Назначение заземления, отличие заземления от зануления
Покупая любое электрооборудование, будь то стиральная машина или холодильник он не рассчитан на пожизненный срок службы и в процессе работы как любое другое оборудование может сломаться. Чтобы защитить электрооборудование от ненормальных режимах работы (перегрузка или короткое замыкание) применяются различные защитные аппараты (автоматы, пробки и т.д.)
Но бывают ситуации, когда защитные устройства не реагируют на возникшие повреждения. Одним из таких случаев является повреждение внутренней изоляции и возникновении на металлическом корпусе оборудования высокого напряжения.
В этом случае защита необходима самому человеку, который попадет под напряжение прикоснувшись к поврежденному оборудованию. Для защиты от таких повреждений и было придумано заземление, основное назначение которого — снизить величину этого напряжения.
То есть, основное назначение заземления — снизить напряжение прикосновения до безопасной величины.
Предположим, что у вас дома имеется потолочный светильник, корпус которого не подключен к заземлению. В следствии повреждения изоляции металлическая часть светильника оказалась под напряжением. В тот момент когда вы попытаетесь поменять лампочку вас ударит током, так как прикоснувшись к корпусу вы становитесь проводником и электрический ток будет протекать через ваше тело в землю.
Если же светильник будет заземлен, большая часть тока будет стекать в землю по заземляющему проводу и в момент касания, напряжение на корпусе, будет намного меньше, а соответственно и величина тока проходящий через вас будет также меньше.
Заземлением — называется соединение металлических нетоковедущих частей электроустановки с землей (контуром заземления) которые в нормально состоянии не находятся под напряжением, но могут оказаться из-за повреждения изоляции.
Также, заземление необходимо для функциональности таких аппаратов как УЗО. Если корпуса электроустановок не будут соединены с землей, то ток утечки протекать не будет, а значит УЗО, не среагирует на неисправность.
Отличие заземления от зануления
Наряду с заземлением вам наверняка приходилось слышать такой термин как зануление.
Занулением — называется соединение металлических нетоковедущих частей электроустановки с нулем (нулевым проводником сети).
По своему назначению заземление и зануление выполняют одну и туже задачу – защищают человека от поражения электрическим током. Однако обеспечивают они эту защиту немного разными способами. В сетях с занулением происходит отключение от сети электрооборудования, корпус которого из-за пробоя изоляции оказался под напряжением.
Рассмотрим пример, в котором обеспечивается защита электроустановки с помощью зануления.
Как видно из рисунка при пробое фазы на соединенный с нулем корпус возникает замкнутый контур между фазой и нулем, то есть однофазное короткое замыкание. На возникшее короткое замыкание реагируют защитные устройства, такие как автоматы или предохранители, в результате происходит отключение поврежденной электроустановки от источника питания.
Рассмотренные выше примеры дают возможность сделать вывод что:
— заземление осуществляется защиту снижением напряжения прикосновения. |
— зануление осуществляется защиту отключением электроустановки от сети. |
Наверняка у вас возникал вопрос в каких случаях выполняют защиту заземлением, а в каких занулением. Применение в разных случаях заземления и зануления вызвано разными системами заземления электроустановок. В электроустановках напряжением до 1000 В применяются пять систем заземления: TN-C, TN-S, TN-C-S, TT, IT.
Зануление используют в качестве защиты в таких системах, в которых присутствует PEN, PE или N проводник. Это сети с глухо заземленной нейтралью, TN-C, TN-S и TN-C-S.
Заземление применяют в электроустановках с системами заземления TT и IT.
Рассмотренные выше способы заземления и зануления больше подходят для применения в промышленных электроустановках на производстве.
Понравилась статья — поделись с друзьями!
Заземление и зануление. В чем разница * Удобный дом
Заземление и зануление – в чем разница? Безусловно, оба слова обозначают не устройство или систему, а процесс, действие. А именно, соединение корпусов электроприборов. Несомненно, отличие в том, с чем соединяются эти корпуса
Заземление и зануление. В чем разница? – Заземление
Если человек соединяет корпуса электроприборов с забитым в землю электродом – заземлителем, посредством заземляющих проводников, то он совершает заземление. Так же, к примеру, когда человек пашет землю, то он совершает вспашку.
Заземляющее устройство (Заземление)
Согласно Правилам Устройства Электроустановок (ПУЭ 1.7.28.) Заземление – преднамеренное электрическое соединение какой – либо точки сети, электроустановки или оборудования с заземляющим устройством.
После окончания работы по заземлению, как результат, остается не заземление. В итоге, остается заземляющее устройство, соединенное с заземленным оборудованием. Заземляющее устройство – совокупность заземлителя и заземляющих проводников (ПУЭ 1.7.19.). Так же после вспашки в результате остается вспаханное поле.
Заземлитель – проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду (ПУЭ 1.7.15.).
Заземляющий проводник – проводник, соединяющий заземляемую часть (точку) с заземлителем (ПУЭ 1.7.18.).
Стоит отметить, что заземление может быть как защитным, так и рабочим. Например, в данном случае рассматривается защитное заземление. Защитное заземление – заземление, выполняемое в целях электробезопасности (ПУЭ 1. 7.29.).
Заземление, как обозначение заземляющего устройства или системы электроснабжения часто употребляется в разговорном языке. Разумеется, это не является ужасной ошибкой. Но в то же время, это обстоятельство часто приводит к недопониманию. А также и полному непониманию того, что такое заземление.
Для чего нужно заземление
Заземление применяется в целях снизить разность потенциалов (напряжение) между землей и корпусом оборудования. Во время замыкания на этот корпус фазного проводника. Если человек дотронется до не заземленного корпуса электроприбора, к которому прикасается фазный проводник с нарушенной изоляцией, то ток потечет в землю по телу человека. С одной стороны, здесь земля играет роль обкладки конденсатора огромной ёмкости. Безусловно, она может поглотить бесконечное количество электроэнергии. С другой стороны, электрический ток соответственно всегда будет стремится зарядить этот бездонный конденсатор. В свою очередь, человек становится проводником через который ток уходит в землю.
Если же корпус электроприбора будет заземлен, то напряжение между землёй, на которой стоит человек, и корпусом к которому он прикасается будет примерно нулевым для человека. Ток потечет по заземляющему проводнику, а не по телу человека. Так как сопротивление правильно выполненного заземляющего устройства намного меньше чем сопротивление человеческого тела.Пробой фазы на корпус в системе TT (заземление без зануления). Ток стекает в землю по PE проводнику
Сила протекающего через заземляющее устройство тока тока будет большой. Разумеется, это приведет к нагреву и обгоранию контактов и проводников. Потому совместно с заземлением должно применяться защитное отключение. Чтобы отключить цепь в аварийном состоянии. Безусловно, чаще всего в качестве защитного отключения применяют автоматические выключатели и УЗО.
До появления УЗО и дифавтоматов было запрещено применять заземление без зануления. Дело в том, что при замыкании фазы на заземленный, но не зануленный корпус электрооборудования, ток короткого замыкания может быть недостаточен для отключения автоматического выключателя. Несомненно, установленное дополнительно к автомату, УЗО в данном случае отключит сеть по току утечки. Потому системы TT и IT запрещены без применения УЗО (ПУЭ 1.7.59.).
Заземление и зануление. В чем разница? – Зануление
Соединяя нулевую точку источника питания с корпусами электроприборов посредством нулевого защитного проводника мы производим зануление.
Зануление изображено условно (без заземления не применяется)ПУЭ 1.7.31. сообщает что:
Защитное зануление в электроустановках напряжением до 1 кВ – преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
Для чего нужно зануление
Зануление в отличии от заземления бывает только защитным. Всегда применяется совместно с заземлением. Цель применения – снизить разность потенциалов (напряжение) между нулевым проводником и корпусом электрооборудования. То есть при замыкании на этот корпус фазного проводника. Безусловно, при замыкании уменьшается также разность потенциалов между корпусом и замкнутой на него фазой. А также между корпусом и двумя другими фазами. Так как совместно используется и заземление, то снижается разность потенциалов между корпусом и землей.
Сила тока короткого замыкания фазы на зануленный и повторно заземленный корпус электроприбора очень велика. Во всяком случае, намного больше чем сила тока КЗ на корпус только заземленный. Такой ток короткого замыкания может раскалить и расплавить металл, по которому он протекает. То есть зануление при аварии создает пожароопасную ситуацию. Потому необходимо применять аварийное отключение. Например, автоматический выключатель. Автоматический выключатель отключит электроснабжение по короткому замыканию или тепловой защите. Разумеется, применение УЗО также позволит отключить сеть в аварийном порядке. То есть при малейшем замыкании фазы на зануленный и повторно заземленный корпус. Безусловно еще до прикосновения к этому корпусу человека.
Применение в разговорном языке слов – заземление и зануление, в смысле устройства или системы, вполне корректно. Потому что стало общеупотребительным для большого количества людей. Но употребляя их в разговоре, нужно понимать что они означают на самом деле. Главное не определение или условное обозначение какого либо понятия или предмета. Главное чтобы не возникало путаницы в голове и не нарушалась стройность мыслительного процесса.
Вы можете прочитать записи на похожие темы в рубрике – Электромонтаж
Следующие статьи могут быть полезны для Вас
Системы защитного заземления
Отключающая способность автомата
Можно ли применять зануление в системе tn-c
Ваш Удобный дом
Также рекомендуем прочитать
Заземление и зануление, в чем разница?
Движение электричества в домах должно быть безопасным и контролируемым. Для предупреждения негативного влияния, когда по причине нарушения изоляции проводников возможен критический контакт с человеком, должны применяться специальные меры: заземление и зануление. В чем разница между ними?
Для квартирного жилья проще сделать зануление, чем обустроить заземляющий контур.
Что такое заземление
Суть заземления заключается в преднамеренном соединении частей электроустановок и заземляющего устройства (как правило, это — конструкции из металлических полос и штырей, снижающие уровень напряжения до безопасного для человека значения).
Для понимания рассмотрим пример. Допустим, в каком-либо электроприборе (стиральная машина, духовой шкаф или иная бытовая техника) при пробое изоляции и возникает напряжение между корпусом прибора и фазой. При наличии устройства заземления, ток не приведет к критичным последствиям при контакте с человеком. Это обусловлено тем, что в качестве приоритетного проводника будет выступать защитное заземление, имеющее очень низкое сопротивление.
Сопротивление человека варьирует на различных участках тела. В среднем при расчете электробезопасности его принимают равным 1 кОм.
Сопротивление заземления согласно ПУЭ 1.7.62 не должно превышать 4 Ом с учетом сопротивления естественных заземлителей и повторных заземлений у потребителей.
Также контур заземления используется в качестве молниезащиты. В этом случае защитное заземление принимает высоковольтное напряжение и передающее его глубоко в грунт.
По назначению заземлители подразделяют на три класса:
- Грозозащитный специализируется на отводе молниеносного напряжения
- Рабочий поддерживает оптимальную работоспособность электрических установок при любых условиях.
- Защитный противостоит поражению живых организмов высоким пробойным напряжением.
Основные составные части контура — заземлитель и заземляющие проводники. Заземлители могут быть естественными и искусственными. В первом случае, это металлические конструкции, имеющие надежное соединение с землей. Заземлители искусственного происхождения изготавливаются из стальных стержней, труб или уголков, длина которых должна быть не менее 2,5 м. Соединенные сварными швами, они забиваются в землю. Увеличивая число труб (уголков), можно значительно снизить сопротивление контура и сделать его более эффективным.
Что такое зануление
Зануление — это соединением открытых проводящих элементов электрических установок, которые не находятся в нормальном состоянии под напряжением, с глухозаземленным выводом источника однофазного электрического тока (с глухозаземленной нейтральной точкой трансформатора или генератора, в электросетях трехфазного тока; с заземленной точкой источника в электросетях постоянного тока). Данный тип защиты часто используется в квартирах, где отсутствует традиционная система заземления или она имеет устаревший вид.
Зануление бытовой электропроводки выполняется следующим образом:
- На подстанции производится соединение с землей нейтральной точки трансформатора.
- Из трансформатора выходят три линии, подключаемые к домашнему электрощиту.
- Далее, идет распределение по квартирам.
Как действует зануление? Особенность в том, что оно рассчитано на эффект короткого замыкания, которое происходит при попадании напряжения одной из фаз на корпус. Ведь может возникнуть ситуация, когда человек прикасается к корпусу прибора, где уже есть опасное напряжение, а защита еще не сработала. Превращая обычное замыкание на корпус в короткое замыкание, где задействован фазный и нулевой провод, происходит срабатывание защитных устройств и автоматическое отключение поврежденной электроустановки от сети.
Используя данный способ, обязательно устанавливайте автоматы и устройства защитного отключения.
Коммутировать нулевой проводник, который используется в качестве защитного, запрещено.
Чем отличается заземление от зануления?
Отличие заземления от зануления имеется, и оно принципиальное. Если смонтировано полноценное заземление, в результате пробоя фазы на корпус, получается быстрое снижение напряжения тока до безопасного минимума для человека.
В случае с занулением, из-за пробоя тока происходит обесточивание определенного участка цепи, и переход короткого замыкания в другую часть или на корпус электроприбора. Риск попадания человека под опасный разряд минимален, но опасность остается.
Видео по теме
Подводя итог, можно отметить, что более надежный способ защиты — заземление. Использование зануления не рекомендуется. Но, в любом случае, к данному вопросу нужно подходить основательно. Ни в коем случае не отождествляйте два различных метода, отличия и принцип работы которых были рассмотрены в данном обзоре. И помните, устанавливать УЗО, дифференциальные автоматы или автоматические выключатели нужно в комплексе с обеими системами.
Заземление и зануление в чем разница и как отличить проводники
Очень часто даже сами электрики путают два таких понятия как заземление и зануление. Как же их отличить рядовому потребителю? По определению заземление — это принудительное соединение металлических частей оборудования с землей. Главное его назначение — понизить до минимума напряжение, которое может возникнуть на корпусе аппарата, если произойдет пробой изоляции.
Зануление — это соединение металлических частей эл.оборудования с нулевым проводом. Если произойдет пробой изоляции и фаза попадет на зануленный корпус — получится однофазное короткое замыкание. Оно то и вызовет отключение напряжение через защитный автомат. Зануление и заземление выполняют по сути одну задачу, но немного разными способами.
Как на практике отличить проводник заземления от нулевого провода? Допустим у вас не завершен до конца ремонт и из подрозетника торчит кабель с тремя жилами. Определить какая из них фазная не так сложно. Для этого нужно воспользоваться индикаторной отверткой или тестером.
Только поняв какой из проводников является фазным, можно приступать с методам поиска земли и нуля.
![]()
Заземление
Заземление представляет собой один проводник или составленную из них группу, находящуюся в соприкосновении с землей. С его помощью выполняется сброс поступающего на металлический корпус агрегатов напряжения по пути нулевого сопротивления, т.е. к земле.
Такое электрическое заземление и зануление электрооборудования в промышленности актуально и для бытовых приборов со стальными наружными частями. Прикосновение человека к корпусу холодильника или стиральной машины, оказавшегося под напряжением, не вызовет поражения электрическим током. С этой целью используются специальные розетки с заземляющим контактом.
Источники помех на шине Земля
Все помехи, воздействующие на кабели, датчики, исполнительные механизмы, контроллеры и металлические шкафы автоматики, в большинстве случаев протекают и по заземляющим проводникам, создавая паразитное электромагнитное поле вокруг них и падение напряжения помехи на проводниках.
Источниками и причинами помех могут быть молния, статическое электричество, электромагнитное излучение, «шумящее» оборудование, сеть питания 220 В с частотой 50 Гц, переключаемые сетевые нагрузки, трибоэлектричество, гальванические пары, термоэлектрический эффект, электролитические процессы, движение проводника в магнитном поле и др. В промышленности встречается много помех, связанных с неисправностями или применением не сертифицированной аппаратуры. В России уровень помех регулируются нормативами — ГОСТ Р 51318.14.1, ГОСТ Р 51318.14.2, ГОСТ Р 51317.3.2, ГОСТ Р 51317.3.3, ГОСТ Р 51317.4.2, ГОСТ 51317.4.4, ГОСТ Р 51317.4.11, ГОСТ Р 51522, ГОСТ Р 50648. На этапе проектирования промышленного оборудования, чтобы снизить уровень помех, применяют маломощную элементную базу с минимальным быстродействием и стараются уменьшить длину проводников и экранирование.
Принцип работы УЗО
Для безопасной работы промышленного и бытового оборудования применяют устройства защитного отключения (УЗО), используют приборы автоматических дифференциальных выключателей. Их работа основана на сравнении входящего по фазному проводу электрического тока и выходящего из квартиры по нулевому проводнику.
Нормальный режим работы электрической цепи показывает одинаковые значения тока в названых участках, потоки направлены в противоположных направлениях. Для того чтобы они и далее уравновешивали свои действия, обеспечивали сбалансированную работу приборов, выполняют устройство и монтаж заземления и зануления.
Пробой в любом участке изоляции приводит к протеканию тока, направляющегося к земле, через поврежденное место с обходом рабочего нулевого проводника. В УЗО показывается дисбаланс силы тока, прибор автоматически выключает контакты и напряжение исчезает во всей рабочей схеме.
Для каждого отдельного эксплуатационного условия предусмотрены различные установки для отключения УЗО, обычно диапазон наладки составляет от 10 до 300 миллиампер. Устройство срабатывает быстро, время отключения составляет секунды.
Основные понятия.
Сила тока— скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.
где
I— сила тока,q—величина заряда (количество электричества),t— время прохождения заряда.
Плотность тока— векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.
где
j
—
плотность тока
,
S
—
площадь сечения проводника.
Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.
Напряжение
—
скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.
гдеA—полная работа сторонних и кулоновских сил,q— электрический заряд.
Электрическое сопротивление— физическая величина, характеризующая электрические свойства участка цепи.
гдеρ— удельное сопротивление проводника,l—длина участка проводника,S—площадь поперечного сечения проводника.
Проводимостьюназывается величина, обратная сопротивлению
где G—проводимость.
Работа заземляющего устройства
Чтобы присоединить заземляющее устройство к корпусу бытового или промышленного оборудования применяется РЕ-проводник, который из щитка выводится по отдельной линии со специальным выходом. Конструкция обеспечивает соединение корпуса с землей, в чем и заключается назначение заземления. Отличие заземления от зануления состоит в том, что в начальный момент при подсоединении вилки к розетке рабочий ноль и фаза не коммутированы в оборудовании. Взаимодействие исчезает в последнюю минуту, когда размыкается контакт. Таким образом, заземление корпуса имеет надежное и постоянное действие.
Практические советы
При полной или частичной замене, модернизации или ремонте проводки в квартире или загородном доме важно не пренебрегать правилами личной безопасности. Несколько практических советов:
- Если установлена двухпроводная электрическая сеть, при установке трехпроводной розетки нельзя соединять заземляющий контур и рабочий ноль.
Это нарушение одного из основных правил безопасности. Если пренебречь им, корпус бытового прибора, подключенного к сети, всегда будет под напряжением, что отрицательно сказывается на производительности и эксплуатационном сроке, а также несет опасность жизни и здоровью человека и домашних питомцев.
- Во время строительства дачи или загородного дома установка заземления – обязательное условие эксплуатации электричества. Недорогая, имеющая простую конструкцию заземляющая система сбережет здоровье людей и целостность всей дорогостоящей бытовой техники, электротехнических приборов.
- Для обеспечения электроэнергией мощных бытовых приборов, например, стиральной или посудомоечной машины, бойлера, в помещении рекомендуется проводить отдельную магистраль электропроводки. Обусловлено это тем, что при одновременном запуске этих приборов датчики УЗО (устройства защитного отключения) и предохранительные датчики будут часто срабатывать, отключая полностью подачу ресурса на квартиру или дом.
Предохранительный автомат и УЗО – это два абсолютно разных электротехнических прибора. Каждый из них имеет свои конструктивные особенности и выполняет определенные функции.
Устройство защитного отключения – это защита человека и домашних питомцев, прибор быстрого срабатывания. Автомат – это электротехнический прибор, который улавливает изменение параметров электрической сети, в частности ее перегрузку. Его основной недостаток – может сработать не сразу, а по истечении определенного времени. Чтобы совместить возможности двух защитных приборов и нивелировать их недостатки, был разработан гибридный прибор – дифавтомат.
{SOURCE}
Два пути устройства заземления
Системы защиты и отвода напряжения подразделяют на:
- искусственные:
- естественные.
Искусственные заземления предназначены непосредственно для защиты оборудования и человека. Для их устройства требуются горизонтальные и вертикальные стальные металлические продольные элементы (часто применяют трубы с диаметром до 5 см или уголки № 40 или № 60 длиной от 2,5 до 5 м). Тем самым отличается зануление и заземление. Разница состоит в том, что для выполнения качественного зануления требуется специалист.
Естественные заземлители используются в случае их ближайшего расположения рядом с объектом или жилым домом. В качестве защиты служат находящиеся в грунте трубопроводы, выполненные из металла. Нельзя использовать для защитной цели магистрали с горючими газами, жидкостями и тех трубопроводов, наружные стенки которых обработаны антикоррозионным покрытием.
Естественные объекты служат не только защите электроприборов, но и выполняют свое основное предназначение. К недостаткам такого подключения относится доступ к трубопроводам достаточного широкого круга лиц из соседних служб и ведомств, что создает опасность нарушения целостности соединения.
Ошибки, допускаемые при монтаже
Наиболее распространенными ошибками при устройстве систем защиты бывают следующие:
- Недостаточный контакт жилы, соединяющей корпус электроприбора с заземляющей шиной.
В этом случае эффективность защиты уменьшается. Запрещается осуществлять контакт с шиной заземления через скрутку. Соединение должно быть только болтовым
- Использование в качестве заземлителя трубопроводов отопительной или водопроводной системы. Утечки тока могут проявляться путем поражения через воду или прикосновение к трубам. Кроме того от этого могут пострадать соседи.
- В случае отсутствия специального образования или навыков работы с электроприборами, лучше доверить устройство защитных систем опытным специалистам.
- Применение в качестве жилы между потребителем и заземляющей шиной алюминиевого провода. Может произойти окисление и контакт будет утрачен.
- Неправильная коммутация зануляющего провода при расщеплении с рабочим нулем (фиксация под один зажим). Возможно отгорание проводника и выход из строя защитыУстройство зануления непосредственно в розетке или в распределительной коробке. При нарушении целостности или отключении рабочего нуля (вышел из строя автомат, отгорел контакт), прибор может оказаться под опасным напряжением.
Практически каждый из нас слышал о том, что большинство бытовых приборов нужно заземлять, но мало кто может сказать, для чего, и как оно вообще работает. Еще меньше людей знают, что такое зануление, и совсем немногие могут ответить на вопрос о том, чем отличается ноль от земли. Тем не менее от правильного заземления или зануления зависит человеческая жизнь, поэтому приведенную в этой статье информацию без преувеличения можно назвать жизненно важной.
Зануление
Помимо заземления, в некоторых случаях используют зануление, нужно различать, в чем разница. Заземление и зануление отводят напряжение, только делают это разными способами. Второй метод является электрическим соединением корпуса, в нормальном состоянии не под напряжением, и выводом однофазного источника электричества, нулевым проводом генератора или трансформатора, источником постоянного тока в его средней точке. При занулении напряжение с корпуса сбрасывается на специальный распределительный щиток или трансформаторную будку.
Зануление используется в случаях непредвиденных скачков напряжения или пробоя изоляции корпуса промышленных или бытовых приборов. Происходит короткое замыкание, ведущее к перегоранию предохранителей и мгновенному автоматическому выключению, в этом заключается разница между заземлением и занулением.
Устройство зануления
Чем отличается заземление от зануления, видно и на примере подключения. Корпус отдельным проводом соединяется с нулем на распределительном щитке. Для этого в розетке соединяют третью жилу электрического кабеля с предусмотренной для этого клеммой в розетке. У этого метода есть недостаток, который заключается в том, что для автоматического отключения нужен ток, по размеру больший, чем заданные установки. Если в нормальном режиме отключающее устройство обеспечивает работу прибора с силой тока в 16 Ампер, то малые пробои тока продолжают утекать без отключения.
После этого становится понятно, какая разница между заземлением и занулением. Человеческое тело при воздействии силы тока в 50 миллиампер может не выдержать и наступит остановка сердца. Зануление от таких показателей тока может не защитить, так как его функция заключается в создании нагрузок, достаточных для отключения контактов.
Нулевой проводник
Нулевой проводник или, как его еще называют, нейтраль выполняет простую, но важную функцию. Он выравнивает нагрузки в сети, на выходе обеспечивая напряжение в 220 Вольт. Избавляет фазы от скачков и перекосов, нейтрализуя их. Не удивительно, что его символом является буква n – образован от английского слова Neutral. А сочетание обозначений n, l в электрике всегда идут рядом.
В распределительном щитке все кабели данной расцветки группируются на одной, нулевой шине с соответствующей буквенной аббревиатурой. В розетках также есть необходимая маркировка.
Поэтому мастер никогда не спутает, куда крепить специальный нулевой контакт.
Такая маркировка, принцип работы применимы как к однофазной, так и к трехфазной сети.
Заземление и зануление, в чем разница?
Между этими двумя способами существуют отличия:
- при заземлении избыточный ток и возникшее на корпусе напряжение отводятся непосредственно в землю, а при занулении сбрасываются на ноль в щитке;
- заземление является более эффективным способам в вопросе защиты человека от поражения электрическим током;
- при использовании заземления безопасность получается за счет резкого уменьшения напряжения, а применение зануления обеспечивает выключение участка линии, в которой случился пробой на корпус;
- при выполнении зануления, чтобы правильно определить нулевые точки и выбрать метод защиты потребуется помощь специалиста электрика, а сделать заземление, собрать контур и углубить его в землю может любой домашний мастер-умелец.
Заземление является системой отвода напряжения через находящийся в земле треугольник из металлического профиля, сваренного в местах соединения. Правильно устроенный контур дает надежную защиту, но при этом должны соблюдаться все правила. В зависимости от требующегося эффекта выбирается заземление и зануление электроустановок. Отличие зануления в том, что все элементы прибора, которые в нормальном режиме не находятся под током, подсоединяются к нулевому проводу. Случайное касание фазы к зануленным деталям прибора приводит к резкому скачку тока и отключению оборудования.
Сопротивление нейтрального нулевого провода в любом случае меньше этого же показателя контура в земле, поэтому при занулении возникает короткое замыкание, которое в принципе невозможно при использовании земляного треугольника. После сравнения работы двух систем становится понятно, в чем разница. Заземление и зануление отличаются по способу защиты, так как велика вероятность отгорания со временем нейтрального провода, за чем нужно постоянно следить. Зануление применяется очень часто в многоэтажных домах, так как не всегда есть возможность устроить надежное и полноценное заземление.
Заземление не зависит от фазности приборов, тогда как для устройства зануления необходимы определенные условия подключения. В большинстве случаев первый способ превалирует на предприятиях, где по требованиям техники безопасности предусматривается повышенная безопасность. Но и в быту в последнее время часто устраивается контур для сброса возникающего излишнего напряжения непосредственно в землю, это является более безопасным методом.
Защита при заземлении касается непосредственно электрической цепи, после пробоя изоляции за счет перетекания тока в землю значительно снижается напряжение, но сеть продолжает действовать. При занулении полностью отключается участок линии.
Заземление в большинстве случаев используют в линиях с устроенной изолированной нейтралью в системах IT и ТТ в трехфазных сетях с напряжением до 1 тыс. вольт или свыше этого показателя для систем с нейтралью в любом режиме. Применение зануления рекомендовано для линий с заземленным глухо нейтральным проводом в сетях TN-C-S, TN-C, TN-S с имеющимися в наличии N, PE, PEN проводниками, это показывает в чем разница. Заземление и зануление, несмотря на отличия, являются системами защиты человека и приборов.
Откуда появился ноль, и каким он бывает
Если рассматривать планету Земля с точки зрения электротехники, то она является сферическим конденсатором. В нем три элемента:
- Земная твердь, имеющая отрицательный потенциал.
- Ионосфера – слой атмосферы, воспринимающий и частично рассеивающий излучения Солнца. Она имеет положительный потенциал.
- Газовая атмосфера, имеющая диэлектрические свойства и играющая роль обкладки.
Разница потенциалов между обкладками этого глобального конденсатора равна 300 тыс. вольт. Она уменьшается по мере приближения к поверхности. Так, на высоте 100 метров ее значение 10 тыс. вольт.
Почему мы считаем потенциал Земли равным нулю, ведь на самом деле он имеет вполне материальное значение, хотя и c отрицательным знаком? Этот вопрос стоит задать ученым XVIII или XIX веков, заложивших основы электротехники.
Например, английскому физику Майклу Фарадею. Так им было удобнее измерять напряженность электромагнитного поля – принять за точку отсчета (ноль) Землю. Этот прием используется во многих отраслях науки. Например, в термодинамике. В ней за абсолютный ноль принята температура, при которой прекращается движение электронов в атомной структуре любого вещества.
Это так называемая шкала Кельвина, которая отличается от другой системы измерения температур – она предложена Андерсом Цельсием – на 273 градуса со знаком минус.
Итак, электрический ноль – это условное понятие, которое применяют в отношении любого предмета с отрицательным потенциалом. Его можно получить тремя способами:
- Присоединившись к земной тверди, отчего и произошло понятие «заземление».
- Кристаллическая решетка всех металлов имеет отрицательный заряд разной величины, что определяет степень их электрохимической активности. Поэтому достаточно присоединиться к металлическому предмету большой массы и объема. Два последних условия являются обязательными, поскольку тело должно иметь электрическую емкость, сравнимую с Земной. Это называется рабочим заземлением.
- Соединив проводники с текущим по ним переменным током так, чтобы в общей точке сумма их векторного сложения была равна нулю (так называемая схема звезда), из-за чего ее назвали нейтралью. Это основа приема, называемого в электротехнике занулением.
Полезные термины электротехники
Для понимания некоторых принципов, по которым выполняются защитные зануление, заземление и отключение следует знать определения:
Глухозаземленная нейтраль представляет собой нулевой провод от генератора или трансформатора, непосредственно подключенный к заземляющему контуру.
Ею может служить вывод от источника переменного тока в однофазной сети или полюсная точка источника постоянного тока в двухфазных магистралях, как и средний выход в трехфазных сетях постоянного напряжения.
Изолированная нейтраль представляет собой нулевой провод генератора или трансформатора, не соединенный с заземляющим контуром или контактирующий с ним через сильное поле сопротивления от сигнализационных устройств, защитных приборов, измерительных реле и других приспособлений.
Дополнительные сведения о нахождении земли, фазы, нулевого провода
Добавим другой способ — промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, можно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее можно тестером (запрещенной стандартами лампочкой в патроне) находить фазу.
Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу
Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, можно обратиться в управляющие организации, при отсутствии реакции – стучите (россияне именуют правозащитников стукачами) государственным инстанциям
Указывайте нарушение правил защитного зануления зданий.
Принятые обозначения заземляющих устройств в сети
Все электрические установки с присутствующими в них проводниками заземления и нулевыми проводами в обязательном порядке подлежат маркировке. Обозначения наносятся на шины в виде буквенного обозначения РЕ с переменно чередующимися поперечными или продольными одинаковыми полосками зеленого или желтого цвета. Нейтральные нулевые проводники маркируются голубой литерой N, так обозначается заземление и зануление. Описание для защитного и рабочего нуля заключается в проставлении буквенного обозначения PEN и окрашивании в голубой тон по всей протяженности с зелено-желтыми наконечниками.
Буквенные обозначения
Первые литеры в пояснении к системе обозначают выбранный характер заземляющего устройства:
- Т – соединение источника питания непосредственно с землей;
- I – все токоведущие детали изолированы от земли.
Вторая буква служит для описания токопроводящих частей относительно подсоединения к земле:
- Т говорит об обязательном заземлении всех открытых деталей под напряжением, независимо от вида связи с грунтом;
- N – обозначает, что защита открытых частей под током осуществляется через глухозаземленную нейтраль от источника питания непосредственно.
Буквы, стоящие через тире от N, сообщают о характере этой связи, определяют метод обустройства нулевого защитного и рабочего проводников:
- S – защита РЕ нулевого и N-рабочего проводников выполнена раздельными проводами;
- С – для защитного и рабочего нуля применяется один провод.
Виды защитных систем
Классификация систем является основной характеристикой, по которой устраивается защитное заземление и зануление. Общие технические сведения описаны в третьей части ГОСТ Р 50571.2-94. В соответствии с ней заземление выполняется по схемам IT, TN-C-S, TN-C, TN-S.
Система TN-C разработана в Германии в начале 20 века. В ней предусмотрено объединение в одном кабеле рабочего нулевого провода и РЕ-проводника. Недостатком является то, что при отгорании нуля или возникшем другом нарушении соединения на корпусах оборудования появляется напряжение. Несмотря на это система применяется в некоторых электрических установках до нашего времени.
Системы TN-C-S и TN-S разработаны взамен неудачной схемы заземления TN-C. Во второй схеме защиты два вида нулевых провода разделялись прямо от щитка, а контур являлся сложной металлической конструкцией. Эта схема получилась удачной, так как при отсоединении нулевого провода на кожухе электроустановки не появлялось линейное напряжение.
Система TN-C-S отличается тем, что разделение нулевых проводов выполняется не сразу от трансформатора, а примерно на середине магистрали. Это не было удачным решением, так как если обрыв нуля случится до точки разделения, то электрический ток на корпусе будет представлять угрозу для жизни.
Схема подсоединения по системе ТТ обеспечивает непосредственную связь деталей под напряжением с землей, при этом все открытые части электроустановки с присутствием тока связаны с грунтовым контуром через заземлитель, который не зависит от нейтрального провода генератора или трансформатора.
По системе IT выполняется защита агрегата, устраивается заземление и зануление. В чем разница такого подсоединения от предыдущей схемы? В этом случае передача излишнего напряжения с корпуса и открытых деталей происходит в землю, а нейтраль источника, изолированая от грунта, заземляется посредством приборов с большим сопротивлением. Эта схема устраивается в специальном электрическом оборудовании, в котором должна быть повышенная безопасность и стабильность, например, в лечебных учреждениях.
Виды систем зануления
Система зануления PNG является простой в конструкции, в ней нулевой и защитный проводники совмещаются на всей протяженности. Именно для совмещенного провода применяется указанная аббревиатура. К недостаткам относят повышенные требования к слаженному взаимодействию потенциалов и проводникового сечения. Система успешно используется для зануления трехфазных сетей асинхронных агрегатов.
Не разрешается выполнять защиту по такой схеме в групповых однофазных и распределительных сетях. Запрещается совмещение и замена функций нулевого и защитного кабелей в однофазной цепи постоянного тока. В них применяется дополнительный нулевой провод с маркировкой ПУЭ-7.
Есть более совершенная система зануления для электроустановок, питающихся от однофазной сети. В ней совмещенный общий проводник PEN присоединяется к глухозаземленной нейтрали в источнике тока. Разделение на N и РЕ проводники происходит в месте разветвления магистрали на однофазных потребителей, например, в подъездном щите многоквартирного жилища.
В заключение следует отметить, что защита потребителей от поражения током и порчи электрических бытовых приборов при скачках напряжения является главной задачей энергообеспечения. Чем отличается заземление от зануления, объясняется просто, понятие не требует специальных знаний. Но в любом случае меры по поддержанию безопасности бытовых электроприборов или промышленного оборудования должны осуществляться постоянно и на должном уровне.
Заземление и зануление в чем разница между ними?
Основное требование эксплуатации бытовых приборов – безопасность. Особенно это относится к приборам, контактирующими с водой. Даже самый малый дефект в электрической проводке внутри аппаратов становится опасным. Прожог изоляции проводов, пробивка между витками электродвигателей или пробивка изоляции нагревательных элементов, все это становится причинами перехода электрического потенциала на корпусы аппаратов. Соприкасаясь с ними, человек получает удар электрическим током. Поэтому стоит позаботиться о том, чтобы в таких ситуациях бытовой прибор не представлял опасности. Для этого существует два способа: заземление и зануление – в чем разница между ними?
Заземление
Что такое заземление – это контур, который соединят бытовые приборы через розетки с землей. Это самый действенный вариант обезопасить себя от удара тока. Можно спокойно прикасаться к металлическим деталям корпуса, не получив при этом неприятных ощущений.
Самое важное, чтобы заземляющий контур имел минимальный показатель сопротивления. Вот почему его собирают из стальных или медных элементов. Меньшее сопротивление дает возможность через проводник пропустить ток большего значения. А сила тока короткого замыкания зависит от мощности прибора (зависимость прямая) и сопротивления проводника (зависимость обратная). То есть, чем больше мощность и меньше сопротивления, тем большей силы ток может пройти по заземляющему элементу.
Часть контура закапывается в грунт рядом с домом, вторая часть – это проводники, соединяющиеся между собой через распределительный щит. Обе части соединяются на улице методом сварки.
Есть еще одно отличие, которая разделяет между собой защитное заземление и зануление. Это толщина проводников, минимальный размер которых составляет 10 мм² для медного провода или 6-8 мм² для стального. При таких величинах можно не бояться появления в сети тока большой силы, который возникает при замыкании внутри агрегатов большой мощности. К примеру, в бойлере (до 6 кВт) или в стиральной машинке (до 2 кВт).
Схема подключения заземления отличается от схемы зануления. В ней присутствует три провода, которые подводятся к розетке: фаза, ноль и земля. При этом конструкция новых розеток и вилок сделана таким образом, чтобы еще до коммутации фазы и нуля в них первыми подключились контакты заземления. Они же при вынимании вилки из розетки отключаются последними. Это уже обеспечивает безопасность. Теперь перейдем конкретно к рассмотрению вопроса: разница между заземлением и занулением.
Зануление
В электрической разводке, собранной по схеме зануления, также присутствуют три провода. Но контакты земля соединены напрямую с нулевыми контактами в распределительном щите. При этом получается, что заземляющий провод и есть нулевой. В системе TN-C, которая присутствует во всех старых домах, подводка к розеткам состоит из двух проводов: фаза и ноль.
Внимание! При установке современной розетки с контактом земля, многие электрики ставят перемычку между нулевым контактом и заземляющим. Это тоже является занулением и конечно, отличается от заземления. Главное, так делать нельзя!
Все дело в том, что нейтраль трансформатора, проведенная по нулевому проводу до распределительного щита, является заземляющим проводником. Именно от названия нулевого провода и названа зануляющая система. Оптимально, если провод PE будет проведен от розетки прямо к распределительному щиту. Если делать перемычку внутри розетки, то при обрыве нулевого проводника N оборвется и заземляющая сеть. Поэтому использовать эту схему категорически запрещается.
В чем минус этого способа. В распределительном щите на фазный контур устанавливается автомат, который отключается при появлении короткого замыкания. Но все дело в том, что это устройство реагирует на силу тока, которая определяется характеристиками вставки внутри автомата. К примеру, на панели может быть указан показатель – 16 А. То есть, он будет реагировать именно на эту силу тока или большую. Все, что меньше данного значения, легко проскакивает, и автомат на это не реагирует. Он не будет разрывать цепь, к примеру, если сила тока короткого замыкания равна 10 амперам. А это величина, которая может нанести увечья человеку. При включенном автомате на металлическом корпусе бытового прибора образуется большой потенциал напряжения.
Основное отличие
Чем отличается заземление от зануления в чисто защитных действиях? Чему отдать предпочтение: занулению или заземлению?Оба варианта являются заземляющими. Но в системе зануления используется нулевой проводник, который соединяет распределительный щит в доме с контуром заземления, расположенного на подстанции. По сути, получается так, что нейтраль трансформатора подключается напрямую с землей внутри подстанции. При этом от нее отходит один провод – он же нулевой и заземляющий, поэтому имеет обозначение «PEN». В распределительный щит входят два провода: фаза и ноль PEN. Заземляющий провод (PE), проведенный до розеток, соединяется с нулевым PEN в распределительном щитке. То есть, выходящие из дома ноль (N) и земля (PE) соединяются в один проводник PEN, который тянется до трансформатора.
В системе заземления к заземляющей конструкции в подстанции подводится два проводника: ноль (N) и земля (PE). То есть, до распределительного щита идет три провода: фаза, ноль и земля. Этим же количеством они входят в дом и доводятся до розеток. При такой схеме происходит выравнивание потенциалов напряжения между фазой и заземляющим проводником, когда появляется короткое замыкание.
Если сказать короче, то заземление и зануление отличаются между собой так:
- защита человека от напряжения на металлическом корпусе бытового прибора при зануляющей схеме спасает автомат, который разрывает питающую цепь;
- заземляющая схема – это защита с помощью снижения потенциала напряжения на корпусе прибора, за счет отвода тока в грунт.
И хотя задачи обе системы выполняют одну – защита человека, но обеспечивают они эту защиту по-разному.
Теперь, что касается области применения той или иной защиты. В электроустановках, которые работают от напряжения до 1000 вольт, используются пять заземляющих систем: TN-C, TN-C-S, TN-S, TT, IT. Зануление используется в трех первых. Заземление в двух последних.
То есть, зануление соединяется с нейтралью трансформатора или отдельным проводником, или совмещенным с нулевым. Заземляющая разводка сооружается, как отдельно собранная конструкция рядом с домом, она носит аббревиатуру TT. При этом проводник PE никак не связан с проводником PEN.
Разводка IT – это схема с изолированной нейтралью. То есть, в трансформаторной подстанции нейтраль не соединена с заземляющим контуром. От нее отходит нулевой проводник N, который протягивается до распределительного щита в доме. А вот с заземлением напрямую соединяется заземляющий проводник PE, который соединяет этот контур с распределительным ящиком. В этом случае, как и при системе TT, можно установить заземляющую конструкцию около дома, собрав его своими руками. Что даст возможность не тянуть далеко проводник PE. На сегодняшний день это самый идеальный вариант.
Итак, подводя итог разбора: заземление или зануление, отметим, что первую схему лучше всего использовать в частных домах путем установки заземляющей конструкции, вторую в городских квартирах. Тем более, при строительстве многоквартирного дома раньше использовалась схема TN-C, сегодня TN-C-S.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
в чем разница, ⚡ отличия и требования
Безопасность – главное требование, которому должен отвечать любой электроприбор. При отсутствии грамотной защиты малейшая пробоина в проводе может спровоцировать появление электрического потенциала на кожухе устройства. При касании к такому аппарату произойдет удар током.
Расчет фундамента
Попробуйте новый продукт
Избежать этого поможет соединение открытых металлических отводов с землей или нулевым кабелем. Однако в чем разница между заземлением и занулением знают не многие. В этом нужно разобраться, прежде чем приступать к монтажу какого-либо оборудования.
Что такое заземление?
Заземлением называют намеренное подключение открытых частей электроприборов к отдельному отводу, непосредственно контактирующему с землей. В результате этого происходит падение напряжения на корпусе аппарата. Основная часть тока отводится в почву.
Чаще заземлитель представляет собой конструкцию из металлических штырей, вбитых в почву на одинаковом расстоянии друг от друга. Они соединяются между собой стальной лентой. Размеры такой установки зависят от особенностей электроприбора, который планируется эксплуатировать.
Заземляющая конструкция соединяется с шиной и посредством проводников заводится в распределительный щиток дома. Шина – металлическая полоса, оснащенная клеммниками. К ней подсоединяются проводники от каждого электрического прибора.
Выделяют три типа заземления:
-
Рабочее. Обеспечивает бесперебойную работу электроприборов. Применяется в штатном или аварийном режиме.
-
Защитное заземление. Предотвращает травмирование человека электрическим током.
-
Молниезащитное. Помогает отводить импульсные токи, попадающие на прибор в результате удара молнии.
Конструкция, состоящая из штырей, вкапываемых в землю, именуется искусственным заземлением. К естественной защите относят трубопроводы, элементы зданий из железобетона, обсадные магистрали и прочие элементы, контактирующие с грунтом.
В качестве заземлителя нельзя использовать трубы, по которым транспортируются взрывоопасные и горючие вещества, а также детали из алюминия, оболочки кабелей.
Схемы подключений
Существует пять основных схем создания защитного заземления.
Схема |
Название |
Особенности |
|
TN-C |
Характерной чертой этого способа подключения стало объединение нулевых проводников в единый PEN проводник. PEN проходит от подстанции и разводится на пару разных кабелей PE и N перед конечным потребителем. Такая система легко монтируется и предотвращает появление короткого замыкания. |
|
TN-S |
Ток поступает к потребителю посредстом пяти проводов 3-фазной и трех проводов однофазной сети. Три из пяти проводящих источников имеют силовую функцию. Два остальных являются нейтральными. |
|
TN-C-S |
Производится разделение PEN на PE и N в определенной зоне цепи. Чаще они разводятся в щитке постройки. Такая схема надежно предохраняет от короткого замыкания, удара молнии. Для схемы характерен низкий уровень защиты от разрыва нулевого проводника. Отключение напряжения с помощью автоматики организовать не удастся. |
|
TT |
Эта схема гарантирует повышенный уровень безопасности. Она собирается по принципу четырех проводников, три из которых находятся под напряжением и совмещены под углом 120 градусов друг к другу. Последний проводник нулевой. |
|
IT |
Эта схема применяется для сетей, напряжение в которых превосходит 1000 В. Она создает защиту посредствам высокого сопротивления. Система позволяет продолжительную эксплуатацию даже в аварийном режиме. |
В современных домах чаще реализуются схемы TN-C-S и TN-S. Они обеспечивают высокую степень безопасности. В старых постройках заземление нередко вовсе отсутствует. Его придется организовывать самостоятельно.
Любые работы с электрикой должен проводить человек, имеющий соответствующее образование и допуск. Человеку без опыта и знаний нельзя самостоятельно вносить какие-либо изменения. Это чревато выходом из строя всей техники или пожаром.
Что представляет собой зануление?
Занулением именуют систему, при которой все, не находящиеся под напряжением токопроводящие детали оборудования, подключают к нейтрали. Она предотвращает повреждения в результате короткого замыкания.
При контакте провода, имеющего напряжение, с зануленным кожухом агрегата образуется большая сила тока. Это провоцирует срабатывание автомата-предохранителя, отключающего подачу питания на агрегат.
В качестве нейтрального проводника в однофазной электрической цепи можно использовать третью жилу кабеля. Причем у фазы и ноля должно оказаться минимальное сопротивление. Только так защитная аппаратура сработает.
Применение системы зануления целесообразно в случаях:
-
Трехфазная сеть с переменным током и заземленным нулем.
-
Сеть с постоянным током и заземленной средней точкой.
-
Оборудование с глухозаземленной нейтралью.
В квартирах подобные системы не применяются. Это угрожает жизни и здоровью людей, а также работоспособности техники. При внезапном повреждении нулевого проводника, человека ждет удар электрическим током.
Схема подключения
Нейтральный проводник связывается с нейтралью трансформатора, имеющей надежное заземление. Нейтраль вместе с трехфазной линией заводится в помещение. Ее разводят по всем имеющимся щиткам. Далее от нее берется рабочий ноль, выдающий однофазное напряжение.
Защитное зануление формируется отдельным нулем в щитке. В схеме подключения не должны присутствовать аппараты коммутации, к примеру, рубильники. Чтобы избежать негативных последствий при повреждении нулевого проводника каждые 200 метров цепи монтируются дополнительные узлы защиты. На них сопротивление не должно превосходить отметку в 30 Ом.
В чем разница между заземлением и занулением?
Заземление и зануление имеют идентичную функцию – защита человека и животного от воздействия электрического тока. Но между двумя понятиями есть существенные различия:
-
При заземлении ток отводится в почву. Напряжение в сети уменьшается, но не до нуля. Минимальный ток в системе все же остается. Зануление же позволяет экстренно отключить подачу питания на прибор.
-
Заземление не связано с фазами электроприборов. При организации зануления строго соблюдаются правила подключения.
-
Отличие зануления и заземления и в сфере их применения. Первое подходит для эксплуатации в глухозаземленных нейтралях. Заземление же применяется в цепях, имеющих изолированную нейтраль. Подобную систему монтируют для оборудования, напряжение которого превосходит 1000 В.
-
Зануление подходит для промышленности, а в жилых домах его устанавливают крайне редко. Заземление же лучший способ обезопасить жителей квартир.
Зазамеление и зануление одинаково хорошо защищают технику от повреждений. А вот с точки зрения безопасности для человека первый вариант считается более эффективным.
Дополнительным различием становится возможность самостоятельного монтажа. Соблюдая все технические требования и нормы безопасности, заземление можно выполнить своими руками. Для этого достаточно иметь сварочный аппарат, металлические прутки и достаточный уровень знаний. Зануление же сможет выполнить только высококвалифицированный электрик.
Заземление отличается от зануления и методикой подключения. Это наглядно видно по схемам.
Технические требования
Расположение элементов защитного заземления и зануления определяются еще на стадии разработки схемы электропроводки. При этом к системам предъявляется ряд требований:
-
При использовании трансформатора, напряжение которого составляет 380 В, возможно подключение только одного потребителя электричества.
-
При мощности оборудования менее 1000 Вт и наличии глухозаземленного нулевого проводника монтаж зануления обязателен.
-
Оборудование с мощностью свыше 1000 Вт должно быть оснащено заземлением нулевого кабеля для предотвращения травм рабочих при пробое изоляции проводов.
-
Для аппаратуры, эксплуатирующейся на улице, монтаж заземления и зануления обязателен.
-
В 3х-фазной цепи требуется дополнительная защита от пробоя тока. Ее устанавливают в нулевом проводнике.
Монтаж защитных конструкций требуется для любой техники, напряжение постоянного тока которой свыше 380 Вт, а переменного 440 Вт. Только так эксплуатация аппаратуры окажется безопасной.
Одновременное создание зануления и заземления необходимо для любой техники мощностью выше 1300 Вт. Подобной защитой оснащаются ванны и поддоны душевых кабин, подвесные потолки.
Что делать, если в доме нет заземления?
Если здание слишком старое или электропроводка в нем спроектирована неверно, то заземление может полностью отсутствовать. Эксплуатация в таких домах аппаратов с высокой мощностью, например, бойлеров, стиральных машин, холодильников и прочих, небезопасна. Единственный выход из такой ситуации – самостоятельно создать защиту.
В частном доме это сделать несложно, достаточно вывести на улицу шину и подсоединить к ней конструкцию из трех штырей, вкопанных в землю. В многоэтажном строении работы окажутся гораздо сложнее. Можно установить распаечные коробки на каждом этаже и к ним уже подводить заземление. Контур нельзя устанавливать на дорожном покрытии, его лучше отвести в клумбу. Представитель каждой квартиры сможет впоследствии подключиться к общей шине и провести заземление в свое жилье.
Частые ошибки
Неопытные мастера в попытке все работы провести самостоятельно часто совершают грубые ошибки. Очевидным становится тот факт, что заземлителем не может служить рабочий ноль. Есть те, кто пытается обеспечить отвод напряжения посредствам труб отопления или системы водоподведения. Делать это целесообразно только, если система полностью сделана из металла и гарантировано контактирует с землей.
На практике в многоэтажных зданиях часто встречаются участки со вставками из полипропилена. Да и трубопровод может и вовсе не соприкасаться с почвой. В результате подключения к такой системе соседи получат сильнейший удар током.
Видео о заземлении и занулении
Лучше разобраться, в чем разница между заземлением и занулением, понять схемы их подключения и особенности поможет небольшой видеоролик.
Создание правильной системы заземления – гарантия безопасности использования всех электроприборов. Лучше доверить эту работу профессионалам. Ценой недостатка знаний и навыков в этой области может стать человеческая жизнь.
Заземление и зануление — в чем разница
Каждого человека интересует вопрос безопасности в его собственном доме. Особенно когда речь касается обычных электроприборов. Маленькой поломки или небольшого замыкания достаточно, чтобы они превратились в смертельно опасные предметы.
Особую опасность в доме представляют такие приборы, как бойлер и стиральная машина. Дело в том, что они постоянно контактируют с водой. А она, как известно, лучше всего передаёт электрический ток. При наихудшем развитии ситуации вам даже не нужно будет касаться корпуса, достаточно ступить в лужу воды.
Последствия от удара тока более чем серьёзные вплоть до остановки сердца. Именно поэтому нужно сделать всё возможное, чтобы каждый бытовой прибор в доме был безопасным. Сейчас есть два основных метода защиты: зануление и заземление. Чем они отличаются друг от друга, и в каких случаях стоит применять первый метод, а в каких второй, разберёмся ниже.
Средства защиты
В некоторых случаях пробки и другие защитные устройства не срабатывают при возникшей неисправности. Результатом подобного становится нарушение изоляции. В результате металлические элементы корпуса становятся отличными проводниками, неся огромную опасность.
К счастью, есть зануление и заземление. И та и другая методики позволяют защитить организм человека от поражения электричеством. Тем не менее техническая реализация данных методов защиты электрических приборов серьёзно отличается.
Некоторые части электрических приборов согласно особенностям установки находятся под напряжением. В таком случае производители используют специальные кожухи. Возможны и другие меры защиты, такие как барьеры и сетчатые заграждения. Тем не менее без заземления и зануления обойтись не получится. Они представляют собой крайнюю границу защиты, и чтобы понять, где что нужно применять, необходимо знать, чем они отличаются.
Заземление
Чтобы понять, чем отличается заземление от зануления, начнём с первого. Данная система защиты от поражения электричеством устанавливает цепь между прибором и землёй. Результат действия подобной схемы более чем действенный — напряжение с металлических элементов уходит в землю при случайном прорыве изоляции. Вы можете совершенно спокойно прикасаться к технике, не боясь себе навредить.
Важно! Главное, чем отличается заземление, от весьма похожего на слух зануления — это работа в сетях, где изолирована нейтраль.
После того как вы сделаете заземление. Ток будет уходить по проводнику в землю, не создавая какой-либо опасности для человека. Этим, собственно, и отличается данный метод защиты от зануления.
Заземляющая часть должна иметь минимальный показатель сопротивления. Это необходимо для того, чтобы ток без каких-либо препятствий входил в землю. Это ещё один важный фактор, которым отличается заземление.
Заземление также отличается от зануления тем, что значительно увеличивает аварийный ток, который подаётся при возникновении замыкания. Показатель сопротивления имеет потому малое значение, что в противном случае в аварийной ситуации напряжение будет слишком мало для активации защитного контура. Поэтому устройство может остаться под напряжением.
В заземлении есть два основных элемента — это заземлитель и проводник. Именно они вместе образуют новое устройство. Данный агрегат соединяет бытовые приборы с землёй, делая их безопасными для использования. Принцип работы зануления существенно отличается. Поэтому схема с занулением используется в новых сетях.
В процессе развития средств защиты от спонтанных ударов электричеством заземление поделились на два вида: для отвода импульсного тока и для защиты от грозы. Уникальная конструкция позволяет добиться двух целей в зависимости от изменения некоторых элементов конструкции.
В первом случае проводники поддерживают нормальную работу бытовых приборов даже в аварийных ситуациях. Во втором предотвращают возможное нанесение урона живым организмам. Подобная ситуация возникает в тех случаях, когда нарушается изоляция фазного провода. Так как он выходит на металлический корпус последствия более чем серьёзные.
Мало кто знает, но заземление также может быть и природным, проще говоря, естественным. Металлические конструкции и трубопроводы при выполнении определённых условий могут служить отличным заземлением.
Важно! В качестве естественного заземления запрещается использовать трубы, по которым транспортируется газ или другие горючие вещества.
Классификация
Как было сказано выше, в процессе постоянного развития технологий, учёными было выделено множество уникальных схем заземления. В результате существуют такие подгруппы:
В них используются разные схемы соединения, мало того, количество проводников значительно отличается. Сама аббревиатура может много рассказать об устройстве. Первая буква говорит об источнике питания.
- T — нейтраль, ведущая к земле.
- I — полностью изолированные проводники.
Вторая буква указывает на метод заземления токопроводящих частей.
- N — прямая связь с точкой.
- T — связь с землёй.
В двух приведённых выше схемах вы можете увидеть ещё несколько букв, стоящих через чёрточку. Буква C указывает на наличие всего одного проводника. S — о диаметрально противоположном.
Зануление
Теперь рассмотрим, что такое зануление, и чем оно отличается от обычного заземления. Если говорить о чисто конструкционной составляющей, то данная система защиты от удара электрического тока представляет собой комбинацию металлических частей.
Каждый из элементов конструкции имеет нулевое напряжение. Возможен вариант и с использованием нейтрали. Но она должна иметь трёхфазный источник. Второй вариант включает в себя заземлённый вывод генератора. Причём последний должен иметь одну фазу.
Зануление работает следующим образом. Как только нарушается изоляция, происходит короткое замыкание. В результате срабатывает автоматический выключатель. Конечно, здесь многое зависит от самой системы. К примеру, в некоторых просто перегорают предохранители. В любом случае эффект — это безопасность людей, прикасающихся к устройствам.
Обычно зануление применяется в оборудование, в котором нейтраль наглухо заземлена. В принципе, этим данная система отличается от заземления. Особенность схемы зануления заключается в том, что при подключении УЗО происходит срабатывание всей системы. Подобный казус образуется из-за разности сил тока.
Ещё зануление от заземления отличается тем, что при установке УЗО и автоматического выключателя в нестандартной ситуации могут сработать два этих элемента. Также возможно задействование третьего устройства, обладающего более высоким быстродействием.
Особенности зануления
Зануление отличается тем от заземления, что при коротком замыкании ток должен обязательно достичь показателя, при котором предохранитель расплавится. Конечно, есть ещё альтернатива в виде выключателя.
Важно! Если выключатель не сработает или предохранители не расплавятся, под электрическим напряжением окажутся все корпуса устройства, подключенные к защитной схеме.
Чтобы подобного не произошло вам всегда нужно следить за нулевым проводом. От его состояния зависит безопасность всей системы. Чтобы не допустить ток на все объекты зануления необходимо воздержаться от прерывания нулевого провода какими-либо выключателями или предохранителями. Кстати, подобное требование ничем не отличается и для заземления.
Ключевые различия
Мы рассмотрели основные характеристики заземления и зануления, теперь давайте просуммируем, чем они отличаются друг от друга:
- Заземление отличается большей эффективностью.
- Заземление отличается тем, что обеспечивает безопасность за счёт снижения мощности тока.
- Зануление отличается тем, что защита электроприборов осуществляется благодаря отключению повреждённого участка.
- Зануление отличается сложностью в установке. Установить заземление под силу каждому.
Как видите, отличия между занулением и заземлениям довольно весомые.
Итоги
Зануление и заземление — это две принципиально разные системы защиты от удара электрическим током. Отдельно нужно отметить, что первую систему используют в домах с новой проводкой, а вторую в старых постройках.
Если же говорить о преимуществах, то заземление считается куда более надёжным способом защиты. Но установка именно такой схемы возможна далеко не во всех электрических сетях.
Статическое электричество | Ганноверская страховая группа
Разряд статического электричества (например, электростатический разряд) может вызвать возгорание и взрывы, часто приводящие к большим потерям. На этой странице кратко описаны свойства статического электричества и меры противопожарной защиты, связанные с электростатическим разрядом.
Введение
Статическое электричество непреднамеренно генерируется во время многих промышленных операций. Такие операции могут включать перенос жидкостей между контейнерами; смешивание и смешивание жидкостей; или дробление, измельчение или просеивание порошков.Хотя возникновение статического заряда вызывает беспокойство, повреждение вызывает электростатический разряд (ESD). ESD — это быстрое высвобождение или перенос электронов от одного объекта к другому, что приводит к нейтрализации заряда на обоих материалах.
Для возникновения электростатического разряда требуются три условия: должен быть процесс, который генерирует статический заряд, заряд должен накапливаться, и накопление заряда должно быть достаточно большим, чтобы вызвать электрический пробой окружающей атмосферы.Тип разряда и количество выделяемой энергии будут зависеть от физических и химических свойств системы.
ESD могут вызвать пожары и взрывы. Чтобы это произошло, разряд должен происходить в воспламеняющейся или взрывоопасной атмосфере, и разряд должен быть достаточно сильным, чтобы воспламенить атмосферу. Если смесь находится за пределами диапазона воспламенения или статический разряд не обладает достаточной энергией, воспламенения не произойдет. Контроль любого из условий, необходимых для электростатического разряда, может снизить опасность статического электричества.Одним из распространенных методов, используемых для контроля опасности статического электричества, является использование соединения и заземления, например, при перекачке легковоспламеняющихся жидкостей. Связывание и заземление уменьшают количество генерации / накопления заряда и нейтрализуют заряд.
Этот отчет представляет собой введение в статическое электричество и контроль электростатического разряда. В нем описаны различные проблемы пожара, которые могут быть вызваны статическим электричеством, а также кратко описаны физика, природа, возникновение и методы борьбы.
Статическое электричество
Ядро атома содержит протоны с положительным зарядом и нейтроны без заряда. Поле электронов с отрицательным зарядом вращается вокруг ядра. Основываясь на этой фундаментальной структуре атомов, поверхности всех материалов будут обладать электронами. Когда материалы с различной концентрацией слабо связанных поверхностных электронов приводят в контакт друг с другом, поверхностные электроны пытаются уравновесить, позволяя атому стать электрически нейтральным.Пока два материала находятся в контакте, поверхностные электроны свободно обмениваются. Эта «связь» наиболее распространена, когда материалы состоят из материалов с большим количеством свободных электронов на внешней оболочке атома.
Когда материалы разделены, перенос электронов прекращается, и на поверхности обоих материалов может оставаться электрический заряд. Когда объект теряет электроны (например, становится положительно заряженным) или приобретает электроны (например, становится отрицательно заряженным), он развивает статический заряд.
Оставленный в статическом режиме, этот заряд может увеличиваться в размерах до тех пор, пока не перейдет в другой материал с противоположным зарядом. Типичный пример этого статического заряда — натирание хлопка (например, носков) по полиэстеру (например, ковру). Человек, соприкасающийся (то есть связанный) с хлопком, разовьет заряд. Когда этот человек касается другого предмета (например, дверной ручки) с меньшим зарядом, заряд переносится (то есть нейтрализуется). Если заряд имеет высокий потенциал, заряд может перекрыть воздушное пространство для рассеивания, что называется электростатическим разрядом.
Генерация статического заряда
Различные материалы и процессы могут приводить к образованию статического заряда, включая движение жидкостей по трубам и шлангам, распыление жидкостей и перемещение мелкодисперсных твердых частиц. Генерация статического заряда происходит в точке контакта материалов, которую часто называют относительной границей раздела. Генерация заряда обычно происходит, когда контакт включает движение, например, жидкость по шлангу. Это относительное движение позволяет увеличивать потенциал статического заряда.
Статический заряд часто возникает, когда материалы, которые обычно являются изоляторами, например бумага, контактируют с неизолирующими материалами, такими как сталь. Этот тип генерации заряда часто называют трибоэлектрическим или трением. Движение бумаги по ролику из нержавеющей стали позволяет передать бумагу свободные выборы на поверхности ролика. Это вызывает появление на бумаге отрицательного заряда, который может сохраняться в течение длительного времени (например, нескольких часов). Доказательства этого типа зарядки можно ясно продемонстрировать, потерев полиэтиленовый лист (т.е.е., сэндвич-пленка) поверх куска нержавеющей стали. Статический заряд на полиэтилене позволит ему прикрепляться к материалам с более низким потенциалом, таким как стены, что приводит к «статическому сцеплению».
Общие промышленные условия, при которых может возникать статическое электричество, включают:
- Поток жидкости по трубам и фильтрам.
- Заливка жидкости между двумя отдельными емкостями.
- Распыление проводящих жидкостей.
- Трение поверхности изоляционного материала.
- Прохождение конвейеров по роликам.
- Дробление, измельчение и просеивание.
- Выгрузка порошка из пакетов.
Люди могут также накапливать статические заряды, ходя по изоляционным полам или коврам или снимая синтетическую одежду. Независимо от используемых материалов, процесс генерации заряда требует, чтобы разнородные поверхности контактировали друг с другом и передавали свободные электроны. В результате разделения один из материалов сохраняет заряд.
Электростатический разряд
Статические заряды со временем постепенно рассеиваются из-за естественного отталкивания одноименно заряженных атомов и молекул. Скорость рассеяния заряда будет зависеть от характеристик материала и наличия проводящего пути к материалу с другим электрическим состоянием. Если скорость образования заряда больше, чем скорость рассеивания заряда, или объект изолирован от проводящего пути, так что заряд не может выравниваться, статический заряд будет накапливаться на объекте.
Этот разряд энергии происходит, когда накопленный заряд достигает достаточно высокого потенциала, чтобы перекрыть воздушное пространство другому материалу. Существует несколько типов электростатических разрядов, включая искры, тлеющие короны, щеточные разряды и объемные поверхностные разряды. По сути, тип разряда зависит от используемых материалов и формы области, где возникает перемычка между поверхностями. Электростатический разряд является важным источником воспламенения легковоспламеняющихся жидкостей, газов и некоторых видов пыли.
Легковоспламеняющиеся жидкости
Статический заряд возникает, когда жидкости движутся в контакте с другими материалами (например, с жидкостью, протекающей по трубе). Статический заряд также возникает во время смешивания, заливки, перекачивания, фильтрации или перемешивания жидкостей. Эта накопленная энергия представляет собой потенциальный источник воспламенения. Когда накопленный заряд рассеивается, возникающая энергия может воспламенить воспламеняющуюся паровоздушную смесь. Эта опасность наиболее велика, когда жидкости переносятся между контейнерами, могут стоять в открытых контейнерах или наноситься на поверхности, поскольку могут образовываться как статический заряд, так и воспламеняющаяся топливно-воздушная смесь.
Горючие газы
Как и в случае с легковоспламеняющимися жидкостями, статический разряд может привести к воспламенению горючих газов. Процесс, с помощью которого это может происходить, в основном такой же, как и для жидкостей, за исключением того, что газы легче воспламеняются. Газы, не загрязненные твердыми или жидкими частицами, не генерируют значительного статического электричества. Однако статический заряд может возникнуть, если протекающий газ загрязнен пылью, оксидами металлов, частицами накипи, частицами жидкости или аэрозолями.
Пыль
Пыль, смещенная с поверхности, на которой она лежит, может генерировать значительный заряд. Общий развиваемый заряд зависит от химического состава материала, размера частиц и степени контакта с поверхностью. Генерация заряда возникает редко, если и пыль, и поверхность, на которой она лежит, являются проводниками. Однако это может произойти, если один материал является проводником, а другой — непроводником.
Когда горючая пыль взвешивается в воздухе и подвергается статическому разряду, может произойти взрыв.См. Дополнительную информацию по этой теме в разделе «Взрывы пыли».
Контроль электростатических разрядов
Для предотвращения воспламенения горючих смесей электростатическим разрядом можно использовать три основных метода. Они контролируют воспламеняющуюся смесь, контролируют накопление статического электричества и нейтрализуют заряд.
Контроль горючей смеси
Инерцирование горючих смесей, вентиляция помещения или перемещение оборудования, создающего статическое электричество, могут предотвратить возгорание горючих смесей, вызванное статическим электричеством.
Инертинг
Процесс инертизации легковоспламеняющейся смеси для предотвращения воспламенения достигается устранением или уменьшением содержания кислорода до точки, при которой смесь не может воспламениться. Наиболее эффективный метод инертизации смеси — введение в газовую смесь инертного газа, такого как азот, что приводит к дефициту кислорода в окружающей среде.
Вентиляция
Механическая вентиляция может использоваться аналогично инертизации. За счет использования механической вентиляции смесь можно разбавить до уровня ниже ее воспламеняемости, в результате чего смесь станет слишком бедной для возгорания.Этот процесс также можно использовать для удаления горючей пыли от источников возгорания.
Переезд
Перемещение оборудования, производящего статическое электричество, является очень эффективным решением для контроля за воспламеняющейся средой. Этот метод желателен, потому что он устраняет источник возгорания и не полагается на другие методы контроля, которые могут дать сбой.
Контроль статической генерации
Контроль генерации статического электричества основан на контроле того, как эти материалы объединяются и разделяются.Тип материала, скорость контакта и продолжительность контакта — все это играет ключевую роль в генерации заряда. Контроль статического электричества зависит от материалов, контактирующих друг с другом.
Антистатические покрытия, добавки и спреи — все это снижает способность материала генерировать статический заряд за счет снижения поверхностного сопротивления материала, что позволяет статическому заряду течь на землю. Снижение поверхностного сопротивления материала позволяет электронам быстро рассеиваться, предотвращая высвобождение большого накопленного отрицательного заряда.
Углеводородное топливо содержит следовые количества материалов, которые могут диссоциировать на ионы. Во время потока топлива разделение заряда происходит на границе раздела между топливом и любым несмешивающимся материалом, например стенкой трубы. Эта статическая зарядка углеводородного топлива во время перекачки уже давно признана потенциальной опасностью взрыва. Опасность может быть уменьшена путем введения ограничений по расходу топлива во время перекачки продукта. Эта уменьшенная скорость потока позволяет электронному заряду рассеиваться быстрее, чем он может накапливаться на поверхности контейнера, тем самым предотвращая накопление статического электричества.
Нейтрализация заряда
Нейтрализация заряда — это процесс, при котором накопленные статические заряды одного электрического потенциала становятся нейтральными. Путем устранения (например, нейтрализации) заряда исключается возможность неконтролируемого рассеивания заряда и связанного с этим воспламенения. Методы нейтрализации заряда включают увлажнение, заземление и склеивание, ионизацию и статические гребни.
Увлажнение
Увлажнение — это процесс увеличения относительной влажности в рабочей зоне для предотвращения накопления статических зарядов на непроводящих материалах.Увлажнение наиболее эффективно для борьбы с накоплением статического электричества там, где в технологических процессах используются изоляционные материалы, такие как бумага, дерево и текстиль. Поскольку эти материалы обычно являются изоляторами, они могут накапливать статические заряды в результате обработки и повседневного обращения. При увеличении относительной влажности поверхности материалов становятся влажными. Эта влага увеличивает поверхностную проводимость, позволяя статическому заряду свободно рассеиваться. Чтобы быть эффективным, уровень влажности должен быть повышен как минимум до 60 процентов или выше.Увлажнение неэффективно для контроля статического электричества на материалах с высоким содержанием углеводородов из-за неспособности углеводородов поглощать воду.
Заземление (заземление) и соединение
Заземление и перемычка являются одними из наиболее распространенных методов рассеивания заряда. «Соединение» — это метод соединения двух или более проводящих объектов вместе с помощью проводящих проводов или кабелей. «Заземление» или «Заземление» — это метод соединения двух или более проводящих объектов с землей и представляет собой особую форму соединения.Некоторые объекты по своей природе связаны с землей (например, подземные трубопроводы или подземные или надземные резервуары для хранения). Связывание сводит к минимуму потенциальные различия между проводящими объектами. Заземление устраняет или сводит к минимуму разность потенциалов между проводящими объектами и землей.
Жидкости с температурой воспламенения 100 ниже 100 ° F (37,8 ° C) нельзя переносить между контейнерами, если оба контейнера не соединены или не заземлены. Правильное соединение или заземление необходимо для предотвращения накопления статического электричества, возникающего при переносе жидкостей.Положения для подключения или заземления включают:
- Электрическое соединение (т. Е. Скрепление) контейнеров друг с другом перед перекачкой жидкости.
- Электрическое соединение обеих емкостей с заземлением перед перекачкой жидкости.
Дополнительное руководство по контролю статического электричества можно найти в NFPA 77, Рекомендуемая практика по статическому электричеству , опубликованном Национальной ассоциацией противопожарной защиты (NFPA). Приложение A к NFPA 77 содержит подробные чертежи различных методов соединения и заземления.Эти чертежи можно использовать в качестве руководства по типам методов заземления и соединения, которые могут применяться в различных процессах дозирования.
Склеивающие соединения могут выполняться с помощью зажимов под давлением, пайки или сварки. Зажимы аккумуляторного типа или магнитные зажимы могут использоваться для обеспечения контакта металла с металлом, в зависимости от типа используемых металлов.
Заземление также может быть выполнено с помощью «статической гребенки». Статическая расческа — это просто металлический стержень с рядом острых игл.Если заземленную статическую гребенку поднести близко к изолированному заряженному телу (или заряженной изолирующей поверхности), ионизация воздуха в точках обеспечит достаточную проводимость, чтобы заряд мог быстро рассеяться. Статические гребни обычно используются для рассеивания энергии в процессе, в котором используются изоляционные материалы, такие как бумага и текстиль. Гребень изготовлен из проводящего материала, такого как сталь или медь, который электрически соединен с землей (нейтралью). Поддерживая постоянный контакт с продуктом, поверхностные заряды, улавливаемые изолятором, рассеиваются через гребенку на землю, тем самым устраняя накопление статического электричества.Этот метод очень эффективен и используется как в производстве, так и в обычных устройствах, таких как компьютерный принтер.
Ионизация
Статический заряд проводящего объекта может свободно течь по поверхности объекта. На проводящем сферическом объекте заряд равномерно распределяется по поверхности. На проводящем несферическом объекте самоотталкивание заряда заставит его накапливаться на поверхности с наименьшим радиусом кривизны.
Если проводящее тело окружено воздухом (или другим газом) и на проводящем объекте есть острые иглы, заряд будет концентрироваться на них и производить ионизацию воздуха, делая его проводящим.Острый острие иглы позволяет проводнику достигать лишь небольшого напряжения, прежде чем скорость утечки или скорость рассеяния заряда сравняется со скоростью генерации заряда. Следовательно, на таком объекте не будет накапливаться статический заряд.
Сводка
Когда разнородные материалы соприкасаются друг с другом, могут возникать статические заряды. Эти заряды могут представлять собой незначительные неудобства или значительный источник энергии воспламенения в определенных условиях. Контроль образования, накопления и разряда статического электричества требует целенаправленного анализа задействованных процессов и реализации мер контроля.
Список литературы
- Eckhoff, R.K. Взрывы пыли в обрабатывающих производствах . 2-е изд. Оксфорд, Великобритания: Elsevier, 1997. .
- Международный совет кодов (ICC). Международный кодекс пожарной безопасности . Фоллс-Черч, Вирджиния: ICC, 2015. .
- Luttgens, G., and N. Wilson. Электростатическая опасность . 1-е изд. Оксфорд, Великобритания: Linacre House, 1997. .
- Национальная ассоциация противопожарной защиты (NFPA). Справочник по противопожарной защите . 20-е изд.Куинси, Массачусетс: NFPA, 2008. .
- Рекомендуемая практика по статическому электричеству . NFPA 77. Куинси, Массачусетс: NFPA, 2014.
¹ Точка воспламенения . Точка воспламенения — это минимальная температура, при которой из жидкости выделяется достаточно пара для образования горючей смеси с воздухом.
АВТОРСКИЕ ПРАВА © 2016, ISO Services, Inc.
Рекомендации, советы и содержание этого материала предназначены только для информационных целей и не предназначены для рассмотрения всех возможных юридических обязательств, опасностей, нарушений кодекса, потенциальных убытков или исключений из надлежащей практики.Ганноверская страховая компания и ее филиалы и дочерние компании («Ганновер») прямо отказываются от каких-либо гарантий или заявлений о том, что принятие любых рекомендаций или советов, содержащихся в данном документе, сделает любые помещения, имущество или работу безопасными или в соответствии с любым законом или постановлением. Ни при каких обстоятельствах этот материал или ваше согласие с любыми рекомендациями или советами, содержащимися в нем, не должны истолковываться как устанавливающие наличие или доступность какого-либо страхового покрытия с The Hanover.Предоставляя вам эту информацию, The Hanover не берет на себя (и конкретно отказывается от) каких-либо обязательств или ответственности перед вами. Решение о принятии или выполнении любых рекомендаций или советов, содержащихся в этом материале, должно приниматься вами.
LC ДЕК 2018 2015-152
171-1199 (18.04)
Эффекты, теория и контроль статического электричества
Эффекты статического электричества
Статическое электричество уже давно является проблемой для многих промышленных и коммерческих предприятий и представляет серьезную опасность, особенно во взрывоопасных средах и в областях, где присутствуют легковоспламеняющиеся растворители или материалы.
Не только внезапный разряд или искрение статического электричества ответственны за пожары и взрывы, но он также приводит к потерям в миллионы долларов для производителей из-за простоев оборудования и потери человеко-часов, а также потерь продукции, особенно в полупроводниках и электронная промышленность, где компоненты, чувствительные к статическому электричеству, деградируют или разрушаются под действием всего лишь нескольких вольт статического электричества. Для пользователей сложной электроники статическое электричество вызывает потерю памяти, ложные срабатывания и т. Д., в оборудование электронной памяти, такое как компьютеры, терминалы данных и текстовые процессоры.
Эффект статического электричества в производственных процессах становится все более серьезной проблемой в связи с широким использованием синтетических материалов и высокоскоростного оборудования. Некоторые пластмассы, например, при прохождении через машину могут создавать статические заряды в несколько тысяч вольт. Эти сильно заряженные материалы иногда притягиваются к роликам или направляющим станка, вызывая заедание и даже повреждение оборудования.Этот же сильно заряженный материал, если его перемотать на большой рулон, как в операции продольной резки и перемотки, может стать огромным конденсатором, способным накапливать статическое электричество мощностью более 50 000 вольт. Этот сильно заряженный «конденсатор» может вызвать у операторов неприятные удары током, даже ожоги или травмы из-за физической реакции на электрический ток. Этот «конденсатор» может вызвать дугу к ближайшему проводнику и вызвать сильную дугу длиной в несколько дюймов, которая в правильной ситуации может легко вызвать пожар или взрыв.
В критических областях, таких как упаковка пищевых продуктов и лекарств, производство полупроводников и биомедицинских продуктов, а также практически в любых процессах, требующих процедур в чистом помещении или просто чистого продукта, статический заряд становится проблемой. Любая деталь или материал, поддерживающий статический заряд, будет притягивать загрязнения, будь то частицы пыли микроскопических размеров или пыль и стружка от механической обработки.
Большинство проблем, связанных со статикой, какими бы простыми или сложными они ни казались, можно решить после того, как проблема будет решена, проанализирована, а соответствующие методы управления внедрены и соблюдены.
Теория
Чтобы иметь возможность анализировать статические проблемы и определять правильные решения или методы нейтрализации, важно понимать физические и электрические принципы, участвующие в генерации статического электричества.
Молекулярная теория строения материи утверждает, что каждая молекула тела состоит из положительных и отрицательных зарядов. Положительные заряды содержатся в ядре молекулы, в то время как отрицательные заряды или электроны могут свободно вращаться вокруг положительно заряженного ядра.В нейтральной или незаряженной молекуле сумма отрицательно заряженных электронов на орбите равна сумме положительных зарядов в ядре. Любая материя, состоящая из нейтральных молекул, также нейтральна.
При определенных условиях некоторым молекулам не хватает силы или притяжения между положительным ядром и отрицательно вращающимися электронами, чтобы удерживать все электроны на орбите. В этом случае наиболее удаленные электроны на орбите, которые называются валентными электронами, имеют тенденцию притягиваться к соседней молекуле с большей силой притяжения, оставляя в ядре избыток положительных зарядов.Таким образом, молекула заряжается положительно. И наоборот, некоторые молекулы имеют тенденцию улавливать дополнительные электроны, вызывая дисбаланс и приводя к образованию отрицательно заряженной молекулы. Любое вещество с избытком отрицательных молекул становится отрицательно заряженным, и наоборот, вещество с избытком положительных молекул становится положительно заряженным.
Предметы или материалы могут заряжаться в результате трения или, проще говоря, просто контакта и разделения двух материалов. Когда два объекта или материала находятся в тесном контакте, валентные электроны, ближайшие к поверхности материала, свободно перемещаются от молекулы к молекуле, от материала к материалу, пока не присоединятся к более сильным ядрам.При разделении материалов один из материалов теряет электроны и становится положительно заряженным. Другой получает электроны и становится отрицательно заряженным. По мере того как давление или скорость контакта и разделения или трения между двумя материалами увеличивается, напряжение статического заряда увеличивается.
Другой способ, с помощью которого объект или материал может заряжаться, — это индукция. Сильно заряженный объект создает статическое поле вокруг объекта. Если изолированный или незаземленный проводящий объект попадет в это статическое поле, он тоже станет заряженным, но с противоположной полярностью.Это создает основу для возможного электростатического разряда на каком-либо другом проводящем объекте, что может привести к возникновению дуги, достаточной для воспламенения горючих веществ или разрушения чувствительных электронных компонентов. Если затем удалить проводящий объект с индуцированным зарядом из поля, он вернется в исходное состояние.
Изоляторы и проводники:
При работе со статическим электричеством необходимо учитывать типы материалов. Материалы делятся на две основные классификации: проводники и изоляторы.Внутри проводника электроны свободно перемещаются по всему телу. Следовательно, когда незаземленный проводник становится заряженным, весь объем проводящего тела принимает заряд с одинаковым потенциалом и полярностью. Заряженный проводник можно нейтрализовать, просто подключив его к земле, поскольку земля фактически является бесконечным источником и вместилищем электронов. Если проводник заряжен положительно и соединен с землей, необходимое количество электронов будет течь от земли к проводнику, пока проводник не станет нейтральным.И наоборот, если проводник заряжен отрицательно, а затем подключен к земле, избыточные электроны будут течь на землю, пока проводник не станет нейтральным.
Изолятор по-разному реагирует на статическое электричество и не может быть нейтрализован простыми методами заземления, как проводники. Внутри изолятора поток электронов очень ограничен. Из-за этого изолятор может сохранять несколько статических зарядов разного потенциала и полярности на различных участках своей поверхности.Подключение изолятора к земле не приведет к обмену или потоку электронов, как это происходит с проводниками, поэтому необходимо использовать другие средства для нейтрализации статического электричества на изоляторах.
Два основных метода нейтрализации статического электричества
Существует два основных метода нейтрализации статического электричества: метод проводимости и метод замены. Как упоминалось ранее, токопроводящий объект можно нейтрализовать, подключив его к заземлению. Пока проводник остается заземленным, статические заряды не развиваются.
Метод проводимости:
Изолятор, если он может быть проводящим, также может быть нейтрализован при заземлении. Изолятор можно сделать до некоторой степени проводящим одним из следующих способов: увлажнение, химические антистатические покрытия, внутренние антистатики и нагружение углем.
Некоторые гигроскопичные материалы обладают способностью впитывать влагу в условиях высокой влажности. В этом случае материал становится достаточно проводящим, чтобы снимать статические заряды.Для негигроскопичных материалов — уровень влажности, необходимый для эффективного рассеивания статического заряда; однако это было бы непрактично для большинства производственных приложений.
Антистатические химические покрытия наносятся на непроводящие объекты путем распыления, протирания или погружения и образуют проводящую поверхность, которая рассеивает статические заряды. Само по себе химическое вещество не делает поверхность проводящей, но фактически поглощает влагу из воздуха, которая собирается на поверхности и образует своего рода проводящий слой.
Внутренние антистатики — это химические вещества, которые примешиваются к пластику во время формования или экструзии. Эти антистатики продолжают мигрировать на поверхность и работают по тому же принципу, что и антистатические покрытия.
Углерод может быть добавлен к пластмассам перед формованием или экструзией для образования проводящих пластмасс, содержащих углерод. Этот процесс, а также использование внутренних антистатиков больше используется при производстве продукции для контроля статического электричества и не обязательно как средство устранения статических проблем, возникающих в процессе производства.
Метод замены — Ионизация:
Если недостающие электроны в положительно заряженном материале могут быть заменены или если отрицательно заряженный материал может поглощать положительные ионы, этот материал можно нейтрализовать. Этот процесс стал возможным благодаря ионизации, то есть расщеплению молекул воздуха на положительные и отрицательные заряды. Ионизирующее устройство испускает большое количество отрицательных и положительных ионов в непосредственной близости от статически заряженного объекта. Поскольку противоположные заряды притягиваются, заряженный объект принимает достаточное количество отрицательных или положительных ионов, в зависимости от того, что требуется для нейтрализации.Это ионизирующее устройство действует как бесконечный источник отрицательных и положительных ионов.
Методы ионизации
Существует три основных типа оборудования для производства ионизации: оборудование для нейтрализации статического электричества высокого напряжения, оборудование с ядерной энергией и нейтрализаторы индукционного типа.
Статический нейтрализатор с электрическим приводом состоит из одной или нескольких точек ионизации, на которые подается высокое напряжение в непосредственной близости от точки заземления.Поле высокого напряжения, возникающее между точкой ионизации и заземлением, ионизирует воздух. Когда заряженный материал проходит внутри этого поля, он становится нейтральным. Устройства нейтрализации статического электричества доступны во многих различных конфигурациях, включая взрывозащищенные конструкции для опасных зон. Термин «безударный» применительно к оборудованию с электрическим приводом означает, что точка ионизации емкостно связана с источником высокого напряжения, тем самым ограничивая ток в этой точке до очень низкого уровня.Прямой контакт с острием не вызовет ощущения удара, а поскольку энергия очень мала, искрение не вызовет воспламенения легковоспламеняющихся материалов. Безударные конструкции
обычно обеспечивают большую эффективность в определенных областях применения, связанных с чрезвычайно высокими зарядами или высокоскоростными материалами. В этом оборудовании источник высокого напряжения подключен непосредственно к точке ионизации. Непосредственный личный контакт с острием вызовет неприятное ощущение удара током, а достаточно энергии
может вызвать возгорание легковоспламеняющихся материалов.При выборе оборудования следует выбирать безударную или бесшумную конструкцию в зависимости от конкретного применения.
В нейтрализаторах статического электричества используются такие элементы, как полоний или радий, которые заключены в керамические шарики и прикреплены к нейтрализующим устройствам. Эти материалы бомбардируют окружающие молекулы воздуха высокоскоростными альфа-частицами, вызывающими ионизацию. Ядерное оборудование может использоваться во взрывоопасных зонах и не требует электрических подключений.Однако эти устройства можно сдавать только в аренду, и их необходимо заменять ежегодно.
Оборудование индукционного типа , даже несмотря на то, что оно не имеет внешнего питания, использует принцип ионизации высокого напряжения. Эти устройства обычно имеют конфигурацию с прямым стержнем с рядом точек ионизации, пучками или проводом, подключенными к заземленному металлическому стержню. Высокое напряжение, необходимое для ионизации, на самом деле представляет собой статический заряд высокого напряжения на самом материале. Когда материал проходит через индукционную полосу, поле высокого напряжения, связанное со статическим зарядом на материале, ищет точку заземления, которая представляет собой серию точек на стержне.Это ионизирует воздух в достаточной степени, чтобы помочь в нейтрализации, но не всегда может обеспечить достаточную нейтрализацию для решения проблемы. У индукционных стержней чем выше потенциал заряженного материала, тем выше ионизация.
Однако это работает и в обратном направлении. По мере уменьшения заряда материала эффективность ионизации снижается, пока не достигнет порогового уровня, при котором ионизация прекращается. После этого должны использоваться другие средства, такие как оборудование с электрическим или ядерным приводом.
Рекомендации по выбору оборудования
Для получения оптимальных результатов при выборе оборудования или материалов для нейтрализации статического электричества всегда консультируйтесь с обученным и квалифицированным специалистом по электростатике, имеющим опыт работы в промышленности.
Оборудование для нейтрализации статического электричества доступно во многих различных конфигурациях и выбирается в зависимости от условий и требований каждого приложения. Следует отметить, что всякий раз, когда речь идет о взрывоопасных зонах или легковоспламеняющихся материалах, следует использовать безударные, взрывозащищенные или ядерные устройства.Если в дополнение к нейтрализации статического электричества требуется очистка материалов или предметов, некоторые устройства также доступны с подачей воздуха, чистящими щетками или щетками и пылесосом.
Воздуходувки для ионизации воздуха , вероятно, являются одним из наиболее универсальных типов оборудования для нейтрализации статического электричества. Они доступны в портативных моделях для настольной работы или в моделях для постоянного монтажа. Эти устройства способны нейтрализовать материалы на расстоянии до 10 футов и особенно подходят для деталей и материалов нестандартной формы, а также для рулонных и листовых материалов.Ионизирующие нагнетатели состоят из корпуса, содержащего вентилятор, который продувает воздух либо через решетку, либо через стержни, нейтрализующие статическое электричество, либо ядерный материал. Любые предметы или материалы в воздушном потоке нейтрализуются. Для опасных зон доступны электрические и ядерные блоки X-Proof.
Статические стержни доступны во многих различных конструкциях для решения многих задач. Они доступны в безударном или безударном электрическом исполнении, взрывозащищенном, ядерном и индукционном.Некоторые из них также доступны с подачей воздуха для удаления загрязнений. Стержни обычно состоят из прямого ряда ионизирующих точек, содержащихся в металлическом кожухе, и наиболее подходят для нейтрализации листовых материалов, полотен и практически любого плоского материала, который может проходить в пределах одного-двух дюймов от стержня. Статические стержни также доступны в круглых версиях для таких применений, как формование и заполнение, экструзия или обработка волокон. Также доступны специальные высокоскоростные шины с двойной полярностью для сложных применений, связанных с высокоскоростными полотнами.
Пистолеты и сопла для ионизации воздуха имеют встроенные ионизирующие устройства и работают на сжатом воздухе, который обеспечивает концентрированный точечный источник воздуха. Сопла и ручные пистолеты предназначены для одновременной очистки и нейтрализации статических зарядов на деталях и материалах. Оба доступны с электрическим приводом (безударный и бесшоковый) или ядерным, а некоторые доступны со встроенными воздушными фильтрами и конструкцией, подходящей для использования в чистых помещениях.
Системы пылеулавливания для удаления статического электричества включают в себя статические стержни с электрическим приводом и чистящие щетки, установленные на вакуумном кожухе.Большой промышленный центробежный вакуумный агрегат со встроенной системой сбора обеспечивает вакуум. Обычно они изготавливаются по специальному заказу и предназначены в первую очередь для очистки и нейтрализации рулонных материалов.
Измерители статического заряда чрезвычайно полезны при анализе статических проблем и помогают найти подходящее место для установки оборудования для нейтрализации статического электричества. Можно контролировать эффективность нейтрализующего оборудования и проверять материалы, чтобы определить их заряжаемость и скорость разряда.Измерители доступны в более дешевых карманных моделях или в более сложных моделях для лабораторного использования. Измерители статического заряда необходимы там, где критически важен контроль статического заряда.
Проводящие браслеты — это самый важный элемент для отвода статического электричества от человеческого тела. Обычно они состоят из браслета из проводящего материала, соединенного с землей с помощью длинного многожильного провода с герметизированным резистором в один мегом на конце рядом с браслетом. При выборе токопроводящего браслета с многожильным заземляющим проводом, те, у которых резистор расположен ближе всего к браслету, обеспечивают максимальную защиту оператора от потенциальной опасности поражения электрическим током в случае случайного контакта изношенного заземляющего провода с a.c. линейное напряжение.
Проводящие и антистатические материалы — это либо углеродсодержащие пластмассы (обычно проводящие), либо пластмассы, содержащие внутренние антистатики (антистатические). Электропроводящие материалы доступны во многих конфигурациях, таких как наручные и ножные ремни, заземляющие ремни, токопроводящая пленка, пакеты, пена высокой и низкой плотности, токопроводящие напольные коврики и напольные покрытия, рабочие поверхности, сумки, ящики для хранения вещей, лотки и ящики для хранения. Электропроводящие материалы широко используются в электронной промышленности для предотвращения разрушения чувствительных к статическому электричеству компонентов.
Антистатическая одежда включает лабораторные халаты, халаты, перчатки, бахилы, кепки и т. Д., Помогающие контролировать статические заряды на теле и одежде. Одежда из синтетических материалов способна накапливать статические заряды в несколько тысяч вольт. Сильно заряженная одежда способна вызвать заряды на соседних проводниках, которые, в свою очередь, могут разрядиться и создать дугу, достаточную для воспламенения или разрушения чувствительного электронного компонента. Антистатическая одежда в первую очередь действует как «щит», предотвращающий возникновение статического электричества за счет индукции.
различных типов электрических розеток и принцип их работы
Включение лампы, включение микроволновой печи или включение телевизора — такие повседневные задачи, что вы даже не задумываетесь о том, что должно происходить в стенах вашего дома, чтобы эти предметы могли работай. Электричество — важная часть систем в вашем доме, и умение понимать, как оно работает, жизненно важно для выполнения простых вещей, таких как сброс автоматического выключателя или проверка розетки.
В этой статье вы узнаете, как работает обычная электрическая розетка, а также несколько различных типов розеток, которые могут быть у вас дома.
Как работает электрическая розетка
Чтобы электричество работало, необходимо создать цепь. Электрическая розетка — это источник электроэнергии, который вы используете для подключения многих своих приборов, и именно так вы создаете эту цепь в своем доме. Вот как работает электрическая розетка:
Во-первых, электричество в ваш дом подается от электростанции и линий электропередач.Эта энергия подается в ваш дом и распределяется с помощью автоматического выключателя.
Автоматический выключатель подключается к каждой вашей розетке с помощью проводов.
Выпускное отверстие имеет три отверстия. Первая или левая лунка называется «нейтральной». Вторая лунка, или правая, называется «горячей». Третья яма — это земляная яма. Горячее отверстие подключается к проводу, по которому подается электрический ток. Отверстие нейтрали подключается к проводу, по которому электрический ток возвращается в коробку выключателя.Когда вы подключаете лампу и включаете ее, горячая часть розетки пропускает электричество в лампу, включая лампочку. Цепь замыкается, когда ток возвращается в розетку через прорезь нейтрали и обратно в автоматический выключатель. Когда вы вынимаете лампу из розетки, цепь разрывается, и лампа не работает.
Автоматический выключатель — это один из уровней защиты в доме. Он называется автоматическим выключателем, потому что он «отключит» или «разорвет» цепь (остановит прохождение электрического тока), если электрический ток будет слишком высоким.Еще один уровень безопасности для электрической системы вашего дома — наличие заземленного провода и заземленных розеток.
В чем разница между двухконтактной и трехконтактной / заземленной розеткой?
Если вы живете в старом доме, у вас могут быть розетки без третьей или «заземленной» дыры. Эти розетки не имеют заземляющего провода в электрической системе. Поскольку наличие заземляющего провода и заземленных (трехконтактных) розеток добавляет дополнительный уровень безопасности, новые дома и здания должны иметь трехконтактные розетки с заземляющими проводами.Провод заземления подключается отдельно к каждой розетке, а затем подключается к нижней части коробки выключателя. Этот заземляющий провод нейтрализует любой опасный электрический ток в земле.
Линия заземления используется для защиты ваших приборов от скачков напряжения или перенапряжения. Он также стабилизирует напряжение и защищает людей, имущество и оборудование от поражения электрическим током.
Например, что-то случилось с горячим проводом в вилке. Когда вы что-то подключили к двухконтактной розетке, вы, скорее всего, испытаете шок.Устройство, которое вы пытались подключить к сети, также могло получить большой электрический ток, потенциально разрушив его.
Если то же самое произойдет с трехконтактной розеткой, и вы подключите что-то (с тремя контактами) к розетке, заземляющий провод поглотит удар и уведет ток в землю, где его можно будет безопасно нейтрализовать. Конечно, вилка все равно не будет работать, но она также не испортит вашу бытовую технику… или вас.
Если у вас есть двухконтактная розетка и трехконтактные приборы (как многие люди), что вы будете делать? Что ж, вы можете использовать так называемую «читерскую» вилку.Вилка подключается к двухконтактной розетке, но имеет три контакта. Однако это не защитит вашу электрическую розетку, стены, изоляцию или ваши приборы от поражения электрическим током. Вам понадобится заземляющий провод в вашей электрической системе, чтобы вы были в безопасности.
Если у вас есть дом, в котором нет заземленных вилок или заземленного провода, вы можете поговорить с квалифицированным электриком, чтобы подключить заземленный провод к электрической системе вашего дома.
Что такое розетка GFCI?
Другой тип вилки, которая может быть у вас дома, — это розетка GFCI или розетка прерывателя цепи замыкания на землю.Этот тип розетки обычно находится в любом месте вашего дома, где розетка (или вещи, подключенные к розетке) потенциально могут контактировать с водой. Он защищает вас от поражения электрическим током и является отличным средством безопасности для кухни или ванной комнаты.
Розетка GFCI — это чрезвычайно чувствительная розетка, которая контролирует ток, проходящий через нее. Если есть небольшое изменение в токе, возвращающемся от оборудования, подключенного к розетке, GFCI автоматически отключит цепь, чтобы электрический ток больше не протекал.
Например, если вы используете радио или фен, и он упадет в ванну или раковину, полную воды, электричество пропустит нейтральный провод и уйдет в воду … а затем в вас, давая вам потенциально жизнь — окончание шока. С розеткой GFCI розетка автоматически отключает электрический ток в тот момент, когда электрический ток не возвращается через нейтральный провод, что спасает вашу жизнь.
Розетки GFCI также легко проверяются, чтобы убедиться, что они работают должным образом.У них есть кнопки «тестирования» и «сброса», которые могут отключать розетку, чтобы гарантировать, что, если розетка действительно покажет отклонение тока, она отключит питание.
РозеткиGFCI следует устанавливать в любом месте, где есть вероятность попадания воды на розетку или то, что вставлено в розетку. Это означает, что такие места, как ваша кухня, ванная комната, водонагреватель, печь и за пределами вашего дома, должны иметь выходы GFCI. Если в вашем доме нет розеток GFCI в этих местах, попросите электрика заменить их или сделайте это самостоятельно.
Landmark Home Warranty защищает электрическую систему в вашем доме даже с нашими самыми простыми планами, потому что мы знаем, насколько электричество является неотъемлемой частью жизни нашего домовладельца. Если у вас есть неработающие торговые точки, позвоните нам и создайте претензию. Мы ремонтируем или заменяем все вышедшие из строя розетки за небольшую плату за обращение в сервисную службу! Вы можете отремонтировать или заменить вышедшие из строя электрические розетки квалифицированным электриком, позвонив нам.
Если вы заинтересованы в том, чтобы ваша электрическая система (или ряд других домашних систем и приборов) была защищена гарантией для дома, ознакомьтесь с нашими планами и ценами и получите бесплатное индивидуальное предложение по гарантии для вашего дома здесь, сегодня !
Консультации — Инженер по подбору | Заземление и соединение в коммерческих зданиях
Сэм Р.Александр, PE, LEED AP BD + C, exp, Maitland, Fla. 15 августа 2012 г.
Существуют различные преимущества для заземления и соединения систем передачи и распределения переменного тока. Основание для выбора того или иного типа системы заземления зависит от ее способности обеспечивать безопасность персонала и защиту оборудования. В первую очередь, электроэнергетика занимается снижением опасности поражения электрическим током и вспышкой для персонала, работающего с электрическими системами, ограничением повреждений компонентов электрической системы из-за переходных перенапряжений и сведением к минимуму прерывания коммерческих или промышленных процессов, которые поддерживает электрическая система.
Основываясь на этих критериях, преобладающая философия проектирования заземления заключается в предоставлении заземленной системы вместо незаземленной для достижения этих целей. Тем не менее, понимание основных принципов работы каждого типа системы необходимо для согласования соответствующей топологии заземления с характеристиками электрической системы. Коммерческие здания, большая часть оборудования которых работает при напряжении 600 В и ниже, похоже, стандартизированы на основе надежного заземления и заземления. Правильное применение этого подхода осуществляется через призму Национального электротехнического кодекса.
Причины для заземленных и незаземленных систем
Согласно NEC, существует две основные цели заземления электрической системы переменного тока: первая — стабилизировать напряжение системы относительно земли в нормальных условиях эксплуатации, обеспечивая систему отсчета земли для системы; другой — поддержание в допустимых пределах избыточных напряжений в системе из-за молний, скачков напряжения в сети и случайного контакта с более высокими напряжениями. Эти две причины позволяют инженеру-проектировщику достичь двух основных целей — защиты оборудования и безопасности персонала для электрической системы.Третья цель заземления — позволить процессам, поддерживаемым электрической системой, продолжаться при наличии неисправного состояния. Обычно это достигается либо с помощью незаземленной системы, либо путем применения специальной формы заземления (заземления с высоким сопротивлением).
Энергетические системы в 1950-х годах, как правило, были незаземленными, трехфазными, трехпроводными, с дельта-трансформатором и дельта-генератором. Основное преимущество этой конфигурации заземления заключается в том, что она позволяет одному замыканию фазы на землю с болтовым соединением работать бесконечно без повреждений в месте повреждения и без срабатывания устройства защиты от сверхтоков.Это обеспечивает непрерывность работы, пока находится неисправный проводник, хотя и с риском поражения электрическим током для персонала. Тем не менее, большинство замыканий на землю имеют не болтовое соединение, а дуговое искрение низкого уровня (повторное зажигание). Эти повторные замыкания на землю из-за их относительно низких токов короткого замыкания могут оставаться незамеченными оборудованием для контроля замыканий на землю. Опасность здесь заключается в том, что повторные замыкания на землю вызывают возрастающие переходные перенапряжения на изоляцию проводящей системы. Если не контролировать, напряжение на изоляцию системы может привести к двойному замыканию линии на землю, что приведет к нежелательному срабатыванию устройств защиты от сверхтоков.Еще худший сценарий — это последствия опасности разрушительной дуги. По этой причине сейчас меньше шансов построить незаземленные системы, и они с большей вероятностью будут модернизированы с помощью системы с заземленным сопротивлением какого-либо типа.
В электрической системе есть различные точки, доступные для заземления, например, средняя точка однофазного трансформатора, угол обмоток треугольником или центр обмоток звезды. Точки, которые считаются нейтральной точкой системы, чаще всего используются для заземления.Нейтральная точка влияет и, в свою очередь, одинаково влияет на три другие фазы в сбалансированной трехфазной системе. По своей природе эта точка представляет собой лучшую возможность реализовать две основные цели заземления электроэнергетической системы. Описанные ниже методы заземления включают подключение к нейтральной точке звездообразной системы (генератора или трансформатора). Как правило, там, где отсутствуют нейтральные точки для заземления на обмотках генератора или трансформатора, как при соединении треугольником, используются заземляющие трансформаторы, такие как трансформаторы зигзагообразной или треугольной формы.Эти заземляющие трансформаторы эффективно создают нейтральное соединение, которое затем можно заземлить.
Виды заземления
Заземление с высоким сопротивлением (HRG) , с его применением в диапазоне напряжений от 480 В до 13,8 кВ, обеспечивает средства для ограничения проблем с переходными перенапряжениями, связанными с незаземленными системами, при этом обеспечивая преимущества непрерывности обслуживания. Идеальный диапазон напряжения — 5 кВ и меньше. Как правило, увеличение тока замыкания на землю улучшает контроль перенапряжения, но повышает вероятность повреждения при коротком замыкании.И наоборот, уменьшение тока замыкания на землю увеличивает перенапряжение, но снижает повреждение в месте повреждения. Правильное применение HRG в диапазоне среднего напряжения (MV) от 2,4 до 13,8 кВ потребует максимального предела для одиночного тока замыкания на землю в точке замыкания на землю до значения ниже 7 ампер. Кроме того, собственный емкостный зарядный ток между фазой и землей должен быть меньше или равен току через заземляющий резистор. Математически ток замыкания на землю представляет собой векторную сумму тока заземляющего резистора и тока емкостной зарядки.Емкостной зарядный ток — это функция электрической системы, которую необходимо предварительно оценить. При соблюдении этих величин и условий можно рассчитать диапазон токов замыкания на землю HRG.
Схемы низкоомного заземления (LRG) предназначены для ограничения токов замыкания на землю в диапазоне от 100 до 400 ампер в системах с диапазонами напряжения от 480 В до 15 кВ. При таком увеличении величины тока замыкания на землю цель LRG состоит в том, чтобы исключить переходные процессы перенапряжения за счет увеличения повреждений в точках замыкания и замыканий на землю.Однако, чтобы свести к минимуму эти повреждения, система защитных устройств формируется как часть схемы LRG. В идеале неисправность изолирована, а остальная электрическая система продолжает работать. При более высокой величине токов замыкания на землю емкостной зарядный ток относительно земли очень мало влияет на выбор резистора заземления. В этом случае это сопротивление представляет собой просто напряжение между фазой и нейтралью на заземляющем резисторе, деленное на ток замыкания на землю.
Реактивное заземление (RG) — еще одна альтернатива, используемая в системах среднего напряжения в диапазоне 2.От 4 до 15кВ. В этой схеме заземления индуктор используется для ограничения протекания токов замыкания на землю. Было показано, что системы с реактивным заземлением создают переходные перенапряжения при гораздо более высоких токах замыкания на землю, чем системы с резистивным заземлением. Чтобы ограничить переходные перенапряжения до приемлемых пределов, результирующий ток замыкания на землю может составлять до 60% от трехфазного замыкания с болтовым соединением. Поскольку это намного превышает предел в 400 ампер для LRG в том же диапазоне напряжений, реактивное сопротивление не так широко используется в электротехнической промышленности, за исключением заземления с настроенным реактивным сопротивлением.
Нейтрализатор замыкания на землю (GFN) — это еще одна форма заземления реактивного сопротивления, известная как заземление с настроенным реактивным сопротивлением. Как следует из названия, индуктивное реактивное сопротивление настраивается на естественный емкостной зарядный ток незаземленной фазы относительно земли. Этот эффект настройки за счет индуктивного реактивного сопротивления по существу нейтрализует (нейтрализует) вклад тока от емкостного зарядного тока. Это оставляет небольшую часть тока замыкания на землю, которая по своей природе является резистивной. Этот резистивный ток нейтрали относительно земли находится в фазе с напряжением нейтрали относительно земли.Преимущество этого согласования фаз состоит в том, что дуговое замыкание на землю с меньшей вероятностью будет поддерживаться напряжением, когда переменный ток и напряжение одновременно достигают нулевого значения. Приложение GFN похоже на приложение HRG в том, что замыкание на землю может сохраняться, так что электрическое обслуживание продолжается. Обнаружение неисправности обеспечивается скоординированным набором реле защиты от замыканий на землю. Недостаток GFN аналогичен RG в том, что реактивное заземление в целом имеет тенденцию к увеличению переходных перенапряжений.Кроме того, цепь заземления должна быть перенастроена после того, как в электрической системе будет выполнено какое-либо переключение.
Сплошное заземление (SG) обычно было решением более 60 лет назад, когда инженеры искали альтернативу для решения проблемы переходных перенапряжений из-за дугового замыкания на землю в незаземленных системах. Несмотря на то, что его применение не было столь успешным в диапазоне от 2,4 до 13,8 кВ из-за высокой энергии в точке повреждения, SG даже сегодня постоянно применяется при напряжениях ниже 600 В.Система с глухозаземленной нейтралью будет производить максимальный ток повреждения для данного состояния повреждения. Таким образом, он предоставляет наилучшие возможности для раннего обнаружения опасности возникновения дугового разряда в электрических системах. Координация устройства максимального тока, которое является важной частью системы SG, гарантирует, что только неисправная цепь будет изолирована, в то время как остальная часть системы продолжает функционировать.
Граница (зона заземления) электрической системы
Эффекты замыкания на землю различных схем заземления, описанных выше, ограничены определенными областями электрических систем, известными как зоны заземления или системы заземления.Границы этих систем заземления образуются разграничениями, такими как первичные обмотки треугольником трансформаторов или точка постоянного тока инверторов и преобразователей переменного / постоянного тока. Эти системы, которые связаны друг с другом магнитным полем или электрически изолированы, за исключением некоторой формы соединения оборудования, считаются отдельными системами.
На рисунке 1 трехфазная система на 480 В включает в себя первичные обмотки треугольником систем 2 и 4, двигатель с незаземленной звездой, глухо заземленный трансформатор звездой-звездой, генератор источника с незаземленной обмоткой треугольником и заземленную вторичную обмотку звездой. трансформатор источника.Система 2 имеет незаземленную вторичную обмотку трансформатора треугольником и незаземленную первичную обмотку однофазного трансформатора. Система 3 имеет незаземленную вторичную обмотку однофазного трансформатора, а Система 4 — заземленную вторичную обмотку трансформатора звездой.
Когда отдельные системы разрабатывают свои собственные соединения и заземления, они называются отдельно производными системами (SDS). Источники питания, такие как трансформаторы и генераторы, обычно конфигурируются как SDS. Однако, когда они электрически подключены к другой системе, они становятся частью этой системы и классифицируются как не относящиеся к SDS.Трансформатор T1 и генератор G в системе заземления 1 (рисунок 1) не относятся к SDS.
Твердое заземление трансформатора коммерческих зданий
Трансформаторы для коммерческих зданий обычно подключаются как SDS. Основной характеристикой SDS является соединение заземленного нейтрального проводника с соединенным корпусом оборудования или с соединенной шиной заземления. Для трансформаторов существует две конфигурации для создания твердого соединения нейтрали с землей. Первая конфигурация имеет это соединение на самом трансформаторе (см. Соединение A на трансформаторе на Рисунке 2).
Вторая конфигурация имеет это соединение нейтрали с землей у первого средства отключения после трансформатора (см. Соединение C на панели 208 В на Рисунке 2). Эта вторая конфигурация заземления и соединения идентична тому, что требуется для служебного входного оборудования коммерческих зданий, которое обслуживается трансформатором электросети. В этом случае соединение нейтрали с землей называется основной перемычкой заземления. Также указано третье соединение B. Три соединения A, B, C нельзя использовать одновременно, так как это создаст параллельный путь для заземленного проводника.Однако любые два из трех соединений A, B, C будут соответствовать правилам установки на основе 250.30 (A) (1) NEC. В общем, установка заземления и заземления одиночного трансформатора в здании может быть расширена до нескольких трансформаторных схем, где на каждом этаже многоэтажного здания расположено несколько трансформаторов. Это достигается путем протягивания общего заземляющего электрода либо вертикально через полы, либо горизонтально внутри каждого этажа.
Генератор для коммерческих зданий с твердым заземлением
Заземление и заземляющие соединения генераторов в коммерческих зданиях могут быть выполнены как SDS, так и без SDS.Выбор конфигурации для использования определяется выбором передающего оборудования, которое будет передавать силовые соединения от сети к генератору (генераторам) здания при потере питания от сети. Если передаточное оборудование (переключатель) позволяет переключать свои нейтральные соединения (т. Е. 4-полюсные), то генератор, подключенный к передаточному переключателю, должен быть подключен как SDS. Такое расположение обеспечит соответствие требованиям безопасности 250.6 (B), NEC (см. Рисунок 3). Если передаточный переключатель не позволяет переключить свои нейтральные соединения (т.е.е., 3-полюсный), то генератор должен быть подключен как без SDS, чтобы снова соответствовать 250.6 (B), NEC (см. рисунок 4). Несмотря на то, что на генераторе G2 нет соединения нейтрали с землей, генератор не считается незаземленным. Это связано с тем, что нейтральное соединение генератора, хотя оно и не связано с землей на самом генераторе, подключено к земле на оборудовании служебного входа MDP через безобрывный переключатель. Также корпус генератора заземлен вспомогательным заземляющим электродом в соответствии с 250.54, NEC. Этот заземляющий электрод обеспечивает для генератора те же преимущества, что и заземление электрической системы.
Несколько генераторов, обслуживающих коммерческое здание, обычно подключаются как SDS. Это связано с требованиями к устройствам защиты от замыканий на землю на объектах, достаточно больших, чтобы требовать нескольких генераторов. Например, для правильного функционирования этих устройств защиты от замыканий на землю необходимо, чтобы генераторы были подключены как SDS. Параллельно подключенные генераторы создают особые проблемы с точки зрения способов заземления и защиты оборудования.Здесь достаточно сказать, что согласование электрических параметров этих параллельно включенных генераторов сводит к минимуму циркулирующие токи третьей гармоники, которые могут повлиять на устройства защиты от замыканий на землю.
Параллельное заземление генераторов может быть реализовано с помощью общей шины нейтрали, подключенной к одной шине заземления, или с помощью отдельных шин нейтрали, подключенных к их соответствующим шинам заземления. Чтобы использовать параллельную схему с общей нейтральной шиной, распределительный щит с устройствами максимального тока генератора должен находиться рядом с самими генераторами.Это связано с тем, что соединение нейтрали с землей на SDS должно быть у генераторов или у первого средства отключения после генераторов (250,30 (A) (1) NEC). Согласно требованиям этого кодекса, если распределительный щит генератора должен быть расположен удаленно от самих генераторов, то соединение нейтрали с землей должно быть на встроенном устройстве максимальной токовой защиты каждого генератора. Здесь необходимо подчеркнуть, что такое применение твердого заземления для генераторов, описанное выше, не является обычной практикой для генераторов с напряжением выше 600 В.Это связано с тем, что одиночные замыкания между фазой и землей при твердом заземлении при таких более высоких напряжениях, как правило, больше, чем трехфазные замыкания на болтах, с которыми производители генераторов проектируют свои генераторы.
Независимо от того, заземлены ли генераторы или трансформаторы в виде паспортов безопасности или не-паспорта безопасности, если они обслуживают конкретный коммерческий объект, тогда все заземляющие электроды (250,50 NEC) должны быть соединены вместе, чтобы сформировать систему заземляющих электродов. Это увеличивает целостность системы заземления здания, не нарушая требований к различным зонам заземления, поскольку токопроводящие проводники не соединены между собой между зонами заземления.
Заключение
Существует несколько схем заземления и соединения трансформаторов и генераторов. К ним относятся незаземленные, заземленные по сопротивлению и надежно заземленные. Системы с заземленным сопротивлением подразделяются на системы с высоким сопротивлением, низким сопротивлением, реактивным сопротивлением и настроенным реактивным сопротивлением. Незаземленные системы, которые когда-то были одной из наиболее широко используемых систем заземления, в настоящее время являются наименее используемым методом заземления. Незаземленная система предназначена для того, чтобы первое замыкание на землю могло существовать неограниченное время, чтобы обеспечить непрерывность обслуживания при обнаружении места повреждения.К сожалению, система в этом состоянии имела тенденцию к возникновению переходных перенапряжений, которые приводили к нарушениям изоляции оборудования и проводов.
В целях достижения баланса между непрерывностью работы и снижением переходных перенапряжений были разработаны другие схемы импедансного заземления и твердое заземление. При напряжении выше 600 В твердое заземление не так широко используется из-за более высокого уровня энергии в точке повреждения. Однако при напряжении 600 В и менее надежное заземление является стандартом де-факто для трансформаторов и генераторов коммерческих зданий.При таком более низком напряжении сплошное заземление с включенными в него согласованными устройствами защиты от сверхтоков предназначено для быстрой изоляции замыканий на землю. Таким образом, только неисправная часть системы выходит из строя, в то время как остальная часть системы продолжает работать.
Расшифровка терминов
Заземленная электрическая система — это система, в которой по крайней мере один проводник от системы или точка на проводящей системе соединен либо с землей, либо с каким-либо другим проводящим телом, которое служит вместо земли.Это соединение может быть с промежуточным устройством импеданса или без него. Считается, что с устройством с очень низким импедансом система надежно или эффективно заземлена. С помощью устройства импеданса система может быть заземлена либо резистивно, либо реактивно.
Связанная электрическая система представляет собой систему, в которой нетоковедущие проводящие материалы электрической системы соединены вместе таким образом, что они представляют собой путь с низким сопротивлением для токов замыкания на землю.Это связанное соединение позволяет токам замыкания на землю в заземленной системе течь обратно к источнику электроэнергии для последующих мер безопасности со стороны системы. Из-за взаимосвязанности заземленной и связанной системы связанная система также способствует достижению цели заземленной системы.
Незаземленная электрическая система не имеет прямого соединения между проводниками системы и землей или землей, за исключением очень высокого естественного реактивного сопротивления из-за емкостной связи между линией и землей.Независимо от значения названия, NEC по-прежнему требует, чтобы корпуса проводящего оборудования незаземленной системы были заземлены по той же причине, по которой заземленная система должна быть заземлена. Этот код также требует, чтобы незаземленная система была подключена аналогично заземленной системе, чтобы обеспечить путь с низким сопротивлением для межфазных токов замыкания, которые циркулируют обратно к источнику.
Токи замыкания на землю — это нежелательное протекание электрических токов в электрической системе из-за непреднамеренного соединения между незаземленным проводником электрической цепи и землей.Замыкания на землю в среднем составляют 95% всех отказов в электрических системах, причем наиболее распространенным типом замыканий на землю является дуговое замыкание. Все формы заземления и соединения направлены на минимизацию или устранение замыканий на землю. Следовательно, различные упомянутые методы заземления будут рассматриваться в контексте обработки токов замыкания на землю.
Александр — старший инженер-электрик с опытом работы. Он специализируется в области электротехники для строительных систем и работает в основном в коммерческих и правительственных зданиях.
Список литературы
Л. Дж. Кингри, Р. Д. Пейнтер, A.S. Локер, «Применение заземления нейтрали с высоким сопротивлением в системах среднего напряжения», IEEE Trans. Ind. Appl., Vol. 47, № 3, май / июнь 2011 г.
Д. Д. Шипп, Ф. Дж. Анджелини, «Характеристики методов заземления нейтрали различных энергосистем: факты и вымысел», Катлер-Хаммер, 1988.
Д. Пол, С. Л. Венугопалан, «Метод заземления с низким сопротивлением для энергосистем среднего напряжения», ICF Kaiser Engineers, 1991.
Б. Бриджер мл., «Заземление с высоким сопротивлением», IEEE Trans. Ind. Appl., Vol. IA-19, No. 1, январь / февраль 1983 г.
Л. А. Бей, Дж. Айверсон, «Заземление генераторов переменного тока и переключение нейтрали в аварийных и резервных энергосистемах, части 1 и 2», Cummins Power Generation, 2006.
K. J .S. Хунхун, Дж. Л. Кёпфингер, М. В. Хаддад, «Резонансное заземление (нейтрализатор замыкания на землю) подключенного генератора», IEEE Trans. Ind. Appl., Vol. ПАС-96, № 2, март / апрель 1997 г.
Дж. Р. Дунки-Якобс, «Влияние дугового замыкания на землю на конструкцию низковольтной системы», IEEE Trans. Ind. Appl., Vol. 1A-8, No. 3, май / июнь 1972 г.
Рекомендуемая практика IEEE для заземления промышленных и коммерческих энергосистем, IEEE Std 142, 2007.
Рекомендуемая практика IEEE для систем аварийного и резервного питания для промышленных и коммерческих приложений, IEEE Std 446, 1995.
Справочник национальных правил по электротехнике, Национальная ассоциация противопожарной защиты, 2011 г.
Статическое электричество что это как контролировать удалить Устранение статического электричества
Цель этой статьи — помочь читателю ответить на некоторые вопросы о статическом электричестве: Что такое статическое электричество ?; Как предотвратить статический шок?; Что вызывает статическое электричество ?; Как нейтрализовать или контролировать статический заряд ?; Как снять статический заряд с непроводящего материала, например, из пластика, бумаги и стекла. СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО: Статическое электричество — это дисбаланс электрических зарядов внутри или на поверхности материала или электричества в состоянии покоя. Статическое электричество — это электричество, но его характеристики создают проблемы, которые обходятся отрасли в миллиарды долларов в год. Яснее понимание статического электричества и электростатики можно получить, объяснив молнию. Статичное электричество в атмосфере находится в неуравновешенном состоянии остается в таком состоянии до тех пор, пока градиент потенциала, между облаков, достигает уровня, при котором изолятор между облаками в в этом случае воздух, чтобы сломаться или выйти из строя.Молния создана, чтобы уравнять потенциальный градиент. На короткое мгновение вспыхивает молния, статическое электричество становится более привычным, электричество больше не находится в состоянии покоя.
Что мы знаем об этом явлении, называемом «статическое электричество», «электростатика» или «статический шок»? Что такое статическое электричество и как снять статическое электричество или хотя бы контролировать / уменьшить статическое электричество? Приведенная ниже информация поможет вам понять статическое электричество и контролировать связанные с ним расходы.
ПРИЧИНА
Статическое электричество генерируется дисбалансом молекулярной конструкции
относительно непроводящих изоляторов, таких как пластмассы, бумага, стекло, керамика и другие непроводящие материалы.
Вся материя состоит из атомов. Сбалансированный атом содержит положительные
заряды, которые присутствуют в ядре атома. Равное количество
отрицательных зарядов вращается вокруг этого ядра в форме электронов.Оба заряда равны и, следовательно, общий заряд сбалансированного
атом равен нулю. Однако, если эта конфигурация будет нарушена и
удалив несколько электронов из этого атома, мы получим большую
положительный заряд в ядре и дефицит электронов, который
дает вам общий заряд в положительном направлении. Наоборот,
если мы добавим несколько дополнительных электронов, мы получим общий заряд
отрицательный, из-за того, что у нас сейчас избыток электронов
и чистый заряд теперь в отрицательном направлении.См. Рисунок
ниже.
Некоторые материалы, такие как стекло, волосы и нейлон, имеют тенденцию отдать электроны и стать положительно заряженными. Другие материалы такие как полипропилен, винил (ПВХ), кремний, тефлон, силикон. собирать электроны и становиться отрицательно заряженными. Трибоэлектрический серия представляет собой список различных материалов и тенденцию к зарядке положительным или отрицательным.
ПРОВОДИМОСТЬ
Способность материала отдавать свои электроны или поглощение лишних электронов зависит исключительно от проводимости материал, с которым вы работаете. Например, чистый проводник, например, медь, имеет жесткую молекулярную структуру, которая не позволяет его электроны должны свободно перемещаться. Однако по мере приближения к полупроводниковый диапазон, например, некоторые высокосортные бумаги, способность этого материал для передачи своих электронов относительно легко и может быть выполнен трением, теплом или давлением.Когда вы приближаетесь к чисто непроводящему материалы, такие как пластмассы, стеклокерамика, очень легко нарушить молекулярную конструкции и заставляют материал заряжаться при малейшем трении, тепло или давление. Если проводимость обрабатываемого материала может быть управляемым, то предотвращение статического электричества становится относительно легко. Однако, если материал непроводящий, на нем может накапливаться статическое электричество.
Например, добавление поверхностной проводимости пластмасс переместит их в более высокий диапазон проводимости и предотвратить накопление статического электричества, вызванного трением.Это обычно достигается за счет использования таких добавок, как влага и антистатические спреи. Средний антистатический спрей состоит из материала на основе мыла. который был разбавлен растворителем, например слабым спиртом. Антипирен добавлен для борьбы с воспламеняемостью растворителя. Вскоре после контакт с вашим материалом, антипирен и растворители испаряются оставляя вам токопроводящее покрытие на поверхности материала. Теперь пластик стал проводящим, и пока это покрытие остается не беспокоить, будет сложно генерировать статическое электричество в этом материале.
ИОНИЗАЦИЯ
Следуя вышеуказанным шагам, вы можете уменьшить опасность накопления высоких зарядов статического электричества до точки. Однако описанные выше шаги пассивны и имеют ограниченную эффективность. Кроме того, изменение указанного материала или добавление спрея может быть невозможно или недопустимо. Активный метод статического контроля — ионизация. Это важно чтобы понять, что статическое электричество нельзя полностью устранить.Фактически, термин «нейтрализаторы статического электричества» определенно вводящие в заблуждение.
Сепараторы статического электричества — это действительно ионизирующие устройства, которые производят как положительные, так и отрицательные ионы привлекаются несбалансированным материал так, чтобы нейтрализация действительно произошла. Например, заряженный кусок материала можно нейтрализовать с помощью статический нейтрализатор. Однако это не устраняет статическое электричество. электричество, потому что, если материал снова трется после при нейтрализации статического электричества будет генерироваться.
Чтобы получить максимальную пользу от нейтрализации статического электричества или оборудования для контроля статического электричества, важно, чтобы вы понимали, как они работают и как они обеспечивают средства нейтрализации. Самый электронный статические нейтрализаторы построены путем размещения высокого напряжения на остром месте в непосредственной близости от заземленного экрана или кожух. Есть два основных типа ионизаторов со статическим контролем: ПЕРЕМЕННЫЙ ТОК.
С ионизаторами переменного тока переменное высокое напряжение импульсы тока через 60 циклов, воздух между острые концы и заземленный корпус фактически сломан вниз ионизацией и, следовательно, как положительные, так и отрицательные ионы генерируются.Половина цикла используется для генерировать отрицательные ионы, а другая половина используется для генерации положительные ионы. На 50 или 60 циклов в секунду полярность электросети меняет ионизацию каждые 1/100 или 1/120 секунды.
Ионизаторы постоянного токатакже подают высокое напряжение на острый конец, но при этом необходимо для создания противоположной полярности с помощью второго источника питания или какая-то схемотехника для переключения полярности.
У систем переменного и постоянного тока есть преимущества.Заявка, стоимость, производительность, пространство — все это учитывается при выборе правильного тип используемого ионизатора статического контроля.
Если нейтрализующийся материал заряжен положительно, он немедленно поглощает отрицательные ионы из статического нейтрализатора и отталкивать положительные ионы. Когда материал нейтрализуется, больше нет электростатического притяжения, и материал перестанет поглощать ионы. И наоборот, если материал нейтрализован заряжен отрицательно, он поглотит положительный ионы, генерируемые нейтрализатором, и отталкивают отрицательные ионы.Опять же, как только нейтрализация завершена, материал больше не будет притягивать ионы. См. Рисунок ниже.
Оборудование с ядерной энергетикой может также использоваться для генерации ионизированных воздух для нейтрализации статического электричества. Эти устройства, работающие на полонии 210 изотопов, период полураспада которых составляет всего 138 дней, постоянно теряют свою силу и подлежат замене ежегодно. Они есть дороже и менее эффективно, чем с электрическим приводом устройств.Эти ядерные устройства не могут быть куплены и сданы в аренду пользователями. Стоимость годовой аренды обычно превышает закупочная цена сопоставимых устройств с электрическим приводом.
Пожалуйста, просмотрите эта статья для дополнительной информации по уникальным вопросам связанных с высокоскоростными приложениями.
Узнать больше о статический контроль для электроники и электростатического разряда (ESD) проблемы.
РЕШЕНИЕ
Для решения проблем, связанных со статическим электричеством, некоторые основные шаги должны быть предприняты.Логический подход должен быть таким:
A. Определить
проблема.
B. Определите проблему и цели, которые необходимо достичь, чтобы рассмотреть
задача решена.
C. Определите решение
варианты с помощью инженеров, имеющих опыт управления статическим электричеством
D. Выберите правильный контроль статического электричества
оборудование для решения проблемы.
Устранение неполадок Проблема статического электричества, какое-то измерение оборудование полезно.Например, ElectroStatics, Incorporated Model Электростатический счетчик 9000 измеряет количество статического электричества и определите полярность как положительный, так и отрицательный. Измерение и определение местоположения статических электричество устранит тайну, часто связанную с этим явление.
После выявления проблемы и определения целей Далее следует рассмотреть варианты решения с помощью опытных инженеров Electrostatics, Inc.
ИДЕНТИФИКАЦИЯ ПРОБЛЕМЫ
Перед тем, как решить любую проблему, ее необходимо идентифицировать. Это твоя проблема
связано со статическим электричеством? Необходимо провести углубленный анализ
с необходимыми
оборудование и опыт
выявить и решить проблему.
Пассивные решения
ИНДУКЦИЯ
Снятие или нейтрализация статического электричества с помощью индукции является самым простым
и самый старый метод.Мишура или специальная проволока — наиболее распространенные инструменты для этого применения.
Тем не менее, мишура часто используется неправильно, загрязняется и повреждается, и поэтому часто
не успешный. Первое, что нужно признать, — это факт
что любое индукционное устройство, такое как мишура, никогда не уменьшит или не нейтрализует
статическое электричество до уровня нулевого потенциала. Это связано с
тот факт, что пороговое или начальное напряжение требуется для «запуска»
процесс и это напряжение высокое.
Во-первых, необходимо использовать правильное индукционное оборудование. В индукционная шина должна быть надежно заземлена. Индукционная панель должны быть плотно растянуты и размещены на расстоянии 1/4 дюйма от материала быть нейтрализованным. Под материалом должно быть «свободное воздушное пространство». нейтрализовать непосредственно под или над местом, где вы помещаете мишура. Таким образом индукция уменьшит статическое электричество. с обеих сторон статического материала.
На самом деле, если используются вышеперечисленные ступени, острые концы или точки заземленного индукционного устройства будут ионизировать воздух над поверхность нейтрализуется, потому что заземленные острые концы размещены в электростатическом поле, возникающем из-за статического электричества. Если статический заряд отрицательной полярности, электростатическое поле отрицательный, а положительные ионы генерируются через заземленный острый концы индукционного устройства и положительные ионы притягиваются обратно к статической нагруженной поверхности.И наоборот, если статический заряд положительный в полярности отрицательные ионы будут генерироваться индукцией заземления. устройство и привлекла обратно к заряженной области.
Индукция работает, но ограничивается снижением уровня статического электричества. до порогового уровня, который обычно все еще очень высок и обычно превышает уровень, необходимый для уменьшения или устранения проблем, связанных со статическим электричеством. Ионизация или активный статический контроль — лучший способ уменьшить статический заряд на непроводящих поверхностях до очень низкого уровня.
ЗАЗЕМЛЕНИЕ
Также возможно нарушить молекулярную структуру вашего оператора. Как бы смешно это ни звучало, если оператор изолирован, стоя на деревянном полу или на подошве из креповой резины, он скоро подберет градиент напряжения. Например, оператор может взимать до нескольких сотен вольт каждый раз, когда он берется за кусок заряженного пластика. По мере того, как он обращается с множеством разных предметов, он получает более высокий заряд. градиент напряжения до тех пор, пока не произойдет вспышка и оператор не получит сотрясение и / или повреждение устройства, чувствительного к статическому электричеству.Это можно предотвратить поставив оператора на заземленный токопроводящий коврик, используя оборудования для заземления персонала, которое имеется в продаже и производится ионизация. Прочитайте больше о статическом контроле ESD,
Оборудование для заземления персонала становится важным, если ваше операторы сидят во время работы. Это лучшее средство изолирующих операторов и, следовательно, они становятся чрезвычайно уязвимы для статического разряда из-за зарядки.Этот феномен может быть связано с человеком, который волочится за живыми комнатный коврик, а затем разрядится, прикоснувшись к хорошо заземленному напольная лампа.
Кроме того, заземление всего оборудования вашего завода и сопутствующее оборудование является наиболее важным. Не перестает удивлять нам, что на многих заводах работает оборудование, которое не электрически заземлен. Помимо фактора безопасности, заземленный машина поможет снять чрезвычайно высокий заряд статического электричества. электричество от частичных проводов.Помните, заземление — это только помощь в уменьшении ваших проблем со статическим электричеством. Это не решение.
Например, заземление ваших операторов не будет сливать снимать статическое электричество со своей одежды. Кроме того, это не будет слить статическое электричество из пластикового контейнера, возможно держа. Электропроводность некоторых видов одежды и большинства пластиков. настолько низок, что электричество не может течь на землю; следовательно, «статический электричество.»Чтобы решить эту проблему, ионизация или активный статический необходимо использовать контроль.
Статическая нейтрализация в резервуаре | Технологии
Генерирование статического электричества невозможно предотвратить, но его можно уменьшить или контролировать, предоставив средства рекомбинации разделенных зарядов так же быстро, как они производятся, и до того, как будет достигнуто искровое напряжение. В резервуарах для хранения легковоспламеняющихся продуктов возникли внутренние пожары, что привело к полной потере оборудования и продукции.Травмы возможны даже в том случае, если цистерны оснащены заземляющими стержнями внутри цистерны.
Технология ионизации обычно используется для уменьшения накопления статического заряда. В процессе ионизации молекулы воздуха перенапрягаются; таким образом электроны отделяются от молекул. Электроны заряжаются отрицательно, а молекулы, потерявшие электроны, становятся заряженными положительно. Когда заряженный объект контактирует с ионизированным воздухом, статический заряд рассеивается.Заряд либо передается на землю через ионизированный воздух, либо заряженный объект притягивает достаточное количество положительно или отрицательно заряженных ионов из воздуха, чтобы нейтрализовать его. Ионизация воздуха может быть достигнута статической щеткой или индуктивным нейтрализатором.
Благодаря обширным исследованиям и полевым испытаниям Petro Guardian разработала инновационное устройство статического заземления — Static Lasso®. Static Lasso® изготовлен из неагрессивного материала с множеством мелких точек, которые остаются в прямом контакте с жидкостью и парами внутри резервуара.В отличие от цепей, стержней и пластин, которые неэффективны, поскольку имеют плоскую поверхность, Static Lasso® имеет потертый узел из углеродного волокна, который содержит множество микроскопических точек. Static Lasso® не вызывает коррозии, имеет низкую емкость и высокую проводимость, что делает его очень эффективным средством отвода статического электричества из стекловолоконных и стальных резервуаров с футеровкой. Static Lasso® действует как индуктивный нейтрализатор, ускоряющий процесс релаксации заряда.
Ионизация происходит внутри изолированного корпуса резервуара по мере движения жидкостей с разной проводимостью.Возгорание может произойти, если заряд превышает минимальное значение в легковоспламеняющихся жидкостях. Когда заземленное статическое лассо помещается в изолированное заряженное тело, ионизация на концах углеродного волокна генерирует достаточно ионов для ускорения процесса нейтрализации заряда. Этот процесс индуктивной нейтрализации поддерживает уровень заряда ниже уровня, который может привести к электрическому разряду или искре.
Распространенные проблемы статического электричества и способы их устранения: цикл кратких статей.
Статическое электричество — это ограничение избыточного заряда : Когда избыток положительного или отрицательного заряда ограничен относительно небольшим объемом (вдали от любого избыточного заряда противоположной полярности), между зарядами в этом объеме возникает взаимное отталкивание.Это отталкивание заставляет заряды попытаться покинуть ограничивающий объем и разлететься, высвобождая энергию. Эта энергия доступна для нанесения искры. Если два нейтральных, но непохожих материала трются друг о друга, в результате чего один из них становится +, а другой -, то на оба объекта, когда они находятся близко друг к другу, будет доступно очень мало энергии отталкивания. Только когда они будут разделены, на каждом объекте будет накапливаться значительная «искровая» энергия. Помимо искрения, заряженные объекты могут притягиваться друг к другу (или отталкиваться).Всегда существует сила притяжения между незаряженными проводниками (такими как листовой металл или даже отдельные частицы пыли) и заряженными объектами (такими как изолирующая поверхность, с которой только что был удален клей). Более подробное объяснение механизмов статического электричества можно найти здесь. Есть несколько ситуаций, в которых возникает нежелательное статическое электричество. Причины и решения будут рассмотрены по категориям ниже.
Персонал заряжается : Высокое статическое напряжение на людей (конечно) чаще всего вызывается трением друг о друга разнородных материалов.Этот тип зарядки называется «трибоэлектрическим эффектом», и таблица материалов и их относительный заряд находится здесь. Типичный пример трибоэлектрической зарядки происходит, когда обувь на резиновой подошве трутся о нейлоновый ковер. Некоторые электроны прыгают с нейлона на резину, когда два материала находятся в контакте. Когда человек идет по ковру, больше электронов накапливается на подошве подошвы. Взаимное отталкивание этих электронов становится очень сильным, особенно когда обувь поднимается от ковра (от значительного количества положительного заряда, который остается на ковре).При сильном отталкивании часть электронов перемещается от подошвы к человеку, потому что резина не является идеальным изолятором. Кроме того, некоторые электроны действительно проникают сквозь воздух от подошвы до человека. Таким образом, человек приобретает все больший отрицательный заряд. Будучи «проводником», человек может быстро разрядить большую часть энергии сразу. Если человек поднесет палец к земле, большая часть этих электронов искрятся на землю в этом месте.
«Туфли на ковре» — пример того, как два изолятора обмениваются зарядом.Этот тип зарядки может также возникать, если проводник (или даже человеческая кожа) трется об изолятор, но этого не происходит, когда проводник трется о другой проводник. Заряд можно уменьшить, ограничив среду материалами, которые не сильно заряжаются (см. Трибоэлектрическую таблицу). Как правило, материалы с близким к нулю сродством (например, хлопок, нитриловый каучук, поликарбонат, АБС-пластик) не будут сильно заряжаться при трении о металлы или друг о друга. Другие материалы будут заряжать гораздо больше, такие как уретановая пена и прозрачная герметизирующая лента для картонных коробок (оба сильно +), или тефлон и большинство типов резины (оба сильно -).Кожа человека заряжается (обычно +) при трении об изоляторы, но кожа является проводником, поэтому при трении о другие проводники она не заряжается. Проблемы с зарядкой могут быть значительно уменьшены за счет правильного выбора материалов, таких как хлопок, АБС и т. Д., И использования рабочих поверхностей, которые, по крайней мере, слабо проводят электричество (т. Е. Обладают антистатическими свойствами, так что персонал не заряжается при касании поверхностей).
В большинстве ситуаций персональные заземляющие устройства (заземляющие соединители на запястье или обуви) работают очень хорошо, снижая заряд и напряжение тела до безопасного уровня даже при значительной зарядке.Однако, как для личной безопасности, так и для уменьшения сильноточных скачков, в сборку встроен резистор, последовательно с землей. Его значение обычно выбирается от 100 000 до 10 миллионов Ом. Этот резистор обеспечивает скачок напряжения тела при возникновении искры, электростатического разряда или скачка тока на теле. Кроме того, постоянное напряжение переменного или постоянного тока на корпусе, которое будет обратно пропорционально выбранному значению сопротивления, появится, если присутствует источник тока. Источники тока включают близость к ионизатору переменного или постоянного тока, трибоэлектрический заряд трением (ток присутствует только во время трения) или случайное прикосновение к источнику напряжения, даже при низком напряжении (сопротивление между руками и металлом обычно меньше сопротивление, встроенное в разъем заземления).Если есть проблемы с личным напряжением, превышающим допустимые пределы, даже на мгновение уменьшите сопротивление заземления. (Сенсорный монитор напряжения персонала может использоваться для определения источников таких проблем и определения того, является ли сопротивление правильным для данного приложения.)
Материал заряжается : Статическая зарядка материала не является неизбежной — это процесс, который может прерываться на разных стадиях. Примером (возможного) статического заряда является непрерывный лист бумаги, проходящий по ролику из натурального каучука, как показано ниже.
Хотя резиновый валик (черный) показан с зарядом «-» на его поверхности, предположим, что и валик, и длинный лист бумаги (серый) были разряжены до того, как вступили в контакт друг с другом. «Начало» листа бумаги показано в правой части изображения; Обратите внимание, что в результате контакта с роликом бумага приобрела много + заряда, тогда как остальная часть бумаги имеет меньший заряд или совсем не заряжена. Когда бумага трется о натуральный каучук, поверхность резины забирает электроны с бумаги, становясь отрицательной.Таким образом, документ становится положительным. Однако существует максимальная величина — заряда, которую может выдержать резиновая поверхность (около двух миллиардных долей ампер-секунды на 1 см 2 ). Тогда резина не сможет больше удалять электроны с бумаги. Если система в точности такая, как показано выше, то после того, как первые несколько футов бумаги пройдут по ролику, оставшаяся бумага не будет заряжаться роликом. В этом идеализированном примере проблема статики быстро исчезает.
Однако в реальном мире конструкция системы обычно вызывает накопление заряда на бумаге .Это происходит из-за того, что заряд утекает с ролика и / или оседает непосредственно на бумаге. Если заряд на ролике стечь на землю, он может продолжать заряжать бумагу бесконечно. Многие резиновые детали содержат некоторое количество углерода, что делает их слабопроводящими (антистатическими). Это свойство может показаться хорошим, но в данном случае оно плохо. Если подшипники на антистатическом резиновом ролике металлические и заземленные, то избыточные электроны могут перетекать на землю, позволяя ролику продолжать заряжать бумагу.Фактически, электроны удаляются с бумаги (роликом) и затем попадают на землю, вместо того, чтобы быть захваченными роликом. Если зарядка происходит с помощью этого метода, переход на чистую (не углеродистую) резину или изоляция подшипников от земли уменьшит проблему, но эти шаги могут вызвать другие проблемы. Безусловно, лучший способ уменьшить зарядку — это использовать ролик из материала, который не сильно заряжает бумагу. Посмотрев на трибоэлектрический стол, становится ясно, что нитриловый каучук — гораздо лучший выбор, чем натуральный каучук для бумажного валика.Также обратите внимание, что если натуральный каучук становится сильно заряженным, на его поверхности может возникать самопроизвольная искра, позволяющая некоторым электронам улететь в воздух. Это позволит бумаге снова начать заряжаться. Вероятность возникновения искр выше, если рядом находится металл. В отличие от натурального каучука, нитрильный каучук по сравнению с бумагой вряд ли будет заряжаться достаточно, чтобы вызвать искру.
Размещение заземленных металлических деталей рядом с роликом (или рядом с чем-либо, что уже заряжено), может вызвать дополнительную зарядку. Ниже показан металлический стержень (синий), который электрически подключен к заземлению.Шток может быть тормозом или редуктором; однако он также удаляет заряд — там, где он касается ролика. (Предположим, что резина не является антистатической, а вместо этого является идеальным изолятором, и не обращайте внимания на любой заряд трения, который может возникнуть, когда металл трется о резину.)
Теперь бумага становится равномерно и сильно заряженной, и зарядка со временем не прекращается. (Как правило, закругленный стержень, как показано на рисунке, не снимает весь заряд, как показано на рисунке. Заостренное лезвие ножа снимает больше заряда, чем закругленная форма, а заземленная «мишура» часто используется для снятия статического заряда. , удаляет еще больше.Острые металлические части могут удалить заряд, как показано выше, даже если они находятся близко к ролику, но не касаются его.) По иронии судьбы, как и в предыдущем примере, такое удаление заряда с ролика усугубляет проблему статического электричества.
Помимо снятия заряда с ролика прикосновением металла к ролику или рядом с ним, бумага может также накапливать заряд +, если металлические части находятся рядом с бумагой. На картинке ниже изображена острая металлическая кромка ножа (синяя), которая заземлена. «Мишура», состоящая из тонких полосок металлической фольги, будет иметь тот же эффект, что и лезвие ножа.
Если поднести острый кусок заземленного металла к достаточно заряженному объекту (ролику), противоположные заряды вылетят из заостренного наконечника, и эти заряды попытаются столкнуться с заряженным объектом. Вместо этого бумага мешает, и она получает заряд. Как можно видеть, попытки нейтрализовать статическое электричество (на картинке с помощью лезвия ножа) могут привести к ужасным неудачам, если они будут применены неправильно. Аналогичная зарядка произойдет, если добавить верхний ролик, при условии, что он заземлен из металла.Если лезвие ножа сдвинуть вправо (на расстояние, в несколько раз превышающее диаметр ролика), то лезвие, наконец, может принести пользу, поскольку оно может удалить некоторый заряд с бумаги.
Удаление или предотвращение заряда материалов : Если материал является хорошим проводником, например, металл, прикосновение к земле даже на короткое время приведет к его разрядке. Это следует делать только в том случае, если проводник не находится близко к сильно заряженному объекту или металлическому листу, находящемуся под высоким напряжением. Если слишком близко к такому объекту, проводник будет собирать значительный заряд за счет индукции заряда в момент, когда какая-либо часть проводника соединяется с землей.Этот заряд будет иметь полярность, противоположную заряженному объекту, и проводник будет нести этот заряд до тех пор, пока он не разрядится должным образом, вдали от любых таких заряженных объектов. (Проводник также улавливает индуцированный заряд, если он «разряжается» ионизатором переменного тока, находясь рядом с заряженным объектом.) Помните, однако, что правильно разряженный проводник все еще может притягивать заряженную пыль любой полярности из-за эффекта «заряда изображения». . Поэтому также важно удалить любой заряд с пыли в воздухе, если есть проблема загрязнения.(Эффект заряда изображения: пылинка, например +, будет притягиваться к нейтральной металлической поверхности, потому что металл создает электрическое поле, которое притягивает к себе заряженную пыль. Сила притяжения такая же, как если бы металл был зеркалом и + пылинка «увидела» отражение равной, но противоположной — пылинки позади металлической поверхности.)
Разрядить изолятор труднее, чем проводник . Однако многие «изоляторы», такие как бумага или стекло, обладают слабой проводимостью.Эти материалы можно назвать «медленными проводниками», и заземление будет их разряжать, если удерживать на месте какое-то время. Для немелованной бумаги время, необходимое для разгрузки линейной ножки, составляет примерно одну секунду при влажности 40% и быстрее при высокой влажности. Пропуск по всей ширине рулона по заземленной проволоке или стержню будет хорошо работать, если линейная скорость достаточно мала (при относительной влажности 40% будет работать скорость около одного фута в секунду или меньше), или если влажность повышена, или если используются несколько последовательных стержней.При разрядке проводника с помощью заземленной металлической детали металлическая деталь не должна быть острой (острие). Все, что нужно, — это фактический контакт с металлической деталью. Независимо от того, является ли металл острым или гладким, проводник будет полностью разряжен, если он будет находиться в электрическом контакте с землей в течение достаточно длительного времени («достаточно долго» колеблется от наносекунд для меди до секунд для бумаги).
При использовании заземленной металлической детали для разряда изоляционного материала (известного как «пассивный» метод разряда) оптимальная конфигурация немного отличается.Трение твердым металлом об изолятор может фактически зарядить изолятор. Медленный проводник, такой как бумага, также может заряжаться при трении о металл, если трение и разделение выполняются быстро (обычно менее чем за одну секунду). Трибоэлектрическая таблица содержит дополнительную информацию. Лучший пассивный метод разрядки изолятора — использование заземленной мишуры. Если необходимо разгрузить лист пластика с непрерывной подачей, тонкая фольга (мишура) или тонкие провода осторожно касаются пластика, соединяя его с землей, когда он проходит мимо.Расстояние между остриями мишуры или проволоки должно быть не более 1 мм для максимальной эффективности разряда. Несмотря на то, что острия могут действительно касаться пластика, сила трения незначительна при использовании мишуры или тонкой проволоки, так что дополнительная зарядка незначительна из-за трения металла о пластик. Этот метод не может удалить весь поверхностный заряд с пластика. Если мишура установлена правильно, поверхностный заряд может быть уменьшен примерно до 2% от максимально возможного поверхностного заряда (максимальный заряд до самопроизвольного искрения составляет примерно 10 -9 ампер-сек на см 2 .Электростатический вольтметр (поверхностный вольтметр) обычно показывает около 500 вольт при достижении этих 2% в лучшем случае. Бумага обладает слабой проводимостью, поэтому она будет разряжаться пассивно более полно, чем пластик, особенно при низкой скорости подачи и высокой влажности. Первоначальное снижение до 2% происходит мгновенно как для пластика, так и для бумаги; дальнейшее снижение заряда для бумаги постепенное. (Для пластика дополнительного снижения заряда не происходит даже при высокой влажности. Однако, если произойдет конденсация, пластик, как и любой другой материал, мгновенно полностью разрядится.) Вместо мишуры или тонкой проволоки инженерные ограничения иногда требуют использования жесткой металлической конструкции для разряда движущегося изоляционного листа. В таком случае металл не должен касаться листа из-за возможности зарядки от трения. Металл должен представлять собой заземленное лезвие ножа, расположенное на расстоянии от 1 до 5 мм от листа («нож» ориентирован перпендикулярно направлению подачи и покрывает всю ширину листа). Вместо лезвия ножа можно использовать ряд заземленных металлических игл.Обычно точки находятся на расстоянии 5 мм друг от друга и на расстоянии 5 мм от листа. Эти устройства для бесконтактного разряда немного менее эффективны, чем мишура, и становятся менее эффективными, если наконечники грязные или тупые.
Активные методы разряда: помните, что пассивные металлические конструкции не могут полностью разрядить изолятор, но пассивные методы могут удалить достаточный заряд, в зависимости от требований. Другие методы могут полностью разрядить изоляторы, но все эти методы требуют определенного вида энергии. Например, воздух становится достаточно хорошим проводником, если присутствует большое количество ионов + и -, но для образования аэроионов требуется энергия.Обычно ионы образуются с помощью электричества или радиоактивности, но они также могут быть получены в результате сгорания, высокой температуры или испарения. Если в воздухе присутствует 100 000 ионов на см 3 (как +, так и -), заряженные изоляторы разрядятся до половины своего первоначального значения (период полураспада) примерно за секунду. (Формулы здесь). Высокие концентрации ионов могут быть достигнуты только с помощью ионизатора; без этого в комнате обычно содержится от 10 до 100 ионов на см 3 , что соответствует периоду полураспада разряда от десятков минут до нескольких часов.(Идеальные изоляторы, если они заряжены, будут разряжаться с этим периодом полураспада в помещении. Если материал в некоторой степени проводящий, он будет разряжаться быстрее.)
Нетехнологичный способ полностью удалить заряд с изолятора — это окунуть его в (заземленную) воду или подышать (или увлажнить) изолятор до образования конденсата, убедившись, что водная пленка не имеет зазоров и перекрывает ее. заземлить хотя бы на мгновение . Затем можно стряхнуть лишнюю воду с изолятора, и он должен быть высушен на воздухе (подойдет воздух под высоким давлением и / или нагретый воздух), чтобы удалить воду.Не протирайте, потому что это действие приведет к заряду поверхности.
Более технический метод полного разряда использует ионизатор . Если в воздухе сосуществует большое количество как положительных, так и отрицательных ионов, положительные ионы будут сильно притягиваться к отрицательно заряженным поверхностям и наоборот. Каждый ион передает свой заряд заряженной поверхности, а затем ион распадается, превращаясь обратно в различные молекулы воздуха. Притяжение и перенос заряда продолжается до тех пор, пока все поверхности не будут нейтрализованы.Самый распространенный ионизатор — это электрический ионизатор переменного тока, который состоит из одной или нескольких заостренных игл, подключенных к сети переменного тока в несколько тысяч вольт. Если заряженная поверхность или объект проходит под этим ионизатором переменного тока, весь поверхностный заряд быстро удаляется, потому что положительные, а затем отрицательные ионы производятся с каждым циклом переменного тока. (Если объект представляет собой тонкую пленку, эффективно удаляются даже заряды на дальней стороне, вдали от нейтрализатора). Есть некоторые проблемы с дальностью действия (эффективным расстоянием) ионизатора переменного тока из-за очень высокой концентрации одновременно существующих + и — ионов рядом с электрическими иглами.Противоположно заряженные ионы имеют тенденцию сталкиваться и таким образом разрушать друг друга, так что концентрация высока только в пределах 30 см от игл. Это примерно расстояние, на которое + или — ионы проходят за половину цикла 60 Гц. По этой причине ионизаторы «постоянного тока» также производятся в антистатических целях. Ионизаторы постоянного тока фактически переключаются между + и — всего несколько раз в секунду и, следовательно, имеют больший диапазон расстояний. Однако этот тип постоянного тока будет создавать более высокие (+, затем -) переходные напряжения на поверхностях, чем ионизаторы переменного тока; Если объект проходит рядом с ионизатором постоянного тока, а затем быстро удаляется, объект может иметь остаточный заряд той же полярности, что и ионизатор в момент удаления.Радиус действия и эффективность ионизатора переменного тока можно значительно улучшить, добавив вентилятор (более подробное объяснение см. Ниже). Кроме того, ионизатор переменного тока, используемый с соответствующим вентилятором, будет плавно разряжать предметы без скачков напряжения. Ионизаторы постоянного и переменного тока производят несколько компаний, в том числе Exair и Amstat.
Очевидно, что источник электрических ионов нельзя использовать во взрывоопасной атмосфере . Однако ионизаторы также могут быть изготовлены из радиоактивного материала (обычно элементов Po или Am). Для образования ионов требуется энергия, и каждая альфа-частицы, исходящие из этих источников, могут производить около 50 000 пар ионов (как +, так и -), когда они проходят несколько сантиметров в воздухе, прежде чем остановиться.(Тогда каждый альфа становится нерадиоактивным атомом гелия.) Эти ядерные ионизаторы производят гораздо меньше энергии за один альфа-распад, чем 0,00001 ватт-секунда (0,01 миллиджоуль), что примерно является минимальной энергией для детонации даже самой чувствительной топливно-воздушной смеси. (У каждой альфы около триллионной ватт-секунды кинетической энергии). Этот 0,01 миллиджоуль называется «минимальной энергией воспламенения» (MIE), и значение изменяется в зависимости от типа топлива. Нет никаких известных вредных эффектов от этих ядерных ионизаторов, если вы находитесь на расстоянии более одного фута, и они используют те же изотопы, что и в обычных детекторах дыма.
Любая горячая поверхность (например, электрический элемент, которого, по крайней мере, недостаточно, чтобы заметно светиться, если освещение в комнате выключено) будет испускать большое количество как положительных, так и отрицательных ионов, поэтому также можно использовать элемент печи или электрическую «горелку». разгрузить поверхности. Однако потребность в энергии довольно велика, поэтому этот метод не является распространенным.
Вентилятор значительно повышает производительность ионизатора . При использовании электрических или радиоактивных ионизаторов переменного тока без использования циркуляции воздуха, разряжаемый объект должен проходить близко к ионизатору.Если ионизатор находится на расстоянии более 30 см от объекта, то рядом с ионизатором следует установить вентилятор. Он должен продувать воздух перпендикулярно направлению, в котором ионы обычно выходят из ионизатора (передняя часть ионизатора), а основной воздушный поток должен включать область от передней части ионизатора до 30 см впереди от ионизатора. Воздух следует направлять так, чтобы он достиг объекта в течение примерно двух секунд после прохождения ионизатора. Также важно, чтобы объект задерживался в области с высоким содержанием ионов на достаточно долгое время для разряда.Если поверхность представляет собой пленку, приводимую в движение конвейерной лентой, возможно, потребуется замедлить движение ленты, если не происходит достаточного разряда, или можно добавить дополнительные ионизаторы. Счетчик аэроионов может использоваться для определения того, оптимизировано ли распределение ионов. Период полураспада разряда обратно пропорционален количеству ионов на см 3 , поэтому этот тип измерения позволяет быстро определить время разряда. Другой инструмент, используемый для антистатической оптимизации, — это поверхностный вольтметр, который измеряет заряд материалов, а не обнаруживает ионы в воздухе.
Притяжение / отталкивание — непреднамеренные статические силы (например, загрязнение) и предполагаемые силы (закрепление) : Если пыль плавает рядом с объектом с высоким напряжением (сильно заряженным), пыль обычно притягивается, а затем часто прилипает к объекту . Такое поведение может показаться нелогичным; противоположные заряды притягиваются, одинаковые заряды отталкиваются, и, следовательно, незаряженная пылинка не должна подвергаться воздействию заряженного объекта. Более того, даже если пыль коснется объекта, мы можем ожидать, что пыль получит часть заряда от объекта и, следовательно, будет отталкиваться, а не притягиваться.На самом деле, поверхности с очень высоким зарядом (близким к искровому потенциалу) действительно заряжают некоторые частицы пыли, которые касаются поверхности, а затем отталкивают эти частицы (с высокой скоростью). При несколько меньшем заряде практически вся пыль, соприкасающаяся с поверхностью, прилипает. Если поверхностное напряжение снижается до <примерно 500 вольт (по показаниям поверхностного вольтметра), тенденция к прилипанию становится независимой от поверхностного напряжения, а вместо этого вызывается только типичными атомными (ван-дер-ваальсовыми) силами.
Для того чтобы незаряженная пыль имела двойное притяжение как к +, так и к — поверхностям, пыль должна иметь хотя бы небольшую проводимость.(Напротив, плавающие пластиковые частицы будут притягиваться к заряженной поверхности только в том случае, если пластик и поверхность имеют противоположные заряды, потому что пластмассы являются хорошими изоляторами.) Пыль, которая приближается к поверхности +, будет притягиваться к поверхности, потому что пыль становится электрически поляризованной. . То есть некоторые электроны в пылинке могут перемещаться внутри частицы. Эти «свободные» электроны переместятся в ту часть пылинки, которая находится ближе всего к + поверхности, оставляя дальнюю сторону частицы с избыточным + зарядом.Поскольку заряд — в пылинке находится ближе к заряженной поверхности, его сила притяжения (по направлению к поверхности) больше, чем сила отталкивания заряда + на дальней стороне частицы. Поэтому зерно движется к поверхности и (в конце концов) обычно касается ее. Обратите внимание, что если пылинка длиннее по сравнению с ее диаметром (т.е. волокна), зерно будет ориентироваться (путем простого вращения) так, что длинная ось станет перпендикулярной заряженной поверхности.
Если поверхность очень сильно заряжена (более 20 кВ на поверхностном вольтметре), большая часть привлеченных частиц пыли никогда не коснется поверхности.Вместо этого, когда пыль приблизится, + поверхность испустит искру +. Это заряжает пыль +, и она немедленно улетает со скоростью несколько сотен см в секунду, хотя небольшая часть пылинок коснется поверхности. Если поверхностный заряд соответствует примерно от 500 В до 10 кВ, почти все частицы пыли поблизости в конечном итоге коснутся поверхности, потому что поверхность не вызывает прямого искрения и, таким образом, отталкивает их. Однако дальняя сторона пылинок может создать искру. Это происходит, когда ближняя сторона пылинки касается + поверхности; противоположная сторона немедленно испускает искру +.Эта внезапная потеря заряда + дает пыли заряд -, поэтому она прилипает к поверхности +. При напряжениях <примерно 500 В, на противоположной стороне пыли недостаточно заряда, чтобы испустить искру, и сила поляризации, которая принесла пыль, относительно мала. Пыль может прилипать к поверхности, но в основном из-за атомных сил, которые присутствуют независимо от того, заряжена поверхность или нет. При движении воздуха пыль может тереться о поверхность, что вызывает ее прилипание из-за трибоэлектрического заряда.
Если заряженная поверхность изолятора разрядится настолько хорошо, насколько это возможно, используя пассивный метод (заземленная мишура или острая металлическая форма), будет относительно мало проблем загрязнения, вызванных статическим электричеством. (Убедитесь, что поверхность показывает менее 500 В с помощью стандартного электростатического вольтметра (поверхностного вольтметра), чтобы проверить эффективный пассивный разряд. Также обратите внимание, что технически электростатический вольтметр считывает заряд на площади на изоляторе, а не фактическое напряжение. Различие не критично, но дальнейшие разъяснения здесь.) Даже при таком низком заряде будет слабое поляризационное притяжение пыли, но сила этого притяжения пропорциональна квадрату поверхностного напряжения. При 500 В сила притяжения, которую испытывает данная пылинка, составляет 1/400 силы притяжения при 10 кВ. Заряженный пластиковый (или любой изолятор) порошок представляет собой другую проблему. Если пластиковый порошок имеет заряд, противоположный заряду поверхности, порошок будет значительно притягиваться к поверхности даже при <500 В. Притяжение в этом случае прямо пропорционально поверхностному напряжению.При наличии заряженного порошка поверхность должна быть полностью разряжена (как указано выше) или даже слегка заряжена с той же полярностью, что и пластиковый порошок.
Металлическая поверхность, находящаяся под высоким напряжением, притягивает пыль так же, как и поверхность заряженного изолятора. Кроме того, заземленный (незаряженный, V = 0) проводник будет притягивать как (проводящую) пыль, так и порошковый изолятор, если они заряжены. Это происходит из-за «эффекта заряда изображения», при котором пылинка, например +, будет притягиваться к нейтральной металлической поверхности, потому что металл создает электрическое поле, которое притягивает к себе заряженную пыль.Сила притяжения между пылью и незаряженной металлической поверхностью такая же, как если бы металл был зеркалом, а + пылинка «видела» отражение равной, но противоположной частицы пыли позади металлической поверхности. Сила притяжения пропорциональна квадрату количества заряда на каждом зерне, которое трудно измерить напрямую. (Чтобы измерить заряд на одну пылинку с помощью поверхностного вольтметра постоянного тока USSVM2, позвольте некоторым частям накапливаться в течение нескольких секунд на датчике, который по сути является заземленным проводником, чтобы он притягивал заряженную пыль.Затем отметьте, насколько изменилось напряжение дисплея за это время накопления. Каждый вольт представляет собой заряд 0,3 пКл [3 × 10 -13 ампер-сек]. С помощью линзы подсчитайте количество захваченных пылинок, а затем разделите общий заряд на это число, чтобы получить «Q», средний заряд на зерно в C или ампер-сек. Если расстояние между пылинкой и металлом равно X, то средняя сила притяжения на этом расстоянии составляет 2,2 × 10 15 Q 2 / X 2 , в граммах.)
Ионизаторымогут снимать заряд с заряженной пыли и заряженного изоляционного порошка, а ионизаторы переменного тока и радиоактивные ионизаторы работают намного лучше, чем ионизаторы постоянного тока, не оставляя остаточного заряда на пыли.Помните, что заряженная пыль или заряженный порошок изолятора будут притягиваться к заземленному металлу и сильно притягиваться к металлу, находящемуся под напряжением противоположной полярности, как пыль или порошок, а также к поверхностям изолятора, заряженным с этой полярностью. В среде с повышенным содержанием ионов период полураспада заряда пыли или порошка трудно измерить напрямую. Однако период полураспада можно определить путем измерения количества ионов на см 3 с помощью счетчика аэроионов. (Период полураспада в секундах равен 1,2 × 10 5 , деленный на количество ионов на см.Лучше всего настроить ионизатор (-ы) так, чтобы пыль оставалась в ионно-усиленной зоне в течение как минимум 10-кратного периода полураспада заряда. Ионизаторы также разряжают поверхности изолятора с такой же скоростью.
Сила притяжения / отталкивания между двумя намеренно заряженными поверхностями может быть предсказана или измерена несколькими методами . Путем добавления заряда можно принудительно закрыть пластиковый пакет на сборочной линии или предотвратить соприкосновение двух материалов друг с другом. При проектировании системы, в которой заряд добавляется за счет трения, можно использовать трибоэлектрический стол для определения того, сколько заряда передается в зависимости от энергии трения и используемых разнородных материалов.Если один из двух «разнородных материалов» является частью конвейера, возможно, потребуется удалить с него некоторый заряд или добавить где-то еще, как показано выше при загрузке материала. Помимо фрикционной зарядки можно использовать «пиннер». Это ионизатор, который производит только — или только + заряд и может быстро заряжать поверхность, проходящую поблизости (заряд обычно занимает всего долю секунды). Ионы от стержня должны двигаться с высокой скоростью, чтобы преодолеть отталкивание подобных ионов на поверхности, которое только что прибыло миллисекунды назад.Обычно поверхность должна проходить на расстоянии около 2 дюймов (5 см) от иглы. Можно использовать немного большее расстояние между контактом и поверхностью, если обратная сторона поверхности, которая нуждается в зарядке, находится рядом с заземляющей пластиной (металлический лист, соединенный с заземлением). Если, например, поверхность заряжается положительно, то отрицательные заряды в плоскости заземления будут притягиваться к задней стороне заряжаемой поверхности. Количество + зарядов на квадратный дюйм в плоскости заземления будет почти таким же, как — зарядов на квадратный дюйм на листе.Следовательно, ионы +, испускаемые стержнем, не будут значительно отталкиваться, и они могут перемещаться на поверхность на расстояние до 10 дюймов (25 см). Обычно используют значок + на одной стороне отверстия пакета, а — стержень — на другой, чтобы пакет закрывался и оставался закрытым.
Силы можно измерить непосредственно с помощью граммовой шкалы, чтобы проверить, находятся ли они в пределах спецификации, хотя этот метод имеет некоторые недостатки. Сила обычно мала и технически трудна для измерения.Если одна поверхность заряжается правильно, а другая — нет, сила будет равна нулю, но шкала не может определить, какая поверхность заряжается неправильно. Более простой способ определить силу — измерить заряд на каждой поверхности и использовать формулу (этот метод обсуждается здесь). При использовании поверхностного вольтметра USSVM2 для измерения заряда на одном листе (отображается как V 1 ), а затем на другой поверхности (V 2 ), сила на площадь в граммах / см 2 составляет 7,5 × 10 -11 x В 1 x В 2 .Привлекательно, если полярности V 1 и V 2 противоположны. Выходной заряд на единицу площади пиннера можно измерить непосредственно с помощью измерителя ионного тока. Это может определить правильное размещение и необходимость чистки выходных штифтов пиннера. (Производительность снижается, если штифты нуждаются в очистке, что обычно происходит через несколько дней работы, но чаще в пыльной среде.)
Электростатическая окраска, осаждение порошка : В этих процессах осаждения порошок (или иногда жидкость) распыляется и получает электрический заряд.Заряженные частицы порошка дрейфуют к проводящей детали (предмету, который окрашивается порошковой краской), обычно с дополнительным потоком воздуха от вентилятора или насоса. Порошок электростатически притягивается к заготовке и прилипает к ней. Затем заготовка нагревается, при этом порошок плавится, образуя гладкое твердое покрытие. Тепло (или УФ для низкотемпературных деталей, таких как дерево или пластик) также полимеризует расплавленный порошок, если покрытие постоянно затвердевает (термореактивное покрытие).
Существует две основных системы или типа электростатического осаждения порошка.Более распространен тип «коронного разряда», при котором частицы порошка или жидкости выдуваются из сопла, а затем заряжаются после того, как они покидают пистолет, путем распыления на них ионов. Источником ионов является игла, на которую подается очень высокое напряжение — до 100 кВ. Обычно он находится в передней части сопла и распыляет заряд вперед и радиально наружу. (Иногда ионный источник находится далеко от сопла, особенно если задняя сторона детали требует покрытия.) Приложенное напряжение обычно отрицательное, но оно положительно для нейлона и некоторых других материалов, потому что каждый материал имеет свои предпочтения при зарядке.(См. Таблицу трибоэлектрических параметров для получения дополнительной информации.) Помимо добавления некоторого заряда к порошку, гораздо большее количество заряда добавляется к воздуху, образуя (обычно отрицательную) стенку из ионов от 20 до 30 см в диаметре. Эта стенка сильно отталкивает теперь заряженный порошок, который находится между ионной стенкой и проводящей деталью. Из-за «эффекта заряда изображения» (см. Раздел о притяжении / отталкивании выше) деталь действует так, как если бы она имела заряд, противоположный (обычно положительный) ионной стенке, поэтому деталь сильно притягивает заряженный порошок.Из-за природы эффекта заряда изображения притяжение сильнее на краях заготовки, слабее на плоских участках и очень слабое на вогнутой поверхности или кратере на заготовке. Этот эффект вызывает толстое покрытие на краях и очень тонкое покрытие внутри отверстий. При использовании коронирующей системы очень небольшая часть порошка не попадает в деталь, но толщина покрытия может быть неоднородной.
Другая система — «Трибо-пистолет», который заряжает порошок (нельзя использовать с жидкой краской), «натирая» его.Порошок проходит через длинную трубку, обычно сделанную из тефлона, который является наиболее электроотрицательным из всех распространенных материалов. (См. Трибоэлектрическую таблицу.) Тефлон отводит электроны практически от любого материала, который трется с ним, поэтому тефлон становится отрицательным, а порошок становится положительным, когда трется о внутреннюю часть трубки. Отрицательный заряд, который приобретает тефлон, непрерывно удаляется, и этот заряд обычно измеряется микроамперметром. Порошок продвигается через трубку сжатым воздухом.Когда он покидает трубку и движется к изделию, там нет «стены» из ионов (как в коронирующей системе). Следовательно, существует относительно небольшое электростатическое отталкивание для отталкивания заряженного порошка от сопла трибо-пушки и относительно небольшой эффект заряда изображения для притяжения порошка к заготовке. Вместо этого порошок выдувается к заготовке движением воздуха. Затем каждая частица порошка, которая находится на расстоянии примерно 10x ее собственного диаметра от заготовки (то есть на расстоянии менее 1 мм), будет притягиваться к поверхности своим собственным зарядом изображения.Как только он касается заготовки, он остается там, потому что его заряд обычно не уходит на заготовку. Однако заряд действительно утекает, если порошок хотя бы немного проводящий. Если порошок загрязнен таким образом, он отпадет вскоре после того, как его поместят. Если для покрытия используется токопроводящий порошок, его следует либо сделать слегка липким, либо распылить на заготовку, пока она горячая, чтобы порошок расплавился. (Проводимость порошка теоретически можно измерить перед осаждением с помощью омметра с высоким сопротивлением, но это легче измерить с помощью поверхностного вольтметра.) Для порошка, нанесенного методом коронного разряда или трибо-пушки, он полностью прилипает к заготовке за счет заряда изображения, но до того, как он коснется заготовки, нанесенный коронным разрядом порошок притягивается к заготовке на гораздо большем расстоянии, чем трибо — порох, нанесенный из огнестрельного оружия. Таким образом, меньшая фракция порошка из трибопистолета фактически достигает заготовки. Однако порох для трибопистолета более равномерно покрывает всю поверхность детали.
В обеих системах покрытия заготовка часто заземляется.Обсуждаемые выше проблемы покрытия (неоднородность при коронном разряде и низкая эффективность при использовании трибо) могут быть в значительной степени исправлены путем приложения напряжения смещения к заготовке вместо ее заземления. В трибосистеме это напряжение смещения имеет полярность, противоположную полярности (обычно положительной) порошка; то есть заготовка обычно подключается к отрицательному напряжению, когда используется смещение. Это соединение увеличивает расстояние, на котором порошок притягивается к заготовке, но также несколько снижает однородность покрытия.Оптимальное напряжение смещения, обычно около -5 кВ, уравновешивает эффективность и однородность. Для коронирующей системы напряжение смещения той же полярности, что и порошок, улучшит однородность. (Обычно это также отрицательное напряжение смещения в диапазоне -3 кВ). Напряжение смещения в системе коронного разряда имеет противоположный эффект смещения в трибосистеме: смещение системы коронного разряда снижает эффективность при одновременном повышении однородности, но, опять же, существует оптимальное напряжение.
При использовании смещения необходимо помнить о некоторых вещах.Смещение должно быть отключено (и заготовка заземлена) как можно скорее после нанесения покрытия. Если напряжение смещения (высокого напряжения) остается подключенным, часть порошка может быстро получить заряд и улететь от заготовки. Зона осаждения должна быть чистой и свободной от любых заземленных проводов или загрязнений, которые могут приблизиться к заготовке или проводке смещения. Они могут вызвать дугу и снизить напряжение смещения (немедленно ухудшить качество покрытия) или в конечном итоге сжечь источник напряжения смещения.Использование смещения напряжения заготовки — относительно новая концепция; эта опция могла быть недоступна, когда ваша система была куплена. Если возникают проблемы, указанные выше, обратитесь к производителю системы покрытия, чтобы узнать, доступен ли дополнительный источник напряжения смещения. (AlphaLab в настоящее время не производит источники напряжения смещения, но если у вас возникнут проблемы с их поиском для вашей системы, напишите нам по адресу [email protected] для получения предложений.
Хотя электростатическое осаждение может покрыть заднюю сторону детали, покрытие задней стороны обычно тоньше, чем передняя (сторона, ближайшая к распылителю).Внешнюю циркуляцию воздуха можно отрегулировать, чтобы больше частиц перемещалось назад. С коронирующей системой может быть добавлена дополнительная высоковольтная игла. Он должен быть расположен так, чтобы ионы и заряженная краска попадали в обратную сторону. Процесс короны наиболее эффективно работает в ограниченном диапазоне относительной влажности (обычно 45-60%).
Проблемы возникают, если система коронного разряда загрязняется или не работает должным образом из-за влажности или неправильного питания. Также при определенных обстоятельствах может возникнуть дуга.Если вместо порошка наносится краска на основе растворителя, она может загореться, если энергия дуги превышает примерно 1/4 миллиджоуля. Порошок может воспламениться от искры с энергией не менее 5 миллиджоулей. Заготовка должна быть токопроводящей и заземленной: если заготовка является изолятором, необходимо выполнить специальные приготовления. Некоторые материалы, такие как дерево, камень или даже стекло, могут быть достаточно проводящими, чтобы их можно было распылять, по крайней мере, при достаточно высокой влажности. К сожалению, высокое содержание воды в грунте может снизить долговечность поверхности.Кроме того, коронный разряд наиболее эффективно работает в ограниченном диапазоне относительной влажности (обычно 45-60%). Также необходимо распылять эти плохо проводящие детали с меньшей скоростью, чтобы избежать загрязнения участков поверхности. (Эти материалы медленно разряжаются на землю). Если заготовка не токопроводящая, ее можно сначала покрасить проводящей грунтовкой. На изолятор также можно наносить электростатическое напыление, если он очень тонкий и подключается к заземленному проводнику.
Проблемы с покрытием диагностируются.Было бы неплохо иметь способ измерения как общего количества краски или порошка, распределяемого в секунду, так и общего постоянного тока, переносимого распылителем. Эти две переменные не обязательно коррелируют. Количество краски / порошка в секунду является мерой того, насколько хорошо работает распылитель или сопло, но если частицы недостаточно заряжены, они не будут эффективно притягиваться к заготовке. Скорость распыления можно измерить, ненадолго поместив тонкий заземленный металлический лист перед распылителем на заранее определенное время (например,г., одна секунда). Затем можно измерить изменение толщины или веса. Ток брызг можно измерить с помощью микроамперметра, подключенного между заготовкой и землей, так что после передачи тока от частиц к частицам он проходит через микроамперметр, а затем на землю. Когда система работает правильно, установите базовый ток (обычно около 100 мкА). Если ток со временем падает, вы можете очистить сборку коронного разряда и / или увеличить напряжение.Вместо этого ток можно измерить одновременно с проверкой скорости распыления, подключив микроамперметр между тонким металлическим листом и землей.
Если есть проблемы с покрытием заготовки, это также может быть вызвано плохим заземлением или плохим подключением к напряжению смещения заготовки. Проверьте соединение заземления с помощью омметра к известному заземлению (например, металлической водопроводной трубе или металлическому кабелепроводу. Оно должно быть меньше 1000 Ом (1 кОм). Если заготовка представляет собой материал, который обычно является плохим проводником, вы можете измерить сопротивление поверхности (что следует делать при выключенном опрыскивателе).Это следует измерять в области заготовки, которая, как правило, имеет наименьшее покрытие. Поверхностное сопротивление должно составлять порядка 10 МОм (10 МОм) на квадрат или меньше. Если он показывает больше, покройте заготовку токопроводящей краской (обычным окунанием, кистью или распылением). Существуют различные производители токопроводящей краски, которая обычно содержит порошок меди, никеля и / или серебра. В гораздо менее дорогой краске используется графит.
Поверхностная проводимость : Часто необходимо сделать поверхности хотя бы слегка проводящими.Величина проводимости зависит от области применения и обычно измеряется в «омах на квадрат». (Технически ом — это единица измерения сопротивления, которая изменяется обратно пропорционально проводимости. Большое значение «Ом на квадрат» означает, что поверхность имеет низкую проводимость. количественная оценка того, насколько «проводящая» поверхность.)
Измерение сопротивления поверхности «Ом на квадрат» обычно выполняется путем подключения двух проводов омметра к поверхности определенным образом.(Для антистатических измерений требуется омметр с очень высоким сопротивлением. Для еще более высоких сопротивлений прямые измерения «Ом на квадрат» затруднены, и здесь описаны альтернативные методы.) Если два провода случайно касаются поверхности В некоторых местах будет измерено определенное количество Ом. Если расстояние между двумя проводами увеличить, количество Ом будет больше. Если заменить концы проводов на широкие диски, площадь каждого контакта увеличится. Это уменьшит количество Ом, отображаемое на измерителе.Очевидно, необходимо разработать какой-то способ стандартизации измерения. Стандартный метод — «Ом на квадрат». С помощью этого метода удаляется квадратный образец поверхности (однако на практике существует эквивалентный метод, не требующий разрезания поверхности). Затем на две противоположные стороны квадрата наносится токопроводящая краска, как показано ниже, и два провода подключаются к омметру. (Предположим, что только верхняя поверхность, на которую нанесена проводящая краска, является проводящей.) Если квадрат составляет 1 X 1 дюйм, будет считываться определенное количество Ом.Если новый квадрат размером 5 х 5 дюймов будет удален из образца, он будет показывать то же количество Ом, что и образец 1 х 1 дюйм. Фактически, любой квадрат из того же материала при таком измерении будет показывать одинаковое количество Ом независимо от размера квадрата.
В некоторых случаях требуется очень проводящая поверхность (менее 10 Ом на квадрат). Такая поверхность может потребоваться для проведения значительного электрического тока для очень быстрого разряда статического электричества или для защиты закрытой электроники от внешних помех.Эти поверхности обычно металлические или покрыты металлической краской (содержащей значительное количество порошка никеля, меди или серебра в полимерном связующем и растворителе). Краски по металлу дороги и их необходимо постоянно перемешивать при покраске; в противном случае металлический порошок оседает на дно емкости для краски. Гораздо менее дорогая проводящая краска может быть изготовлена из смеси графитового порошка, пластикового красителя (такого как АБС или полистирол) и растворителя (такого как ксилол и / или ацетон). Лучше всего подходит очень мелкоизмельченный графит (5-10 микрон).Этот тип краски не требует постоянного перемешивания, потому что графит намного легче металла, но имеет несколько меньшую проводимость. (За рецептами красок обращайтесь в AlphaLab.)
Поверхности, которые должны рассеивать статическое электричество, могут быть изготовлены из самых разных материалов. Стекло, хлопок, дерево, бетон и бумага обладают слабой проводимостью, а проводимость зависит от влажности. Поверхность с триллионом Ом (= 1000 гигом или миллион мегом) на квадрат может считаться едва рассеивающим статическое электричество.Чем меньше сопротивление, тем лучше. Стекло, дерево, бетон и бумага обычно достигают этого при влажности 40% или выше. (Чтобы узнать соотношение между омами на квадрат и временем статического разряда, щелкните здесь.) Некоторые типы аэрозольной краски обладают слабой проводимостью. На момент написания этой статьи черная краска марки Krylon «BBQ & Stove» представляет собой хорошую стойкую антистатическую аэрозольную краску с плотностью около миллиарда Ом на квадрат (хотя ее формула со временем изменилась — более ранние партии были изоляционными).