зажигает спираль. Кстати, конструкцию часто вставляют взамен предохранителей, чтобы понять, по-прежнему ли ток велик в цепи (означает наличие неисправности, вызывает необходимость дальнейшей диагностики).

Выявление неисправности конденсатора требует сноровки, при наличии специфических знаний осуществимо. Нужно иметь на руках простейший мультиметр. Уже рассказывали, как проверить конденсатор при помощи тестера, направляем читателей на соответствующий обзор, сами с позволения почтенной публики спешим откланяться.

Электрический конденсатор — это устройство, которое может накапливать заряд и энергию электрического поля. В основном он состоит из пары проводников (обкладок), разделенных слоем диэлектрика. Толщина диэлектрика всегда намного меньше, чем размер обкладок. На электрических схемах замещения конденсатор обозначается 2-мя вертикальными параллельными отрезками (II).

Основные величины и единицы измерения

Существует несколько основных величин, определяющих конденсатор. Одна из них — это его емкость (латинская буква С), а вторая — рабочее напряжение (латинская U). Электроемкость (или же просто емкость) в системе СИ измеряется в фарадах (Ф). Причем как единица емкости 1 фарад — это очень много — на практике почти не применяется. Например, электрический заряд планеты Земля составляет всего 710 микрофарад. Поэтому в большинстве случаев из-меряется в производных от фарада величинах: в пикофарадах (пФ) при очень маленьком значении емкости (1 пФ=1/10 6 мкФ), в микрофарадах (мкФ) при достаточно большом ее значении (1 мкФ = 1/10 6 Ф). Для того чтобы рассчитать электроемкость, необходимо разделить величину заряда, накопленного между обкладками, на модуль разницы потенциалов между ними (напряжение на конденсаторе). Заряд конденсатора в данном случае — это заряд, накапливающийся на одной из обкладок рассматриваемого устройства. На 2-х проводниках устройства они одинаковы по модулю, но отличаются по знаку, поэтому сумма их всегда равняется нулю. Заряд конденсатора измеряется в кулонах (Кл), а обозначается буквой Q.

Напряжение на электроприборе

Одним из самых важных параметров рассматриваемого нами устройства является пробивное напряжение — разность значений потенциалов двух проводников конденсатора, приводящая к электрическому пробою слоя диэлектрика. Максимальное напряжение, при котором не происходит пробоя устройства, определяется формой проводников, свойствами диэлектрика и его толщиной. Условия работы, при которых напряжение на обкладках электроприбора близко к пробивному, недопустимы. Нормальное рабочее напряжение на конденсаторе меньше пробивного в несколько раз (в два-три раза). Поэтому при выборе следует обратить внимание на номинальное напряжение и емкость. В большинстве случаев значение этих величин указывается на самом устройстве или в паспорте. Включение конденсатора в сеть на напряжение, превышающее номинальное, грозит его пробоем, а отклонение значения емкости от номинального может привести к выбросу в сеть высших гармоник и перегреву устройства.

Внешний вид конденсаторов

Конструкция конденсато-ров может быть самой разнообразной. Она зависит от значения электроемкости устройства и его назначения. На параметры рассматриваемого устройства не должны влиять внешние факторы, поэтому обкладки имеют такую форму, при которой электрическое поле, созданное электрическими зарядами, сосредотачивается в небольшом зазоре между проводниками конденсатора. Поэтому они могут состоять из двух концентрических сфер, двух плоских пластин или двух коаксиальных цилиндров. Следовательно, конденсаторы могут быть цилиндрическими, сферическими и плоскими в зависимости от формы проводников.

Постоянные конденсаторы

По характеру изменения электроёмкости конденсаторы делят на устройства с постоянной, переменной ёмкостью или подстроечные. Разберем подробнее каждый из упомянутых типов. Приборы, чья ёмкость не меняется в процессе работы, то есть она является постоянной (значение емкости все-таки может колебаться в допустимых пределах в зависимости от температуры),- это постоянные конденсаторы. Существуют также электроприборы, меняющие свою электроемкость в процессе работы, они называются переменными.

От чего зависит С в конденсаторе

Электроемкость зависит от площади поверхности его проводников и расстояния между ними. Есть несколько способов изменения этих параметров. Рассмотрим конденсатор, который состоит из двух видов пластин: подвижных и неподвижных. Подвижные пластины перемещаются относительно неподвижных, в результате чего изменяется электроемкость конденсатора. Переменные аналоги используются для настроек аналоговых устройств. Причем емкость можно изменять в процессе работы. Подстроечные конденсаторы в большинстве случаев используют для настройки заводской аппаратуры, например для подбора емкости эмпирическим путем при невозможности расчета.

Конденсатор в цепи

Рассматриваемый прибор в цепи постоянного тока проводит ток только в момент включения его в сеть (при этом происходит заряд или перезаряд устройства до напряжения источника). Как только конденсатор полностью заряжается, ток через него не идет. При включении устройства в цепь с переменным током процессы разрядки и зарядки его чередуются друг с другом. Период их чередования равен приложенного синусоидального напряжения.

Характеристики конденсаторов

Конденсатор в зависимости от состояния электролита и материала, из которого он состоит, может быть сухим, жидкостным, оксидно-полупроводниковым, оксидно-металлическим. Жидкостные конденсаторы хорошо охлаждаются, эти устройства могут работать при значительных нагрузках и обладают таким важным свойством, как самовосстановление диэлектрика при пробое. У рассматриваемых электрических устройств сухого типа достаточно простая конструкция, немного меньше потери напряжения и ток утечки. На данный момент именно сухие приборы пользуются наибольшей популярностью. Основным достоинством электролитных конденсаторов являются дешевизна, компактные габариты и большая электроемкость. Оксидные аналоги — полярные (неверное подключение приводит к пробою).

Как подключается

Подключение конденсатора в цепь с постоянным током происходит следующим образом: плюс (анод) источника тока соединяется с электродом, который покрыт окисной пленкой. В случае несоблюдения этого требования может произойти Именно по этой причине жидкостные конденсаторы нужно подключать в цепь с переменным источником тока, соединяя встречно последовательно две одинаковые секции. Или нанести оксидный слой на оба электрода. Таким образом, получается неполярный электроприбор, работающий в сетях как с постоянным, так и с Но и в том и в другом случаях результирующая емкость становится в два раза меньше. Униполярные электрические конденсаторы обладают значительными размерами, зато могут включаться в цепи с переменным током.

Основное применение конденсаторов

Слово «конденсатор» можно услышать от работников различных промышленных предприятий и проектных институтов. Разобравшись с принципом работы, характеристиками и физическими процессами, выясним, зачем нужны конденсаторы, например, в системах энергоснабжения? В этих системах батареи широко применяют при строительстве и реконструкции на промышленных предприятиях для компенсации реактивной мощности КРМ (разгрузки сети от нежелательных ее перетоков), что позволяет уменьшить расходы на электроэнергию, сэкономить на кабельной продукции и доставить потребителю электроэнергию лучшего качества. Оптимальный выбор мощности, способа и места подключения источников (Q) в сетях электроэнергетических систем (ЭЭС) оказывает существенное влияние на экономические и технические показатели эффективности работы ЭЭС. Существуют два типа КРМ: поперечная и продольная. При поперечной компенсации батареи конденсаторов подключаются на шины подстанции параллельно нагрузке и называются шунтовыми (ШБК). При продольной компенсации батареи включают в рассечку ЛЭП и называют УПК (устройства продольной компенсации). Батареи состоят из отдельных приборов, которые могут соединяться различными способами: конденсаторы последовательного подключения или параллельного. При увеличении количества последовательно включенных устройств увеличивается напряжение. УПК также используются для выравнивания нагрузок по фазам, повышения производительности и эффективности дуговых и рудотермических печей (при включении УПК через специальные трансформаторы).

В бардачке каждого автолюбителя можно найти пару-тройку этих электроприборов. Зачем нужны конденсаторы в автомобиле? Там они используются в усиливающей аппаратуре акустических систем для качественного воспроизведения звука.

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

Назначение и принцип работы конденсационного устройства

Основное назначение конденсационного устройства — создание и поддержание как можно более низкого давления в выпускной части турбины, конденсация отработавшего пара и возврат его в систему питания паровых котлов. Известно, что чем выше на­чальные и ниже конечные параметры пара, тем больший будет располагаемый теплоперепад и большая часть тепловой энергии пара может быть превращена в механическую работу. Понижение давления ниже атмосферного в конденсаторе происходит за счет того, что поступающий в него пар искусственно охлаждается. При охлаждении пар конденсируется и объем его во много раз умень­шается. Так, например, при давлении 0,005 Мн/м2 объем конден­сата меньше, чем объем пара почти в 30 тысяч раз. При таком уменьшении объема в герметически закрытом конденсаторе созда­ется очень большое разрежение. В современных паротурбинных установках в выпускном патрубке поддерживается давление 0,005—0,003 Мн/м2. Это означает, что конденсация пара будет про­исходить при температуре 32—24° С, и при этом должно быть от­ведено большое количество тепла отработавшего пара.

В процессе работы в конденсатор непрерывно поступает отра­ботавший пар турбин и, следовательно, должна непрерывно подво­диться охлаждающая вода, которая после нагревания удаляется. Для каждой турбинной установки устанавливается наивыгодней­ший вакуум, который обычно не превышает 95—97%, так как дальнейшее углубление вакуума приводит к значительному увели­чению размеров конденсатора, большой мощности циркуляцион­ных насосов и значительному расходу охлаждающей воды.

В современных судовых турбинных установках применяют исключительно конденсаторы поверхностного типа, в которых от­работавший пар конденсируется на охлаждающей поверхности конденсатора, состоящей из рядов латунных трубок, внутри кото­рых циркулирует забортная вода. Образующийся конденсат соби­рается в нижней части конденсатора, откуда кондеисатным насо­сом подается в систему питания паровых котлов. Таким образом, паровой котел многократно питается одной и той же водой-кон­денсатом. Это уменьшает образование накипи на внутренних по­верхностях котла, а также отложение солей на турбинных ло­патках.

Внутрь конденсатора попадает вместе с паром воздух, кото­рый не конденсируется. Кроме того, воздух просачивается через неплотности, в результате чего для поддержания вакуума не­обходимо обеспечить непрерывный отсос его из конденсатора в атмосферу. Для этой цели используют паровые эжекторы.

На рис. 46 показана примерная схема конденсационного устрой­ства. Отработавший пар из паровой турбины поступает в конден­сатор 5, где, соприкасаясь с холодными трубками, охлаждается и конденсируется. Охлаждающая вода из-за борта подается цир­куляционным насосом 1. Конденсат откачивается конденсатным насосом 2. Воздух удаляется с помощью пароструйного эжек­тора 3, который отсасывает его по трубопроводу 4 в атмосферу.

По движению циркуляционной (забортной) воды конденсаторы делятся на одно-, двух-, трех- и четырехпроточные. Наибольшее применение имеют двух- и трехпроточные конденсаторы.

В зависимости от конструкции различают конденсаторы ре­генеративные и нерегенеративные. Регенеративными называются конденсаторы, у которых трубки расположены так, что часть отработавшего пара по выходе из турбины непосредственно попа­дает в его нижнюю часть, где, соприкасаясь со стекающим с тру­бок конденсатом, подогревает его. Благодаря этому температура конденсата приближается к температуре поступающего пара.

Принцип действия поверхностного конденсатора, схематически изображенного на рис. 47, заключается в следующем. Конденса­тор состоит из цилиндрического сварного стального корпуса 2, внутри которого размещены тонкостенные латунные трубки 3, за­крепленные в трубных досках 4 и 11. К трубным доскам примы­кают водяные камеры 5, 9 и 12. Охлаждающая забортная вода подводится через патрубок 6 в камеру 5, проходит по нижним ря­дам трубок в камеру 12, а затем по верхним рядам — в камеру 9. Нагретая вода через патрубок 8 отводится за борт. Передние во­дяные камеры разделены перегородкой 7, что заставляет поток охлаждающей воды пройти по трубкам вдоль конденсатора два раза. Такой конденсатор называется двухпроточным. В трехпро- точных конденсаторах обе водяные камеры имеют перегородки и забортная вода совершает три хода. Отработавший пар поступает в конденсатор через горловину 10, соединяющую его с турбиной, соприкасается с поверхностью трубок и конденсируется, образуя разрежение в паровой части конденсатора. Конденсат стекает вниз и собирается в сборнике 1; откуда специальным насосом от­водится в питательную систему котельной установки судна. Отсос воздуха из парового пространства конденсатора производится воз­душным насосом (эжектор) через патрубок 13, расположенный сбоку.


Устройство поверхностного конденсатора — Энциклопедия по машиностроению XXL

Рис. 57—1,1. Схема устройства поверхностного конденсатора

Фиг. 5. Схема устройства поверхностного конденсатора
УСТРОЙСТВО ПОВЕРХНОСТНОГО КОНДЕНСАТОРА  [c.182]

Схема устройства поверхностного конденсатора показана нафиг. 4. Конденсатор состоит из корпуса 1, обычно стального сварного, двух  [c.15]

Основные схемы и устройство поверхностных конденсаторов 219  [c.219]

ОСНОВНЫЕ СХЕМЫ И УСТРОЙСТВО ПОВЕРХНОСТНЫХ КОНДЕНСАТОРОВ Основные схемы поверхностных конденсаторов  [c.219]

Назначение конденсационного устройства. Конденсационное устройство имеет своим назначением обеспечение в выхлопной части турбины вакуума определённой величины. Для этой цели нужно иметь возможность сконденсировать покидающий турбину пар при достаточно низкой температуре. В современных паротурбинных установках в выхлопном патрубке поддерживается давление порядка 0,05—0,03 ama. Это означает, что конденсация пара должна происходить при температуре порядка 32—24 С и при этом должно быть отведено большое количество тепла пара. Для паровых турбин в настоящее время применяются исключительно поверхностные конденсаторы.  [c.156]

ВОДОЙ ДЛЯ котлов. На рис. 61—III изображен поверхностный конденсатор, Водяные камеры разделены вертикальными перегородками на две части А к В, из которых каждая может работать самостоятельно. Такое устройство дает возможность чистить конденсационные трубки от грязи, попадающей с водой. Поток воды для увеличения скорости и, следовательно, для увеличения коэфициента теплопередачи, направляется не сразу по всем трубам одной половины конденсатора, а последовательно сначала через первую треть труб, затем через вторую и, наконец, через третью.  [c.260]

Назначение, принцип действия и устройство конденсационной установки. Общая классификация, конденсаторов. Понятие о вакууме. Наивыгоднейший вакуум паровой машины. Смешивающие и поверхностные конденсаторы, их устройство и  [c.619]

Особенно широкое применение в теплосиловых установках имеют рекуперативные аппараты, в которых тепло передается от одной жидкости другой через разделительную стенку (поверхность нагрева). Примерами таких устройств могут служить паровые котлы, пароперегреватели, пароводяные подогреватели, поверхностные конденсаторы паровых турбин, нагревательные приборы систем центрального отопления и др. Только такие теплообменники будут рассмотрены в дальнейшем.  [c.320]


Для получения вакуума к выхлопному патрубку турбины присоединяется конденсатор. Вакуум в конденсаторе создается при помощи конденсации пара охлаждающей водой и отсоса воздуха из конденсатора посредством специальных устройств (например, эжекторов, вакуум-насосов и др.). Конденсация пара может производиться либо непосредственным смешением его с охлаждающей водой (смешивающие конденсаторы), либо при охлаждении его в поверхностных теплообменниках — поверхностных конденсаторах. В турбинных установках электростанций применяются исключительно поверхностные конденсаторы, так как они обеспечивают как сохранение количества конденсата, так и требуемое его качество по солесодержанию, что весьма важно для питания котлоагрегатов высоких параметров боль-  [c.180]

Поверхностные конденсаторы применяют только в том случае, если конденсат вторичных паров является ценным материалом, например при изготовлении концентрированных соков и отгонке эфирных масел. Устройство и расчет конденсационных становок приведены з главе XXI.  [c.535]

Для поверхностной закалки используются установки, состоящие из технологического устройства (закалочного станка), источника питания, линии передачи, управляющей и контрольно-измерительной аппаратуры. Система водяного охлаждения обеспечивает охлаждение элементов высокочастотный схемы (индуктора, трансформатора, конденсаторов, источника) и закаливаемой поверхности.  [c.184]

Теплообмен при конденсации пара. Конденсация протекает с выделением теплоты и всегда сопровождается теплообменом. Явление теплообмена при конденсации встречается в конденсаторах паротурбинных, холодильных и опреснительных установок, теплообменных аппаратах и других устройствах. Наиболее характерной для этих установок является поверхностная конденсация пара, реже встречается явление конденсации во всем объеме.  [c.124]

В теплообменнике 3, поверхностного или контактного типа происходит нагрев воздуха дистиллятом, поступающим из головного подогревателя 2. Окончательный нагрев дистиллята из конденсаторов опреснительной установки мгновенного вскипания 4 осуществляется внешним источником в головном подогревателе. Исходная вода, подогретая горячим воздухом в контактном теплообменнике /, направляется в ступени установки, где подвергается термической дистилляции. Воздух после теплообменников поступает на воздуходувку 9. Концентрированный рассол доводится до сухого остатка в устройстве 8.  [c.53]

Основной причиной увлажнения вторичного пара для пенообразующих растворов являются поверхностное натяжение и вязкость жидкости. Растворы, обладающие высокой вязкостью и низким значением поверхностного натяжения, склонны к пенообразованию, т. е. они образуют тонкие и стойкие пленки вокруг пузырьков водяного пара. Образовавшаяся пена заполняет весь паровой объем и уносится со вторичным паром в следующую сту- 0 пень многоступенчатой выпарной установки или в конденсатор одноступенчатого аппарата. Предотвратить увлажнение пара при выпарке пенообразующих устройств чрезвычайно трудно. Увеличение размеров парового пространства не приводит к соответственному уменьшению влажности пара. Различные механические сепараторы также малоэффективны.  [c.54]

Паровые машины в большинстве случаев снабжаются смешивающими конденсаторами, схемы устройства которых изображены на фиг. 5-65. Слева показана схема конденсатора с подачей охлаждающей воды и пара в верхнюю часть конденсатора (с параллельным током пара и воды), а справа с подачей пара внизу конденсатора (конденсатор с противотоком). Отсос паровоздушной смеси производится в первом случае сбоку конденсатора, во втором — сверху. Внизу показаны центробежные насосы для откачки охлаждающей воды и конденсата. В смешивающих конденсаторах конденсация пара происходит при со-с водой. Для увеличения поверхности соприкосновения вода подается в конденсатор отдельными струями и стекает постепенно по корытам (левая схема) или разбрызгивается, проходя через мелкие отверстия перегородок (правая схема). Смешивающие конденсаторы применяются для паровых машин, не требующих слишком большого разрежения, так как в них нецелесообразно такое глубокое расширение пара, как в паровых турбинах. Получение в смешивающих конденсаторах глубокого разрежения требовало бы чрезмерного расхода энергии на отсос большого количества воздуха, вносимого охлаждающей водой. Процесс конденсации в смешивающем конденсаторе происходит аналогично процессу в конденсаторах поверхностного типа. После поступления пара в конденсатор происходит массовая конденсация пара, затем постепенное охлаждение паровоздушной смеси.  [c.351]


При сушке топлива в поверхностных теплообменниках (паровых трубчатых барабанных сушилках) выделенные из топлива водяные пары с небольшой примесью топлива отводятся через очистные устройства в атмосферу. Установка конденсаторов этих паров, например, для предварительной подсушки топлива не всегда экономически оправдывается из-за значительного расхода металла. В такой системе уголь в зависимости от его вида размалывается в шаровых барабанных мельницах (твердые каменные угли) или в быстроходных мельницах молоткового типа (мягкие бурые угли). Шаровые барабанные мельницы при этом применяются с обычной илн слабой воздушной вентиляцией либо без нее. Угольная пыль из мельниц без вентиляции или со слабой вентиляцией механическими транспортерами (шнеками) и вертикальными элеваторами отводится к сепараторам.  [c.229]

В турбинных установках электростанций применяются исключительно поверхностные конденсаторы, поскольку они обеспе-, чиваюг не только сохранение количества конденсата, но и требуемое его качество по солесодержанию, что весьма важно для питания котлоагрегатов высоких параметров большой мощности. Схема устройства поверхностного конденсатора показана на рис. 8.15.  [c.205]

Конденса ционкые устройства паровых турбин. Конденсационное устройство предназначено для создания вакуума в выпускной части турбины, а также для конденсации отработавшего в турбине пара. Очевидно, что чем больше разрежение в конденсаторе, тем больший теплоперепад может быть использован турбиной при ОлЧних и тех же начальных параметрах пара. Поэтому стационарные турбины имеют конденсационные устройства, создающие глубокий вакуум. Для паровых турбин применяют конденсаторы, в которых пар не соприкасается с окружающей водой. Образованный конденсат используется для питания паровых котлов. На рис. 190 дана схема устройства поверхностного конденсатора. Этот конденсатор представляет собой стальной сварной барабан (корпус /) с двумя крышками 4 по торцам. На концах барабана посредством двух вертикальных листов 2 называемых трубными досками, отделены водяные камеры 5 от пара. Водяные камеры, в свою очередь, часто разделяются перегородками иа два или несколько отделений. 254  [c.254]

Пароперегреватель горизонтального типа выполнен из труб диаметром 32×3 мм с четырьмя вертикальными камерами. Поверхность нагрева пароперегревателя разделена на две части от камеры насыщенного пара до первой промежуточной камеры с омыванием газами по схеме противотока и вторая часть — от промежуточной камеры до камеры перегретого пара с омыванием смешанным током. Для поддержания температуры пара при изменении нагрузки котла установлено устройство для впрыска собственного конденсата. Выносной горизонтальный поверхностный конденсатор размещен в камере диаметром 325 X13 мм. Подача конденсата и его впрыск производятся за счет перепада давления между барабаном котла и местом установки пароохладителя (в рассечке пароперегревателя).  [c.15]

Вопросы теории теплового процесса, конструкции, расчетов на прочность элементов конденсатора, теории переменного режима и т. д. поверхностных конденсаторов стационарных паровых турбин рассматриваются в соответствующих специальных курсах [12, 43]. Здесь будут приведены лишь те основные сведения по устройству и конструкции конденсаторов паровых турбин и их воздухоудаляющих устройств, которые необходимы при изложении вопросов эксплуатации конденсационных установок.  [c.187]

Конденсационная установка предназначена для создания за паровой турбиной / (рис. 20.7) разрежения (вакуума) с целью увеличения используемого теп-лоперепада и повышения термического КПД паротурбинной установки. В конденсационную установку входят конденсатор 2, циркуляционный 3 и конденсат-ный 4 насосы, а также устройство для отсасывания воздуха из конденсатора 5 (обычно это паровой эжектор). Отработавший пар поступает в конденсатор сверху. Соприкасаясь с поверхностью трубок, внутри которых протекает охлаждающая вода, пар конденсируется. Конденсат стекает вниз и из сборника конденсационным насосом подается в поверхностные холодильники парового эжектора, а оттуда через систему регене-  [c.173]

Перегретый пар поступает к турбине 8 по трубопроводу 35. Турбина непосредственно соединена с электрическим генератором 6. После турбины пар поступает в. конденсатор 5. Охлаждающая вода в конденсатор подается по трубопроводу 2 и отводится из него по трубопроводу 3. Конденсат из конденсатора 5 откачивается конденсатны-ми насосами 4. Регенеративный подогрев питательной воды осуществляется в поверхностных регенеративных подогревателях, расположенных вдоль турбины. На рис. 35-3 виден только один из регенеративных подогревателей 9. Питательная вода проходит через деаэраторы 16 повышенного давления (0,6 Мн1м ), установленные между бункерами сырого угля. Питательные насосы 11 размещены в турбинном цехе, обслуживаемом мостовым краном 7. В масляном хозяйстве турбогенераторов предусмотрены фильтры и маслоохладители 10. В помещениях/и/2 расположены электрические распределительные устройства собственных нужд.  [c.452]

При проектировании и размещении энергетических предприятий необходимо оценивать тепловую нагрузку на водоемы, используемые в качестве источников и приемников охлаждающей воды. Теоретическая оценка распространения теплых сбросных вод электростанций должна учитывать физические процессы теплопередачи в большом объеме воды, а также многообразие внешних факторов, влияющих на эти процессы. Для прогнозирования распространения тепла в районе сброса охлаждающей воды конденсаторов турбин применяют математические модели поверхностных струйных потоков. Рассматривают наиболее типичные условия сброса теплых вод поверхностный сброс в глубокий водоем, сброс в мелководную зону, вдольбереговой сброс. Выпускным устройством служит поверхностный сбросной канал прямоугольного сечения с геометрическим соотношением ho/bo l. При расчете распространения тепловых потоков определяют глубину проникновения и площадь распространения теплых вод, поля температур и скоростей течения потока, площади зон с различной степенью перегрева. В математических моделях учитывают теплоотдачу со свободной поверхности, скорость и направление течений, а также влияние дна и береговой линии.  [c.157]


Сочетание поверхностного и впрыскивающего пароохладителей имеет определенные преимущества. Впрыскивающая ступень три этом может быть выполнена с ограниченной производительностью обычно для нее требуется не более 3— 5% конденсата (от на-ропроизводительности котла). Если для впрыска используется собствен-,пьгй конденсат котла, то все устройства (конденсатор, баки, трубопроводы) получаются соответственно малыми. Если же на впрыск подается питательная вода, то опасность попадания солей в на р также уменьшается. В крайнем случае при эксплуатационном увеличении солесодержания питательной воды впрыскивающий пароохладитель может быть временно отключен впредь до устранения причин, вызывающих ухудшение качества питательной воды, а регулирование температуры пара на это время нереведе- 0 на ручное дистанционное управле- пие с помощью поверхностного пароохладителя.  [c.155]

Конденсат ртутного пара самотеком сливается по кон-денсатопроводу в коллектор парогенератора. Неконденси-рующиеся газы из конденсатора-испарителя отсасываются с помощью вакуумно-эжекторного устройства, состоящего из поверхностного охладителя 1 3, сепаратора-расширителя 4 и водоструйного эжектора 5.  [c.134]

Конденсационные устройства предназначены для конденсации пара, отработавшего в паровых турбинах. В паротурбинных установках, как правило, применяются конденсаторы поверхностного типа. Охлаждающая (циркуляционная) вода проходит через пучки трубок, расположенных в паровом пространстве конденсатора. Отработавший пар турбины, соприкасзясь с холодной поверхностью трубок, конденсируется, отдавая скрытую теплоту парообразования охлаждающей воде.  [c.105]

Ниже описано импульсное диодно-конденсаторное устройство, обеспечивающее наведение большой остаточной индукции в поверхностном слое намагничиваемого изделия. Принцип действия этого устройства, как и вообще генераторов мощных импульсов, основан на накоплении энергии в электрическом поле конденсатора от источника постоянного тока небольшой мощности и кратковременной отдаче этой энергии в электрическую цепь к нагрузке.  [c.329]

ТУРБОВОЗЫ, т у p б О Л О к О м о ТИ В ы,т у p-бопаровозы, парот у р б о в о з ы,, турбинные паровозы, паровозы, имеющие в качестве главного тягового двигателя паротурбину. Последняя применяется без конденсации и с конденсацией. Отработанный пар от турбин без конденсации при давлении немного выше атмосферного направляется в конус и создает нужную для горения топлива тягу. В конденсационных турбинах благодаря наличию конденсатора, в котором устанавливается давление ниже атмосферного, увеличивается используемый тепловой перепад. Т. без конденсации имеют одну или несколько турбин и передачу, связывающую вал турбины с движущими осями. По сравнению с обычными паровозами Т. без конденсации имеют преимуществом полное уравновешивание движущего механизма и в силу этого пониженное динамич. воздействие на путь. Теплотехнич. преимуществ эти Т. не дают. Недостатком их является повышенная начальная стоимость. Т. с конденсационнойустановкой имеет одну или несколько турбин, передачу, связывающую вал турбины с движущими колесами (механическую или электрическую), побудитель тяги для продуктов сгорания, конденсатор (водяной или воздущный), устройство для охлаждения циркуляционной воды (градирня, поверхностный холодильник), приборы для подачи охлаждающей воды или воздуха, подогреватель воздуха (иногда) и другие детали.  [c.158]


Зачем нужен конденсатор на входе питания. §52. Конденсаторы, их назначение и устройство. Как устроен электрический конденсатор

Люди, далекие от техники, даже не задумываются, что в конструкции современных электроприборов стоят различные элементы, благодаря которым и работает эта техника. Они даже не понимают о чем идет речь, когда окружающие их знатоки ведут разговоры о технике. Но иногда любопытство берет верх, и они начинают задавать вопросы. Например, зачем нужен конденсатор?

Чтобы удовлетворить любопытство, постараемся объяснить его функции и выявить, в каких областях конденсаторы нашли свое применение.

Что такое конденсатор?

Конденсатор, по-народному – «кондер», устройство, которое используется в электрических цепях для накопления электрической энергии. Конденсаторы применяются при фильтрации помех, в сглаживающих фильтрах в источниках электропитания, цепях межкаскадовых связей и во многих других областях радиотехники.

Конструкция и средства использующихся материалов определяют электрическую характеристику «кондера». В устройство конденсатора входят обкладки (или пластины), находящиеся друг перед другом. Делают их из токопроводящего и изолирующего материала. В качестве изоляции могут выступать слюда или бумага.

Емкость у конденсатора может быть разной. Она увеличивается в размерах пропорционально площади обкладок, а ее уменьшение происходит в зависимости от расстояния между ними. Очень важным является рабочее напряжения конденсатора. Если превысить максимальное напряжение, конденсатор может сломаться из-за пробоя диэлектрика.

Как все начиналось

Принцип изготовления этого устройства был известен довольно давно, благодаря немецкому физику Эвальду Юргену фон Клейсту и его нидерландскому коллеге Питеру ван Мушенбруку. Именно они были создателями первого в мире конденсатора. Их детище было значительно примитивнее современных собратьев, ведь диэлектриком выступали стенки банки из стекла. В наши дни технологии намного совершеннее, да и создание новых материалов весьма улучшило конструкцию конденсатора.

Гениальный электротехник Павел Яблочков также смог достичь выдающихся результатов в разработке конденсаторов и в их использовании. На эту тему он создал множество публикаций. Павел Николаевич прекрасно понимал зачем нужен конденсатор , поэтому одним из первых включил «кондер» в цепь перемежающегося тока. Это имело огромное значение для развития и становления электро- и радиотехники.

В наши дни существует многообразие конденсаторов, но в основе всех их лежат две металлические пластины, которые находятся в изоляции друг от друга.

Где применяются конденсаторы

Конденсаторы окружают нас во многих областях, занимая особую нишу в электронике.

  1. Телевизионная или радиотехническая аппаратура без конденсаторов не обойдется. Их применяют для фильтров-выпрямителей, создания и настройки колебательных контуров, разделения цепей с разной частотой и многого другого.
  2. Радиолокационная техника использует их, чтобы получить импульсы большей мощности, а также для формирования импульсов.
  3. Для искрогашения в контактах, разделения токов разной частоты, разделения цепей постоянного и переменного токов «кондеры» нужны в телеграфии и телефонии.
  4. В телемеханике и автоматике с их помощью создают датчики на емкостном принципе. Здесь также нужно искрогашение в контактах, разделение цепей токов и т.д.
  5. В специальных устройствах для запоминания, что используются в счетно-решающей технике.
  6. Для получения мощных импульсов в лазерной технике.

Современная электроэнергетика тоже использует во всю это изобретение: для подключения к линии передачи нужной аппаратуры, чтобы повысить коэффициент мощности, для регулировки напряжения в распределительных сетях, чтобы защитить от перенапряжения, для электрической сварки, подавления радиопомех и много другого.

Зачем нужен конденсатор еще? Для металлопромышленности, автотракторной и медицинской техники, для использования атомной энергии, в фотографической технике для получения световой вспышки и аэрофотосъемки. Даже добывающая промышленность не обходится без конденсаторов. Одни конденсаторы могут быть совсем крошечными и весить меньше одного грамма, другие их «сотоварищи» поражают весом в несколько тонн и высотой более двух метров.

Огромное разнообразие типов конденсаторов дало возможность применять их в различных сферах деятельности, поэтому без них нам никак не обойтись.

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от лейденской банки, которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой – станиолем. Использовалась она в тех же…

0 0

Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое. Как и резисторы, конденсатор бывают разных типов и емкостей. Выпускаются в разных корпусах, самые маленькие это ЧИП SMD конденсаторы, которые применяются например в сотовых телефонах.


Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). В электронике используются конденсаторы с разными емкостями, это пикофарады, нанофарады и микрофарады.

Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. Номинальное напряжение маркируют на корпусе конденсатора, при превышении этого…

0 0

Конденсаторы

Конденсаторы (постоянной и переменной емкости) имеются практически в любом электронном приборе. Основные величины, характеризующие конденсатор, — это его емкость и рабочее напряжение. Третьей важной характеристикой, определяющей область применения конденсаторов, является способность их работать в це пях с токами высокой частоты. Конструкция конденсато ров в зависимости от назначения и величины емкости может быть самой разнообразной.

Общепринятой международной единицей измерения емкости является фарада (Ф). Однако фарада как единица емкости очень велика и для практических целей мало пригодна. Поэтому емкость конденсаторов обычно из меряется в производных величинах — в микрофарадах (мкФ) при относительно большом значении емкости (1 Ф = 106 мкФ) и в пикофарадах (пФ) — при малом (1 мкФ=106пФ).

Допускаемое отклонение емкости от номинала обыч но указывают -в процентах, но на конденсаторах очень малых емкостей допускаемое отклонение от номинала…

0 0

Хотелось бы рассказать, что такое конденсатор, какие бывают конденсаторы и какую роль они выполняют.

Описание

И так давайте начнем с основного определения из википедии.

Конденса тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Сам по себе конденсатор является пассивным электронным компонентом. В простом случае его конструкция состоит из двух электродов в форме пластин, их называют обкладками. Обкладки разделены диэлектриком, толщина которого меньше толщины самих обкладок. Применяемые сегодня конденсаторы имеют слои диэлектрика и многослойные электроды, или ленты диэлектрика и электродов, которые чередуются и свернуты в цилиндрическую форму.

Обозначается конденсатор на схемах так:

Основные параметры

Основными параметрами конденсатора являются:

Номинальная…

0 0

Конденсатор — это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины. Самой простой моделью конденсатора является два электрода, между которыми находится любой диэлектрик. Роль диэлектрика в нем выполняют бумага, воздух, слюда и другие изолирующие материалы, задача которых не допустить соприкосновения обкладок.

Свойства

Емкость. Это основное свойство конденсатора. Измеряется в Фарадах и вычисляется по следующей формуле (для плоского конденсатора):

где С, q, U — это соответственно емкость, заряд, напряжение между обкладками, S –площадь обкладок, d – расстояние между ними, — диэлектрическая проницаемость, — диэлектрическая постоянная, равная 8,854*10^-12 Ф/м..

Полярность конденсатора;

Номинальное напряжение;

Удельная емкость и другие.

Величина емкости конденсатора зависит от

Площадь пластин. Это понятно из…

0 0

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет _ собой сопротивление, величина которого уменьшается с ростом частоты.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости. Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости. Условное графическое обозначение конденсатора постоянной емкости-две…

0 0

Конденсаторы

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии. Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия. В технике существует электронный компонент, который…

0 0

Основное назначение С1 — это перевести работу транзистора по высокой частоте в режим с «общей базой»…

Я примерно понимаю что делают все детали кроме конденсаторов… Я знаю что конденсаторы копят ток как аккумуляторы

Для начала нужно понять, что для электрического тока все элементы представляют какие-то сопротивления, каждое со своими заморочками…
Конденсатор — это особое сопротивление, это сопротивление зависит от частоты. То есть, при нулевой частоте (постоянный ток) сопротивление равно бесконечности, при повышении частоты — сопротивление конденсатора уменьшается.
Это явление широко используется в схемах. Например, в данной схеме сопротивление С1 на частотах 100 МГЦ очень маленькое, по сути почти короткое замыкание и это приводит к тому, что на этой частоте база транзистора будет соединена с минусом питания, то есть, транзистор будет включён в режиме с «общей базой».
А на звуковых частотах этот…

0 0

Суперконденсаторы для электроники (часть 1)

Международные экспертные бизнес-агентства по исследованию и анализу новых возможностей для роста корпораций в индустрии пассивных электронных компонентов выделяют суперконденсаторы (СК) как особо перспективную группу приборов. На основе комплексного анализа мирового рынка эксперты делают вывод, что, благодаря использованию нанотехнологий, технические характеристики СК быстро улучшаются, а цена одной фарады и единицы запасаемой энергии неуклонно снижается.

Эксперты разделяют мировой рынок по перспективам применения СК на три основных сегмента: применение на транспорте, в индустрии и электронике. С конца 1970-х годов СК находят широкое применение в электронике, приборы которой с повышением портативности и мобильности всё больше нуждаются в автономных источниках с высокой плотностью энергии…

0 0

10

Конденсаторы (постоянной и переменной емкости) имеются практически в любом электронном приборе. Основные величины, характеризующиеконденсатор, — это его емкость и рабочее напряжение. Третьей важной характеристикой, определяющей область применения конденсаторов, является способность их работать в цепях с токами высокой частоты. Конструкция конденсаторов в зависимости от назначения и величины емкости может быть самой разнообразной.

Общепринятой международной единицей измерения емкости является фарада (Ф). Однако фарада как единица емкости очень велика и для практических целей мало пригодна. Поэтому емкость конденсаторов обычно измеряется в производных величинах — в микрофарадах (мкФ) при относительно большом значении емкости (1 Ф = 106 мкФ) и в пикофарадах (пФ) — при малом (1 мкФ=106пФ).

Допускаемое отклонение емкости от номинала обычно указывают в процентах, но на конденсаторах очень малых емкостей допускаемое отклонение от номинала обозначают в пикофарадах. Если на…

0 0

11

ФизикаКонденсатор Конденсаторы являются непременным элементом любых электронных схем, от простых до самых сложных. Трудно себе представить какую бы то ни было электронную схему, в которой не используются конденсаторы. За два с половиной века своего существования они весьма значительно изменили свой облик и сегодня отвечают всем требованиям передовой технологии. Некоторые конденсаторы стоят не больше рубля, но их производство в мировом масштабе исчисляется миллиардами долларов. Принципы изготовления конденсаторов стали известны еще 250 лет назад, когда в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, откуда и возникло название. Эти принципы не изменились до сих пор, однако совершенствование технологий и применение новых материалов позволили значительно улучшить конструкцию конденсаторов. Суммарный заряд, который мог накапливаться в…

0 0

Практически во всех электронных устройствах, от самых простых до высокотехнологичных, таких как материнские платы компьютеров, можно встретить один неизменно присутствующий элемент, являющийся пассивным компонентом. Но к сожалению, мало кто знает как устроен и для чего нужен конденсатор, и какие виды этого накопителя бывают.

Просто о сложном

Итак, это небольшое устройство для накопления электрического поля или заряда похоже на обычную банку, ту, в которой маринуют помидоры или хранят муку. Она точно так же в себе накапливает сухое вещество или жидкость, которую в неё поместят. Аналогия проста: по цепи бегут электроны, а на своей дороге встречают проводников, которые ведут их в «банку», где они и накапливаются, усиливая заряд.

Для того чтобы выяснить, много ли элекрончиков так можно собрать, и в какой момент накопление прекратится (банка лопнет), электрический процесс обычно сравнивают с водопроводом. Если представить трубу, в которой течёт вода, закачиваемая туда насосом, то где-то в центре трубопровода нужно вообразить мягкую мембрану, растягивающуюся под давлением жидкости. Очевидно, что она будет растягиваться до определённого предела, пока не разорвётся или, если попалась очень крепкая, не уравновесит силу насоса.

Такой пример показывает, как работает конденсатор, только мембрана заменяется электрическим полем, которое увеличивается по мере зарядки накопителя (работы насоса), уравновешивая напряжение источника питания. Очевидно, что этот процесс не бесконечный, и предельный заряд существует, по достижении которого «банка» выйдет из строя и перестанет выполнять свои функции.

Устройство и принцип работы

Конденсатор — устройство, состоящее из двух пластин (обкладок), имеющих между собой пустоту. Напряжение к нему подаётся через проводки, подсоединённые к пластинкам. Современные приборы, по сути, не сильно отличаются от макетов на уроках физики, они также состоят из диэлектрика и обкладок. Следует отметить, что именно вещество или его отсутствие (вакуум), плохо проводящее электричество, изменяет характеристики накопителя.

Суть принципа работы конденсатора проста: дали напряжение, и заряд начал накапливаться. Для примера следует рассмотреть как ведёт себя накопитель в двух вариантах электрической цепи:

  • Постоянный ток . Если в цепь с подключённым к ней конденсатором подать ток, то можно увидеть, что стрелка на амперметре начнёт двигаться, а потом быстро вернётся в исходное положение. Это объясняется просто: устройство быстро зарядилось, то есть источник питания был уравновешен обкладками накопителя, и тока не стало. Поэтому часто говорят, что в условиях постоянного тока конденсатор не работает. Такое утверждение неправильное, всё функционирует, но очень непродолжительное время.
  • Переменный ток — это когда электроны двигаются сначала в одну, а затем в другую сторону. Если представить такую цепь с подключённым к ней накопителем, то на обеих обкладках конденсатора будут попеременно накапливаться положительные и отрицательные заряды. Это говорит о том, что переменный ток свободно протекает через устройство.

Поскольку конденсатор задерживает постоянный ток, но пропускает переменный, отсюда формируются и сферы его назначения, например, для устройств, в которых нужно убрать постоянную составляющую в сигнале. Вполне очевидно, что накопитель обладает сопротивлением, а вот мощность на нём не выделяется, поэтому он не греется.

Основные виды

Рядовой пользователь не всегда знает о том, каким конденсатором снабжено его устройство. А ведь каждый вид имеет свои недостатки и преимущества, а также эксплуатационные особенности. Существуют две большие группы этих устройств, предназначенные для электрической цепи с переменным и постоянным током. Но всё-таки основная классификация ведётся по типу диэлектрика, который находится между облатками конденсатора. Основные виды:

Отдельно стоит отметить электролитические конденсаторы. Главное их отличие от других видов — подключения только к цепи постоянного или пульсирующего тока. Такие накопители имеют полярность — это особенность их конструкции, поэтому неправильное подключение ведёт к вздутию или взрыву устройства. Они обладают большой ёмкостью, что делает конденсатор электролитический пригодным для применения в выпрямительных цепях.

Сферы применения

Можно смело сказать, что конденсаторы используют практически во всех электронных и радиотехнических схемах. Чтобы иметь представление о том, где и зачем нужен конденсатор, следует вспомнить его способность сохранять заряд и разряжаться в нужное время, а также пропускать переменный ток и не пропускать постоянный. А это значит, что такие устройства используются во многих технических сферах, например:

Электрические накопители можно встретить как в телевизорах, так и в приборах радиолокации, где необходимо формировать импульс большой мощности, для чего и служит конденсатор. Невозможно встретить блок питания без этих устройств или сетевой фильтр.

Нужно сказать, что накопители применяют и в сферах, не связанных с электрикой, например, в производстве металла и добыче угля, где используют конденсаторные электровозы.

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

Конденсатор связи

По мере развития сети высоковольтных линий электропередачи, увеличения их протяженности и оснащения автоматикой возникает необходимость в надежной диспетчерской и административно-хозяйственной связи между отдельными пунктами, передаче сигналов телеизмерения, аварийного отключения выключателей, релейной защиты и других данных. Обычно такая связь осуществляется непосредственно по высоковольтным ЛЭП. Одним из элементов оборудования такой связи являются конденсаторы, которые отделяют аппаратуру связи от высокого напряжения частоты 50 Гц, пропуская сигналы высокой частоты по каналам связи. На основе этих же конденсаторов делаются устройства отбора мощности при частоте 50 Гц непосредственно от ЛЭП для питания измерительной аппаратуры и силового оборудования, а также измерительные устройства (делители, трансформаторы напряжения) — для измерения напряжения ЛЭП.

 

Назначение

 

  • для обеспечения высокочастотной связи на частотах от 16 до 1500 кГц в линиях электропередачи номинальным напряжением 35, 110, 150, 220, 330, 500, 750 кВ переменного тока частоты 50 и 60 Гц.
  • для присоединения аппаратуры связи к линиям электропередачи от 6 до 35 кВ и грозозащитным тросам.
  • конденсатор подвесного исполнения для отбора активной электрической мощности из сетей переменного тока частоты 50 Гц напряжением 110 кВ.

Конденсаторы изготовлены в фарфоровых покрышках и пропитаны экологически безопасной жидкостью.

 

Конструкция

 

  • Конденсаторы изготавливаются с применением плёночного диэлектрика. По согласованию с заказчиком возможно изготовление конденсаторов на номинальное напряжение 110/√3 кВ с бумажно-плёночным диэлектриком. В этом случае в обозначении типономинала конденсатора указывают буквы «БП».
  • Конденсаторы связи пропитаны экологически безопасной диэлектрической жидкостью, которая не входит в список запрещенных Стокгольмской конвенцией о стойких органических загрязнителях (2001 г.).

Дополнительную информацию по конденсаторам связи можно найти в каталоге ВЧ-связи

 

 

Советы по проектированию DC-Link | Engineering Center

Конденсаторы звена постоянного тока являются важным звеном в преобразовании энергии для многих приложений, включая инверторы с трехфазной широтно-импульсной модуляцией (ШИМ), фотоэлектрические и ветровые инверторы, промышленные моторные приводы, автомобильные бортовые зарядные устройства и инверторы (Рисунок 1) , блоки питания для медицинского оборудования и т. д. В сложных приложениях существуют ограничения по стоимости, суровым условиям окружающей среды и строгим требованиям к надежности. Хотя в схемах могут использоваться разные подходы, давняя основа схем преобразования энергии включает конденсаторы звена постоянного тока.Конденсаторы звена постоянного тока могут повысить плотность энергии системы и решить физические проблемы, связанные с пульсациями, возникающими при быстром переключении, присущем коммутационным преобразователям мощности. Но какие конденсаторы типа хорошо работают как звенья постоянного тока и почему?

Рис. 1: Конденсаторы звена постоянного тока являются краеугольным камнем в конструкции преобразования энергии для многих инверторных приложений, включая гибридные электрические и электромобили. По оценкам JP Morgan Chase and Company, к 2025 году объем продаж автомобилей HEV и электромобилей вырастет до 30% от общего объема продаж автомобилей.(Источник изображения: afdc.energy.gov)

Автомобильная промышленность представляет собой яркий пример преобразования энергии в гибридной и электрической трансмиссии. Аккумуляторные электромобили включают в себя перезаряжаемый блок аккумуляторов для хранения энергии для системы привода, электродвигатель привода и контроллер мощности, который включает в себя инвертор. Все они работают при высоком напряжении от 48 В постоянного тока до 800 В постоянного тока. Из-за физических ограничений, ограничивающих ток, высокое напряжение коррелирует с высокой производительностью.Чем выше рабочее напряжение постоянного тока, тем ниже требуемый ток для той же выходной мощности (P = VI). Автомобильная промышленность хорошо известна тем, что требует компонентов, которые могут работать с исключительной надежностью при чрезвычайно высоких температурах, в условиях постоянной вибрации и там, где компоненты подвергаются суровым условиям окружающей среды. Трехступенчатый тяговый инвертор преобразует энергию батареи для привода двигателя, а конденсатор звена постоянного тока является ключевым в этой конструкции.

Рисунок 2: Архитектура высокопроизводительной трансмиссии HEV / EV.(Источник: Keysight Technologies )

В отличие от игрушечной машины, электромобили не работают напрямую от энергии, хранящейся в аккумуляторной батарее; требуется преобразование. Рассмотрим блок-схему системы, включающую трехступенчатый инвертор мощности для гибридного / электрического транспортного средства (HEV / EV) на рисунке 3, где:

  • Этап I — это входной каскад, который выводит напряжение постоянного тока от аккумуляторной батареи
  • Стадия II начинает преобразование с использованием конденсатора звена постоянного тока, который фильтрует и сглаживает напряжение постоянного тока, которое присутствует на шинах постоянного тока
  • Stage III инициирует преобразование через высокочастотное переключение (с выходом, очень похожим на выпрямитель на шину) и подает инвертированную мощность на нагрузку, поскольку нагрузка создает мгновенные запросы

Почему конденсатор звена постоянного тока жизненно важен

Конденсатор промежуточного контура должен уравновешивать колеблющуюся мгновенную мощность на шинах, подаваемую активностью от первой и третьей ступеней (см. Рисунок 3).Конденсатор звена постоянного тока стабилизирует «пульсации», создаваемые высокочастотными цепями переключения мощности Stage III. Пульсации тока / напряжения (заданные для данной частоты и температуры) — это общее количество среднеквадратичных (RMS) переменного и постоянного тока / напряжения, которое конденсатор может выдержать без сбоев. Конденсатор звена постоянного тока (расположенный на ступени II) должен стабилизировать и сглаживать напряжение и ток на шинах (т. Е. Развязывающие выбросы, вызванные переключением). Вы можете рассчитать пульсирующее напряжение, используя следующее уравнение:

, где C MIN = требуемая минимальная емкость, I OUT = выходной ток, D Цикл = рабочий цикл, f SW = частота переключения

В pp (макс.) = размах пульсаций напряжения.

Конструктивные соображения при выборе конденсатора цепи постоянного тока инвертора

Конденсатор промежуточного контура предназначен для обеспечения более стабильного постоянного напряжения, ограничивая колебания, поскольку инвертор время от времени потребляет большой ток. Конструкция может использовать различные технологии для конденсаторов промежуточного контура, такие как алюминиевые электролитические, пленочные и керамические. Выбор непростой и сильно зависит от приложения.

Поиск лучшего конденсатора звена постоянного тока начинается со сравнения номинальных значений емкости и номинального напряжения, которые соответствуют известным требованиям к энергии, а также при поиске высоких номинальных значений пульсирующего тока.Пульсации в узлах звена постоянного тока, в основном генерируемые яростно быстро переключающимися IGBT или MOSFET на этапе III (см. Рисунок 3), влияют на производительность, потому что каждый реальный конденсатор имеет определенное сопротивление (и самоиндукцию). Конденсатор звена постоянного тока должен регулировать напряжение и также поглощать колебания тока.

Пульсация изменяет уровень напряжения, возникающего на конденсаторе промежуточного контура, в то время как пульсации тока переключения проходят через конденсатор (V = IR). Также необходимо учитывать частоты переключения инвертора, которые должен выдерживать конденсатор промежуточного контура.Например, пленочные конденсаторы не могут работать должным образом, если частота переключения превышает 1 МГц. Другие соображения при выборе конденсатора промежуточного контура включают знание необходимого напряжения постоянного тока на рельсах, ожидаемого срока службы приложения, максимально возможных пульсаций тока и частоты, которые будет испытывать система, а также того, является ли генерируемый пульсирующий ток установившимся или прерывистый.

Таблицы данных

на лучшие конденсаторы звена постоянного тока должны указывать на низкую самоиндукцию, очень низкое эквивалентное последовательное сопротивление (ESR) и высокую устойчивость к пульсирующему току, все при сопоставимых рабочих температурах и частотах сравниваемых компонентов.(ESR конденсатора — это полное внутреннее сопротивление, указанное для данной частоты и температуры.) Минимально возможное ESR минимизирует тепловыделение в виде рассеиваемой мощности (P Dissipated = I 2 x ESR). Однако общие компромиссы означают, что для пленочных конденсаторов звена постоянного тока ESR существенно ниже, при этом обеспечивается хорошее значение емкостного напряжения (CV), которое обычно дает гораздо лучший отклик на ток пульсаций. [1]

Таким образом, пленочные конденсаторы звена постоянного тока обеспечивают высокий ток пульсаций и более длительный ожидаемый срок службы, чем электролитические конденсаторы, а также обеспечивают более высокое значение емкости, чем конденсаторы керамического типа.Тем не менее, фактические требования к номинальному току пульсаций трудно предсказать и варьируются в зависимости от частоты переключения и гармоник, генерируемых входным и выходным каскадами (то есть ступенью I и III). Например, из упрощенной блок-схемы на Рисунке 3 можно предположить, что форма волны более квадратная, основанная на каскаде инвертора. Конденсатор звена постоянного тока — это элемент, который поглощает или истекает соответствующие токи. Другие типы архитектур могут иметь форму волны тока более треугольной формы.

Как правило, номинальные значения емкости могут изменяться из-за изменений рабочей температуры окружающей среды или изменений приложенного напряжения и частоты. Другие переменные для рассмотрения: самоиндукция может значительно снизить эффективное сопротивление конденсатора на высоких частотах, тем самым изменив ожидаемое поведение конденсатора. Независимо от типа выбранного конденсатора, шумоподавители, такие как KEMET Flex Suppressors®, могут помочь подавить высокочастотный шум, создаваемый окружающей средой.

При рассмотрении вариантов конструкции спросите, может ли рассматриваемый конденсатор звена постоянного тока выдерживать разумный уровень напряжения заряда после того, как входное напряжение снимается между циклами переключения. Чтобы определить количество энергии, которое хранится в конденсаторе промежуточного контура — для питания нагрузки при разряде конденсатора (а также напряжение разряда и значения запоминающего конденсатора) — рассчитайте удерживающую емкость:

Где V in_max — пиковое значение выпрямленного напряжения (V in_max = • V line }, V disch — напряжение разряда (V disch = / 2 • V in_max ) при некоторое значение нагрузки и линейная частота (ω), V line — линейное напряжение, P load — мощность нагрузки, P in — средняя входная мощность инвертора, а V C_av — напряжение на среднем значении C ч :

Кроме того, ESR конденсатора часто является ограничивающим фактором для номинального тока пульсаций (т.е.е. пульсации тока, с которыми конденсатор может справиться без перегрева). Для достижения необходимого низкого значения ESR и длительного срока службы при высоком рассеянии физический размер пленочного конденсатора таков, что он часто приводит к тому, что конденсатор уже соответствует или превосходит расчет пульсации напряжения или задержки.

Наконец, в любой конструкции с высокой мощностью необходимо учитывать, предусмотрено ли охлаждение, и если да, то какого типа? Профиль температуры окружающей среды важен для обеспечения тщательного выбора лучшего конденсатора промежуточного контура.

Конденсаторы для требовательных инверторных конструкций

Доступны несколько типов конденсаторов. Однако не все из них подходят для инверторов высокого напряжения. Подходящие многослойные керамические конденсаторы с необходимым напряжением, показаниями температуры и надежностью ограничены. Электролитические конденсаторы являются подходящим вариантом для применения в цепи постоянного тока. Однако не все электролитические конденсаторы могут соответствовать всем требованиям. В прошлом традиционные пленочные конденсаторы ограничивались более низкими рабочими температурами.Однако технология пленочных конденсаторов развивается быстрее, чем электролитические. Последние пленочные конденсаторы, такие как KEMET C4AE, могут обеспечить лучший отклик конструкции. Металлизированные пленочные конденсаторы меньше электролитических конденсаторов и обладают аналогичной функциональностью. Хотя можно добиться стабильности напряжения, используя большой электролитический конденсатор, большие компоненты, например, уменьшат плотность мощности автомобильного инвертора. Размер и вес компонентов влияют на общие возможности и стоимость автомобиля.

Пленочные конденсаторы также имеют более длительный срок службы, чем электролитические, в основном потому, что они построены из слоев металла, осажденных из паровой фазы, поверх материала подложки. Из-за высокого уровня энергии, хранящейся между ультратонкими слоями металла, внутреннее короткое замыкание можно естественным образом самокорректировать, поскольку небольшие дефекты испаряются за микросекунды без заметного изменения характеристик. Пленочные конденсаторы также подходят для приложений с высоковольтными импульсами и соответствующих соображений безопасности, поскольку они могут выдерживать быстрые перенапряжения и переходные процессы.Пленочные конденсаторы не поляризованы, могут иметь более длительный срок службы (тем более за счет снижения номинальных характеристик), практически неограниченный срок хранения, повышенную допустимую нагрузку по току, обеспечивают стабильную работу в более широком диапазоне температур и обеспечивают лучшую механическую стабильность, чем электролитические конденсаторы. Дополнительные преимущества включают широкий выбор способов монтажа пленочных конденсаторов. И, что особенно важно для HEV / EV, доступны прочные пленочные конденсаторы с уровнями напряжения на шине, превышающими 500 В постоянного тока.

Хорошим примером пленочных конденсаторов, подходящих для HEV / EV, является пленочный конденсатор KEMET C4AQ, который соответствует требованиям AEC-Q200 для автомобильных приложений и обладает рядом значительных преимуществ в архитектурах DC-Link.Как упоминалось выше, конденсаторы C4AQ компании KEMET обладают всеми преимуществами, присущими пленочным конденсаторам. В качестве альтернативы силовые пленочные конденсаторы KEMET C4AE аналогичны конденсаторам серии C4AQ, но не предназначены для использования в автомобилях. Другие конденсаторы, подходящие для неавтомобильных приложений звена постоянного тока, включают керамические конденсаторы CKC KC-LINK и пленочные конденсаторы C44U и C4DE.

Мониторинг может иметь решающее значение для успешной работы инвертора большой мощности. Серия сильноточных датчиков KEMET C / CT позволяет в реальном времени измерять ток в токоведущем проводе.Термодатчики часто интегрируются с требованиями безопасности. Быстродействующие термодатчики KEMET OHD защищены от пыли, взрыва и коррозии и имеют широкий диапазон рабочих температур до 120 ° C.

Как показано выше, выбор подходящего конденсатора звена постоянного тока может быть сложным, но критически важным процессом. У KEMET есть продукты и люди, необходимые для оптимизации этого процесса. Посетите ComponentEdge для получения дополнительной информации и поддержки.

[1] https: // пассивные компоненты.eu / характеристики-пленочные-конденсаторы-и-приложения-источники питания /

онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов.

Russell Bailey, P.E.

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова . Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком

с подробной информацией о Канзасе

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент, оставивший отзыв на курсе

материалов до оплаты и

получает викторину «

Арвин Свангер, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил много удовольствия «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании каких-то неясных раздел

законов, которые не применяются

«нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор

.

организация.

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

и онлайн-формат был очень

доступный и простой

использовать. Большое спасибо ».

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

.

обзор текстового материала. Я

также понравился просмотр

фактических случаев предоставлено.

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

испытание потребовало исследований в

документ но ответы были

в наличии. «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курса. Процесс прост, и

намного эффективнее, чем

вынуждены путешествовать «.

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для Professional

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от.

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории.

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

сниженная цена

на 40% «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительных

аттестат. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предоставляет удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими, а

хорошо организовано.

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна.

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими.

хорошо подготовлены. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор где угодно и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Тщательно

и комплексное.

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по моей линии

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличное освежение ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

Вернись, чтобы пройти викторину.

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях .

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы я мог сделать

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а затем вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат . Спасибо за изготовление

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея платить за

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по

.

много разные технические зоны за пределами

по своей специализации без

приходится путешествовать.»

Гектор Герреро, П.Е.

Грузия

Выходной конденсатор

— обзор

9.4 Динамика работы базовой топологии повышения

Выходной конденсатор и нагрузка добавлены к рис. 9.10A, основная топология повышения с биполярным транзисторным переключателем и диодом управления направлением обретает форму (рис. 9.15) .

Рис. 9.15. Силовой каскад повышающего преобразователя с выходным конденсатором и нагрузкой в: (A) включенном состоянии, (B) выключенном состоянии.

Во включенном состоянии два дифференциальных уравнения (уравнение 9.17) управляют работой.

(9.17) diadt = 1LVidvadt = −1RCva

В выключенном состоянии два дифференциальных уравнения (уравнение 9.18) управляют работой.

(9,18) dibdt = 1L (Vi − vb) dvbdt = 1Cib − 1RCvb

Поскольку повышающий преобразователь дает выходную мощность выше входной, первое уравнение в уравнении. (9.18) дает отрицательный ток рампы. Также очень важно понимать, что теперь это сильно пульсирующий ток диода (рис.9.17), который поддерживает выходную нагрузку постоянного тока; по сравнению с менее разрушительным током индуктивности в случае понижающего преобразователя.

Пульсирующий ток диода дает нам две идентичности, которые связывают ток нагрузки, I R , и входной постоянный ток, I i .

Ур. (9.19) связывает ток нагрузки и ток пульсации с пиковым и минимальным токами индуктора (рис. 9.16).

Рис. 9.16. Повышающий (повышающий) преобразователь токов силовых каскадов.В рецептуре используется частота переключения f .

(9.19) IR = (Ip + Iv) (1 − D) 2, Ip + Iv = 2IR1 − DIp − Iv = δi = ViDLf

Он, в свою очередь, связывает входной постоянный ток индуктора I i с прочее.

(9.20) Ip = 12 [ViDLf + 2IR1 − D] = IR1 − D + ViD2Lf = Ii + ViD2LfIv = Ii − ViD2Lf

Отношение I i = I R / (1 –D ), безусловно, имеет большой смысл: входной постоянный ток выше постоянного тока нагрузки; так как выходное напряжение выше входного.

Кроме того, первое уравнение в формуле. (9.20) позволяет разработчикам снова легко оценить пиковую плотность магнитного потока, B pk = μ o μ r NI p / L m

Часть 1 — Что такое Конденсатор?

Добро пожаловать в серию «Основы работы с конденсаторами», в которой мы расскажем вам обо всех особенностях микросхем конденсаторов — их природе и свойствах, диэлектрическом поведении, классификации продуктов, стандартах испытаний и качества, а также распространенных сценариях использования — чтобы помочь вам получить информацию. решения о правильных конденсаторах для ваших конкретных приложений.В части 1 обсуждаются ключевые принципы емкости и принцип работы основного конденсатора.

Что такое емкость?

Емкость — это способность системы (например, компонента или цепи) собирать и удерживать энергию в виде электрического заряда. Значение емкости (C) — это отношение накопленного электрического заряда (Q) к приложенному напряжению (V), или C = Q / V. Таким образом, зарядный ток (I) выражается как I = dQ / dt = CdV / dt.

Значение емкости определяется как одна фарада, когда напряжение на конденсаторе составляет один вольт, а зарядный ток в один ампер протекает в течение одной секунды.

C = Q / V = ​​кулон / вольт = фарад

Поскольку фарад — очень большая единица измерения и не встречается в практических приложениях, обычно используются доли фарада, например:

· 1 пикофарад (пФ) = 10-12фарад

· 1 нанофарад (нФ) = 10-9фарад

· 1 микрофарад (мкФ) = 10-6 фарад

Что такое конденсатор?

Конденсатор — это пассивный электронный компонент, способный накапливать электрический заряд в электрическом поле.В отличие от батареи, которая накапливает энергию, а затем постепенно ее высвобождает, конденсаторы могут разряжаться мгновенно. Базовый блок состоит из двух проводников или электродов, отделенных друг от друга изолятором или диэлектриком.

Основы электродов

Чтобы легко собирать электрический заряд, электрод должен хорошо проводить электричество. Материалы, широко используемые в производстве конденсаторов, включают алюминий, медь, никель, палладий, платину, серебро и тантал.

В зависимости от используемого производственного процесса может потребоваться, чтобы электрод не вступал в реакцию с высокой температурой плавления.Например, керамические конденсаторы с окислительной атмосферой, производимые компанией Knowles Precision Devices, используют керамический диэлектрический материал с температурой спекания приблизительно 1100 ° C. Чтобы электрод не плавился во время обжига, используется комбинация серебра и палладия. Этот метод изготовления называется системой электродов из драгоценных металлов (PME).

Основы диэлектрической проницаемости

Чтобы накапливать большее количество электрического заряда, диэлектрик должен быть хорошим изолятором, свойства которого в значительной степени определяют электрические характеристики устройства.Диэлектрики характеризуются своей способностью накапливать электрический заряд и собственными реакциями на электрическое поле, а именно изменением емкости, характеристиками потерь, сопротивлением изоляции, электрической прочностью, а также скоростью старения и температурной зависимостью этих свойств.

Диэлектрическая постоянная или относительная диэлектрическая проницаемость εr относится к способности материала накапливать электрическую энергию в электрическом поле. Это доминирующая характеристика, определяющая значение емкости, достижимое при заданном размере и напряжении.Другими словами, чем выше диэлектрическая проницаемость, тем больше емкость для конкретной конструкции конденсатора. Диэлектрические материалы, обычно используемые в производстве конденсаторов, включают керамику, фарфор, оксиды металлов, слюду и пластиковую пленку.

Например, керамические конденсаторы можно разделить на два основных типа в зависимости от того, используют ли они диэлектрик C0G / NP0 (значения εr от 20 до 100) или диэлектрик X7R (значения εr от 2000 до 3000).

Конструкция конденсатора

Самый основной тип конденсатора — однослойный, состоящий из слоя диэлектрического материала, зажатого между положительным и отрицательным электродами.Многослойный керамический конденсатор (MLCC) использует эту концепцию и увеличивает количество слоев для увеличения доступной емкости. Слои керамики создаются методом трафаретной печати и чередуются с электродами переменной полярности. Затем электроды с одинаковой полярностью соединяются вместе с использованием материала для заделки контактов. Концевую заделку можно затем прикрепить к проводам или ножкам, чтобы сформировать MLCC с радиальными выводами, или на гальваническое покрытие, чтобы сформировать MLCC для поверхностного монтажа.

Однослойный конденсатор (слева) по сравнению с многослойным конденсатором (справа)

Надеюсь, часть 1 дала вам лучшее понимание емкости и компонентов, из которых состоит конденсатор.Во второй части мы рассмотрим наиболее распространенные варианты использования конденсаторов. Также ознакомьтесь с нашими конденсаторами Knowles Precision Devices , чтобы ознакомиться с полным ассортиментом нашей продукции.


Чтобы узнать больше о конденсаторах, загрузите нашу электронную книгу «Руководство по выбору правильного конденсатора для вашего конкретного применения».

Конструктивные соображения при выборе суперконденсаторов

% PDF-1.4 % 241 0 объект > / Метаданные 469 0 R / Pages 37 0 R / StructTreeRoot 40 0 ​​R / Тип / Каталог / Viewer Настройки >>> эндобдж 292 0 объект > / Шрифт >>> / Поля [] >> эндобдж 469 0 объект > поток Ложь 11.08.522018-11-06T16: 32: 37.657-05: 00 Библиотека Adobe PDF 11.0Eaton50995331968425f3375d9aaf9c5b273ddaa1a20d638599 Конструктивные соображения при выборе суперконденсаторов | Техническая нота PS-5501 | Библиотека EatonAdobe PDF 11.0falseAdobe InDesign CC 2014 (Macintosh) 2018-10-30T09: 21: 56.000-07: 002018-10-30T12: 21: 56.000-04: 002015-06-11T11: 45: 02.000-04: 00application / pdf

  • и
  • Конструктивные соображения при выборе суперконденсаторов | Техническая нота PS-5501 | Eaton
  • 2018-11-13T14: 33: 10.214-05: 00
  • Итон
  • Конструктивные соображения при выборе суперконденсаторов
  • uuid: 48bf54a9-93c7-4f34-827b-08317198420auuid: 6b47b217-54b0-4ed0-bc06-c2ded38a05b5
  • eaton: language / en-us
  • eaton: ресурсы / технические ресурсы / руководства пользователя
  • eaton: систематизация продуктов / электроника / суперконденсаторы
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство b-суперконденсаторов
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство hb-supercapacitor
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов hv
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов kr
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов квт
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство m-supercapacitor
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство pb-supercapacitor
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство phb-supercapacitor
  • eaton: систематика продуктов / электроника / суперконденсаторы / семейство суперконденсаторов phv
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство суперконденсаторов pm
  • eaton: систематизация продуктов / электроника / суперконденсаторы / семейство телевизоров
  • eaton: систематизация продуктов / электроника / суперконденсаторы / суперконденсаторы xb
  • eaton: систематизация продуктов / электроника / суперконденсаторы / суперконденсаторы xl60
  • eaton: систематизация продуктов / электроника / суперконденсаторы / xt-суперконденсаторы
  • eaton: систематизация продуктов / электроника / суперконденсаторы / xv-суперконденсаторы
  • конечный поток эндобдж 37 0 объект > эндобдж 40 0 объект > эндобдж 41 0 объект > / Pa1> / Pa10> / Pa2> / Pa3> / Pa4> / Pa5> / Pa6> / Pa8 >>> эндобдж 42 0 объект > эндобдж 43 0 объект > эндобдж 44 0 объект > эндобдж 45 0 объект [235 0 R 234 0 R 234 0 R 234 0 R 203 0 R 233 0 R 232 0 R 231 0 R 227 0 R 226 0 R 225 0 R 221 0 R 220 0 R 219 0 R 215 0 R 214 0 R 213 0 R 155 0 R 156 0 R 156 0 R 157 0 R 156 0 R 197 0 R 198 0 R 197 0 R 196 0 R 193 0 R 192 0 R 189 0 R 188 0 R 187 0 R 183 0 R 182 0 R 181 0 R 177 0 R 176 0 R 175 0 R 171 0 R 170 0 R 169 0 R 199 0 R 200 0 R 200 0 R 200 0 R 200 0 R 200 0 R 200 0 R 200 0 R 201 0 R 202 0 202 0 R 202 0 R 107 0 R 112 0 R 236 0 R 238 0 R 239 0 R 238 0 R] эндобдж 46 0 объект [null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null null 47 0 R 48 0 R 49 0 R 50 0 R 51 0 R 52 0 R 53 0 R 54 0 R 55 0 R 56 0 R 57 0 R 58 0 R 59 0 R 60 0 R 61 0 R 62 0 R 63 0 R 64 0 R 65 0 R 66 0 R 67 0 R 66 0 R 68 0 R 69 0 R 70 0 R 71 0 R 71 0 R 71 0 R 72 0 R 73 0 R 74 0 R 75 0 R 76 0 R 77 0 R 77 0 R 78 0 R 79 0 R 80 0 R 81 0 R 82 0 R 83 0 R 83 0 R 83 0 R 84 0 R 85 0 R 84 0 R 86 0 R 87 0 R 86 0 R 88 0 R 89 0 R 90 0 R 89 0 R 91 0 R 89 0 R 92 0 R 93 0 R 92 0 R 94 0 R 92 0 R 95 0 R 96 0 R 97 0 R 98 0 R 99 0 R] эндобдж 47 0 объект > / K 58 / P 101 0 R / Pg 1 0 R / S / Рисунок >> эндобдж 48 0 объект > эндобдж 49 0 объект

    Проектирование высокочастотных многоскоростных схем переключаемых конденсаторов

    ‘) var buybox = document.querySelector («[id-данных = id _» + отметка времени + «]»). parentNode var cartStepActive = document.cookie.indexOf («ecommerce-feature — buybox-cart-step»)! == -1 ; []. slice.call (buybox.querySelectorAll («. покупка-опция»)). forEach (initCollapsibles) функция initCollapsibles (подписка, индекс) { var toggle = subscription.querySelector («. цена-опции-покупки») subscription.classList.remove («расширенный») var form = подписка.querySelector («. форма-варианта-покупки») if (form && cartStepActive) { var formAction = form.getAttribute («действие») form.setAttribute ( «действие», formAction.replace («/ оформление заказа», «/ корзина») ) } var priceInfo = subscription.querySelector («.цена-информация «) var buyOption = toggle.parentElement if (переключить && форму && priceInfo) { toggle.setAttribute («роль», «кнопка») toggle.setAttribute («tabindex», «0») toggle.addEventListener («клик», функция (событие) { var extended = toggle.getAttribute («aria-extended») === «true» || ложный переключать.setAttribute («расширенный ария»,! расширенный) form.hidden = расширенный если (! расширено) { buyOption.classList.add («расширенный») } еще { buyOption.classList.remove («расширенный») } priceInfo.hidden = расширенный }, ложный) } } function initKeyControls () { документ.addEventListener («нажатие клавиши», функция (событие) { if (document.activeElement.classList.contains («покупка-опция-цена») && (event.code === «Space» || event.code === «Enter»)) { if (document.activeElement) { event.preventDefault () document.activeElement.click () } } }, ложный) } function initialStateOpen () { var buyboxWidth = buybox.offsetWidth ; []. slice.call (buybox.querySelectorAll («. покупка-опция»)). forEach (function (option, index) { var toggle = option.querySelector («. покупка-вариант-цена») var form = option.querySelector («. Purchase-option-form») var priceInfo = option.querySelector («. цена-информация») if (buyboxWidth> 480) { toggle.click () } еще { if (index === 0) { переключать.нажмите () } еще { toggle.setAttribute («расширенная ария», «ложь») form.hidden = «скрытый» priceInfo.hidden = «скрыто» } } }) } initialStateOpen () если (window.buyboxInitialised) вернуть window.buyboxInitialised = true initKeyControls () }) ()

    Какова роль конденсатора в потолочном вентиляторе? Электрические технологии

    Почему конденсатор используется в потолочном вентиляторе?

    Самый часто задаваемый вопрос среди вопросов собеседования по электротехнике о основной функции конденсатора в потолочном вентиляторе .Во время лекций и экзаменов viva они в основном спрашивали о роли конденсатора в потолочном вентиляторе. Если вы один из них, ищите точную причину появления , почему у потолочного вентилятора есть конденсатор? Вы находитесь на правильном форуме, и мы ответим на вопрос очень простыми словами, чтобы избежать путаницы, почему у потолочных вентиляторов есть конденсаторы?

    Схема цепи двигателя потолочного вентилятора

    Как правило, двигатели потолочных вентиляторов представляют собой однофазные электродвигатели переменного тока с разделением фаз.Внутри потолочного вентилятора есть две обмотки, известные как пусковая обмотка и ходовая обмотка . Пусковая обмотка также известна как Вспомогательная обмотка , а Ходовая обмотка известна как Основная обмотка .

    Ниже приведена принципиальная схема асинхронного двигателя с расщепленной фазой в потолочном вентиляторе, на которой четко показан конденсатор, подключенный последовательно с пусковой обмоткой (вспомогательной обмоткой). Прежде чем подробно рассказывать, почему конденсатор подключается последовательно со вспомогательной обмоткой, дайте знать, что произойдет, если в потолочном вентиляторе нет конденсатора.

    Потолочный вентилятор без конденсатора

    Предположим, что в цепь двигателя потолочного вентилятора не подключен конденсатор. Таким образом, пусковая и рабочая обмотки подключаются параллельно к однофазному источнику переменного напряжения (120 В в США и 230 В в ЕС). В этом случае, когда ток протекает через катушки индуктивности обмотки, он будет создавать пульсирующее магнитное поле (от 0 до 180 °) вместо вращающегося магнитного поля, которое необходимо для крутящего момента и вращения.

    Из-за однофазного питания имеется только один вращающийся поток, который одновременно вращается по часовой стрелке, а затем против часовой стрелки. Другими словами, направление вращения двигателя изменяется после каждого полупериода (синусоидальная волна переменного тока), что приводит к непрерывному вращению ротора по часовой стрелке и против часовой стрелки. Согласно теории вращения двойного поля, оба момента компенсируют друг друга после полупериода. Результирующее (чистое) вращающееся магнитное поле будет равно нулю i.е. нулевой пусковой момент. Вот почему потолочный вентилятор, а также однофазные асинхронные двигатели не запускаются автоматически.

    Какова функция конденсатора в потолочном вентиляторе?

    Мы знаем, что потолочный вентилятор не может быть запущен от однофазного источника переменного тока, но какое волшебство делает конденсатор в этих двигателях, чтобы он запускался сам.

    Согласно теории вращения двойного поля переменный поток можно разделить на два потока, которые сначала вращаются в противоположном направлении.Давайте опишем сложный сценарий более простыми словами, то есть однофазный асинхронный двигатель можно запустить, добавив вспомогательную обмотку и последовательно подключенный к нему конденсатор. Давайте узнаем, как это работает с помощью конденсатора.

    Для запуска однофазного асинхронного двигателя переменного тока необходимы две фазы для создания вращающейся магнитодвижущей силы (MMF), но у нас есть только одна фаза из-за однофазного источника переменного тока в наших домах. Следовательно, нам нужна дополнительная фаза для запуска таких двигателей.Мы получаем вторую фазу, добавляя конденсатор последовательно с пусковым ветром двигателя потолочного вентилятора.

    Мы также знаем, что ток и напряжение совпадают по фазе (одна и та же фаза) в случае чисто резистивной цепи. Но это не относится к емкостным или индуктивным цепям. Другими словами, в случае чисто индуктивной цепи ток отстает на 90 ° от напряжения (или напряжение опережает на 90 ° от тока), в то время как в случае чисто емкостной цепи ток опережает на 90 ° напряжение (или напряжение отставание от тока на 90 °).Таким образом, задействуя конденсатор и катушку индуктивности, мы можем произвести фазовый сдвиг в цепи.

    Для этого мы добавляем конденсатор последовательно с встречным ветром. Когда мы включаем цепь из-за катушек индуктивности и конденсаторов в этой цепи, происходит следующее:

    • Ток отводится на 45 ° от напряжения (или напряжение отстает на 45 градусов от тока ) в пусковой обмотке из-за индуктивности. .
    • Ток отстает на 45 ° от тока (или напряжение отстает на 45 градусов от тока ) в рабочей обмотке из-за емкости.

    Подвижная обмотка имеет достаточное сопротивление, которое позволяет сделать цепь резистивно-индуктивной цепью и результирующее сопротивление переменному току, известное как индуктивное реактивное сопротивление (X L ). Пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление, а результирующее сопротивление переменному току равно емкостному реактивному сопротивлению (X C ).

    Таким образом, результирующий ток, протекающий в цепи, сдвинут по фазе на 90 °. Это означает, что у нас есть две разные чередующиеся фазы, которые приводят к созданию вращающегося магнитного поля, и создаваемый крутящий момент начинает вращать ротор.

    Когда двигатель достигает скорости 70% +, используется центробежный выключатель для отключения питания пусковой обмотки (вспомогательной обмотки). Двигатели такого типа называются двигателями с конденсаторным пуском.

    Из-за высокой стоимости и надлежащего обслуживания двигателей с конденсаторным пуском, для решения этой проблемы в двигателе постоянно используется конденсатор с фиксированным номиналом (обычно от 2,5 мкФ до 3,5 мкФ ) (который известен как двигатели с пусковым конденсатором).

    Так как пусковой ветер имеет небольшие размеры, что помогает только произвести фазовый сдвиг (низкий крутящий момент) для запуска двигателя, поэтому конденсаторные пусковые двигатели недоступны в больших размерах.

    Имейте в виду, что если вы подключите конденсатор последовательно с основной обмоткой, а не запускаете ветер, лопасти вентилятора будут вращаться в противоположном направлении.

    Теперь вы знаете точную причину, по которой используется конденсатор в потолочном вентиляторе . Если вы все еще не уверены или хотите оставить отзыв, сообщите нам об этом в поле для комментариев ниже.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *