Однофазные автоматы: цены от 7 рублей, отзывы, производители, поиск и каталог моделей – интернет-магазин ВсеИнструменты.ру

Содержание

Однофазные автоматы в цепях ТН. (Страница 1) — Трансформаторы тока (ТТ), напряжения (ТН) и их вторичные цепи — Советы бывалого релейщика

Boris пишет:

На GE-шных машинах (LM2500, LM6000) которые к нам в страну поставляются, рекомендуемая схема в цепях ТН — предохранители. Так как по ПУЭ у нас («Трансформаторы напряжения должны быть защищены от КЗ во вторичных цепях автоматическими выключателями») проектировщики часто бездумно меняют на трех фазные автоматы в паре проектов видел (да и сам так чуть не сделал, вовремя одумался) , там тоже от  60FL  дистанционки блокируются. В этом случае однофазные автоматы — как раз тот случай когда «и овцы целы, и волки сыты».

Не факт, что проектировщики меняют предохранители бездумно. В инструкции по проверке ТН (приложение 2, п. 1.3) сказано, что установка автоматических выключателей необходима для обеспечения эффективного действия устройств блокировки при неисправности цепей напряжения, так как предохранители могут перегорать недостаточно быстро. В этой же инструкции, п. 2.5.1, сказано, что предохранители можно устанавливать только на ТН, от которых не питаются быстродействующие защиты.

scorp пишет:

В КРУЭ, от ТН до ШМУ,где стоят автоматы, расстояние часто больше 10-15 м и этот участок, как понимаете, ничем не защищается.

Согласно той же инструкции по проверке ТН, п. 2.5.2, в цепи разомкнутого треугольника ТН 6-35 кВ защитные аппараты должны устанавливаться при длине кабеля 10 м и более. То же самое говорится в типовой работе Энергосетьпроекта № 407-03-484.87, альбом 1, п. 2.4.2. Эту длину кабеля можно принять как рекомендательную и для защиты кабеля в цепях напряжения звезды. В этой же работе Энергосетьпроекта, в п. 2.12.6 говорится, что прокладка и монтаж кабелей от ТН до шкафа с автоматами должны осуществляться с повышенной надёжностью, а изоляция кабеля должна быть на напряжение не менее 1000 В. В более новой работе Энергосетьпроекта № 3290тм-Т2 от 1995 г. в п. 2.2 говорится, что автоматы и рубильники должны устанавливаться в непосредственной близости от ТН.


dominator пишет:

А в фазе B ведь не должно быть автоматов, иначе земля рвется?

Однозначно не должно быть автоматов между ТН и точкой заземления, чтобы обмотки ТН всегда оставались заземлёнными. А вот между точкой заземления и нагрузкой прямого запрета на коммутационные аппараты в цепях напряжения нет. Думаю потому, что заземлённая цепь фазы B не является защитным проводником для устройств, подключаемых к цепям напряжения. Есть только требование об обязательности установки автоматов в незаземлённых цепях напряжения.

Таким образом, схема из сообщения № 7 может применяться, но при этом следует иметь в виду, что автомат в цепи фазы B не будет защищать от КЗ на землю. Видимо, поэтому в заземлённой цепи автомат не устанавливают.
Я бы вообще применял в цепях звезды вместо трёхполюсных четырёхполюсные автоматы. То есть рвал бы все цепи, как это делается при подключении счётчиков (по трёхпроводной схеме). Как мне кажется, это несколько повышает безопасность персонала.
В случае применения однополюсных автоматов, наоборот, некоторое повышение безопасности будет при неразрывности заземлённой цепи.

Post’s attachments

100_0204.JPG 784.84 Кб, 2 скачиваний с 2017-01-03 

100_0206.JPG 756.84 Кб, файл не был скачан. 

IMG_8371.jpg 710.74 Кб, файл не был скачан. 

Инструкция по проверке ТН и их вторичных цепей.pdf 11.63 Мб, 14 скачиваний с 2017-01-03 

You don’t have the permssions to download the attachments of this post.

Нужно ли ставить автомат на ноль. Можно ли рвать ноль автоматом

Друзья, как известно для защиты электропроводки применяются автоматические выключатели. Если рассматривать однофазную сеть (фаза и ноль) то здесь могут применяться однополюсные или двухполюсные автоматы. В данной статье, я бы хотел разобраться, в каких случаях применяются те или иные автоматические выключатели и нужно ли ставить автомат на ноль.

В 90 % случаев однофазного питания применяются именно однофазные автоматы, которые при аварии связанной с появлением больших токов отключают только фазу. Нулевой провод при этом не разрывается так как заводится и подключается напрямую к нулевой шине.

Применение двухполюсных автоматических выключателей в данном случае позволяет разрывать одновременно фазу и ноль. Такие автоматы применяют если необходимо запитать потребителей отдельной линией, например водонагреватель, розетку для стиральной машинки, электроплиту. Это очень удобно, если возникает необходимость полностью отсоединить таких потребителей от электрической сети – одним щелчком отключается фаза и ноль.

К тому же двухполюсные автоматы применяют в качестве вводных и устанавливают перед счетчиком электроэнергии. Давайте рассмотрим, в каких случаях допускается разрывать нулевой провод и почему в большинстве силовых схем ставить двухполюсный автомат запрещено.

Можно ли разрывать нулевой провод автоматическим выключателем

Согласно ПУЭ в однофазных сетях могут использоваться как однополюсные, так и двухполюсные автоматические выключатели.

В каких случаях должен ставиться двухполюсный автомат, а в каких достаточно однополюсного? Чтобы ответить на этот вопрос необходимо хорошо ориентироваться в библии электриков – ПУЭ.

Но не стоит пугаться друзья, по ходу статьи я буду ссылаться на различные пункты этого нормативного документа, так что Вам не придется сидеть и тратить время на поиски ответа на данный вопрос. Чтобы ответить на вопрос можно ли рвать нейтраль питающего кабеля, необходимо знать какая система заземления используется в вашем доме. Самыми популярными на сегодняшний день являются система заземления TN-C и TN-S. Основное отличие между ними это способ эксплуатации нулевых и защитных проводников.

Таким образом, вопрос о том, нужно ли ставить автомат на ноль, правильней было бы сформулировать так: когда допускается разрыв фазы без нуля, а когда этого делать нельзя ни при каких условиях.

Можно ли ставить автомат на ноль в системе заземления TN-C?

Наиболее устаревшей и часто встречающейся в домах старой постройки является система заземления типа TN-C.

Суть электроснабжения в данном случае заключается в том, что нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике, который называется PEN. При однофазном питании в такой системе в электрощит заводится два проводника – фазный (L) и нулевой (PEN). При трехфазном питание в щит будет заходить четыре проводника: три фазы и PEN.

Чтобы ответить на вопрос можно ли ставить автомат на ноль в такой схеме для начала давайте рассмотрим пункт 1.7.145 ПУЭ в котором сказано.

Как видно друзья в данном случае согласно пункта 1.7.145 ПУЭ ЗАПРЕЩЕНО рвать проводник PEN, то если запрещено устанавливать в него какие либо коммутационный аппараты.

В данном случае, если завести на автомат PEN проводник – это будет равносильно тому, что при срабатывании автоматического выключателя одновременно будет рваться и защитная шина, что из соображений безопасности совершенно недопустимо. В частности это касается случая, когда по причине неисправности автомата фазный контакт останется замкнутым (например, произойдет залипание или подгорание контактов). При случайном прикосновении к нему человек ничем не будет защищен.

Поэтому при электроснабжении квартиры или частного дома по системе TN-C необходимо

устанавливаться однополюсный автомат. В случае трехфазного питания на его место ставится 3-хполюсное коммутирующее устройство, в то время как PEN проводник подключается напрямую на электросчетчик или на нулевую шину.

Вывод из этого один – запрещено подключать нулевой проводник через автомат в системе TN-C. Правда, в реальных ситуациях допускается пропускать нулевой провод через двухполюсный автомат (4-х полюсный для цепей питания 380 Вольт) и при системе заземления TN-C.

Но это возможно лишь при условии, что в линии однофазного (3х фазного) ответвления предусмотрено специальное расщепление PEN проводника на отдельные PE и N шины с одновременным обустройством повторного заземления!

Нужно ли ставить автомат на ноль в системе заземления TN-S?

Питание по системе заземления TN-S подразумевает разделение проводников N и PE на всем протяжении, начиная от источника питания (конкретно ТП) и заканчивая конечным потребителем.

В этом случае нулевой рабочий и нулевой защитный проводники подключаются к разным шинам. Систему TN-S легко определить, заглянув в электрощиток. При трехфазном вводе в электрощит будет заходить пять проводов: три фазы, ноль и заземление. При однофазном питании три провода: фаза, ноль и заземление. Схема питания при трехфазном и однофазном подключении будет иметь примерно следующий вид.

Согласно ПУЭ пункт 1.7.145 заземляющий проводник (PE) запрещается рвать любыми коммутационными аппаратами, включая автоматические выключатели. А так как заземляющий и нулевой проводники разделены, то нулевой проводник разрешается заводить в автомат. Следовательно в системе заземления TN-S ДОПУСКАЕТСЯ разрывать нулевой рабочий проводник.

Друзья еще хочу акцентировать внимание что при подключении нужно использовать многополюсные автоматические выключатели, которые будут одновременно отключать нулевой проводник совместно со всеми фазными проводниками. ЗАПРЕЩЕНО устанавливать два независимых автомата на фазу и ноль. В правилах ПУЭ пункт 3.1.18 вот что сказано на этот счет.

Какой можно сделать вывод из всего этого. Согласно ПУЭ нет четного требования «нужно» или «необходимо» разрывать нулевой рабочий проводник в системе заземления TN-S. Там четко сказано «допускается», и следовательно вам решать нужно ли ставить автомат на ноль или нет.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Автоматический выключатель автомат 63 А однофазный однополюсный С характеристика

Недорогой и надежный автоматический выключатель (автомат) 63 А однофазный однополюсный B характеристика ток К.З. 6кА.

Есть характ. В, C и D, 1-2-3-4 пол, 10кА

Неоспоримое преимущество – бескомпромиссное качество по доступной цене
  

Автоматические выключатели серии Sigma предназначены для защиты электрических цепей от токов короткого замыкания и токов перегрузки.

Автоматический выключатель Сигма производится от номинала 2А и (внимание!!!) до 125А в 1-2-3-4 полюсном исполнении.

Автоматы серии Sigma производятся для следующих токов КЗ — 3 kA, 4.5 kA, 6 kA, 10 kA и 16kA в соответствии со стандартами EN 60898-1, EN 60947-2 и VDE 0660. Автоматические выключатели так же соответствуют директиве для низковольтного оборудования «Low Voltage Directive (LVD) 73/23/EEC».

Кабель сечением до 25 мм2 может быть легко подсоединен к автомату, который в свою очередь легко монтируется на стандартную 35 мм DIN рейку  в соответствии с EN 50022.

Кроме того, возможен монтаж шины.

 Максимальный момент затяжки кабеля- 2 Нм. Хотя подводящий кабель можно монтировать и снизу и сверху, завод производитель рекомендует подвод в автоматы делать сверху. Клемные зажимы выполнены со степенью защиты IP20, в соответствии со стандартом EN60529.

Все автоматические выключатели серии Сигма безопасны в использовании и имеют возможность опломбирования.

Важно: любой автоматический выключатель или узо (дифреле) или любую другую нашу продукцию можно купить как по безналичному расчету, так и за наличные с оформлением всех нужных Вам документов. Обратите пожалуйста внимание на то, что цены указаны розничные — то есть без учета возможной скидки!!!

  Выбор автомата в соответствии с расцепляющей характеристикой

  • Тип B автоматических выключателей предназначен для средне индуктивных нагрузок, у которых небольшие (или вообще отсутствуют) скачки потребления тока при включении, например электронагреватели воды радиаторы отопления, электропечи и прочее.
     
  • Тип C автоматических выключателей предназначен для широкого круга нагрузок —  освещение, кондиционеры, насосы и другие небольшие электродвигатели.
     
  • Для включения устройств с большими пусковыми токами, такие как например трансформаторы, сварочное оборудование, индуктивные двигатели подходят автоматические выключатели типа D.


 Защита цепей постоянного тока — DC цепи

Характеристики терморасцепителя автоматических выключателей серии SIGMA практически не зависят от вида тока — будь то постоянный ток или переменный. В тоже время величину для магнитного расцепителя при выборе автомата необходимо увеличить на 40%.

Например, для автомата с характеристикой расцепления B с номинальным током 10A его магнитный расцепитель сработает  в диапазоне 30A — 50A при переменном токе. Для постоянного тока магнитный расцепитель этого же автомата сработает в диапазоне 42.4A — 70.7A. 

Так же необходимо учитывать что для обеспечения расцепляющей способности при КЗ для постоянного тока для величин напряжения до 48V можно использовать однополюсный автомат, для напряжений между 48 и 110V — двухполюсный, для диапазона 110 — 150V трехполюсный и четырехполюсный для напряжения до 200V.

 Влияние нестандартной частоты

Для выбора автоматического выключателя для цепей с частотами превышающими обычные 50/60Hz, нужно учитывать эффект, оказываемый на изделие такой частотой. На работу терморасцепителя частота не оказывает влияние. Магнитный же расцепитель непосредственно подвержен влиянию частот. Необходимо принимать в расчет при частотах  100, 200, 300 and 400Hz, величины токов магнитного расцепителя автоматов будут увеличивается соответственно на 10, 20, 30 and 40%.

 Потери

Автоматы серии Sigma разработаны так, что потери энергии в них сведены к минимуму и значительно меньше чем это требуют стандарты отрасли(EN 60898-1).
 

Как подключить электрический автомат?

Когда в квартире разведена проводка, пришло время установки электрических автоматов и распределительного щитка. Концы всех проводов, которые установлены на стенах, должны быть подписаны, промаркерованые и зачищены для подключения к автоматам.

Электрические автоматы предназначены для включения/выключения общего питания помещения, включая розетки и выключатели для освещения.

Если в доме есть мощное оборудование, требующее большего питания, его следует выводить на отдельные автоматы. Есть, также защитные автоматы, которые называются УЗО, предназначены для защиты человека от поражения током.

Как подключить проводку к автомату.

Процесс установки и подключения проводки к автомату требует внимательности и знаний инструкций и схем подключения. Каждый автоматический выключатель должен соответствовать своему назначению в распределительном щитке.

Для этого следует поделить провода на узлы (прихожая, спальня, коридор, кухня, санузел, котел).

Когда все готово для подсоединения проводки к электрическим автоматам, необходимо переходить к подключению:

  • сперва автомат крепится на специальную, металлическую рейку (din-рейка). Для этого с тыльной стороны автомата нужно отщелкнуть зажимной клапан вниз. Потом вставить автомат в щиток на планку и защелкнуть зажим, подняв его вверх;
  • зачищаем кончики проводов. Провода крепятся при помощи специальных зажимов, потому, ослабеваем винтовые крепления и вставляем вводной провод в гнездо верхнего зажима. Затем зажимаем крепежный винт до упора, только нужно следить, чтоб не пережать его.
  • в гнездо нижнего зажима вставляем провод, идущий с одного из узлов, и зажимаем его;
  • один автомат уже подключен. Такую же операцию нужно провести со всеми автоматами.

После подключения силового провода к автомату необходимо подключить нулевые провода и провода заземления на соответствующие шины.

Как подключить однофазный автомат.

Однофазный автоматический выключатель выполняет 2-е основные функции: защищает от перепадов напряжения и тепловых перепадов, при нагрузке на кабелях.

Перепады напряжения очень частое явление. Оно может возникнуть при коротком замыкании, после чего напряжение в кабелях может достичь до 100А. Электрический автомат сразу отключает питание. Таким образом, предотвращается повреждение проводки.

Что касается тепловой защиты, то она производит отключение питания в случае превышения, более 5А, номинального ампеража автоматического однофазного выключателя.

Это сделано специально, чтобы исключить ложные отключения автомата, в момент запуска оборудования.

Для бытовой проводки, напряжением 220В и частотой 50Гц, достаточно будет однофазного автомата номиналом 25А.

Автоматы устанавливаются только на фазные провода. Чтобы правильно подключить однофазный автомат, необходимо:

  • установить автомат на специальную металлическую рейку, при помощи тыльных зажимов;
  • затем послабить крепежные винты снизу и сверху;
  • сначала подключаем верхний провод (ввод). Вставляем его в клемму и затягиваем до упора;
  • в нижнюю клемму нужно вставить провод потребителя электроэнергии и закрепить его также до упора.

Как подключить трехфазный автомат.

Трехфазный автоматический выключатель по принципу работы похож на однофазный автомат, только он имеет три, и более контактов. Фазные провода проходят через него, благодаря чему одновременно осуществляется коммутация фаз.

Категорически запрещено использование одинарных автоматов в замену трехфазному автоматическому устройству.

Применяется он для защиты трехфазных потребителей (электродвигатель, сварочный аппарат, иное оборудование). Также, может применяться для защиты 3-х фаз однофазных электрических систем.

Есть еще возможность подключения трехфазного автомата к двум проводам однофазной, двухпроводной системе. В этом случае обеспечивается присоединение нулевого провода и фазного провода.

При коротком замыкании или нагрузки, трехфазный автомат отключит двопроводниковую однофазную систему.

Смотрите также:

Как подключить УЗО? http://euroelectrica.ru/kak-podklyuchit-uzo/.

Интересное по теме: Как подключить УЗО и автомат?

Советы в статье «Как подключить электросчетчик и автоматы?» здесь.

Его выгодно использовать в качестве средства автоматизации, позволяющее производить отключения разных нагрузок, по срабатыванию основной нагрузки.

Подключение трехфазного автомата осуществляется по принципу:

  • — провода питания подключаются к верхним клеммам автомата. Необходимо ослабить зажимные винты, вставить провода и зажать их;
  • — к нижним клеммам подключаются провода потребителя. Ослабляются крепежные винты, вставляются провода и зажимаются до упора.

Автомат c16 — описание, маркировка и сфера применения

Взамен пробкам и пакетникам производители предлагают на выбор различные варианты модульных приборов, которые крепят на DIN-рейку. Среди многообразия изделий большим спросом пользуется автомат 16А. В чем причина его популярности, что нужно знать о приборе при выборе и во время монтажа?

Общие характеристики

В устройство встроены 2 вида расцепителей. Тепловой реагирует на нагревание кабеля. Поэтому в жаркую погоду срабатывание может иметь ложный характер. При разной перегрузке на автоматическое отключение уходит следующее количество времени (в Амперах):

  • 18,08 — через час;
  • 23,2 — в течение нескольких минут;
  • 40,8 — до 60 секунд.
Автомат С16

Электромагнитный расцепитель предназначен для отключения автомата во время предельных значений во время короткого замыкания. Погрешность у бытовых приборов может составлять плюс/минус 33 %. Реакция на различные пределы может быть следующей (в Амперах):

  • 80 — более, чем через 0,1 секунду;
  • 160 — через менее 0,1 секунду;
  • 4500 — может остаться пригодным для дальнейшей эксплуатации после отключения;
  • 6000 — выходит из строя, при этом есть риск, что не сработает из-за расплавленных контактов.
Реакция на сильное КЗ

Пропускная способность устройства однополюсного и с большим количеством полюсов равна 16 А, то есть мощность составляет 3520-3680 Ватт (для сети в 220-230 Вольт).  При силе тока равном или меньшем значении автомат не отключится при положительной температуре в 30 градусов по Цельсию.

Корпус автомата не имеет защиты от прямого попадания воды. Поэтому устанавливать его можно в отапливаемом и проветриваемом помещении или в герметичном щитке. Задняя стенка изготовлена с пазом для крепления устройства на DIN-рейку шириной 35 мм.

Маркировка

Обыватель обращает внимание только на название бренда и ампераж, которые производитель наносит на корпус с помощью лазерной техники или несмываемой краски. Для профессионалов важны все показатели. В зависимости от автомата количество характеристик может быть разным.

Маркировка

Вот, что скрывается под цифрами и буквами на лицевой стороне:

  • ABB, IEK, Legrand — логотип изготовителя.
  • S, SH, Acti, Easy, BM, TX — линейная серия модульного изделия. За буквой могут следовать различные цифры.
  • 6, 10, 16 и более — максимальное значение тока, при котором не происходит размыкание цепи. Стоит отметить, что показатель актуален при температуре +30 градусов по Цельсию. Срабатывает изделие на перегрузку, равную 13-55%. Если будет холоднее, то автомат отключится при большей нагрузке, а в жару наоборот.
  • 230V, 400V — напряжение сети (однофазное или трехфазное), при котором допускается применение.
  • 4500, 6000 или 10000 — предел (коммутационная способность), при котором во время короткого замыкания происходит отключение. При этом устройство не выходит из строя. Если произошло КЗ с превышающим значением, то магнитный расцепитель с ним не справится, устройство перегорит. Показатель заключен в прямоугольник.
Пределы КЗ
  • 1, 2 или 3 рядом с КЗ — указатель на скорость гашения электрической дуги (от 10 мс, от 6 мс и от 2,5 мс соответственно). При КЗ жилы нагреваются, что сказывается на изоляции. Чем быстрее сработает автомат, тем целее будет проводка и само устройство. Первый класс, как правило, не указывают.
  • В, С, D, К, Z перед амперажем — время автоматического отключения устройства при коротком замыкании или перегрузке в сети. В быту чаще применяют изделия с характеристикой типа С, реже В и D. Например, С16 отключится при 80-160А, а В16 при 46-80А. То есть второй сработает позднее. Разница состоит в долях секунды.
  • Волна или прямая линия — можно использовать в сетях переменного или постоянного напряжения. Эти знаки расположены рядом с номинальным напряжением.
Напряжение
  • 50/60 Гц — частота колебаний в сети. Показатель не всегда указывают, так как в большинстве своем бытовая техника работает в одном режиме.
  • Схема подключения. 1, 3, 5 и 2, 4, 6 — верхний (питающий) и нижний (нагружаемый) контакты. N — полюс для подключения нулевой жилы.

На боковой плоскости указано:

  • ГОСТ или IEC/EN — соответствие стандартам (российский или международный).
  • U — рабочее напряжение.
  • Icn — максимальное значение отключающей способности.
  • I — предел электромагнитного отключения.
  • Uimp — импульсное удерживаемое напряжение.
  • Ui — напряжение изоляции.
  • Deg — степень загрязнения, которая зависит от конденсации влаги.
  • Cat — категория применения относительно селективности.
  • Штрих-код или QR-код — информация о продукте, которую при считывании специальным устройством получают на торговой площадке.
Штрих-код

Кроме того, производитель указывает на момент затяжки, количество полюсов, тип расцепителя. Дифференциальные автоматы имеют дополнительную маркировку.

Сечение кабеля для автомата с16

В жилых домах, как правило, используется однофазная сеть. Поэтому проводку выбирают с 2 или 3 жилами. Их диаметр в поперечном сечении должен соответствовать установленному электроавтомату на 16 ампер. Максимально допустимый диаметр составляет 25 кв. мм, но показатель зависит также от металла, из которого состоит кабель. Вот их сравнительная характеристика:

Металл в проводах
КритерийАлюминиевый проводМедный провод
Поперечное сечениеОт 2,5 кв.  ммОт 0,35 кв. мм
Проводимость токаДо 3 кВт при минимальном сеченииПоказатель выше примерно в 1,6 раза
Срок службы15-20 летОколо 50 лет
ПрочностьВо время сгибания жила легко надламываетсяБлагодаря пластичности металла, проводку можно прокладывать под любым углом. Показатель хрупкости при одинаковом сечении в 2-3 раза ниже.
Удобство монтажаЧтобы запитать современную розетку, нужен провод с сечением в 4 кв. мм. Встроенные клеммы имеют допустимое значение в 3 мм. То есть, подключение с номиналом в 16А исключается.Для аналогичной задачи (розетка на 16А) требуется кабель с сечением жил, равным 1,5-2,5 кв. мм. То есть сложностей во время монтажа не возникает.
ОкислениеУчасток с отсутствующей изоляцией быстро окисляется. Оказываемая пленкой сопротивляемость снижает показатель допустимой нагрузки на контакты. Поэтому используют специальную кварце-вазелиновую пасту.Патина хорошо проводит ток, поэтому на сопротивляемость в узловых соединениях влияния не оказывает.
Клеммы в розетке

Несмотря на заметную разницу в стоимости материалов (алюминиевая проводка дешевле в 2-3 раза), прокладывают в большинстве своем медный кабель. При выборе сечения жил опираются на характер автомата и способа размещения проводов.

Для защитного устройства на 16А медная жила должна иметь сечение в 2,5 кв. мм. Это соответствует предельному для нее напряжению в 21А в замурованном в стены положении, 30А в открытом (контактирует с внешней средой, а значит легко отдает тепло при нагревании).

Если взять провод с сечением 1,5 кв. мм, то в течение часа он перегреется и выйдет из строя. Это обосновано максимально допустимым током, равным 18 А.

Монтаж внутри и снаружи стен

Сфера применения

Функционально устройство выполняет защитную функцию по отношению к проводам. Во время замыкания или перегрузки происходит процесс нагревания жилы, плавление изоляции и последующее возгорание. Чтобы этого не произошло, устанавливают автомат, который отключается раньше, чем напряжение достигает номинальных для провода пределов.

Автоматические выключатели с16 используют в качестве вводного устройства перед счетчиком. Устанавливают его в щитках квартир, частных домов, офисов. Как правило, к устройству подключают разводку на розетки для электрических приборов.

Важно! Если к одному кабелю подведен блок из 2-5 гнезд, то ставится отдельный автомат. Тоже касается стиральной машинки.

Распределение нагрузки

Схема подключения автомата

На лицевой стороне автоматического выключателя на 16 Ампер можно увидеть схему подключения. Это не обязательно, но начинающему электрику эта маркировка показывает количество полюсов, места подключения подающей и передающей фазы, нулевой жилы.

Так, с помощью зажимных пластин и винтов, в верхней части прибора фиксируют подходящий контакт, а в нижней — отходящий. Нулевой провод подключается в указанном производителем месте (N). Для заземления в щитке устанавливают отдельную от автомата клемму.

Зная то, что скрывается под маркировкой автоматического выключателя, можно самостоятельно сделать правильный выбор. Это касается как самого устройства, так и проводов (материал, поперечное сечение). Информация о схеме подключения позволит осуществить монтаж прибора своими руками.

Однофазный асинхронный двигатель

— конструкция, работа и типы

Однофазный асинхронный двигатель

— Устройство, работа и типы однофазных асинхронных двигателей

Однофазные двигатели более предпочтительны, чем трехфазные асинхронные двигатели для бытовых и коммерческих применений. Поскольку от электросети доступно только однофазное питание. Таким образом, в этом типе применения нельзя использовать трехфазный асинхронный двигатель.

в следующем посте мы покажем конструкцию и различные типы однофазных асинхронных двигателей с рабочими характеристиками и приложениями.

Конструкция однофазного асинхронного двигателя

Однофазный асинхронный двигатель аналогичен трехфазному асинхронному двигателю с короткозамкнутым ротором, за исключением того, что на статоре установлены однофазные две обмотки (вместо одной трехфазной обмотки в трехфазных двигателях), а ротор с клеточной обмоткой расположен внутри статора. который свободно вращается с помощью установленных на валу двигателя подшипников.

Конструкция однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя.

Подобно трехфазному асинхронному двигателю, однофазный асинхронный двигатель также состоит из двух основных частей;

Связанное сообщение: DC Machine — Construction, Working, Types and Applications

Статор

В статоре разница только в обмотке статора. Обмотка статора однофазная, а не трехфазная. Сердечник статора такой же, как сердечник трехфазного асинхронного двигателя.

В однофазном асинхронном двигателе в статоре используются две обмотки, за исключением асинхронного двигателя с экранированными полюсами.Из этих двух обмоток одна обмотка является основной, а вторая — вспомогательной.

Сердечник статора ламинирован для уменьшения потерь на вихревые токи. Однофазное питание подается на обмотку статора (главную обмотку)

Ротор

Ротор однофазного асинхронного двигателя такой же, как ротор асинхронного двигателя с короткозамкнутым ротором. Вместо обмотки ротора используются стержни ротора, которые замыкаются на конце концевыми кольцами. Следовательно, он проходит полный путь в цепи ротора.Стержни ротора прикреплены к концевым кольцам для увеличения механической прочности двигателя.

Прорези ротора перекошены под некоторым углом, чтобы избежать магнитного сцепления. К тому же это использовалось для того, чтобы мотор работал плавно и тихо.

На следующем рисунке показаны статор и ротор однофазного асинхронного двигателя.

Работа однофазного асинхронного двигателя

Однофазное питание переменного тока подается на обмотку статора (главную обмотку). Переменный ток, протекающий через обмотку статора, создает магнитный поток.Этот поток известен как основной поток.

Теперь предположим, что ротор вращается и находится в магнитном поле, создаваемом обмоткой статора. Согласно закону Фарадея, ток начинает течь в цепи ротора, это близкий путь. Этот ток известен как ток ротора.

Из-за тока ротора вокруг обмотки ротора образуется магнитный поток. Этот поток известен как поток ротора.

Есть два потока; Главный поток , который создается статором , а второй — поток ротора , который создается ротором .

Взаимодействие между главным магнитным потоком и магнитным потоком ротора, крутящий момент, создаваемый в роторе, и он начинает вращаться.

Поле статора имеет переменный характер. Скорость поля статора такая же, как синхронная скорость. Синхронная скорость двигателя зависит от числа полюсов и частоты питания.

Может быть представлен двумя вращающимися полями. Эти поля равны по величине и вращаются в противоположном направлении.

Допустим, Φ м — это максимальное поле, индуцированное в основной обмотке.Таким образом, это поле разделено на две равные части: Φ м /2 и Φ м /2.

Из этих двух полей одно поле Φ f вращается против часовой стрелки, а второе поле Φ b вращается по часовой стрелке. Следовательно, результирующее поле равно нулю.

Φ r = Φ f — Φ b

Φ r = 0

Теперь рассмотрим результирующее поле в разные моменты времени.

Когда двигатель запускается, индуцируются два поля, как показано на рисунке выше. Эти два поля имеют одинаковую величину и противоположное направление. Итак, результирующий поток равен нулю.

В этом состоянии поле статора не может разрезаться полем ротора, и результирующий крутящий момент равен нулю. Итак, ротор не может вращаться, но издает гудение.

Теперь представьте, что после поворота на 90 ° оба поля повернуты и указывают в одном направлении. Следовательно, результирующий поток является суммой обоих полей.

Φ r = Φ f + Φ b

Φ r = 0

В этом состоянии результирующее поле равно максимальному полю, индуцированному статором. Теперь оба поля вращаются отдельно, и это альтернативный характер.

Итак, оба поля отсекаются цепью ротора и ЭДС, индуцированная в проводнике ротора. Из-за этой ЭДС в цепи ротора начинает течь ток, который индуцирует поток ротора.

Из-за взаимодействия магнитного потока статора и магнитного потока ротора двигатель продолжает вращаться. T его теория известна как теория двойного вращения или двойного вращающегося поля теория .

Теперь, исходя из приведенного выше объяснения, мы можем сделать вывод, что однофазный асинхронный двигатель не самозапускается.

Чтобы сделать этот двигатель самозапускающимся двигателем, нам нужен поток статора, вращающийся по своей природе, а не по переменной природе. Сделать это можно разными способами.

Однофазный асинхронный двигатель можно классифицировать по способам пуска.

Типы однофазных асинхронных двигателей

Однофазные асинхронные двигатели классифицируются как;

  • Асинхронный двигатель с расщепленной фазой
  • Асинхронный двигатель с экранированными полюсами
  • Асинхронный двигатель с конденсаторным пуском
  • Конденсатор Запуск конденсатора Асинхронный двигатель
  • Асинхронный двигатель с постоянным конденсатором
Асинхронный двигатель с расщепленной фазой

В этом типе двигателя дополнительная обмотка намотана на тот же сердечник статора. Итак, в статоре две обмотки.

Одна обмотка известна как основная обмотка или рабочая обмотка, а вторая обмотка известна как пусковая обмотка или вспомогательная обмотка. Центробежный выключатель включен последовательно со вспомогательной обмоткой.

Вспомогательная обмотка — это обмотка с высоким сопротивлением, а основная обмотка — с высокой индуктивностью. Вспомогательная обмотка имеет несколько витков небольшого диаметра.

Назначение вспомогательной обмотки — создать разность фаз между обоими потоками, создаваемыми основной обмоткой и обмоткой ротора.

Схема подключения показана на рисунке выше. Ток, протекающий через основную обмотку, равен I M , а ток, протекающий через вспомогательную обмотку, равен I A . Обе обмотки параллельны и питаются напряжением В.

Вспомогательная обмотка имеет большое сопротивление. Итак, ток I A почти синфазен с напряжением питания V.

Основная обмотка имеет высокую индуктивность. Итак, ток I M отстает от напряжения питания на большой угол.

Полный поток статора индуцируется результирующим током этих двух обмоток. Как показано на векторной диаграмме, результирующий ток представлен как (I). Это создаст разность фаз между потоками, и результирующий поток создаст вращающееся магнитное поле. И мотор начинает вращаться.

Вспомогательная обмотка используется только для запуска двигателя. Эта обмотка бесполезна в рабочем состоянии. Когда двигатель достигает 75–80% синхронной скорости, центробежный переключатель размыкается.Итак, вспомогательная обмотка отключена от схемы. А двигатель работает только от основной обмотки.

Разность фаз, создаваемая этим методом, очень мала. Следовательно, пусковой момент этого двигателя плохой. Таким образом, этот двигатель используется в устройствах с низким пусковым моментом, таких как вентилятор, нагнетатель, измельчитель, насосы и т. Д.

Асинхронный двигатель с экранированными полюсами

По сравнению с другими типами однофазных асинхронных двигателей, этот двигатель имеет другую конструкцию и принцип работы. Для этого типа двигателя не требуется вспомогательная обмотка.

Этот двигатель имеет явный полюс статора или выступающий полюс, а ротор такой же, как у асинхронного двигателя с короткозамкнутым ротором. Полюса статора сконструированы специально для создания вращающегося магнитного поля.

Полюс этого двигателя разделен на две части; заштрихованная часть и незатененная часть. Его можно создать, разрезав шест на неравные расстояния.

Медное кольцо помещено в небольшую часть столба. Это кольцо представляет собой высокоиндуктивное кольцо, известное как заштрихованное кольцо или заштрихованная полоса.Часть, в которой проходит заштрихованное кольцо, называется заштрихованной частью шеста, а оставшаяся часть — незатененной частью.

Конструкция этого двигателя показана на рисунке ниже.

Когда через обмотку статора проходит переменное питание, в обмотке статора индуцируется переменный поток. Из-за этого потока некоторое количество потока будет связываться с заштрихованным кольцом, и ток будет течь через заштрихованное кольцо.

Согласно закону Ленца, ток, проходящий через катушку, имеет противоположную природу, и поток, создаваемый этой катушкой, будет противодействовать основному потоку.

Заштрихованное кольцо представляет собой катушку с высокой индуктивностью. Таким образом, он будет противодействовать основному потоку, когда оба потока направлены в одном направлении, и будет увеличивать основной поток, когда оба потока направлены в противоположном направлении.

Таким образом, он создаст разность фаз между основным магнитным потоком (потоком статора) и потоком ротора. Благодаря этому методу разность фаз очень меньше. Следовательно, пусковой момент намного меньше. Он используется в игрушечных двигателях, вентиляторах, воздуходувках, проигрывателях и т. Д.

Асинхронный двигатель с конденсаторным пуском

Этот тип двигателя является усовершенствованной версией асинхронного двигателя с расщепленной фазой.Недостатком индукции с расщепленной фазой является низкий крутящий момент. Потому что в этом двигателе создаваемая разность фаз намного меньше.

Этот недостаток компенсируется в этом двигателе с помощью конденсатора, включенного последовательно со вспомогательной обмоткой. Принципиальная схема этого двигателя показана на рисунке ниже.

В этом двигателе используется конденсатор сухого типа. Он предназначен для использования с переменным током. Но этот конденсатор не используется для продолжительной работы.

В этом методе также используется центробежный переключатель, который отключает конденсатор и вспомогательную обмотку, когда двигатель работает на 75-80% синхронной скорости.

Ток через вспомогательный ток опережает напряжение питания на некоторый угол. Этот угол больше, чем угол, увеличенный в асинхронном двигателе с расщепленной фазой.

Итак, пусковой момент этого двигателя очень высок по сравнению с асинхронным двигателем с расщепленной фазой. Пусковой момент этого двигателя на 300% больше момента полной нагрузки.

Благодаря высокому пусковому крутящему моменту, этот двигатель используется там, где требуется высокий пусковой крутящий момент, например, в токарных станках, компрессорах, сверлильных станках и т. Д.

Конденсатор Пусковой конденсатор Асинхронный двигатель

В этом типе двигателя два конденсатора включены параллельно во вспомогательной обмотке. Из этих двух конденсаторов один конденсатор используется только для пуска (пусковой конденсатор), а другой конденсатор постоянно подключен к двигателю (рабочий конденсатор).

Принципиальная схема этого рисунка показана на рисунке ниже.

Пусковой конденсатор имеет высокое значение емкости, а рабочий конденсатор — низкое значение емкости. Пусковой конденсатор соединен последовательно с центробежным переключателем, который размыкается, когда скорость двигателя составляет 70% от синхронной скорости.

В рабочих условиях как рабочая, так и вспомогательная обмотки соединены с двигателем. Пусковой момент и КПД этого двигателя очень высоки.

Следовательно, его можно использовать в приложениях, где требуется высокий пусковой крутящий момент, например, в холодильнике, кондиционере, потолочном вентиляторе, компрессоре и т. Д.

Асинхронный двигатель с постоянным конденсатором

Конденсатор малой емкости постоянно подключен к вспомогательной обмотке. Здесь конденсатор имеет малую емкость.

Конденсатор используется для увеличения пускового момента, но он низкий по сравнению с конденсаторным пусковым асинхронным двигателем.

Принципиальная схема и векторная диаграмма этого двигателя показаны на рисунке ниже.

Коэффициент мощности и КПД этого двигателя очень высоки, а также он имеет высокий пусковой крутящий момент, составляющий 80% крутящего момента при полной нагрузке.

Этот тип двигателя используется в таких приложениях, как вытяжной вентилятор, нагнетатель, обогреватель и т. Д.

Применение однофазных асинхронных двигателей

Однофазные двигатели не являются самозапускающимися и менее эффективными, чем трехфазные асинхронные двигатели, доступны мощностью от 0,5 до 15 л. с., и тем не менее они широко используются для различных целей, таких как:

  • Часы
  • Холодильники, морозильники и обогреватели
  • Вентиляторы, настольные, потолочные, вытяжные, воздухоохладители и водяные охладители.
  • Воздуходувки
  • Стиральные машины
  • станки
  • Сушилки
  • Машинисты, фотостаты и принтеры
  • Насосы водяные и погружные
  • Компьютеры
  • Шлифовальные машины
  • Станки сверлильные
  • Инструменты, оборудование и приспособления для дома прочие и пр.

Похожие сообщения:

Электродвигатель

| Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычном виде эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на чертеже ток в фазе a является максимально положительным, тогда как ток в фазах b, и c, составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т. е. одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный. Результат, как показано на рисунке для t 2 , снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и текущих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке представлена ​​диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, при отсутствии избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке является суммой синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число). Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Однофазный двигатель Belle мощностью 30 л.с. | Cutting Tool Engineering

Single Phase Power Solutions представляет однофазный двигатель Belle мощностью 30 л. Удобные пусковые и рабочие характеристики, обеспечиваемые за счет использования технологии Written-Pole, сводят к минимуму провалы и мерцания напряжения на длинных однофазных распределительных линиях.

Благодаря единой мощности и возможности пуска с высокой инерцией эта уникальная технология устраняет необходимость в фазовых преобразователях или сложных установках частотно-регулируемых приводов. Он подходит для промышленных применений в областях, где трехфазное питание недоступно или не является рентабельным, включая насосы, компрессоры, нагнетательные скважины, нагнетатели, вентиляторы, сушилки, очистку воды и сточных вод и многое другое.

Обладая полностью закрытой конструкцией с вентиляторным охлаждением в чугунной раме, эта проверенная конструкция подходит для внутренней или наружной установки в некоторых из самых сложных сред и приложений. Этот инновационный дизайн, рассчитанный на электродвигатель мощностью 30 л.с., 230/460 В, 1800 об / мин, обеспечивает мощность 95.КПД 5% при номинальной нагрузке с коэффициентом мощности, близким к единице. Двигатель рамы NEMA 356T весит около 890 фунтов и потребляет всего 52 А при полной нагрузке (460 В — 105 А при полной нагрузке для 230 В).

Обмотки двигателя изготовлены с использованием высококачественной меди и изоляционных материалов класса H, аналогичных тем, которые используются в трехфазных электродвигателях премиум-класса. В конструкции отсутствуют щетки, контактные кольца и внутренние поворотные переключатели, что обеспечивает превосходную производительность и надежность в суровых условиях.

Доступные в диапазоне от 30 до 100 л.с., Belle Motors идеально подходят для многих промышленных, сельскохозяйственных, горнодобывающих, муниципальных и нефтегазовых приложений, таких как насосы, компрессоры, нагнетательные скважины, а также нагнетатели, вентиляторы, осушители, обработка воды и сточных вод и более.

Пусковой ток, потребляемый двигателем Belle, менее чем в два раза превышает его номинальный ток при полной нагрузке, в результате чего потребность в пуске составляет менее 1/4 от обычного одно- или трехфазного асинхронного электродвигателя. Конструкция с плавным пуском, реализуемая без пуска при пониженном напряжении, значительно увеличивает максимальную номинальную мощность в лошадиных силах, которая может запускаться и использоваться в однофазных распределительных сетях сельских районов.

Благодаря синхронной работе Belle Motors достигают уровней энергоэффективности, сравнимых с трехфазными двигателями премиум-класса, снижая счета за электроэнергию и эксплуатационные расходы по сравнению с трехфазными двигателями, работающими с фазопреобразователями, или стационарными дизельными двигателями, часто используемыми для питания. сельские приложения.

Каждая заводская и испытанная панель управления Belle Motor промышленного класса содержит все компоненты управления, необходимые для запуска и работы Belle Motor. Их простая конструкция и просторный шкаф управления, рассчитанный на использование вне помещений, позволяют легко установить их на месте силами местных электриков. Высококачественные промышленные компоненты управления используются в конденсаторной конфигурации запуска / работы, которая использует интеллектуальную логику для оптимизации пусковых и рабочих характеристик. Защита от перегрева, пониженной скорости и перегрузки, поддерживаемая интеллектуальной диагностикой, также включена в качестве стандартных функций в каждую панель управления, что еще больше упрощает установку и обеспечивает долгосрочную надежность в полевых условиях.

Гибкая работа

Характеристики плавного пуска, присущие Belle Motors ™, обеспечивают низкие требования к пуску и гибкие пусковые характеристики, совместимые с требованиями к качеству электроэнергии. Конструкция с плавным пуском с низким броском позволяет запускать многие высокоинерционные нагрузки без перегрева и поддерживает возможность мгновенного перезапуска после кратковременных перебоев в подаче электроэнергии без риска повреждения приводимого в действие оборудования.

Замена стационарного двигателя

Belle Motor ™ может служить экономичной заменой стационарных двигателей, используемых для питания многих сельских систем.Возможность использовать доступные однофазные коммунальные услуги для электродвигателей мощностью до 100 л.с. позволяет снизить затраты на электроэнергию на 50-75%, упростить соблюдение экологических требований, снизить требования к техническому обслуживанию и обеспечить превосходную долгосрочную производительность. График заправки и мониторинг больше не являются проблемой при использовании Belle MotorsTM.

Однофазные двигатели

Однофазные двигатели

Однофазные электродвигатели вносят большой вклад в наш комфорт и удобство на розничном рынке и в наших домах.Хотя они не так активно используются на промышленных и коммерческих рынках, это не значит, что они вообще не используются … просто не так часто, как на розничных и жилых рынках. И это в первую очередь связано с тем, что «Однофазное питание» является единственной электрической системой. доступна для 99% рынка жилой недвижимости, в то время как система «Трехфазное питание» доступна для большинства коммерческих / промышленных рынков. Таким образом, использование однофазных двигателей дает больше возможностей. с доступными источниками питания, чем что-либо еще.

По большому счету, выбор однофазных двигателей, из которых мы можем выбирать, определенно ограничен по сравнению с теми, которые доступны на рынке трехфазных двигателей. И это связано с рынок, который необходимо обслуживать, и эффективность трехфазного питания по сравнению с однофазным питанием. В приведенной ниже таблице вы можете сравнить различные типы однофазных двигателей в зависимости от мощности, пусковой момент, пусковой ток, эффективность и применение. Это, безусловно, должно дать вам представление о том, почему вам следует использовать определенный тип и какую пользу он принесет вам, когда вы это сделаете.

От
Рабочие характеристики однофазного двигателя
Тип Размер — HP Пусковой момент Пусковой ток Приложения КПД
Двухфазный 1/20 — 1/2 л.с. Низкий Высокая вентиляторы, нагнетатели, центробежные насосы, стиральные машины, шлифовальные машины, токарные станки, вентиляторы для кондиционирования воздуха и печи Низкий
Конденсатор пуск-индукционная работа от 1/3 до 10 л.с. Высокая Высокая конвейеры, болгарки, кондиционеры, компрессор Умеренная
Пусковой конденсатор — Работа конденсатора от 1/3 до 10 л.с. Высокая Высокая конвейеры, кондиционеры, компрессоры, разгрузчики силосов для сельского хозяйства Высокая
Постоянный разделенный конденсатор от 1/20 до 3/4 л.с. Низкий Умеренная вентиляторы и нагнетатели в отопителях и кондиционерах вентиляторы конденсатора Высокая
Затененный полюс 1/300 — 1/20 л.с. Очень низкий Низкий небольшие инструменты, фены, игрушки, проигрыватели, маленькие вентиляторы, электрические часы Низкий
Универсальный до 2500 Вт Низкий Умеренная Бытовая техника и электроинструменты. Низкий
Пуск отталкивания — индукционный прогон 1/2 до 40 л.с. Очень высокий Умеренная Рубанки, деревообрабатывающие станки, разгрузчики силосов, холодильные компрессоры Умеренная

Для этих однофазных двигателей доступен ряд опций, которые зависят от фактических потребностей приложения.Большинство двигателей доступны в различных вариантах исполнения. типы монтажа, варианты корпусов и расположение валов.

Например, варианты корпуса могут включать: ODP (защита от капель), TEAO (полностью закрытый воздуховод), TENV (полностью закрытый без вентиляции и TEFC (полностью закрытый вентилятор). Охлажден). Для типов монтажа список включает: крепление на жестком основании, на упругом основании, упругое кольцо (только), крепление на сквозных болтах, крепление на поясе, крепление на пьедестале, и, возможно, некоторые дополнительные опции, которые не так распространены.И вот еще один момент, который следует иметь в виду при использовании одного из конкретных типов корпуса; т.е. TEAO (полностью закрытый Воздух над). Этот двигатель ПРЕДНАЗНАЧЕН для того, чтобы технологический воздух (воздух, который перемещается) проходил над двигателем и действовал как «охлаждающий» воздух. Если вы поместите этот тип двигателя в В случае применения, когда двигатель находится «вне» воздушного потока, двигатель сгорит, поскольку в нем недостаточно охлаждающего воздуха.

Что касается опций вала, они тоже различаются в зависимости от области применения и размера корпуса.Например, у некоторых двигателей может быть основание с отверстиями для крепления, пробитыми для 48 и 56 рамы. монтаж, но вал двигателя будет 1/2 дюйма с «плоским». Тогда есть двигатели с «двухсторонним валом» для установки 2 вентиляторов с короткозамкнутым ротором. В то время как нормальная длина вала длина двигателя может составлять 2-1 / 2 дюйма или 3 дюйма, некоторые двигатели PSC или другие двигатели могут иметь вал длиной 8 дюймов или более, чтобы обеспечить длину, необходимую для установки вентилятора конденсатора при использовании в наружный тепловой насос.Поэтому убедитесь, что вы ЗНАЕТЕ, какой диаметр вала вам нужен и какой длины он должен быть для вашего применения.

И последнее замечание, направление вращения … Вы должны понять это правильно! Некоторые конструкции двигателей, в частности PSC, обычно проектируются с использованием простой сборки «вилка и розетка». вы отключите вилку, поверните ее на 180 ° и снова вставьте вилку, чтобы изменить направление вращения. У других есть дополнительные электрические соединительные штыри на клеммной колодке, где вы подключить входящую мощность.В этом типе вам нужно переместить определенный провод из исходного положения в этот другой штифт, чтобы изменить направление. А потом НАСТОЯЩИЙ выпуск …! Двигатели которые просто НЕобратимы. С этими двигателями вы ДОЛЖНЫ знать, в каком направлении вам нужно вращать двигатель при покупке. Имея трудности с пониманием направления вращение? Вот определение «ротации», взятое с веб-сайта службы поддержки продуктов Siemens:

В соответствии с DIN EN 60034-8 направление вращения двигателя определяется следующим образом:
  • Направление вращения это направление, если смотреть со стороны привода.
    • Это означает, что нужно заглядывать в «ведущий» конец вала.

  • Приводной конец — это сторона с выступом вала.
    • Для машин с двумя удлинениями вала приводной конец:
      • a) конец с большим диаметром вала
        b) конец на противоположной стороне вентилятора,
        • , если оба конца вала имеют одинаковый диаметр.

  • Вращение по часовой стрелке
    • Поверните вал по часовой стрелке, если смотреть со стороны привода.
    • Направление обзора — от ведущего конца к неприводному.

  • Вращение против часовой стрелки
    • Поверните вал против часовой стрелки, если смотреть со стороны привода.
    • Направление обзора — от ведущего конца к неприводному.

Типы однофазных двигателей

Разделенная фаза

Двигатели с разделенной фазой имеют пусковой выключатель, но не имеют конденсатора или дополнительного пускового механизма.Их пусковая обмотка просто электрически смещена от рабочей обмотки на количество, достаточное для начала вращения элемента в определенном направлении. Поскольку нет «дополнительной» помощи при пуске, этот двигатель имеет пусковой режим от умеренного до слабого. крутящий момент …. в диапазоне от 100% до 125% крутящего момента при полной нагрузке. К тому же пусковой ток будет достаточно большим. Двигатели этого типа используются в приложениях, которые относительно легко запустить, но может потребоваться мощность при увеличении скорости вращения.

Типичные области применения — это нагружающие вентиляторы с ременным приводом и некоторые насосы.

Конденсатор пуск-индукционная работа

Это настоящая «рабочая лошадка» линейки однофазных двигателей. Эти двигатели включают в себя пусковую обмотку, пусковой выключатель и электролитический конденсатор. Когда мотор Когда его попросили запустить, конденсатор разряжается в пусковой обмотке, давая ему «выстрел в руку», чтобы он заработал.Затем, как и в других однофазных двигателях с пусковыми выключателями, при ротор достигает примерно 75-80% полной скорости, пусковой выключатель ОТКРЫВАЕТСЯ, удаляет конденсатор и запускает обмотку из цепи и позволяет ОСНОВНОМУ или работающему обмотки для завершения набора скорости до полных рабочих оборотов в минуту.

Эти двигатели могут изготавливаться с пусковым моментом от среднего до высокого в зависимости от номинала конденсатора и конструкции пусковой обмотки.Мотор также будет иметь высокий момент пробоя, который удерживает двигатель «заблокированным» на его рабочей скорости даже при высоких перегрузках. Эти двигатели с УМЕРЕННЫМ пусковым моментом 175% или меньше обычно используются. на вентиляторах, нагнетателях и насосах. Двигатели с высоким пусковым моментом …. используются при нагрузках, требующих для пуска крутящего момента полной нагрузки до 300% и выше, могут использоваться на компрессорах и промышленное, торговое и сельскохозяйственное оборудование.На сельскохозяйственном рынке такие устройства, как разгрузчики силосов и другие «трудно запускаемые» грузы, являются естественными для этих устройств.

Пусковой конденсатор — Работа конденсатора

Эти двигатели аналогичны конструкции и применению двигателя конденсаторного пуска, указанного выше, за исключением того, что они заполнены маслом, РАБОЧИЙ конденсатор в цепи с ГЛАВНОЙ или бегущей обмоткой.Этот конденсатор остается в цепи ВСЕ ВРЕМЯ и помогает повысить эффективность работы и снижает полную рабочий ток нагрузки. Эти двигатели обычно имеют более высокую однофазную мощность … более 2 л.с., при этом сельскохозяйственная промышленность является основным пользователем этих двигателей.

Постоянный разделенный конденсатор

Двигатели этого типа используются во многих из тех же приложений, что и двигатели с экранированными полюсами.Основные отличия заключаются в том, что двигатель PSC имеет гораздо более высокий КПД, более низкий ход ток (на 50% — 60% меньше) и более высокая выходная мощность. Двигатель PSC получил свое название от того факта, что в цепь двигателя вообще включен конденсатор «RUN». раз. Это устройство помогает поддерживать высокий КПД и коэффициент мощности, а также снижает количество потребляемой мощности при той же выходной мощности. Эти двигатели можно использовать для Замените ЛЮБОЙ двигатель с экранированными полюсами, кроме тех, для которых физический размер PSC не подходит…. то есть часовой двигатель или небольшой вентилятор охлаждения испарителя. Выходная мощность PSC Двигатель будет находиться в диапазоне «суб-дробных HP», то есть от 1/20 л.с. до максимум 3/4 л.с. Односкоростные или многоскоростные двигатели могут быть разработаны с максимальной скоростью 1625 об / мин и 1075 об / мин — самая популярная скорость. Несколько скоростей в одном двигателе достигаются либо путем «постукивания» обмотки, либо «дроссельной катушки». Пусковой крутящий момент на этом двигателе Тип также считается НИЗКИМ.

Затененный полюс

Эти двигатели имеют низкий пусковой момент, низкий КПД, средний рабочий ток, низкую мощность, отсутствие конденсаторов, пускового переключателя и низкую стоимость. Двигатели этот тип используется в небольших печных воздуходувках с прямым приводом, оконных вентиляторах и других вентиляторах, используемых в жилых районах.Двигатели с экранированными полюсами ЗАПРЕЩАЕТСЯ использовать для заменить ДРУГИЕ ТИПЫ однофазных двигателей, в основном из-за низкого крутящего момента и КПД. Двигатели этого типа также используются в мелкой бытовой технике и таких предметах, как вытяжка для ванных комнат. вентиляторы, часовые двигатели и вентиляторы испарителей холодильников и морозильников.

Несмотря на низкий КПД, с низким пусковым моментом из-за присущей им НИЗКОЙ СТОИМОСТИ, эти двигатели изобилуют надлежащим бытовым применением.Выходная способность Двигатель с экранированными полюсами будет находиться в диапазоне от «дробной части HP», т.е. 1/30 л.с. до максимальной 1/4 или 1/3 л.с. Скорости обычно будут 2-полюсными (3000 об / мин), 4-полюсными (1550 об / мин) и 6-полюсными (1050 об / мин). Об / мин).

Универсальный двигатель

Универсальный двигатель — это тип электродвигателя, который может работать как от переменного, так и от постоянного тока и использует электромагнит в качестве статора для создания магнитного поля.это Коммутируемый двигатель с последовательной обмоткой, в котором обмотки возбуждения статора соединены последовательно с обмотками ротора через коммутатор. Его часто называют серией переменного тока. мотор. Универсальный двигатель очень похож на двигатель постоянного тока по конструкции, но немного изменен, чтобы двигатель мог правильно работать от сети переменного тока. Этот тип Электродвигатель может хорошо работать на переменном токе, потому что ток как в катушках возбуждения, так и в якоре (и результирующих магнитных полях) будет чередоваться (обратная полярность) синхронно с подачей.Следовательно, результирующая механическая сила будет действовать в постоянном направлении вращения, независимо от направления приложенного напряжения, но определяется коммутатором и полярностью катушек возбуждения.

Универсальные двигатели

обладают высоким пусковым моментом, могут работать с высокой скоростью, легки и компактны. Они обычно используются в портативных электроинструментах и ​​оборудовании, а также в много бытовой техники. Они также относительно легко управляются электромеханически с помощью катушек с отводами или электронным способом.Однако на коммутаторе есть щетки, которые изнашиваются, поэтому они гораздо реже используются для оборудования, которое постоянно используется. Кроме того, отчасти из-за коммутатора универсальные двигатели обычно очень шумные, как акустически и электромагнитно.

Отталкивающий пусковой индукционный двигатель

Хотя этот двигатель упоминается здесь, мы считаем его более «специальным» двигателем, и его можно найти более подробно на странице этой темы.Нажмите здесь, чтобы перейти на страницу Special Motor нашего сайта.

Мы надеемся, что вы были в некоторой степени осведомлены об этих типичных однофазных двигателях. Как всегда, вы можете поговорить с нашими специалистами по приложению по телефону или электронной почте. для дополнительной информации. Щелкните эту ссылку, чтобы получить номера телефонов и / или адреса электронной почты нашей команды.

Модель динамики однофазной асинхронной машины с короткозамкнутым ротором. ротор

Описание

Эта машина имеет две обмотки: основную и вспомогательную.С помощью модели вы можете смоделировать разделенная фаза, запуск конденсатора, запуск конденсатора, запуск конденсатора, а также основной и вспомогательный режимы работы обмоток.

Для режима с разделением фаз основная и вспомогательная обмотки соединены внутри как следующим образом:

Для режима конденсаторного запуска основная и вспомогательная обмотки соединены внутри как следующим образом:

Для режима конденсатор-пуск-работа конденсатора основная и вспомогательная обмотки находятся внутри связаны следующим образом:

Электрическая часть машины представлена ​​моделью пространства состояний четвертого порядка и механическая часть по системе второго порядка.Все электрические переменные и параметры относится к статору, обозначенному следующими штрихами в уравнениях машины. Все Величины статора и ротора находятся в системе отсчета статора (рамка dq). Нижние индексы определено в следующей таблице.

0

904

r

Нижний индекс

Определение

d

количество осей d

количество осей d

Относится к количеству ротора основной обмотки

R

Относится к количеству ротора вспомогательной обмотки

s

S

Количество статора вспомогательной обмотки

л

Индуктивность утечки

м

Электрическая индуктивность

V qs = R с i qs + d φ qs / dt φ qs = L SS i QS + L мс i ‘ qr
V ds = R S i DS + d φ ds / dt φ ds = L SS i DS + L mS i ‘ dr
V’ qr = R ‘ R i’ qr + d φ ‘ qr / dt — ( N с / N S ) ω r φ ‘ dr φ’ qr = L ‘ r i’ qr + L мс i qs
V ‘ dr = R ‘ R i’ др + d φ ‘ dr / dt + ( N S / N с ) ω r φ ‘ qr где φ’ dr = L ‘ RR i’ dr + L mS i ds
T e = p [( N S / N s ) φ ‘ qr i’ dr — ( N s / N S ) φ ‘ dr i’ qr ] L ss = л лс + L мс
L SS = L LS + L мСм
L ‘ rr = л. л. + L мс
L ‘ RR = л. л. + L мСм

Механическая система

ddtωm = Te − Fωm − Tm2Hddtθm = ωm.

Система отсчета

Система отсчета, закрепленная в статоре, преобразует напряжения и токи в dq. Рамка.

Следующие отношения описывают преобразования кадра ab-to-dq, применяемые к однофазная асинхронная машина.

[fqsfds] = [100−1] [fasfbs] [fqrfdr] = [cos (θr) −sin (θr)) — sin (θr) −cos (θr)] [farfbr].

Переменная f может представлять напряжение, токи или потокосцепление.

Параметры однофазных асинхронных машинных блоков определяются следующим образом (все количества относятся к статору).

28 9071

0

28 L 9071 rr

, i as

V bs , i bs

V qs , i qs

28

24

коэффициент инерции ротора и нагрузки в (кг.м 2 ). Установите на бесконечность, чтобы имитировать заблокированный ротор.

Комбинированный коэффициент вязкого трения ротора и нагрузки.

Параметр

Определение

R s , L ls

4 Сопротивление

903 S , L LS

Сопротивление статора вспомогательной обмотки и индуктивность рассеяния

R ′ r , L ′ lr

Сопротивление ротора главной обмотки и индуктивность рассеяния 9429

R ′ R , L ′ lR

Сопротивление ротора вспомогательной обмотки и индуктивность рассеяния.Два значения: равные значениям сопротивления ротора основной обмотки и индуктивностей рассеяния, соответственно.

L мс

Индуктивность намагничивания основной обмотки

L мСм

Вспомогательная обмотка намагничивающая индуктивность

Суммарная индуктивность статора и ротора главной обмотки

L SS , L ‘ RR

Суммарная индуктивность статора и ротора вспомогательной обмотки

Напряжение и ток статора главной обмотки

Статор вспомогательной обмотки напряжение и ток

Напряжение и ток статора оси q

В ′ qr , i ′ qr

Напряжение и ток ротора оси q

В ds , ds

Напряжение и ток статора оси d

V ′ dr , i ′ dr

Напряжение и ток ротора оси d

, ϕ ds

Потоки по осям q и d статора

ϕ ′ qr , ϕ ′ dr

Потоки по осям q и d ротора

900 м

Угловая скорость ротора

Θ м

Угловое положение ротора

p

Число пар полюсов

ω r

Электрическая угловая скорость (ω м xp)

r угловое положение ротора (Θ м x p)

T e

Электромагнитный момент

T м

Механический крутящий момент вала

H

Комбинированная константа инерции ротора и нагрузки в (с). Установите на бесконечность для моделирования заблокированный ротор.

N s

N S

R st

C s

R run

C run

число витков .

Количество вспомогательных полезные витки обмотки.

Конденсатор-пуск сопротивление

Capacitor-Start

Capacitor-Run сопротивление

Capacitor-Run

N

Отношение числа эффективных витков вспомогательной обмотки и числа основных полезные витки обмотки.

Параметры

Вы можете выбрать один из двух типов единиц, чтобы указать электрические и механические параметры модели, диалоговое окно для единицы измерения и диалоговое окно SI.Оба блока моделирование той же машины. В зависимости от используемого вами диалогового окна Simscape ™ Electrical ™ Specialized Power Systems автоматически преобразует указанные вами параметры. в единичные параметры. Модель Simulink ® блока Single Phase Asynchronous Machine использует на единицу параметры.

Вкладка «Конфигурация»

Механический ввод

Выберите крутящий момент, приложенный к валу, как ввод Simulink блока, или для представления вала машины вращающимся механическим портом Simscape.

Выберите Torque Tm (по умолчанию), чтобы указать входной крутящий момент в Н · м или в pu, и измените метку входа блока на Tm. Скорость машины определяется инерция машины J (или постоянная инерции H для машины pu) и разность между приложенным механическим крутящим моментом Tm и внутренним электромагнитным крутящим моментом Te. В знаковое соглашение для механического крутящего момента: когда скорость положительная, положительный крутящий момент сигнал указывает на режим двигателя, а отрицательный сигнал указывает на режим генератора.

Выберите Механический поворотный порт , чтобы добавить к блоку Механический вращающийся порт Simscape, который позволяет соединять вал машины с другие блоки Simscape, у которых есть механические вращающиеся порты. Затем ввод Simulink, представляющий механический крутящий момент Tm машины, удаляется. из блока.

На следующем рисунке показано, как подключить блок Ideal Torque Source от Библиотека Simscape на валу машины, чтобы представить машину в моторном режиме или в генераторный режим, когда частота вращения ротора положительная.

Единицы

Укажите диалоговое окно для каждой единицы или диалоговое окно SI. По умолчанию СИ .

Тип машины

Укажите один из четырех типов однофазных асинхронных машин: Split Фаза (по умолчанию), Конденсатор-пуск , Конденсатор-пуск-работа или Главный и вспомогательный обмотки .

Использовать имена сигналов для идентификации меток шины

Когда этот флажок установлен, измерительный выход использует имена сигналов для определить этикетки на автобусе.Выберите этот вариант для приложений, требующих маркировки сигналов шины. иметь только буквенно-цифровые символы.

Когда этот флажок снят (по умолчанию), выход измерения использует сигнал определение для идентификации меток шины. Этикетки содержат не буквенно-цифровые символы, которые несовместимы с некоторыми приложениями Simulink.

Вкладка «Параметры»

Номинальная мощность, напряжение и частота

Номинальная полная мощность Pn (ВА), RMS Vn (В) и частота fn (Гц).По умолчанию [0,25 * 746 110 60] .

Статор главной обмотки

Сопротивление статора R с (Ом или пу) и индуктивность рассеяния L LS (H или pu). По умолчанию [2.02 7.4e-3] (SI) и [0,031135 0,042999] (пу).

Ротор главной обмотки

Сопротивление ротора R r ‘(Ом или пу) и индуктивность рассеяния L lr ‘(H или pu), оба относятся к статору.По умолчанию [4,12 5,6e-3] (SI) и [0,063502 0,03254] (пу).

Взаимная индуктивность основной обмотки

Намагничивающая индуктивность L мс (H или pu). По умолчанию 0,1772 (SI) и 1,0296 (pu).

Статор вспомогательной обмотки

Сопротивление статора R S (Ом или пу) и индуктивность рассеяния L LS (H или pu).Обратите внимание, что параметры ротора вспомогательной обмотки равны принимается равным значениям сопротивления ротора основной обмотки и индуктивностей рассеяния. Поэтому указывать их в диалоговом окне не требуется. По умолчанию [7.14 8.5e-3] (SI) и [0,11005 0,049391] (pu).

Инерция, коэффициент трения, пары полюсов, передаточное число (вспомогательное / основное)

Для единиц СИ Диалоговое окно : комбинированная машина и коэффициент инерции нагрузки J (кг.м 2 ), комбинированное вязкое трение коэффициент F (Нм), количество пар полюсов p и соотношение количества вспомогательных обмоток число эффективных витков основной обмотки. о.о. ед. диалоговое окно: постоянная инерции H (s), комбинированное вязкое трение коэффициент F (pu), а количество пар полюсов p. По умолчанию [0,0146 0 2 1,18] (SI) и [1,3907 0 2 1,18] (pu).

Конденсатор-пуск

Пусковая емкость C с (фарад или пу) и серия конденсатора сопротивление R st (Ом или пу).По умолчанию [2 254.7e-6] (SI) и [0,030826 6,2297] (pu).

Capacitor-Run

Рабочая емкость Crun (фарад или пу) и последовательное сопротивление Rrun (фарад или пу). По умолчанию [18 21.1e-6] (SI) и [0,27744 0,51608] . (пу).

Скорость отключения

Задает скорость (%), при которой вспомогательная обмотка может быть отключена. По умолчанию 75 .

Начальная скорость

Задает начальную скорость (%). По умолчанию 0 .

Вкладка «Дополнительно»

Время выборки (-1 для унаследованных)

Задает время выборки, используемое блоком. Чтобы унаследовать время выборки, указанное в блок Powergui, установите этот параметр на −1 (по умолчанию).

Приведение трехфазных станков в работу однофазного цеха

Вопрос:

Большая часть тяжелого оборудования рассчитана на работу от трехфазного источника питания, но существует ряд опций, позволяющих запустить инструменты в вашем однофазном домашнем магазине.

Я подумываю купить бывшее в употреблении промышленное оборудование у местного краснодеревщика, но все машины имеют трехфазные двигатели. Это для моего домашнего магазина, где у меня только однофазное питание. Могу ли я что-нибудь сделать, чтобы преобразовать эти машины для работы от однофазной сети?

Франклин Мейв, Сан-Диего, Калифорния

А:

Большая часть тяжелого оборудования рассчитана на работу от трехфазного источника питания, поскольку трехфазные двигатели проще, эффективнее и надежнее, чем однофазные двигатели.К сожалению, трехфазное питание обычно недоступно в жилых районах, но, возможно, стоит проконсультироваться с вашей энергетической компанией. Даже если он доступен, стоимость подключения может быть непомерно высокой.

Если не считать работы от трехфазного источника питания, существует ряд опций, позволяющих получить трехфазный инструмент, работающий от однофазного источника питания. Первый и наиболее очевидный вариант — замена двигателя машины на однофазный. Но это может быть невозможно на некоторых машинах, потому что оригинальный двигатель имеет специальные монтажные кронштейны или приводной вал имеет нестандартную резьбу или шлицы.К сожалению, на настольных пилах довольно часто встречаются специализированные моторы. Если производитель инструмента все еще занимается бизнесом, вы можете получить у него однофазный двигатель.

Подробнее об оборудовании
Модернизируйте свой фуговальный станок с помощью сегментированной режущей головки
Винтажное оборудование: новая жизнь для старого железа
Интеллектуальный сбор пыли для вашей ленточной пилы

Другой вариант — использовать преобразователь, который позволит вам запускать трехфазную машину на однофазном питании. Преобразователи бывают трех основных типов: статические, поворотные и электронные.

Из трех наименований статический тип является наименее дорогим. Статический преобразователь не имеет движущихся частей и должен быть рассчитан на двигатель, на котором он работает. К сожалению, статический преобразователь снижает доступную мощность двигателя примерно на треть и затрудняет запуск воздушных компрессоров, пылеуловителей, больших ленточных пил и других машин с большими пусковыми нагрузками. Снижение мощности часто не является проблемой и может быть компенсировано снижением скорости подачи или более легкими резами.Но перегрузка или остановка двигателя, подключенного к статическому преобразователю, вызовет разрушительный перегрев как двигателя, так и преобразователя. Трудно запускаемую машину можно запустить, запустив сначала другую слегка нагруженную машину, «холостой ход», который служит электрическим маховиком для запуска второй машины. Избыточный трехфазный двигатель можно использовать в качестве выделенного холостого хода, который работает непрерывно, чтобы улучшить как запуск, так и работу других двигателей, подключенных к статическому преобразователю.

Роторный преобразователь, который выглядит как сверхмощный электродвигатель с присоединенной сверхразмерной распределительной коробкой, функционирует как двигатель, так и как генератор.Поскольку роторный преобразователь вращается от однофазной энергии, он вырабатывает трехфазную энергию для работы других машин. Более дорогой, чем статический преобразователь, роторный преобразователь стоит около 600 долларов за блок мощностью 3 л.с., но не имеет проблем с запуском и пониженной мощностью, которые возникают со статическим преобразователем. Если вы планируете иметь несколько трехфазных машин, купите роторный преобразователь хорошего размера, который в долгосрочной перспективе будет более экономичным.

Электронный преобразователь правильнее называть инвертором по техническим причинам, и в большинстве каталогов это устройство указано под этим именем.Электронный инвертор преобразует однофазную мощность в постоянный ток, а затем использует микрочиповые элементы управления для имитации трехфазного переменного тока. Электроника в инверторе позволяет вам управлять скоростью, крутящим моментом и направлением вращения двигателя и часто позволяет плавный пуск для постепенного набора скорости машины. Большая часть дополнительных возможностей управления, предлагаемых инвертором, будет потрачена впустую на пилу, но будет большим преимуществом на токарном станке или, возможно, ленточной пиле. Поскольку он должен быть запрограммирован, инвертор обычно предназначен для работы только одной машины, но с некоторыми компромиссами его можно использовать для запуска нескольких инструментов.Цена на инверторы неуклонно снижается в течение последних нескольких лет.

Выбор преобразователя правильного типа и размера и его правильное подключение могут быть сложными. Прежде чем вкладывать деньги в преобразователь или инвертор, вам следует провести небольшое исследование и получить дополнительные советы. Производители преобразователей и инверторов предлагают обширную литературу и консультации по телефону.

Производители преобразователей и инверторов
Все перечисленные ниже компании продают статические или роторные преобразователи или и то, и другое.Только Grainger продает инверторы.

Амери-Фаз Корпорейшн
800-920-1926

Cedarberg Industries
800-328-2279

Grizzly Industrial
800-523-4777
www.grizzly.com

Корпорация GWM
800-437-4273

Kay Industries
800-348-5257
www.kayind.com

MSC Industrial Supply Co.
800-645-7270
www.mscdirect.com

Из Деревообработка № 158,
стр. 90-92

Подпишитесь на избиратели сегодня и получите новейшие технологии и практические рекомендации от Fine Woodworking, а также специальные предложения.

Получайте советы по деревообработке, советы экспертов и специальные предложения на почту

×

Принцип работы однофазного асинхронного двигателя

Производство вращающегося поля

Рассмотрим две обмотки «A» и «B», смещенные так, что они создают магнитное поле на 90 ° друг от друга в пространстве. Результатом этих двух полей является вращающееся магнитное поле постоянной величины & phiv; м .Неоднородное магнитное поле создает неоднородный крутящий момент, который делает работу двигателя шумной и влияет на пусковой крутящий момент.


Рисунок: Создание однородного магнитного поля.

Принцип пуска

Однофазный асинхронный двигатель состоит из однофазной обмотки на статоре и клеточной обмотки на роторе. Когда к обмотке статора подключен однофазный источник питания, создается пульсирующее магнитное поле. В пульсирующем поле ротор не вращается по инерции.Следовательно, однофазный асинхронный двигатель не запускается автоматически и требует определенных средств запуска. Были предложены две теории для определения характеристик однофазного асинхронного двигателя.

  1. Теория двойного вращающегося поля.
  2. Теория кросс-поля.

Теория двойного вращающегося поля

Эта теория для однофазной среды утверждает, что стационарное пульсирующее магнитное поле может быть разделено на два RMF, каждая из которых имеет одинаковую величину, но вращается в противоположном направлении.

Асинхронная машина реагирует на каждое магнитное поле отдельно, и чистый крутящий момент в двигателе равен некоторой части крутящего момента, создаваемого каждым из двух магнитных полей.

Уравнение переменного магнитного поля, ось которого зафиксирована в пространстве:

β max — максимальное значение плотности потока синусоидально распределенного воздушного зазора. «B» представляет уравнение вращающегося поля, движущегося в положительном направлении α, а «A» представляет уравнение вращающегося поля, движущегося в положительном направлении.Поле, движущееся в положительном направлении α, называется полем, вращающимся вперед, а в направлении отрицательного α — полем, вращающимся назад.

Таким образом, делается вывод, что стационарное пульсирующее магнитное поле может быть разрешено за счет двух вращающихся магнитных полей, оба одинаковой величины и движущихся с синхронной скоростью в противоположном направлении с той же частотой, что и стационарное магнитное поле.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *