Номинальный момент асинхронного двигателя формула: Формула для вычисления номинального момента асинхронного двигателя

Содержание

Крутящий момент и зависимость крутящего момента

Как рассчитать крутящий момент, зная обороты и мощность двигателя?

Крутящий момент напрямую зависит от мощности и числа оборотов двигателя в минуту. Имеется общепринятая формула расчета крутящего момента, выражаемого в Ньютон-метрах ( русское обозначение Н·м, международное N·m ) 

 

M = P х 9550 / N

 

Где P — это мощность двигателя в киловаттах (кВт)

N — обороты вала в минуту

 

 

Как рассчитать мощность двигателя, зная крутящий момент и обороты?


Для такого расчета существует формула:

 

P = M х N / 9550

 

Где M — это крутящий момент двигателя

N — это обороты двигателя

 

Для скорости и простоты расчета воспользуйтесь удобным калькулятором крутящего момента. Впишите в ячейки калькулятора имеющиеся значения и калькулятор автоматически проставит результаты расчета.

 

Калькулятор крутящего момента

Все о частотных преобразователях


    Частотные преобразователи — это устройства для плавного изменения частоты вращения синхронных и асинхронных двигателей посредством изменения частоты питающего тока.

    В современной технике благодаря простоте конструкции и обслуживания, небольшим габаритам, высокой надёжности, и низкой стоимости огромное распространение получили именно асинхронные электродвигатели.

    При работе различных устройств, в качестве привода которых применяются асинхронные электродвигатели, часто возникает необходимость в регулировании их скорости вращения.

    Исходя из формулы n = (1 — S)60f/p где n — скорость вращения ротора, S — скольжение, f- частота питающей сети, p — количество пар полюсов.

    Существует три способа регулирования скорости вращения асинхронного двигателя:

  • — изменение скольжения. Этот способ используется в двигателях с фазным ротором. В цепь фазного ротора вводится регулировочный реостат. При использовании этого способа можно получить большой диапазон регулирования частоты вращения в сторону понижения. Однако этот способ имеет, и ряд недостатков, основным из которых является большие потери на регулировочном реостате (нагрев) т.е. снижение КПД. Как следствие этот способ применяют для кратковременного снижения частоты вращения.
  • — изменение числа пар полюсов. Этот способ предполагает использование специальных двигателей (многоскоростных) имеющих более сложную обмотку статора, позволяющую изменять число пар полюсов, и короткозамкнутый ротор. Недостатком этого метода является ступенчатое регулирование (3000, 1500, 1000, 750, 600 об/мин – 1,2,3,4,5 обмотки с 1,2,3,4,5 парами полюсов соответственно), большая стоимость и громоздкость двигателя.
  • — изменение частоты питающего тока (напряжения). На практике этот метод, в общем случае (самый простой), предполагает вместе с частотой изменять и действующее значение подведенного напряжения таким образом, что бы отношение U/f было постоянно. Это (изменение входного напряжения) делается для сохранения перегрузочной способности двигателя с изменением частоты сети.

    В приводах центробежных насосов и вентиляторов, которые являются типичными представителями переменной механической нагрузки (момент нагрузки возрастает с увеличением скорости вращения) используется функция напряжения к квадрату частоты U/f 2 = сonst.

    В более совершенных частотных регуляторах для управления скоростью вращения и электромагнитным моментом двигателя независимо, используется так называемое векторное управление. При этом виде управления необходимо управлять амплитудой и фазой статорного тока (т.е. вектором) в зависимости от положения ротора относительно обмотки статора в каждый момент времени.

    Применение частотных регуляторов. Зачем нужен частотный регулятор?
    Асинхронные двигатели имеют ряд недостатков (сложность регулирования скорости вращения, большие пусковые токи, относительно малый пусковой момент). Однако благодаря своей простоте, надежности и дешевизне получили огромное распространение в промышленности и быту. Применение же частотных регуляторов «устраняет» недостатки асинхронных двигателей и кроме этого позволяет избежать установки различного дополнительного оборудования, уменьшить потери в технологическом процессе, увеличить КПД самого двигателя, уменьшить износ, как самого двигателя, так и оборудования использующегося в данном технологическом процессе.

    Рассмотрим более детально применение частотных регуляторов на примере насосного оборудования. Потери в технологической системе зависят от нагрузки создаваемой потребителями (на неё мы влиять не можем) и гидравлическим сопротивлением элементов этой системы. Так поддержание давления у потребителей на постоянном уровне при изменяющейся нагрузке, возможно только при использовании дополнительного оборудования (различных регуляторов давления, мембранных баков, дроссельных задвижек). Использование этого оборудования создает дополнительное гидравлическое сопротивление и как следствие снижает КПД системы в целом. При использовании частотного регулятора двигатель сам регулирует давление в сети посредством изменения частоты вращения. Кроме того при снижении технологической нагрузки уменьшая частоту вращения насоса, КПД самого насоса тоже возрастает. Таким образом достигается как бы двойной эффект увеличивается КПД системы в целом, за счёт исключения из системы лишнего гидравлического сопротивления и увеличение КПД самого насоса как агрегата.

    Применение частотного регулятора также значительно снижает эксплуатационные затраты связанные с износом оборудования. Плавное регулирование вращения (и плавный пуск) практически полностью позволяют избежать как гидравлических ударов, так и скачков напряжения в электросети (особенно актуально в системах, где предусмотрен частый пуск/остановка насоса).

Асинхронный двигатель

Если поместить во вращающееся магнитное поле короткозамкнутую медную или алюминиевую рамку на валу электродвигателя, то она вместе с валом придет во вращение по направлению вращения поля. Явление это объясняется следующим образом. Пусть угловая скорость вращения рамки n несколько меньше угловой скорости вращения поля no (асинхронное вращение). В этом случае рамка «проскальзывает» относительно поля. Величину s = (n0—n)/n0 называют скольжением. Относительно магнитного поля рамка вращается с угловой скоростью, пропорциональной скольжению. Поэтому в ней возникает индукционный ток, пропорциональный относительной скорости вращения рамки, т. е. скольжению. По закону Ленца, индуцированный ток взаимодействует с полем так, что рамка увлекается полем.
А так как магнитное поле вращается, то это приводит к вращению рамки. Вращающий момент, действующий на рамку, пропорционален индуцированному току и тем самым скольжению. Этот вращающий момент уравновешивается внешней нагрузкой. Таким образом, в установке данного типа рамка всегда вращается несколько медленнее вращения поля. Такое вращение называют асинхронным (т. е. неодновременным, несогласованным). Сам двигатель получил название асинхронного.

Асинхронный двигатель наиболее распространен в качестве электропривода различных механизмов благодаря своей простоте и надежности. Их применяют для привода машин и механизмов, не требующих строго постоянной частоты вращения и ее регулировки. Важнейшими достоинствами данного двигателя являются простота его устройства и большая надежность, вызванная отсутствием скользящих контактов. Двигатель имеет достаточный пусковой момент, легко реверсируется (т. е. в нем легко меняется направление вращения ротора). В результате этого асинхронные двигатели являются самыми распространенными в технике электрическими машинами. Более 60 % всей вырабатываемой в мире энергии преобразуется в механическую, в основном, с помощью асинхронных двигателей. Мощность двигателей колеблется от десятков ватт до сотен киловатт.
Асинхронный двигатель изготавливается в однофазном, двухфазном и трехфазном исполнении.

Принцип работы

Рассмотрим вращающееся поле переменного тока трехфазной цепи короткозамкнутого асинхронного двигателя с тремя обмотками, сдвинутыми по окружности на 120° и соединенными звездой .

Обмотки статора питаются симметричным трехфазным напряжением. Начальную фазу тока в обмотке А-х принимаем равной нулю. Тогда:

Конструкция

Асинхронный двигатель состоит из статора и ротора. Статор представляет собой литой корпус (стальной или чугунный) цилиндрической формы. Внутри статора располагается магнитопровод с вырубленными пазами, в которые укладывается статорная обмотка. Концы обмоток выводятся в клеммную коробку и могут быть соединены как треугольником, так и звездой. Корпус статора с торцов закрыт подшипниковыми щитами, в которые запрессовываются подшипники вала ротора. Ротор состоит из стального вала с напрессованным на него магнитопроводом.
По конструкции роторов двигатели делятся на две группы. Первая — с короткозамкнутым ротором и вторая — с фазным. У двигателя с короткозамкнутым ротором в пазы заливаются алюминиевые стержни и накоротко замыкаются по торцам. У фазового ротора имеются три обмотки, соединенные в звезду. Выводы обмоток присоединены к кольцам, закрепленным на валу. К кольцам при пуске прижимаются неподвижные щетки, к которым подключаются сопротивления. В начальный момент пуска ротор находится в заторможенном состоянии, затем сопротивление уменьшается и двигатель плавно запускается, что позволяет снизить пусковой ток.
К обмоткам статора подводится трехфазное напряжение, а ротор вращается посредством вращающегося магнитного поля, создаваемого системой трехфазного тока.

В момент времени t1: . Если ток фазы А положителен, т.е. течет от начала к концу, то, пользуясь правилом правоходового винта, можно найти картину распределения магнитного поля для времени t1.
В момент времени t2 вектор результирующей магнитной индукции Вm развернется на угол α1 и далее по часовой стрелке с периодом обращения 360°. Для данного примера угол α1 = 60°.
Таким образом, магнитная индукция представляет собой вращающееся поле с амплитудой



За период поле делает один оборот, , (где f = 50 Гц), и является промышленной частотой питающего переменного напряжения и тока.
При синусоидальном характере вращающегося поля его скорость no равна отношению αf/p (где р — число пар полюсов). В рассматриваемом примере р = 1 и частота вращения равна соответственно 3000 оборотам в минуту. Если число катушек в каждой фазе увеличить в два раза, а сдвиг фаз между токами сохранить 120°, то частота вращения уменьшится в два раза за счет увеличения числа пар полюсов. Особенностью короткозамкнутого асинхронного двигателя является наличие постоянной частоты вращения поля статора, определяемой числом пар полюсов.
Если поменять местами любые две фазы, то возникнет поле обратной последовательности и ротор начнет вращаться в другую сторону. Еще одной особенностью асинхронных двигателей является разность частоты вращения полей статора no и ротора n, что делает возможным их электромагнитное взаимодействие. При этом поле ротора будет как бы скользить относительно поля статора

где s — скольжение, при номинальной мощности двигателя скольжение составляет 0,01-0,03.
Основное вращающееся магнитное поле индуцирует в обмотках статора и ротора ЭДС, аналогично трансформатору, так как при разомкнутом роторе асинхронный двигатель представляет собой трансформатор в режиме холостого хода:

где индекс 1 относится к параметрам статора, а 2 — к параметрам ротора; Kобм — обмоточные коэффициенты, определяемые способом укладки обмоток (петлевая или волновая). Kобм=0,92-0,98; E2s=E2s; E2 — действующее значение ЭДС неподвижного ротора при s = 1; f2=f1s.
В асинхронном двигателе кроме основного магнитного потока создаются потоки рассеяния. Один охватывает проводники статора, другой — ротора. Потоки рассеяния характеризуются соответствующими индуктивными сопротивлениями X1 и X2s.
Уравнения электрического состояния фаз обмоток статора и ротора:


Момент асинхронного двигателя

Вращающий электромагнитный момент двигателя в соответствии с законом электромагнитных сил


где
Cм — конструктивная постоянная;
φ2s — фазовый сдвиг между током и магнитным потоком.
Отношение максимального момента Mmax к номинальному Mн определяет перегрузочную способность двигателя и составляет 2,0-2,2 (дается в каталожных данных). Максимальный момент соответствует критическому скольжению sк, определяемому активными и индуктивными сопротивлениями двигателя, и пропорционален активному сопротивлению цепи ротора.

Потери в асинхронном двигателе

Потери делятся на потери в статоре и в роторе. Потери в статоре состоят из электрических потерь в обмотке Рэ1 и потерь в стали Рст, а потери в роторе — из электрических Рэ2 и механических Рмех плюс добавочные потери на трение и вентиляцию Рдоб.


где К = 2,9-3,6 определяется диаметром статора D1.
Потери в стали в рабочем режиме во много раз меньше электрических потерь в роторе и ими обычно пренебрегают.
КПД асинхронного двигателя составляет от 0,75 до 0,95.

Рабочий момент двигателя пропорционален квадрату напряжения, что необходимо учитывать при включении двигателя в протяженных распределительных сетях. Номинальному моменту соответствует номинальное скольжение, а пусковому — sп.
Зависимость момента двигателя от скольжения М=f(s) приведена на рисунке.
На участке от 0 до Mmax двигатель работает в устойчивом режиме, а участок от Sk называется режимом опрокидывания двигателя, при котором двигатель в результате перегрузки останавливается и не может вернуться в рабочий режим без очередного запуска. Пусковые свойства двигателя определяются соотношением пускового момента Mп и номинального. В соответствии с каталожными данными оно составляет 1,6-1,7. При пуске асинхронного двигателя cosj очень мал и пусковой ток в обмотке статора может возрастать в 5-7 раз по сравнению с номинальным. Ограничение его осуществляется изменением частоты питающего напряжения для двигателя с короткозамкнутым ротором и увеличением активного сопротивления в цепи ротора для двигателя с фазовым ротором. Для механизмов, имеющих тяжелые условия пуска, где желательно использовать асинхронный двигатель с короткозамкнутым ротором, применяются двигатели с улучшенными пусковыми свойствами: с большим пусковым моментом и меньшим пусковым током, чем у двигателей общего назначения.

Механическая характеристика асинхронного двигателя

Зависимость скорости вращения от нагрузки на валу двигателя называется механической характеристикой асинхронного двигателя.
Участок АВ механической характеристики соответствует устойчивому режиму работы асинхронного двигателя. Увеличение нагрузки (тормозного момента) ведет к некоторому снижению частоты вращения ротора, что вызывает увеличение вращающего момента. При превышении тормозным моментом критического, двигатель останавливается. Точка В на графике соответствует точке критического или опрокидывающего момента.

Регулирование частоты вращения

Регулирование частоты вращения может быть осуществлено тремя способами: изменением частоты питающего напряжения, переключением числа пар полюсов и изменением скольжения.
Для регулирования частоты вращения двигателей с короткозамкнутым ротором в настоящее время широко используются частотные преобразователи с микропроцессорным управлением.

Тормозные режимы

Тормозные режимы возникают в машине при определенных условиях или создаются искусственно с целью ускорения процесса остановки двигателя. Торможение может быть:

  • генераторное с отдачей энергии в сеть;
  • противовключением;
  • динамическое.

Генераторным тормозным режимом называется режим работы двигателя, когда под действием внешнего момента ротор двигателя вращается в том же направлении, что и магнитное поле, но с большей скоростью.
Тормозной режим противовключения возникает в том случае, когда под действием внешнего момента, приложенного к валу двигателя, ротор вращается в противоположную сторону относительно вращающегося магнитного поля.
Динамический тормозной режим получается при отключении обмотки статора от сети трехфазного тока и подключении ее на время торможения к источнику энергии постоянного тока.

Выбор двигателя

Расчетные формулы для выбора двигателя имеют вид:


Выбор двигателя по каталогу осуществляется следующим образом. По заданному моменту рабочего механизма и частоте вращения определяется необходимая мощность. После этого определяются условия окружающей среды, выбирается исполнение по типу монтажа и высоте оси рабочего вала двигателя. Зная эти параметры, по каталогу проверяют необходимую перегрузочную способность, КПД, массу и момент инерции.
Для шахтных условий используются двигатели взрывозащищенного исполнения; для крановых механизмов — двигатели с повышенным скольжением и т.д.
В бытовых приборах используются однофазные двигатели. Однофазный двигатель отличается от трехфазного тем, что его статорная обмотка подключается к однофазному источнику питания. Ротор выполняется короткозамкнутым. На статоре размещаются две обмотки, оси которых смещены друг относительно друга на 90 электрических градусов. Одна называется рабочей, а другая -пусковой.

Рабочие характеристики асинхронного двигателя


Рабочими характеристиками асинхронного двигателя являются зависимости от мощности на валу Р2 таких параметров, как момент, частота вращения, ток статора, КПД и cosφ. Анализ характеристик показывает, что частота вращения ротора падает с увеличением нагрузки, а момент пропорционален ей. Ток статора изменяется по нелинейному закону, что связано с магнитной системой двигателя и при Р2=0 определяется током холостого хода, составляющего до 40% его номинального значения.

В системах управления используются двигатели, в которых одна из обмоток статора постоянно подключена к сети переменного тока (обмотка возбуждения), а ко второй (обмотка управления) подводится напряжение управления. Такие двигатели относятся к классу микромашин.
Микромашины используются в информационных системах, где они выполняют функции первичных преобразователей для вычислительных операций в системах автоматики и телемеханики.
Одним из примеров является сельсин, предназначенный для передачи на расстояние угловых перемещений валов, механически не связанных друг с другом. По конструкции сельсины делятся на контактные и бесконтактные. Контактные сельсины выполняются в двух вариантах. В одном обмотка возбуждения располагается на роторе, а трехфазная обмотка, называемая обмоткой синхронизации, в пазах статора. В другом варианте наоборот. При включении обмотки возбуждения сельсина на однофазное напряжение ток создает пульсирующее магнитное поле, которое индуцирует в каждой фазе обмотки синхронизации переменную ЭДС. Действующее значение ЭДС каждой фазы зависит от расположения осей этих фаз относительно оси потока возбуждения.
В простейшем случае схема дистанционной передачи угловых перемещений состоит из двух одинаковых сельсинов, у которых одноименные зажимы обмоток синхронизации соединены проводами линии связи, а на обмотки возбуждения подается напряжение сети. Один из сельсинов называют сельсин-датчиком, другой — сельсин-приемником.

Что такое крутящий момент электродвигателя

Одним из важных параметров электродвигателя, который так же важен при его выборе, является крутящий момент. Эта величина определяется произведением приложенной к плечу рычага силы и зависит исключительно от степени нагрузки. Если в двигателях внутреннего сгорания данную нагрузку задаётся коленчатым валом, то асинхронные электродвигатели получают величину крутящего момента от токов возбуждения. При этом величина этого момента будет зависеть от скорости вращающегося в магнитном поле статора устройства, называемого ротор. В зависимости от периода и способа определения, крутящий момент разделяют на:

  • статический (пусковой) – минимальный момент холостого хода;
  • промежуточный – развивает значение при работе двигателя от 0 величины оборотов до максимального значения в номинальной величине напряжения;
  • максимальный – развивающийся при эксплуатации двигателя;
  • номинальный – соответствует номинальным значениям мощности и оборотов.

Для вычисления величины крутящего момента, определяющегося в «кгм» (килограмм на метр) или «Нм» (ньютон на метр), многие электротехнические пособия предлагают специальные формулы, учитывающие кроме основного действия вращающегося магнитного поля ряд всевозможных факторов, например:

  • напряжения сети;
  • величину индуктивного и активного сопротивления;
  • зависимость от увеличения скольжения.

Но, рост скольжения не всегда приносит высокий момент. Зачастую, при достижении критических значений, наблюдается его резкое снижение. Такое явление обозначается как опрокидывающий момент. Одним из устройств, стабилизирующих скорость вращения ротора, а значит и величину момента кручения является частотный преобразователь, применение которого сейчас очень распространено во всех сферах, где от контроля работы двигателя зависит и успешность выполнения множественных производственных задач.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

  • из скоростных требований. В этом случае, более полезным будет выбор двигателя по малому моменту для работающих со слабыми усилиями и на большой скорости, и со средними либо высокими показателями моментов пуска для работающих в усиленных режимах. На малых скоростях;
  • по пусковым напряжениям. Здесь учитывается первичное усилие, например, для управления лифтом следует подбирать двигатели высокого пускового момента, способного поднимать большие грузы со старта. Хотя, многие статьи про электродвигатели рекомендуют так же применять устройства плавного пуска, умеющие обезопасить от нежелательных перегрузов.

Стоит помнить, что выбор осуществляется не по одному из показателей, даже при ориентировании относительно крутящего момента, ведь каждый из показателей ориентируется по рабочей предрасположенности электротехнического приводного устройства и его рабочих нагрузок в статистических и динамических эксплуатационных условиях, задаваемых самим предприятием.

Электродвигатели

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Номинальный ток электродвигателя

Подавляющее большинство электродвигателей, используемых в промышленности, относятся к трехфазному асинхронному типу. Для питания таких устройств необходима промышленная трехфазная сеть переменного тока, обеспечивающая сетевое напряжение заданной частоты и напряжения. Высокая популярность асинхронных электродвигателей обусловлена дешевизной, простотой изготовления и механической прочностью данных устройств. Кроме того, изменяя схему подключения обмоток (звезда или треугольник) можно подключать двигатель к сетям различного напряжения (обычно используются комбинации 220/380 и 127/220В).

Высокий стартовый ток – главный недостаток асинхронного электродвигателя

Однако несмотря на множество неоспоримых преимуществ, асинхронные двигатели имеют минусы, среди которых одним из наиболее значительных является достаточно большой пусковой ток электродвигателя данного типа. Особенно заметен этот недостаток в асинхронных устройствах с короткозамкнутым ротором. Такие двигатели следует с осторожностью применять, в тех системах, для которых требуется значительный пусковой момент, который может привести к превышению номинального значения силы тока (Iн).

Для большинства асинхронных электродвигателей допустимо кратковременное превышение значение Iн, которое может произойти в момент пуска. Так, в момент запуска, допускается шестикратное превышение значения номинального тока при условии, что оно будет длиться не более 5 секунд. В случае, если в некотором режиме номинальный ток превышается не более чем в два раза, допускается увеличить время работы устройства в этом режиме до 15 секунд.

Расчет номинального значения тока асинхронного электродвигателя

Номинальный ток электродвигателя, при котором возможна его длительная работа, связан с номинальной мощностью устройства и его КПД следующим выражением:  Iн=1000*Pн/(Uн*cosφ√η), где Рн – мощность, Uн – номинальное напряжение, которым питается электродвигатель, η – КПД, а cosφ – коэффициент мощности двигателя.

Отсюда можно сделать важный вывод, который состоит в том, что при уменьшении U (например при переключении устройства из сети в 220 В сеть 127 В), увеличивается ток двигателя, который может превысить номинальное значение. А длительная работа двигателя на токе I>Iн может привести не только к его повреждению, но и к возгоранию. Поэтому, используемые в системе с электрическим двигателем предохранительные устройства должны быть подобраны так, чтобы предотвратить продолжительную работу при токе I>Iн.

Просмотров: 15420

Дата: Воскресенье, 15 Декабрь 2013

Пусковой момент двигателя. Вращающий момент асинхронного двигателя. Вывод формулы. Номинальный, критический и пусковой моменты

Вращающий момент, развиваемый на валу асинхронного электродвигателя в условиях нулевой скорости вращения ротора (когда ротор еще неподвижен) и установившегося в обмотках статора тока, — называется пусковым моментом асинхронного двигателя.

Пусковой момент иногда называют еще моментом трогания или начальным моментом. При этом подразумевается, что напряжение и частота питающего напряжения приближены к номиналу, причем соединение обмоток выполнено правильно. В номинальном режиме работы данный двигатель будет работать именно так, как предполагали разработчики.

Пусковой момент вычисляется по приведенной формуле. В паспорте электродвигателя (паспорт предоставляется производителем) указана кратность пускового момента.

Обычно значение величины кратности лежит в пределах от 1,5 до 6, в зависимости от типа двигателя. И при выборе электродвигателя для своих нужд, важно убедиться, что пусковой момент окажется больше статического момента планируемой проектной нагрузки на валу. Если это условие не соблюсти, то двигатель попросту не сможет развить рабочий момент при вашей нагрузке, то есть не сможет нормально стартонуть и разогнаться до номинальных оборотов.

Давайте рассмотрим еще одну формулу для нахождения пускового момента. Она будет вам полезной для теоретических расчетов. Здесь достаточно знать мощность на валу в киловаттах и номинальные обороты, — все эти данные указаны на табличке (на шильдике). P2-номинальная мощность, F1-номинальные обороты. Итак, вот эта формула:

Для нахождения P2 применяют следующую формулу. Здесь необходимо учесть скольжение, пусковой ток и напряжение питания, все эти данные указаны на шильдике. Как видите, все довольно просто. Из формулы очевидно, что пусковой момент в принципе можно повысить двумя путями: увеличением стартового тока или повышением питающего напряжения.

Попробуем, однако, пойти наиболее простым путем, и рассчитаем значения пусковых моментов для трех двигателей серии АИР. Воспользуемся параметрами кратности пускового момента и величинами номинального момента, то есть пользоваться будем самой первой формулой. Результаты расчетов приведены в таблице:

Тип двигателяНоминальный момент, НмОтношение пускового момента к номинальному моментуПусковой момент, Нм
АИРМ132М2362,590
АИР180S2722144
АИР180М2972,4232,8

Роль пускового момента асинхронного электродвигателя (пусковой ток)

Часто двигатели включают напрямую в сеть, осуществляя коммутацию магнитным пускателем: на обмотки подается линейное напряжение, создается вращающееся магнитное поле статора, оборудование начинает работать.

Бросок тока в момент старта в данном случае неизбежен, и он превышает номинальный ток в 5-7 раз, причем длительность превышения зависит от мощности двигателя и от мощности нагрузки: более мощные двигатели стартуют дольше, их обмотки статора дольше принимают токовую перегрузку.

Маломощные двигатели (до 3 кВт) легко переносят данные броски, и сеть так же легко выдерживает эти незначительные кратковременные всплески мощности, ибо у сети всегда есть некоторый мощностный резерв. Вот почему небольшие насосы и вентиляторы, станки и бытовые электроприборы обычно включают напрямую, не заботясь особо о токовых перегрузках. Как правило обмотки статоров двигателей оборудования такого рода соединяются по схеме «звезда» из расчета на трехфазное напряжение 380 вольт или «треугольник» — для 220 вольт.

Если же вы имеете дело с мощным двигателем на 10 и более кВт, то включать напрямую такой двигатель в сеть нельзя. Бросок тока в момент пуска необходимо ограничить, иначе сеть испытает значительную перегрузку, что может привести к опасной «нештатной просадке напряжения».

Пути ограничения пускового тока

Наиболее простой способ ограничения пускового тока — пуск при пониженном напряжении. Обмотки просто переключаются с треугольника на звезду в момент пуска, а затем, когда двигатель набрал какие-то обороты — обратно на треугольник. Переключение осуществляется через несколько секунд после старта с помощью реле времени, например.

В таком решении пусковой момент также понижается, причем зависимость квадратичная: при снижении напряжения в будет в 1,72 раза, момент снизится в 3 раза. По этой причине пуск при пониженном напряжении подходит для такого оборудования, где пуск возможен с минимальной нагрузкой на валу асинхронного двигателя (например пуск многопильного станка).

Мощным нагрузкам, например ленточному конвейеру, необходим другой способ ограничения пускового тока. Здесь лучше подойдет реостатный метод, позволяющий снизить пусковой ток без уменьшения крутящего момента.

Такой способ очень подходит асинхронным двигателям с фазным ротором, где реостат удобно включается в цепь обмотки ротора, и регулировка рабочего тока осуществляется ступенчато, получается очень плавный пуск. С помощью реостата тут же можно регулировать и рабочую скорость двигателя (не только в момент запуска).

Но наиболее эффективным способом безопасного пуска асинхронных двигателей является все же пуск посредством . Величину напряжения и частоту регулирует сам преобразователь автоматически, создавая оптимальные условия двигателю. Обороты получаются стабильными, при этом броски тока принципиально исключены.

Для каждого асинхронного двигателя может быть определен номинальный режим, т. е. режим длительной работы, при котором двигатель не перегревается сверх установленной температуры. Момент М ном, соответствующий номинальному режиму, называется. номинальным моментом. Соответствующее ему номинальное скольжение составляет для асинхронных двигателей средней мощности s H0M = 0,02…0,06, т.е. номинальная скорость n иом находится в пределах

n ном = n 0 (1 — s 0)= (0,94…0,98) п 0 .

Отношение максимального момента к номинальному к м = = Mmах/M ном называется перегрузочной способностью асинхронного двигателя. Обычно к т = 1,8.. .2,5.

При пуске в ход, т. е. при трогании с места и при разгоне, асинхронный двигатель находится в условиях, существенно отличающихся от условий нормальной работы. Момент, развиваемый двигателем, должен превышать момент сопротивления нагрузки, иначе двигатель не сможет разгоняться. Таким образом, с точки зрения пуска двигателя важную роль играет его пусковой момент.

Отношение пускового момента М п развиваемого двигателем в неподвижном состоянии, т. е. при n = 0, к номинальному моменту k п = М п /М ном называется кратностью пускового момента.

Максимальный момент М тах называется критическим моментом асинхронной машины. Работа машины с моментом, превышающим номинальный, возможна лишь кратковременно, в противном случае срок службы машины сокращается из-за ее перегрева.

В результате взаимодействия вращающегося магнитного потока с токами, индуктированными им в проводниках роторной обмотки, возникают силы, действующие на эти проводники в тангенциальном направлении. Найдем значение момента, создаваемого этими силами на валу машины.

Электромагнитная мощность, передаваемая ротору вращающимся магнитным полем, ровна:

где М эм — электромагнитный момент действующий на ротор.

В соответствии со схемой замещения одной фазы машины:

Из этих выражений найдем:

Учитывая действующий ток ротора, ЭДС, индуктивное сопротивление получим:

Введем постоянную и пренебрегая моментом трения, представим выражение момента на валу в виде:

Если магнитный поток Ф выражен в веберах, ток I 2 — в амперах, то вращающий момент получится в ньютон-метрах (Нм).

Вращающий момент машины зависит от изменяющихся при нагрузке ф, I 2 и, но его можно представить в виде функции однойпеременной. В качестве такой переменной для асинхронного двигателя наиболее удобно выбрать скольжениеs.

Полагая, что частота сети неизменна введем

Получим следующее выражение для вращающего момента:

42. Энергетическая диаграмма АД. В электрической машине часть энергии теряется в виде тепла в различных частях — потери в обмотках, в стали, механические потери.

На диаграмме: Р 1 — мощность, подводимая из сети. Основная часть её за вычетом потерь в статоре, передаётся электромагнитным путём на ротор через зазор; Р эм называется электромагнитной мощностью.

Потери в статоре складываются из потерь в обмотке и в стали:

Рис. 42. Энергетическая диаграмма АД.

р с1 и р с2 . р с1 теряется на вихревые токи и перемагничивание сердечника. Потери в стали имеются и в сердечнике ротора, но они невелики и их можно не учитывать, т.к. n 0 во много раз больше скорости магнитного потока относительно ротора n 0 — n , если n соответствует устойчивой части естественной механической характеристики.

Механическая мощность, развиваемая на валу ротора, меньше Р эм на значение р об2 потерь в обмотке ротораР мх = Р эм — р об2 Мощность на валу Р 2 = Р мх — р мх, где р мх — мощность механических потерь, равная сумме потерь на трение в подшипниках, на трение о воздух и трение щеток о кольца.

Электромагнитная и механическая Р равныР эм = ω 0 М, Р мх = ωМ , где ω 0 и ω — скорости синхронная и ротора, М — момент, развиваемый двигателей, т.е. момент, с которым вращающееся поле действует на ротор.

Добавочные потери обусловлены зубчатостью ротора и статора, вихревыми токами в различных узлах и другими причинами. При полной нагрузке потери Рд принимаются равными 0,5% его номинальной мощности.

К.п.д. двигателя: h = P 2 /P 1 = / Р 1 .

Т.к. общие потери зависят от нагрузки, то и КПД является функцией нагрузки. Машина конструируется так, чтобы максимум ее коэффициента полезного действия h имел место при нагрузке, несколько меньше номинальной. Для большинства двигателей к.п.д. равен 80-90%, а для мощных двигателей 90-96%.

43. Устройство синхронного двигателя. Схема замещения, уравнения энергетического состояния фазы обмотки статора, векторная диаграмма синхронного дв. Основными частями статора являются неподвижный пакет маг­нитопровода и трехфазная обмотка. Пакет магнитопрово­да изготовлен в виде полого цилиндра, набранного, так же как и магнитопровод трансформатора, из тонких листов электротехнической стали. Листы имеют форму колец с пазами, симметрично расположенными вдоль внутренней окружности. В пазы пакета статора уложены стороны многовитковых мягких катушек, образующих три фазы обмотки. Пакет статора с обмоткой запрессован в алюминие­вый или чугунный корпус-оболочку, неподвижно закрепляемый при установке машины на фундаментной плите. С корпусом прочно соеди­нены два боковых литых щита со сквозными центральными отверстия­ми для подшипников, в которых вращается вал ротора.

Начала и концы фаз обмотки статора присоединены к зажимам, расположенным в коробке выводов, укрепленной на корпусе. Боль­шинство машин имеет коробку выводов с шестью зажимами, что по­зволяет соединять фазы обмотки треугольником или звездой.

Применяются два типа роторов синхронных машин — неявнопо-люсный, или с неявно выраженными полюсами, и ротор явнополюс-ный, или с явно выраженными полюсами. В первом случае сердечник ротора представляет массивное цилиндрическое тело из стали (бочка ротора), вдоль его поверхности выфрезерованы пазы, в которых заклады­вается обмотка возбуждения. Пазы и обмотка возбуждения размещают­ся так, чтобы получить по возможности синусоидальное распределение индукции в зазоре между сердечниками ротора и статора. Общий вид неявнополюсного ро­тора показан на рис.

Явнополюсный ротор состоит из мас­сивного стального колеса, посаженного на вал. К его ободу по внешней поверхности крепятся стальные сердечники полюсов. Последние, а иногда и обод выполняются из листовой стали. Для малых машин и при не слишком большом числе полюсов вместо колеса на вал насаживается стальная втулка, к которой крепятся полюса. Обмотка возбуждения в виде катушек разме­щается на сердечниках полюсов. Такая конструкция ротора позво­ляет разместить на нем большое число полюсов, что необходимо для машин с небольшой скоростью вращения.

44. Регулирование реактивной мощности синхронного двигателя осуществляется изменением тока возбуждения Iв

1) Номинальный режим Iв= Iв ном. cosφ=1.

2) Iв

реактивная составляющая увеличивается, носит индуктивный характер-режим работы АСД

3) Iв> Iв ном cos φ

ток якоря увеличивается,Емкостной характер

При этом способе реактивная мощность отдается в сеть,что является большим плюсом.

Изменяя ток возбуждения меняем ток якоря.

45. Регулирование активной мощности синхронного двигателя осуществляется изменением угла согласования. При увеличении нагрузки угол увеличивается, при уменьшении- уменьшается. Угол рассогласования определяет перегрузочную способность двигателя.

Отношение максимального момента к номинальному:

46. Устройство, принцип действия двигателя постоянного тока. Способы возбуждения. ЭДС обмотки якоря и электромагнитный момент Устройство и принцип действия двигателя постоянного тока Двигатель постоянного тока состоит из неподвижной час­ти -статора и вращающейся части — якоря, разделенных воздушным зазором. К внутренней поверхности статора крепятся главные в добавочные полюсы. Главные полюсы с обмотками возбуждения слу­жат для создания в машине основного магнитного потока Ф, а до­бавочные — для уменьшение искрения.

Якорь состоит из вала, сердечника, обмотки и коллектора. Коллектор содержит изолированные друг от друга медные пластины, которые соединяются с секциями обмотки якоря. На коллектор накла­дываются неподвижные щётки; соединяющие обмотку якоря с внешней электрической цепью. В результата взаимодействия тока якоря Iя И магнитного потока Ф создается вращающий момент, М=СмФIя, где См- постоянная момента, зависящая от кон­структивных данных машины. Вращающий момент М, двигателя уравновешивается моментом сопротивления Мс рабочей машины. При вра­щении якоря с частотой n его обмотка пересекает магнитный поток Ф и в ней, согласно закону электромагнитной индукции, наводится противо-ЭДС E =СеФп, где Се _ конструктивная постоянная.

Напряжение на эажимаx якоря U равно сумме ЭДС и падения напряжения на сопротивлении якорной цепи U=E +RяIя=CеФn, откуда ток якоря Iя=(U-CеФn)/Rя, а частота вращения n=(U- RяIя)/ CеФ/

В зависимости от способа питания обмотки возбуждения генераторы постоянного тока бывают:

Рис. 50. Возбуждение генератора: а — независимое, б — параллельное, в — последовательное, г — смешанное.

При независимом возбуждении ОВ питается от постороннего источника. Применяется в случаях, когда необходимо в широких пределах регулировать ток возбуждения I в и напряжение U на зажимах машины. Ток якоря равен току нагрузки I я = I н (рис. 50, а)

Генераторы с самовозбуждением имеют ОВ, питаемые от самого генератора.

При включении ОВ параллельно с обмоткой якоря имеем генератор с параллельным возбуждением (рис. 50, б), у которого I я = I н + I в. У мощных машин нормального исполнения I в обычно составляет 1-3%, а у малых машин — до нескольких десятков % от тока якоря. У генератора с последовательным возбуждением (рис. 50, в) ОВП включён последовательно с якорем, т.е.

I я = I н = I в.

Генераторы со смешанным возбуждением имеют две обмотки возбуждения, ОВ включёна параллельно якорю, а другая ОВП — последователь но (рис. 50, г). Основной обычно является ОВ. ОВП подмагничивает машину при увеличении тока нагрузки, чем компенсируется падение напряжения U в обмотке якоря и размагничивающее влияние реакции якоря.

47. Нагрузочный режим двигателя постоянного тока с параллельным возбуждением. Механическая характеристика. Подадим на зажимы неподвижного якоря напряжение. Напряжение вызовет ток в цепи якоря. При этом возникает электромагнитным момент. Этот момент начнёт вращать якорь, совершая механическую работу. Машина начнет работать в режиме электродвигателя. Чтобы преодолеть сопротивление механической нагрузки на валу, электродвигателя должен потреблять энергию из внешнего источника.

48. Способы пуска двигателя постоянного тока. Нормальная машина постоянного тока имеет цилиндрический ротор с обмоткой, называемый якорем, который вращается в неподвижном магнитном поле. В витках 1-3 и 2-4 обмотки якоря индуктируются переменные ЭДС и для получения постоянного направления тока i в сопротивлении нагрузки r, применяется коллектор К, состоящий из медных изолированных друг от друга пластин, образующих цилиндр, по которому скользят щетки а — B . Наличие коллектора, к пластинам которого присоединяются начала и концы витков обмотки якоря, является отличительной особенностью м. п. т. В положении на рисунке стороны 1-3 витка пересекают магнитные линии перпендикулярно, поэтому между щетками будет Е мах.

Рис. 47. Схема генератора постоянного тока с двумя витками и четырьмя коллекторными пластинами.

Конец работы —

Эта тема принадлежит разделу:

Собственная и примесная электропроводность полупроводников

Выпрямителем называется устройство предназначенное для преобразования переменного тока в постоянный Основ ным элементом выпрямителей является…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Для каждого асинхронного двигателя может быть определен номинальный режим, т. е. режим длительной работы, при котором двигатель не перегревается сверх установленной температуры. Момент М ном, соответствующий номинальному режиму, называется. номинальным моментом. Соответствующее ему номинальное скольжение составляет для асинхронных двигателей средней мощности s H0M = 0,02…0,06, т.е. номинальная скорость n иом находится в пределах

n ном = n 0 (1 — s 0)= (0,94…0,98) п 0 .

Отношение максимального момента к номинальному к м = = Mmах/M ном называется перегрузочной способностью асинхронного двигателя. Обычно к т = 1,8.. .2,5.

При пуске в ход, т. е. …
при трогании с места и при разгоне, асинхронный двигатель находится в условиях, существенно отличающихся от условий нормальной работы. Момент, развиваемый двигателем, должен превышать момент сопротивления нагрузки, иначе двигатель не сможет разгоняться. Таким образом, с точки зрения пуска двигателя важную роль играет его пусковой момент.

Отношение пускового момента М п развиваемого двигателем в неподвижном состоянии, т. е. при n = 0, к номинальному моменту k п = М п /М ном называется кратностью пускового момента.

Максимальный момент М тах называется критическим моментом асинхронной машины. Работа машины с моментом, превышающим номинальный, возможна лишь кратковременно, в противном случае срок службы машины сокращается из-за ее перегрева.

В результате взаимодействия вращающегося магнитного потока с токами, индуктированными им в проводниках роторной обмотки, возникают силы, действующие на эти проводники в тангенциальном направлении. Найдем значение момента, создаваемого этими силами на валу машины.

Электромагнитная мощность, передаваемая ротору вращающимся магнитным полем, ровна:

где М эм — электромагнитный момент действующий на ротор.

В соответствии со схемой замещения одной фазы машины:

Из этих выражений найдем:

Учитывая действующий ток ротора, ЭДС, индуктивное сопротивление получим:


Введем постоянную и пренебрегая моментом трения, представим выражение момента на валу в виде:

Если магнитный поток Ф выражен в веберах, ток I 2 — в амперах, то вращающий момент получится в ньютон-метрах (Нм).

Вращающий момент машины зависит от изменяющихся при нагрузке ф, I 2 и , но его можно представить в виде функции однойпеременной. В качестве такой переменной для асинхронного двигателя наиболее удобно выбрать скольжениеs.

Тогда

Полагая, что частота сети неизменна введем

Получим следующее выражение для вращающего момента:

42. Энергетическая диаграмма АД. В электрической машине часть энергии теряется в виде тепла в различных частях — потери в обмотках, в стали, механические потери.

На диаграмме: Р 1 — мощность, подводимая из сети. Основная часть её за вычетом потерь в статоре, передаётся электромагнитным путём на ротор через зазор; Р эм называется электромагнитной мощностью.


Потери в статоре складываются из потерь в обмотке и в стали:

Рис. 42. Энергетическая диаграмма АД.

р с1 и р с2 . р с1 теряется на вихревые токи и перемагничивание сердечника. Потери в стали имеются и в сердечнике ротора, но они невелики и их можно не учитывать, т.к. n 0 во много раз больше скорости магнитного потока относительно ротора n 0 — n , если n соответствует устойчивой части естественной механической характеристики.

Механическая мощность, развиваемая на валу ротора, меньше Р эм на значение р об2 потерь в обмотке ротораР мх = Р эм — р об2 Мощность на валу Р 2 = Р мх — р мх, где р мх — мощность механических потерь, равная сумме потерь на трение в подшипниках, на трение о воздух и трение щеток о кольца.

Электромагнитная и механическая Р равныР эм = ω 0 М, Р мх = ωМ , где ω 0 и ω — скорости синхронная и ротора, М — момент, развиваемый двигателей, т.е. момент, с которым вращающееся поле действует на ротор.

Добавочные потери обусловлены зубчатостью ротора и статора, вихревыми токами в различных узлах и другими причинами. При полной нагрузке потери Рд принимаются равными 0,5% его номинальной мощности.

К.п.д. двигателя: h = P 2 /P 1 = / Р 1 .

Т.к. общие потери зависят от нагрузки, то и КПД является функцией нагрузки. Машина конструируется так, чтобы максимум ее коэффициента полезного действия h имел место при нагрузке, несколько меньше номинальной. Для большинства двигателей к.п.д. равен 80-90%, а для мощных двигателей 90-96%.

43. Устройство синхронного двигателя. Схема замещения, уравнения энергетического состояния фазы обмотки статора, векторная диаграмма синхронного дв. Основными частями статора являются неподвижный пакет маг­нитопровода и трехфазная обмотка. Пакет магнитопрово­да изготовлен в виде полого цилиндра, набранного, так же как и магнитопровод трансформатора, из тонких листов электротехнической стали. Листы имеют форму колец с пазами, симметрично расположенными вдоль внутренней окружности. В пазы пакета статора уложены стороны многовитковых мягких катушек, образующих три фазы обмотки. Пакет статора с обмоткой запрессован в алюминие­вый или чугунный корпус-оболочку, неподвижно закрепляемый при установке машины на фундаментной плите. С корпусом прочно соеди­нены два боковых литых щита со сквозными центральными отверстия­ми для подшипников, в которых вращается вал ротора.

Начала и концы фаз обмотки статора присоединены к зажимам, расположенным в коробке выводов, укрепленной на корпусе. Боль­шинство машин имеет коробку выводов с шестью зажимами, что по­зволяет соединять фазы обмотки треугольником или звездой.

Применяются два типа роторов синхронных машин — неявнопо-люсный, или с неявно выраженными полюсами, и ротор явнополюс-ный, или с явно выраженными полюсами. В первом случае сердечник ротора представляет массивное цилиндрическое тело из стали (бочка ротора), вдоль его поверхности выфрезерованы пазы, в которых заклады­вается обмотка возбуждения. Пазы и обмотка возбуждения размещают­ся так, чтобы получить по возможности синусоидальное распределение индукции в зазоре между сердечниками ротора и статора. Общий вид неявнополюсного ро­тора показан на рис.

Явнополюсный ротор состоит из мас­сивного стального колеса, посаженного на вал. К его ободу по внешней поверхности крепятся стальные сердечники полюсов. Последние, а иногда и обод выполняются из листовой стали. Для малых машин и при не слишком большом числе полюсов вместо колеса на вал насаживается стальная втулка, к которой крепятся полюса. Обмотка возбуждения в виде катушек разме­щается на сердечниках полюсов. Такая конструкция ротора позво­ляет разместить на нем большое число полюсов, что необходимо для машин с небольшой скоростью вращения.


44. Регулирование реактивной мощности синхронного двигателя осуществляется изменением тока возбуждения Iв

1) Номинальный режим Iв= Iв ном. cosφ=1.

2) Iв

реактивная составляющая увеличивается, носит индуктивный характер-режим работы АСД

3) Iв> Iв ном cos φ

ток якоря увеличивается,Емкостной характер

При этом способе реактивная мощность отдается в сеть,что является большим плюсом.

Изменяя ток возбуждения меняем ток якоря.

45. Регулирование активной мощности синхронного двигателя осуществляется изменением угла согласования. При увеличении нагрузки угол увеличивается, при уменьшении- уменьшается. Угол рассогласования определяет перегрузочную способность двигателя.

Отношение максимального момента к номинальному:

46. Устройство, принцип действия двигателя постоянного тока. Способы возбуждения. ЭДС обмотки якоря и электромагнитный момент Устройство и принцип действия двигателя постоянного тока Двигатель постоянного тока состоит из неподвижной час­ти -статора и вращающейся части — якоря, разделенных воздушным зазором. К внутренней поверхности статора крепятся главные в добавочные полюсы. Главные полюсы с обмотками возбуждения слу­жат для создания в машине основного магнитного потока Ф, а до­бавочные — для уменьшение искрения.

Якорь состоит из вала, сердечника, обмотки и коллектора. Коллектор содержит изолированные друг от друга медные пластины, которые соединяются с секциями обмотки якоря. На коллектор накла­дываются неподвижные щётки; соединяющие обмотку якоря с внешней электрической цепью. В результата взаимодействия тока якоря Iя И магнитного потока Ф создается вращающий момент, М=СмФIя, где См- постоянная момента, зависящая от кон­структивных данных машины. Вращающий момент М, двигателя уравновешивается моментом сопротивления Мс рабочей машины. При вра­щении якоря с частотой n его обмотка пересекает магнитный поток Ф и в ней, согласно закону электромагнитной индукции, наводится противо-ЭДС E =СеФп, где Се _ конструктивная постоянная.

Напряжение на эажимаx якоря U равно сумме ЭДС и падения напряжения на сопротивлении якорной цепи U=E +RяIя=CеФn, откуда ток якоря Iя=(U-CеФn)/Rя, а частота вращения n=(U- RяIя)/ CеФ/

В зависимости от способа питания обмотки возбуждения генераторы постоянного тока бывают:


Рис. 50. Возбуждение генератора: а — независимое, б — параллельное, в — последовательное, г — смешанное.

При независимом возбуждении ОВ питается от постороннего источника. Применяется в случаях, когда необходимо в широких пределах регулировать ток возбуждения I в и напряжение U на зажимах машины. Ток якоря равен току нагрузки I я = I н (рис. 50, а)

Генераторы с самовозбуждением имеют ОВ, питаемые от самого генератора.

При включении ОВ параллельно с обмоткой якоря имеем генератор с параллельным возбуждением (рис. 50, б), у которого I я = I н + I в. У мощных машин нормального исполнения I в обычно составляет 1-3%, а у малых машин — до нескольких десятков % от тока якоря. У генератора с последовательным возбуждением (рис. 50, в) ОВП включён последовательно с якорем, т.е.

I я = I н = I в.

Генераторы со смешанным возбуждением имеют две обмотки возбуждения, ОВ включёна параллельно якорю, а другая ОВП — последователь но (рис. 50, г). Основной обычно является ОВ. ОВП подмагничивает машину при увеличении тока нагрузки, чем компенсируется падение напряжения U в обмотке якоря и размагничивающее влияние реакции якоря.

47. Нагрузочный режим двигателя постоянного тока с параллельным возбуждением. Механическая характеристика. Подадим на зажимы неподвижного якоря напряжение. Напряжение вызовет ток в цепи якоря. При этом возникает электромагнитным момент. Этот момент начнёт вращать якорь, совершая механическую работу. Машина начнет работать в режиме электродвигателя. Чтобы преодолеть сопротивление механической нагрузки на валу, электродвигателя должен потреблять энергию из внешнего источника.

48. Способы пуска двигателя постоянного тока. Нормальная машина постоянного тока имеет цилиндрический ротор с обмоткой, называемый якорем, который вращается в неподвижном магнитном поле. В витках 1-3 и 2-4 обмотки якоря индуктируются переменные ЭДС и для получения постоянного направления тока i в сопротивлении нагрузки r, применяется коллектор К, состоящий из медных изолированных друг от друга пластин, образующих цилиндр, по которому скользят щетки а — B . Наличие коллектора, к пластинам которого присоединяются начала и концы витков обмотки якоря, является отличительной особенностью м. п. т. В положении на рисунке стороны 1-3 витка пересекают магнитные линии перпендикулярно, поэтому между щетками будет Е мах.


Рис. 47. Схема генератора постоянного тока с двумя витками и четырьмя коллекторными пластинами.

Вращающий момент асинхронного электродвигателя

Вращающий момент асинхронного электродвигателя созда­ется, как уже указывалось, за счет взаимодействия между вра­щающимся магнитным потоком статора и токами в обмотке ротора. Вполне понятно, что при отсутствии тока в обмотке ротора никакого момента создаваться не будет. Скольжение характеризует скорость вращения ротора относительно магнит­ного поля статора. От величины этой скорости зависит ток в роторе, а от тока—величина вращающего момента электродви­гателя, который может быть вычислен по формуле (6). Но вы­ражение (6), несмотря на свою простоту, не дает возможности выяснить влияние различных факторов на величину вращающе­го момента. Поэтому в курсе электротехники часто используют другое выражение:

где с — постоянная величина, зависящая от конструкции элект­родвигателя;

?1 —угловая скорость вращающегося магнитного поля.

Выражение (90) показывает, что вращающий момент про­порционален квадрату напряжения сети, в связи с чем даже небольшое уменьшение напряжения в питающей сети приводит к резкому снижению вращающего момента, что отрицательно сказывается на работе электродвигателя.

Кроме того, выражение (90) учитывает зависимость вели­чины вращающего момента от активных и индуктивных сопро­тивлений электродвигателя, а также от скольжения.

Если обозначить (х1 + сх2) через х и выполнить несложные преобразования в формуле (90), то получим

Величинами r1 s и x2 s2 можно пренебречь, ввиду их малости. Тогда, до некоторого предела

Таким образом доказано, что с увеличением скольжения возрастает и момент электродвигателя.

Более точный анализ выражений (90) и (91) показывает, что момент с увеличением скольжения возрастает лишь до некоторого критического значения Мкрит (так называемый опрокидывающий момент), после чего начинается резкое его снижение.

Величина критического скольжения, при которой имеет место опрокидывающий момент,

Подставляя это выражение в уравнение (91), получим

В последних выражениях знак плюс относится к работе электродвигателя в режимах двигательном и торможения противовключением, а знак минус — к работе в генераторном режиме с отдачей энергии в сеть. Очевидно, что критический момент в двигательном режиме меньше, чем в генераторном.

Зависимость М = f (s), построенная по уравнению (91), приведена на рис. 42, который показывает, что при трогании электродвигателя с места, ког­да скольжение s=1, началь­ный пусковой момент асинхронного электродвигателя невелик, что является его основным недостатком.


Выражения (93) и (94) по­казывают, что при изменении активного сопротивления ро­торной цепи величина опроки­дывающего момента Мкрит не изменяется, меняется при этом лишь величина критического скольжения sкрит. Поэтому при различных активных сопротив­лениях роторной цепи кривые М = f(s) имеют различный характер. Эти кривые показывают, что пусковой момент асинхрон­ного электродвигателя с фазным ротором можно искусственным образом изменять, вводя различные активные сопротивления в

его роторную цепь. Таким же образом можно регулировать скорость электродвигателя, так как при изменении активного сопротивления роторной цепи меняется величина скольжения (рис. 43), а от скольжения, как показывает выражение (82), зависит число оборотов асинхронного электродвигателя.


Уравнение крутящего момента трехфазного асинхронного двигателя

Крутящий момент трехфазного асинхронного двигателя пропорционален магнитному потоку на полюс статора, току ротора и коэффициенту мощности ротора.

T ɸ I 2 cosɸ 2 OR T = k ɸ I 2 cosɸ 2 .
, где ɸ = поток на полюс статора,
I 2 = ток ротора в состоянии покоя,
ɸ 2 = угол между ЭДС ротора и током ротора,
k = постоянная величина.

Теперь пусть E 2 = ЭДС ротора в состоянии покоя
, как мы знаем, ЭДС ротора прямо пропорциональна потоку на полюс статора, то есть E 2 ɸ.
, следовательно, T E 2 I 2 cosɸ 2 OR T = k 1 E 2 I 2 cosɸ 2 .

Пусковой крутящий момент

Крутящий момент, развиваемый в момент пуска двигателя, называется пусковым моментом. В некоторых случаях пусковой крутящий момент может быть больше, чем рабочий, а может быть и меньше.

Мы знаем, что T = k 1 E 2 I 2 cosɸ 2 .

let, R2 = сопротивление ротора на фазу

X2 = реактивное сопротивление неподвижного ротора

затем

Следовательно, пусковой момент может быть задан как

Константа k1 = 3 / 2πNs

Условие для максимального пускового момента

Если напряжение питания V остается постоянным, то магнитный поток ɸ и E 2 остаются постоянными. Следовательно,

Следовательно, можно доказать, что максимальный пусковой крутящий момент достигается, когда сопротивление ротора равно реактивному сопротивлению ротора в состоянии покоя.то есть R 2 2 + X 2 2 = 2R 2 2 .

Крутящий момент в рабочем состоянии

T ɸ I r cosɸ 2 .

где E r = ЭДС ротора на фазу в рабочем состоянии = sE 2 . (s = скольжение)

I r = ток ротора на фазу в рабочем состоянии

реактивное сопротивление на фазу в рабочем состоянии будет = sX 2

следовательно,

as, ɸ ∝ E 2 .

Максимальный крутящий момент в рабочем состоянии

Крутящий момент в рабочем состоянии максимален при значении скольжения (-ий), при котором реактивное сопротивление ротора на фазу равно сопротивлению ротора на фазу.

Крутящий момент в электрических асинхронных двигателях

Крутящий момент — это сила поворота через радиус — с единицей измерения Нм, в системе СИ и единицей измерения фунт-фут в британской системе мер.

Крутящий момент, развиваемый асинхронным асинхронным двигателем, изменяется, когда двигатель ускоряется от нуля до максимальной рабочей скорости.

Заблокированный ротор или пусковой момент

Момент заторможенного ротора Пусковой момент или — это крутящий момент, который электродвигатель развивает при запуске с нулевой скоростью.

Высокий пусковой момент более важен для приложений или машин, которые трудно запускать — например, поршневых поршневых насосов, кранов и т. Д. Более низкий пусковой момент может быть принят для центробежных вентиляторов или насосов, где пусковая нагрузка мала или близка к нулю.

Крутящий момент при подъеме

Крутящий момент при подъеме — это минимальный крутящий момент, развиваемый электродвигателем при его работе от нуля до скорости полной нагрузки (прежде, чем он достигнет точки срыва крутящего момента).

Когда двигатель запускается и начинает ускоряться, крутящий момент в целом будет уменьшаться, пока не достигнет нижней точки на определенной скорости — тяговый момент — перед тем, как крутящий момент возрастет, пока не достигнет максимального крутящего момента на более высокой скорости — пробивной момент — точка.

Крутящий момент может быть критичным для приложений, которым требуется питание, чтобы преодолеть некоторые временные препятствия для достижения рабочих условий.

Момент разрушения

Момент разрушения — это самый высокий крутящий момент, доступный до того, как крутящий момент уменьшится, когда машина продолжает ускоряться до рабочих условий.

Крутящий момент при полной нагрузке (номинальный) или тормозной момент

Крутящий момент при полной нагрузке — это крутящий момент, необходимый для выработки номинальной мощности электродвигателя при скорости полной нагрузки.

В британских единицах измерения крутящий момент при полной нагрузке может быть выражен как

T = 5252 P л.с. / n r (1)

, где

T = полная нагрузка крутящий момент (фунт-фут)

P л.с. = номинальная мощность

n r = номинальная частота вращения (об / мин, об / мин)

В метрических единицах номинальный крутящий момент может быть выражено как

T = 9550 P кВт / n r (2)

где

T = номинальный крутящий момент (Нм)

P кВт = номинальная мощность ( кВт)

n r = номинальная частота вращения (об / мин)

Пример — электродвигатель и тормозной момент

Крутящий момент 901 96 60 л.с. Двигатель , вращающийся со скоростью 1725 об / мин можно рассчитать как:

T fl = 5252 (60 л.с.) / (1725 об / мин)

= 182.7 фунт-футов

NEMA Design

NEMA (Национальная ассоциация производителей электрооборудования) классифицировала электродвигатели по четырем различным конструкциям, в которых крутящий момент и инерция пусковой нагрузки являются важными критериями.

Ускоряющий момент

Ускоряющий момент = доступный крутящий момент двигателя — момент нагрузки

Устройства плавного пуска с пониженным напряжением

Устройства плавного пуска с пониженным напряжением используются для ограничения пускового тока, уменьшая крутящий момент заторможенного ротора или пусковой крутящий момент, и широко используются в приложениях, которые трудно запускать или с ним нужно обращаться осторожно — как, например, поршневые насосы, краны, лифты и т. д.

Формулы и расчеты двигателя, Указатель полезных инструментов

Формулы и расчеты, приведенные ниже, следует использовать только для оценки. Заказчик обязан указать требуемые мощность двигателя, крутящий момент и время разгона для своего приложения. Продавец может пожелать проверить указанные заказчиком значения с помощью формул в этом разделе, однако, если есть серьезные сомнения относительно приложения заказчика или если заказчик требует гарантированной производительности двигателя / приложения, заказчик должен нанять инженера-электрика для точного определения расчеты.

Чтобы получить подробное описание каждой формулы, щелкните ссылки ниже, чтобы перейти к ней.


Практические правила (приближение)

Механические формулы
Крутящий момент, фунт-фут. = л.
5250

преобразование температуры
° C = (° F — 32) x 5/9

° F = (° C x 9/5) + 32

преобразование температуры Формула

2
R = 1.8 K + 0,6
.K = 5 / 9 (R-0,6)
F ​​= 1,8C + 32
C = 5 / 9 (F-32)
R = F + 460
.K = C + 273

C = Цельсий, градусы
F ​​= Фаренгейт, градусы
.K = Кельвин
R = Ранкина, градусы
313
до C Темп. до F
-17,8
10,8
37,8
65,6
93,3
0
50
100
150
200
32,0
122,0
212,0
302,0
4 392,0 903,9
176,7
204,4
232,2
250
300
350
400
450
482,0
572,0
662,0
752,0
842,0
260,0
287,7
315.6
343,3
500
550
600
650
932,0
1022,0
1112,0
1202,0
по C Темп. по F
371,1
398,9
426,7
454,4
482,2
700
750
800
850
900
1292,0
1382,0
1472,0
5210
1292,0
1382,0
1472,0
52,030
537,8
565,6
593,3
621,1
950
1000
1050
1100
1150
1742,0
1832,0
1922,0
2012,0
2102,0
648,9
676,7
7
704 1350
2192,0
2282,0
2372,0
2462,0
по C Темп. по телефону
760.0
787,8
815,6
843,3
872,1
1400
1450
1500
1550
1600
2552,0
2642,0
2732,0
2822,0
2912,0
899,9
927,7
3
899,9
927,7
955,4 1750
1800
1850
3002,0
3092,0
3182,0
3272,0
3362,0
1038,8
1066,6
1094,3
1121,1
1900
1950
2000
2050
3452.0
3542,0
3632,0
3722,0

Высокая инерционная нагрузка
t = WK 2 x об / мин

308 x T ср.
—— WK 2 = инерция в фунт-фут. 2
t = время разгона в сек.
T = Av. ускоряющий момент фунт-фут.
T = WK 2 x об / мин

308 xt
об / мин Частота и количество полюсов двигателей переменного тока
инерция, отраженная двигателю = инерция нагрузки нагрузка об / мин

об / мин двигателя
2
2
n s = 120 xf

P
—— f = P xn s

120
— — P = 120 xf

n s

Зависимость между мощностью, крутящим моментом и скоростью
л.с. = T xn

5250
—— 90 T = 5250 HP

n
—— n = 5250 HP

T

скольжение двигателя
% скольжение = n 9000 n7 s 9000 n7 s

n s
x 100
B-332
Код кВА / л. С.
Код кВА / л. кВА / л.с.
A 0-3.14
F 5,0 -5,59
L 9,0-9,99
S 16,0-17,99
900 5,6 -6,29
M 10,0-11,19
T 18,0-19,99
C 3,55-3,99
6
3,55-3,99
6
3-7,09
N 11,2-12,49
U 20,0-22,39
D 4,0 -4,49


P 12,5-13,99
V 22,4 и более поздних версий
E 4,5 -4,99
K 8,0 -8,99 2 9030-15,99



Обозначения
9013 903 частота в циклах в секунду (CPS) 9 0672 EFF
I = ток в амперах
E = мощность в киловаттах
кВА = полная мощность в киловольт-амперах
л.с. скорость в оборотах в минуту (об / мин)
нс = синхронная скорость в оборотах в минуту (об / мин)
P = количество полюсов
f
T = крутящий момент в фунт-футах
= КПД в десятичном виде
PF = коэффициент мощности в десятичном формате

Эквивалентная инерция

В механических системах все вращающиеся части обычно не работают с одинаковой скоростью .Таким образом, нам нужно определить «эквивалентную инерцию» каждой движущейся части при определенной скорости первичного двигателя.

Общий эквивалент WK 2 для системы представляет собой сумму WK 2 каждой части, относящуюся к скорости первичного двигателя.

Уравнение говорит:


WK 2 EQ = WK 2 часть N 4 часть

N первичный двигатель

Это уравнение становится общим знаменателем, на котором могут основываться другие вычисления.Для устройств с регулируемой скоростью инерция сначала должна быть рассчитана на низкой скорости.

Давайте посмотрим на простую систему, которая имеет первичный двигатель (PM), редуктор и нагрузку.

WK 2 = 100 фунт-фут. 2
WK 2 = 900 фунт-фут. 2
(вид на выходном валу)

WK 2 = 27000 фунт-фут. 2

Формула утверждает, что эквивалент системы WK 2 равен сумме WK 2 частей на оборотах первичного двигателя, или в данном случае:

Примечание: Обороты редуктора = Обороты нагрузки

Эквивалент WK 2 равен WK 2 первичного двигателя плюс WK 2 нагрузки.Это равно WK 2 первичного двигателя, плюс WK 2 времен редуктора (1/3) 2 , плюс WK 2 времени нагрузки (1/3) 2 .

Это отношение редуктора к ведомой нагрузке выражается формулой, приведенной ранее:


WK 2 EQ = WK 2 часть N часть

N Первичный двигатель
2

Другими словами, когда деталь вращается со скоростью (N), отличной от первичного двигателя, WK 2 EQ равен WK 2 квадрата передаточного отношения детали.

В этом примере результат может быть получен следующим образом:

Эквивалент WK 2 равен:

Наконец:


WK 2 EQ = фунт-фут. 2 pm + 100 фунт-фут. 2 Красный + 3000 фунт-фут 2 Нагрузка

WK 2 EQ = 3200 фунт-фут. 2

Общий эквивалент WK 2 — это то, что WK 2 видит тягач на его скорости.


Электрические формулы (Дополнительные формулы см. В разделе «Формулы»)

I = Амперы; E = Вольт; Eff = Эффективность; pf = коэффициент мощности; кВА = Киловольт-амперы; кВт = Киловатт


Ток заторможенного ротора (IL) из данных паспортной таблички
кВА / л.с.
Трехфазный: I L = 577 x л.с. x кВА / л.с.

E
См. диаграмму
Однофазный: I L = 1000 x л.с. x кВА / л.с.

E
Название двигателя:
Название двигателя указывает на название двигателя: , 3 фазы, 460 Вольт, код F.
I L = 577 x 10 x (5,6 или 6,29)

460

32
I L = 70,25 или 78,9 Ампер (возможный диапазон)
Влияние линейного напряжения на ток заторможенного ротора (IL) (прибл.)
I L @ E LINE = I L @ E N / P x E LINE

E N / P
ПРИМЕР: Двигатель имеет ток заблокированного ротора (бросок 100 ампер (I L ) при номинальном напряжении на паспортной табличке N / P ) 230 вольт.

Что такое I L с напряжением 245 В (E LINE ), приложенным к этому двигателю?

I L при 245 В. = 100 x 254 В / 230 В

I L при 245 В. = 107 ампер


Основные расчеты мощности в лошадиных силах

Лошадиная сила — это работа, выполненная в единицу времени. Один HP равен 33 000 фут-фунт работы в минуту. Когда источник крутящего момента (T) выполняет работу по вращению (M) вокруг оси, выполняемая работа составляет:


радиус x 2 x об / мин x фунт.или 2 TM

При вращении со скоростью N об / мин доставленное HP составляет:


HP = радиус x 2 x об / мин x фунт

33000
= TN

5250

Для вертикального или подъемного движения:


л.с.
W = общий вес в фунтах.поднимается двигателем
S = скорость подъема в футах в минуту
E = общий механический КПД подъемника и зубчатой ​​передачи. Для оценки
E =,65 для эфф. подъемника и связанного механизма.

Для вентиляторов и нагнетателей:


л.с.

Или


л.с. = Объем (куб. Фут / мин) x давление (фунт.На кв. Фут.)

3300 x Механический КПД вентилятора

Или


л.с. = Объем (куб. Фут / мин) x давление (фунт на кв. Дюйм. )

229 x Механический КПД вентилятора

Для оценки эфф. вентилятора или нагнетателя можно принять равным 0,65.

Примечание: Объем воздуха (куб. Фут / мин) напрямую зависит от скорости вентилятора.Развиваемое давление зависит от скорости вентилятора в квадрате. Hp зависит от скорости вращения вентилятора.

Для насосов:

Или


л.с. = галлонов в минуту x давление в фунтах на кв. Дюйм x удельный вес

1713 x механический КПД насоса

л.с. = галлонов в минуту x общий динамический напор в футах x удельный вес

3960 x механический КПД насоса

913

где общий динамический напор = статический напор + напор трения

Для оценки КПД насоса можно принять равным 0.70.


Ускоряющий момент

Эквивалентная инерция привода с регулируемой скоростью указывает энергию, необходимую для поддержания работы системы. Однако запуск или ускорение системы требует дополнительной энергии.

Крутящий момент, необходимый для разгона кузова, равен WK 2 кузова, умноженному на изменение оборотов в минуту, деленное на 308-кратный интервал (в секундах), в котором происходит это ускорение:


МОМЕНТ УСКОРЕНИЯ = WK 2 Н (фунт-сила)футов)

308т

Где:


3
N = Изменение оборотов в минуту
2 L
K = Радиус вращения
т = Время разгона (сек.)
WK 2 = 3
= Константа пропорциональности

Или


T Acc = WK

0 2

N

(308) выводится путем преобразования линейного движения в угловое с учетом ускорения свободного падения.Если, например, у нас есть просто первичный двигатель и груз без регулировки скорости:

Пример 1

WK 2 = 200 фунт-фут. 2
WK 2 = 800 фунт-фут. 2

WK 2 EQ определяется как и раньше:


WK 2 EQ = WK 2 pm + WK

7 2 9008 + WK

7 Нагрузка

WK 2 EQ = 200 + 800
WK 2 EQ = 1000 футов.фунт 2

Если мы хотим разогнать эту нагрузку до 1800 об / мин за 1 минуту, имеется достаточно информации, чтобы определить величину крутящего момента, необходимого для ускорения нагрузки.

В формуле указано:


T Acc = WK 2 EQ N

308t
или 1000 x 1800

303
1800000

18480

Другими словами, 97.4 фунт-фут. крутящего момента необходимо приложить, чтобы эта нагрузка вращалась со скоростью 1800 об / мин за 60 секунд.

Обратите внимание, что T Acc — это среднее значение ускоряющего момента во время рассматриваемого изменения скорости. Если требуется более точный расчет, может оказаться полезным следующий пример.

Пример 2

Время, необходимое для разгона асинхронного двигателя с одной скорости на другую, можно найти из следующего уравнения:


t = WR 2 x изменение оборотов в минуту

308 x T

Где:


T = Среднее значение ускоряющего момента во время рассматриваемого изменения скорости.
t = Время, необходимое двигателю для разгона от начальной до конечной скорости.
WR 2 = Эффект маховика или момент инерции для ведомого оборудования плюс ротор двигателя в фунто-футах. 2 (WR 2 ведомого оборудования должно относиться к валу двигателя).

Теперь мы рассмотрим применение приведенной выше формулы на примере.На рисунке A показаны кривые скорость-крутящий момент асинхронного двигателя с короткозамкнутым ротором и вентилятора, который он приводит в действие. При любой скорости нагнетателя разница между крутящим моментом, который двигатель может передать на валу, и крутящим моментом, необходимым для нагнетателя, представляет собой крутящий момент, доступный для ускорения. Ссылка на рисунок A показывает, что ускоряющий момент может сильно изменяться в зависимости от скорости. Когда кривые скорость-крутящий момент для двигателя и нагнетателя пересекаются, крутящий момент отсутствует для ускорения. Затем двигатель приводит в движение вентилятор с постоянной скоростью и просто передает крутящий момент, необходимый для нагрузки.

Чтобы определить общее время, необходимое для разгона двигателя и нагнетателя, область между кривой «скорость-крутящий момент» двигателя и кривой «скорость-крутящий момент» вентилятора разделена на полосы, концы которых представляют собой прямые линии. Каждая полоса соответствует приросту скорости, происходящему в течение определенного интервала времени. Сплошные горизонтальные линии на рисунке А представляют границы полос; длины пунктирных линий — средние ускоряющие моменты для выбранных интервалов скорости.Чтобы рассчитать общее время разгона двигателя и воздуходувки с прямым подключением, необходимо найти время, необходимое для разгона двигателя от начала одного интервала скорости до начала следующего интервала, и сложить инкрементальные времена для все интервалы, чтобы получить общее время разгона. Если WR 2 двигателя, чья кривая скорость-крутящий момент приведена на рисунке A, составляет 3,26 фут-фунт. 2 и WR 2 воздуходувки, относящейся к валу двигателя, имеют длину 15 футов.фунтов 2 , общий WR 2 составляет:


15 + 3,26 = 18,26 фут-фунт. 2 ,

И общее время разгона составляет:

Или

Рисунок A
Кривые, используемые для определения времени, необходимого для разгона асинхронного двигателя и нагнетателя

Ускоряющие моменты
T 9000 1 = 46 фунт-фут. T 4 = 43,8 фунт-фут. Т 7 = 32.8 фунт-фут.
T 2 = 48 фунт-фут. T 5 = 39,8 фунт-фут. T 8 = 29,6 фунт-фут.
T 3 = 47 фунт-фут. T 6 = 36,4 фунт-фут. T 9 = 11 фунт-фут.




Рабочие циклы

Заказы на продажу часто вводятся с пометкой под такими специальными функциями, как:

—— «Подходит для 10 пусков в час»
или
—- » Подходит для 3 реверсов в минуту «
или
——» Мотор, способный развивать скорость до 350 фунтов.ft. 2 «
или
——» Подходит для 5 пусков и остановок в час «

Заказы с такими примечаниями не могут быть обработаны по двум причинам.

  1. Сначала необходимо проконсультировались, чтобы увидеть, доступна ли конструкция, которая будет выполнять требуемый рабочий цикл, и, если нет, чтобы определить, соответствует ли требуемый тип конструкции нашей нынешней линейке продуктов.
  2. Ни одно из приведенных выше примечаний не содержит достаточно информации для выполнения необходимой нагрузки расчет цикла.Для проверки рабочего цикла информация о рабочем цикле должна включать следующее:
    1. Инерция, отраженная на валу двигателя.
    2. Моментная нагрузка на двигатель на всех этапах рабочего цикла, включая пуски, время работы, остановки или реверсирование.
    3. Точное время каждой части цикла.
    4. Информация о том, как выполняется каждый шаг цикла. Например, остановка может осуществляться выбегом, механическим торможением, динамическим торможением постоянным током или закупориванием.Обратное движение может быть выполнено путем заглушки, или двигатель может быть остановлен каким-либо образом, а затем снова запущен в противоположном направлении.
    5. Когда двигатель многоскоростной, цикл для каждой скорости должен быть полностью определен, включая метод переключения с одной скорости на другую.
    6. Любые особые механические проблемы, особенности или ограничения.

Получение этой информации и проверка группы продуктов перед вводом заказа может сэкономить много времени, средств и переписки.

Рабочий цикл относится к подробному описанию рабочего цикла, который повторяется в определенный период времени. Этот цикл может включать в себя частые запуски, остановки, реверсирование или остановку. Эти характеристики обычно используются в процессах периодического действия и могут включать в себя галтовочные барабаны, определенные краны, экскаваторы и драглайны, демпферы, приводы для позиционирования затвора или плуга, подъемные мосты, грузовые лифты и подъемники для персонала, экстракторы прессового типа, некоторые питатели, прессы и т.д. определенные типы, подъемники, индексаторы, сверлильные станки, машины для шлакоблоков, сиденья для ключей, тестомесильные машины, тянущие машины, шейкеры (литейные или автомобильные), обжимные и стиральные машины, а также определенные грузовые и легковые автомобили.Список не исчерпывающий. Приводы для этих нагрузок должны быть способны поглощать тепло, выделяемое во время рабочих циклов. Соответствующая теплоемкость потребуется в муфтах скольжения, сцеплениях или двигателях для ускорения или остановки этих приводов или для выдерживания остановок. Это произведение скорости скольжения и крутящего момента, воспринимаемого нагрузкой в ​​единицу времени, которое выделяет тепло в этих компонентах привода. Все события, происходящие во время рабочего цикла, генерируют тепло, которое компоненты привода должны рассеивать.

