Новый тип аккумулятора: Химики СПбГУ создали новый тип аккумулятора, который будет заряжаться в десять раз быстрее литий-ионного

Содержание

Химики СПбГУ создали новый тип аккумулятора, который будет заряжаться в десять раз быстрее литий-ионного

Результаты исследования, поддержанного грантом РНФ, опубликованы в журнале Batteries & Supercaps.

Современный мир немыслим без литий-ионных аккумуляторов. Они используются в широком спектре устройств — от смартфонов до электромобилей. При этом у аккумуляторов литий-ионного типа имеется и ряд серьезных недостатков. Среди них возможное возгорание, потеря емкости на холоде, а также существенная угроза экологии при утилизации исчерпавших свой ресурс батарей.

По словам руководителя группы ученых, профессора кафедры электрохимии СПбГУ Олега Левина, в качестве материалов, которые могли бы стать основой для новых аккумуляторов, химики рассматривают редокс-активные нитроксилсодержащие полимеры. Им свойственны высокая плотность энергии (количество энергии на единицу объема) и скорость зарядки и разрядки в результате окислительно-восстановительных реакций.

Использование таких полимеров затрудняет их недостаточная электрическая проводимость — она препятствует накоплению заряда даже при использовании добавок с высокой проводимостью, например угля.

Чтобы решить эту проблему, ученые СПбГУ синтезировали полимер на основе комплекса никель-сален (NiSalen). Молекулы этого полимера выступают в качестве молекулярной проволоки, на которую прикреплены энергоемкие нитроксильные фрагменты. Такая молекулярная архитектура материала позволяет добиться одновременно высоких мощностных, емкостных и низкотемпературных характеристик.

Концепция этого материала возникла у нас в 2016 году. В это время мы начали заниматься фундаментальным проектом «Электродные материалы для литий-ионных аккумуляторов на базе металлорганических полимеров», поддержанным грантом Российского научного фонда.

Профессор кафедры электрохимии СПбГУ Олег Левин

«Когда мы исследовали механизм переноса заряда в этом классе соединений, оказалось, что у них есть два направления развития. Первое — они могут использоваться в качестве защитных слоев в связке с традиционными материалами литий-ионных батарей. И второе — они сами могут стать активным компонентом электрозапасающих материалов», — рассказывает Олег Левин.

Фото: пресс-служба СПбГУ

Разработка полимера заняла более трех лет. В первый год работы ученые проверяли концепцию нового материала: смешивали отдельные компоненты, моделирующие проводящую цепь, и редокс-активные нитроксилсодержащие полимеры. Им важно было убедиться, что все части структуры работают вместе и усиливают друг друга. После этого начался этап синтеза вещества, который стал самым сложным в создании нового материала. Дело в том, что в нем задействованы чувствительные компоненты, которые легко могут разрушиться при малейшей ошибке ученого.

Из нескольких полученных полимеров только один оказался стабильным и работоспособным. Основную цепь нового материала образуют комплексы никеля с лигандами, которые называются «сален». К ней через ковалентные связи присоединили стабильный свободный радикал, который обладает способностью к быстрому окислению и восстановлению (заряду и разряду).

Аккумулятор, созданный с использованием нашего материала, будет заряжаться за считаные секунды — примерно в десять раз быстрее, чем литий-ионный. Мы уже выяснили это в результате экспериментов. Однако на данном этапе он отстает от них на 30–40 % по емкости. Сейчас мы работаем над увеличением этого показателя при сохранении скорости заряда-разряда.

Профессор кафедры электрохимии СПбГУ Олег Левин

Сегодня создан катод для нового аккумулятора — положительный электрод химического источника тока. Ему в пару необходим отрицательный электрод — анод, который не обязательно создавать с нуля — его можно подобрать из уже существующих. Вместе они образуют систему, которая в некоторых областях уже скоро может потеснить литий-ионные аккумуляторы.

«Новая батарея способна прекрасно проявить себя в ситуациях, когда необходим очень быстрый заряд, или же во время работы при низких температурах. Ее использование абсолютно безопасно — в ней нет ничего, что могло бы загореться или взорваться, в отличие от батарей на основе кобальта, которые сегодня широко распространены.

Также в ней содержится в десятки раз меньше металлов, которые могут нанести экологический вред. В небольшом количестве в нашем полимере присутствует никель, но его там во много раз меньше, чем в литий-ионных аккумуляторах», — рассказывает Олег Левин.

Сейчас ученые оформляют патент на свое изобретение. Его правообладателем станет Санкт-Петербургский государственный университет.

Работа выполнена при поддержке гранта Российского научного фонда № 16-13-00038.

Огонь-батарея – Hi-Tech – Коммерсантъ

Индустрия аккумуляторных батарей не претерпевала коренных изменений уже почти полвека, с момента изобретения литий-ионных батареек. Вместе со свинцово-кислотными аккумуляторами они сейчас занимают примерно две трети рынка. Однако взрывной рост спроса на электронику и переход автомобильной индустрии на электродвигатели требует поиска принципиально новых, гораздо более совершенных технологий в этой сфере.

Несущая невесомая

В марте ученые из Технического университета Чалмерса объявили о создании аккумулятора, который в ближайшее время может произвести революцию на рынке. Это структурный аккумулятор из композитного углеродного материала, который одновременно выполняет функцию как хранилища энергии, так и несущего элемента конструкции, например автомобиля.

Свою батарею инженеры называют невесомой, так как она фактически не утяжеляет устройство, на котором будет установлена.

Саму технологию шведские ученые разработали еще два года назад. Тогда их изобретение было признано изданием Physics World крупнейшим научным достижением года. Корпус первоначальной разработки выдерживал такие физические нагрузки, под которыми обычная литиевая батарейка просто разрушится. Однако по одному из главных показателей, плотности запасаемой энергии, эта разработка сильно уступала литий-ионным батареям. За два года шведским ученым удалось улучшить как этот показатель, так и уровень жесткости батареи примерно в десять раз. Теперь аккумулятор шведских инженеров не уступает по прочности другим конкурентам на рынке. Проблемой остается только плотность запасаемой энергии — она все еще в несколько раз ниже, чем у тех же литий-ионных батарей. Но ученые заверяют, что знают, как и дальше совершенствовать свое изобретение, и готовы увеличить показатели обеих ключевых характеристик.

С заботой о природе

Помимо попыток создать аккумуляторы совершенно нового типа ученые работают и над совершенствованием батареек с полувековой историей — литий-ионных аккумуляторов. Батареи этого типа, по данным Grand View Research (GVR), занимают второе место по распространенности в мире, уступая совсем немного свинцово-кислотным аккумуляторам. То есть по итогам 2019 года занимали долю 29,5%. Однако лавинообразный рост электронных девайсов, которыми люди пользуются в повседневной жизни, и ускоряющийся переход мирового автопрома на электродвигатели приведут к тому, что в обозримом будущем большим спросом начнут пользоваться именно литиевые батареи, уверены аналитики GVR.

Сейчас объем рынка литий-ионных батарей оценивается примерно в $33 млрд, и он будет расти в среднем на 13% в год.

Пока правительства многих стран принимают все больше мер для сохранения природных ресурсов, инженеры пытаются создать батареи, в которых не будет использоваться редкоземельный металл кобальт. Так, в середине прошлого года ученые из Университета Техаса в Остине объявили, что разработали бескобальтовую батарею, где в качестве катода вместо кобальта используется 89-процентный никель. «Кобальт является наименее распространенным и самым дорогим компонентом в катодах батарей. И мы его полностью исключаем из производства»,— сказал профессор Арумугам Мантирам, директор Техасского института материалов. В декабре 2020 года китайская высокотехнологичная компания SVOLT Energy (бывшее подразделение производителя грузовиков Great Wall Motor) начала прием заказов на бескобальтовые аккумуляторы для электромобилей.

Помимо снижения содержания редкоземельных металлов, как утверждает компания, эти аккумуляторы обладают более высокой плотностью энергии, что позволит электромобилю преодолевать без подзарядки до 800 км.

Ожидается, что производство батарей начнется в середине 2022 года.

Разработкой батарей без использования кобальта занимается и американская корпорация IBM. Еще в конце 2019 года американская корпорация заявила о намерении полностью отказаться от тяжелых металлов при производстве батарей. Компания заверяет, что открыла технологию, которая позволяет использование не только кобальта, но и никеля. При этом батарея нового типа, по словам IBM, будет производительнее традиционных литий-ионных, а материалы для нее будут извлекаться из морской воды. Кроме того, компания обещает, что ее аккумуляторы будут дешевле в производстве, быстрее заряжаться, а также иметь как более высокую мощность, так и плотность энергии.

Подзарядка от всего подряд

За последние годы появилось множество разработок необычных батарей, пытающихся получить энергию практически из всего, что их окружает. Так, например, в начале 2019 года международная группа ученых при поддержке Массачусетского технологического института представила свою работу по созданию батареи, которая могла бы добывать электроэнергию, улавливая волны Wi-Fi-сетей.

Названное ректенной (антенна для сбора радиоволн) устройство может поместиться в любом электронном устройстве, даже самом миниатюрном, ведь его толщина всего несколько атомов.

В свою очередь, американский стартап uBeam пытается использовать для передачи электричества ультразвук. Энергия превращается в звуковые волны, неслышимые для людей и животных, которые передаются от одного устройства к другому и затем преобразуются обратно в энергию. Выглядит такой передатчик энергии как пластина толщиной 5 мм. А израильский стартап StoreDot создал зарядное устройство, которое использует биологические полупроводники, изготовленные из природных органических соединений — пептидов. Такая батарея, по заверениям разработчиков, способна зарядить смартфон за 60 секунд, а электромобиль — всего за 5 минут, после чего тот сможет проехать почти 500 км.

Кирилл Сарханянц


Samsung разработал новый тип аккумуляторов для смартфонов

Samsung Electronics разработала новую технологию создания литий-ионных аккумуляторов с использованием графена. Она позволяет заряжать батарею быстрее и хранить заряд дольше. Это может стать важным достижением в отрасли, если будет налажено массовое производство таких аккумуляторов.

Южнокорейский конгломерат объявил в понедельник, что его исследовательское подразделение Samsung Advanced Institute of Technology (SAIT) успешно синтезировало «графеновые шарики», которые могут повысить мощность аккумулятора на 45% и увеличить скорость зарядки в пять раз по сравнению с нынешними стандартами. Таким образом, время зарядки смартфона может сократиться примерно с часа до 12 минут. Как отмечает Samsung, новые аккумуляторы также могут использоваться в электромобилях и стабильно работать при температуре до 60 градусов по Цельсию.

Производители электроники называют графен «чудесным материалом» за его прочность, электропроводимость и эластичность. Он представляет собой особую модификацию углерода, которая была открыта в 2004 г. Графен может быть использован для разработки более компактных, но мощных батарей. Поэтому технологические компании сразу увидели в нем идеальную альтернативу стандартным литий-ионным аккумуляторам.

Samsung стал активнее заниматься исследованиями в области аккумуляторов после прошлогоднего фиаско со смартфоном Galaxy Note 7. Отзыв и последующее прекращение продаж возгорающегося гаджета обошлись компании в более чем $5 млрд. Как утверждает Samsung, некоторые смартфоны начинали гореть из-за проблем с литий-ионными аккумуляторами.

Специалисты SAIT нашли способ синтезировать графен с помощью кемнезема и использовать «графеновые шарики» как материал для усовершенствованных литий-ионных аккумуляторов. Samsung подал заявки на получение патентов на эту технологию в США и Южной Корее. SAIT – ведущее подразделение Samsung по разработке ключевых технологий. Ранее SAIT открыло в Канаде лабораторию для исследований в области искусственного интеллекта.

Графен, который в своем основном виде представляет слой атомов углерода толщиной в один атом в форме сетки, также может быть использован для производства гибких дисплеев, носимых гаджетов и других инновационных электронных устройств.

Но эксперты предупреждают, что стандартная технология создания литий-ионных аккумуляторов, которая впервые была коммерциализирована в 1991 г., близка к пределам своих возможностей, тогда как могут потребоваться годы, чтобы начать массовое производство графеновых аккумуляторов.

Это «великолепная технология с различными потенциальными способами применения», утверждает Ким Ён-У из SK Securities. «Ключевым моментом будет то, кто сможет первым коммерциализировать технологию. Будет непросто применить ее для крупномасштабного производства высококачественного графена для электроники», — говорит он.

Перевел Алексей Невельский

На замену литий-ионным батареям создали аккумулятор на основе натрия — Наука

ТАСС, 1 июня. Американские химики разработали новый тип натриевых аккумуляторов: у них такая же энергоемкость, как и у их литиевых аналогов, и при этом они почти не теряют емкость через тысячу циклов разрядки. Описание разработки опубликовал научный журнал ACS Energy.

«Наша работа открывает дорогу для создания практичных натриевых батарей, а данные о взаимодействиях катода и электролита помогут понять, как избавиться от кобальта в электродах аккумуляторов. Если мы найдем альтернативу и литию, и кобальту, натриевые батареи смогут реально конкурировать с их литиевыми аналогами», – рассказал один из разработчиков, химик из Университета штата Вашингтон Цзюньхуа Сун.

Сейчас литий-ионные аккумуляторы – основной источник питания для всех автономных электрических устройств, начиная с различных гаджетов и заканчивая межпланетными зондами и промышленными инструментами. Несмотря на все плюсы, у них есть ряд недостатков: эти аккумуляторы медленно заряжаются, они взрывоопасны и запасают недостаточно много энергии.

Химики и физики пытаются решить эту проблему двумя путями: совершенствуя устройство уже существующих батарей и пытаясь заменить соли лития на другие вещества. В частности, сейчас ученые пытаются создать батареи на основе чистого лития, а также различных соединений натрия, серы, калия и ряда других элементов.

Замена для лития

У подобных аккумуляторов есть множество других проблем: например, они недолговечны, а их производство сложно масштабировать. В частности, большинство литий-воздушных батарей выходят из строя через несколько десятков циклов заряда-разряда, а у натриевых батарей низкие энергоемкость и скорость повторной зарядки.

Сун и его коллеги решили эту проблему, создав новый тип катода – одного из двух электродов батареи, который играет роль ее положительного полюса и источника электрической энергии. Как правило, мощность и долговечность литий-ионных и натриевых батарей очень сильно зависит от того, из чего состоит катод и как он взаимодействует с их электролитом.

Химики объясняют, что в результате этих взаимодействий на границе между катодом и электролитом часто образуются кристаллов из соли. Это мешает ионам натрия «путешествовать» между ними, в результате чего снижается емкость батареи. Сун и его коллеги смогли подавить этот процесс, покрыв катод специальной пленкой из оксидов никеля, марганца, кобальта и натрия.

Этот состав, как показали опыты ученых, не мешает миграциям ионов, но при этом не дает кристаллам формироваться на поверхности катода. Благодаря этому ученые смогли добиться того, что энергоемкость экспериментальной натриевой батареи стала почти такой же, как у большинства литий-ионных аккумуляторов. При этом они теряли лишь 20% емкости через тысячу циклов разряда и заряда.

Дальнейшее изучение процесса формирования кристаллов соли на поверхности катода, как надеются ученые, поможет им сделать натриевые батареи еще дешевле. Благодаря этому они могут заменить не только литий-ионные аккумуляторы, но и другие типы источников питания, которые сейчас применяются в быту и промышленности, надеются авторы исследования.

Ученые создали новый аккумулятор для техники — Российская газета

Международному коллективу ученых из НИТУ «МИСиС» и ИБХФ РАН удалось улучшить аккумуляторы для техники при помощи натрия. Об этом сообщает пресс-служба научно-исследовательского центра.

Первые литий-йонные батареи появились в 1991 году, а в 2019 году их изобретателям присудили Нобелевскую премию по химии — за революционный вклад в развитие технологий. Как пишут авторы исследования, литий — дорогостоящий щелочной металл, а его запасы весьма ограничены. В настоящее время не существует близкой по эффективности альтернативы литий-ионным батареям. Из-за того, что литий один из самых легких элементов в периодической таблице Менделеева, ему очень непросто найти замену для создания емких аккумуляторов.

Возможную альтернативу дорогостоящему металлу предложили ученые НИТУ «МИСиС», ИБХФ РАН и Центра имени Гельмгольца Дрезден-Россендорф под руководством профессора Центра Аркадия Крашенинникова. В ходе исследований было установлено, что если атомы внутри образца «уложить» определенным способом, то другие щелочные металлы также будут демонстрировать высокую энергоемкость. Наиболее перспективная замена литию — натрий, так как даже при двуслойной компоновке атомов натрия в структуре биграфена (два слоя графена — сверху и снизу) емкость такого анода становится сопоставимой с емкостью обычного графитового анода в литий-ионных аккумуляторах: около 335 мА*ч/гр (миллиампер-час на грамм материала) против 372 мА*ч/гр у лития. При этом натрий гораздо более распространен в природе, чем литий. Например, обычная поваренная соль наполовину состоит из этого элемента.

Созданием экспериментального образца займется зарубежная часть команды из Центра имени Гельмгольца Дрезден-Россендорф «На разработку опытных образцов потребуется 1-2 года», — уточнили в пресс-службе НИТУ «МИСиС». В случае успеха можно будет говорить о создании нового поколения натриевых аккумуляторов, которые будут сопоставимы по емкости с литий-ионными, или даже будут превосходить их, стоя при этом в разы дешевле.

«Емкость аккумуляторов в гаджетах остается узким горлом эволюции технологий с незапамятных времен, — рассказывает ИТ-эксперт Никита Горяинов. — Производители как самих девайсов, так и процессоров к ним вынуждены искать баланс между емкостью ячеек, итоговым весом устройства и временем работы устройства. Современный смартфон можно сделать в три раза мощнее, но что делать с тепловыделением и увеличившимся энергопотреблением? Поэтому и тратятся миллиарды долларов на R&D, оптимизацию ARM-процессоров в смартфонах ради дополнительных часов и даже минут работы от аккумулятора».

По словам эксперта, более компактные, энергоемкие и эффективные аккумуляторы станут даже большим прорывом для индустрии, чем когда-то были сверхбыстрая твердотельная память и SSD. «Радует, что этим занимаются и в России. Соотечественникам предстоит самый сложный этап, на котором отсеиваются 98% подобных открытий: превращение теории в практику, а затем в реалистчный и массово производимый продукт. Остается пожелать им удачи и точности во всех последующих расчетах», — заключает Горяинов.

Руководитель Hi-Tech Mail.ru Дмитрий Рябинин настроен менее оптимистично: «Во-первых, эксперимент на ранних стадиях, и даже не пройдены основные тесты. Во-вторых, выстраивание такого нового техпроцесса слишком дорогостоящее. В-третьих, нет поддержки конкретных крупных производителей с потенциальными заказами. Все это делает технологию очередным концептом из туманного будущего на фоне уже имеющихся более реальных разработок».

Фирма CATL создала морозостойкие натрий-ионные аккумуляторы — ДРАЙВ

По данным SNE Research, в первом полугодии 2021-го CATL реализовала 34,1 ГВт•ч тяговых батарей (ячеек), заняв 29,9% мирового рынка. На втором месте — LG (28 ГВт•ч, 24,5% рынка), на третьем — Panasonic (17,1 ГВт•ч, 15% рынка). В сравнении с первым полугодием 2020-го три лидера увеличили поставки на 234,2%; 169,8% и 69% соответственно.

Китайская компания CATL (Contemporary Amperex Technology Co., Limited) — крупнейший мировой поставщик батарей для электрокаров, сотрудничающий с десятками автопроизводителей, от BMW до Фольксвагена и от Мерседеса до Экспэнга. Неудивительно, что её разработки привлекают внимание. Вчера CATL показала в сети своё первое поколение натрий-ионных аккумуляторов. У них есть сильные и слабые стороны (о них ниже). Фирма CATL начала подготовку к промышленному внедрению этого типа ячеек, которое собирается осуществить к 2023 году.

Заместитель главы CATL Research Institute Цисэнь Хуан заявил: «Производство натрий-ионных аккумуляторов полностью совместимо с заводским оборудованием и процессами литий-ионных батарей, а линии можно быстро переключить для достижения высокого уровня выпуска».

Натриевые аккумуляторы (в нескольких вариациях) для индустрии не новинка. Весь вопрос в удачной конструкции с подбором материалов для электродов и другими тонкостями в конструкции и химии. Несколько лет экспериментов — и фирма получила приличную для данного типа батарей удельную ёмкость в 160 Вт•ч/кг. Анонсирован рост до 200 Вт•ч/кг во втором поколении. Но это всё же не выдающийся показатель.

Контекст таков. Массовые литиево-ионные ячейки обладают ёмкостью 200–260 Вт•ч/кг. Для новых тесловских «цилиндров» 4680 (производство пока экспериментальное) заявлены 300 Вт•ч/кг. То же число получается у литиевых элементов с кремниевым анодом. Эксперименты с твердотельными батареями позволяют говорить о вполне достижимых 400–500 Вт•ч/кг (на уровне ячейки). А экзотические пока ещё литиево-серные аккумуляторы замахнулись на 500–1000 Вт•ч/кг.

Сравнение основных свойств новых ячеек CATL и распространённых литиево-железофосфатных.

Зато натрий-ионные ячейки CATL обладают высокой термической стабильностью, заряжаются за 15 минут до 80% при комнатной температуре, а главное — сохраняют более 90% ёмкости при температуре в минус 20 градусов по Цельсию. Компания сочла, что преимущества новых ячеек можно совместить с плюсами классических литиево-ионных. Потому вместе с этим проектом CATL представила аккумуляторную систему AB, в которой вместе будут работать и литиево-ионные, и натрий-ионные ячейки. Они будут смешаны в аккумуляторном блоке в некой оптимальной пропорции. Система управления (BMS) сможет прецизионно управлять ими, добиваясь наилучшей производительности. Такие тяговые блоки будут сравнительно ёмкими и мощными за счёт литиево-ионной части и при этом не спасуют в морозы за счёт натриевого компонента.

Бонус

Бок о бок с сообщениями о развитии тяговых аккумуляторов часто идут новости из области зарядки электрокаров. На этот раз наше внимание привлёк опыт, начатый в Лондоне, на улице Mortimer Road. Шотландский стартап Trojan Energy создал выдвижные зарядные точки, которые в отсутствие электрокаров убираются вровень с тротуаром, не мешая прохожим, уборочным машинам и не занимая место.

Пользователь может вытащить зарядку на свет с помощью персонального штока (предполагается, что его возят в багажнике). Он блокируется и разблокируется со смартфона или брелока. Энергетическая компания UK Power Networks подключила первые пять таких колонок к сети, а некоторому числу автомобилистов раздали соответствующий доступ в качестве эксперимента. Позднее опыт будет расширен на пару лондонских районов и 150 зарядных точек.

РИА «Сибирь» — Новосибирские ученые-химики разрабатывают аккумуляторы нового типа

2021-05-27 12:13:00 /РИА «Сибирь» /Новосибирск

Новосибирские ученые-химики разрабатывают аккумуляторы нового типа

Ученые Института неорганической химии имени А. В. Николаева СО РАН изучают возможность применения углеродных наноматериалов для создания металл-ионных аккумуляторов и конденсаторов. Промежуточные результаты доказывают перспективность использования натрий-ионных аккумуляторов, являющихся более дешевыми для производства и обладающих увеличенной емкостью и долговечностью за счет использования гибридного материала на основе углерода и дисульфида молибдена.  

«Сейчас самыми популярными аккумуляторами являются литий-ионные, они буквально повсюду и всегда с нами (в автомобилях, ноутбуках, мобильных телефонах). Однако при этом литий является достаточно дорогим и не очень распространенным металлом, поэтому наша лаборатория занимается разработкой аккумуляторов, где вместо лития будет применяться более дешевый натрий. Мы собираем образцы и тестируем их путем проведения около тысячи циклов зарядки и разрядки. В процессе измеряем, какая емкость получается, сколько времени работает наша батарея и прочие свойства, чтобы понять общий механизм работы», — рассказывает научный сотрудник лаборатории физикохимии наноматериалов Института неорганической химии СО РАН, кандидат химических наук Светлана Столярова

Одно из ключевых направлений работы ученых — применение материалов с развитой пористой структурой, поскольку для увеличения емкости и продолжительности работы аккумулятора необходимо, чтобы натрий входил в структуру катодного композита. Существует классический способ использования графита, применяемый в литий-ионных аккумуляторах, однако натрий с графитом практически не взаимодействует. Поэтому ученые также разрабатывают модификации пористых углеродных наноматериалов, по сути, меняя механизм взаимодействия посредством создания пор — отверстий, образованных из атомов углерода, в которых натрий может адсорбироваться и накапливаться в большом количестве.

«Мы используем не просто углеродные материалы в чистом виде, а смешиваем их с различными веществами, характеризующимися высокой емкостью, что повышает эффективность нашего композита. К примеру, дисульфид молибдена обладает лучшими емкостными свойствами, нежели углерод, но в чистом виде его мы не можем использовать в ячейке, потому что он быстро разрушится, что приведет к взрыву аккумулятора. Поэтому мы объединяем эти два вещества. На данный момент использование подобного гибридного катодного материала является крайне перспективным», — комментирует Светлана Столярова.

Из интернет-издания «Наука в Сибири».

Cмотрите также:  Наука  Новосибирская область

Заряд в секундах, в последние месяцы

(Pocket-lint). Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более совершенными, они все еще ограничены мощностью. Аккумулятор не совершенствовался десятилетиями. Но мы находимся на пороге революции власти.

Крупные технологические и автомобильные компании слишком хорошо осведомлены об ограничениях литий-ионных аккумуляторов. Несмотря на то, что чипы и операционные системы становятся более эффективными для экономии энергии, мы все еще рассматриваем только один или два дня использования смартфона, прежде чем потребуется подзарядка.

Хотя может пройти некоторое время, прежде чем мы сможем прожить неделю жизни наших телефонов, разработка идет хорошо. Мы собрали все лучшие открытия в области аккумуляторов, которые могут быть с нами в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной подзарядки. Надеюсь, скоро вы увидите эту технологию в своих гаджетах.

Маркус Фолино / Технологический университет Чалмерса

Структурные батареи могут привести к созданию сверхлегких электромобилей

Исследования, проведенные в Технологическом университете Чалмерса, уже много лет рассматривают возможность использования батареи не только для питания, но и в качестве структурного компонента.Преимущество этого предложения состоит в том, что продукт может уменьшить количество структурных компонентов, потому что батарея обладает достаточной силой для выполнения этих задач. Используя углеродное волокно в качестве отрицательного электрода, а в качестве положительного — фосфат лития-железа, последняя батарея имеет жесткость 25 ГПа, хотя есть еще кое-что, чтобы увеличить энергоемкость.

NAWA Technologies

Электрод из углеродных нанотрубок с вертикальной ориентацией

Компания NAWA Technologies разработала и запатентовала сверхбыстрый углеродный электрод, который, по ее словам, изменил правила игры на рынке аккумуляторов.В нем используется конструкция с вертикально расположенными углеродными нанотрубками (VACNT), и NAWA заявляет, что он может увеличить мощность батареи в десять раз, увеличить запас энергии в три раза и увеличить срок службы батареи в пять раз. Компания считает, что электромобили являются основным бенефициаром, сокращая углеродный след и стоимость производства аккумуляторов, одновременно повышая производительность. NAWA заявляет, что дальность действия 1000 км может стать нормой, а время зарядки сокращено до 5 минут, чтобы достичь 80 процентов. Технология может быть запущена в производство уже в 2023 году.

Литий-ионная батарея без кобальта

Исследователи из Техасского университета разработали литий-ионную батарею, в которой в качестве катода не используется кобальт. Вместо этого он переключился на высокий процент никеля (89 процентов), используя марганец и алюминий в качестве других ингредиентов. «Кобальт — наименее распространенный и самый дорогой компонент в катодах аккумуляторных батарей», — сказал профессор Арумугам Мантирам, профессор кафедры машиностроения Уолкера и директор Техасского института материалов.«И мы полностью устраняем это». Команда говорит, что с помощью этого решения они преодолели общие проблемы, обеспечив длительный срок службы батареи и равномерное распределение ионов.

SVOLT представляет батареи для электромобилей, не содержащие кобальт.

Несмотря на то, что свойства электромобилей по снижению выбросов являются широко признанными, все еще существуют разногласия по поводу аккумуляторов, особенно по поводу использования таких металлов, как кобальт. Компания SVOLT, штаб-квартира которой находится в Чанчжоу, Китай, объявила о производстве безкобальтовых батарей, предназначенных для рынка электромобилей.Помимо сокращения содержания редкоземельных металлов, компания заявляет, что они обладают более высокой плотностью энергии, что может привести к дальности действия до 800 км (500 миль) для электромобилей, а также продлить срок службы батареи и повысить безопасность. Мы не знаем, где именно мы увидим эти батареи, но компания подтвердила, что работает с крупным европейским производителем.

Тимо Иконен, Университет Восточной Финляндии

На шаг ближе к литий-ионным батареям с кремниевым анодом

Стремясь решить проблему нестабильного кремния в литий-ионных батареях, исследователи из Университета Восточной Финляндии разработали метод производства гибридного анода. , используя микрочастицы мезопористого кремния и углеродные нанотрубки.В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает характеристики батареи, в то время как силиконовый материал устойчиво производится из золы ячменной шелухи.

Университет Монаша

Литий-серные аккумуляторы могут превзойти литий-ионные, менее вредно для окружающей среды

Исследователи из Университета Монаша разработали литий-серные аккумуляторы, способные питать смартфон в течение 5 дней, превосходя литий-ионные.Исследователи изготовили эту батарею, имеют патенты и интерес производителей. У группы есть финансирование для дальнейших исследований в 2020 году, заявив, что дальнейшие исследования автомобилей и использования сетей будут продолжены.

Утверждается, что новая аккумуляторная технология оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, при этом предлагая потенциал для питания автомобиля на 1000 км (620 миль) или смартфона в течение 5 дней.

Аккумулятор IBM получен из морской воды и превосходит по своим характеристикам литий-ионный

IBM Research сообщает, что они обнаружили новый химический состав аккумулятора, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные.IBM Research утверждает, что этот химический состав никогда раньше не использовался в комбинации в батарее и что материалы можно извлекать из морской воды.

Производительность батареи многообещающая, при этом IBM Research заявляет, что она может превзойти литий-ионные в ряде различных областей — это дешевле в производстве, она может заряжаться быстрее, чем литий-ионная, и может иметь как более высокую мощность. и плотности энергии. Все это доступно в аккумуляторе с низкой горючестью электролитов.

IBM Research указывает, что эти преимущества сделают ее новую технологию аккумуляторов подходящей для электромобилей, и вместе с Mercedes-Benz, среди прочих, компания работает над превращением этой технологии в жизнеспособную коммерческую батарею.

Panasonic

Система управления батареями Panasonic

В то время как литий-ионные батареи повсюду и их число растет, управление этими батареями, включая определение того, когда у них закончился срок службы, затруднено.Panasonic, работая с профессором Масахиро Фукуи из Университета Рицумейкан, разработала новую технологию управления батареями, которая упростит мониторинг батарей и определение остаточной стоимости литий-ионных в них.

Panasonic заявляет, что ее новую технологию можно легко применить с изменением системы управления батареями, что упростит мониторинг и оценку батарей с несколькими составными ячейками, которые вы можете найти в электромобиле. Panasonic сообщает, что эта система поможет продвинуться в направлении устойчивого развития, поскольку сможет лучше управлять повторным использованием и переработкой литий-ионных аккумуляторов.

Асимметричная модуляция температуры

Исследования продемонстрировали метод зарядки, который приближает нас на шаг ближе к сверхбыстрой зарядке — XFC — который направлен на пробег 200 миль электромобиля примерно за 10 минут с зарядкой 400 кВт. Одна из проблем с зарядкой — это литиевая гальваника в батареях, поэтому метод асимметричной температурной модуляции заряжает при более высокой температуре, чтобы уменьшить гальванику, но ограничивает это до 10-минутных циклов, избегая роста межфазной границы твердого электролита, что может сократить срок службы батареи.Сообщается, что этот метод снижает износ батареи, позволяя заряжать XFC.

Pocket-lint

Песочная батарея дает в три раза больше времени автономной работы

В этом альтернативном типе литий-ионной батареи используется кремний, что обеспечивает в три раза лучшую производительность, чем современные графитовые литий-ионные батареи. Батарея по-прежнему литий-ионная, как и в вашем смартфоне, но в анодах используется кремний вместо графита.

Ученые из Калифорнийского университета в Риверсайде какое-то время занимались нанокремнием, но он слишком быстро разрушается, и его трудно производить в больших количествах.С помощью песка его можно очистить, измельчить в порошок, затем измельчить с солью и магнием перед нагреванием для удаления кислорода, что приведет к получению чистого кремния. Он пористый и трехмерный, что помогает повысить производительность и, возможно, продлить срок службы батарей. Изначально мы начали это исследование в 2014 году, и теперь оно приносит свои плоды.

Silanano — стартап по производству аккумуляторов, который выводит эту технологию на рынок и получил большие инвестиции от таких компаний, как Daimler и BMW. Компания заявляет, что ее решение можно использовать в существующем производстве литий-ионных аккумуляторов, поэтому оно настроено на масштабируемое развертывание, обещая прирост производительности аккумулятора на 20% сейчас или на 40% в ближайшем будущем.

Захват энергии от Wi-Fi

Хотя беспроводная индукционная зарядка является обычным явлением, возможность захвата энергии от Wi-Fi или других электромагнитных волн остается проблемой. Однако группа исследователей разработала ректенну (антенну, собирающую радиоволны), которая представляет собой всего лишь несколько атомов, что делает ее невероятно гибкой.

Идея состоит в том, что устройства могут включать в себя эту ректенну на основе дисульфида молибдена, чтобы энергия переменного тока могла быть получена от Wi-Fi в воздухе и преобразована в постоянный ток, либо для подзарядки батареи, либо для непосредственного питания устройства.Это может привести к появлению медицинских таблеток с питанием без необходимости во внутренней батарее (безопаснее для пациента) или мобильных устройств, которые не нужно подключать к источнику питания для подзарядки.

Энергия, полученная от владельца устройства

Вы можете стать источником энергии для вашего следующего устройства, если исследования TENG принесут свои плоды. TENG или трибоэлектрический наногенератор — это технология сбора энергии, которая улавливает электрический ток, генерируемый при контакте двух материалов.

Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала представление о том, как эту технологию можно использовать для работы таких вещей, как носимые устройства. Хотя мы еще далеки от того, чтобы увидеть это в действии, исследование должно дать дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.

Золотые батареи с нанопроволокой

Великие умы Калифорнийского университета в Ирвине создали треснувшие батареи с нанопроволокой, способные выдержать много перезарядок.В результате в будущем батареи могут не разрядиться.

Нанопроволока, в тысячу раз тоньше человеческого волоса, открывает большие возможности для батарей будущего. Но они всегда ломались при подзарядке. Это открытие использует золотые нанопроволоки в гелевом электролите, чтобы этого избежать. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали вообще никакой деградации.

Твердотельные литий-ионные

Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, рассказывается об их испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходный аккумулятор.

В результате получился аккумулятор, способный работать на уровне суперконденсатора и полностью заряжаться или разряжаться всего за семь минут, что делает его идеальным для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем нынешние батареи. Твердотельный блок также должен работать при температурах от минус 30 до 100 градусов Цельсия.

Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в ближайшее время в автомобилях, но это шаг в правильном направлении к более безопасным и быстро заряжаемым аккумуляторам.

Графеновые батареи Grabat

Графеновые батареи потенциально могут быть одними из самых лучших среди имеющихся. Грабат разработал графеновые батареи, которые могут обеспечить электромобилям запас хода до 500 миль без подзарядки.

Graphenano, компания, стоящая за разработкой, заявляет, что аккумуляторы можно полностью зарядить всего за несколько минут, и они могут заряжаться и разряжаться в 33 раза быстрее, чем литий-ионные.Разряд также имеет решающее значение для таких вещей, как автомобили, которым требуется огромное количество энергии для быстрого трогания с места.

Нет информации о том, используются ли аккумуляторы Grabat в настоящее время в каких-либо продуктах, но у компании есть аккумуляторы для автомобилей, дронов, мотоциклов и даже для дома.

Лазерные микроконденсаторы

Rice Univeristy

Ученые из Университета Райса совершили прорыв в создании микроконденсаторов. В настоящее время их производство дорогое, но с использованием лазеров, которые вскоре могут измениться.

При использовании лазеров для выжигания рисунков электродов на листах пластика затраты на производство и усилия значительно снижаются. В результате получается батарея, которая может заряжаться в 50 раз быстрее, чем нынешние батареи, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже прочные, способны работать после более чем 10 000 сгибаний во время испытаний.

Пенные аккумуляторы

Прието считает, что будущее аккумуляторов — за 3D. Компании удалось решить эту проблему с помощью своей батареи, в которой используется медная вспененная подложка.

Это означает, что эти батареи будут не только более безопасными благодаря отсутствию горючего электролита, но также будут предлагать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, будут дешевле в производстве и будут меньше, чем существующие предложения.

Prieto стремится в первую очередь размещать свои батареи в небольших предметах, например, в носимых устройствах. Но там говорится, что аккумуляторы можно масштабировать, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.

Carphone Warehouse

Складной аккумулятор похож на бумагу, но прочный

Jenax J.Аккумулятор Flex был разработан, чтобы сделать гаджеты возможными. Батарея, похожая на бумагу, складывается и является водонепроницаемой, что означает, что ее можно интегрировать в одежду и другие носимые устройства.

Батарея уже создана и даже прошла испытания на безопасность, в том числе ее сложили более 200 000 раз без потери производительности.

Ник Билтон / The New York Times

uBeam по воздуху зарядка

uBeam использует ультразвук для передачи электричества. Энергия преобразуется в звуковые волны, неслышимые для людей и животных, которые передаются, а затем преобразуются обратно в энергию при достижении устройства.

С концепцией uBeam наткнулась 25-летняя выпускница астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики могут быть прикреплены к стенам или превращены в предметы декоративного искусства для передачи энергии на смартфоны и ноутбуки. Гаджетам просто нужен тонкий приемник, чтобы принимать заряд.

StoreDot

StoreDot заряжает мобильные телефоны за 30 секунд

StoreDot, стартап, созданный на базе кафедры нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, сделанные из природных органических соединений, известных как пептиды — короткие цепочки аминокислот, которые являются строительными блоками белков.

В результате получилось зарядное устройство, способное заряжать смартфон за 60 секунд. Батарея состоит из «негорючих органических соединений, заключенных в многослойную защитную структуру, предотвращающую перенапряжение и нагрев», поэтому проблем с ее взрывом быть не должно.

Компания также объявила о планах создать аккумулятор для электромобилей, который заряжается за пять минут и обеспечивает запас хода до 300 миль.

Пока неизвестно, когда аккумуляторы StoreDot будут доступны в глобальном масштабе — мы ожидали, что они появятся в 2017 году, — но когда они появятся, мы ожидаем, что они станут невероятно популярными.

Pocket-lint

Прозрачное солнечное зарядное устройство

Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволяет пользователям заряжать свой телефон, просто поместив его на солнце.

Хотя вряд ли он появится в продаже в течение некоторого времени, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с постоянным отсутствием заряда батареи.Телефон будет работать как с прямым солнечным светом, так и со стандартным освещением, так же, как и обычные солнечные батареи.

Phienergy

Алюминиево-воздушная батарея обеспечивает пробег на 1100 миль без подзарядки.

Автомобиль сумел проехать 1100 миль на одной зарядке аккумулятора. Секрет этого супердиапазона заключается в технологии батареи, называемой «алюминий-воздух», которая использует кислород из воздуха для заполнения своего катода. Это делает его намного легче, чем заполненные жидкостью литий-ионные аккумуляторы, что дает автомобилю гораздо больший запас хода.

Бристольская робототехническая лаборатория

Батареи с питанием от мочи

Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской робототехнической лаборатории, которая обнаружила батареи, которые могут питаться от мочи. Этого достаточно для зарядки смартфона, который ученые уже продемонстрировали. Но как это работает?

Используя микробный топливный элемент, микроорганизмы собирают мочу, расщепляют ее и выделяют электричество.

Звук работает

Исследователи из Великобритании создали телефон, который может заряжаться, используя окружающий звук в окружающей атмосфере.

Смартфон построен по принципу пьезоэлектрического эффекта. Были созданы наногенераторы, улавливающие окружающий шум и преобразующие его в электрический ток.

Наностержни даже реагируют на человеческий голос, а это значит, что болтливые мобильные пользователи могут подключать свой телефон во время разговора.

Двойная угольная батарея Ryden заряжается в 20 раз быстрее.

Power Japan Plus уже анонсировала новую технологию аккумуляторов под названием Ryden dual carbon. Он не только прослужит дольше и заряжается быстрее, чем литиевые, но его можно производить на тех же заводах, где производятся литиевые батареи.

В батареях используются углеродные материалы, что означает, что они более экологичны и безопасны для окружающей среды, чем существующие в настоящее время альтернативы. Это также означает, что аккумуляторы будут заряжаться в двадцать раз быстрее, чем литий-ионные. Они также будут более долговечными, способными выдержать до 3000 циклов зарядки, а также более безопасными с меньшей вероятностью возгорания или взрыва.

Натрий-ионные аккумуляторы

Ученые из Японии работают над новыми типами аккумуляторов, для которых не нужен литий, таких как аккумулятор вашего смартфона.В этих новых батареях будет использоваться натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.

Исследования натриево-ионных батарей ведутся с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой по распространенности элемент на планете, можно сделать батареи намного дешевле. Ожидается, что в ближайшие 5-10 лет начнется коммерциализация аккумуляторов для смартфонов, автомобилей и других устройств.

Upp

Зарядное устройство для водородных топливных элементов Upp

Переносное зарядное устройство для водородных топливных элементов Upp уже доступно. Он использует водород для питания вашего телефона, не позволяя вам подключаться к электросети и оставаясь безвредным для окружающей среды.

Одна водородная ячейка обеспечивает пять полных зарядов мобильного телефона (емкость 25 Втч на ячейку). И единственный производимый побочный продукт — это водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.

Батареи со встроенным огнетушителем

Литий-ионные батареи нередко перегреваются, загораются и даже могут взорваться.Аккумулятор в Samsung Galaxy Note 7 — яркий тому пример. Исследователи из Стэнфордского университета придумали литий-ионные батареи со встроенными огнетушителями.

В батарее есть компонент, называемый трифенилфосфатом, который обычно используется в качестве антипирена в электронике, добавленный к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфат.Исследования показывают, что этот новый метод может предотвратить возгорание аккумуляторов за 0,4 секунды.

Майк Циммерман

Батареи, защищенные от взрыва

Литий-ионные батареи имеют довольно летучий слой пористого материала жидкого электролита, расположенный между анодным и катодным слоями. Майк Циммерман, исследователь из Университета Тафтса в Массачусетсе, разработал батарею, которая имеет вдвое большую емкость, чем литий-ионные, но без присущих ей опасностей.

Батарея Циммермана невероятно тонкая, немного толще, чем две кредитные карты, и заменяет жидкость электролита пластиковой пленкой, которая имеет аналогичные свойства.Он может противостоять прокалыванию, измельчению и нагреванию, поскольку он негорючий. Еще предстоит провести много исследований, прежде чем технология сможет выйти на рынок, но хорошо знать, что существуют более безопасные варианты.

Батареи Liquid Flow

Ученые из Гарварда разработали батарею, которая хранит свою энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долго по сравнению с нынешними литий-ионными батареями.

Маловероятно, что мы увидим эту технологию в смартфонах и т.п., поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, создаваемой решениями в области возобновляемых источников энергии, таких как ветер и солнце.

Действительно, исследование Стэнфордского университета использовало жидкий металл в проточной батарее с потенциально отличными результатами, заявляя, что напряжение вдвое выше, чем у обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения прерывистых источников энергии, таких как ветер или солнце, для быстрого выпуска в сеть по запросу.

IBM и ETH Zurich и разработали жидкостную проточную батарею гораздо меньшего размера, которая потенциально может быть использована в мобильных устройствах. Эта новая батарея утверждает, что может не только обеспечивать питание компонентов, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, которая может производить 1,4 Вт мощности на квадратный сантиметр, при этом 1 Вт мощности зарезервирован для питания батареи.

Zap & Go Карбон-ионный аккумулятор

Оксфордская компания ZapGo разработала и произвела первую угольно-ионную аккумуляторную батарею, которая уже готова к использованию потребителями.Углеродно-ионный аккумулятор сочетает в себе сверхбыструю зарядку суперконденсатора с характеристиками литий-ионного аккумулятора, при этом полностью пригодный для вторичной переработки.

Компания предлагает зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью заряжает смартфон за два часа.

Цинково-воздушные батареи

Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых аккумуляторов, намного более дешевый, чем существующие методы.Цинково-воздушные батареи можно считать лучше литий-ионных, потому что они не загораются. Единственная проблема в том, что они полагаются на дорогие компоненты в работе.

Sydney Uni удалось создать воздушно-цинковую батарею без необходимости использования дорогих компонентов, а скорее с некоторыми более дешевыми альтернативами. Возможно, появятся более безопасные и дешевые батареи!

Умная одежда

Исследователи из Университета Суррея разрабатывают способ использования одежды в качестве источника энергии.Батарея называется трибоэлектрическими наногенераторами (TENG), которая преобразует движение в накопленную энергию. Накопленное электричество затем можно использовать для питания мобильных телефонов или устройств, таких как фитнес-трекеры Fitbit.

Эта технология может быть применена не только к одежде, она может быть интегрирована в тротуар, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания ленточных ламп или в шинах автомобиля. может привести машину в действие.

Растягиваемые батареи

Инженеры Калифорнийского университета в Сан-Диего разработали растяжимый биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что генерируемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, а это означает, что однажды она сможет питать носимые устройства, такие как умные часы и фитнес-трекеры.

Графеновая батарея Samsung

Компания Samsung сумела разработать «графеновые шары», которые способны увеличивать емкость существующих литий-ионных аккумуляторов на 45 процентов и заряжаться в пять раз быстрее, чем существующие аккумуляторы. Чтобы представить это в контексте, Samsung заявляет, что его новый аккумулятор на основе графена может быть полностью заряжен за 12 минут, по сравнению с примерно часом для текущего устройства.

Samsung также заявляет, что его можно использовать не только в смартфонах, но и в электромобилях, поскольку он может выдерживать температуру до 60 градусов по Цельсию.

Более безопасная и быстрая зарядка существующих литий-ионных аккумуляторов

Ученые из WMG из Университета Уорвика разработали новую технологию, которая позволяет заряжать существующие литий-ионные аккумуляторы в пять раз быстрее, чем рекомендуемые пределы. Технология постоянно измеряет температуру батареи гораздо точнее, чем существующие методы.

Ученые обнаружили, что нынешние батареи действительно могут выходить за пределы рекомендуемых пределов, не влияя на производительность или перегрев. Возможно, нам вообще не нужны другие упомянутые новые батареи!

Написано Крисом Холлом. Первоначально опубликовано .

Разработчик алюминиево-ионных аккумуляторов утверждает, что они заряжаются в 60 раз быстрее, чем литий-ионные, предлагая прорыв в диапазоне электромобилей

Революционная технология графеновых алюминиево-ионных аккумуляторов способна уничтожить литий-ионные аккумуляторы для получения энергии… [+] плотность энергии, скорость зарядки и экологичность. Фото: Группа производителей графена

Группа по производству графена

Беспокойство по поводу дальности, опасения по поводу утилизации и быстрой зарядки — все это может стать частью истории электромобилей с изобретением австралийских аккумуляторов, основанным на нанотехнологиях.

Утверждается, что графеновые алюминиево-ионные аккумуляторные элементы от компании Graphene Manufacturing Group (GMG) из Брисбена заряжаются до 60 раз быстрее, чем лучшие литий-ионные элементы, и удерживают в три раза больше энергии, чем лучшие элементы на основе алюминия.

Они также более безопасны, не имеют верхнего предела в амперах, вызывающего самопроизвольный перегрев, более экологичны и легче утилизируются благодаря стабильным материалам основы. Тестирование также показывает, что проверочные батареи типа «таблетка» служат в три раза дольше, чем литий-ионные версии.

GMG планирует вывести на рынок алюминиево-ионные графеновые аккумуляторные элементы в конце этого или в начале следующего года, а выпуск автомобильных аккумуляторных элементов планируется в начале 2024 года.

Созданные на основе передовой технологии Австралийского института биоинженерии и нанотехнологий Квинслендского университета (UQ), в элементах батарей используются нанотехнологии, позволяющие вставлять атомы алюминия внутрь крошечных отверстий в графеновых плоскостях.

Алюминиево-ионная технология Graphene Manufacturing Group позволяет заряжать iPhone менее чем за 10 … [+] секунд. Он работает, бросая атомы алюминия в отверстия в графене. Фото: Группа производителей графена

Группа по производству графена

Тестирование, проведенное рецензируемым специализированным изданием Advanced Functional Materials Публикация заключила, что элементы обладают «выдающимися высокопроизводительными характеристиками (149 мАч г-1 при 5 А г-1), превосходящими все ранее описанные катодные материалы AIB».

Управляющий директор

GMG Крейг Никол настаивал на том, что, хотя элементы его компании — не единственные разрабатываемые графеновые алюминиево-ионные элементы, они, несомненно, являются самыми мощными, надежными и быстрыми заряжающимися.

«Он заряжается так быстро, что это, по сути, суперконденсатор», — заявил Николь. «Он заряжает монетный элемент менее чем за 10 секунд».

Утверждается, что новые аккумуляторные элементы обеспечивают гораздо большую удельную мощность, чем существующие литий-ионные аккумуляторы, без проблем с охлаждением, нагревом или редкоземельными элементами, с которыми они сталкиваются.

«Пока проблем с температурой нет. Двадцать процентов литий-ионной аккумуляторной батареи (в автомобиле) связано с их охлаждением. Очень высока вероятность, что нам вообще не понадобится ни охлаждение, ни обогрев », — заявил Николь.

«Он не перегревается и пока хорошо работает при минусовых температурах при тестировании.

«Им не нужны контуры для охлаждения или обогрева, которые в настоящее время составляют около 80 кг в упаковке 100 кВт / ч».

При перезарядке алюминиево-ионных батарей они возвращаются к отрицательному электроду и меняют местами три алюминиевых… [+] электронов на ион, по сравнению с максимальной скоростью лития, равной одному. Фото: Группа производителей графена

Группа по производству графена

Новую технологию ячеек, как настаивал Николь, можно было бы внедрить в существующие литий-ионные корпуса, такие как архивная фотография MEB от Volkswagen Group, что позволит избежать проблем с архитектурой автомобильной промышленности, которая, как правило, используется до 20 лет.

«Наши будут иметь ту же форму и напряжение, что и нынешние литий-ионные элементы, или мы можем придать любую необходимую форму», — подтвердил Николь.

«Это прямая замена, которая заряжается так быстро, что это, по сути, суперконденсатор.

«Некоторые литий-ионные элементы не могут работать более 1,5-2 ампер, иначе вы можете взорвать аккумулятор, но наша технология не имеет теоретических ограничений».

Алюминиево-ионные аккумуляторные элементы — горячая почва для разработок, особенно для использования в автомобилях.

Одни только недавние проекты включали сотрудничество между Китайским Технологическим университетом Даляня и Университетом Небраски, а также другими проектами из Корнельского университета, Университета Клемсона, Университета Мэриленда, Стэнфордского университета, Департамента полимеров Университета Чжэцзян и промышленного консорциума European Alion. .

Различия носят сугубо технический характер, но в ячейках GMG используется графен, полученный с помощью собственной плазменной технологии, а не из традиционных источников графита, и в результате плотность энергии в три раза превышает плотность энергии следующей лучшей ячейки из Стэнфордского университета.

Алюминиево-ионный монетный элемент Graphene Manufacturing Group будет запущен в производство в начале 2022 года. Фото: … [+] Graphene Manufacturing Group

Группа по производству графена

Алюминий-ионная технология Stanford с природным графитом дает 68.7 Ватт-часов на килограмм и 41,2 Вт на килограмм, в то время как его вспененный графит обеспечивает мощность до 3000 Вт / кг.

Аккумулятор GMG-UQ нагнетает мощность от 150 до 160 Вт / кг и до 7000 Вт / кг.

«Они (UQ) нашли способ проделывать дыры в графене и способ хранить в дырках атомы алюминия ближе друг к другу.

«Если мы просверлим отверстия, атомы застрянут внутри графена, и он станет намного более плотным, как шар для боулинга на матрасе».

В рецензируемой публикации Advanced Functional Materials обнаружено, что трехслойный графен с перфорацией на поверхности (SPG3-400) имеет «значительное количество плоских мезопор (≈2.3 нм) и чрезвычайно низкое отношение O / C 2,54% продемонстрировали отличные электрохимические характеристики.

«Этот материал SPG3-400 демонстрирует исключительную обратимую емкость (197 мАч г-1 при 2 А г-1) и выдающуюся производительность», — говорится в заключении.

Алюминий-ионная технология имеет существенные преимущества и недостатки по сравнению с литий-ионной аккумуляторной технологией, которая сегодня используется почти в каждом электромобиле.

Когда элемент перезаряжается, ионы алюминия возвращаются к отрицательному электроду и могут обмениваться тремя электронами на ион вместо ограничения скорости лития, равного только одному.

Использование алюминиево-ионных элементов дает также огромное геополитическое, ценовое, экологическое и вторичное преимущество, поскольку в них практически не используются какие-либо экзотические материалы.

«Это в основном алюминиевая фольга, хлорид алюминия (прекурсор алюминия, который может быть переработан), ионная жидкость и мочевина», — сказал Николь.

«Девяносто процентов мирового производства и закупок лития по-прежнему осуществляется через Китай, а 10 процентов — через Чили.

«У нас есть весь необходимый нам алюминий прямо здесь, в Австралии, и его можно безопасно производить в первом мире.”

Главный научный сотрудник Graphene Manufacturing Group д-р Ашок Кумар Нанджундан (слева) и д-р … [+] Сяодан Хуанг из Австралийского института биоинженерии и нанотехнологий Квинслендского университета обсуждают прорыв в области батарей. Фото: Производственная группа графена.

Группа по производству графена

Зарегистрированная на бирже TSX Venture в Канаде, GMG подключилась к технологии графеновых алюминиево-ионных аккумуляторов UQ, поставив университету графен.

«Наш ведущий специалист по продуктам д-р Ашок Нанджундан с самого начала участвовал в проекте Университета Квинсленда в своем исследовательском центре нанотехнологий», — сказал Николь, признав, что GMG почти «повезло» с этой технологией, бесплатно предоставив для исследовательских проектов свой графен. .

GMG не заключила договор о поставках с крупным производителем или производственным предприятием.

«Мы еще не связаны с крупными брендами, но это может войти в Apple iPhone и зарядить его за секунды», — подтвердил Николь.

«Сначала мы выведем на рынок монетную ячейку. Он заряжается менее чем за минуту и ​​имеет в три раза больше энергии, чем литий », — говорится в сообщении продукта Barcaldine.

«Это также гораздо менее вредно для здоровья. Ребенка можно убить литием, если его проглотить, но не алюминием ».

Монетная батарея станет первой производимой алюминиево-ионной батареей Graphene Manufucturing Group, … [+] которая начнется в начале следующего года. Фото: Группа производителей графена

Группа по производству графена

Еще одно преимущество — стоимость.Литий подорожал с 1460 долларов США за метрическую тонну в 2005 году до 13 000 долларов США за тонну на этой неделе, в то время как цена на алюминий выросла с 1730 долларов США до 2078 долларов США за тот же период.

Еще одно преимущество состоит в том, что в графеновых алюминиево-ионных элементах GMG не используется медь, которая стоит около 8470 долларов США за тонну.

Хотя он открыт для производственных соглашений, предпочтительный план GMG состоит в том, чтобы «работать» с технологией, насколько это возможно, сначала с установками от 10 гигаватт до 50 гигаватт, даже если Австралия не может быть логическим первым выбором для производственного предприятия.

Это не единственная компания из Брисбена, которая продвигает в мир аккумуляторные батареи.

PPK Group имеет совместное предприятие с Deakin University по разработке литий-серных батарей, а Vecco Group подтвердила сделку с Shanghai Electric по производству ванадиевых батарей для коммерческого хранения энергии в Брисбене.

Какие батареи будут питать будущее?

ХУАЙБЕЙ, КИТАЙ — 1-ОЕ ФЕВРАЛЯ: Роботизированная рука работает на линии упаковки литиевой батареи на новом… [+] Энергетический завод 1 февраля 2021 года в Хуайбэе, провинция Аньхой, Китай. (Фото Ван Шанчао / VCG через Getty Images)

VCG через Getty Images

Аккумуляторная технология может стать краеугольным камнем энергетического перехода, облегчая декарбонизацию транспортного сектора, обеспечивая критически важную поддержку для прерывистой солнечной и ветровой генерации в производстве электроэнергии. Но широко используемый литий-ионный аккумулятор может не соответствовать задаче обеспечения будущего глобальной зеленой экономики.

Президент Джо Байден делает батареи компонентом своей стратегии углеродной нейтральности, предполагая, что внутреннее производство — вместо того, чтобы полагаться на китайский и корейский импорт — могло бы создать рабочие места. В настоящее время китайские компании, включая CATL, BYD и Hefei Guoxuan High-Tech, производят 79% аккумуляторов в мире. Отечественные производители уступают 7 % . Необходимость соревноваться очевидна.

Литий-ионный, или литий-ионный, сегодня является наиболее распространенной аккумуляторной технологией.Литий-ионные аккумуляторы отличаются высокой плотностью энергии по сравнению с более старыми никель-кадмиевыми батареями и отсутствием эффекта памяти, который приводит к потере емкости аккумуляторов при продолжительном использовании. «Саморазрядка» — при которой незначительные химические реакции в батарее с меньшей емкостью с течением времени минимальны в литий-ионной технологии.

По этим причинам в большинстве современных электромобилей (электромобилей) используются литий-ионные батареи той или иной формы. Тесла TSLA использует собственную химию литий-никель-кобальт-алюминий (NCA), в то время как литий-никель-марганец-кобальт (NMC) распространен в остальной части сектора электромобилей, производимой LG Chem и SK Innovation.Две корейские компании вовлечены в судебную тяжбу, причем первая обвиняет вторую в краже интеллектуальной собственности. Решение Комиссии по международной торговле запретить импорт некоторых товаров из SK Innovation по этому поводу может нарушить американскую цепочку поставок и переход Байдена к чистой энергии.

К сожалению, срок службы литий-ионных аккумуляторов по-прежнему невелик и значительно ухудшается в течение первых нескольких лет. За пять лет интенсивного использования батарея разряжается на 70–90% от первоначальной емкости.Литий-ионные аккумуляторы по-прежнему являются дорогостоящим средством получения энергии, при этом отраслевой стандарт колеблется в районе 137 долларов за киловатт-час (кВтч) в 2020 году. По слухам, передовые аккумуляторные батареи Tesla NCA стоят ближе к 100 долларам / кВтч. При этом затраты прошли долгий путь: в 2010 году цены на батареи составляли 1100 долларов за кВтч, что на 90% ниже за десять лет. Но это снижение не будет устойчивым в ближайшее десятилетие.

Снижение стоимости батарей с течением времени в долларах за киловатт-час с учетом разницы между ячейками и батареями.

Bloomberg New Energy Finance

Согласно Bloomberg New Energy Finance, при цене 101 долл. / КВтч электромобили будут конкурентоспособны по цене с двигателями внутреннего сгорания. Ожидается, что этот порог будет превышен между 2023-2025 годами, но остаются вопросы, можно ли улучшить химический состав литий-ионных аккумуляторов после этого момента.

Производство аккумуляторов ограничивает поставки кобальта , из-за опасений по поводу того, является ли процесс добычи, в котором доминирует Демократическая Республика Конго (ДРК), экологически или социально ответственным.Производителям необходимо будет найти другие источники.

Также были зарегистрированы инциденты безопасности, которые заставили общественность бояться оружия, хотя фактические случаи перегрева литиевых батарей кажутся редкими по сравнению с количеством используемых. Это недостатки того, что не так давно было передовым.

Ученые считают, что будущее — за батарею стоимостью 50 долларов США за кВтч и ниже — лежит в другом месте.

Те, кто думает о долгосрочной перспективе, рассматривают твердотельные батареи как преемника литий-ионных. Исследования продолжаются, и прототипы находятся в разработке, но может пройти десять лет, прежде чем твердотельное устройство станет доступным для общественного потребления: по оценкам экспертов, твердотельная технология будет стоить от ~ 800 до ~ 400 долларов / кВтч к 2026 году.Лидер отрасли QuantumScape (QS) столкнулся с нестабильностью цен из-за сочетания высоких ожиданий и отсутствия доходов.

Тем не менее, энтузиасты энергии в восторге.

Твердотельные батареи представляют собой смену парадигмы. Вместо перезаряжаемых жидких электролитов, которые можно найти в других местах, они используют более безопасные негорючие твердые электролиты. Твердые электролиты более энергоемкие, что обеспечивает более быструю зарядку, больший радиус действия и более длительный срок хранения. Батареи с более длительным сроком службы сокращают потребность в дорогостоящих системах хранения и снижают затраты на электроэнергию для потребителей.Они лучше переносят тепло, но работают и при очень низких температурах.

Неудивительно, что производители электромобилей стремятся к прорыву. Прямо сейчас у Tesla есть технология терморегулирования и электронного управления, что дает ей преимущество перед конкурентами. Устраняя температуру как уязвимость, твердотельные технологии могут позволить другим сократить расходы и конкурировать. Солидные компании и стартапы, такие как Ionic Materials и NEI Corp, финансируют исследования и разработки.

Toyota сделала аккумуляторные технологии своим приоритетом, рассматривая твердотельные батареи как решение для ограниченного диапазона и длительного времени зарядки, препятствующих широкому распространению электромобилей. Они надеются продать первый электромобиль с твердотельными батареями в этом десятилетии. Volkswagen Group имеет собственное партнерство с QuantumScape, и есть дополнительные проекты, поддерживаемые Ford, BMW и Mercedes-Benz, среди прочих.

Транспорт — не единственная отрасль, которая получит выгоду. Усовершенствованные аккумуляторы в смартфонах потенциально обеспечат до трех дней непрерывного использования без изменения дизайна или веса.Другие устройства, от ноутбуков до запоминающих устройств, аналогичным образом увеличивают продолжительность заряда. Это должно быть приятной новостью для потребителей и стран, стремящихся модернизировать свои электрические сети.

Президенту Байдену было бы разумно инвестировать в исследования, но правительственные лаборатории не должны выбирать победителей в области технологий — если только это не касается военных приложений. Развитие внутренней цепочки поставок компонентов аккумуляторных батарей и аккумуляторов будет иметь решающее значение для освобождения от китайской монополии в этом секторе. Только создавая новые, экономически жизнеспособные технологии, мы можем удовлетворить потребности развивающейся энергетики и преуспеть в преобразовании энергии.

При содействии Дэнни Томарес и Сары Моосави

Аккумулятор нового типа может заряжаться в 10 раз быстрее, чем литий-ионные модели

Перезаряжаемые литий-ионные батареи практически повсюду, от смартфонов до ноутбуков, от наушников до игровых устройств и многого другого.

Но в то время как удобство этой повсеместной (и отмеченной Нобелевской премией) химии аккумуляторов радикально изменило способ использования и зарядки портативных устройств, литий-ионный аккумулятор далек от совершенства.

Характеристики литий-ионных аккумуляторов со временем ухудшаются, и иногда дефекты аккумуляторных элементов могут привести к перегреву и опасному возгоранию — компаниям иногда приходится в срочном порядке отзывать продукцию, которая может взорваться без предупреждения.

И, как может подтвердить любой владелец смартфона, планшета или ноутбука, зарядка литий-ионных аккумуляторов может быть медленным и трудоемким процессом. По этому поводу у ученых есть хорошие новости.

Исследователи в России разработали новый тип аккумуляторной технологии, который, по их словам, может заряжаться примерно в 10 раз быстрее, чем существующие литий-ионные аккумуляторы — ускорение, которое может дать огромные преимущества для экономии времени, если оно будет внедрено в повседневные устройства.

«Аккумулятор, изготовленный с использованием нашего полимера, заряжается за секунды — примерно в 10 раз быстрее, чем традиционный литий-ионный аккумулятор», — говорит исследователь электрохимии Олег Левин из Санкт-Петербургского университета. «Это уже было продемонстрировано серией экспериментов.»

Ключом к новым батареям является своего рода окислительно-восстановительный полимер на основе нитроксила, материал, который может подвергаться обратимому окислению (потеря электронов) и восстановлению (усиление электронов) при разряде и зарядке.

В этом В этом случае используемый окислительно-восстановительный полимер представляет собой синтезированную форму NiSalen (никель-сален), металлосодержащего металлополимера, в котором цепи атомов никеля и салена действуют как молекулярные проволоки для повышения электронной проводимости, что является ограничением полимера на основе нитроксила. батареи.

«В полимерах на основе нитроксила единственный путь переноса заряда — это прыжки электронов между соседними окислительно-восстановительными центрами, которые происходят быстро в микроскопическом масштабе», — объясняют исследователи в своем исследовании.

«Несмотря на это, макроскопическая электронная проводимость материала на основе нитроксила кажется очень низкой».

В ходе испытаний исследователи исследовали ряд различных типов полимеров, но химический состав NiSalen оказался единственным устройством, которое оказалось стабильным и эффективным благодаря тому, как структуры никеля и салена работали как проводящая основа.Структуры одновременно действовали как сборщик заряда для нитроксильных подвесок, а также поддерживали окислительно-восстановительную способность вещества.

Устройство также хорошо работает при низких температурах, чего нельзя сказать о термочувствительных литий-ионных аккумуляторах. Однако не то чтобы быстрый NiSalen обязательно идеален во всех областях.

«На данном этапе он все еще отстает по емкости — на 30-40 процентов ниже, чем у литий-ионных аккумуляторов», — говорит Левин.

«В настоящее время мы работаем над улучшением этого показателя при сохранении скорости заряда-разряда».

Теоретически полимеры на основе нитроксила должны в конечном итоге обладать хорошим емкостным потенциалом, поэтому, возможно, команда решит, как настроить аккумулятор так, чтобы он обеспечивал хороший запас заряда в дополнение к привлекательной проводимости, — это просто вопрос времени.

Можно надеяться, потому что, помимо увеличения заряда, есть и другие существенные преимущества, которые этот тип батареи может предоставить.

«Это безопасно использовать — нет ничего, что могло бы создать опасность возгорания, в отличие от широко распространенных сегодня кобальтовых батарей [включая литий-ионные батареи]», — говорит Левин.

«Он также содержит значительно меньше металлов, которые могут нанести вред окружающей среде. Никель присутствует в нашем полимере в небольшом количестве, но его гораздо меньше, чем в литий-ионных батареях».

Результаты представлены в документе Batteries and Supercaps .

Батарея нового типа, способная заряжаться десять раз

изображение: Символьное представление химической формулы нового полимера посмотреть еще

Кредит: Анатолий А.Верещагин

Трудно представить нашу повседневную жизнь без литий-ионных батарей. Они доминируют на рынке аккумуляторов небольшого формата для портативных электронных устройств, а также широко используются в электромобилях. В то же время литий-ионные аккумуляторы имеют ряд серьезных проблем, в том числе: потенциальную опасность возгорания и снижение производительности при низких температурах; а также значительное воздействие на окружающую среду утилизации использованных батарей.

По словам руководителя группы исследователей, профессора кафедры электрохимии Санкт-Петербургского университета Олега Левина, химики изучают окислительно-восстановительные нитроксилсодержащие полимеры в качестве материалов для электрохимического накопления энергии.Эти полимеры характеризуются высокой плотностью энергии и быстрой скоростью зарядки и разрядки благодаря быстрой окислительно-восстановительной кинетике. Одной из проблем при реализации такой технологии является недостаточная электропроводность. Это препятствует накоплению заряда даже с присадками с высокой проводимостью, такими как углерод.

В поисках решений этой проблемы исследователи из Санкт-Петербургского университета синтезировали полимер на основе комплекса никель-сален (NiSalen). Молекулы этого металлополимера действуют как молекулярная проволока, к которой прикреплены энергоемкие нитроксильные подвески.Молекулярная архитектура материала позволяет достичь высоких емкостных характеристик в широком диапазоне температур.

«Мы придумали концепцию этого материала в 2016 году. Тогда мы начали разработку фундаментального проекта« Электродные материалы для литий-ионных аккумуляторов на основе металлоорганических полимеров ». Работа поддержана грантом Российского научного фонда. Изучая механизм переноса заряда в этом классе соединений, мы обнаружили, что существует два ключевых направления развития.Во-первых, эти соединения можно использовать в качестве защитного слоя для покрытия основного проводящего кабеля батареи, который в противном случае был бы изготовлен из традиционных материалов для литий-ионных аккумуляторов. А во-вторых, их можно использовать как активный компонент электрохимических аккумуляторов энергии », — поясняет Олег Левин.

На разработку полимера ушло более трех лет. В первый год ученые опробовали концепцию нового материала: они объединили отдельные компоненты, чтобы имитировать электрически проводящий каркас и окислительно-восстановительные подвески, содержащие нитроксил.Было важно убедиться, что все части конструкции работают вместе и усиливают друг друга. Следующим этапом стал химический синтез соединения. Это была самая сложная часть проекта. Это связано с тем, что некоторые компоненты чрезвычайно чувствительны, и даже малейшая ошибка ученого может вызвать ухудшение качества образцов.

Из нескольких полученных образцов полимера только один оказался достаточно стабильным и эффективным. Основная цепь нового соединения образована комплексами никеля с саленовыми лигандами.Стабильный свободный радикал, способный к быстрому окислению и восстановлению (заряд и разряд), был связан с основной цепью ковалентными связями.

‘Аккумулятор, изготовленный с использованием нашего полимера, заряжается за секунды — примерно в десять раз быстрее, чем традиционный литий-ионный аккумулятор. Это уже было продемонстрировано серией экспериментов. Однако на данном этапе он все еще отстает по емкости — на 30-40% ниже, чем у литий-ионных аккумуляторов. Сейчас мы работаем над улучшением этого показателя при сохранении скорости заряда-разряда », — говорит Олег Левин.

Изготовлен катод для новой батареи — положительный электрод для использования в химических источниках тока. Теперь нам понадобится отрицательный электрод — анод. На самом деле, его не обязательно создавать с нуля — его можно выбрать из существующих. Вместе они образуют систему, которая в некоторых областях может вскоре заменить литий-ионные батареи.

‘Новый аккумулятор способен работать при низких температурах и станет отличным вариантом там, где важна быстрая зарядка.Он безопасен в использовании — нет ничего, что могло бы создать опасность возгорания, в отличие от широко распространенных сегодня кобальтовых батарей. Он также содержит значительно меньше металлов, которые могут нанести вред окружающей среде. Никель присутствует в нашем полимере в небольшом количестве, но его гораздо меньше, чем в литий-ионных аккумуляторах », — говорит Олег Левин.

###



Журнал

Батареи и колпачки

Заявление об отказе от ответственности: AAAS и EurekAlert! не несут ответственности за точность выпусков новостей, размещенных на EurekAlert! участвующими учреждениями или для использования любой информации через систему EurekAlert.

Вечно через пять лет? Нет, батарейки под носом поправляются

Увеличить / В каком году снова появится Mr. Fusion, чтобы составить конкуренцию Tesla и др.?

Универсальные картинки

Трудно писать об исследованиях аккумуляторов в отношении этих компонентов, не услышав эха определенных комментариев еще до того, как они будут опубликованы: Его никогда не увидят на рынке. До холодного синтеза навсегда останется 20 лет, а до новой технологии батарей навсегда останется пять лет.

Этот скептицизм понятен, когда новый дизайн батареи обещает революцию, но он рискует упустить тот факт, что батареи стали лучше . Литий-ионные батареи уже давно воцарились — это правда. Но «литий-ионные» — это батареи категории , которые включают в себя широкий спектр технологий, как с точки зрения аккумуляторов, используемых сегодня, так и тех, которые мы использовали ранее. Многое можно сделать — и много было сделано — чтобы сделать литий-ионную батарею лучшего качества.Фактически, прирост количества энергии, которое они могут хранить, составляет порядка пяти процентов в год. Это означает, что емкость ваших нынешних аккумуляторов более чем в 1,5 раза выше, чем они были бы десять лет назад.

Литий-ионные батареи

эволюционировали, заметили вы это или нет. Вот как.

Почему литий-ионный рев?

Полезно начать с определения того, что делает аккумулятор «литий-ионным». Звезды шоу — это, очевидно, атомы лития, которые легко отдают электрон, образуя ионы.Каждая батарея имеет катод и анод, а между ними находится сепаратор и электролит. На катодной стороне литий находится в составе оксида металла, где он будет оставаться до тех пор, пока каждый атом удерживает этот электрон. После отделения от электрона ионы лития будут перемещаться через сепаратор и собираться на аноде. Освободившиеся электроны не могут пересечь разделитель, поэтому вместо этого они проходят через цепь, подключенную к двум электродам батареи.

Во время зарядки ионы и электроны лития накапливаются в аноде.Во время разряда электроны проходят через цепь, и ионы лития снова проходят через сепаратор, воссоединяясь по мере того, как литий осаждается обратно в структуру материала катода.

Увеличьте / узрите: литий-ионный аккумулятор.

Настоящая батарея состоит из трех слоев материалов: катодного материала, нанесенного на металлическую фольгу, разделительного слоя и анодного материала, нанесенного на другую металлическую фольгу. Сложите их вместе, и у вас будет карманный или призматический аккумулятор, который вы можете найти в своем телефоне или Chevy Bolt.Сверните слои в катушку, и у вас будет цилиндрическая батарея, как в электроинструментах или Tesla.

Реклама

Вы не можете избавиться от лития и по-прежнему называть его литий-ионным аккумулятором, но все остальное — честная игра. Для изготовления катода используется много разных материалов, и вы можете заменить сепаратор или попробовать другой химический состав электролита. Есть даже варианты материала анода, хотя один из них уже давно доминирует.

В первых попытках создания литий-ионных батарей в качестве анода использовался твердый металлический литий, но это приводило к серьезным проблемам со стабильностью. (Проблемы, над которыми до сих пор работают.) Прорывом стало использование графита в качестве анода. Графит занимает ценное пространство, не обеспечивая при этом дополнительной энергоемкости, но его пластинчатая структура обеспечивает безопасное размещение ионов лития, значительно увеличивая срок службы и безопасность. Благодаря этому в 1991 году появились первые литий-ионные аккумуляторы Sony.

Даже первые литий-ионные батареи имели большую плотность энергии, чем никель-металлогидридные батареи, удерживая больший заряд в меньшем пространстве при меньшем весе. Они также работают с более высоким напряжением ячеек, что может быть полезно. Конечно, не только солнце и единороги. Литий-ионные батареи более дорогие, а органический растворитель, используемый для электролита, легко воспламеняется, что создает опасность возгорания, с которой необходимо бороться.

Никель-металлогидридные батареи

продолжают использоваться в перезаряжаемых батареях AA и AAA, а также в гибридных транспортных средствах, которые не нуждаются в таком большом накоплении энергии.Но литий-ионный аккумулятор доминирует там, где пространство и вес имеют большое значение, в таких местах, как ноутбук или электромобиль.

Особый набор навыков

Батареи

обладают более чем одной или двумя важными характеристиками, поэтому они часто представлены в виде паутины (например, приведенной ниже). «Есть плотность энергии, есть удельная мощность, есть стоимость, есть срок службы, есть календарный срок, есть безопасность», — сказал Ars Венкат Сринивасан из Аргоннской национальной лаборатории.«Что обычно происходит в батареях, так это компромисс между этими разными вещами». Даже просто придерживаясь литий-ионных аккумуляторов, существуют конфигурации и конструкции, которые могут подчеркнуть некоторые из этих характеристик за счет чего-то еще. Например, можно немного повысить плотность энергии, но, возможно, это будет связано с более высокими затратами или сокращением срока службы.

Реклама Увеличить / Единый общий набор характеристик аккумулятора.

Это может быть одной из причин разочарования или скептицизма в отношении новостей об исследованиях аккумуляторов. Исследование может определить способ значительно улучшить одну характеристику, сделав захватывающий вывод о прибылях и убытках. Но дизайн может быть непрактично плохим по-другому. Хотя исследователи аккумуляторов учатся на том, что работает, а что нет, это означает, что многие лабораторные аккумуляторы, о которых вы можете прочитать, никогда не появятся на рынке.

Однако это также означает, что существует множество ручек, которые можно использовать для настройки конкретной конструкции батареи.Даже такие, казалось бы, незначительные вещи, как точная толщина анодного или катодного слоя, который осаждается на металлической фольге, могут повлиять на поведение. Например, чем толще катод по сравнению с его подложкой из фольги, тем выше удельная энергия батареи, поскольку фольга занимает меньшую часть общего объема. Но более толстый слой материала также означает более длительный путь для ионов и электронов лития. Это выделяет больше тепла во время работы от батареи и сокращает срок службы. С другой стороны, держите катод тоньше, и он сможет выдерживать более высокие скорости заряда и разряда, поскольку более короткий путь легче.

В небольших устройствах, где пространство ограничено, предпочтительны более дорогие конструкции с максимальной плотностью энергии. Электромобили отличаются, поскольку стоимость аккумулятора составляет значительную часть общей цены — добавление 20-процентной надбавки к аккумулятору может легко вывести автомобиль за пределы вашего бюджета. Жизненный цикл тоже должен быть намного больше. Уменьшение времени автономной работы телефона через два года в наши дни обычно считается нормой. Значительно уменьшенное время автономной работы в автомобиле через два года стало бы нарушением сделки.

Поскольку электромобили в настоящее время находятся на грани доступности и (по крайней мере, для некоторых) приемлемого диапазона и времени зарядки, небольшие улучшения в батареях здесь гораздо более заметны.

Что такое твердотельный аккумулятор для электромобиля?

Твердотельный аккумулятор — это перезаряжаемая система хранения энергии, аналогичная по общей структуре и принципу действия более знакомой литий-ионной батарее. Они отличаются тем, что литий-ионный аккумулятор содержит жидкий электролит, а твердотельный аккумулятор — как следует из названия — имеет твердый.Это позволяет твердотельным батареям быть легче, иметь большую плотность энергии, обеспечивать больший радиус действия и быстрее заряжаться. Задача сделать твердотельные батареи жизнеспособными — это разработка технологии, обычно используемой в небольших устройствах, и ее применение в крупномасштабных приложениях, таких как электромобили.

Какой тип батареи используется в электромобиле?

Первым серийным электромобилем стал EV1, выпущенный General Motors в 1996 году. Специально построенный с нуля 2-местный купе имел запас хода 78 миль и разгонялся до 50 миль в час за 6 километров. .3 секунды, а для полной зарядки потребовалось более 5 часов. Его питал свинцово-кислотный аккумулятор.

Когда всего три года спустя было выпущено второе поколение EV1, его источник питания переключился на никель-металлогидридный аккумулятор, и запас хода почти удвоился до 142 миль.

В тот момент, когда выводился из обращения EV1, Tesla Motors вошла в автомобильную сферу со своим Tesla Roadster, первым серийным электромобилем с аккумуляторной батареей, в котором использовались литий-ионные батареи. Как говорится, остальное уже история.

Что такое литий-ионный аккумулятор и как он работает?

Литий-ионные батареи стали стандартом для питания многих устройств, от бытовой электроники, такой как мобильные телефоны и ноутбуки, до мобильных и транспортных средств, таких как велосипеды и автомобили.

В отличие от свинцово-кислотных и никель-металлогидридных батарей прошлого, литий-ионные батареи сконструированы с жидким электролитом для управления потоком энергии между катодом и анодом. Преимущества литий-ионной батареи включают более длительный срок службы батареи, лучшую производительность при различных температурах, пригодные для повторного использования компоненты и более высокую плотность энергии.Плотность энергии — это количество энергии, которое батарея может хранить на единицу веса. Проще говоря, чем выше плотность, тем выше выходная мощность.

Несмотря на множество преимуществ, у литий-ионных аккумуляторов есть недостатки. Несмотря на то, что он легче, чем старые аккумуляторные батареи, его жидкие внутренние части все же делают ионы лития довольно тяжелыми. Они также лучше работают в штабелируемых упаковках, что увеличивает их вес. Кроме того, электролиты легко воспламеняются, могут быть нестабильными при экстремальных температурах и в случае повреждения или неправильного заряда могут привести к взрывам или пожарам.Нет недостатка в новостях, охватывающих все, от сотовых телефонов до самолетов, которые загорелись из-за проблем с аккумулятором.

Что такое твердотельный аккумулятор и как он работает?

Благодаря устранению всплескивающего горючего жидкого электролита твердотельные батареи по умолчанию становятся более стабильными и компактными. Твердый электролит может состоять из любого количества повседневных материалов, таких как керамика и стекло.

Твердотельные батареи уже много лет используются в небольших устройствах, таких как кардиостимуляторы, а также в устройствах RFID и носимых устройствах.Меньшее количество кусочков означает, что меньше вещей может пойти не так. В дополнение к повышенной безопасности, размеру и стабильности твердотельные батареи в электромобилях также будут предлагать более быстрое время зарядки, больший диапазон перемещения и даже большую плотность энергии.

Твердотельные аккумуляторы могут быть заряжены до 80 процентов за 15 минут и меньше нагружаются после нескольких циклов зарядки. Литий-ионный аккумулятор начнет разряжаться и терять емкость после 1000 циклов. С другой стороны, твердотельная батарея сохранит 90 процентов своей емкости после 5000 циклов.

Когда в электромобилях будут использоваться твердотельные батареи?

Несмотря на все преимущества, увеличение производства до уровня, необходимого для использования в электромобилях, остается дорогостоящим мероприятием. Помните, что твердотельные батареи славятся умными часами и регулятором сердцебиения.

Затраты на разработку и производственные трудности являются ключевыми недостатками при производстве твердотельных батарей для массовых электромобилей. Но так же, как литий-ионные батареи стали более доступными, идея состоит в том, что и твердотельная версия тоже станет такой же.А автопроизводители вкладывают огромные средства в эту технологию, особенно с учетом стратегии бренда с нулевым уровнем выбросов и линейки автомобилей, предназначенных только для электромобилей.

BMW и Ford инвестируют 130 миллионов долларов в Solid Power, стартап по производству твердотельных батарей в Колорадо. Hyundai вкладывает 100 миллионов долларов в SolidEnergy Systems, дочернюю компанию Массачусетского технологического института. Toyota, которая сотрудничает с Panasonic, объявила, что в этом году дебютирует прототип внедорожника с твердотельной батареей.Также инвестируют General Motors и Volkswagen.

Сводка

Audi, Bentley, Dodge, Jaguar, Jeep, Land Rover, Lotus, Mazda, MINI, Nissan, Volvo — практически все автопроизводители от A до V обнародовали свои планы электрификации и целевые даты по нулевым выбросам. Некоторые пошли еще дальше и объявили, что бензиновые и дизельные двигатели перестанут использоваться в моделях к 2050 году.

Но электромобили должны быть прибыльными для автопроизводителей, доступными для потребителей и полностью заменять автомобили, оснащенные оборудованием. с двигателем внутреннего сгорания (ДВС).Тем не менее, даже с большим количеством вариантов электромобилей, чем когда-либо, автомобили с бензиновым двигателем продолжают доминировать на рынке. В конце концов, ископаемое топливо дешево, выбор транспортных средств по-прежнему велик, а дозаправка занимает считанные минуты.

Тем не менее, привлекательность твердотельных батарей не вызывает сомнений, и их потенциал может заставить автопроизводителей сдержать свои производственные обещания. Электромобили уже соответствуют или превосходят своих коллег с ДВС в конструкторском отделе. Избавьтесь от беспокойства по поводу дальности действия, обеспечьте паритет цен и предложите привлекательную производительность, и, возможно, потребители искренне купятся в будущем, когда будут полностью электромобили.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *