Операции булевой алгебры – Булева алгебра — Википедия

Содержание

Булева алгебра — Википедия

Материал из Википедии — свободной энциклопедии

Эта статья об алгебраической системе. О разделе математической логики, изучающем высказывания и операции над ними, см. Алгебра логики.

Булевой алгеброй[1][2][3] называется непустое множество A с двумя бинарными операциями ∧{\displaystyle \land } (аналог конъюнкции), ∨{\displaystyle \lor } (аналог дизъюнкции), одной унарной операцией ¬{\displaystyle \lnot } (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для любых a, b и c из множества A верны следующие аксиомы:

В нотации · + ¯

a+(b+c)=(a+b)+ca(bc)=(ab)ca+b=b+aab=baa+ab=aa(a+b)=aa+bc=(a+b)(a+c)a(b+c)=ab+aca+a¯=1aa¯=0{\displaystyle {\begin{aligned}&a+(b+c)=(a+b)+c&a(bc)=(ab)c\\&a+b=b+a&ab=ba\\&a+ab=a&a(a+b)=a\\&a+bc=(a+b)(a+c)&a(b+c)=ab+ac\\&a+{\bar {a}}=1&a{\bar {a}}=0\end{aligned}}}

Первые три аксиомы означают, что (A, ∧{\displaystyle \land }, ∨{\displaystyle \lor }) является решёткой. Таким образом, булева алгебра может быть определена как дистрибутивная решётка, в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется псевдобулевой алгеброй. Названа в честь Джорджа Буля.

Из аксиом видно, что наименьшим элементом является 0, наибольшим является 1, а дополнение ¬a любого элемента a однозначно определено. Для всех a и b из A верны также следующие равенства:

В данном разделе повторяются свойства и аксиомы, описанные выше с добавлением ещё нескольких.

Сводная таблица свойств и аксиом, описанных выше:

  • Самая простая нетривиальная булева алгебра содержит всего два элемента, 0 и 1, а действия в ней определяются следующей таблицей:
Эта булева алгебра наиболее часто используется в логике, так как является точной моделью классического исчисления высказываний. В этом случае 0 называют ложью, 1 — истиной
. Выражения, содержащие булевы операции и переменные, представляют собой высказывательные формы.

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на 1, ≤ на > и наоборот или < на ≥ и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен.

Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки.

Теорема Стоуна утверждает, что любая булева алгебра изоморфна булевой алгебре всех открыто-замкнутых множеств какого-то компактного вполне несвязного хаусдорфова топологического пространства.

В 1933 году американский математик Хантингтон[en] предложил следующую аксиоматизацию для булевых алгебр:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Хантингтона: n(n(x) + y) + n(n(x) + n(y)) = x.

Здесь использованы обозначения Хантингтона: + означает дизъюнкцию, n — отрицание.

Герберт Роббинс поставил следующий вопрос: можно ли сократить последнюю аксиому так, как написано ниже, то есть будет ли определённая выписанными ниже аксиомами структура булевой алгеброй?

Аксиоматизация алгебры Роббинса:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Роббинса: n(n(x + y) + n(x + n(y))) = x.

Этот вопрос оставался открытым с 1930-х годов и был любимым вопросом Тарского и его учеников.

В 1996 году Вильям МакКьюн, используя некоторые полученные до него результаты, дал утвердительный ответ на этот вопрос. Таким образом, любая алгебра Роббинса является булевой алгеброй.

ru.wikipedia.org

Булева алгебра — Национальная библиотека им. Н. Э. Баумана

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 15:20, 13 ноября 2016.

Определение

Определение «Определение — Алгебра логики (булева алгебра)’»

Алгебра логики (булева алгебра) — это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними. Алгебра логики позволяет закодировать любые утверждения, истинность или ложность которых нужно доказать, а затем манипулировать ими подобно обычным числам в математике.


Булева алгебра как предметная область определяется следующими критериями:

  1. Непустое множество А.
  2. Бинарные операции Конъюнкция(ʌ) и Дизъюнкция ( v)
  3. Унарная операция отрицания (¬ или не)
  4. Логические константы Истина (1) и Ложь (0)

Происхождение

Булева алгебра названа по имени великого английского математика Джорджа Буля (1815—1864), который в 1854 г. опубликовал ставшую впоследствии знаменитой книгу «Исследование законов мышления». В начале гл. 1 он написал:

«Назначение настоящего трактата — исследовать основные законы тех операций ума, посредством которых производится рассуждение; выразить их на символическом языке некоторого исчисления и на этой основе установить науку логики и построить ее метод; сделать этот метод основой общего применения математической доктрины вероятностей; и, наконец, собрать из различных элементов истины, выявленных в ходе этих изысканий, некоторые правдоподобные указания относительно природы и строения человеческого ума».

В этой книге Буль изложил большую часть новой алгебры, особенно пригодную для анализа классов и предложений (высказываний).

Другие математики и логики, в том числе Джон Венн и Эрнст Шрёдер, впоследствии значительно усовершенствовали и расширили алгебру Буля.

В 1938 г. Клод Э. Шеннон, в то время студент Массачусетсского технологического института, впоследствии известный математик и инженер Белловских телефонных лабораторий, а в настоящее время профессор Массачусетского технологического института, показал, что булеву алгебру можно прекрасно применять при синтезе переключательных электрических схем. Его статья «Символический анализ релейно-переключательных схем» представляет собой веху в развитии применений булевой алгебры.

Аксиомы

1) Булева переменная всегда равна либо нулю, либо единице

 х=0, если х≠1
 х=1, если х≠0 

2) Инверсное значение переменной x противоположно ее прямому значению

х=0, если ¬х=1
х=1, если ¬х=0

3) Правила выполнения логического умножения (конъюнкции)

0 ʌ 0=0
1 ʌ 1=1
0 ʌ 1=1 ʌ 0=0

4) Правила выполнения логического сложения (дизъюнкции)

0 v 0 = 0
1 v 1= 1
0 v 1 = 1 v  0 = 1

Законы

1) Ассоциативный (сочетательный) закон

Ассоциативность конъюнкции и дизъюнкции выражается следующими формулами:

На практике это означает, что можно опускать те скобки, которые определяют, в каком порядке должна выполняться конъюнкция и дизъюнкция.

2) Коммутативный (переместительный) закон<

Если операция коммутативна, то результат ее применения не зависит от того, какой из операндов был первым, а какой — вторым. Операнды коммутативных операций можно менять друг с другом местами, получая тождественный результат.

3) Дистибутивный (распределительный) закон

Свойство дистрибутивности одной операции относительно другой позволяет «раскрывать» скобки аналогично процедуре из элементарной алгебры. Конъюнкция и дизъюнкция дистрибутивны друг относительно друга, что выражается в следующих формулах:

4) Законы де Моргана (законы общей инверсии или дуальности)

Законы де Моргана позволяют применять отрицания к целой скобке, позволяя перейти к так называемым тесным отрицаниям, когда ни одно отрицание не стоит перед скобкой.

5) Закон поглощения (элиминации)

Если к выражению применяется с одним и тем же операндом сначала одна операция, а потом, с тем же самым операндом, поглощающая ее, то значение выражения поглощается, становясь равно операнду. Таким образом поглощающие друг друга пары операций можно «выкидывать» во время упрощения.

6) Закон склеивания (исключения)

7) Свойства единицы и нуля

Конъюнкция и дизъюнкция «по-особому» реагируют на единицу или ноль в качестве одного из операндов независимо от значения второго. Эти свойства похожи на знакомые из элементарной алгебры умножение на единицу, умножение на ноль, сложение с нулем:

A ʌ 0 = 0

A ʌ 1 = A

A v 0 = A

A v 1 = 1

8) Идемпотентность

Операция называется идемнотентной, если, применяя ее к двум равным операндам, получается тот же самый операнд. Идемпотентность позволяет «выкидывать» лишние повторные применения операции из формулы. Конъюнкция и дизъюнкция идемпотентны:

A ʌ A = A

A v A = A

9) Дополнение

Отрицание операнда называется его дополнением. Конъюнкция или дизъюнкция операнда со своим дополнением дает однозначные результат независимо от значения операнда:

А ʌ ¬А = 0

А v ¬А = 1

10) Двойное отрицание

Двойное отрицание компенсирует само себя. Таким образом в форме с тесными отрицаниями у каждой переменной в выражении либо не стоит ни одного отрицания, либо только одно.

¬¬А=А

Правила

С помощью законов алгебры логики можно производить равносильные преобразования логических выражений с целью их упрощения. В алгебре логики на основе принятого соглашения установлены следующие правила (приоритеты) для выполнения логических операций:

первыми выполняются операции в скобках, затем в следующем порядке:

инверсия (отрицание ¬),

конъюнкция ( ʌ ),

дизъюнкция (v),

импликация (→), эквиваленция (=).

Обозначение на логических схемах

Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах.

Обозначение на схеме

Ссылки

  1. Function-x [Электронный ресурс]: Булева алгебра (алгебра логики) / Дата обращения: 26.06.16. — Режим доступа: http://function-x.ru/buleva_algebra.html
  2. МГИУ Кафедра информационных систем и технологий [Электронный ресурс]: Булева алгебра / Дата обращения: 26.06.16. — Режим доступа: http://230100.msiu.ru/files/6222-lesson4.html
  3. Планета информатики учебник по информатике [Электронный ресурс]: Логические основы ЭВМ / Дата обращения: 26.06.16. — Режим доступа: http://www.inf1.info/book/export/html/210
  4. Исория компьютера [Электронный ресурс]: Клод Шеннон / Дата обращения: 26.06.16. — Режим доступа: http://chernykh.net/content/view/444/656
  5. Function-x [Электронный ресурс]: Логические схемы и таблицы истинности / Дата обращения: 26.06.16. — Режим доступа: http://function-x.ru/logicheskie_shemy_i_tablici_istinnosti.html
  6. СтудопедиЯ [Электронный ресурс]: Аксиомы и законы алгебры логики / Дата обращения: 26.06.16. — Режим доступа: http://studopedia.su/7_11744_aksiomi-i-zakoni-algebri-logiki.html

ru.bmstu.wiki

Булева алгебра. Алгебра логики. Элементы математической логики

В современном мире мы все чаще используем разнообразные машины и гаджеты. И не только тогда, когда необходимо применить буквально нечеловеческую силу: переместить груз, поднять его на высоту, вырыть длинную и глубокую траншею и т. д. Автомобили сегодня собирают роботы, еду готовят мультиварки, а элементарные арифметические расчеты производят калькуляторы. Все чаще мы слышим выражение «булева алгебра». Пожалуй, пришло время разобраться в роли человека в создании роботов и умении машин решать не только математические, но и логические задачи.

Логика

В переводе с греческого логика – это упорядоченная система мышления, которая создает взаимосвязи между заданными условиями и позволяет делать умозаключения, основываясь на предпосылках и предположениях. Довольно часто мы спрашиваем друг друга: «Логично?» Полученный ответ подтверждает наши предположения либо критикует ход мысли. Но процесс не останавливается: мы продолжаем рассуждать.

Порой количество условий (вводных) настолько велико, а взаимосвязи между ними столь запутанны и сложны, что человеческий мозг не в состоянии «переварить» все сразу. Может понадобиться не один месяц (неделя, год) для понимания происходящего. Но современная жизнь не дает нам таких временных интервалов на принятие решений. И мы прибегаем к помощи компьютеров. И вот тут-то и появляется алгебра логики, со своими законами и свойствами. Загрузив все исходные данные, мы позволяем компьютеру распознать все взаимосвязи, исключить противоречия и найти удовлетворительное решение.

Математика и логика

Известнейший Готфрид Вильгельм Лейбниц сформулировал понятие «математическая логика», задачи которой были доступны для понимания только узкому кругу ученых. Особого интереса это направление не вызывало, и до середины XIX века о математической логике знали немногие.

Большой интерес в научных сообществах вызвал спор, в котором англичанин Джордж Буль заявил о своем намерении создать раздел математики, не имеющий абсолютно никакого практического применения. Как мы помним из истории, в это время активно развивалось промышленное производство, разрабатывались всевозможные вспомогательные машины и станки, т. е. все научные открытия имели практическую направленность.

Забегая вперед, скажем, что булева алгебра – самая используемая в современном мире часть математики. Так что спор свой Буль проиграл.

Джордж Буль

Сама личность автора заслуживает отдельного внимания. Даже учитывая то, что в прошлом люди взрослели раньше нас, все равно нельзя не отметить, что в 16 лет Дж. Буль преподавал в деревенской школе, а к 20 годам открыл собственную школу в Линкольне. Математик отлично владел пятью иностранными языками, а в свободное время зачитывался работами Ньютона и Лагранжа. И все это — о сыне простого рабочего!

В 1839 году Буль впервые послал свои научные работы в Кембриджский математический журнал. Ученому исполнилось 24 года. Работы Буля настолько заинтересовали членов Королевского научного общества, что в 1844 году он получил медаль за вклад в развитие математического анализа. Еще несколько опубликованных работ, в которых были описаны элементы математической логики, позволили молодому математику занять пост профессора в колледже графства Корк. Напомним, что у самого Буля образования не было.

Идея

В принципе, булева алгебра очень проста. Существуют высказывания (логические выражения), которые, с точки зрения математики, можно определить только двумя словами: «истина» или «ложь». Например, весной деревья расцветают – истина, летом идет снег – ложь. Вся прелесть этой математики заключается в том, что нет строгой необходимости использовать только числа. Для алгебры суждений вполне подходят любые высказывания с однозначным смыслом.

Таким образом, алгебра логики может быть использована буквально везде: в составлении расписаний и написании инструкций, анализе противоречивой информации о событиях и определении последовательности действий. Самое главное — понять, что совершенно неважно, как мы определили истинность или ложность высказывания. От этих «как» и «почему» нужно абстрагироваться. Значение имеет только констатация факта: истина-ложь.

Безусловно, для программирования важны функции алгебры логики, которые записываются соответствующими знаками и символами. И выучить их – это значит освоить новый иностранный язык. Нет ничего невозможного.

Основные понятия и определения

Не вдаваясь в глубины, разберемся с терминологией. Итак, булева алгебра предполагает наличие:

  • высказываний;
  • логических операций;
  • функций и законов.

Высказывания – любые утвердительные выражения, которые не могут быть истолкованы двузначно. Они записываются в виде чисел (5 > 3) или формулируются привычными словами (слон – самое большое млекопитающее). При этом фраза «у жирафа нет шеи» также имеет право на существование, только булева алгебра определит её как «ложь».

Все высказывания должны носить однозначный характер, но они могут быть элементарными и составными. Последние используют логические связки. Т. е. в алгебре суждений составные высказывания образуются сложением элементарных посредством логических операций.

Операции булевой алгебры

Мы уже помним, что операции в алгебре суждений – логические. Подобно тому, как алгебра чисел использует арифметические операции для сложения, вычитания или сравнения чисел, элементы математической логики позволяют составить сложные высказывания, дать отрицание или вычислить конечный результат.

Логические операции для формализации и простоты записываются формулами, привычными для нас в арифметике. Свойства булевой алгебры дают возможность записывать уравнения и вычислять неизвестные. Логические операции обычно записывают с помощью таблицы истинности. Её столбцы определяют элементы вычислений и операцию, которая над ними производится, а строки показывают результат вычислений.

Основные логические действия

Самыми распространенными в булевой алгебре операциями являются отрицание (НЕ) и логические И и ИЛИ. Так можно описать практически все действия в алгебре суждений. Изучим подробнее каждую из трех операций.

Отрицание (не) применяется только к одному элементу (операнду). Поэтому операцию отрицания называют унарной. Для записи понятия «не А» используют такие символы: ¬A, A¯¯¯ или !A. В табличной форме это выглядит так:

Для функции отрицания характерно такое утверждение: если А истинно, то Б – ложно. Например, Луна вращается вокруг Земли – истина; Земля вращается вокруг Луны – ложь.

Логические умножение и сложение

Логическое И называют операцией конъюнкции. Что это значит? Во-первых, что применить ее можно к двум операндам, т. е. И – бинарная операция. Во-вторых, что только в случае истинности обоих операндов (и А, и Б) истинно и само выражение. Пословица «Терпение и труд все перетрут» предполагает, что только оба фактора помогут человеку справиться со сложностями.

Для записи используются символы: A∧Б, A⋅Б или A&&Б.

Конъюнкция аналогична умножению в арифметике. Иногда так и говорят – логическое умножение. Если перемножить элементы таблицы по строкам, мы получим результат, аналогичный логическому размышлению.

Дизъюнкцией называют операцию логического ИЛИ. Она принимает значение истинности тогда, когда хотя бы одно из высказываний истинно (или А, или Б). Записывается это так: A∨Б, A+Б или A||Б. Таблицы истинности для этих операций такие:

Дизъюнкция подобна арифметическому сложению. Операция логического сложения имеет только одно ограничение: 1+1=1. Но мы же помним, что в цифровом формате математическая логика ограничена 0 и 1 (где 1 – истина, 0 — ложь). Например, утверждение «в музее можно увидеть шедевр или встретить интересного собеседника» означает, что можно посмотреть произведения искусства, а можно познакомиться с интересным человеком. В то же время, не исключен вариант одновременного свершения обоих событий.

Функции и законы

Итак, мы уже знаем, какие логические операции использует булева алгебра. Функции описывают все свойства элементов математической логики и позволяют упрощать сложные составные условия задач. Самым понятным и простым кажется свойство отказа от производных операций. Под производными понимаются исключающее ИЛИ, импликация и эквивалентность. Поскольку мы ознакомились только с основными операциями, то и свойства рассмотрим тоже только их.

Ассоциативность означает, что в высказываниях типа «и А, и Б, и В» последовательность перечисления операндов не играет роли. Формулой это запишется так:

(A∧Б)∧В=A∧(Б∧В)=A∧Б∧В,

(A∨Б)∨В=A∨(Б∨В)=A∨Б∨В.

Как видим, это свойственно не только конъюнкции, но и дизъюнкции.

Коммутативность утверждает, что результат конъюнкции или дизъюнкции не зависит от того, какой элемент рассматривался вначале:

A∧Б=Б∧A; A∨Б=Б∨A.

Дистрибутивность позволяет раскрывать скобки в сложных логических выражениях. Правила схожи с раскрытием скобок при умножении и сложении в алгебре:

A∧(Б∨В)=A∧Б∨A∧В; A∨Б∧В=(A∨Б)∧(A∨В).

Свойства единицы и нуля, которые могут быть одним из операндов, также аналогичны алгебраическим умножению на ноль или единицу и сложению с единицей:

A∧0=0,A∧1=A; A∨0=A,A∨1=1.

Идемпотентность говорит нам о том, что если относительно двух равных операндов результат операции оказывается аналогичным, то можно «выбросить» лишние усложняющие ход рассуждений операнды. И конъюнкция, и дизъюнкция являются идемпотентными операциями.

Б∧Б=Б; Б∨Б=Б.

Поглощение также позволяет нам упрощать уравнения. Поглощение утверждает, что когда к выражению с одним операндом применяется другая операция с этим же элементом, результатом оказывается операнд из поглощающей операции.

A∧Б∨Б=Б; (A∨Б)∧Б=Б.

Последовательность операций

Последовательность операций имеет немаловажное значение. Собственно, как и для алгебры, существует приоритетность функций, которые использует булева алгебра. Формулы могут упрощаться только при условии соблюдения значимости операций. Ранжируя от самых значимых до незначительных, получим такую последовательность:

1. Отрицание.

2. Конъюнкция.

3. Дизъюнкция, исключающее ИЛИ.

4. Импликация, эквивалентность.

Как видим, только отрицание и конъюнкция не имеют равных приоритетов. А приоритет дизъюнкции и исключающего ИЛИ равны, также как и приоритеты импликации и эквивалентности.

Функции импликации и эквивалентности

Как мы уже говорили, помимо основных логических операций математическая логика и теория алгоритмов использует производные. Чаще всего применяются импликация и эквивалентность.

Импликация, или логическое следование – это высказывание, в котором одно действие является условием, а другое – следствием его выполнения. Иными словами, это предложение с предлогами «если… то». «Любишь кататься, люби и саночки возить». Т. е. для катания необходимо затянуть санки на горку. Если же нет желания съехать с горы, то и санки таскать не приходится. Записывается это так: A→Б или A⇒Б.

Эквивалентность предполагает, что результирующее действие наступает только в том случае, когда истиной являются оба операнда. Например, ночь сменяется днем тогда (и только тогда), когда солнце встает из-за горизонта. На языке математической логики это утверждение записывается так: A≡Б, A⇔Б, A==Б.

Другие законы булевой алгебры

Алгебра суждений развивается, и многие заинтересовавшиеся ученые сформулировали новые законы. Наиболее известными считаются постулаты шотландского математика О. де Моргана. Он заметил и дал определение таким свойствам, как тесное отрицание, дополнение и двойное отрицание.

Тесное отрицание предполагает, что перед скобкой нет ни одного отрицания: не (А или Б)= не А или НЕ Б.

Когда операнд отрицается, независимо от своего значения, говорят о дополнении:

Б∧¬Б=0; Б∨¬Б=1.

И, наконец, двойное отрицание само себя компенсирует. Т.е. перед операндом либо исчезает отрицание, либо остается только одно.

Как решать тесты

Математическая логика подразумевает упрощение заданных уравнений. Так же, как и в алгебре, необходимо сначала максимально облегчить условие (избавиться от сложных вводных и операций с ними), а затем приступить к поиску верного ответа.

Что же сделать для упрощения? Преобразовать все производные операции в простые. Затем раскрыть все скобки (или наоборот, вынести за скобки, чтобы сократить этот элемент). Следующим действием должно стать применение свойств булевой алгебры на практике (поглощение, свойства нуля и единицы и т. д).

В конечном итоге уравнение должно состоять из минимального количества неизвестных, объединенных простыми операциями. Легче всего искать решение, если добиться большого количества тесных отрицаний. Тогда ответ всплывет как бы сам собой.

fb.ru

Булева алгебра (алгебра логики)

На этом уроке знакомимся с алгеброй логики (булевой алгеброй). Одним из её основателей стал английский математик Джордж Буль (1815-1864), который был из довольно бедной семьи, а в юности зарабатывал переводами сочинений древнегреческих философов. За этим занятием его и посетила мысль о том, что высказываниям можно присваивать значения 1 («истина») и 0 «ложь».

Итак, алгебра логики (булева алгебра) — это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними. Алгебра логики позволяет закодировать любые утверждения, истинность или ложность которых нужно доказать, а затем манипулировать ими подобно обычным числам в математике.

Создание алгебры логики в середине ХIХ века в трудах Джорджа Буля представляло собой попытку решать традиционные логические задачи алгебраическими методами.

Пусть функция от n переменных и любой из её аргументов могут принимать значения только из множества {0, 1}. Тогда эта функция называется логической, или булевой, или переключательной, или функцией алгебры логики. Описанную функцию часто называют также булевым вектором. Количество функций от n переменных равно 2 в степени n. То же самое можно сказать и иначе: число различных n-мерных булевых векторов равно 2 в степени n. А число различных функций алгебры логики от этих векторов равно уже .

Значениям переменной в булевой алгебре соответствуют состояниям элементов микросхем компьютера или любого другого электронного устройства: сигнал присутствует (логическая «1») или сигнал отсутствует (логический «0»).

На логических элементах, реализующих булевы функции, строятся логические схемы электронных устройств.

Законы булевой алгебры применяются и в программировании — при написании сложных логических условий и сложных запросов к базе данных. Один пример со скриптом на PHP приведён здесь (это статья о системе многокритериального поиска по сайту с базой данных). Ещё один пример — применение алгебры логики в создании многоуровневого меню сайта, в котором были бы открыты все пункты всех уровней, по которому пролегает путь к конечному открытому пункту меню.

Часто оказывается, что изначально построенное логическое выражение можно упростить, используя аксиомы, теоремы и законы алгебры логики.

Логические функции одной переменной

 

ПеременнаяЛогические функции
x
00011
10101

 

Логические функции двух переменных

Ниже дана таблица истинности для логических функций от двух переменных.

В логических схемах функции могут быть реализованы с произвольных количеством входных переменных, примеры — в материале Логические схемы и таблицы истинности.

Ответить на контрольные вопросы, а затем посмотреть ответы

Контрольный вопрос 1. Даны две переменные x1 и x2. Число различных булевых векторов и различных ФАЛ от полученных векторов равны соответственно:

  • 8 и 16
  • 8 и 32
  • 4 и 8
  • 4 и 16

Контрольный вопрос 2. Какие из функций не являются ФАЛ одной переменной (и одна, и вторая в варианте ответа):

  • отрицание и сложение по модулю два
  • эквивалентность и повторение x
  • отрицание и импликация
  • функция Шеффера и эквивалентность
  • запрет по x2 и отрицание

Правильные ответы на вопрос 1 и вопрос 2.

Любую булеву функцию с произвольным количеством аргументов можно построить через подстановку элементарных функции вместо аргументов (суперпозицию). Набор простейших функций, с помощью которого можно выразить любые другие, сколь угодно сложные логические функции, называется функционально полным набором, или логическим базисом.

Инверсия (логическое отрицание, «НЕ»)

.

01
10

Конъюнкция (логическое умножение, «И»)

.

Дизъюнкция (логическое сложение, «ИЛИ»)

.

В булевом базисе обычно строятся логические схемы, которые реализуют сколь угодно сложные логические функции, примеры — в материале Логические схемы и таблицы истинности.

В качестве исходного описания сложных логических функций обычно используется таблица истинности, однако упрощение функций удобнее производить в аналитической форме. При аналитической записи функция алгебры логики представляется либо в виде логической суммы элементарных логических произведений (дизъюнкции элементарных конъюнкций), либо в виде логического произведения элементарных логических сумм (конъюнкции элементарных дизъюнкций). Первая форма записи имеет название дизъюнктивной нормальной формы (ДНФ), вторая — конъюнктивной нормальной формы (КНФ). В этих названиях термин «нормальная» означает отсутствие общей инверсии (отрицания) над несколькими перемнными сразу.

Дизъюнктивная нормальная форма

.

Конъюнктивная нормальная форма

.

Применяются следующие способы описания логических функций:

  • словесный;
  • табличный;
  • числовой;
  • аналитический;
  • координатный;
  • графический.

Пример табличного описания функций алгебры логики. В верхней таблице под набором подразумевается набор значений логических переменных (1 или 0), а f — это значение функции алгебры логики, заданной определённой формулой. Нижняя таблица несёт в себе более подробную информацию о наборах, поскольку в ней указаны значения переменных.

Номер набораf
00
11
20
30
41
51
60
71

 

X1X2X3f
0000
0011
0100
0110
1001
1011
1100
1111

Приведённые выше таблицы имеют название таблиц истинности. Такие таблицы в практике необходимо строить для любой, сколь либо сложной булевой функции. Примеры таблиц истинности для булевых функций, реализованных в логических схемах — в материале Логические схемы и таблицы истинности.

Пример числового описания логических функций

или .

Пример аналитического описания логических функций

Пример координатного описания логических функций

Карта Карно

Пример графического описания логических функций

Аксиомы конъюнкции

.

Аксиомы дизъюнкции

.

Аксиомы отрицания

если , то ; если , то .

Теоремы исключения констант

.

Теоремы идемпотентности (тавтологии, повторения)

.

для n переменных

.

Теорема противоречия

.

Теорема «исключённого третьего»

.

Теорема двойного отрицания (инволюции)

.

Ассоциативный (сочетательный) закон

.

Коммутативный (переместительный) закон

.

Дистибутивный (распределительный) закон

.

.

Законы де Моргана (законы общей инверсии или дуальности)

.

.

Закон поглощения (элиминации)

.

Закон склеивания (исключения)

.

function-x.ru

Булева алгебра — Википедия

Материал из Википедии — свободной энциклопедии

Эта статья об алгебраической системе. О разделе математической логики, изучающем высказывания и операции над ними, см. Алгебра логики.

Булевой алгеброй[1][2][3] называется непустое множество A с двумя бинарными операциями ∧{\displaystyle \land } (аналог конъюнкции), ∨{\displaystyle \lor } (аналог дизъюнкции), одной унарной операцией ¬{\displaystyle \lnot } (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для любых a, b и c из множества A верны следующие аксиомы:

В нотации · + ¯

a+(b+c)=(a+b)+ca(bc)=(ab)ca+b=b+aab=baa+ab=aa(a+b)=aa+bc=(a+b)(a+c)a(b+c)=ab+aca+a¯=1aa¯=0{\displaystyle {\begin{aligned}&a+(b+c)=(a+b)+c&a(bc)=(ab)c\\&a+b=b+a&ab=ba\\&a+ab=a&a(a+b)=a\\&a+bc=(a+b)(a+c)&a(b+c)=ab+ac\\&a+{\bar {a}}=1&a{\bar {a}}=0\end{aligned}}}

Первые три аксиомы означают, что (A, ∧{\displaystyle \land }, ∨{\displaystyle \lor }) является решёткой. Таким образом, булева алгебра может быть определена как дистрибутивная решётка, в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется псевдобулевой алгеброй. Названа в честь Джорджа Буля.

Некоторые свойства

Из аксиом видно, что наименьшим элементом является 0, наибольшим является 1, а дополнение ¬a любого элемента a однозначно определено. Для всех a и b из A верны также следующие равенства:

Основные тождества

В данном разделе повторяются свойства и аксиомы, описанные выше с добавлением ещё нескольких.

Сводная таблица свойств и аксиом, описанных выше:

Примеры

  • Самая простая нетривиальная булева алгебра содержит всего два элемента, 0 и 1, а действия в ней определяются следующей таблицей:
Эта булева алгебра наиболее часто используется в логике, так как является точной моделью классического исчисления высказываний. В этом случае 0 называют ложью, 1 — истиной. Выражения, содержащие булевы операции и переменные, представляют собой высказывательные формы.

Принцип двойственности

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на 1, ≤ на > и наоборот или < на ≥ и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен.

Представления булевых алгебр

Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки.

Теорема Стоуна утверждает, что любая булева алгебра изоморфна булевой алгебре всех открыто-замкнутых множеств какого-то компактного вполне несвязного хаусдорфова топологического пространства.

Аксиоматизация

В 1933 году американский математик Хантингтон[en] предложил следующую аксиоматизацию для булевых алгебр:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Хантингтона: n(n(x) + y) + n(n(x) + n(y)) = x.

Здесь использованы обозначения Хантингтона: + означает дизъюнкцию, n — отрицание.

Герберт Роббинс поставил следующий вопрос: можно ли сократить последнюю аксиому так, как написано ниже, то есть будет ли определённая выписанными ниже аксиомами структура булевой алгеброй?

Аксиоматизация алгебры Роббинса:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Роббинса: n(n(x + y) + n(x + n(y))) = x.

Этот вопрос оставался открытым с 1930-х годов и был любимым вопросом Тарского и его учеников.

В 1996 году Вильям МакКьюн, используя некоторые полученные до него результаты, дал утвердительный ответ на этот вопрос. Таким образом, любая алгебра Роббинса является булевой алгеброй.

См. также

Примечания

Литература

wikipedia.green

Булева алгебра Википедия

Эта статья об алгебраической системе. О разделе математической логики, изучающем высказывания и операции над ними, см. Алгебра логики.

Булевой алгеброй[1][2][3] называется непустое множество A с двумя бинарными операциями ∧{\displaystyle \land } (аналог конъюнкции), ∨{\displaystyle \lor } (аналог дизъюнкции), одной унарной операцией ¬{\displaystyle \lnot } (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для любых a, b и c из множества A верны следующие аксиомы:

a∨(b∨c)=(a∨b)∨c{\displaystyle a\lor (b\lor c)=(a\lor b)\lor c} a∧(b∧c)=(a∧b)∧c{\displaystyle a\land (b\land c)=(a\land b)\land c} ассоциативность
a∨b=b∨a{\displaystyle a\lor b=b\lor a} a∧b=b∧a{\displaystyle a\land b=b\land a} коммутативность
a∨(a∧b)=a{\displaystyle a\lor (a\land b)=a} a∧(a∨b)=a{\displaystyle a\land (a\lor b)=a}

ru-wiki.ru

Булева алгебра — это… Что такое Булева алгебра?

Эта статья об алгебраической системе. О разделе математической логики, изучающем высказывания и операции над ними, см. Алгебра логики.

Булевой алгеброй[1][2][3] называется непустое множество A с двумя бинарными операциями (аналог конъюнкции), (аналог дизъюнкции), унарной операцией (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для всех a, b и c из множества A верны следующие аксиомы:

В нотации · + ¯  

Первые три аксиомы означают, что (A, , ) является решёткой. Таким образом, булева алгебра может быть определена как дистрибутивная решётка, в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется псевдобулевой алгеброй.

Некоторые свойства

Из аксиом видно, что наименьшим элементом является 0, наибольшим является 1, а дополнение ¬a любого элемента a однозначно определено. Для всех a и b из A верны также следующие равенства:

Основные тождества

В данном разделе повторяются свойства и аксиомы, описанные выше с добавлением ещё нескольких.

Сводная таблица свойств и аксиом, описанных выше:

См. также Алгебра логики

Примеры

  • Самая простая нетривиальная булева алгебра содержит всего два элемента, 0 и 1, а действия в ней определяются следующей таблицей:
  • Эта булева алгебра наиболее часто используется в логике, так как является точной моделью классического исчисления высказываний. В этом случае 0 называют ложью, 1 — истиной. Выражения, содержащие булевы операции и переменные, представляют собой высказывательные формы.
  • Алгебра Линденбаума — Тарского (фактормножество всех утверждений по отношению равносильности в данном исчислении с соответствующими операциями) какого-либо исчисления высказываний является булевой алгеброй. В этом случае истинностная оценка формул исчисления является гомоморфизмом алгебры Линденбаума — Тарского в двухэлементную булеву алгебру.
  • Множество всех подмножеств данного множества S образует булеву алгебру относительно операций ∨ := ∪ (объединение), ∧ := ∩ (пересечение) и унарной операции дополнения. Наименьший элемент здесь — пустое множество, а наибольший — всё S.
  • Если R — произвольное кольцо, то на нём можно определить множество центральных идемпотентов так:
    A = { eR : e² = e, ex = xe, ∀xR },
    тогда множество A будет булевой алгеброй с операциями ef := e + fef и ef := ef.

Принцип двойственности

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на 1, ≤ на ≥ и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен.

Представления булевых алгебр

Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки.

Знаменитая теорема Стоуна утверждает, что любая булева алгебра изоморфна булевой алгебре всех открыто-замкнутых множеств какого-то компактного вполне несвязного хаусдорфова топологического пространства.

Аксиоматизация

В 1933 г. американский математик Хантингтон предложил следующую аксиоматизацию для булевых алгебр:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Хантингтона: n(n(x) + y) + n(n(x) + n(y)) = x.

Здесь использованы обозначения Хантингтона: + означает дизъюнкцию, n — отрицание.

Герберт Роббинс поставил следующий вопрос: можно ли сократить последнюю аксиому так, как написано ниже, то есть будет ли определённая выписанными ниже аксиомами структура булевой алгеброй?

Аксиоматизация алгебры Роббинса:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Роббинса: n(n(x + y’) + n(x + n(y))) = x.

Этот вопрос оставался открытым с 30-х годов и был любимым вопросом Тарского и его учеников.

В 1996 г. Вильям МакКьюн, используя некоторые полученные до него результаты, дал утвердительный ответ на этот вопрос. Таким образом, любая алгебра Роббинса является булевой алгеброй.

См. также

Примечания

Литература

dic.academic.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о