Из-за сложности расчетов рабочего цикла и обширных технических данных для конкретной конструкции двигателя и номинальных характеристик, необходимых для расчетов, заказчику необходимо обратиться к инженеру-электрику для определения размера двигателя с приложением рабочего цикла.

Расчет параметров асинхронного двигателя

Проверка заторможенного ротора, как и проверка короткого замыкания трансформатора, предоставляет информацию об импедансах утечки и сопротивлении ротора.Ротор неподвижен, а на обмотки статора подается низкое напряжение до номинального тока. В связи с тем, что индуктивность намагничивания L м намного выше, чем индуктивности фазы рассеяния L ls , L lr , можно предположить, что нет тока, плавающего на параллельной ветви L м . Обычно индуктивности рассеяния L ls , L lr должны составлять около 2-10% от индуктивности намагничивания L m . Так как проскальзывание при вращении отсутствует (ротор остановлен) s = 1, что дает нам следующую эквивалентную схему.

Следовательно, параметры двигателя фазы L ls (H), L lr (H), R s (Ω), R r (Ω) рассчитываются следующим образом:

, где P с (Вт) — входная фазная мощность двигателя, В с (В) — приложенное фазное напряжение статора (пиковое значение), f с (Гц) — частота статора, cosφ — мощность коэффициент, I (A) — ток двигателя (среднеквадратичное значение), Z (Ω) — эквивалентное полное сопротивление фазы при испытании заторможенного ротора.

Согласно уравнениям (7) и (8) предполагается, что сопротивление ротора равно сопротивлению статора, а также индуктивность рассеяния ротора равна индуктивности рассеяния статора.

Чтобы провести вышеупомянутый тест заторможенного ротора с контроллерами асинхронных двигателей, выполните следующие действия:

  • Установите режим работы «Вольт на герц». Требуется действие обратной связи кодировщика.
  • Настройте параметр «Вольт на герц» в соответствии с пятикратным снижением номинального напряжения двигателя (пиковое значение напряжения статора согласно данным производителя) и частоты (1/5 от номинального напряжения / частоты).Причина настройки более низкого отношения V / f, чем при испытании без нагрузки, состоит в том, чтобы соответствующим образом ослабить индуцированное поле и уменьшить создаваемый крутящий момент при запуске, чтобы упростить блокировку ротора во время испытания.
  • Заблокируйте ротор с помощью соответствующего инструмента / устройства и увеличьте команду до 80% номинального тока двигателя. Если создаваемый крутящий момент высокий и ротор не может быть заблокирован, уменьшите соответствующим образом вольт на герц в конфигурации и повторите испытание.
  • Рассчитайте применяемое V s , используя уравнение (2).
  • Рассчитайте входную фазную мощность двигателя P s , используя следующее уравнение:

    , где V dc (V) — напряжение постоянного тока аккумулятора, I dc (A) — постоянный ток аккумулятора, η — постоянный ток аккумулятора. КПД контроллера (предположим КПД 0,95 для контроллеров RoboteQ). Напряжение и ток батареи можно измерить с помощью утилиты Roborun +.

    • Измерить ток I q (A) с помощью утилиты Roborun + (FOC Torque Amps).
    • Рассчитайте параметры двигателя L ls , L lr , R s , R r , применив уравнения (3) — (8).

Пример:

Для того же асинхронного двигателя в примере испытания без нагрузки соотношение вольт на герц установлено в 5 раз ниже номинального, то есть 0,053. Соответствующие результаты, полученные с помощью утилиты Roborun +, показаны ниже:

Следовательно, входная фазная мощность двигателя P с равна

Коэффициент мощности

, а эквивалентное фазовое сопротивление Z = 0,081 Ом согласно уравнению (4).

Следовательно, сопротивления статора и ротора двигателя равны R с = R r = 24 мОм в соответствии с уравнениями (5) и (7), а индуктивности рассеяния в соответствии с уравнением (6) равны:

Следует отметить, что синхронная частота при испытании заторможенного ротора отличается от синхронной частоты при испытании без нагрузки.Наконец, L ls = L lr = 76 мкГн согласно уравнению (8).

Как рассчитать частоту вращения двигателя

При эксплуатации, мониторинге, ремонте или замене двигателя важно понимать его характеристики. Одним из важнейших показателей является количество оборотов в минуту, или RPM, которое описывает скорость двигателя. В этом руководстве мы обсудим, как рассчитать частоту вращения двигателя и почему это так важно.

Какая частота вращения двигателя?

об / мин — это измерение, используемое для описания скорости двигателя.Он обозначает количество оборотов в минуту и ​​описывает скорость, с которой вращается ротор, то есть количество раз, когда вал ротора совершает полный оборот в минуту. Его можно использовать для измерения скорости двигателей, турбин, центрифуг, конвейеров и другого оборудования.

Почему важно рассчитывать число оборотов в минуту

Расчет оборотов двигателя, а также другие измерения, такие как крутящий момент, напряжение и мощность, важны при выборе двигателя для конкретного применения. Расчет скорости двигателя может помочь вам выбрать правильный тип двигателя при замене компонентов и помочь вам принять более правильные решения по ремонту.Вам также необходимо понимать число оборотов в минуту, чтобы эффективно контролировать и контролировать работу двигателя.

Запросить цену

Скорость асинхронного двигателя переменного тока

Двигатели переменного тока

предназначены для работы на определенных скоростях. Эти скорости одинаковы даже для разных моделей и производителей. Скорость данного двигателя зависит от сетевой частоты источника питания, а не от напряжения, а также от количества полюсов, которые он имеет. Двигатели переменного тока часто имеют два или четыре полюса, но может быть и больше. Взаимосвязь между полюсами и частотой вращения двигателя связана с магнитным полем, создаваемым в полюсах статора.Это поле приводит к созданию магнитных полей в роторе, которые зависят от частоты поля в статоре.

Также необходимо учитывать скольжение, которое представляет собой разницу между синхронной скоростью статора и фактической рабочей скоростью. Ротор всегда вращается немного медленнее, чем магнитное поле статора, и всегда пытается его «догнать», что и создает крутящий момент, необходимый для запуска двигателя.

Чтобы отрегулировать скорость трехфазного двигателя переменного тока, вы можете отрегулировать частоту источника питания переменного тока с помощью элемента управления.Многие элементы управления переменного тока также имеют однофазный вход, что позволяет запускать трехфазные двигатели, даже если трехфазное питание отсутствует. С другой стороны, большинство однофазных двигателей переменного тока не регулируются, поскольку они подключаются непосредственно к стандартной розетке и используют доступную частоту.

Скорость двигателя постоянного тока


Как и асинхронные двигатели переменного тока, двигатели постоянного тока с постоянными магнитами также имеют полюса, но они не влияют на скорость, как в двигателях переменного тока. Несколько других факторов влияют на скорость в двигателях постоянного тока, включая рабочее напряжение двигателя, силу магнитов и количество витков проволоки, которые имеет якорь.Двигатели постоянного тока могут работать только на скоростях, рассчитанных на доступное им напряжение.

Если батарея, от которой работает двигатель, начинает разряжаться и подавать меньшее напряжение, скорость двигателя снижается. Если вы подключите двигатель к источнику питания, скорость увеличится, хотя это может вызвать дополнительный износ вашего двигателя. Вы также можете использовать элементы управления для регулировки скорости двигателя постоянного тока, который работает путем изменения напряжения, доступного для двигателя.

Ремонт двигателей постоянного и переменного тока

Как рассчитать частоту вращения двигателя

Для расчета числа оборотов асинхронного двигателя переменного тока необходимо умножить частоту в герцах (Гц) на 60 — количество секунд в минуте — на два для отрицательного и положительного импульсов в цикле.Затем делите на количество полюсов двигателя:

  • (Гц x 60 x 2) / количество полюсов = об / мин без нагрузки

Вы также можете рассчитать коэффициент скольжения, вычтя номинальную скорость при полной нагрузке из синхронной скорости, разделив полученный ответ на синхронную скорость и умножив полученный ответ на 100:

  • ((номинальная синхронная скорость при полной нагрузке) / (синхронная скорость)) x 100 = номинальное скольжение

Затем, чтобы найти число оборотов в минуту при полной нагрузке, вы конвертируете номинальное скольжение в число оборотов в минуту, а затем вычитаете его из числа оборотов холостого хода:

  • Для преобразования рейтинга скольжения в об / мин: об / мин x рейтинг скольжения = скольжение
  • Для расчета об / мин при полной нагрузке: об / мин — скольжение об / мин = об / мин при полной нагрузке

Число оборотов двигателя постоянного тока зависит от напряжения, подаваемого на двигатель.Обычно производитель двигателя сообщает вам ожидаемую скорость вращения при различных напряжениях. Затем для достижения желаемых оборотов вы можете отрегулировать напряжение в соответствии с инструкциями.

Примеры расчета оборотов двигателя

Давайте рассмотрим несколько примеров. Для двигателя переменного тока количество полюсов и частота определяют обороты холостого хода. Для системы 60 Гц с четырьмя полюсами расчет для определения числа оборотов в минуту будет:

  • (Гц x 60 x 2) / количество полюсов = об / мин без нагрузки
  • (60 х 60 х 2) / 4
  • 7200/4 = 1800 об / мин

Величина скольжения незначительно меняется в зависимости от конструкции двигателя.Приемлемая скорость при полной нагрузке для четырехполюсного двигателя 60 Гц составляет 1725 об / мин. Скольжение — это разница между скоростью холостого хода и скоростью полной нагрузки. В данном случае это будет:

  • Об / мин при полной нагрузке — об / мин без нагрузки = скольжение об / мин
  • 1800-1725 = 75 об / мин

При 60 Гц двухполюсный двигатель работает со скоростью 3600 об / мин без нагрузки и около 3450 об / мин с нагрузкой:

  • (Гц x 60 x 2) / количество полюсов = об / мин без нагрузки
  • (60 х 60 х 2) / 4
  • 7200/2 = 3600 об / мин

При 60 Гц двигатель с шестью полюсами будет работать со скоростью 1200 об / мин без нагрузки и со скоростью примерно 1175 об / мин под нагрузкой.Двигатель с восемью полюсами будет работать со скоростью 900 об / мин без нагрузки и около 800 об / мин под нагрузкой. 12-полюсные двигатели, которые встречаются даже реже, чем шестиполюсные и восьмиполюсные модели, работают со скоростью 600 об / мин без нагрузки, а 16-полюсные двигатели работают со скоростью 450 об / мин.

Ремонт двигателей от Global Electronic Services

Важно понимать технические характеристики вашего оборудования, чтобы вы могли лучше его эксплуатировать и обслуживать. Скорость вашего двигателя является неотъемлемой частью его производительности, и возможность рассчитывать и контролировать число оборотов в минуту поможет вам получить максимальную отдачу от ваших машин.

Профессиональные услуги по ремонту и техническому обслуживанию также могут сыграть важную роль в том, чтобы помочь вам в полной мере использовать возможности вашего оборудования. В Global Electronic Services мы имеем обширный опыт ремонта и обслуживания широкого спектра промышленного оборудования, включая двигатели переменного и постоянного тока, серводвигатели, промышленную электронику, гидравлику и пневматику и многое другое. Чтобы узнать больше о ремонте двигателей переменного или постоянного тока или наших услугах, свяжитесь с нами сегодня.

Запросить цену

Каков максимальный крутящий момент асинхронного двигателя

В статье под названием Уравнение крутящего момента асинхронного двигателя мы видели развиваемый крутящий момент и его уравнение.Здесь обсуждается условие максимального крутящего момента асинхронного двигателя . Крутящий момент, создаваемый асинхронным двигателем, в основном зависит от следующих трех факторов. Это сила тока ротора; магнитный поток взаимодействует между ротором двигателя и коэффициентом мощности ротора. Значение крутящего момента при работающем двигателе определяется уравнением, показанным ниже:

Полный импеданс RC-цепи всегда находится между и 90º .Импеданс — это сопротивление, предлагаемое элементом электронной схемы протеканию тока. Если предполагается, что импеданс обмотки статора пренебрежимо мал. Таким образом, при заданном напряжении питания V 1 , E 20 остается постоянным.

Развиваемый крутящий момент будет максимальным, когда правая часть уравнения (4) будет максимальной. Это условие возможно, когда значение знаменателя, показанного ниже, равно нулю.

Лет,

Следовательно, развиваемый крутящий момент является максимальным, когда сопротивление ротора на фазу равно реактивному сопротивлению ротора на фазу в рабочих условиях.Положив значение sX 20 = R 2 в уравнение (1), мы получим уравнение для максимального крутящего момента .

Приведенное выше уравнение показывает, что максимальный крутящий момент не зависит от сопротивления ротора.

Если s M — значение скольжения, соответствующее максимальному крутящему моменту, то из уравнения (5)

Следовательно, скорость ротора при максимальном крутящем моменте определяется уравнением, показанным ниже.

Следующий вывод о максимальном крутящем моменте можно сделать из уравнения (7), приведенного ниже.

  • Не зависит от сопротивления цепи ротора.
  • Крутящий момент в максимальных условиях изменяется обратно пропорционально реактивному сопротивлению ротора в состоянии покоя. Следовательно, для максимального крутящего момента X 20 и, следовательно, индуктивность ротора должна быть как можно меньшей.
  • Изменяя сопротивление в цепи ротора, можно получить максимальный крутящий момент при любом желаемом скольжении или любой скорости. Это зависит от сопротивления ротора при скольжении (s M = R 2 / X 20 ).

Для развития максимального крутящего момента в состоянии покоя сопротивление ротора должно быть высоким и должно быть равно X 20 . Но для достижения максимального крутящего момента в рабочем режиме сопротивление ротора должно быть низким.

Измерение и анализ мощности электродвигателя

Билл Гэтеридж, менеджер по продукции, Power Measuring Instruments, Yokogawa Corporation of America

Часть 1: Основные измерения электрической мощности

Электродвигатели — это электромеханические машины, преобразующие электрическую энергию в механическую.Несмотря на различия в размере и типе, все электродвигатели работают примерно одинаково: электрический ток, протекающий через катушку с проволокой в ​​магнитном поле, создает силу, которая вращает катушку, создавая крутящий момент.

Понимание выработки электроэнергии, потерь мощности и различных типов измеряемой мощности может быть пугающим, поэтому давайте начнем с обзора основных измерений электрической и механической мощности.

Что такое мощность? В самом простом виде мощность — это работа, выполняемая в течение определенного периода времени.В двигателе мощность передается на нагрузку путем преобразования электрической энергии в соответствии со следующими законами науки.

В электрических системах напряжение — это сила, необходимая для перемещения электронов. Ток — это скорость потока заряда в секунду через материал, к которому приложено определенное напряжение. Умножив напряжение на соответствующий ток, можно определить мощность.

P = V * I, где мощность (P) в ваттах, напряжение (V) в вольтах, а ток (I) в амперах

Ватт (Вт) — единица мощности, определяемая как один джоуль в секунду.Для источника постоянного тока вычисление представляет собой просто умножение напряжения на ток: W = V x A. Однако определение мощности в ваттах для источника переменного тока должно включать коэффициент мощности (PF), поэтому W = V x A x PF для переменного тока. системы.

Коэффициент мощности представляет собой безразмерное отношение в диапазоне от -1 до 1 и представляет количество реальной мощности, выполняемой при работе с нагрузкой. При коэффициенте мощности меньше единицы, что почти всегда имеет место, будут потери в реальной мощности. Это связано с тем, что напряжение и ток в цепи переменного тока имеют синусоидальную природу, а амплитуда тока и напряжения в цепи переменного тока постоянно смещается и обычно не идеально совмещена.

Поскольку мощность равна напряжению, умноженному на ток (P = V * I), мощность является максимальной, когда напряжение и ток выстраиваются вместе, так что пики и нулевые точки на сигналах напряжения и тока возникают одновременно. Это типично для простой резистивной нагрузки. В этой ситуации две формы сигналов находятся «в фазе» друг с другом, а коэффициент мощности будет равен 1. Это редкий случай, поскольку почти все нагрузки не просто обладают идеальным сопротивлением.

Два сигнала считаются «не в фазе» или «сдвинутыми по фазе», если два сигнала не коррелируют от точки к точке.Это может быть вызвано индуктивными или нелинейными нагрузками. В этой ситуации коэффициент мощности будет меньше 1, и реальная мощность будет меньше.

Из-за возможных колебаний тока и напряжения в цепях переменного тока мощность измеряется несколькими способами.

Реальная или истинная мощность — это фактическая мощность, используемая в цепи, и измеряется в ваттах. В цифровых анализаторах мощности используются методы оцифровки сигналов входящего напряжения и тока для расчета истинной мощности в соответствии с методом, показанным на Рисунке 1.

В этом примере мгновенное напряжение умножается на мгновенный ток (I), а затем интегрируется за определенный период времени (t). Истинный расчет мощности будет работать с любым типом сигнала независимо от коэффициента мощности (рисунок 2).

Гармоники создают дополнительную сложность. Несмотря на то, что электрическая сеть номинально работает на частоте 60 Гц, существует много других частот или гармоник, которые потенциально могут существовать в цепи, а также может быть составляющая постоянного или постоянного тока.Общая мощность рассчитывается путем рассмотрения и суммирования всего содержимого, включая гармоники.

Методы расчета, показанные на Рисунке 2, используются для обеспечения истинного измерения мощности и истинных измерений среднеквадратичного значения для любого типа сигнала, включая все гармонические составляющие, вплоть до полосы пропускания прибора.

Измерение мощности

Далее мы посмотрим, как на самом деле измерить мощность в данной цепи. Ваттметр — это прибор, который использует напряжение и ток для определения мощности в ваттах.Теория Блонделя утверждает, что общая мощность измеряется минимум на один ваттметр меньше, чем количество проводов. Например, однофазная двухпроводная схема будет использовать один ваттметр с одним измерением напряжения и одним измерением тока.

Однофазная трехпроводная двухфазная система часто встречается в проводке общего корпуса. Эти системы требуют двух ваттметров для измерения мощности.

В большинстве промышленных двигателей используются трехфазные трехпроводные схемы, которые измеряются двумя ваттметрами.Таким же образом потребуются три ваттметра для трехфазной четырехпроводной схемы, при этом четвертый провод является нейтралью.

На рисунке 3 показана трехфазная трехпроводная система с нагрузкой, подключенной с использованием метода измерения двух ваттметров. Измеряются два линейных напряжения и два связанных фазных тока (с помощью ваттметров Wa и Wc). Четыре измерения (линейный и фазный ток и напряжение) используются для достижения общего измерения.

Поскольку этот метод требует контроля только двух токов и двух напряжений вместо трех, установка и конфигурация проводки упрощаются.Он также может точно измерять мощность в сбалансированной или несбалансированной системе. Его гибкость и низкая стоимость установки делают его подходящим для производственных испытаний, когда требуется измерение только мощности или нескольких других параметров.

Для инженерных и научно-исследовательских работ лучше всего подходит трехфазный трехпроводной метод с тремя ваттметрами, поскольку он предоставляет дополнительную информацию, которая может использоваться для балансировки нагрузки и определения истинного коэффициента мощности. В этом методе используются все три напряжения и все три тока.Измеряются все три напряжения (от a до b, от b до c, от c до a), и контролируются все три тока.

Рис. 4. При проектировании двигателей и приводов ключевым моментом является просмотр всех трех значений напряжения и тока, что делает метод трех ваттметров на рисунке выше лучшим выбором.

Измерение коэффициента мощности

При определении коэффициента мощности для синусоидальных волн коэффициент мощности равен косинусу угла между напряжением и током (Cos Ø). Это определяется как коэффициент мощности «смещения» и подходит только для синусоидальных волн.Для всех других форм сигналов (несинусоидальных волн) коэффициент мощности определяется как активная мощность в ваттах, деленная на полную мощность в напряжении-амперах. Это называется «истинным» коэффициентом мощности и может использоваться для всех форм сигналов, как синусоидальных, так и несинусоидальных.

Однако, если нагрузка несимметрична (фазные токи разные), это может привести к ошибке при вычислении коэффициента мощности, поскольку в расчете используются только два измерения ВА. Два VA усредняются, потому что предполагается, что они равны; однако, если это не так, будет получен ошибочный результат.

Следовательно, лучше всего использовать метод трех ваттметров для несимметричных нагрузок, поскольку он обеспечит правильный расчет коэффициента мощности как для сбалансированных, так и для несимметричных нагрузок.

Анализаторы мощности

от Yokogawa и некоторых других компаний используют описанный выше метод, который называется методом подключения 3V-3A (три напряжения и три тока). Это лучший метод для инженерных и проектных работ, поскольку он обеспечивает правильные измерения общего коэффициента мощности и ВА для симметричной или несимметричной трехпроводной системы.

Основные измерения механической мощности

В электродвигателе механическая мощность определяется как скорость, умноженная на крутящий момент. Механическая мощность обычно определяется как киловатты (кВт) или лошадиные силы (л.с.), причем один ватт равен одному джоулю в секунду или одному ньютон-метру в секунду.

Лошадиная сила — это работа, выполняемая за единицу времени. Один л.с. равен 33 000 фунт-футов в минуту. Преобразование л.с. в ватты достигается с использованием этого соотношения: 1 л.с. = 745,69987 Вт.Однако преобразование часто упрощается за счет использования 746 Вт на л.с. (Рисунок 9).

Для асинхронных двигателей переменного тока фактическая скорость вращения ротора — это скорость вращения вала (ротора), обычно измеряемая с помощью тахометра. Синхронная скорость — это скорость вращения магнитного поля статора, рассчитанная как 120-кратная частота сети, деленная на количество полюсов в двигателе. Синхронная скорость — это теоретическая максимальная скорость двигателя, но ротор всегда будет вращаться немного медленнее, чем синхронная скорость из-за потерь, и эта разница скоростей определяется как скольжение.

Скольжение — это разница в скорости ротора и синхронной скорости. Для определения процента скольжения используется простой процентный расчет синхронной скорости минус скорость ротора, деленная на синхронную скорость.

КПД можно выразить в простейшей форме как отношение выходной мощности к общей входной мощности или КПД = выходная мощность / входная мощность. Для двигателя с электрическим приводом выходная мощность является механической, в то время как входная мощность является электрической, поэтому уравнение эффективности выглядит следующим образом: КПД = механическая мощность / входная электрическая мощность.

Часть 2: Выбор приборов для измерения и анализа мощности электродвигателя

Различные ассоциации разработали стандарты тестирования, которые определяют точность приборов, необходимых для соответствия их стандарту: IEEE 112 2004, NVLAP 160 и CSA C390. Все три включают стандарты для измерения входной мощности, напряжения и тока, датчиков крутящего момента, скорости двигателя и т. Д. Трансформаторы тока (CT) и трансформаторы напряжения (PT) являются одними из основных контрольно-измерительных приборов, используемых для выполнения этих измерений.

Соответствующие стандарты очень похожи, за некоторыми исключениями. Допустимые инструментальные ошибки для стандартов IEEE 112 2004 и NVLAP 150 идентичны; однако CSA C390 2006 имеет некоторые отличия в отношении температуры и показаний.

Например, требования к входной мощности для CSA C390 2006 составляют ± 0,5% от показания и должны включать ошибки CT и PT, тогда как для IEEE 112 2004 и NVLAP 150 требуется только ± 0,5% от полной шкалы.

Датчики тока

Датчики тока обычно требуются для тестирования, потому что сильный ток не может быть подан непосредственно в измерительное оборудование.Существует множество датчиков, подходящих для конкретных приложений. Накладные датчики могут использоваться с анализаторами мощности. Также можно использовать щупы для осциллографа, но при их использовании следует соблюдать осторожность, чтобы убедиться, что прибор не подвергается воздействию высоких токов.

Для трансформаторов тока подводящий провод может быть подключен через окно (трансформаторы тока обычно имеют форму пончика или продолговатую, с отверстием или внутренней частью, называемым окном), или слаботочные соединения могут быть выполнены с клеммами в верхней части устройство.Шунты обычно используются для приложений постоянного тока, но не переменного тока или искаженных частот, хотя их можно использовать для синхронных двигателей с частотой до нескольких сотен Гц. Доступны специализированные трансформаторы тока, которые хорошо работают на высоких частотах, которые чаще встречаются в осветительных приборах, а не в двигателях и приводах.

Yokogawa вместе с LEM Instruments разработали уникальную систему трансформаторов тока, которая обеспечивает высокую точность в диапазоне от постоянного тока до кГц. Это трансформатор активного типа, использующий блок кондиционирования источника питания и обеспечивающий точность около 0.05 до 0,02% от показания. Этот тип системы трансформатора тока обеспечивает очень высокую точность измерений, особенно для частотно-регулируемых приводов, которая может изменяться от 0 Гц до рабочей скорости подключенного двигателя.

Трансформаторы напряжения просто преобразуют напряжение с одного уровня на другой. В измерительных приложениях иногда требуются понижающие трансформаторы для снижения напряжения, подаваемого на измерительный прибор, хотя многие приборы могут работать с относительно высокими напряжениями и не требуют понижающего трансформатора.

Измерительные трансформаторы обычно представляют собой комбинацию трансформатора тока и трансформатора напряжения и могут уменьшить количество требуемых преобразователей в некоторых измерительных приложениях.

Рекомендации и меры предосторожности при выборе

При принятии решения, какое устройство использовать, первым вопросом является частотный диапазон измеряемых параметров. Для синусоидальных волн постоянного тока можно использовать шунты постоянного тока, которые обеспечивают высокую точность и простую установку. Для приложений переменного и постоянного тока можно использовать эффект Холла или измерительный трансформатор активного типа.Технология эффекта Холла имеет более низкую точность, в то время как активный тип обеспечивает большую точность. Различные измерительные трансформаторы могут работать на высоких частотах 30 Гц и более, но их нельзя использовать для постоянного тока.

Следующее соображение — требуемый уровень точности. Для измерительного трансформатора это обычно указывается как точность передаточного числа. Фазовый сдвиг — еще один важный фактор, и он очень важен, потому что многие трансформаторы предназначены только для измерения тока и не имеют компенсации фазового сдвига.

Фазовый сдвиг в основном зависит от коэффициента мощности для измерения мощности и, таким образом, влияет на расчет мощности. Например, трансформатор тока, который имеет максимальный фазовый сдвиг 2 ° как часть своей спецификации, внесет ошибку косинуса (2 °) или ошибку 0,06%. Пользователь должен решить, приемлем ли этот процент ошибок для приложения.

Источником тока является трансформатор тока. Согласно закону Ома, напряжение (E) равно току через проводник (I), умноженному на сопротивление (R) проводника в единицах Ом.Открытие вторичной обмотки трансформатора тока фактически увеличивает сопротивление до бесконечности. Это означает, что внутренний ток насыщает катушку, напряжение также стремится к бесконечности, и устройство повреждается или разрушается. Что еще хуже, трансформатор тока со случайно разомкнутой вторичной обмоткой может серьезно травмировать рабочих.

Никогда не размыкайте вторичную обмотку трансформатора тока. Пользователи могут получить серьезные травмы, а CT может быть поврежден или разрушен.

Совместимость приборов

Чтобы определить совместимость прибора, необходимо определить выходной уровень ТТ.Клеммные и другие трансформаторы тока обычно имеют выходную мощность, указанную в милливольтах на ампер, миллиампер на ампер или ампер. Типичный выходной ток измерительного ТТ может быть указан в диапазоне от 0 до 5 ампер.

Необходимо учитывать импеданс и нагрузку на ТТ, которые являются факторами, на которые влияет количество проводов, используемых для подключения ТТ к прибору. Эта проводка является сопротивлением или нагрузкой на прибор и, следовательно, может повлиять на измерения.

Пробники

при неправильном использовании могут создавать собственный набор проблем.Многие пробники осциллографа рассчитаны на работу с входным сопротивлением осциллографа, но диапазоны входного сопротивления анализатора мощности могут отличаться, и это необходимо учитывать.

Еще один аспект, который следует учитывать при определении совместимости прибора, — это физические требования к устройству. Размер необходимо учитывать вместе с типом трансформатора тока, например, зажимного или кольцевого типа, каждый из которых будет лучше работать в конкретной ситуации.

Пример системы трехфазного двигателя

Теперь мы рассмотрим типичное трехфазное трехпроводное измерение мощности двигателя с использованием метода двух ваттметров.Теорема Блонделя утверждает, что количество требуемых измерительных элементов на единицу меньше количества токонесущих проводников. Это позволяет измерять мощность в трехфазной трехпроводной системе с использованием двух преобразователей при отсутствии нейтрали. Однако, когда есть нейтраль, используются три преобразователя, поскольку теперь имеется четыре проводника.

Трехфазное питание используется в основном в коммерческих и промышленных средах, особенно для питания двигателей и приводов, поскольку более экономично эксплуатировать большое оборудование с трехфазным питанием.Для расчета трехфазной мощности напряжение каждой фазы умножается на ток каждой фазы, который затем умножается на коэффициент мощности, и это значение умножается на квадратный корень из трех (квадратный корень из 3 равен равно 1,732).

Для измерения трехфазной мощности, потребляемой нагруженным двигателем, подключается анализатор мощности. На рисунке 1 показано типичное соединение с дисплеем, на котором показаны все три напряжения, все три тока, общая мощность и коэффициент мощности.

На рисунке 2 показано трехфазное трехпроводное измерение мощности, выполненное с использованием метода двух ваттметров.Перечислены все три тока и напряжения, а также общие ВА и ВАР. Эта конфигурация может отображать отдельные показания мощности фазы, но их не следует использовать напрямую, потому что для этого метода измерения только полная мощность является точным показанием.

По сути, при использовании метода двух ваттметров в трехпроводной трехфазной системе невозможно измерить мощность отдельной фазы или измерить какие-либо параметры фазы, включая коэффициенты мощности фазы. Однако можно измерить все параметры фазы.

Для трехфазного двигателя с трехпроводным соединением в треугольник можно измерять линейные напряжения и токи отдельных фаз. Поскольку нейтрали нет, измерять фазные напряжения невозможно. Эта ситуация приводит к некоторым показаниям, которые необходимо пояснить.

Глядя на отображение формы сигнала на Рисунке 3, можно увидеть линейные напряжения Vab, Vbc и Vac. Линейные напряжения, наблюдаемые прибором, в сбалансированной системе разнесены на 60 °. Токи представляют собой фазные токи, которые приборы видят под углом 120 °.

Другое представление этой системы изображено на векторной диаграмме Phasor, показанной на рисунке 4. Треугольник в верхней части этого рисунка показывает измерения линейного напряжения черным цветом, значения фазного напряжения — красным (но это теоретические потому что нейтрали нет), а фазные токи синим цветом.

В нижней части рисунка показаны разности фаз между напряжениями и токами. Опять же, обратите внимание, что линейные напряжения разнесены на 60 °, а фазные токи разнесены на 120 °.Еще одна деталь заключается в том, что если бы верхняя диаграмма представляла чисто резистивную нагрузку, то синие токи были бы синхронизированы с красными напряжениями. Однако при индуктивной нагрузке (например, в двигателе) синие векторы тока не совпадают по фазе с напряжениями.

Кроме того, для этого метода измерения на нижней диаграмме векторы тока всегда будут иметь дополнительный сдвиг на 30 ° по сравнению с напряжениями. Суть в том, что правильно настроенный анализатор мощности учтет все эти условия.

Что, если фазовая мощность и фазовый коэффициент мощности должны быть точно измерены в трехфазной трехпроводной системе, а не просто приблизительно? На рисунке 5 показан метод, позволяющий измерять фазовые параметры трехфазного трехпроводного двигателя путем создания плавающей нейтрали.

Однако у этой техники есть ограничения. Он будет хорошо работать на входе асинхронного двигателя, синхронного двигателя или аналогичного двигателя без привода с регулируемой скоростью. Следует соблюдать осторожность при использовании этого метода в системе привода с регулируемой скоростью, поскольку высокочастотные искаженные формы сигналов и гармоники могут привести к несогласованным измерениям.

Более того, метод плавающей нейтрали работает только для оборудования с сигналами синусоидального типа. С помощью привода с широтно-импульсной модуляцией (ШИМ) можно включить линейный фильтр 500 Гц (фильтр нижних частот), который затем позволит отображать показания для основной частоты, но не для общей частоты.

Трехпроводные и четырехпроводные измерения мощности

Важно понимать, что мощность будет считываться одинаково независимо от того, измерена ли она трехфазным трехпроводным или трехфазным четырехпроводным методом.Однако при трехфазном четырехпроводном соединении измеряемые значения напряжения представляют собой фазные напряжения от линии к нейтрали.

Рисунок 6 — снимок экрана анализатора мощности, который показывает, насколько похожи показания мощности и коэффициента мощности для привода с ШИМ, работающего с двигателем, сравнивая трехфазный трехпроводной вход с фильтром 500 Гц с трехфазным четырехпроводным. вход с плавающей нейтралью.

В альтернативном решении используется функция измерения дельты, которая есть в анализаторах мощности Yokogawa.Функция измерения дельты использует мгновенные измерения линейного напряжения и фазного тока для получения истинного межфазного напряжения, даже если фазы не сбалансированы. Это возможно благодаря вычислению векторной амплитуды внутри процессора. Эта функция также обеспечивает измерения фазной мощности в трехпроводной цепи. Решение для измерения дельты также обеспечивает нейтральный ток.

Часть 3: Измерения электрической мощности для трехфазного двигателя переменного тока

Полное тестирование системы привода и двигателя на основе ШИМ (широтно-импульсной модуляции) представляет собой трехэтапный процесс.Шаг 1 — это точное измерение входной и выходной мощности привода с регулируемой скоростью ШИМ для определения эффективности привода и потерь мощности. Шаг 2 — это точное измерение входной мощности двигателя, а шаг 3 — точное измерение механической мощности двигателя.

Оптимальный метод — объединить все три шага с помощью одного анализатора мощности, чтобы исключить временной сдвиг. Это также обеспечивает отличные расчеты эффективности в едином программно-аппаратном решении.

Рисунок 7: Этот снимок экрана анализатора мощности показывает, как функцию измерения дельты можно использовать для получения истинных показаний и мощности фазы, даже если фазы не сбалансированы.

Некоторые анализаторы мощности имеют опцию двигателя, в которой сигналы скорости и момента могут быть интегрированы таким образом. Эти анализаторы мощности могут измерять электрическую мощность и механическую мощность и отправлять данные на ПК с запущенным программным обеспечением от оригинального производителя анализатора или заказным программным обеспечением от системного интегратора.

Измерения привода ШИМ для двигателей переменного тока

При использовании частотно-регулируемого привода с ШИМ для управления двигателем часто бывает необходимо измерить как входной, так и выходной сигнал частотно-регулируемого привода с помощью шестифазного анализатора мощности.Эта установка может не только измерять трехфазную мощность, она также может измерять постоянную или однофазную мощность. См. Рисунок 1.

В зависимости от анализатора, режим настройки будет выполняться в нормальном или среднеквадратичном режиме. Конфигурация проводки должна соответствовать применению, например, трехфазный вход и трехфазный выход.

Любой линейный фильтр или фильтр нижних частот должны быть отключены, поскольку фильтрация затрудняет измерения. Однако фильтр пересечения нуля или частотный фильтр должен быть включен, потому что он будет фильтровать высокочастотный шум, чтобы можно было измерить основную частоту.Это измерение необходимо при отслеживании частоты привода.

На рис. 2 показан сигнал выходного напряжения ШИМ с сильно искаженным напряжением, срезанными высокими частотами и с большим количеством шумов на токовой стороне, что затрудняет измерение. Высокочастотное переключение сигнала напряжения создает сильно искаженную форму волны с высоким содержанием гармоник. Частота варьируется от 0 Гц до рабочей скорости.

Для такого зашумленного сигнала нужны специальные датчики тока для измерения.Для точных измерений мощности с ШИМ также необходимы анализаторы мощности с широкой полосой пропускания, способные измерять эти сложные сигналы.

На рисунке 3 показан пример содержания гармоник напряжения на выходе ШИМ. Присутствуют частоты биений, а содержание гармоник напряжения превышает 500 порядков (примерно 30 кГц). Большая часть гармоник приходится на нижние частоты на токовой стороне.

Проблемы измерения привода двигателя с ШИМ

Напряжение инвертора обычно измеряется одним из двух способов.Можно использовать истинное среднеквадратичное измерение, которое включает полное содержание гармоник. Однако, поскольку основная форма волны — это в первую очередь то, что способствует крутящему моменту двигателя, можно выполнить и использовать более простые измерения. В большинстве приложений требуется только измерение основной формы волны.

Существует два основных метода измерения основной амплитуды волны напряжения. Первый и самый простой — использовать фильтр нижних частот для удаления высоких частот. Если в анализаторе мощности есть этот фильтр, просто включите его.Правильная фильтрация даст среднеквадратичное значение напряжения основной частоты инвертора. Однако этот тип фильтрации не обеспечивает истинного измерения полной мощности, поэтому фильтрация — не самый требовательный метод.

Второй метод — это метод измерения выпрямленного среднего, который выдает среднеквадратичное значение напряжения основной волны без фильтрации с использованием определения среднего значения напряжения, масштабированного до среднеквадратичного напряжения. Алгоритм выпрямленного среднего среднего за цикл обеспечит эквивалент основного напряжения, который будет очень близок к среднеквадратичному значению основной волны.

С помощью этого метода можно измерить полную мощность, общий ток и напряжение основной гармоники.

Измерение амплитуды основной волны с помощью гармонического анализа

Функцию гармонического анализа можно использовать для определения истинного основного напряжения с помощью быстрого преобразования Фурье (БПФ) для определения амплитуды каждой гармонической составляющей, включая основную волну. Это дает точное измерение среднеквадратичного напряжения основной волны. Новейшие анализаторы мощности могут выполнять одновременные измерения истинных среднеквадратических значений и гармонических составляющих.

На рисунке 4 Urms2 (среднеквадратичное значение на выходе ШИМ) является очень большим числом, а F2 (среднее значение основной гармоники) несколько ниже. Значение Urms3 (фильтрация основного) дает аналогичный результат. Наконец, U2 (1) получается из анализа гармоник или вычислений FFT основной гармоники. F2, Urms3 и U2 (1) дают очень близкие результаты, но расчет U2 (1) FFT считается наиболее точным.

Инверторный ток обычно измеряется только одним способом, и это как истинный среднеквадратичный сигнал, потому что все гармонические токи способствуют повышению температуры в двигателе и ответственны за него, поэтому все они должны быть измерены.

Еще одно важное измерение связано с приводом В / Гц (Вольт-на-Герц). Привод с ШИМ должен поддерживать постоянное соотношение В / Гц по сравнению с рабочей скоростью двигателя. Анализатор мощности может рассчитывать В / Гц, используя среднеквадратичное значение или значение основного напряжения. Определенная пользователем математическая функция анализатора используется для построения уравнения для этого измерения.

Измерение напряжения шины постоянного тока

Напряжение на шине постоянного тока в ШИМ может быть измерено для проверки условий повышенного и пониженного напряжения.Это измерение может быть выполнено внутри привода на клеммах конденсаторной батареи. Однако более простой способ — использовать отображение формы сигнала анализатора мощности с измерением курсора.

При отображении формы сигнала с помощью курсорного измерения необходимо убедиться, что курсор не находится прямо над небольшими выступами на дисплее. Вместо этого курсор должен находиться поперек осциллограммы, чтобы выполнить точное измерение. На рисунке 5 показано измерение напряжения ШИМ с высокоскоростным переключением.Курсор устанавливается для чтения значения, например 302,81 В.

Измерения механической мощности

Механическая мощность измеряется как скорость двигателя, умноженная на крутящий момент двигателя. На рынке существует множество различных типов датчиков скорости и крутящего момента, которые работают с различными двигателями. Хотя анализаторы Yokogawa могут взаимодействовать с большинством датчиков скорости и крутящего момента, все же целесообразно подтверждать совместимость в каждом случае. Эти датчики могут использоваться для предоставления информации о механических измерениях для расчета измерений механической мощности в анализаторе мощности.

Многие датчики поставляются с интерфейсной электроникой для правильной обработки сигнала для работы с анализаторами мощности или другим оборудованием. Обусловленный сигнал может быть аналоговым выходом или выходом последовательной связи, который поступает на ПК и его прикладное системное программное обеспечение.

Одним из вариантов измерения механической мощности является использование как датчика, так и соответствующего измерительного прибора от данного производителя. Такой подход имеет преимущества, поскольку датчики будут точно согласованы с прибором.Будут доступны показатели крутящего момента, скорости и мощности, и, вероятно, будут варианты подключения к ПК вместе с соответствующим прикладным программным обеспечением.

Более интегрированный подход изображен на рисунке 6. В этой конфигурации выходные сигналы скорости и крутящего момента от измерительных приборов датчика подключаются непосредственно к входам скорости и крутящего момента анализатора мощности. Это дает большое преимущество, заключающееся в том, что измерения электрической и механической мощности могут оцениваться одновременно, а расчеты эффективности могут выполняться непрерывно.

КПД двигателя, привода и системы

КПД инвертора в простейшей форме рассчитывается как выходная мощность, деленная на входную мощность, и выражается в процентах. Один из методов, используемых для измерения входной и выходной мощности, заключается в простом подключении измерителей мощности на входе и выходе, при этом показания двух измерителей используются для расчета эффективности.

Более комплексным методом является использование анализатора мощности с несколькими входами для одновременного измерения входа и выхода, как показано на рисунке 1.Это приводит к более точному расчету эффективности, поскольку он использует один анализатор мощности для устранения потенциальных ошибок, вызванных измерениями временного сдвига.

С помощью внутренних математических вычислений, предоставляемых анализатором, можно настроить очень простое вычисление через меню для расчета потерь привода и эффективности привода.

Какой метод мне следует использовать?

IEEE 112 — это промышленный стандарт США для тестирования двигателей, в котором описаны несколько методов.На рисунке 7 показан дисплей анализатора мощности, поддерживающий «Метод A» стандарта IEEE 112, в котором вся механическая мощность делится на общую мощность, потребляемую двигателем. Стандарт определяет многие параметры, помимо измерений тока и напряжения двигателя, и предоставляет инструкции по проведению общепринятых испытаний многофазных и асинхронных двигателей и генераторов и составлению отчетов по ним. Кроме того, стандарт содержит 11 методов испытаний, чтобы определить, как проводить измерения эффективности двигателей.

Метод испытаний A — ввод-вывод, определенный IEEE 112: эффективность рассчитывается как отношение выходной мощности измерения к измеренной входной мощности после корректировки температуры и динамометра, если применимо.Испытания проводятся при номинальной нагрузке с помощью механического тормоза или динамометра. Этот рейтинг должен быть ограничен двигателями с номинальной полной нагрузкой не более 1 кВт.

Метод испытаний B — ввод-вывод с разделением потерь: в методе B выполняются измерения как входной, так и выходной мощности, но различные потери разделяются. Большинство этих потерь просто производят тепло, которое должно рассеиваться двигателем в сборе, и представляют собой энергию, недоступную для выполнения работы. Этот метод является признанным стандартом тестирования U.S. автомобилестроение для двигателей с полной нагрузкой от 1 до 300 кВт.

В то время как оба метода A и B работают, метод B требует большого количества приборов и обычно выполняется только производителями двигателей. Поскольку большинство производителей используют метод B, а большинство пользователей предпочитают метод A, расчеты эффективности между ними могут отличаться. Данные производителей двигателей и приводов могут использовать разные скорости двигателя, испытательные нагрузки или другие условия испытаний.

Заключение

При измерении мощности электродвигателя необходимо учитывать множество факторов, например, полный и истинный коэффициент мощности.Эти измерения включают сложные уравнения, поэтому большинство компаний используют анализаторы мощности для автоматического получения результатов.

После принятия решения об использовании анализатора мощности необходимо принять решение о частотном диапазоне и уровне точности. Совместимость приборов — еще один важный аспект безопасного получения точных показаний, особенно с трансформаторами тока, и это та область, где необходимо учитывать ввод / опции анализатора. При правильных входных сигналах датчиков измерения механической мощности также можно проводить с помощью анализатора мощности.Выбор правильных датчиков скорости и крутящего момента — это первый шаг в определении механической мощности.

Некоторые анализаторы мощности также позволяют выполнять измерения с широтно-импульсной модуляцией. Однако настройка анализатора для измерения ШИМ также требует знания о том, как токи и напряжения будут влиять на измерения мощности.

Прецизионный высокочастотный анализатор мощности — важный инструмент для измерения как механической, так и электрической мощности. Его функции анализа и показания могут помочь улучшить работу и даже продлить срок службы двигателя.Выбор подходящего анализатора и его правильная реализация требуют знаний; однако при правильном использовании данные анализатора мощности предоставят точные и очень ценные данные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *