Охлаждение пельтье – Охлаждение элементом Пельтье | hwp.ru

Термоэлектрический охладитель Пельтье

Термоэлектрический охладитель Пельтье.
Принцип действия заимствовал из нета: В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используются контакт двух полупроводников.

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 К/

Описание
Элемент пельтье представляет из себя термоэлектрический преобразователь, который при подаче напряжения способен создать разность температур на пластинах, то есть перекачать тепло или холод. Представленный элемент Пельтье применяется при охлаждении компьютерных плат (при условии эффективного отведения тепла), для охлаждения или нагрева воды. Так же элементы Пельтье используются в переносных и автомобильных холодильниках.

Элемент Пельтье, работающий от 12 Вольт.

•Для нагрева необходимо просто поменять полярность.
•Размеры пластины Пельтье: 40 х 40 х 4 миллиметра.
•Рабочий диапазон температур: от -30 до +70?..
•Рабочее напряжение: 9-15 Вольт.
•Потребляемая сила тока: 0.5-6 А.
•Максимальная потребляемая мощность: 60 Вт.

Забавная вещица, подключаем 12v +- холодит меняем полярность греет. Используется во многих авто холодильниках, во всяком случае у меня такой. Можно приделать компактную схему в бардачок что б летом шоколад не таял! Для использования и эффективного применения нужно использовать радиатор охлаждения — в качестве теста применил радиатор от компьютерного процессора, можно с куллером. Чем лучше охлаждение тем эффект Пельтье сильнее и эффективнее. При подключении к авто акб на 12v ток потребления составил 5 ампер. Одним словом элемент прожорлив. Так как еще не собрал всё схему, а провел лишь пробные тесты, без приборных замеров температур. Так при режиме охлаждения в течении 10ти минут появилась легкая изморозь. В режиме подогрева вода в металлической чашки закипела. Эффективность конечно же этого охладителя низка, но цена девайса и возможность по экспериментировать делают покупку оправданной. Остальное на фото

mysku.ru

Модули Пельтье в ПК: теория и практика

Тема охлаждения компонентов ПК волнует многих пользователей. Большинство из них ограничиваются стандартными воздушными кулерами, отдельные энтузиасты собирают СВО. А что же дальше? Наверняка те, кто серьезно интересовался разгоном, слышали о модулях Пельтье (или термоэлектрических модулях, далее по тексту – ТЭМ; английский вариант – TEC, Thermoelectric Cooler) и их применении в качестве тепло-отводов для сильно-греющихся элементов компьютера.

Однако зачастую даже базовую информацию по правильному использованию этих удивительных устройств найти трудно, отсюда – многочисленные ошибки тех, кто впервые с ними сталкивается. К слову, производители систем охлаждения также экспериментируют с модулями Пельтье, порой представляя на суд публики весьма любопытные концепты. Как работают ТЭМ, действительно ли они так уж небходимы в СО компьютера, как самостоятельно собрать нехитрые кулеры и избежать простейших ошибок, достаточно характерных для новичков, – обо всем этом мы расскажем в данном материале.

Немного теории

Чем же на самом деле являются модули Пельтье? В базовом определении это термоэлектрические преобразователи, принцип действия которых основан на эффекте Пельтье, открытом в далеком 1834 году. Суть данного процесса заключается в возникновении разности температур в месте контакта материалов при протекании сквозь них электрического тока.

Мы не станем вдаваться в подробности истории открытия и научного обоснования специфики работы ТЭМ, поскольку этой теме можно посвятить целую диссертацию. Однако общие понятия упомянем.

Базовая схема устройства ТЭМ

Элементы Пельтье состоят из двух токопроводящих материалов (полупроводников) с разными уровнями энергии электронов в зоне проводимости. Физика протекания тока через подобные вещества такова, что для перехода электронов им требуется определенная подпитка, получаемая в момент прохождения тока через спайку. В таком случае возможно перемещение частиц в высокоэнергетическую зону проводимости от одного материала к другому. Место соприкосновения полупроводников в момент поглощения энергии охлаждается. Изменение направления тока или перемещение электронов из более энергетической зоны в менее насыщенную приводит к нагреву места контакта. Помимо этого, в модулях Пельтье наблюдается тепловой эффект, характерный для любых веществ, сквозь которые пропускают электрический ток. Вообще процессы, присущие ТЭМ, проявляются и в месте контакта обычных металлов, однако определить их без сложных приборов почти нереально. Поэтому основой для модулей служат полупроводники.

Структура термоэлектрического элемента (модуля Пельтье)

Элемент Пельтье состоит из одной или более пар полупроводниковых параллелепипедов разных типов (как в диодах или транзисторах, n- и p-типа). Современная индустрия для этих целей наиболее часто выбирает германид кремния и теллурид висмута. Полупроводники попарно соединяются металлическими перемычками из легкоплавких веществ. Последние выполняют роль термоконтактов и напрямую соприкасаются с керамической пластинкой или подставкой. Пары полупроводников соединены последовательно, разные виды проводимости контактируют друг с другом. С одной стороны модуля имеются лишь n->p-переходы, с другой – p->n. Течение тока вызывает охлаждение и нагревание противоположных групп контактов. Поэтому можно говорить о переносе током тепловой энергии с одной стороны модуля Пельтье на другую и, как следствие, возникновении разности температур на пластинке. Правильное применение модулей позволяет извлечь некоторые выгоды для промышленных, в том числе компьютерных СО. К слову, элементы могут быть использованы и в качестве электрогенераторов – основываясь на тех же принципах работы, физика протекающих внутри процессов объясняется эффектом Зеебека (условно говоря, тот же эффект Пельтье с «противоположным знаком»).

Плюсы и минусы применения ТЭМ

Зачастую к достоинствам модулей Пельтье относят:

  • сравнительно небольшие габариты;
  • возможность работы и на охлаждение, и на нагревание системы;
  • отсутствие движущихся частей, механических составляющих, подверженных износу.

В то же время ТЭМ обладают рядом недостатков, существенно сдерживающих их повсеместное практическое применение. Среди них следующие:

В USB-холодильнике также используется модуль Пельтье
  • низкий КПД модулей;
  • необходимость наличия источни- ка тока для их работы;
  • большая потребляемая мощ- ность для достижения заметной разности температур и, как следствие, существенное тепло- выделение;
  • ограниченные габариты и полезные характеристики.

Однако, невзирая на негативные характеристики модулей Пельтье, они нашли свое применение в ряде продуктов. ТЭМ выгодны в первую очередь там, где энергетическая эффективность охладителя некритична, чем меньше – тем лучше. Элементы служат для охлаждения устройств с зарядовой связью в цифровых фотокамерах, позволяющих добиться заметного уменьшения теплового шума при длительных экспозициях. Модули Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с целью стабилизации длины волны их излучения. Возможно использование нескольких ТЭМ, составленных последовательно в виде каскадов (холодная сторона одного охлаждает горячую другого), благодаря чему реально достичь очень низких температур для устройств, обладающих малым тепловыделением. Элементы Пельтье – основа компактных холодильников, в первую очередь автомобильных. Их применяют и в миниатюрных сувенирах из области компьютерной периферии, и в производительных СО в качестве основных или вспомогательных компонентов. Именно о последнем варианте мы и поговорим более подробно.

Модули Пельтье в ПК: практика

Элемент Пельтье размещается между водоблоком и медной «буферной» пластинкой

При переходе к практической реализации СО на базе ТЭМ нужно сделать несколько оговорок, которые позволят правильно подобрать параметры итоговых конструкций. Нередко эксперименты новичков заканчиваются плачевно: либо температуры на «холодной» стороне модулей во время работы получаются выше, чем на горячей, либо системы демонстрируют откровенно слабые результаты даже по сравнению со стоковыми кулерами без элементов Пельтье. Причины зачастую кроются в неправильном расчете (или построении СО наугад). Дело в том, что любой ТЭМ имеет свои штатные характеристики, обычно выделяют два значения (рассмотрим их на примере модуля ТЕС1-12709 с заявленной максимальной мощностью 136 Вт), например, пишут, что ΔTmax Qcmax=0(°С) 66 и Qcmax ΔTmax=0(W) 89.2. Перефразируя данное выражение: модуль способен обеспечить максимальный перепад температур между сторонами, равный 89,2 ºС при отсутствии тепловой нагрузки и 0 ºС при наличии таковой на «холодную» сторону 66 Вт. Таким образом, полезная нагрузка модуля лежит в пределах от 0 до 66 Вт, в идеале – чем меньше – тем лучше и тем большую разницу температур обеспечит ТЭМ. В то же время любой модуль имеет другую характеристику – максимальную потребляемую мощность, которую тоже нужно отвести от него с помощью системы охлаждения. Для рассматриваемого ТЕС1-12709 Umax (В) равно 15.2 В, I max- 9 А. Следовательно, при указанных параметрах имеем энергопотребление 136,8 Вт, что, согласитесь, немало.

Система охлаждения должна успешно отводить тепло непосредственно от модуля (обеспечивая максимально возможную низкую температуру «горячей» стороны) и компонентов ПК. Примерный КПД такой системы можете вычислить сами – при полезной составляющей в 150–200 Вт (приблизительно столько выделяют современные разогнанные CPU) для получения хоть каких-то видимых результатов придется затратить не менее 600–800 Вт электрической мощности и отвести не менее киловатта тепловой. Именно поэтому производительные СО на базе модулей Пельтье не получили широкого распространения. Впрочем, прецеденты сравнительно успешной реализации гибридных кулеров известны, а мы попытаемся создать свои – маломощный и оптимальный. Чтобы избежать ограничений в виде недостаточного теплоотвода, на «горячую» сторону ТЭМ поместим производительные водоблоки, подключенные в контур СВО. Кстати, модули Пельтье нельзя устанавливать непосредственно на ядро/теплораспределительную крышку чипов – тонкая керамическая подкладка не способна поддерживать эффективную теплопередачу ко всем полупроводниковым парам, составляющим ТЭМ. Для этой цели лучше всего подойдет промежуточный «буфер» – медная пластинка толщиной 5–7 мм, полностью закрывающая поверхность модуля. К слову, оптимальный режим эксплуатации элементов Пельтье обеспечивается при пониженных напряжении и потребляемом токе. Приближение этих параметров к максимальным существенно повышает тепловую отдачу пластины, однако не так ощутимо – полезную составляющую.

Мы решили по максимуму охладить графический чип видеокарты Radeon HD 4350 и CPU Core 2 Duo E8500, попытавшись разогнать данные компоненты. Для отвода тепла от GPU использовались уже упомянутый ТЕС1-12709 (максимальная потребляемая мощность – 136 Вт) и самодельный медный водоблок, в паре с процессором работали ТЕС1-12726 (395 Вт) и один из лучших промышленных водоблоков Swiftech Apogee GT. Модули подключались напрямую к компьютерному БП в 12-вольтовую цепь. Применение киловаттного be quiet! Dark Power PRO BQT P6PRO-1000W давало все основания не переживать за недостаток мощности для питания ПК и элементов системы охлаждения. В контуре СВО трудились два «двойных» радиатора под 120-миллиметровые вентиляторы и помпа Hydor Seltz L30 (производительностью 1200 л/ч на холостом ходу).

Основа мощного чиллера – «бутерброд» из трех водоблоков и восьми ТЭМ, расположенных между ними

В случае охлаждения компонентов до температур ниже комнатных (в частности, ниже «точки росы») стоит ожидать появления конденсата на переохлажденных поверхностях. Понятно, что вода в таком виде является главным врагом пользователя, и ее выделение необходимо предупредить. Делается это путем тщательной теплоизоляции любых поверхностей (частей РСВ, околосокетного пространства с обеих сторон платы, собственно ТЭМ, теплораспределителя процессора и GPU) материалами, не пропускающими воздух. Лучше всего для этих целей подходит стандартный теплоизоляционный материал для труб водоснабжения (на основании вспененного каучука), специальные замазки, отдельные виды поролона, поставляемого в комплекте с компонентами ПК, на худой конец термопаста и бумажные салфетки. В последнем случае допустима эксплуатация ПК лишь для проведения кратковременных бенчинг-сессий. Теплоизоляция обеспечит повышение общего КПД установки.

Итоговые температуры, полученные в различных режимах работы компонентов, их сравнение с показателями, обеспечиваемыми исключительно системой водяного охлаждения, приведены в диаграмме. Как видите, модули Пельтье позволили понизить температуру компонентов ощутимо ниже комнатной (в зависимости от загрузки). В таких условиях не составило особого труда разогнать процессор до частоты 4,3 ГГц с повышением напряжения питания до 1,35 В, а GPU заставить функционировать на 800 МГц (штатное значение – 600 МГц). В то же время мы получили ощутимый нагрев СО тестового стенда (в корпусе ситуация усугубилась бы более существенно) и резкий рост уровня энергопотребления ПК (собственно, вся конструкция потребляет больше, чем отдельно взятый компьютер на базе компонентов тестового стенда). Подобное решение однозначно пригодится в зимнюю пору, однако летом вряд ли порадует большинство пользователей.

Готовы ли вы на такие жертвы ради достижения сравнительно низких температур на компонентах ПК? Решайте сами, но помните о базовых советах, приведенных в этой части материала, – они помогут правильно применить модули Пельтье на практике. Использование систем охлаждения на основе ТЭМ разумно и оправданно в случае с маломощными компонентами (чипсетами материнских плат, GPU низко- и среднеуровневых видеокарт). Не забывайте и о теплоизоляции охлаждаемых элементов – ведь конденсат является главным врагом системы во время экспериментов с ТЭМ.

Выводы

Подытоживая вышесказанное относительно особенностей работы модулей Пельтье и целесообразности их практического применения, повторимся: ТЭМ имеют упомянутые преимущества и недостатки, которые не позволяют дать однозначного ответа на вопрос: «А стоит ли…?» Их использование оправданно для отвода незначительных тепловых нагрузок (именно к таковым относятся компактные холодильники, термостатированные лазеры; СО для маломощных компонентов ПК – чипсетов и отдельных GPU).

На базе элементов Пельтье можно создавать различные самодельные охлаждающие и нагревающие устройства, существуют примеры успешной реализации маломощных генераторов. Но прежде чем заниматься изготовлением подобных конструкций, ознакомьтесь все же с теоретической составляющей – предварительная подготовка избавит от ошибок и сэкономит время в момент практического воплощения проектов.

Говорить о применении модулей Пельтье в ПК следует достаточно осторожно: прочитав о получении низких температур на охлаждаемых элементах, новички часто забывают о значительной потребляемой и выделяемой мощности подобных СО, не учитывают параметры и «запас прочности» отдельно взятой конструкции. ТЭМ заинтересуют в первую очередь оверклокеров, для которых любой выигрышный градус и каждый мегагерц важны. Рассматриваемые элементы – промежуточное звено между классическими системами водяного охлаждения и чиллерами или фреонками, работающими по принципу фазового перехода. Впрочем, применение ТЭМ отнюдь не назовешь простым, поэтому прежде чем приступать к серьезным экспериментам, тщательно взвесьте все «за» и «против».

Готовые СО на базе ТЭМ

Модули Пельтье используются производителями систем охлаждения для ПК в качестве основных и вспомогательных компонентов кулеров. Порой из этого получаются эффектные действенные устройства, иногда все выходит не так гладко, как изначально задумывалось. Мы решили вспомнить об основных СО, применяющих ТЭМ, которым прочили роль революционеров своего времени.

Thermaltake SubZero4G Один из первых кулеров с элементом Пельтье, наделавший сравнительно много шума в сфере охлаждения CPU (2003 год). Однако невысокий запас прочности, значительное по тем временам энергопотребление, громоздкость конструкции и шумность в работе не позволили ему закрепиться на рынке. Появись эта модель на год-два раньше – возможно, все обернулось бы иначе.

Titan Elena Суперкулер для видеокарт, построенный по тому же принципу, что и Titan Amanda: одна половина радиатора работает непосредственно на отвод тепла от GPU, другая охлаждает горячую сторону ТЭМ. В свое время оказался одним из лучших во время тестирования СО для графических адаптеров. (Мы писали о нем в «Домашнем ПК» в 2007 году.)

Swiftech MCW6500-T Самое мощное современное решение для охлаждения CPU, использующее элемент Пельтье. Представляет собой производительный водоблок, отводящий тепло от ТЭМ (около 400 Вт потребляемой электрической мощности), который, в свою очередь, создает оптимальный температурный режим процессора. Эта система способна обеспечить функционирование Core i7 на частоте порядка 4 ГГц при температуре около 0 ºС (режим простоя) и 20–30 ºС в режиме максимальной нагрузки.

Swiftech MCW60-T Аналогично процессорному решению представляет собой высокопроизводительный водоблок для графического адаптера, дополненный модулем Пельтье. В зависимости от TDP видеочипа способно удерживать его температуру на уровне комнатной или ниже.

Cooler Master V10 Элементы Пельтье этой СО охлаждают часть тепловых трубок. Подход достаточно интересный и правильный, применение модулей позволяет сбить пару-тройку градусов на процессоре. Однако экономическая целесообразность такого хода – под большим вопросом, ввиду того что V10 при существенной цене не в состоянии обогнать лучшие воздушные суперкулеры. Скорее всего, виноваты особенности конструкции и недостаточная мощность ТЭМ.

Titan Amanda Серия достаточно современных процессорных суперкулеров на тепловых трубках, использующих термоэлектрический модуль (2007–2008 гг). Часть радиатора отводила тепло непосредственно от ТЭМ, тогда как другая половина охлаждала греющийся компонент. Подобный подход к проектированию позволяет избежать резкой перегрузки СО вследствие превышения лимитов тепловыделения модуля Пельтье. Кулеры линейки Amanda демонстрировали отличные результаты с процессорами, обладающими сравнительно невысоким TDP.

XtremeLabs.org MONSTER T.E.C. Project

Владельцев СВО и тех, кто собирается обзавестись жидкостными системами, могут заинтересовать так называемые чиллеры на базе элементов Пельтье. В зависимости от типа подключения ТЭМ в контур они позволят немного понизить температуру теплоносителя, а при создании мощных СО даже обеспечат температуру хладагента, близкую к нулевой.

Известный нашим читателям энтузиаст Wehr-Wolf давно интересовался затронутой темой эффективного охлаждения компонентов ПК и их дальнейшего экстремального разгона. Начиналось все в далеком 2005 году с теоретических набросков, рассуждений и одного из главных компонентов системы – массивного «бутерброда», состоящего из больших водоблоков. Однако заброшенные на длительное время задумки удалось реализовать лишь совместно с автором данного материала, в середине этого года запустив энтузиастский проект XtremeLabs.org MONSTER T.E.C. Project.

Первый пуск ТЭМ-чиллера в полевых условиях

Принцип работы системы достаточно прост: модули Пельтье (8 ТЭМ с максимальной потребляемой мощностью 136 Вт каждый) охлаждают с двух сторон большой медный водоблок, а сами, в свою очередь, охлаждаются аналогичными водоблоками. «Холодный» и «горячий» контуры СВО полностью разделены между собой. Для питания такого количества ТЭМ в процессе первого запуска использовались два компьютерных БП с общей заявленной мощностью 1200 Вт, в качестве охладителя «горячего» контура выступала СЖО с двумя радиаторами под два 120-миллиметровых вентилятора каждый, прокачиваемая мощной помпой. Однако даже такой СВО оказалось недостаточно, и радиаторы пришлось продувать высокопроизводительными промышленными вентиляторами. В «холодный» контур были подключены помпа Hydor L20 II и водоблок Swiftech Apogee GT, охладителем выступал большой водоблок, контактирующий с «холодной» стороной ТЭМ. В результате первого эксперимента удалось добиться температуры воды в контуре порядке 5–7 ºС, при этом в качестве нагрузки для системы использовался процессор Core i7 965 Extreme Edition, разогнанный до частоты 4 ГГц.

С одной стороны, полученные результаты действительно впечатляют – подобные температуры при таких нагрузках способны обеспечить разве что чиллеры на основе систем фазового перехода, с другой – а стоит ли овчинка выделки? Чудовищная потребляемая мощность системы, громоздкая СО «горячего» контура, высокая общая стоимость оправдываются лишь концептуальным статусом XtremeLabs.org MONSTER T.E.C. Project, на данный момент находящимся в стадии доработки.

itc.ua

Элементы Пельтье или мой путь к криогенным температурам / Habr

Многие слышали про «магические» элементы Пельтье — при прохождении тока через них одна сторона охлаждается, а другая — нагревается. Это работает и в обратную сторону — если одну сторону нагревать, а другую охлаждать — вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей — есть точка максимальной мощности, и если работать далеко от неё — КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями, так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Классические «китайские» элементы Пельтье — это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В — то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Количество перенесенного тепла пропорционально току. Но помимо этого есть паразитный нагрев от протекания тока, и паразитная теплопроводность — все это делает элемент Пельтье хоть сколько-то эффективным в очень узких условиях.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С — так что если элемент случайно останется без охлаждения и перегреется — то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие — как керамика, так и сами охлаждающие элементы — я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:


Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея — вынести все на морозный воздух, но есть проблема — кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам — к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях — добавим килограммовую медную пластину — тепловой аккумулятор.


Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.


Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда — подключаем ток — на 12В температура моментально начинает расти, при 5В — падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…


Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом — получится жидкий азот для «бедных» — в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей — получить обморожение существенно легче.

habr.com

Кулер с элементом Пельтье

Доброго времени суток!
В данном обзоре пойдет речь о мини холодильнике.
Вернее даже о мобильном холодильнике, работающем от 12в.
Т.е. в автомобиль, на природе, на рыбалке,…

Перейдем к тому что получили:
Пришла посылка замотанная во вспененный полиэтилен и все это было в обычном черном пакете.
Помят уголок скорее всего при пересылке. Да и не проблема это, можно выровнять обычными плоскогубцами.


Как видно на фото, «вентиляторы» прикреплены обычными саморезами.
И можно снимать вентилятор с радиатора без откручивания саморезов. Туго-но снимаются и так же одеваются обратно. (скорее удобно чем не удобно)

Откручиваем радиатор и снимаем его. Под ним свежая термопаста. Один уголок не до конца прилегал, исправил выравниванием радиатора.


Вот собственно сам элемент Пельтье. со своими размерами.
Что же оно такое?)
Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока.
Эффект Пельтье́ — термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников.
Если быть кратким, то при подачи напряжения на элемент- одна сторона сильно нагревается, а другая сильно охлаждается.

Ну давайте измерим температуру радиатора до включения.

Теперь подадим напряжение с аккумулятора и снова измерим температуру.

Ухты всего-то прошло 5сек и так резко упала температура на радиаторе.

А вот такая стала на том который отводит тепло.

Продолжим измерения:

Итого -3 градуса по Цельсию мы достигли через 1,5минуты!
А на радиаторе снимающим тепло температура так и не изменилась.

Но мы это все брали для готового изделия! И так, приступим.
Да, сразу скажу, что у меня есть термобокс самодельный, с толщиной пенопласта 4см и внутри обклеен фольгированным вспененным полиэтиленом.
Сначала я хотел его сразу и оборудовать этим кулером, но сегодня нашел в гараже вот такую коробочку очень похожую на мой термобокс, только меньшую по размерам и с тощиной стенок всего 1,3см с размерами (внутренними) 23,5х20,5х13 что составляет 0.006м3
Ну, для опытов самое оно!
Вырезаем отверстие для радиатора охлаждения и вставляем его в крышку фиксируя по углам каплей термоклея (мы то помним, что радиатор не нагревается выше 35)

Причем никак не изолируем некоторую часть теплового радиатора (которая немного видна)
Нам нужно просто понять оно работает или нет?

Температура в боксе до

и температура в боксе через 6 минут

Поставив стакан с водой и по прошествии 37 минут (температура воды была 24) температура воды была 16 такая себе прохладная водичка) Охладить баночки с пивом-подходит)
Да, потребление составило 2,54А так что либо в машине либо с хорошим аккумулятором.

Но для моих потребностей самое то!

В общем вывод:
Это работает!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Модуль на элемент Пельтье + интересное применение.

Приветствую тебя читатель banggood астрологи объявили неделю Пельтье поэтому в обзоре речь пойдёт об одном интересном применении данной штуковины. Милости просим под CUT.

Начнём с ликбеза

Как говорит википедия «Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока.» Я уверен что после этой фразы понятнее не стало ).

Ок попробуем иначе. Представьте себе специфический аквариум, состоящий из зон двух типов. В первой зоне аквариума рыбки плавают быстро во второй медленно. Ещё представим себе на границах зон лопасти, крутящиеся в воде. Правила следующие 1) рыбка переплывает в другую зону только тогда когда её скорость соответствует скорости установленной для зоны.2) при переходе границ зоны рыбка может взаимодействовать с лопастями для увеличения либо для уменьшения своей скорости. Теперь представим несколько зон расположенных последовательно. (зоны с более высокой скоростью назовём З+ с низкой З- ) Рыбка находится в З+ она хочет перейти в З- она взаимодействует с лопастью на границе и начинает плыть медленнее, при этом лопасти (на границе З+/З-) начинают крутиться быстрее. Далее рыбка хочет перейти в следующую зону З+ ей надо ускориться она взаимодействует с лопастью на границе З-/З+ и ускоряется при этом лопасть начинает крутиться медленнее. Далее всё повторяется. Можно заметить что одни лопасти будут замедлятся а другие ускорятся. Элемент Пельтье работает по аналогичному принципу. Вместо рыбок там электроны вместо скорости рыбок энергия электронов в полупроводниках. При протекании тока через контакт 2х полупроводников, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, При этом чем больше ток тем выше эффект переноса энергии, энергия именно переноситься (а не волшебным образом пропадает) от «холодной» стороны к «горячей», поэтому элемент Пельтье способен охлаждать предметы до температуры ниже комнатной (проще говоря это полупроводниковый тепловой насос). Если у Вас задача просто отвести тепло от процессора транзистора и т.д. применение элемента Пельтье невыгодно т.к. Вам понадобиться Радиатор способный передать в окружающую среду тепло от охлаждаемого объекта + тепло возникающее при работе элемента Пельтье. Думаю с теорией покончено можно двигаться дальше.
Давайте посмотрим как по мнению спонсора обзора выглядит 13,90 зелени.
Модуль представляет из себя этакий 5 уровневый бутерброд, он состоит из пары радиаторов и вентиляторов и собственно самого элемента Пельтье.Вентилятор большего размера предназначен для отвода тепла. При приложении усилия его можно снять без выкручивания шурупов. Вентилятор самый обыкновенный ( Питание 12В размер 90мм) прикрыт решёткой, изначально вентилятор установлен на отвод воздуха.На противоположной стороне малый вентилятор (Питание 12В размер 40мм)Малыш прикручен на совесть Посмотрим на радиаторыБольшой радиатор размером 100мм*120мм высота 20ммМалый радиатор 40мм*40мм высота 20мм. Радиаторы скреплены двумя винтами, в малом радиаторе нарезана резьба. При снятии радиатора обнаружена термопаста это хорошо, но можно увидеть что есть недожим.Контакт с большим радиатором идеальным тоже не назовёшь.Главный вывод — если хотите выжать из этого модуля максимум то обязательно загляните под радиаторы. А если стереть термопасту то можно увидеть что тут установлен элемент TEC1-12705 (размер 40мм*40мм*4мм) хотя заявлен более мощный TEC1-12706. Мануал на TEC1-12705 peltiermodules.com/peltier.datasheet/TEC1-12705.pdf
Снимем малый радиатор и попробуем запустить модуль замерив температуры «тёплой» и «холодной» сторон.Температура «холодной» стороны -16,1 «горячей» 37,5 дельта 53,6. ток потребления при 12В составил 4,2А. На режим элемент Пельтье вышел через 90с.

А теперь весёлая часть.
Находим металлическую и блестящую пластину и делаем в ней отверстие для термопары.Кладём термопасту и устанавливаем термопаруДалее изготавливаем узконаправленный фотоприёмник и фотодиод из чёрной бумаги и обычных компонентовСобираем готовое устройство вспоминая правило «угол падения равен углу отражения»Кто догадался что это такое? Это прибор (ну точнее модель для демонстрации принципа действия) для определения температуры точки росы/относительной влажности воздуха. Действует следующим образом: ИК-светодиод светит в отражающую пластинку, после отражения свет от ИК-светодиода попадает на ИК-фотодиод. С обратносмещённого ИК-фотодиода снимается сигнал напряжения. При охлаждении пластинки до температуры точки росы на ней начинает собираться конденсат, интенсивность отражаемого излучения падает, сигнал на фотодиоде изменяется. Регистрируя температуру пластины, и окружающего воздуха можно найти относительную влажность. Для работы я использовал Brymen BM869 (с самодельным кабелем и софтом) и Uni-t UT61E Ниже представлен результат Рыжий график температура пластины, синий график сигнал с фотодиода. Будем считать момент, когда напряжение с фотодиода изменилось на половину от общего изменения напряжения есть момент выпадения конденсата. Исходя из поставленных условий измеренная температура точки росы в комнате +9С.Температура окружающего воздуха 26,7 (на графиках не отображалась т.к. она была неизменна).Одновременно я запустил модуль HTU21 и наблюдал за показаниями в терминале.(скриншот терминала добавлен к графику).Далее я использовал онлайн калькулятор planetcalc.ru/248/ для пересчёта влажности в температуру точки росы Результат пересчёта влажности с HTU21 в температуру точки росы совпал с измеренной напрямую температурой точки росы. Это значит, что если описанным выше методом определять точку росы, а затем делать пересчёт, то можно достаточно точно определять влажность (Ну естественно если делать всё по-взрослому). Данный метод называется методом охлаждаемого зеркала, а гигрометры, построенные на таком принципе, называются конденсационными. Надеюсь вам понравился обзор, и Вы узнали для себя что-то новое. Всем спасибо за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Термоэлектрический кулер Titan Amanda TEC / Корпуса, БП и охлаждение

«Гонка мегагерц», порожденная Intel при продвижении процессоров с архитектурой Net Burst, вызвала ответный всплеск на рынке систем охлаждения. Неудивительно, столь «горячие» процессоры надо охлаждать куда более эффективными средствами, чем простой алюминиевый радиатор с вентилятором. Особенно, если вы желаете получить от процессора больше, чем он вам дает в первозданном виде. Именно эра чипов Prescott породила новое движение в системах охлаждения – использование тепловых трубок. На данный момент технология тепловых трубок используется в большинстве современных кулеров как для процессоров, так и для видеокарт. В системах охлаждения элементов материнских плат, везде, где используется охлаждение, уже можно встретить тепловые трубки. Но до их появления воплотиться в жизнь пыталась еще одна интересная технология – использование термоэлектрических модулей в основании кулеров. Термоэлектрический модуль представляет собой набор из множества элементарных элементов Пельтье, и основан на одноименном эффекте, открытом французским часовщиком Жаном Пельтье еще в далеком 1834 году.

Как работает элемент Пельтье

Жан Пельтье обнаружил, что при протекании электрического тока через цепь, состоящую из разнородных проводников, в местах контакта между этими проводниками выделяется тепло. А если поменять направление тока, то в этом же месте тепло начинает наоборот поглощаться. Это свойство было названо в честь его первооткрывателя — «эффектом Пельтье». Как показали дальнейшие исследования ученых, сильнее всего эффект Пельтье проявляется в местах контакта между двумя полупроводниками разного типа: n- и p-. Наглядно это можно представить на следующей диаграмме: При таком расположении в местах n-p перехода тепло поглощается, а в местах p-n перехода наоборот – выделяется. Именно так и устроен термоэлектрический элемент – он представляет собой пластину, внутри которой находится множество последовательно соединенных p- и n- проводников, таким образом, что все p-n переходы находятся с одной стороны, а все n-p переходы – с другой. В итоге, при прохождении электрического тока через эту цепь, одна сторона элемента будет поглощать тепло, а вторая – выделять. С обеих сторон термоэлектрический модуль (далее «ТЭМ») накрывают изолирующие керамические пластины. Толщина стандартного термоэлектрического модуля составляет около 2-3 мм, что позволяет использовать этот модуль в самых разнообразных охлаждающих конструкциях. Более понятным языком принцип работы ТЭМ можно описать следующим образом: ТЭМ на элементах Пельтье создает разницу температур на своих сторонах, и величина этой разницы зависит от мощности модуля. Но есть и особенность. Т.к. элемент Пельтье, по сути, представляет собой простейшее сопротивление для электрического тока, а это значит, что потребляемая термоэлектрическим элементом мощность затрачивается не только на перенос тепла, но и большей своей частью выделяется просто в виде тепла. Т.е. на практике ТЭМ не только переносит тепло с одной стороны на другую, но еще и добавляет немало своего собственного тепла. Для того чтобы получить низкие температуры на «холодной» стороне ТЭМ, надо иметь достаточно эффективный отвод тепла на его «горячей» стороне. Если на данном этапе вам стал непонятен смысл использования ТЭМ в целях охлаждения, то позволим вам пояснить, что, если суметь охладить «горячую» сторону ТЭМ до разумной комнатной температуры, то на его «холодной» стороне можно получить температуру, близкую к НУЛЮ. А это открывает множество направлений, в которых использование ТЭМ может принести немало пользы. В первую очередь, это, конечно же, холодильное оборудование, но нас более всего интересует та маленькая, но очень интересная ветвь – «использование ТЭМ для охлаждения электроники». Представьте себе – если ТЭМ поместить на основании процессорного кулера холодной стороной к процессору, а горячей к основанию кулера, то мы получим весьма любопытный «бутерброд», который при достаточно высокой эффективности самого кулера может создавать на процессоре температуру, которая может опускаться ниже комнатной.

Немного истории

Пожалуй, самым знаменитым кулером, применяющим эту технологию, можно смело назвать ThermalTake SubZero 4G. Это устройство авторства инженеров ThermalTake названо в честь знаменитого в игровом мире персонажа Mortal Kombat, который умел замораживать противников, в буквальном смысле этого слова. Это название весьма прозрачно намекает, что этот кулер, как и одноименный герой, сможет заморозить ваш процессор. Конструкцию ThermalTake SubZero 4G можно наглядно рассмотреть прямо на его фотографии: Принцип работы этого знаменитого кулера просматривается на фотографии очень четко: тепло от ядра процессора AMD K7 (Athlon XP, Duron) при помощи медной и алюминиевой пластины равномерно распределяется на всю поверхность термоэлектрического элемента, ТЭМ это тепло интенсивно поглощает, передавая его на радиатор, охлаждаемый обычным вентилятором. Теоретически, если достаточно эффективно охладить радиатор, то температура на процессоре будет приятно низкая. Все бы ничего, но вместе с видимыми преимуществами, такая конструкция таит в себе и некоторые проблемные моменты. К примеру, если температура горячей стороны ТЭМ будет близка к комнатной температуре, то температура холодной стороны будет приближаться к нулевой отметке, а это влечет за собой главное зло экстремального охлаждения – появление конденсата. Если капельки воды появятся на поверхности процессора или материнской платы, то вы сами понимаете, что это с большой степенью вероятности выведет их из строя. Вторая проблема кулера такого типа заключается в том, что если во время работы ТЭМ является крайне эффективным проводником тепла, то при отключении или поломке он становится столь же эффективным тепловым изолятором. Иными словами, при выходе из строя термоэлектрического модуля, находящийся под ним процессор перестанет охлаждаться вообще. В такой ситуации может помочь только автоматическая система защиты процессора от перегрева, которая просто выключает компьютер при достижении критической температуры. Для того чтобы решить эти проблемы вместе с кулером шел целый блок управления, который реализовывался в виде PCI-платы внушительного размера и представлял собой блок питания и систему автоматического регулирования ТЭМ. Термодатчик, встроенный в основание кулера ThermalTake SubZero 4G передавал данные о температуре на этот блок управления, и при достижении критично низкой температуры мощность ТЭМ автоматически уменьшалась (понижался ток питания ТЭМ). Это позволило не только уберечь термоэлектрический кулер от появления конденсата, но и экономить энергию в те моменты, когда процессор ничем не нагружен. Если же ТЭМ выйдет из строя, то этот же термодатчик зафиксирует резкий рост температуры и сообщит об аварии звуковой сигнализацией. Этот мини-обзор кулера ThermalTake SubZero 4G позволил вам получить общее представление о принципе работы кулера с термоэлектрическим модулем. Но все же ThermalTake SubZero 4G так и не получил особого распространения и популярности. Спросите почему? Потому что его цена превышала отметку 100 $, а эффективность на практике столкнулась с одной проблемой – эта система охлаждения выделяла столько тепла, что атмосфера внутри корпуса приобретала уверенный тропический характер. Общая жара в корпусе вызывала не только перегрев остальных частей системы, но и заметное понижение эффективности самого кулера – ведь вентилятор обдувал радиатор уже горячим воздухом. Даже корпуса с эффективной вентиляцией не смогли до конца исправить эту проблему. После неудачи ThermalTake SubZero 4G про термоэлектрические кулеры надолго забыли. Но, как оказалось, напрасно…

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

обзор кулера Thermaltake SubZero 4G — Ferra.ru

Как уже говорилось, термодатчик на основании передает информацию контроллеру, и тот уже на основании этих и других (подозреваю, что термодатчик есть также и на самом элементе Пельтье, но его не видно) данных принимает решение о том, в каком режиме и с какой мощностью работать элементу Пельтье, и какое напряжение подать на вентилятор. Это могут быть как стандартные 12 В, так и два других, более низких напряжения: 6 и 8 В, при подаче которых скорость вентилятора, разумеется, сильно упадет, и шум, им издаваемый, тоже снизится. Контроллеру можно запретить снижать скорость вращения — для этого и предусмотрена кнопка переключения режимов работы, коих, собственно, всего два: Power mode (всегда 4800 об/мин, достаточно шумный режим), и Silent mode, в котором скорость вращения определяется контроллером (и шестивольтовый, и восьмивольтовый режимы — очень тихие). Кнопка висит на отдельном проводе, и может быть вынесена на переднюю панель корпуса и подведена, например, под кнопку Turbo, если она у кого-нибудь еще осталась.

Кстати, фанаты тишины могут успокоиться, и идти в магазин за системой водяного охлаждения Thermaltake  Aquarius II (http://www.ferra.ru/online/supply/25229/) — более тихим, чем обычные конвективные кулеры, термоэлектрическая система не будет никогда. Причина проста — к рассеиваемой процессором энергии добавляется энергия, потребляемая, и, соответственно, выделяемая самим элементом Пельтье. И всю эту энергию приходится отводить обычному радиатору, который для выполнения двойной работы, конечно же, должен быть более мощным, а значит, и более шумным. Кстати, по этой же причине радиатор будет иметь такие температуры, какие ему и не снились при работе непосредственно на процессоре — скажем, 90 градусов на горячей стороне элемента Пельтье, и, соответственно, внизу радиатора — это норма. Появление в корпусе источника тепла с такой неприемлемой для большинства окружающих элементов температурой и мощностью потребует пересмотра всей картины охлаждения — например, воздух из околопроцессорной зоны нужно будет выводить быстро и качественно, что потребует большего количества вентиляторов (лучше всего с воздухозаборником, направленным непосредственно на процессорный кулер — так горячий воздух будет выводиться максимально полно), и, соответственно, обеспечит дополнительный шум.

Поскольку прилагаемая карта — все же преобразователь питания, причем довольно мощный, некоторое количество энергии рассеивается непосредственно на ней. Проще говоря, «плата» греется, причем довольно сильно. И, хотя на ней нет никакого крепления, все же крайне желательно охлаждать ее хоть каким-нибудь вентилятором (снова дополнительный шум). Да и устанавливать вплотную к другим PCI-устройствам этот блок питания также не рекомендую — могут возникнуть проблемы с тепловым режимом этих устройств.

Дополнительный разъем питания служит для регулируемого подключения вентилятора. Его рабочее напряжение и, соответственно, режим работы будут совпадать с режимом работы вентилятора на процессоре. Сам 80-миллиметровый вентилятор также входит в комплект поставки. Моддеры будут рады — он подсвечивается тремя яркими синими светодиодами, и, поскольку его крылья прозрачны, эффект получается весьма интересный.

Тестирование проводилось в корпусе ElanVital P10 с одним дополнительным (на выход) вентилятором. Температура окружающей среды — 27 градусов, начальная температура воды — 20 градусов. Охлаждался процессор AMD Athlon 1400 Мгц, разогнанный изменением коэффициента умножения до частоты 1533 Мгц. Между сердечником и процессором лежала паста АлСил-3. Информация о температурах снималась со штатных датчиков системы, а также с помощью внешней термопары с помощью программы Motherboard Monitor 5.2.2.0. Нагружался процессор утилитой burnK7 из комплекта CPUBurn.

www.ferra.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о