Осциллограф что измеряет: что это, какие бывают, что измеряют, как пользоваться

Содержание

что это, какие бывают, что измеряют, как пользоваться

Чтобы отремонтировать современную электронную технику одного мультиметра порой недостаточно. Им можно определить целостность радиодеталей. Но определить работает или нет микросхема мультиметром не получится. Для этого нужен осциллограф. Что это за прибор, что он делает? Об этом и будет статья.

Содержание статьи

Что такое осциллограф

Осциллограф — это прибор для визуального отображения и измерений параметров сигналов различной формы (процесс называется «осциллографирование»). Сигналы подаются на вход и отображаются на экране. Экран разбит на квадраты, по центру проходят две оси координат.  По горизонтали измеряется время. По вертикали — амплитуда и/или напряжение. Цена деления задается при помощи ручек калибровки. Режим отображения подстраивается под каждый сигнал. Выбирается такой режим, который наиболее удобен в данном случае (в пределах возможностей прибора).

Осциллограф — это не обязательно большая, громоздкая вещь.

Есть портативные цифровые модели, есть приставки. Есть даже программы, которые можно с адаптером установить на стационарный компьютер или ноутбук.

Так выглядит цифровой осциллограф Tektronix DPO 3054. На дисплее отображает сигнал, регуляторами выбираются параметры

По количеству одновременно отслеживаемых сигналов осциллографы есть однолучевые (одноканальные/моноканальные) и многолучевые (многоканальные). Однолучевые могут одновременно принимать только один сигнал, многолучевые — два, три, четыре и больше — до 16. Зависит от прибора.

Какой тип лучше? Многолучевой. Вы одновременно можете отслеживать сигнал в нескольких точках схемы. Изменяя параметры будете видеть реакцию устройства не только на выходе, но и в разных точках схемы.

Для чего он нужен

Для чего нужен осциллограф? Это просто необходимая вещь при ремонте электронной аппаратуры, при самостоятельной сборке или усовершенствовании каких-либо устройств. Многим хватает тестера или мультиметра. Да. Но для ремонта простых устройств без микросхем и микропроцессоров. Мультиметром вы можете проверить наличие обрыва, короткого замыкания, измерить напряжение и ток. Ни форму сигнала, ни конкретные параметры синусоиды или импульсов не измерить и не увидеть.

Осциллограф нужен для измерения напряжения и визуального отображения сигналов. На фото цифровой двухканальный осциллограф Hantek DSO5102B в рабочем режиме

А ведь бывает так, что все детали, вроде исправны, но устройство не работает. А все потому что некоторые детали требовательны не только к физическим параметрам питания (напряжение, сила тока), но и к форме сигнала. Этим «страдают» некоторые полупроводниковые детали, практически все микросхемы и процессоры. А без них сейчас обходятся только самые элементарные приборы типа кипятильника. Вот и получается, что найти сгоревший резистор, пробитый транзистор можно и мультиметром. Но для чуть более сложную поломку уже не устранить. Вот для этих случаев и нужен осциллограф. Он позволяет видеть форму сигнала, определять есть ли отклонения и находить источник проблемы.

Виды осциллографов

По принципу преобразования сигнала осциллографы бывают аналоговыми и цифровыми. Есть еще смешанный тип — аналогово-цифровой. Принципиальная разница между ними — в методах обработки сигналов и в возможности запоминания. Аналоговые модели транслируют «живой» сигнал в режиме реального времени. Записывать его на таком приборе нет возможности.

Аналогово-цифровые и цифровые уже имеют возможность записи. На них можно «открутить» время назад и просмотреть информацию, увидеть динамику изменения амплитуды или времени.

Еще одно отличие цифровых осциллографов от аналоговых — размеры. Цифровые приборы имеют значительно меньшие габариты

Цифровые осциллографы сначала оцифровывают синусоиду, записывают эту информацию в запоминающее устройство (ЗУ), а затем передают на экран монитора. Но не все цифровые модели имеют долговременную память — в таком случае запись ведется циклически. Это когда вновь пришедший сигнал записывается поверх предыдущего. В памяти хранится то, что появлялось на экране, но промежуток времени не такой большой. Если вам необходима запись длиной пять-десять минут, нужен запоминающий осциллограф.

Что измеряет осциллограф

На экране осциллографа отображается двухмерная картинка сигнала, который подали на измерительный вход. На экране есть две оси координат. Горизонтальная — ось времени, вертикальная — напряжение. Эти параметры и измеряют. А уже из них высчитывают остальные.

На экране осциллографа отображаются сигналы, которые подаются на его входы. Это например, двухлучевой аналоговый осциллограф, который показывает форму сигнала на входе (синусоида) и выходе (прямоугольный) импульсного преобразователя напряжения

Вот что можно измерить и отследить при помощи осциллографа:

  • Напряжение (амплитуду).
  • Временные параметры, по которым можно рассчитать частоту.
  • Отслеживать сдвиг фаз.
  • Видеть искажения, которые вносит элемент или участок цепи.
  • Определить постоянную и временную составляющие сигнала.
  • Увидеть наличие шума.
  • Рассчитать соотношение сигнал/шум.
  • Видеть/определить параметры импульсов.

Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали.

Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).

Устройство и принцип работы

Рассмотрим блок-схему и алгоритм работы аналогового осциллографа. Как уже говорили, изменять изображения можно по горизонтали и по вертикали. Приборы на основе электронно-лучевой трубки (ЭЛТ) для этого имеют две пары пластин. Одна пара для изменения масштаба по вертикали (амплитуда или напряжение). Вторая — для растягивания или сжатия по горизонтали (временные параметры).

Устройство аналогового осциллографа: блок-схема

Отслеживаемый сигнал подается на входной усилитель, где усиливается или уменьшается до заданных значений. Значение задается переключателями. Коэффициент усиления обычно от 100 до 1000. Усиленный сигнал идет на пластины вертикальной развертки электронно-лучевой трубки.

Горизонтальная развертка формируется на основе пилообразного сигнала, который генерируется в соответствующем блоке (генератор развертки). Его параметры также задаются соответствующим переключателем. Отображение на экране ЭЛТ идет в режиме реального времени, с некоторой задержкой. Величина задержки прописывается в технических характеристиках прибора.

Основные блоки аналогового осциллографа

Для работы осциллографа важен блок синхронизации. Он обеспечивает появление картинки в момент поступления потенциала на вход. За счет этого на экране мы видим сигнал за некоторый промежуток времени. Есть разные типы синхронизации. Они выбираются переключателем. Чаще всего выбирают синхронизацию от самого исследуемого сигнала. Есть еще от сети и внешнего источника.

Режимы работы осциллографа

Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы.  Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.

Выбор режима работы осциллографа

Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками).

При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.

Так выглядит экран осциллографа в автоколебательном (авторежиме) при отсутствии сигнала

Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).

Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.

Делитель (аттенюатор)

Исследуемый сигнал может иметь напряжение от десятых долей до сотен вольт. Есть осциллографы со встроенным регулятором чувствительности — аттенюатором. Выглядит он как переключатель с градуировкой. Она задает «вес» одного деления на экране и определяет, во сколько раз понижается входной сигнал. Если ожидается малый уровень, мы просто выставляем на 1 или на 0,1. В таком случае одно деление на экране по вертикали будет 1 В и 0,1 В соответственно. И «понижать» сигнал будут в 1 раз (то есть, передадут как есть) или усилят в 10 раз перед подачей на вход (это если стоит 0,1).

Не все осциллографы имеют встроенный делитель (аттенюатор). В комплекте с таким прибором  идут внешние делители на 1:10 или 1:100. Это прямоугольные или цилиндрические насадки с разъемами с обоих сторон. Они устанавливаются во входной разъем и через них подается напряжение на вход, но уже пониженное в соответствующее количество раз.

Примерно так выглядит делитель. Он устанавливается во входное гнездо, а к нему уже подключается измерительный шнур

Ставить делитель необязательно. Необходимость определяется по ожидаемому уровню сигнала. В характеристиках указывается максимальное входное напряжение, которое может подаваться на прибор без делителя и с делителем. По уровню ожидаемого сигнала и ставим насадку.

Если уровень неизвестен, сначала выставляют самый большой делитель (или самое большое деление на аттенюаторе). Это предохранит прибор от перегорания если потенциал будет высоким. По результатам первого замера выбирается оптимальный режим.

Особенности цифровых моделей

Цифровой осциллограф работает иначе — аналоговый сигнал преобразуется в цифровую форму. В таком виде он записывается в ЗУ и передается на монитор, где из цифрового формата переводится снова в аналоговую форму. Отображение на экране начинается только в тот момент, когда уровень на входе превысит определенное значение (задается настройками).

Периодичность смены картинки зависит от выбранного режима работы: автоматический, одиночный и обычный. Обычный — это аналог ждущего.

Упрощенная блок-схема цифрового осциллографа

Чем лучше цифровые модели? Во-первых, такое преобразование делает изображение более стабильным. Во-вторых, проще увеличивать и уменьшать масштаб. В-третьих, есть возможность записи. Ну, и габариты. Самый небольшой аналоговый осциллограф — С1-94 — имеет размеры 100*190*300 мм и вес 3,5 кг. А цифровые при размерах 100*50-60*13-20 мм имеют вес порядка 150-300 граммов. И это вместе с аккумуляторами.

Как работать с осциллографом

Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения.
Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.

Подключение осциллографа

В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.

Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.

Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.

Измерительные шнуры для осциллографа

Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).

После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.

Проверка осциллографа перед работой

Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.

Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен

Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.

Как измерить осциллографом напряжение: переменное, меандра, постоянное

Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление. Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно.

Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.

Измерение напряжения осциллографом

Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел  = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.

Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.

Как осциллографом определить частоту

Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.

Как определить частоту сигнала по осциллографу

Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц

Полоса пропускания осциллографа: что это и на что влияет

При выборе осциллографа смотрят на следующие параметры:

  • Полоса пропускания.
  • Максимальное входное напряжение.
  • Режимы развертки.
  • Источники синхронизации.

Обо всех параметрах, кроме полосы пропускания, уже рассказали. Полоса пропускания — это чуть ли не важнейший показатель. Она определяет максимальную частоту сигнала, который будет отображаться без искажений. Например, при полосе пропускания 20 Гц — 20 МГц, все что имеет более высокую частоту будет подавляться.

Там, где полоса пропускания заканчивается, частоты жестко подавляются

Как же выбирать частоту пропускания? Зависит от того, какие сигналы вы собираетесь изучать и насколько «глубоко» вам надо их исследовать. Для аналоговых сигналов все просто — верхний предел должен быть больше чем максимальная частота. С меандрами все сложнее. На самом деле они состоят их суммы нечетных гармоник сигнала. Чем больше гармоник, тем больше форма похожа на квадрат, а не на сглаженное что-то. Но гармоники высокого порядка имеют очень высокую частоту. Если надо исследовать фронты, их отклонение, то верхний предел полосы пропускания — это десятки гигагерц. А такие приборы очень дорогие. Для обычной синусоиды достаточно 10-20 МГц, что значительно дешевле.

Осциллограф — Описание, функции, предназначение

Осциллограф – это прибор, который показывает изменение напряжение во времени на каком-либо участке электрической цепи.Ось X на экране осциллографа – это время, ось Y – напряжение.

 

В этой статье мы рассмотрим три типа осциллографов, а также принципы их работы.

Аналоговый осциллограф

Его еще также называют электронно-лучевой осциллограф, так как он состоит из электронно-лучевой трубки. По сути электронно-лучевая трубка представляет из себя маленький кинескоп, на котором мы можем наблюдать какое-либо изменение электрического сигнала.

Любой осциллограф имеет экран. Он может быть встроенный, либо это может быть монитор вашего настольного компьютера или дисплей ноутбука. В нашем случае на фото мы видим, что наш осциллограф имеет круглый экранчик. Сигнал, который вырисовывается на таком экране называется осциллограммой.

Для измерения электрических сигналов нам потребуются специальный щуп для осциллографа. Такой щуп представляет из себя кабель из двух проводов, один из которых является сигнальным, а другой нулевым. Нулевой провод также часто называют “землей”.

 

Более современные щупы уже выглядят вот так.

А вот и сам разъем щупа

Этот конец щупа соединяется с осциллографом и фиксируется небольшим поворотом по часовой стрелке.

Что делать, если вы не помните, какой провод из щупа является сигнальным, а какой нулевым? Это определяется очень просто. Так как человек находится всегда в электромагнитном поле, он является своего рода принимающей антенной и может наводить помехи. Касаясь сигнального щупа осциллографа, на экране мы увидим, что сигнал очень сильно исказился.

При касании нулевого провода, сигнал на осциллографе остался бы таким, какой был. То есть чистый ноль.

 

Как измерить постоянное напряжение аналоговым осциллографом

Для того, чтобы измерить постоянное напряжение, мы должны переключить осциллограф в режим DC, что означает “постоянный ток”. В разных моделях это делается по разному, но этот переключатель обязательно должен быть в каждом осциллографе.

Давайте рассмотрим на реальном примере, как можно измерить постоянное напряжение. Для этого нам потребуется источник постоянного тока. В данном случае я возьму лабораторный блок питания. Выставляю на нем значение напряжения в 1 Вольт.

 

Теперь необходимо выбрать масштаб измерений. Если мы хотим, чтобы одна сторона квадратика была равна 1 Вольту, то ставим коэффициент масштабирования 1:1. В данном случае я выставляю переключатель вертикальный развертки на единичку.

 

Далее сигнальный провод осциллографа цепляем на “плюс” питания, а нулевой  – на “минус” питания. Далее наблюдаем вот такую картину.

Как вы могли заметить, осциллограммой постоянного тока является прямая линия, параллельная горизонтальной оси (оси Х). По вертикальной оси (оси Y) мы видим, что сигнал поднялся ровно на одну клеточку.  Мы выставили коэффициент масштабирования по Y, что 1 клеточка – это 1 Вольт. Следовательно в нашем случае сигнал поднялся ровно на 1 клеточку, что говорит нам о том, что это и есть осциллограмма постоянного тока в 1 Вольт.

Я также могу изменить коэффициент. Например, ставлю на 2. Это означает, что 1 квадратик будет уже равен 2 Вольтам.

Смотрим, что произойдет с сигналом с напряжением в 1 Вольт

Здесь мы видим, что его значение просело в 2 раза, так как мы взяли коэффициент 1:2, что означает 1 квадратик равен 2 Вольтам. Благодаря масштабированию вертикальный развертки, мы можем измерять сигналы напряжением хоть в 1000 вольт!

Что случится, если мы соединим сигнальный провод осциллографа с “минусом” питания, а нулевой с “плюсом” питания? В этом случае осциллограмма “пробьет пол” и просто покажет минусовые значения. Ничего страшного в этом нет. Здесь мы видим значение  “-2” Вольта.

 

Как измерить переменное напряжение аналоговым осциллографом

Для измерения переменного напряжения нам потребуется переключить осциллограф в режим измерения AC – “переменный ток”. Если вы хотите просто наблюдать форму сигнала, то вам необязательно знать, какой провод осциллографа куда тыкать. Давайте измеряем переменное напряжение с понижающего трансформатора, который включен в сеть 220 Вольт.

Снимаем напряжение со вторичной обмотки трансформатора и видим вот такую осциллограмму.

По идее здесь должен быть чистый синус. То ли трансформатор вносит искажения в сигнал, то ли на электростанции что-то не так.  Непонятно. Ну да ладно, главное то, что мы сняли осциллограмму переменного напряжения со вторичной обмотки трансформатора.

В этом случае мы можем без проблем определить период сигнала и его частоту. В этом нам поможет переключатель горизонтальной развертки по оси времени.

Мы видим, что его значение стоит на 5. Это означает, что один квадратик по оси “Х” , то есть по оси времени, будет равен 5 миллисекунд или 0,005 секунд.

Период – это время, через которое сигнал повторяется. Обозначается буквой Т. В нашем случае период равен 4 квадратикам.

Так как один квадратик в нашем случае равен 0,005 секунд, то получается, что T=0,005 x 4 = 0,02 секунды. Отсюда можно узнать частоту сигнала.

где

V – это частота, Гц

T – период сигнала, с

 

Для данного случая

V=1/T=1/0,02=50 Гц.  Трансформатор меняет только амплитуду сигнала, но не изменяет его частоту. Поэтому, частота в нашей сети 50 Герц, что и подтвердил осциллограф.

Цифровой осциллограф

Цифровой осциллограф – это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие от аналогового в том, что внутри него идет цифровая обработка сигналов. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять исследуемый сигнал. И это только часть функций!

Как подготовить цифровой осциллограф к работе


Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (Ch2)

На щупе есть делитель. Ставим его ползунок на 10Х.  В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала “10Х”.

Каждый нормальный цифровой осциллограф имеет встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. Чаще всего этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.

Все должно выглядеть приблизительно вот так:

На дисплее в это время происходит какой-то

[quads id=1]

В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку

Согласился с условиями автоматического позиционирования сигнала

и готово!

Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его  желательно корректировать каждый раз перед работой.

В современных щупах есть маленький винтик, заточенный под тонкую отвертку. С помощью этого винтика мы будем корректировать щуп.

Крутим и смотрим, что у нас получается на дисплее.

Ого, слишком сильно крутанул винт.

Крутим чуточку в обратную сторону и выравниваем горизонтально вершины сигнала.

Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы, следовательно на этом этапе цифровой осциллограф полностью готов к работе.

Как измерить постоянное напряжение цифровым осциллографом


Итак, первым делом выбираем, какое напряжение собираемся измерять. Это делается с помощью кнопочки Coupling (нажимаем клавишу Н1). DC – direct current, что с английского означает “постоянный ток”.

 Справа экрана сплывают окошки, и мы выбираем DC (нажимаем клавишу F1)

Все, после этого наш осциллограф полностью готов к измерению постоянного тока.

Откуда будем брать постоянный ток? У меня для этого есть блок питания. Выставим на нем для примера 5 Вольт.

Соединяем щупы блока питания и осциллографа. Сигнальный щуп осциллографа желательно соединять с красным плюсовым крокодилом щупа блока питания, а черный щуп (земля) соединить с минусовым черным крокодилом.

Смотрим на дисплей осциллографа

Что мы тут видим? А видим мы тут осциллограмму постоянного напряжения.  Постоянное напряжение – это такое напряжение, которое не изменяется во времени.

[quads id=1]

На что стоит обратить внимание? Разумеется, на цену деления. Один квадратик по вертикали у нас равен 2 Вольта. Если считать от центра пересечения жирных штриховых линий, то осциллограмма находится на высоте 2,5 стороны квадратика. Значит, напряжение будет 2,5х2=5 Вольт. Так как мне лень считать, я вывожу эти показания осциллографа прямо на экране (нижняя левая зеленая рамка).

Как измерить переменное напряжение цифровым осциллографом


Для опытов я возьму ЛАТР (Лабораторный автотрансформатор). Как вы помните, ЛАТР понижает или повышает переменное сетевое напряжение.

Выставляем напряжение на ЛАТРе 100 Вольт.

На осциллографе переключаем на АС, что означает alternating current  – переменный ток.

 

Цепляемся к выходным разъемам ЛАТРа и наблюдаем такую картину.

С помощью кнопки “Measure” я вывел некоторые интересующие нас параметры:

Vk – среднеквадратичное значение напряжения. В данном случае он  нам показывает напряжение, которое мы подавали с ЛАТРа – это 100 Вольт.

F – частота. В данном случае это частота сети 50 Герц. ЛАТР не меняет частоту сети.

T – период. T=1/F. Как мы с вами видим частота напряжения в сети 50 Герц. Период равен 20 миллисекунд. Если единицу разделить на 20 миллисекунд, то мы как раз получим частоту сигнала.

Как вывести все параметры сигнала


Мы будем рассматривать все наши измеряемые параметры на конкретном примере. Для этого будем использовать генератор частоты  с заранее выставленной частотой в 1 Мегагерц (ну или 1000 КГц) с прямоугольной формой сигнала:

Сигнал с генератора частоты на экране осциллографа выглядит вот так.

А где же правильный прямоугольный сигнал? Вот тебе и раз… Ничего с этим не поделаешь. Это есть, было и будет у всех прямоугольных сигналов. Это возникает вследствие несовершенства цепей и радиоэлементов. Особенно хорошо такая осциллограмма прорисовывается на высоких частотах, как в нашем примере.

 

Ладно, давайте выведем все параметры сигнала, которые может вывести наш осциллограф. Для этого нажимаем кнопочку “Measure” , что с англ. означает “измерять”

Далее нажимаем кнопочку “Add” ( с англ. – добавлять), с помощью вспомогательной клавиши h2

И потом нажимаем кнопку “Show All” (с англ. – показать всё) с помощью вспомогательной клавиши F3

В результате всех этих операций у нас выскочит табличка с измеряемыми параметрами сигнала:

Описание характеристик сигналов

Как вы знаете, осциллограф нам показывает изменение напряжения сигнала во времени. Поэтому, параметры сигналов в основном делятся на два типа:

Амплитудные

Временные

[quads id=1]

Давайте рассмотрим основные из них. Начнем слева-направо.

Period – с англ. период. Период сигнала – это время, за которое сигнал повторяется. В нашем случае период обозначается буквой “Т”.

Чтобы самостоятельно посчитать период, нам надо знать значение одной клетки по горизонтали. Внизу осциллограммы можно найти подсказку. Я ее пометил в желтый прямоугольник

Следовательно, одна клеточка по горизонтали равна 500 наносекунд. А так как у нас период длится ровно две клеточки, значит 500 х 2 = 1000 наносекунда или 1 микросекунда.

Сходятся ли наши расчетные показания с показаниями автоматических измерений? Смотрим и проверяем.

Стопроцентное попадание! Кстати, чтобы не было дальнейших вопросов, привожу небольшую табличку.

“Пико” – буквой “p”

“Нано” – буквой “n”

“Микро” обозначается буквой “u”, как и в маркировке современных конденсаторов.

“Милли”  – буквой “m”.

Freq. Полное название frequency – с англ. частота. Обозначается буквой “F”. Частоту очень легко можно вычислить по формуле, зная период Т.

F=1/T

В нашем случае получаем 1/1х10-6=106=1 Мегагерц (MHz).  Смотрим на наши автоматические измерения:

Ну разве не чудо? 😉

Следующий показатель Mean. В нашем случае обозначается просто буковкой “V”. Он означает среднюю величину сигнала и используется для измерения постоянного напряжения. В данный момент этот параметр не представляет интереса, потому как измеряется переменный ток и в значении этого сигнала показывается какая-то вата. Постоянный ток меряет нормально, можно вывести этот параметр на дисплей, что мы и делали в прошлой статье:

Еще один интересный параметр: PK-PK. Называется он Peak-to-Peak и показывает напряжение от пика до пика. Обозначается как Vp. Что это за напряжение от пика до пика, показано на осциллограмме ниже:

Так как мы видим, что значение нашего квадратика  равно 1 Вольту (внизу слева)

То можно высчитать и напряжение от пика до пика. Оно будет где-то эдак 5 Вольт. Сверяемся с автоматическим измерением

Почти в тютельку!

Остальные параметры сигнала не столь важны для начинающих электронщиков.

Плюсы и минусы цифрового осциллографа

Начнем с плюсов

  • Запись, остановка, автоматические измерения и другие фишки – это еще не весь список, что умеет делать цифровой осциллограф
  • Габариты цифрового осциллографа намного меньше, чем аналогового
  • Потребление энергии меньше, чем у аналогового осциллографа
  • Жидкокристаллический дисплей, в отличие от кинескопного дисплея аналогового осциллографа

Минусы

  • Дороговизна
  • Дискретная прорисовка сигнала. Хотя дорогие модели ничуть не уступают аналоговым по прорисовке сигнала.

 

Где купить цифровой осциллограф

Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:

Посмотреть его можете на Алиэкпрессе по этой ссылке.

USB осциллограф

USB-осциллограф представляет из себя прибор, который не имеет собственного экрана.

У нас на обзоре USB осциллограф INTRUSTAR.

 

В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов

С одной стороны осциллографа мы видим два разъема для подключения щупов. Первый разъем Ch2, что означает первый канал, а второй разъем Ch3, то есть второй канал. Следовательно, осциллограф двухканальный.  Справа видим два штыря. Эти штыри – генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой – сигнальный. Калибруем точно также, как и простой цифровой осциллограф. Как это делать, я писал выше в статье.

 

В рабочем состоянии USB осциллограф выглядит вот так.

После установки программного обеспечения на компьютер или ноутбук, открываем программу и запускаем осциллограф. Здесь я уже сразу подцепил тестовый сигнал, чтобы подготовить осциллограф к работе.

Также можно вывести значение сигналов, которые осциллограф сразу бы показывал на экране монитора.

 

Плюсы и минусы USB осциллографа

Плюсы:

  1. Умеренная цена и функционал. Стоит в разы дешевле, чем крутые цифровые осциллографы
  2. Настройка и установка ПО занимает около 10-15 минут
  3. Удобный интерфейс
  4. Малогабаритный размер
  5. Может производить операции как с постоянным, так и с переменным током
  6. Два канала, то есть можно измерять сразу два сигнала и выводить их на дисплей

Минусы:

  1. Малая частота дискретизации
  2. Обязательно нужен ПК
  3. Малая полоса пропускания
  4. Глубина памяти тоже никакая

 

Более подробно про характеристики цифровых осциллографов вы можете прочитать, скачав учебное пособие по цифровым осциллографам.

Похожие статьи по теме “осциллограф”

Фигуры Лиссажу

Электрический сигнал

Зачем нужен осциллограф | РОБОТОША

Часто, произнося это слово в присутствии человека, не связанного с радиоэлектроникой, мне начинало казаться, что я произнес какое-то очень завораживающее слово. В глазах собеседника сразу появлялось удивление и заинтересованность, и он начинал смотреть на меня как на какого-то мага или волшебника. Так что же это за прибор, который делает человека, занимающегося электроникой, фактически Гарри Поттером?

Основное предназначение осциллографа — изобразить форму измеряемого электрического сигнала (его напряжения), и он становится относительно простым в использовании прибором уже после первого с ним знакомства (хотя куча всяких ручек и кнопочек на нем может вогнать в ступор кого угодно). Фактически, осциллограф рисует нам двухмерный график зависимости напряжения от времени, где по горизонтальной оси X мы наблюдаем время, по вертикальной Y — напряжение. Или как еще говорят, осциллограф делает временную развертку сигнала. Интенсивность (или яркость) сигнала на дисплее можно представить в виде третьей оси Z.

Оси осциллографа

Итак, осциллограф — это измерительный прибор, который позволяет:

  • Определить временные параметры и значения напряжения сигнала (его амплитуду)
  • Замерив временные характеристики сигнала, можно вычислить его частоту
  • Наблюдать сдвиг фаз, который происходит при прохождении различных участков цепи
  • Наблюдать искажение сигнала, вносимые каким-то участком цепи
  • Можно выяснить постоянную (DC) и переменную (AC) составляющие сигнала
  • Можно выяснить соотношение сигнал/шум и является ли шум стационарным, или же он изменяется во времени

Еще раз повторюсь, что хотя мы и можем измерять некоторые из параметров исследуемого сигнала, его напряжение (амплитуду), частоту, сдвиг фаз, но именно форма сигнала зачастую позволяет понять процессы, происходящие в электрической цепи.

Рассмотрим пример осциллограммы электрического сигнала — это то, что показывает осциллограф.  Картинка идеализирована, работая с реальными приборами таких идеально ровных линий увидеть не получится (из-за чего это происходит я расскажу несколько позже).

Осциллограмма

В нашем случае мы наблюдаем периодический сигнал, у которого отсутствует постоянная составляющая (равна нулю), и мы имеем переменную составляющую в форме прямоугольных импульсов. Действующее (эффективное) значение напряжения (Vrms, среднеквадратичное значение) в данном частном случае совпало с амплитудой сигнала, хотя в общем случае, это не так (действующее значение будет меньше амплитудного). К слову, вольтметры измеряют именно действующее значение напряжения (простенький цифровой вольтметр показывает вообще некоторое средневыпрямленное значение, такое, что при измерении синусоидального сигнала оно равно действующему значению). Хотя есть вольтметры, измеряющие именно амплитудные (пиковые) значения сигналов, вне зависимости от формы сигнала (в них используются пиковые детекторы). К теме работы вольтметров, я обязательно еще вернусь в своих публикациях.

Глядя на полученную осциллограму, можно заметить, что мы имеем:

  • периодический сигнал прямоугольной формы
  • он принимает значения как положительной, так и отрицательной полярности (вольтметр просто показал бы какое-то число)
  • сигнал изменяется в пределах от -6В до +6В (чувствительность по вертикали 2В/деление)
  • длительность отрицательного полупериода равна длительности положительного полупериода

Не так уж и мало информации мы получили, глядя на экран осциллографа!

При помощи многоканального осциллографа можно одновременно наблюдать сигналы в различных точках схемы и смотреть, как они между собой соотносятся. Например, на входе и выходе усилителя. Мы можем посмотреть сигнал на входе и сигнал на выходе, выяснить какие искажения в форму сигнала вносит наш усилитель, как изменилась его амплитуда, какова временная задержа (сдвиг фаз). Как правило, увеличение количества входов осциллографа значительно сказывается на его стоимости. На практике, при разработке, отладке, настройке или ремонте цифровых и аналоговых устройств оптимальным, я считаю, наличие в своем арсенале двухканального осциллографа.

В ближайшее время я планирую рассказать о том, как выбрать подходящий для ваших задач осциллограф, на какие характеристики следует обращать внимание, как устроены различные типы осциллографов и покажу, как с этим чудо-прибором работать. Следите за новостями!

 


Еще по этой теме

Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.

Измерения осциллографом

Измерения осциллографом, как пользоваться осциллографом
Осциллограф — это эффективный современный прибор, предназначенный для измерения частотных параметров электрического тока во времени и позволяющий отображать их в графическом виде на мониторе, либо фиксировать их с помощью самопишущих устройств. Он позволяет измерять такие характеристики электрического тока внутри цепи, как его сила, напряжение, частота и угол фазового сдвига.
Зачем нужен
осциллограф?
Нет лаборатории, которая смогла бы функционировать долго без
измерительных приборов или источников сигналов, токов и напряжения. Если же в планах заняться проектированием или созданием высокочастотных устройств (особенно серьёзной вычислительной техники, скажем, инверторных блоков питания), тогда осциллограф — это отнюдь не роскошь, а необходимость.
Особенно же хорош он тем, что помогает визуально определить форму у сигнала. Чаще всего именно такая форма хорошо показывает, что именно происходит в измеряемой цепи.
Центром всяких осциллографов выступает электронно-лучевая трубка. Можно сказать, что она вроде радиолампы, внутри, соответственно, вакуум.
Катод осуществляет выброс электронов. Установленная фокусирующая система создаёт тоненький луч из излучаемых заряженных частиц. Специальный слой люминофора покрывает весь экран внутри. Под воздействием заряженного пучка электронов возникает свечение.
Наблюдая снаружи, можно заметить по центру светящуюся точку. Лучевая трубка укомплектована двумя парами пластин, которые управляют созданным таким образом лучом. Работа электронного луча осуществляется в направлениях, находящихся перпендикулярно. В итоге получаются две управляющие системы, которые создают на экране синусоиду, в которой вертикаль обозначает величину напряжения, а горизонталь — период времени. Таким образом, можно наблюдать параметры поданного на прибор напряжения в определённых временных промежутках. В зависимости от типа подаваемого на осциллограф сигнала с его помощью возможно измерение не только параметров напряжения, но и других величин того или иного тестируемого агрегата.
Какими они бывают
В настоящее время распространены осциллографы двух типов — аналоговый и
цифровой (последний отличается большим удобством, расширенными функциями и зачастую более точен). Оба они работают по одинаковому принципу, и указанные ниже способы измерения физических величин могут применяться на любых моделях этого прибора.
Правильное подключение

При проведении измерений важно правильное подключение прибора к измеряемому участку цепи. Осциллограф имеет два выхода с подключаемыми к ним клеммами или щупами. Одна клемма — фазовая, она соединена с усилителем вертикального отклонения луча. Другая — земля, соединенная с корпусом прибора. На большинстве современных приборов фазовый провод заканчивается щупом либо миниатюрным зажимом, а земля — небольшим зажимом типа «крокодил» (см. фото)

На осциллографах советского производства и некоторых российских моделях оба щупа одинаковы, различить их можно либо по значку «земля» на соответствующем проводе, либо по длине — фазовый провод короче. Подключаются они к входам осциллографа, как правило, стандартным штекером (см. рисунок)
Если маркировка отсутствует, а по внешним признакам выяснить, где какой щуп, не удалось, то проводят простой тест. Одной рукой дотрагиваются до одного щупа, при этом другую руку держат в воздухе, не прикасаясь ни к чему. Если этот щуп идет на фазовый вход, то на мониторе появятся заметные помехи (см. рисунок). Они представляют собой значительно искаженную синусоиду с частотой 50 Герц. Если щуп идет к «земле», то монитор останется без изменений.
При подключении осциллографа на измеряемый участок цепи, не имеющий общего провода, щуп «земля» может быть подключен к каждой из измеряемых точек. Если общий провод имеется (это точка, соединенная с корпусом прибора либо заземленная и условно имеющая «нулевой» потенциал), то «землю» предпочтительнее подключать к ней. Если этого не сделать, то точность измерений сильно упадет (в некоторых случаях такие измерения окажутся очень далеки от истинных значений и доверять им будет нельзя).

Измерение напряжения осциллографом

За основу измерения напряжения берется известное значение вертикального масштаба. Перед началом измерений надлежит закоротить оба щупа прибора либо переключить регулятор входа в положение. Нагляднее см. следующую картинку.
После чего рукояткой вертикальной регулировки надлежит выставить линию развертки на горизонтальную ось экрана, чтобы можно было корректно определять высоту.
После этого прибор подключается на измеряемый участок цепи и на мониторе появляется график. Теперь остается только посчитать высоту графика от горизонтальной линии и умножить на масштаб. Например, если на ниже приведенном графике одну клетку считать за 1 вольт (соответственно, она разбита на штриховые деления в 0,2, 0,4, 0,6, и 0,8 вольт), то получаем общее напряжение в 1,4 вольта. Если бы цена деления была 2 вольта, то напряжение бы равнялось 2,8 вольт и так далее…
Выставление нужного масштаба осуществляется вращением специальных ручек настройки.

Определение силы тока

Для узнавания силы тока в цепи с помощью осциллографа в нее последовательно включают резистор, имеющий значительно меньшее сопротивление, чем сама цепь (такое, чтобы он практически не влиял на ее исправную работу).
После этого производят измерение напряжения по принципу, указанному выше. Зная номинальное сопротивление резистора и общее напряжение в цепи несложно, пользуясь законом Ома, рассчитать силу тока.

Измерение частоты с помощью осциллографа

Прибор позволяет успешно измерять частоту сигнала, исходя из его периода. Частота находится в прямо пропорциональной зависимости от периода и рассчитывается по формуле f=1/T, там f — частота, Т — период.

Перед измерением линию развертки совмещают с центральной горизонтальной осью прибора. При проведении измерений осциллограф подключают в исследуемую сеть и наблюдают на экране график.
Для большего удобства, используя ручки горизонтальной настройки, совмещают точку начала периода с одной из вертикальных линий на экране осциллографа. Успешно посчитав количество делений, которое составляет период, следует умножить его на величину скорости развертки.
Рассмотрим на конкретном примере подробнее.
Например, период составляет 2,6 делений, развертка — 100 микросекунд/деление. Умножая их, получаем величину периода равную 260 микросекунд (260*10-6 секунд).
Зная период, рассчитываем частоту по формуле f=1/T, в нашем случае частота примерно равна 3,8 кГц.
Измерение сдвига фаз
Сдвиг фаз — это величина, указывающая взаимное положение двух колебательных процессов  в течение времени.

Измерение его производят не в секундах, а в долях периода (Т) сигнала. Достичь максимальной точности измерений этого показателя возможно в том случае, если период растянут масштабированием на весь экран.
В современном цифровом осциллографе абсолютно каждый из сигналов имеет свой цвет, что очень удобно при измерениях. В старых же аналоговых вариантах их яркость и цвет, к сожалению, одинаковы, поэтому для большего удобства следует сделать их амплитуду различной. Подготовка измерения сдвига фаз требует точных подготовительных операций.
Первое, что нужно сделать — не подключая прибор к измеряемой цепи, установить ручками вертикальной настройки линии развертки обоих каналов на центральную ось экрана. Затем ручками настройки усиления каналов вертикального отклонения (плавно и ступенчато) 1-й сигнал устанавливается с большей амплитудой, а второй — с меньшей. Ручками регулирования скорости развертки ее величина устанавливается такой, чтобы оба сигнала на экране имели примерно одинаковый период. После этого, регулируя уровень синхронизации, совмещают начало графика напряжения с осью времени. Ручкой горизонтальной настройки устанавливают начало графика напряжения в крайней налево вертикальной линии. Затем ручками регулировки скорости развертки добиваются того, чтобы конец период графика напряжения совпадал с крайней направо вертикальной линией сетки монитора.
Все эти подготовительные операции производят по порядку до тех пор, пока график периода напряжения не растянется на экран полностью. При этом он должен начинаться и заканчиваться в линиях развертки (см. рисунок).
После завершения подготовительного этапа следует выяснить, какой из параметров опережает другой — сила тока или напряжение. Величина, начальная точка периода которой начинается раньше во времени, является опережающей, и наоборот. Если опережающим является напряжение, то параметр угла сдвига фаз будет положительным, если сила тока — отрицательным. Углом сдвига фаз (по модулю) является дистанция между началами и концами периодов сигналов в величине сетки делений монитора. Он рассчитывается по такой формуле:
В ней величина N — это количество клеток сетки, которые занимает один период, а α — количество делений между началами периодов.
Если графики периодов силы тока и напряжения имеют общие начальную и конечную точки, то угол сдвига фаз равняется нолю.
При ремонте радиоаппаратуры поиск неисправностей ведут, измеряя осциллографом обозначенные выше параметры на отдельных участках электронной цепи или у конкретных электронных компонентов (например, микросхем). Затем их сравнивают с указанными в технологических каталогах величинах, стандартных для этих компонентов, после чего и делают выводы о безошибочной работе или неисправности того или иного элемента цепи.
Если статья была вам полезна, поделитесь ею, пожалуйста, в соц.сетях, воспользовавшись кнопками внизу страницы!
Заходите на мой
канал в YouTube и в группы «Телемастерская» в Одноклассниках и «Самоделкин» ВКонтакте!
Всем успехов!

 

Как пользоваться осциллографом и для чего он вообще нужен. Часть II

Это вторая часть ликбеза по осциллографам, а первая часть здесь.

 

  1. Вступление
  2. Амплитуда, частота, период
  3. Как измерить частоту
  4. Как измерить, оценить сдвиг фаз

Эта заметка будет постепенно пополняться простыми, но полезными приёмами работы с осциллографом.  

Вступление

Главный вопрос, на который следует ответить: «что можно измерить с помощью осциллографа?» Как ты уже знаешь, этот прибор нужен для изучения сигналов в электрических цепях. Их формы, амплитуды, частоты. По полученным данным можно сделать вывод и о других параметрах изучаемой цепи. Значит с помощью осциллографа в основном можно (я не говорю про супер функции супер-современных приборов):

  • Определить форму сигнала
  • Определить частоту и период сигнала
  • Измерить амплитуду сигнала
  • Не напрямую, но измерить ток тоже можно (закон Ома в руки)
  • Определить угол сдвига фазы сигнала
  • Сравнивать сигналы между собой (если прибор позволяет)
  • Определять АЧХ
  • Забыл что-то упомянуть? Напомните в комментариях!

Все дальнейшие примеры следует делались с рассчетом на аналоговый осциллограф. Для цифрового всё тоже самое, но больше умеет, чем аналоговый и в определённых вопросах снимает необходимость думать там, где можно просто показать цифру. Хороший инструмент таким и должен быть.

Итак, перед работой следует подготовить прибор: поставить на стол, подключить к сети =) Да ладно, шучу. Но если есть возможность, то следует его заземлить. Если есть встроенный калибратор, то по инструкции к прибору надо его откалибровать. (подсказка: инструкции есть в сети). 

Подключать свой осциллограф к исследуемой цепи ты будешь с помощью щупа. Это такой коаксильный провод, на одном конце которого разъем для подключения к осциллографу, а на втором щуп и заземление для подключения к исследуемой цепи. Какой попало провод в качестве щупа использовать нельзя. Только специальные щупы. Иначе вместо реальной картины дел увидишь чушь.


Я не буду рассматривать каждый регулятор осциллографа подробно. В сети есть море таких обзоров. Давай лучше учиться как проводить любительские измерения: будем определять амплитуду, частоту и период сигнала, форму, полосу пропускания усилителя, частоту среза фильтра, уровень пульсаций источника питания и т.д. Остальные хитрости и приёмы придут с практикой. Тебе понадобится осциллограф и генератор сигнала.

Виды сигналов

Буду говорить без барских штучек, по-мужицки. На экране осциллографа ты будешь видеть либо синусоидальный сигнал, либо пилу, либо прямоугольнички, либо треугольный сигнал, либо просто какой-нибудь безымянный график.  

Все виды сигналов не перечесть. Да и сами сигналы не знают, что относятся к какому-то там виду. Так что твоя задача не названия запоминать, а смотреть на экран и быстро соображать, что означает увиденное на нём, какой процесс идёт в цепи.

Амплитуда, частота, период

Осциллограф умеет измерять как постоянное, так и переменное напряжение. У всех приборов для этого есть два режима: измерение только переменного сигнала, измерение постоянного и переменного одновременно. 

Это значит, что если ты выберешь измерение переменного сигнала и подключишь щуп к батарейке, то на экране прибора ничего не изменится. А если выберешь второй режим и проделаешь тоже самое, то линия на экране прибора сместится приблизительно на 1.6В вверх (величина ЭДС пальчиковой батарейки). Зачем это нужно? Для разделения постоянной и переменной составляющей сигнала!

Пример. Решил ты измерить пульсации в только что собранном источнике постоянного напряжения на 30В. Подключаешь к осциллографу, а луч убежал далеко вверх. Для того, чтобы удобно наблюдать сигнал придется выбрать максимальное значение В/дел на клетку. Но тогда ты пульсаций точно не увидишь. Они слишком малы. Что делать? Переключаешь режим входа на измерение переменного напряжения и крутишь ручку В/Дел на масштаб в разы поменьше. Постоянная составляющая сигнала не пройдет и на экране будут показываться только только пульсации источника питания. 

Амплитуду переменного напряжения легко определить зная цену деления В/дел и просто посчитать число клеток по оси ординат, которые занимает этот сигнал от нулевого значения (среднего), до максимального.


Если посмотреть на экран осциллографа на картинке выше и предположить, что В/дел = 1В, тогда амплитуда синусоиды будет 1.3В. 

А если предположить, что Время/дел (развертка) установлено в 1 миллисекунду, тогда период этой синусоиды будет занимать 4 клетки, а зачит период T = 4 мс. Легко? Давай теперь вычислим частоту этой синусоиды. Частота и период связаны формулой: F = 1/T (Т в секундах). Следовательно F = 1/ (4*10-3) и равняется 250 Гц.

Конечно, это очень грубая прикидка, которая годится только для вот таких чистеньких и красивых сигналов. А если подать вместо чистой синусоиды какую-нибудь музыкальную композицию, то в ней будет множество разных частот и на глазок уже не прикинешь. Чтобы определить какие частоты входят в эту композицию потребуется анализатор спектра. А это уже другой прибор. 

Измерение частоты 

Как я уже писал выше, с помощью осциллографа можно измерять и частоту. А ещё можно не просто измерить частоту какого-нибудь синусоидального сигнала, а даже сравнить частоты двух сигналов, к примеру, с помощью фигур Лиссажу. 

Это очень удобно, когда хочется, например, откалибровать собранный своими руками генератор сигналов, а частотомера под руками нет. Тогда и приходят на помощь фигуры Лиссажу. Жаль не все аналоговые осциллографы могут их показывать.  

Сдвиг фаз

Частенько бывает так, что фаза тока и фаза напряжения расходятся. Например, после прохождения через конденсатор, индуктивность или целую цепь. И если у тебя есть двухканальный осциллограф, то легко можно посмотреть как сильно отличаются фазы тока и напряжения (А если есть современный цифровой, то там есть даже специальная функция для измерения сдвига фаз. Круто!). Для этого следует подключить осциллограф вот таким образом:

 

Что еще почитать про осциллографы?

  1. Как пользоваться осциллографом и для чего он вообще нужен. Часть I
  2. Б. Иванов. Осциллограф — ваш помощник.
  3. В. Новопольский. Работа с осциллографом
  4. Афонский, Дьяконов. Измерительные приборы и массовые электронные измерения
  5. Осциллографы Основные принципы измерений (Пособие от Tektronix)
  6. Оценка разности фаз с помощью фигур Лиссажу

Основы осциллографов. Принципы работы и методики измерений

Введение

 

Любое движение в природе происходит в форме синусоидальных волн, будь то океанские волны, землетрясение, ударная волна, взрыв, звук через воздух или же естественная частота тела в процессе перемещения. Энергия, вибрирующие частицы и иные невидимые глазу силы пропитывают нашу физическую вселенную. Даже белый свет, состоящий из частиц и волн, обладает фундаментальными частотами, который могут быть различимы как цвета.

 

Сенсоры способны конвертировать эти явления в электрические сигналы, которые можно рассматривать и исследовать при помощи осциллографа.  Осциллографы предоставляют возможность учёным, инженерам, техникам, учителям и иным специалистам «увидеть» события, изменяющиеся во времени. 

 

Осциллографы – чрезвычайно важный инструмент для специалиста, занимающегося разработками, производством или ремонтом электронного оборудования. В современном бурно развивающемся мире инженерам требуются самые эффективные приборы для решения задач измерений быстро и с высокой точностью. Выполняя роль «всевидящего ока» инженера, осциллографы являются ключом в решении сложных задач получения достоверных данных от объекта под тестированием.  

 

Полезность осциллографа не ограничена одним лишь миром электроники. При наличии надлежащего сенсора осциллограф способен измерять характеристики любого природного и физического явления. Сенсор (чувствительный элемент) представляет собой устройство, генерирующее электрический сигнал как реакция на физические факторы, как то: звук, механическое воздействие, давление, свет или тепло.  Микрофон является таким сенсором, конвертирующим звук в электрический сигнал. На рис. 1 показан пример как посредством осциллографа происходит сбор научных данных. 

 

Осциллографы применяются всеми, от физиков до техников-ремонтников. Автомеханики задействуют осциллографы для выявления соотношения аналоговых данных от сенсоров с цифровыми данными последовательной передачи от устройства управления двигателем. Врачи-диагностики используют осциллографы для измерения волн головного мозга человека. Возможности прибора безграничны.

 

В настоящем Курсе для начинающих даются общие понятия, освоение которых формирует отличную стартовую площадку в понимании инженером-новичком что такое осциллограф и как он работает.

 


 

 

Рис.1 Пример научных данных, собранных осциллографом

 

Глоссарий, расположенный в конце Курса, содержит толкования незнакомых терминов. Словарь и многоуровневые письменные упражнения по теории осциллографов и задачам его управления превращают настоящий Курс в очень эффективный учебник для самостоятельного пользования. При этом для понимания всего изложенного нет необходимости в каких-то специальных знаниях в области математики или электроники. 

 

После изучения настоящего Курса вы будете способны:


• Представлять себе как функционирует осциллограф

• Понимать разницу между различными типами осциллографов

• Понимать разницу между различными типами электрических форм сигналов

• Управлять основными органами контроля осциллографом

• Самостоятельно осуществлять простые измерения


Инструкция по эксплуатации, поставляемая с каждым осциллографом, предоставит вам больше специфической информации о том, как применять этот прибор в своей повседневной деятельности. Некоторые производители осциллографов также предоставляют описания решений для множества прикладных задач, что поможет вам оптимизировать свой осциллограф под конкретные приложения. 

 

Целостность Сигнала

 

Значимость целостности сигнала 

 

Ключевым фактором для любого хорошего осциллографа или осциллографической системы является их способность в точности воспроизводить форму сигнала, что собственно и обозначает термин «целостность сигнала». Любой осциллограф аналогичен по своим функциям фотографической камере, которая захватывает образы сигналов, которые впоследствии можно рассматривать и изучать. Три ключевых фактора лежат в основе термина «целостность сигнала»:

 

• Когда вы фотографируете картинку, то соответствует ли эта картинка в точности тому, что произошло?

• Картинка имеет ясное изображение или размытое?

• Какое количество ясных и точных картинок вы можете сделать за секунду?


Все вместе различные системы осциллографа, его функции и работоспособность вносят кумулятивный вклад в способность прибора формировать наивысшую из возможной целостность измеряемого сигнала. Пробники также воздействуют на уровень целостности сигнала, генерируемого всей системой измерений. 

 

Целостность сигнала влияет на большинство научных дисциплин, связанных с электронными разработками. Но до недавнего времени это не составляло большой проблемы для разработчиков цифровых систем. Разработчики при проектировании логических цепей могли полагаться на то, что они и будут функционировать как логические схемы. Различного рода шумы и паразитные сигналы считались чем-то таким, что больше присуще для схем с высокоскоростной передачей данных – то есть явлений, которые должны больше волновать разработчиков РЧ устройств. Коммутации в цифровых системах происходили относительно медленно, а сами сигналы предсказуемо стабилизировались. 

 

С тех времён тактовая частота процессоров увеличилась на порядки. Компьютерные приложения, как-то графика 3D, видео и серверные вводы-выводы требуют наличия широких полос пропускания. Практически всё современное телекоммуникационное оборудование цифровое, соответственно также требует наличия массивных полос пропускания. Это же напрямую относится к цифровому ТВ высокого разрешения. Все современные семейства микропроцессорных устройств имеют скорости передачи данных 2, 3, 5 GS/s (гига самплов в сек), в то время как устройства памяти DDR3 задействуют тактовую частоту свыше 2 GHz и сигналы с 35 ps временем нарастания фронта импульса.

 

Лавинообразное нарастание скоростей присутствует во всех IC устройствах на автомобилях, бытовой электроники, контроллерах и пр. цифровых устройствах. 
 

Процессор с тактовой частотой в 20 MHz может вполне работать с сигналами со скоростью переключения, присущим процессорам с 800 MHz тактовой частоты. Разработчики цифровых устройств давно перешагнули ранее установленные пороги производительности, что означает, что практически каждая схема высокоскоростная. 

 

Без принятия определённых мер предосторожности, проблемы, присущие высокоскоростным цепям, так или иначе могут просочиться в обычные цифровые схемы. Если цепь периодически испытывает сбои в своей работе или сталкивается с неполадками при экстремальных значениях напряжения и температуры, то велика вероятность того, что там присутствуют проблемы, связанные с согласованностью сигналов. Всё это может привести к задержкам вывода на рынок новой продукции, проблемам с её надёжностью, требованиям к электромагнитной совместимости и т.д. Такого рода «высокоскоростные» проблемы могут воздействовать на целостность потока последовательной передачи данных в цифровой системе, что потребует принятия определённых мер для корреляции специфических шаблонов данных при возможности изучения характеристик высокоскоростных сигналов. 

 

Почему целостность сигнала представляет собой проблему?

 

Давайте рассмотрим некоторые специфические причины деградации сигнала в современных цифровых схемах. Почему эти проблемы сегодня значительно превалируют, чем это было ранее? 

 

Ответ: скорость. В «добрые старые медленные времена» поддержка допустимой целостности цифровых сигналов означала необходимость обращения внимания на такие детали как распределение значений синхросигналов, схема тракта сигнала, вносимые шумы, воздействие нагрузок, воздействие х-к тракта передачи, х-к клемм шины передачи данных, распределение развязок и мощностей и т.д. Все эти правила актуальны, но…

 

Время цикла каналов передачи информации в настоящее время в 1000 раз выше, чем это было, скажем, 20 лет назад. Микросекундные транзакции стали наносекундными. Это привело к тому, что граничные скорости тоже увеличились: они в 100 раз быстрее, чем 20 лет назад. 

 

Всё это замечательно, однако, определённые физические реалии удерживают технологии пр-ва печатных плат от того, чтобы соответствовать существующим скоростям. Время прохождения сигнала по каналам чипов осталось почти неизменным за десятилетия. Геометрические размеры печатных плат, конечно же, скукожились, но остаётся необходимость в наличии на платах физических площадей для уст-в интегральных микросхем (IC), коннекторов, пассивных компонентов и, конечно же, самих трактов передачи данных. Эти физические площади предполагают существование расстояний, а расстояние означает время – враг скорости.
 

Очень важно не забывать, что граничная скорость-время нарастания цифрового сигнала может нести значительно более высокие частотные составляющие, чем это предполагает его частота повторения. По этим причинам некоторые разработчики отчаянно нуждаются в таких устройствах IC (интегр. микросхемы), которые имели бы относительно низкие характеристики времени переключения цифровых сигналов. 

 

Схемы с сосредоточенными параметрами всегда являлись базисом для большинства расчётов, делавшихся для предсказания поведения того или иного сигнала при его прохождении по цепи. Но когда граничные скорости более чем в 4-6 раз выше задержки сигнала при его прохождении по тракту, то такие схемы более не работают.  

 

Траки печатных плат 6 дюймов длиной становятся линиями передачи, когда управляются с сигналами, демонстрирующими граничные скорости ниже 4-6 наносекунд, вне зависимости от скорости цикла. В результате создаются новые сигнальные траки. Такого рода «нематериальные» соединения не присутствуют на схеме, но темнее менее, обеспечивают среду, где сигналы непредсказуемо влияют друг на друга.

 

Порой даже естественные погрешности как результат комбинации пробник/прибор могут оказать значительное влияние на характеристики измеряемого сигнала. Однако, применяя формулу «квадратный корень суммы квадратов» к измеряемому значению, становится возможным определить, находится ли устройство под тестированием близко к состоянию сбоя как результат несоответствия характеристик времени нарастания и падения фронта импульса. Следует добавить, что современные осциллографы задействуют специальную фильтрацию для де-встраивания воздействия измерительного прибора на сигнал, отображая на экране его временные и иные х-ки.  
 
В то же самое время выделенные траки сигналов не работают таким образом, как они для того предназначались. Заземляющие слои и энергетические слои как то траки передачи сигналов становятся индуктивными и работают как трансмиссионные каналы; развязка питания гораздо менее эффективна. Электромагнитные помехи (EMI) увеличиваются, поскольку высокие пороговые скорости продуцируют более короткие длины волн относительно длины канала передачи импульсов. Перекрёстные помехи увеличиваются.   

 

Следует добавить, что высокие пороговые скорости требуют более высоких значений токов для их же (скоростей) генерации. Более высокие токи имеют тенденцию вызывать скачки общего потенциала схемы, что особенно характерно на широких каналах передачи, где происходит множество одновременных коммутаций сигналов. Более того, высокие токи повышают количество излучаемой магнитной энергии, а вместе с этим и перекрёстные помехи. 

 

Аналоговые источники цифровых сигналов. Обзор. 

 

Что же в целом имеют все эти характеристики? Все они – классический аналоговый феномен. Для решения проблем целостности сигнала, разработчикам цифровых устройств необходимо шагнуть в их аналоговый домен. А чтобы сделать такой шаг, этим самым разработчикам необходим инструментарий, показывающий как взаимодействуют между собой цифровые и аналоговые составляющие сигнала.

 

Погрешности на «цифровом поле» обычно имеют своё происхождение из проблем целостности на аналоговой составляющей сигнала. Для точного отслеживания неполадок «цифры», часто необходимо обратиться к осциллографу, который представит на экране все детали формы сигнала, его края и шумы, выявит и покажет переходные характеристики, поможет точно измерить соотношения синхронизации, как то время установки и время удержания. Современные осциллографы способны помочь в упрощении процедур отладки тестируемого объекта через выставление режима на захват специфических явлений при параллельной или последовательной передаче данных и отображении аналогового сигнала, соответствующего по времени конкретному событию. 

 

Понимание каждой функции в составе своего осциллографа и как их правильно применять гарантирует максимально эффективное использование прибора при решении специфических задач измерений.  
 

Осциллограф

 

Что такое осциллограф и как он работает? Данный раздел отвечает на эти основополагающие вопросы.

 

По большому счёту осциллограф – устройство, в графическом виде отображающее результаты измерений – прибор рисует графы электрических сигналов. В большинстве применений графы демонстрируют как сигналы изменяются во времени: вертикальная ось (Y) представляет собой напряжение, горизонтальная ось (X) представляет время. Интенсивность или яркость экранного отображения иногда соотносится с осью Z, как это показано на рис. 2.

 

 

В осциллографах DPO (цифровых люминесцентных) ось Z может соотноситься с цветоразностной х-кой дисплея, как это представлено на рис. 3.

 

• Эта простейшая графика может многое рассказать о сигнале, как то:

• Значения времени и напряжения сигнала

• Частота колебательного сигнала

• Перемещающиеся участки” цепи, представленной сигналом

• Частота, с которой определённый участок сигнала проявляется относительно других его участков

• Происходит ли искажение сигнала как результат воздействия на него неисправного компонента 

• Какую часть сигнала составляет постоянный ток (DC) или переменный ток (AC)

• Какую часть сигнала составляет шум и изменяется ли этот шум во времени

 

Понятия о формах волны и их измерениях

 

Обобщающий термин характеристики (явления), которое повторяется во времени – это волна: звуковые волны, мозговые волны, океанские волны и волны напряжения – все они имеют повторяющиеся характеристики.

 

Осциллограф измеряет волны напряжения. Как ранее уже упоминалось, такие физические явления как вибрации или температура или электрические явления как то: ток или мощность могут быть конвертированы в показатели напряжения с помощью сенсора. Один цикл волны является частью повторяющейся волны. Форма волны является графическим представлением волны как явления. Сигнал напряжения представлен по оси времени (горизонтальная) и по оси со значениями напряжения (вертикальная). 
 

 

Формы сигналов раскрывают множество подробностей об их природе. Каждый раз, когда происходит изменение в высоте формы сигнала, это значит, что х-ка напряжения изменилась. Каждый раз, когда присутствует прямая горизонтальная линия, то понятно, что на протяжении всей длины этой линии никаких изменений х-к сигнала не происходило. Прямые, диагональные линии означают наличие линейных изменений – нарастание либо падение напряжения с устойчивой скоростью. Острые углы на форме сигнала указывают на внезапные изменения. На рис. 4 представлены существующие формы сигналов, а на рис. 5 ссылки на источники таких сигналов.
 
Типы волн

 

Можно классифицировать большинство волн по следующим типам:

• Синусоиды

• Квадратичные и прямоугольные волны

• Пилообразные и треугольные волны

• Пошаговые и пульсирующие волны

• Периодические и непериодические 

• Синхронные и асинхронные 
• Комплексные волны.

 

Продолжение следует…

 

 

По материалам компании Gtest (ООО «Контентус»)

7 типичных ошибок при использовании осциллографических пробников

Введение

Для повышения качества измерений очень важно понимать, на что следует обращать внимание при использовании осциллографических пробников.

Если бы мы жили в идеальном мире, все пробники представляли бы собой не влияющие на сигнал проводники, подключаемые к схеме и имеющие бесконечное входное сопротивление с нулевой емкостью и нулевой индуктивностью. Они в точности воспроизводили бы измеряемый сигнал. Однако на практике все пробники создают нагрузку на измеряемую цепь. Резистивные, емкостные и индуктивные компоненты пробника могут изменять оклик испытуемой цепи.

Цепи бывают разные, и наборы их электрических характеристик различаются. Поэтому при любых испытаниях устройств с помощью пробников требуется учитывать параметры самих пробников и выбирать тот, который окажет минимальное влияние на результаты измерения. Сюда входят все компоненты — от входного разъема осциллографа и кабеля до точки подключения пробника к испытуемому устройству, включая все принадлежности, дополнительные кабели и паяные соединения для обеспечения контакта с точкой измерения.

В этой публикации мы предлагаем ознакомиться с типичными ошибками при проведении испытаний и практическими рекомендациями, позволяющими повысить точность результатов измерений.

Электрические характеристики пробника влияют как на результаты измерений, так и на работу разрабатываемой схемы. Чтобы получить достоверные результаты измерений, необходимо свести это влияние к допустимому минимуму.

Ошибка 1. Невыполнение калибровки пробника

Перед отправкой пробников заказчикам выполняется их общая калибровка, однако такие пробники не откалиброваны для использования в качестве входных устройств конкретного осциллографа. Если не откалибровать их для работы на входе конкретного осциллографа, результаты измерений будут неточными.

Активные пробники

Если не откалибровать активные пробники для конкретного осциллографа, то возникнут расхождения в результатах измерения напряжения по вертикали и временных параметров нарастающих фронтов (а также, возможно, определенные искажения). Большинство осциллографов оснащается выходом опорного сигнала или вспомогательными выходами, для которых прилагаются инструкции по их использованию при калибровке пробников.

На рис. 1 представлен сигнал с частотой 50 МГц, подаваемый на первый входной канал (желтая осциллограмма) осциллографа через кабель SMA и переход. Зеленая осциллограмма — это тот же сигнал, подаваемый через активный пробник на второй входной канал. Заметьте, что пиковое значение сигнала на первом входном канале составляет 1,04 Впик-пик, тогда как это же значение для сигнала на втором канале — 965 мВ. Кроме того, сдвиг по фазе между первым и вторым каналами составляет такую значительную величину, как 3 мс. Соответственно, значения времени нарастания совершенно не совпадают.


Рис. 1. Сигнал на выходе генератора и сигнал, полученный с помощью пробника

После калибровки этого пробника результаты значительно улучшатся. На рис. 2 представлены результаты после правильной калибровки по амплитуде и времени. Теперь отображается правильное значение амплитуды — 972 мВпик-пик, а сдвиг по фазе скорректирован таким образом, что значения времени нарастания совпадают.


Рис. 2. Результаты после калибровки по амплитуде и времени

Чтобы получить наиболее точное представление об исследуемом сигнале, откалибруйте измерительные пробники для работы совместно с осциллографом.

Пассивные пробники

Можно отрегулировать подстроечный конденсатор пробника для компенсации в точном соответствии с входными параметрами используемого осциллографа. Большинство осциллографов оснащается выходом прямоугольного сигнала для калибровки и использования в качестве опорного сигнала. Подключите пассивный пробник к этому выходу и убедитесь, что сигнал имеет прямоугольную форму. При необходимости отрегулируйте подстроечный конденсатор пробника, чтобы устранить любые отрицательные и положительные выбросы перед фронтом сигнала.

Совет. У осциллографа может иметься функция регулировки компенсации пробника. В противном случае это можно выполнить вручную.

Ошибка 2. Увеличение нагрузки пробника

При подключении пробника к осциллографу и испытуемому устройству пробник становится неотъемлемой частью цепи. Создаваемая пробником резистивная, емкостная и индуктивная нагрузка влияет на сигнал, отображаемый на экране вашего измерительного прибора. В результате такой нагрузки могут измениться рабочие характеристики испытуемой цепи. Понимание вопросов влияния этой нагрузки поможет избежать ошибок, связанных с неправильным выбором пробников для определенных цепей и систем. У пробников имеется резистивная, емкостная и индуктивная составляющие нагрузки, как показано на рис. 3.


Рис 3. Стандартная электрическая схема пробника

Для подключения к труднодоступной точке могут потребоваться дополнительные длинные провода и кабели. Однако добавление принадлежностей или наконечников пробников может сузить полосу пропускания, повысить нагрузку и вызвать нелинейность амплитудно-частотной характеристики.

Как правило, увеличение длины входных кабелей и проводов до наконечника пробника приводит к пропорциональному сужению полосы пропускания. Это может не оказывать заметного влияния на результаты измерений при узкой полосе пропускания, однако при выборе наконечников пробников и принадлежностей для измерений с широкой полосой пропускания, особенно на частотах выше 1 ГГц, следует быть внимательным. При сужении полосы пропускания пробника теряется возможность измерения параметров сигналов с малым временем нарастания. На рис. 4 показано, как с увеличением длины принадлежностей ухудшаются показатели времени нарастания сигнала, отображаемого на экране осциллографа. Для достижения максимальной точности результатов измерений предпочтительно использовать кабели минимальной длины.


Рис. 4. Влияние соединительных проводников пробника различной длины

Используйте кабели минимально возможной длины для сохранения полосы пропускания и точности результатов измерений.

Также обязательно следует использовать провода заземления минимальной длины, поскольку с увеличением их протяженности возрастает добавляемая ими индуктивность. Использование проводов заземления минимальной длины и выбор точки их подключения максимально близко к точке заземления системы позволит обеспечить точность и повторяемость результатов измерений.

Совет. Если вам абсолютно необходимо использовать дополнительный проводник от наконечника пробника для подключения к труднодоступным точкам, подключите к наконечнику дополнительный резистор для демпфирования резонансных явлений, вызванных данным проводником. Хотя это и не поможет избежать сужения полосы пропускания, вызванного дополнительными длинными соединительными кабелями, амплитудночастотная характеристика будет более плоской. Для определения нужного номинала резистора проанализируйте с помощью осциллографа заранее известный сигнал прямоугольной формы, например опорный сигнал на выходе устройства. При правильном выборе номинала резистора будет отображаться неискаженный прямоугольный сигнал (за исключением возможного сужения полосы пропускания). При наличии в сигнале переходного процесса в виде затухающих колебаний увеличьте номинал резистора. Для несимметричных пробников требуется только один резистор на наконечнике пробника. Для дифференциальных пробников требуется два резистора — по одному на каждый провод.

Используйте резистор для демпфирования импульсных искажений, вызванных протяженными кабелями пробника.


Рис. 5. Добавление резистора к наконечнику пробника может сократить резонансные явления, вызванные длинными кабелями, переходные процессы в виде затухающих колебаний и выбросы на фронте импульса. Однако это не может предотвратить сужение полосы пропускания из-за дополнительной длины кабелей.

Ошибка 3. Неполное использование возможностей дифференциальных пробников

Многие считают, что дифференциальные пробники предназначены исключительно для анализа дифференциальных сигналов. На самом деле дифференциальные пробники также позволяют анализировать несимметричные сигналы. Это позволяет ускорить проведение испытаний, сократить затраты и повысить точность результатов измерений. Максимально используйте преимущества дифференциального пробника и добейтесь наивысшей достоверности результатов измерений.

Дифференциальные пробники позволяют выполнять те же измерения, что и несимметричные пробники. Однако подавление синфазных сигналов на обоих входах дифференциального пробника способствует значительному снижению уровня шума при измерениях. Это дает более точное представление сигналов испытуемого устройства (ИУ) и не введет вас в заблуждение случайным шумом, добавляемым аксессуаром.

На рис. 6 (на следующей странице) представлен сигнал, полученный с помощью несимметричного пробника (синяя осциллограмма), а на рис. 7 — сигнал, полученный с помощью дифференциального пробника. На синей осциллограмме, полученной с помощью несимметричного пробника, заметен гораздо более высокий уровень шумов по сравнению с красной осциллограммой, соответствующей результату анализа сигнала с помощью дифференциального пробника. Это вызвано слабым подавлением синфазных помех при использовании несимметричного пробника.

Дифференциальные пробники позволяют выполнять те же измерения, что и несимметричные пробники, но с гораздо меньшим уровнем шума благодаря подавлению синфазных помех.

Рис. 6. Измерение с помощью несимметричного пробника

Рис. 7. Измерение с помощью дифференциального пробника

Ошибка 4. Неправильный выбор токового пробника

При измерениях больших и малых токов требуется проанализировать различные особенности сигнала. Для этого необходимо определить, какой именно токовый пробник требуется для конкретного случая, и учитывать возможные последствия выбора неправильного пробника.

Сильноточные измерения

Для сильноточных измерений (от 10 до 3000 А) использовать токовый пробник, обхватывающий проводник, следует только в тех случаях, когда испытуемое устройство имеет достаточно малые размеры для оригинального зажима пробника. Инженерам, применяющим пробники такого типа, приходится проявлять изобретательность и использовать дополнительные кабели к пробнику, чтобы измерить параметры сигналов устройств, не умещающихся в наконечнике. Однако это может привести к изменениям результатов измерений параметров ИУ. Гораздо предпочтительнее будет выбрать подходящие инструменты для работы.


Рис. 8. Наконечник пробника типа пояса Роговского, установленный на компонент устройства

Наилучшее решение — использование пробника для сильноточных измерений с гибкой петлей головки. Эту гибкую петлю можно изогнуть вокруг любого устройства. Такой тип пробников называется поясом Роговского. Он позволяет анализировать устройства без добавления компонентов с не известными заранее характеристиками, поддерживая высокий уровень целостности сигналов при измерениях. Кроме того, он позволяет измерять большие токи в диапазоне от единиц миллиампер до сотен тысяч ампер. Но необходимо убедиться в том, что измеряется только переменный ток, постоянные составляющие которого отсечены. Такие пробники также обладают более низкой чувствительностью по сравнению с некоторыми другими токовыми пробниками. Обычно это не представляет проблему при сильноточных измерениях. При слаботочных измерениях более важными аспектами становятся чувствительность и анализ постоянных составляющих. Учтите, что способы, используемые при измерениях одного типа, могут не действовать при измерениях другого типа.

Используйте высокоточные пробники, подходящие для измерений параметров ИУ.

Слаботочные измерения

При измерениях тока в устройствах с питанием от батареи динамический диапазон может значительно различаться. Когда устройство с питанием от батарей работает в режиме ожидания или выполнения фоновых задач, пиковые значения тока могут быть незначительными. Если устройство переключается в более активный режим работы, пиковые значения тока могут значительно возрастать. При использовании вертикальной шкалы осциллографа с большим шагом можно измерять сигналы большой амплитуды. Однако при этом на фоне шумов будут утеряны сигналы с небольшим уровнем тока. С другой стороны, при использовании мелкой вертикальной шкалы сильные сигналы будут ограничиваться, и результаты измерения будут искажены и недостоверны.

Выберите токовый пробник, который не только способен измерять сигналы в диапазоне от единиц микроампер до нескольких ампер, но и с несколькими усилителями с регулируемым коэффициентом усиления для анализа как мощных, так и слабых отклонений тока. Два встроенных в пробник усилителя с регулируемым коэффициентом усиления позволяют увеличивать масштаб для анализа малых отклонений тока и уменьшать его для анализа мощных выбросов тока (см. рис. 9).


Рис. 9. Токовые пробники с двумя усилителями с настраиваемым коэффициентом усиления позволяют одновременно анализировать как большие, так и малые токи. В этом примере представлены высокочувствительные токовые пробники Keysight N2820A/21A.

Используйте слаботочный токовый пробник с достаточной чувствительностью и динамическим диапазоном для всестороннего детального анализа сигнала.

Ошибка 5. Ошибки со смещением по постоянному току при измерениях пульсаций и уровня шума

Пульсации и помехи источников питания постоянного тока состоят из слабых составляющих переменного тока на фоне относительно мощного сигнала постоянного тока. При высоком уровне смещения по постоянному току может потребоваться использование настройки масштаба осциллографа с большим шагом по напряжению, чтобы анализируемый сигнал уместился в видимой области экрана. При этом уменьшается чувствительность измерений и возрастают шумы относительно амплитуды переменных составляющих сигнала. Это означает, что вы не сможете получить точное представление обо всех переменных составляющих сигнала.

Если для решения этой проблемы воспользоваться конденсатором, блокирующим постоянную составляющую сигнала, то неминуемо окажутся отсеченными определенные низкочастотные составляющие, что воспрепятствует анализу реального сигнала устройства со всеми его составляющими.

Для центрирования изображения сигнала на экране прибора без применения конденсатора, блокирующего постоянную составляющую сигнала, воспользуйтесь пробником шин питания с достаточным запасом по смещению для постоянной составляющей. Это позволит уместить на экране всю осциллограмму сигнала при сохранении небольших вертикальных настроек и увеличенного масштаба. Такие настройки позволяют детально анализировать переходные процессы, пульсации и помехи.

Использование пробника шин питания с большим запасом по смещению для постоянной составляющей позволяет детально анализировать переходные процессы, пульсации и помехи без отсечения постоянной составляющей сигналов.

Ошибка 6. Неизвестные ограничения по полосе пропускания

Выбор пробника с соответствующей полосой пропускания критически важен для выполнения измерений. При неправильно подобранной полосе пропускания возникают искажения сигнала, затрудняющие проведение испытаний и отладку устройств.

Согласно широко принятой формуле для определения полосы пропускания, произведение ее значения и значения времени нарастания фронта от уровня 10 % до уровня 90 % должно составлять 0,35.

Полоса пропускания x Время нарастанияфронта = 0,35

Важно заметить, что также необходимо учитывать полосу пропускания всей используемой системы. Для определения общей полосы пропускания всей системы следует принимать во внимание как полосу пропускания пробника, так и полосу пропускания осциллографа. Ниже представлена формула для расчета полосы пропускания системы.

Допустим, полоса пропускания и осциллографа, и пробника составляет 500 МГц. Значение полосы пропускания системы, полученное с помощью приведенной выше формулы, составит лишь 353 МГц. Можно заметить, что полоса пропускания системы значительно уже по сравнению с двумя отдельными значениями полосы пропускания пробника и осциллографа.

Теперь представим, что полоса пропускания пробника составляет всего 300 МГц, а осциллографа — по-прежнему 500 МГц. В этом случае, согласно приведенной выше формуле, полоса пропускания системы будет еще более узкой и составит 257 МГц.

Пробник и осциллограф образуют единую систему и совместно оказывают более заметное совместное влияние на полосу пропускания, чем по отдельности.

Ошибка 7. Влияние скрытых шумов

Шумы испытуемого устройства могут усиливаться собственными шумами пробника и осциллографа. При выборе соответствующего пробника с правильным коэффициентом ослабления для конкретного применения можно снизить шумы, добавляемые пробником и осциллографом. В результате представление сигнала от испытуемого устройства будет более четким.

Простой способ оценить шумы пробника — проверить значения коэффициента ослабления и уровня шумов пробника, указанные в его техническом описании или руководстве по эксплуатации.

Многие производители пробников при указании значения их шумов используют показатель эквивалентного входного шума (equivalent input noise, EIN), который измеряется в единицах среднеквадратического напряжения. Более высокие значения коэффициента ослабления позволяют измерять сигналы большей амплитуды, однако при этом цифровой осциллограф усиливает слабые сигналы вместе с шумами. Для иллюстрации этого эффекта на рис. 10 представлен завышенный уровень шумов при использовании пробника с коэффициентом ослабления 10:1 (зеленая осциллограмма).


Рис 10. Синусоидальный сигнал с уровнем 50 мВпик-пик, измеренный с помощью пробников с коэффициентом ослабления 1:1 и 10:1

Заключение

Все электрические цепи и условия измерений отличаются друг от друга. Один пробник для осциллографа в определенных условиях может работать, а другой — нет. При определенных обстоятельствах могут потребоваться дополнительные принадлежности. В других случаях необходимо обеспечить непосредственное соединение минимальной длины с испытуемым устройством. Некоторые подходы оказывают меньшее влияние на результаты испытаний, чем другие. Важно понимать, какие именно средства и методы позволят обеспечить максимально точные результаты в каждом конкретном случае.

Надеемся, что описание приведенных выше типичных ошибок, совершаемых инженерами при работе с пробниками, поможет выбрать оптимальные средства измерений для решения ваших задач.

Что измеряет осциллограф?

Большинство потребительских товаров включает электронные схемы или компоненты, и осциллограф используется на протяжении всего процесса разработки продукта для тестирования этих компонентов. Но что такое осциллограф? А что измеряет осциллограф?

Осциллограф — это прибор, который графически отображает электрические сигналы и показывает, как эти сигналы меняются с течением времени. Инженеры используют осциллографы для измерения электрических явлений и быстрого тестирования, проверки и отладки схемотехники.Основная функция осциллографа — измерение волн напряжения. Эти волны отображаются на графике, который может многое рассказать о сигнале, например:

  • Значения времени и напряжения сигнала.
  • Частота колебательного сигнала.
  • «Движущиеся части» цепи, представленные сигналом.
  • Частота, с которой происходит определенная часть сигнала относительно других частей.
  • Указывает, искажает ли сигнал неисправный компонент.
  • Какая часть сигнала является постоянным (DC) или переменным (AC) током.
  • Какая часть сигнала является шумом и меняется ли шум со временем.

На самом базовом уровне график, отображаемый на осциллографе, показывает, как сигнал изменяется во времени, при этом напряжение отображается вертикально по оси Y, а время отображается горизонтально по оси X.

Интенсивность или яркость сигнала на дисплее осциллографа иногда называют осью Z.В осциллографах с цифровым люминофором (DPO) ось Z может быть представлена ​​с помощью градации цвета дисплея.

Для получения дополнительной информации о восстановлении сигналов, целостности сигналов и измерениях формы сигналов прочтите об основах работы с осциллографами.

Что измеряет осциллограф?

Хотя осциллографы в первую очередь предназначены для измерения вольт, они могут обнаруживать и измерять множество других сигналов, в том числе:

Текущий

Есть несколько способов использовать осциллограф для измерения тока; можно было бы измерить напряжение, падающее на шунтирующем резисторе.Другой — просто использовать токовый пробник.

Звук

Звук можно измерять с помощью осциллографа. Вам понадобится преобразователь (для «преобразования» аудиосигнала в напряжение), который затем вы подключите к каналу на прицеле. Затем вы отобразите сигнал как соответствующее напряжение в зависимости от времени.

Емкость

Хотя осциллограф не дает прямого измерения емкости, его можно использовать для измерения постоянной времени, чтобы найти фактическую емкость электрической системы или компонента с помощью генератора произвольных функций.

Напряжение постоянного тока

Большинство современных осциллографов позволяют автоматически измерять напряжение постоянного тока. Однако вы можете измерить его вручную, «посчитав» вертикальные сетки и умножив на вольты на деление.

Частота

Как и в случае с постоянным напряжением, большинство современных осциллографов измеряют частоту автоматически. Однако можно вычислить частоту вручную, вычислив период сигнала (с помощью курсоров или горизонтальных сеток) и разделив 1 на период, дающий вам частоту.

Индуктивность

Если у вас нет измерителя LCR, вы можете измерить индуктивность с помощью осциллографа и функционального генератора. Это будет простое измерение с погрешностью от 3 до 5%.

Найдите осциллограф, подходящий для вашего приложения

Не все осциллографы одинаковы. Поэтому, прежде чем решить, в какую машину вложить средства, важно понять требования вашего проекта и тип осциллографа, который может вам понадобиться для получения наиболее эффективных и точных измерений.

При выборе осциллографа необходимо учитывать ряд факторов, включая полосу пропускания, время нарастания, частоту дискретизации, плотность каналов и совместимые пробники. Прочтите нашу разбивку по выбору осциллографа или изучите нашу полную линейку осциллографов, чтобы найти подходящий для вашего приложения.

Что измеряет осциллограф?

Большинство потребительских товаров включает электронные схемы или компоненты, и осциллограф используется на протяжении всего процесса разработки продукта для тестирования этих компонентов.Но что такое осциллограф? А что измеряет осциллограф?

Осциллограф — это прибор, который графически отображает электрические сигналы и показывает, как эти сигналы меняются с течением времени. Инженеры используют осциллографы для измерения электрических явлений и быстрого тестирования, проверки и отладки схемотехники. Основная функция осциллографа — измерение волн напряжения. Эти волны отображаются на графике, который может многое рассказать о сигнале, например:

  • Значения времени и напряжения сигнала.
  • Частота колебательного сигнала.
  • «Движущиеся части» цепи, представленные сигналом.
  • Частота, с которой происходит определенная часть сигнала относительно других частей.
  • Указывает, искажает ли сигнал неисправный компонент.
  • Какая часть сигнала является постоянным (DC) или переменным (AC) током.
  • Какая часть сигнала является шумом и меняется ли шум со временем.

На самом базовом уровне график, отображаемый на осциллографе, показывает, как сигнал изменяется во времени, при этом напряжение отображается вертикально по оси Y, а время отображается горизонтально по оси X.

Интенсивность или яркость сигнала на дисплее осциллографа иногда называют осью Z. В осциллографах с цифровым люминофором (DPO) ось Z может быть представлена ​​с помощью градации цвета дисплея.

Для получения дополнительной информации о восстановлении сигналов, целостности сигналов и измерениях формы сигналов прочтите об основах работы с осциллографами.

Что измеряет осциллограф?

Хотя осциллографы в первую очередь предназначены для измерения вольт, они могут обнаруживать и измерять множество других сигналов, в том числе:

Текущий

Есть несколько способов использовать осциллограф для измерения тока; можно было бы измерить напряжение, падающее на шунтирующем резисторе.Другой — просто использовать токовый пробник.

Звук

Звук можно измерять с помощью осциллографа. Вам понадобится преобразователь (для «преобразования» аудиосигнала в напряжение), который затем вы подключите к каналу на прицеле. Затем вы отобразите сигнал как соответствующее напряжение в зависимости от времени.

Емкость

Хотя осциллограф не дает прямого измерения емкости, его можно использовать для измерения постоянной времени, чтобы найти фактическую емкость электрической системы или компонента с помощью генератора произвольных функций.

Напряжение постоянного тока

Большинство современных осциллографов позволяют автоматически измерять напряжение постоянного тока. Однако вы можете измерить его вручную, «посчитав» вертикальные сетки и умножив на вольты на деление.

Частота

Как и в случае с постоянным напряжением, большинство современных осциллографов измеряют частоту автоматически. Однако можно вычислить частоту вручную, вычислив период сигнала (с помощью курсоров или горизонтальных сеток) и разделив 1 на период, дающий вам частоту.

Индуктивность

Если у вас нет измерителя LCR, вы можете измерить индуктивность с помощью осциллографа и функционального генератора. Это будет простое измерение с погрешностью от 3 до 5%.

Найдите осциллограф, подходящий для вашего приложения

Не все осциллографы одинаковы. Поэтому, прежде чем решить, в какую машину вложить средства, важно понять требования вашего проекта и тип осциллографа, который может вам понадобиться для получения наиболее эффективных и точных измерений.

При выборе осциллографа необходимо учитывать ряд факторов, включая полосу пропускания, время нарастания, частоту дискретизации, плотность каналов и совместимые пробники. Прочтите нашу разбивку по выбору осциллографа или изучите нашу полную линейку осциллографов, чтобы найти подходящий для вашего приложения.

Что измеряет осциллограф?

Большинство потребительских товаров включает электронные схемы или компоненты, и осциллограф используется на протяжении всего процесса разработки продукта для тестирования этих компонентов.Но что такое осциллограф? А что измеряет осциллограф?

Осциллограф — это прибор, который графически отображает электрические сигналы и показывает, как эти сигналы меняются с течением времени. Инженеры используют осциллографы для измерения электрических явлений и быстрого тестирования, проверки и отладки схемотехники. Основная функция осциллографа — измерение волн напряжения. Эти волны отображаются на графике, который может многое рассказать о сигнале, например:

  • Значения времени и напряжения сигнала.
  • Частота колебательного сигнала.
  • «Движущиеся части» цепи, представленные сигналом.
  • Частота, с которой происходит определенная часть сигнала относительно других частей.
  • Указывает, искажает ли сигнал неисправный компонент.
  • Какая часть сигнала является постоянным (DC) или переменным (AC) током.
  • Какая часть сигнала является шумом и меняется ли шум со временем.

На самом базовом уровне график, отображаемый на осциллографе, показывает, как сигнал изменяется во времени, при этом напряжение отображается вертикально по оси Y, а время отображается горизонтально по оси X.

Интенсивность или яркость сигнала на дисплее осциллографа иногда называют осью Z. В осциллографах с цифровым люминофором (DPO) ось Z может быть представлена ​​с помощью градации цвета дисплея.

Для получения дополнительной информации о восстановлении сигналов, целостности сигналов и измерениях формы сигналов прочтите об основах работы с осциллографами.

Что измеряет осциллограф?

Хотя осциллографы в первую очередь предназначены для измерения вольт, они могут обнаруживать и измерять множество других сигналов, в том числе:

Текущий

Есть несколько способов использовать осциллограф для измерения тока; можно было бы измерить напряжение, падающее на шунтирующем резисторе.Другой — просто использовать токовый пробник.

Звук

Звук можно измерять с помощью осциллографа. Вам понадобится преобразователь (для «преобразования» аудиосигнала в напряжение), который затем вы подключите к каналу на прицеле. Затем вы отобразите сигнал как соответствующее напряжение в зависимости от времени.

Емкость

Хотя осциллограф не дает прямого измерения емкости, его можно использовать для измерения постоянной времени, чтобы найти фактическую емкость электрической системы или компонента с помощью генератора произвольных функций.

Напряжение постоянного тока

Большинство современных осциллографов позволяют автоматически измерять напряжение постоянного тока. Однако вы можете измерить его вручную, «посчитав» вертикальные сетки и умножив на вольты на деление.

Частота

Как и в случае с постоянным напряжением, большинство современных осциллографов измеряют частоту автоматически. Однако можно вычислить частоту вручную, вычислив период сигнала (с помощью курсоров или горизонтальных сеток) и разделив 1 на период, дающий вам частоту.

Индуктивность

Если у вас нет измерителя LCR, вы можете измерить индуктивность с помощью осциллографа и функционального генератора. Это будет простое измерение с погрешностью от 3 до 5%.

Найдите осциллограф, подходящий для вашего приложения

Не все осциллографы одинаковы. Поэтому, прежде чем решить, в какую машину вложить средства, важно понять требования вашего проекта и тип осциллографа, который может вам понадобиться для получения наиболее эффективных и точных измерений.

При выборе осциллографа необходимо учитывать ряд факторов, включая полосу пропускания, время нарастания, частоту дискретизации, плотность каналов и совместимые пробники. Прочтите нашу разбивку по выбору осциллографа или изучите нашу полную линейку осциллографов, чтобы найти подходящий для вашего приложения.

Типы осциллографов

| Tektronix

Осциллографы с цифровым люминофором (DPO)

Цифровой люминофорный осциллограф (DPO) предлагает новый подход к архитектуре осциллографа.Эта архитектура позволяет ему предоставлять уникальные возможности сбора и отображения для точного восстановления сигнала. В то время как DSO использует архитектуру последовательной обработки для захвата, отображения и анализа сигналов, DPO использует архитектуру параллельной обработки для выполнения этих функций (рисунок 14).

Рисунок 14 : Архитектура параллельной обработки цифрового люминофорного осциллографа (DPO).

Архитектура DPO выделяет уникальное оборудование ASIC для получения изображений формы волны, обеспечивая высокую скорость захвата формы волны, что приводит к более высокому уровню визуализации сигнала.Эта производительность увеличивает вероятность засвидетельствования переходных процессов, происходящих в цифровых системах, таких как кратковременные импульсы, сбои и ошибки перехода, и обеспечивает дополнительные возможности анализа.

Архитектура параллельной обработки

Первый (входной) каскад DPO аналогичен каскаду аналогового осциллографа — вертикальному усилителю, а его второй каскад аналогичен каскаду DSO — АЦП. Но DPO значительно отличается от своих предшественников аналого-цифровым преобразованием.

Для любого осциллографа — аналогового, DSO или DPO — всегда есть время задержки, в течение которого прибор обрабатывает самые последние полученные данные, сбрасывает систему и ожидает следующего триггерного события. В это время осциллограф не видит никакой активности сигнала. Вероятность увидеть нечастое или редко повторяющееся событие уменьшается по мере увеличения времени задержки.

Невозможно определить вероятность захвата, просто глядя на частоту обновления дисплея.Если вы полагаетесь исключительно на частоту обновления, легко ошибиться, полагая, что осциллограф фиксирует всю необходимую информацию о форме сигнала, хотя на самом деле это не так.

DSO последовательно обрабатывает захваченные сигналы. Скорость микропроцессора является узким местом в этом процессе, поскольку ограничивает скорость захвата формы сигнала. DPO преобразует данные оцифрованных сигналов в базу данных цифрового люминофора. Каждую 1/30 секунды — примерно так быстро, как человеческий глаз может это воспринимать — моментальный снимок сигнального изображения, который хранится в базе данных, конвейерно направляется непосредственно на дисплей.Эта прямая растеризация данных формы сигнала и прямое копирование в отображаемую память из базы данных устраняет узкое место обработки данных, присущее другим архитектурам. Результат — улучшенное обновление дисплея в режиме реального времени. Детали сигнала, периодические события и динамические характеристики сигнала фиксируются в режиме реального времени. Микропроцессор DPO работает параллельно с этой интегрированной системой сбора данных для управления отображением, автоматизации измерений и управления приборами, поэтому он не влияет на скорость сбора данных осциллографом.

DPO точно имитирует лучшие характеристики отображения аналогового осциллографа, отображая сигнал в трех измерениях: время, амплитуда и распределение амплитуды во времени. Все в реальном времени.

В отличие от аналогового осциллографа, использующего химический люминофор, в DPO используется чисто электронный цифровой люминофор, который фактически является постоянно обновляемой базой данных. В этой базе данных есть отдельная «ячейка» информации для каждого пикселя на экране осциллографа. Каждый раз при захвате формы сигнала — другими словами, при каждом запуске осциллографа — он отображается в ячейки базы данных цифрового люминофора.Каждая ячейка, представляющая место на экране и затрагиваемая осциллограммой, подкрепляется информацией об интенсивности, в то время как другие ячейки — нет. Таким образом, информация об интенсивности накапливается в ячейках, где форма волны проходит чаще всего.

Когда база данных цифрового люминофора подается на дисплей осциллографа, на нем отображаются области усиленной формы волны, пропорциональные частоте появления сигнала в каждой точке, подобно характеристикам градации интенсивности аналогового осциллографа.DPO также позволяет отображать информацию о различной частоте появления на дисплее в виде контрастных цветов, в отличие от аналогового осциллографа. С DPO легко увидеть разницу между сигналом, который возникает почти при каждом запуске, и сигналом, который возникает, скажем, при каждом сотом запуске.

DPO устраняет барьер между технологиями аналоговых и цифровых осциллографов. Они одинаково подходят для просмотра высоких и низких частот, повторяющихся сигналов, переходных процессов и изменений сигнала в реальном времени.Только DPO обеспечивает ось Z (интенсивность) в реальном времени, чего нет в обычных DSO.

DPO идеально подходит для тех, кому нужен лучший универсальный инструмент для проектирования и поиска и устранения неисправностей для широкого спектра приложений (рис. 15). DPO является образцом для расширенного анализа, тестирования коммуникационной маски, цифровой отладки прерывистых сигналов, повторяющегося цифрового проектирования. и приложения времени.

Рисунок 15 : Некоторые DPO могут регистрировать миллионы сигналов всего за секунды, что значительно увеличивает вероятность захвата прерывистых и неуловимых событий и выявления динамического поведения сигнала.

Осциллограф

: основы | Руководство по чтению и эксплуатации

Типы волн

Большинство волн можно разделить на следующие типы:

  • Синусоидальные волны.
  • Квадратные и прямоугольные волны.
  • Пилообразные и треугольные волны.
  • Формы ступеней и импульсов.
  • Периодические и непериодические сигналы.
  • Синхронные и асинхронные сигналы.
  • Сложные волны.

Далее мы рассмотрим каждый из этих типов волн.

Синусоидальные волны

Синусоидальная волна является основной формой волны по нескольким причинам. Он обладает гармоничными математическими свойствами »€ это та же форма синуса, которую вы, возможно, изучали в классе тригонометрии.

Напряжение в розетке меняется как синусоида. Тестовые сигналы, генерируемые схемой генератора сигналов, часто являются синусоидальными. волны.

Большинство источников питания переменного тока излучают синусоидальные волны (переменный ток означает переменный ток, хотя и переменное напряжение; постоянный ток означает постоянный ток, что означает постоянный ток и напряжение, которое производит батарея.Затухающая синусоида — это особый случай, который вы можете увидеть в цепи, которая колеблется, но со временем спадает.

Квадратные и прямоугольные волны

Прямоугольная волна — еще одна распространенная форма волны. По сути, прямоугольная волна — это напряжение, которое включается и выключается (или повышается и понижается) через определенные промежутки времени. Это стандартная волна для тестирования усилителей. Хорошие усилители увеличивают амплитуду прямоугольной волны с минимальными искажениями.

Телевидение, радио и компьютерные схемы часто используют прямоугольные волны для синхронизации сигналов.Прямоугольная волна похожа на прямоугольную, за исключением того, что высокие и низкие временные интервалы не имеют равной длины. Это особенно важно при анализе цифровых схем.

Пилообразные и треугольные волны

Пилообразные и треугольные волны возникают из-за схем, предназначенных для линейного управления напряжением, таких как горизонтальная развертка аналогового осциллографа или растровая развертка телевизора.

Переходы между уровнями напряжения этих волн изменяются с постоянной скоростью.Эти переходы называются рампами.

Формы ступеней и импульсов

Такие сигналы, как шаги и импульсы, которые возникают редко или непериодически, называются однократными или переходными сигналами.

Шаг указывает на внезапное изменение напряжения, подобное изменению напряжения, которое вы видите, если вы включаете выключатель питания.

Импульс указывает на внезапные изменения напряжения, аналогичные изменениям напряжения, которые вы видите, если включить, а затем снова выключить питание. Импульс может представлять один бит информации, проходящий через компьютерную схему, или это может быть сбой или дефект в цепи.

Набор распространяющихся вместе импульсов создает последовательность импульсов. Цифровые компоненты в компьютере взаимодействуют друг с другом с помощью импульсов. Эти импульсы могут быть в форме последовательного потока данных, или несколько сигнальных линий могут использоваться для представления значения на параллельной шине данных. Импульсы также распространены в рентгеновском, радиолокационном и коммуникационном оборудовании.

Периодические и непериодические сигналы

Повторяющиеся сигналы называются периодическими сигналами, а сигналы, которые постоянно меняются, называются непериодическими сигналами.Неподвижное изображение аналогично периодическому сигналу, в то время как фильм аналогичен непериодическому сигналу.

Синхронные и асинхронные сигналы

Если между двумя сигналами существует временная зависимость, эти сигналы называются синхронными. Сигналы часов, данных и адреса внутри компьютера являются примерами синхронных сигналов.

Асинхронные сигналы — это сигналы, между которыми не существует временной зависимости. Поскольку не существует временной корреляции между касанием клавиши на клавиатуре компьютера и часами внутри компьютера, эти сигналы считаются асинхронными.

Сложные волны

Некоторые формы сигналов сочетают в себе характеристики синусов, квадратов, ступеней и импульсов для создания сигналов сложной формы. Информация о сигнале может быть встроена в виде изменений амплитуды, фазы и / или частоты.

Например, хотя сигнал на рисунке 6 является обычным композитным видеосигналом, он состоит из множества циклов высокочастотных сигналов, встроенных в низкочастотную огибающую.

В этом примере важно понимать относительные уровни и временные отношения шагов.Для просмотра этого сигнала вам понадобится осциллограф, который фиксирует низкочастотную огибающую и смешивает высокочастотные волны с градацией интенсивности, чтобы вы могли видеть их общую комбинацию в виде изображения, которое можно интерпретировать визуально.

Цифровые люминофорные осциллографы (DPO) лучше всего подходят для просмотра сложных волн, таких как видеосигналы, показанные на рисунке 6. Их дисплеи предоставляют необходимую информацию о частоте появления или градацию интенсивности, которая необходима для понимания формы волны действительно делает.

Некоторые осциллографы могут отображать определенные типы сложных сигналов особым образом. Например, телекоммуникационные данные могут отображаться в виде глазковой диаграммы или диаграммы созвездия:

Рисунок 6 : Составной видеосигнал NTSC является примером сложной волны.

Телекоммуникационные цифровые сигналы данных могут отображаться на осциллографе в виде сигнала особого типа, называемого глазковой диаграммой. Название происходит от сходства формы волны с серией глаз (рис. 7).

Глазковые диаграммы формируются, когда цифровые данные из приемника дискретизируются и подаются на вертикальный вход, а скорость передачи данных используется для запуска горизонтальной развертки. Глазковая диаграмма отображает один бит или единичный интервал данных со всеми возможными краевыми переходами и состояниями, наложенными на одном всеобъемлющем представлении.

Созвездие — это представление сигнала, модулированного схемой цифровой модуляции, такой как квадратурная амплитудная модуляция или фазовая манипуляция.

オ シ ロ ス コ ー プ 入門 |テ ク ト ロ ニ ク ス

波形 の 種類

ほ と ん ど の 波 は 、 以下 種類 に 分 け ら れ ま す。

  • 正弦波
  • 方形 波 と 矩形 波
  • の こ ぎ り 波 と 三角 波
  • ス テ ッ プ と パ ル ス
  • 周期 的 な 信号 と 非 周期 的 な 信号
  • 同期 信号 と 非 同期 信号
  • 複 雑 な 波形

次 に そ れ ぞ れ の 波形 を 見 て い き ま す。

正弦波

「正弦波 は 、 い く つ か で 基本 的 な 波 と 言。 は 、 的 に た 性質 をと 同 じ で す 。.

AC コ ン セ ン ト の 電 も 正弦波 で す。 シ グ ジ ェ ネ レ ー タ の シ ー タ 回路 で さ テ ス も

ほ と ん ど の AC 電源 は 正弦 波 す。 (AC は Переменный ток 、 つ ま り の こ と で 、 そ の 交互 に 反 転 す い う安定 し た 電流 、 電) 「減 衰 正弦波」 と と も に す 特別 な で す。

方形 波 と 矩形 波

も な じ の 波 で す。 方形 波 は 的 に は 規則 的 な 間隔 で フ す る ((高低使用 さ れ ま す。 高性能 の い 増 幅 器 は 、 方形 波 を 少 歪 み 増 幅 ま す。

テ レ ビ, ラ ジ オ, コ ン ピ ュ ー タ な ど の 回路 で は, タ イ ミ ン グ 信号 と し て 方形 波 が よ く 使 用 さ れ ま す 「矩形 波」 は, 高低 の 時間 間隔 が 1: 1. で な い こ と を 除 け ば, 方形 波 と 似 て い ま す。 こ れ は 、 デ ジ タ を 解析 す る と き に 特 に に な り ま す。

の こ ぎ り 波 と 三角 波

「三角」 と 「の こ ぎ」 は 、 ア ナ ロ グ ロ コ ー プ の 水平 テ レ ビ の の.

電 圧 は 一定 の 割 ま す。 こ の 変 化 ラ ン プ 」と 呼 び ま す。

ス テ ッ プ と パ ル ス

ス テ ッ プ や パ ル ス の よ う に め っ た に 発 生 し な い 波形 や, 定期 的 に は 発 生 し な い 波形 を, 「単 発 信号」 ま た は 「ト ラ ン ジ ェ ン ト 信号」 と 呼 び ま す.

ス テ ッ プ 波形 は, 電源 ス イ ッ チ を 入 れ た と き な ど に 見ら れ る 電 圧 の 急 激 な 変 化 を 示 し ま す.

パ ル ス 波形 は, 電源 ス イ ッ チ を オ ン に し て す ぐ に オ フ に し た と き な ど に 見 ら れ る, 急 激 な 電 圧 の 変 化 の 際 に 得 ら れ ま す. パ ル ス は コ ン ピ ュ ー タ 回路 内を 移動 す る 1 ビ ッ ト の 情報 で あ る こ と も あ り, ま た 回路 内 の グ リ ッ チ (欠 陥) で あ る 場合 も あ り ま す. 多 く の パ ル ス が た く さ ん 連 続 す る と, パ ル ス 列 に な り ま す. コ ン ピ ュ ー タ の デ ジ タ ル · コ ン ポ ー ネ ン ト 間 の 通信 は, パ ル ス を 使用 し て 行 わ れ ま す. パ ル ス は, シ リ ア ル · デ ー タ · ス ト リ ー ム の 形式 や に な っ た り, 複 数 の 信号 線 に よ り が 集 ま っ て 特定 の 値 を と る パ ラ レ ル · デ ー タ · バ ス の 形式 に な り ま す.な っ た り し ま す。 か 、 パ ル ス は X 線 装置 、 ー ダ 、 通信 機器 さ て い ま す。

周期 信号 と 非 周期 信号

波形 が 同 じ 間隔 繰 返 す 」、 常 に 変 わ る 信号 を「 非 周期 信号 と い い ま す。 は 静止

同期 信号 と 非 同期 信号

2 つ の 信号 の タ イ ミ が 一致 し て い る と き 、 の 2 つ の 信号 は 「同期」 し る と い い す ン ピ

互 い の タ イ ミ ン グ に 関係 が な い 2 信号 の 関係 を, 「非 同期」 と い い ま す. コ ン ピ ュ ー タ の キ ー ボ ー ド を 打 つ 動作 と, コ ン ピ ュ ー タ 内 部 の ク ロ ッ ク に は 時間 的 な 関係 が な い の で, こ れ ら は 非 同期 と み な さ れま す。

複 雑 な 波形

信号 の 中 に は 、 正弦波 、 方形 ス テ ッ プ 、 パ ル 混 在 し た 波形 も あ り。 信号 情報 に は 位相000 き

例 え ば, 図 6 は 通常 の コ ン ポ ジ ッ ト · ビ デ オ 信号 で す が, 低 周波 の 「エ ン ベ ロ ー プ (包 絡 線)」 の 上 に 高 周 波 成分 の 信号 が 重 畳 さ れ て い ま す.

こ の よ う な 波形 で は, ス テ ッ プ間 の 相 対 的 な レ ベ ル タ イ ミ ン グ の 関係 を に 重要 で す う な 信号 を 、 低輝 度 の 濃淡 と し て 表現 で き る オ シ ロ ス コ ー プ が 必要 で す.

図 6 に 示 す よ う な ビ デ オ 信号 な ど の 複 雑 な 波形 の 観 測 に は, デ ジ タ ル · フ ォ ス フ ァ · オ シ ロ ス コ ー プ が 適 し て い ま す. デ ジ タ ル · フ ォ ス フ ァ · オ シ ロ ス コ ー プ に は,頻 度 情報 を 、 輝 度 の 表現 で き る 機能 が あ る た 真 実 の 波形 を 理解 す る 、 非常 に 重要 で す。

も あ り ま す。 例 え え ば 、 テ ム 通信 用 の デ ー タ ア イ ・ パ タ ー ン ま コ ス タ レ シ 3

図 6 : 複 雑 な 波形 の 例 : NTSC コ ン ポ ジ ッ ト ビ デ オ 信号

テ レ コ ム 通信 の デ ジ タ ル · デ ー タ 信号 は, オ シ ロ ス コ ー プ 上 で は 「ア イ · パ タ ー ン」, あ る い は 「ア イ · ダ イ ア グ ラ ム」 と 呼 ば れ る 特殊 な 波形 で 表示 さ れ ま す. こ の 名 前 は, 波形 が 人間 の 目 の よ う な 形状 で あ るこ と か ら き て い ま す (図 7 を 参 照).

ア イ · パ タ ー ン は, レ シ ー バ か ら の デ ジ タ ル · デ ー タ を 垂直 入 力 に, デ ー タ · レ ー ト を 水平 掃 引 の ト リ ガ と し て 使用 す る こ と で 表示 さ れ ま す. ア イ · パ タ ー ン表示 で は, 1 ビ ッ ト ま た は 1UI (ユ ニ ッ ト · イ ン タ ー バ ル) の 中 に す べ て の エ ッ ジ が 含 ま れ た 状態 で 表示 さ れ ま す.

コ ン ス タ レ ー シ ョ ン · ダ イ ア グ ラ ム は, 直交 振幅 変 調 や 位相 シ フ ト · キ ー イ ン グ な ど の デ ジ タ ル 変 調 方式よ る 信号 を 表 し た も の ​​で す。

Как измерить напряжение с помощью осциллографа

Осциллографы

помогают визуализировать электрический сигнал.По своей сути осциллографы отображают график зависимости напряжения от времени для одного или нескольких сигналов. Этот график зависимости напряжения от времени часто называют «формой волны». Эта форма сигнала отображается при подключении определенного сигнала на тестируемом устройстве (DUT) к осциллографу с помощью пробника. Наконечник пробника подключается к сигналу, а зажим заземления подключается к надежной точке заземления. Измерение напряжения с помощью вашего осциллографа дает основную информацию о сигнале, однако осциллографы часто предлагают гораздо более продвинутые инструменты для дальнейшего анализа вашего сигнала.Понимание того, как измерять напряжение с помощью осциллографа, — это первый шаг к раскрытию мощных измерительных возможностей, которые предлагает ваш осциллограф.

Начало работы: измерение напряжения осциллографом

Шаг 1. Включите осциллограф и нажмите кнопку «Настройка по умолчанию» на передней панели.


Шаг 2: Подключите датчик к каналу 1. Не беспокойтесь о типе датчика на данном этапе, но если у вас есть датчик с зажимом или другим механизмом, который не позволяет вам удерживать его на проводе, это облегчит тебе жизнь.Ниже приведен базовый пассивный пробник, который отлично подойдет для начала!


Шаг 3: Найдите надежную точку заземления и подсоедините к ней зажим заземления.
Шаг 4: Подключите наконечник пробника к сигналу, который вы хотите измерить.
Шаг 5: Осциллограф теперь производит замер напряжения вашего сигнала и отображает его изменение во времени. Если вы не видите полный сигнал на экране, нажмите кнопку «Auto Scale» на передней панели для центрирования и масштабирования формы сигнала.
Шаг 6: Используйте вертикальные и горизонтальные ручки для дальнейшей настройки отображения сигнала. Эти ручки помогут вам увеличивать и уменьшать масштаб, а также сдвигать сигнал вправо, влево, вверх и вниз. Чтобы получить наилучшее измерение, убедитесь, что ваш сигнал охватывает большую часть вертикальной шкалы.


Шаг 7: Самый простой способ рассчитать напряжение — это подсчитать количество делений сигнала сверху вниз и умножить его на вертикальную шкалу (вольт / деление).Обратите внимание, что деления также помечены в вольтах по оси Y, поэтому вы можете легко рассчитать напряжение вашего сигнала с помощью этих меток.


Многие осциллографы имеют функции, устраняющие необходимость в подсчете делений. Попробуйте один из этих методов, чтобы быстрее измерить напряжение с помощью осциллографа.
• Используйте экранные курсоры для измерения напряжения между двумя точками (верхняя и нижняя части кривой)
• Используйте измерение размаха напряжения
• Используйте встроенный DVM

Подробнее об осциллографах
Ознакомьтесь с недорогим осциллографом Keysight
Получите полезные советы по осциллографам от 2-Minute Guru

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *