Падение напряжения на диодах: напряжение на диоде | Электрознайка. Домашний Электромастер.

Содержание

напряжение на диоде | Электрознайка. Домашний Электромастер.

Есть другой способ снижения  напряжения на нагрузке, но только для цепей постоянного тока. Про первый способ смотри здесь.

Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении,  диодов.

Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него —  от 0,5 до 1,2 Волта.

На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта.  Исходя из того, на сколько вольт  нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.

Чтобы понизить напряжение на 6 В необходимо приблизительно включить:  6 В : 1,0 = 6 штук кремниевых диодов, 6 В : 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.

Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?

На Рис 1 — добавочное сопротивление — резистор (проволочное сопротивление), Рис 2 — добавочное сопротивление — диод.

У резистора (проволочного сопротивления)  линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.

Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В.   На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.

Совсем другая картина будет если вместо резистора будет цепочка диодов.

Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.

Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.

Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем  ток в рассчитываемой цепи.

Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.

В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).

Проверка диодов | Fluke

Проверка диодов цифровым мультиметром выполняется одним из двух способов:

  1. Режим проверки диодов: рекомендуется в большинстве случаев.
  2. Режим измерения сопротивления: обычно используется в тех случаях, когда на мультиметре не предусмотрен режим проверки диодов.

Примечание. В некоторых случаях для проверки требуется отсоединить один выход диода от цепи.

Что необходимо знать о проверке диодов в режиме измерения сопротивления:

  • Не всегда позволяет определить, исправен диод или нет.
  • Проверку в таком режиме не рекомендуется проводить для подключенного к цепи диода, поскольку показания могут быть ошибочными.
  • В некоторых областях применения этот режим МОЖНО ИСПОЛЬЗОВАТЬ для подтверждения неисправности диода после того, как проверка диодов выявила неисправность.

Для оптимальной проверки необходимо измерить падение напряжения на диоде при прямом смещении. Диод с прямым смещением действует как замкнутый переключатель, который обеспечивает прохождение тока.

В режиме проверки диодов мультиметр создает небольшое напряжение между измерительными проводами. Мультиметр показывает падение напряжения, когда измерительные провода подключены к диоду с прямым смещением. Проверку диодов следует выполнять следующим образом:

  1. Убедитесь, что a) в цепь не поступает питание, и б) на диоде отсутствует напряжение. Напряжение в цепи может присутствовать из-за заряженных конденсаторов. В этом случае необходимо разрядить конденсаторы. В соответствии с требованиями настройте мультиметр на измерение напряжения переменного или постоянного тока.
  2. Переведите регулятор (поворотный переключатель) в положение режима проверки диодов ( ). Эта функция на регуляторе может быть совмещена с другой функцией.
  3. Подсоедините измерительные провода к диоду. Запишите полученный результат.
  4. Поменяйте местами измерительные провода. Запишите полученный результат.

Анализ результатов проверки диодов

  • Для наиболее распространенных кремниевых диодов падение напряжения составляет от 0,5 до 0,8 В, что свидетельствует об исправности диода с прямым смещением. Падение напряжения на некоторых германиевых диодах составляет от 0,2 до 0,3 В.
  • При обратном смещении исправного диода на экране мультиметра отображается OL. OL указывает на то, что диод работает как разомкнутый переключатель.
  • Неисправный диод (с обрывом) делает невозможным прохождение тока в любом направлении. Если диод имеет обрыв, мультиметр отображает OL для обоих направлений.
  • На диоде с коротким замыканием наблюдается одинаковое падение напряжения (приблизительно 0,4 В) в обоих направлениях.

Мультиметр в режиме измерения сопротивления (Ω) можно использовать для проведения дополнительной проверки диода или, как уже говорилось ранее, в тех случаях, если на мультиметре не предусмотрен режим проверки диода.

Диод имеет прямое смещение, если положительный (красный) измерительный провод подсоединен к аноду, а отрицательный (черный) измерительный провод — к катоду.

  • Сопротивление исправного диода с прямым смещением должно находиться в диапазоне от 1000 Ом до 10 МОм.
  • При прямом смещении диода показания сопротивления будут высокими, так как ток от мультиметра проходит через диод, результатом чего становится высокое сопротивление, которое требуется для проверки.

Диод имеет обратное смещение, если положительный (красный) измерительный провод подсоединен к катоду, а отрицательный (черный) измерительный провод — к аноду.

  • Если диод с обратным смещением исправен, на мультиметре отображается OL. Диод неисправен, если показания одинаковы для обоих направлений.

Проверку в режиме измерения сопротивления следует выполнять следующим образом:

  1. Убедитесь, что a) в цепь не поступает питание, и б) на диоде отсутствует напряжение. Напряжение в цепи может присутствовать из-за заряженных конденсаторов. В этом случае необходимо разрядить конденсаторы. В соответствии с требованиями настройте мультиметр на измерение напряжения переменного или постоянного тока.
  2. Переведите регулятор в положение измерения сопротивления (Ω). Эта функция на регуляторе может быть совмещена с другой функцией.
  3. Отсоедините диод от цепи и подключите к нему измерительные провода. Запишите полученный результат.
  4. Поменяйте местами измерительные провода. Запишите полученный результат.
  5. Для получения достоверных результатов сравните показания, полученные в режиме измерения сопротивления, с показаниями для известного исправного диода.

Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

Подберите подходящий мультиметр

Характеристики идеального кремниевого диода — Новости 2021

Характеристики идеального диода кремния

В этой статье мы обсудим некоторые характеристики идеального диода, а также научимся анализировать схемы, содержащие более одного идеального диода в сочетании с резисторами и источниками питания постоянного тока.

Идеальный диодный ток и характеристики напряжения

Идеальный диод может быть одним из самых фундаментальных нелинейных схемных компонентов. Сам диод имеет два терминала. Символ элемента показан на рисунке 1.1 (A).

Рисунок 1.1 (A)

Свойства тока-напряжения (iv) показаны на рисунке 1.1 (B).

Рисунок 1.1 (B)

Существуют две важные характеристики идеального диода: предвзятое и обратное смещение. «Обратное смещение» означает, что если на диод подается отрицательное напряжение (то есть относительно только направления потока напряжения), ток отсутствует, и диод действует как разомкнутый контур, как показано на рисунке 1.1 (С). Идеальный диод, который имеет обратную направленность или работает в обратном направлении, называется «отключенным» или просто «выключенным».

Рисунок 1.1 (C)

Однако, если на идеальный диод имеется положительный ток (который также относится к направлению потока напряжения), на диоде наблюдается падение напряжения. Проще говоря, диод действует как короткое замыкание при работе в прямом направлении и проиллюстрирован на рисунке 1.1 (D). При работе таким образом диод передает любой ток, который имеет нулевое падение напряжения. Известно, что эта предвзятая операция «включена» или «включена».

Рисунок 1.1 (D)

Идеальный диод также относится к диоду, который имеет фиксированное постоянное падение напряжения. Эта модель является очень упрощенной и наиболее широко используемой моделью в области техники. Он основан на том факте, что диод, который, как говорят, является «прямым проводником», имеет падение напряжения, которое колеблется в небольшом количестве между 0, 6-0, 8 В. Эта модель постоянного падения напряжения предполагает, что значение напряжения составляет постоянное 0, 7 В. Следующая статья войдет в эту конкретную модель в глубину.

С этими описаниями характеристик идеального диода можно отметить, что любая внешняя схема должна ограничивать прямой ток, который протекает через диод, а также обратное напряжение на обрезающем диоде, для установки значений. На рисунке 1.2 представлены два диода, которые представляют эти понятия. Посмотрев на диод на рисунке 1.2 (A), мы видим, что диод проводит. Если диод проводит, произойдет нулевое падение напряжения, а ток, протекающий через него, будет установлен на напряжение +20 В, а также $$ 2 k \ Omega $$ как 10 мА.

Рисунок 1.2 (A)

На рисунке 1.2 (B) показан отрезанный диод, где есть нулевой ток: Следовательно, при переходе через диод полные 20 В будут обратным смещением.

Рисунок 1.2 (B)

На диоде есть два контакта: положительный и отрицательный. Положительная клемма называется анодом, а отрицательная клемма — катодом. Эти термины исходят из того, что использовались диоды с вакуумной трубкой. Направление диодных символов на рис. 1.2 (A) и рис. 1.2 (B) исходит из iv характеристики идеального диода, т. Е. Если проводимость присутствует в одном направлении, а не в другом.

Из этой характеристики идеального диода видно, что она сильно нелинейна. Однако диод ведет себя так, потому что прямые линии находятся под углом 90 ° друг к другу. Известно, что эта нелинейная кривая напряжения-тока, которая состоит из прямых сегментов, является «кусочно-линейной». Рассмотрим устройство, имеющее кусочно-линейные характеристики: если оно реализуется в приложении, так что сигнал напряжения, передаваемый через терминалы, качается по одному на линейные сегменты, то это устройство считается линейным элементом схемы. Однако, если сигнал напряжения не проходит мимо одной или нескольких точек останова, мы больше не можем анализировать эту схему линейно.

Цепь выпрямителя: приложение диода

В одном из самых популярных применений диода выпрямитель использует свою нелинейную кривую i — v, которая проиллюстрирована на рисунке 1.3 (A).

Рисунок 1.3 (A)

Это устройство преобразует переменный ток (который иногда меняет направление) на постоянный ток (который протекает только в одном направлении). Этот процесс известен как исправление, отсюда и название устройства. Выпрямители могут иметь форму полупроводниковых диодов, ламповых ламповых диодов и даже ртутно-дуговых клапанов.

Сама схема состоит из последовательного соединения диода и резистора (соответственно D и R ). Во-первых, мы должны ввести входное напряжение, v l, синусоидальную форму волны на рис. 1.3 (B) и предположить, что диод имеет идеальные характеристики.

Рисунок 1.3 (B)

Во время этой части входных синусоидных циклов (от 0 до v p ) положительная часть v l приведет к протеканию тока в прямом направлении через диод. Следовательно, напряжение диода v D чрезвычайно мало (в идеале ноль). При напряжении диода при значении нуля схема упрощается, как показано на рисунке 1.3 (C), и, следовательно, выходное напряжение, v 0, будет эквивалентно выходному напряжению.

Рисунок 1.3 (C)

Однако для части входного синусоидального сигнала, когда он ниже нуля, диод не будет иметь проводимости. Опять же, схема будет упрощена, что показано на рисунке 1.3 (D).

Рисунок 1.3 (D)

В этом случае выходное напряжение, v 0, будет иметь нулевое значение из-за отсутствия проводимости через диод. С учетом этой схемы выходное напряжение будет генерировать сигнал, который показан на рисунке 1.3 (E).

Рисунок 1.3 (E)

Кроме того, есть еще одна точка этого графика, которая требует отметить: Когда v l переключает полярность, v 0 работает в одном направлении (или однонаправленном) и, следовательно, имеет конечное среднее значение напряжения. Это конечное среднее напряжение также известно как компонент постоянного тока, который является постоянным напряжением, которое добавляется к чистому сигналу переменного тока. Следовательно, диодная схема выпрямляет сигнал напряжения и, следовательно, называется выпрямителем. Эта схема в основном используется для генерации сигнала постоянного тока от входного переменного сигнала.

Вывод

В этой статье мы обсудили и проанализировали идеальный элемент схемы диода. Я надеюсь, что вы узнали о его характеристиках тока и напряжения, а также о цепи выпрямителя, которая является применением диода. Вы должны уметь идентифицировать две важные характеристики: диод с прямым смещением и диод с обратным смещением и понять разницу между ними.

В следующей статье мы поговорим больше о характеристиках диода с точки зрения терминальных характеристик переходных диодов. Из этих характеристик мы узнаем, как анализировать диодные схемы, которые работают в прямом, обратном и пробоем. Если у вас есть какие-либо вопросы или комментарии, оставьте их ниже!

Как работают диоды Шоттки

Подобно другим диодам, диод Шоттки в зависимости от направления течения тока в электрической цепи влияет на ток. В мире электроники эти устройства работают так же, как улицы с односторонним движением – они позволяют току течь только от анода к катоду. Тем не менее, в отличие от обычных полупроводниковых диодов, диод Шоттки известен благодаря низкому падению напряжения при его прямом включении и способностью к быстрому переключению. Это делает его идеальным выбором для использования в высокочастотных устройствах, а также в устройствах, где используются низкие напряжения. Диод Шоттки может применяться в самых разных устройствах, например:

  • Для выпрямления тока большой мощности. Диоды Шоттки могут использоваться в мощных устройствах благодаря низкому падению напряжения при прямом включении. Эти диоды затрачивают меньше энергии, что способствует уменьшению размеров радиатора;

  • В универсальных источниках питания. Диоды Шоттки также могут помогать разделять питание при использовании блоков двойного электропитания, использующих энергию электрической сети и аккумуляторов;

  • В элементах солнечных батарей. Диоды Шоттки могут помочь добиться максимальной эффективности элементов солнечной батареи благодаря низкому падению напряжения при прямом включении. Также они помогают защищать ячейки от обратного заряда;

  • В качестве защелки. Диоды Шоттки могут также использоваться в качестве защелки в транзисторных схемах, а также в цепях с логическими элементами 74LS или 74S.

Одним из главных преимуществ использования диода Шоттки вместо обычного диода является низкое сопротивление его перехода металл-полупроводник, приводящее к тому, что напряжение падает при его прямом включении. Таким образом диод Шоттки потребляет меньшее напряжение, чем обычный диод. На его p-n-переходе падает лишь 0,3-0,4 В. На графике ниже вы можете видеть прямое падение напряжение, составляющее приблизительно 0,3 В. Ток через диод Шоттки значительно возрастает при увеличении напряжения сверх указанного. Через обычный диод ток не растет до напряжения приблизительно 0,6 В.

На рисунках ниже показаны две электрические цепи в качестве иллюстрации преимуществ низкого падения напряжения при прямом включении. В цепи слева обычный диод, а справа – диод Шоттки. У обеих цепей источник питания дает напряжение 2 В постоянного тока.

Обычный диод потребляет 0,7 В, отдавая нагрузке лишь 1,3 В. Благодаря низкому падению напряжения при прямом включении, диод Шоттки потребляет только 0,3 В, отдавая нагрузке 1,7 В. Если нагрузке необходимы 1,5 В, то для такой задачи подойдет только диод Шоттки.

Другие преимущества использования диода Шоттки вместо обычного диода:

  • Малое время обратного восстановления. Диод Шоттки накапливает небольшой заряд, что делает его идеальным для использования в схемах, требующих быстрого переключения — они широко используются при конструировании высокочастотных печатных плат;

  • Пониженный уровень помех. Диод Шоттки добавляет в схему меньшее количество нежелательного шума по сравнению с типичным диодом с p-n-переходом;

  • Более высокие характеристики. Диод Шоттки потребляет меньше энергии, поэтому подходит по техническим требованиям для использования в низковольтных устройствах.

Также следует помнить о нескольких недостатках диодов Шоттки. Диод Шоттки, на который подано обратное напряжение смещения, будет пропускать больший обратный ток, чем обычный диод. Это приводит к тому, что в цепи с обратным включением диода Шоттки ток утечки больше.

Максимальное обратное напряжение диода Шоттки также меньше, чем у обычных диодов, и обычно составляет не более 50 В. При превышении этого напряжения происходит пробой диода Шоттки, в результате чего он начинает пропускать большой ток в обратном направлении. До этой величины обратного напряжения существует лишь небольшой ток утечки через диод Шоттки, впрочем, как и у других диодов.

В обычном диоде полупроводники p-типа и n-типа образуют p-n-переход. В диоде Шоттки вместо полупроводника p-типа используется металл. Этот металл может быть разным – от платины до вольфрама, молибден, золото и т. д.

Металл и полупроводник n-типа образуют переход металл-полупроводник. Он называется барьером Шоттки. Свойства барьера Шоттки различны при отсутствии напряжения смещения, при прямом и при обратном смещении.

При отсутствии напряжения смещения свободные электроны будут перемещаться из полупроводника n-типа в металл, чтобы восстановить равновесие. Этот поток электронов создает барьер Шоттки, где встречаются отрицательные и положительные ионы. Чтобы свободные электроны смогли преодолеть этот барьер, требуется приложение внешнего напряжения большего, чем потенциал поля перехода металл-полупроводник.

Если положительную клемму батарейки подключить к выводу диода, подключенного к металлической части перехода метал-полупроводник, а отрицательную – к выводу диода, подключенного к полупроводнику, то таким образом мы подадим на диод прямое смещение. В этом состоянии, если напряжение больше 0,2 В, то электроны могут преодолеть переход металл-полупроводник и перейти из полупроводника n-типа в металл. Это приведет к возникновению тока через диод. Так работают все диоды.

Если отрицательную клемму батарейки подключить к выводу диода, подключенного к металлической части перехода метал-полупроводник, а положительную – к выводу диода, подключенного к полупроводнику, то таким образом мы подадим на диод обратное смещение. Так мы увеличим ширину барьера Шоттки, не давая току течь через диод. Тем не менее, если напряжение обратного смещения будет возрастать, то, в конце концов, барьер будет пробит. После чего ток потечет в обратном направлении и может повредить этот и другие электронные компоненты.

Существуют различные способы изготовления диода Шоттки. Самый простой способ изготовить диод Шоттки – это присоединить к поверхности полупроводника металлический провод, сделав точечный контакт. Некоторые диоды Шоттки до сих пор производятся таким способом, но осуществить контроль качества готовых диодов сложно.

Самая популярная технология использует вакуумное нанесение металла на поверхность полупроводника. Этот метод обладает недостатком, заключающимся в пробое диода вследствие воздействия электрических полей по краям пластины проводника. Для устранения этой проблемы производители защищают полупроводниковую пластину оксидным охранным кольцом. Кроме того, это охранное кольцо защищает переход металл-полупроводник от разрушения вследствие физического воздействия. Такие диоды изготавливаются в том числе в форм-факторе, допускающем поверхностный монтаж компонентов.

Ниже приведен перечень характеристик, на основании которых следует подбирать диод Шоттки для использования в вашем следующем электронном проекте.

Полезно увидеть, как эти характеристики обычно приводятся на сайте изготовителя или в спецификации. Ниже приведены два примера:

1N5711 – это ультрабыстрый диод Шоттки, обладающий высоким пробивным напряжением, низким падением напряжения при прямом включении и охранным кольцом для защиты перехода металл-полупроводник.

1N5828 – это диод Шоттки в корпусе штыревого типа, используемый для выпрямления тока.

Вы планируете поработать над высокочастотным или мощным устройством, в котором требуется применение низкого напряжения? Ваш выбор – диоды Шоттки! Эти диоды широко известны благодаря их низкому падению напряжения при прямом включении и высокой скорости переключения. Используются ли они в ячейках солнечных батарей или для выпрямления тока, нет других подобных устройств, обладающих падением напряжения всего 0,3 В, дающее дополнительную эффективность. Современные ПО для разработки электронных устройств уже имеют множество готовых к использованию бесплатных библиотек, содержащих диоды Шоттки. Самому не нужно ничего делать. Попробуйте уже сегодня!

Что такое падение напряжения на диоде?

Диод является распространенным полупроводниковым устройством, используемым во многих различных типах электронных схем. Когда электрический сигнал проходит через диод, диод потребляет небольшое количество напряжения сигнала при его работе. Разница между напряжением сигнала, поступающего на диод, и напряжением сигнала, выходящего из диода, представляет собой падение напряжения на диоде. Хотя падение напряжения на диоде может относиться как к прямому, так и к обратному падению напряжения на диоде, оно обычно описывает прямое падение напряжения.

Конструкция диода включает соединение анода и катода, двух кусков материала с различными электрическими зарядами. Анод заряжен положительно, а катод заряжен отрицательно. В месте, где эти два разных материала встречаются, называемый соединением, два разных противостоящих заряда эффективно взаимно уничтожаются. Эта область без заряда является обедненным слоем диода, который образует изолирующий слой внутри диода между анодом и катодом.

Когда электрический сигнал поступает на катод диода, дополнительная отрицательная сила увеличивает ширину обедненного слоя, когда он реагирует с положительно заряженным анодом. Более широкий слой истощения будет блокировать прохождение сигнала через диод и потреблять все напряжение в процессе. Например, если на диод подается 5 вольт, падение напряжения на диоде также составит 5 вольт. Диод в этом состоянии имеет обратное смещение, и падение напряжения является обратным падением напряжения на диоде.

Электрический сигнал, поступающий на анод диода, создает другой набор условий внутри диода. Отрицательно заряженный сигнал будет проходить через анод, встречаться с катодом и проходить через диод, продолжая до остальной части цепи. В этом процессе относительно небольшое количество напряжения теряется, преодолевая положительный заряд анода. Для типичного кремниевого диода потеря напряжения составляет приблизительно 0,7 вольт. Диод в этом состоянии смещен в прямом направлении, и падение напряжения является прямым падением напряжения на диоде.

Разница между прямым и обратным состояниями в диоде позволяет им блокировать сигнал в одном направлении, сбрасывая 100% напряжения, но позволяя ему проходить в другом, только сбрасывая небольшое количество. Поскольку у большинства диодов обратное падение напряжения составляет 100%, предполагается, что термин «падение напряжения на диоде» относится к прямому падению напряжения, однако это не всегда так.

Существуют специальные диоды, которые не пропускают 100% обратного напряжения, такие как варикап или варактор. В этих диодах заряды катодов и анодов даже не поперек их ширины. В результате эти диоды могут позволить части сигнала, поступающего на катод, проходить через диоды, даже если они находятся в состоянии обратного смещения. При описании падения напряжения в этих типах диодов важно различать прямое и обратное падение напряжения.

ДРУГИЕ ЯЗЫКИ

Диод шоттки как определить

Диод Шоттки – это полупроводниковый электрический выпрямительный элемент, где в качестве барьера используется переход металл-полупроводник. В результате приобретаются полезные свойства: высокое быстродействие и малое падение напряжения в прямом направлении.

Из истории открытия диодов Шоттки

Выпрямительные свойства перехода металл-полупроводник впервые замечены в 1874 году Фердинандом Брауном на примере сульфидов. Пропуская ток в прямом и обратном направлении, он отметил разницу в 30%, что в корне противоречило известному закону Ома. Браун не смог объяснить происходящего, но, продолжив исследования, установил, что и сопротивление участка пропорционально протекающему току. Что также выглядело необычно.

Опыты повторились физиками. К примеру, Вернер Сименс отметил похожие свойства селена. Браун установил, что свойства конструкции проявляются наиболее ярко при небольшом размере контактов, приложенных к кристаллу сульфида. Исследователь применял:

  • подпружиненную проволоку с давлением 1 кг;
  • ртутный контакт;
  • металлизированную медью площадку.

Так на свет появился точечный диод, в 1900 году помешавший нашему соотечественнику Попову взять патент на детектор для радио. В собственных работах Браун излагает исследования марганцевой руды (псиломелана). Прижав контакты к кристаллу струбциной и изолировав губки от токонесущей части, учёный получил превосходные результаты, но применения эффекту в то время не нашлось. Описав, необычные свойства сульфида меди, Фердинанд положил начало твердотельной электронике.

За Брауна практическое применение нашли единомышленники. Профессор Джагдиш Чандра Бос сообщил 27 апреля 1899 года о создании первого детектора-приёмника для работы в паре с радиопередатчиком. Он использовал галенит (оксид свинца) в паре с простым проводом и поймал волны миллиметрового диапазона. В 1901 году запатентовал своё детище. Не исключено, что под влиянием слухов о Попове. Детектор Боса использован в первой трансатлантической радиопередаче Маркони. Аналогичного рода устройства на кристалле кремния запатентовал в 1906 году Гринлиф Уиттер Пиккард.

Гринлиф Уиттер Пиккард

В своей речи на вручении Нобелевской премии в 1909 году Браун отметил, что не понимает принципов открытого им явления, зато обнаружил целый ряд материалов, проявляющих новые свойства. Это уже упомянутый выше галенит, пирит, пиролюзит, тетраэдрит и ряд прочих. Перечисленные материалы привлекли внимание по простой причине: проводили электрический ток, хотя считались соединениями элементов таблицы Менделеева. Прежде подобные свойства считались прерогативой простых металлов.

Наконец, в 1926 году уже появились первые транзисторы с барьером Шоттки, а теорию под явление подвёл Уильям Брэдфорд Шокли в 1939 году. Тогда же Невилл Франсис Мот объяснил явления, происходящие в на стыке двух материалов, вычислив ток диффузии и дрейфа основных носителей заряда. Вальтер Шоттки дополнил теорию, заменив линейное электрическое поле затухающим и добавив представление о донорах ионов, расположенных в приповерхностном слое полупроводника. Объёмный заряд на границе раздела под слоем металла назвали именем учёного.

Схожие попытки подведения теории под имеющийся факт предпринимал Давыдов в 1939 году, но неправильно дал лимитирующие факторы для тока и допустил прочие ошибки. Самые правильные выводы сделал Ханс Альбрехт Бете в 1942 году, увязавший ток с термоэлектронной эмиссией носителей сквозь потенциальный барьер на границе двух материалов. Таким образом, современное название явления и диодов должно бы носить имя последнего учёного, теория Шоттки обнаруживала изъяны.

Теоретические исследования упираются в сложность измерения работы выхода электронов из материала в вакуум. Даже для химически инертного и стабильного металла золота определённые показания разнятся от 4 до 4,92 эВ. При высокой степени вакуума, в отсутствие ртути от насоса или масляной плёнки, получаются значения в 5,2 эВ. С развитием технологии в будущем предвидятся значения точнее. Иным вариантом решения станет использование сведений об электроотрицательности материалов для правильного предсказания событий на границе перехода. Эти величины (по шкале Поллинга) известны с точностью до 0,1 эВ. Из сказанного понятно: сегодня правильно предсказать высоту барьера по указанным методикам и, следовательно, выпрямительные свойства диодов Шоттки не представляется возможным.

Лучшие способы определения высоты барьера Шоттки

Высоту допустимо определить по известной формуле (см. рис). Где С – коэффициент, слабо зависящий от температуры. Зависимость от приложенного напряжения Va, несмотря на сложную форму считается почти линейной. Угол наклона графика составляет q/ kT. Высоту барьера определяют по графику зависимости lnJ от 1/Т при фиксированном напряжении. Расчёт ведётся по углу наклона.

Формула для расчётов

Альтернативный метод состоит в облучении перехода металл-полупроводник светом. Используются способы:

  1. Свет проходит через толщу полупроводника.
  2. Свет падает прямо на чувствительную площадку фотоэлемента.

Если энергия фотона укладывается в промежуток энергий между запрещённой зоной полупроводника и высотой барьера, наблюдается эмиссия электронов из металла. Когда параметр выше обоих указанных величин, выходной ток резко возрастает, что легко заметно на установке для эксперимента. Указанный метод позволяет установить, что работы выхода для одинакового полупроводника, с разными типами типами проводимости (n и p), в сумме дают ширину запрещённой зоны материала.

Новым методом для определения высоты барьера Шоттки служит измерение ёмкости перехода в зависимости от приложенного обратного напряжения. График показывает вид прямой, пересекающей ось абсцисс в точке, характеризующей искомую величину. Результат экспериментов сильно зависит от качества подготовки поверхности. Изучение технологических методов обработки показывает, что травление в плавиковой кислоте оставляет на образце из кремния слой оксидной плёнки толщиной 10 — 20 ангстрем.

Неизменно отмечается эффект старения. Меньше характерен для диодов Шоттки, образованных путём скола кристалла. Высоты барьеров отличаются для конкретного материала, в отдельных случаях сильно зависят от электроотрицательности металлов. Для арсенида галлия фактор почти не проявляется, в случае с сульфидом цинка играет решающую роль. Зато в последнем случае слабое действие оказывает качество подготовки поверхности, для GaAs это крайне важно. Сульфид кадмия находится в промежуточном положении относительно указанных материалов.

При исследовании оказалось, что большинство полупроводников ведёт себя подобно GaAs, включая кремний. Мид объяснил это тем, что на поверхности материала образуется ряд формаций, где энергия электронов лежит в области трети запрещённой зоны от зоны валентности. В результате при контакте с металлом уровень Ферми в последнем стремится занять схожее положение. История повторяется с любым проводником. Одновременно высота барьера становится разницей между уровнем Ферми и краем зоны проводимости в полупроводнике.

Сильное влияние электроотрицательности металла наблюдается в материалах с ярко выраженными ионными связями. Это прежде всего четырёхвалентный оксид кремния и сульфид цинка. Объясняется указанный факт отсутствием формаций, влияющих на уровень Ферми в металле. В заключение добавим, что исчерпывающей теории по поводу рассматриваемого вопроса сегодня не создано.

Преимущества диодов Шоттки

Не секрет, что диоды Шоттки служат выпрямителями на выходе импульсных блоков питания. Производители упирают на то, что потери мощности и нагрев в этом случае намного ниже. Установлено, что падение напряжения при прямом включении на диоде Шоттки меньше в 1,5 – 2 раза, нежели в любом типе выпрямителей. Попробуем объяснить причину.

Рассмотрим работу обычного p-n-перехода. При контакте материалов с двумя разными типами проводимости начинается диффузия основных носителей за границу контакта, где они уже не основные. В физике это называется запирающим слоем. Если на n-область подать положительный потенциал, основные носители электроны моментально притянутся в выводу. Тогда запирающий слой расширится, ток не течёт. При прямом включении основные носители, напротив, наступают на запирающий слой, где активно с ним рекомбинируют. Переход открывается, течёт ток.

Выходит, ни открыть, ни закрыть простой диод мгновенно не получится. Идут процессы образования и ликвидация запирающего слоя, требующие времени. Диод Шоттки ведёт себя чуть по-иному. Приложенное прямое напряжение открывает переход, но инжекции дырок в n-полупроводник практически не происходит, барьер для них велик, в металле таких носителей мало. При обратном включении в сильно легированных полупроводниках способен течь туннельный ток.

Читатели, ознакомленные с темой Светодиодное освещение, уже в курсе, что первоначально в 1907 году Генри Джозеф Раунд сделал открытие на кристаллическом детекторе. Это диод Шоттки в первом приближении: граница металла и карбида кремния. Разница в том, что сегодня используют полупроводник n-типа и алюминий.

Диод Шоттки умеет не только светиться: для этих целей используют p-n-переход. Контакт металл-полупроводник не всегда становится выпрямляющим. В последнем случае называется омическим и входит в состав большинства транзисторов, где его паразитные эффекты излишни и вредны. Каким будет переход, зависит от высоты барьера Шоттки. При больших значениях параметра, превышающих температурную энергию, появляются выпрямительные свойства. Свойства определяется разностью работы выхода металла (в вакууме) и полупроводника, либо электронным сродством.

Свойства перехода зависят от применяемых материалов и от геометрических размеров. Объёмный заряд в рассматриваемом случае меньше, нежели при контакте двух полупроводников разного типа, значит, время переключения значительно снижается. В типичном случае укладывается в диапазон от сотен пс до десятков нс. Для обычных диодов минимум на порядок выше. В теории это выглядит как отсутствие повышения уровня барьера при приложенном обратном напряжении. Легко объяснить и малое падение напряжения тем, что часть перехода составлена чистым проводником. Актуально для приборов, рассчитанных на сравнительно низкие напряжения в десятки вольт.

Сообразно свойствам диодов Шоттки они находят широкое применение в импульсных блоках питания для бытовой техники. Это позволяет снизить потери, улучшить тепловой режим работы выпрямителей. Малая площадь перехода обусловливает низкие напряжения пробоя, что слегка компенсируется увеличением площади металлизации на кристалле, охватывающей часть изолированной оксидом кремния области. Эта площадь, напоминающая конденсатор, при обратном включении диода обедняет прилегающие слои основными носителями заряда, значительно улучшая показатели.

Благодаря быстродействию диоды Шоттки активно применяются в интегральных схемах, нацеленных на использование высоких частот — рабочих и частот синхронизации.

Очень часто в электротехнике или различных схемах электрических цепей встречается такое понятие, как диод Шоттки. Прежде всего, это специальный диод-полупроводник, имеющий при прямом включении маленькое падение напряжения,и состоящий из полупроводника и металла. Свое название получил в честь изобретателя из Германии Вальтера Шоттки, который изобрел этот электронный элемент.

Допустимое обратное напряжение в электронном элементе в промышленных целях ограничено 250 вольтами. На практике применяется в основном в низковольтных цепях, чтобы предотвратить течение тока в обратную сторону. По своей мощности разделяются на несколько групп: маломощные, среднемощные и мощные.

Само устройство состоит из металла — полупроводника, пассивации стеклом, защитного кольца и металла. Когда по цепи начинает идти электрический ток, то на защитном кольце и по всей области барьера-полупроводника будут скапливаться положительные и отрицательные заряды, но в разных частях корпуса, при котором будет возникать электрическое поле и выделяется тепло, что является большим плюсом для некоторых опытов в физике.

Отличие от других полупроводников

Этот электронный элемент отличается от других тем, что в нем в качестве преграды используется металл — полупроводник, который имеет одностороннюю электропроводимость, и обладающий многими другими отличительными свойствами. Такими металлами-полупроводниками могут быть арсенид галлий, золото, карбид кремния, вольфрам, германий, палладий, платина и так далее.

От выбранного металла будет зависеть и вся работа электронного элемента Шоттки. Особенно часто используют кремний, потому что он надежнее других, хорошо работает на больших мощностях. Также чаще других металлов используют полупроводник на основе арсенида галлия (GaAs) — химическое соединение мышьяка и галлия, реже — на основе германия (Ge). Технология изготовления этих электронных элементов очень проста, поэтому он и является самым дешевым.

Также диод Шоттки отличается от других стабильной работой при подаче тока. Для стабильности используют внедрение в корпус этого электронного элемента специальных кристаллов, что является очень тонкой работой, потому что халатность или невнимательность может привести к неисправности устройства. Этим редко занимаются люди, чаще всего эту работу выполняет специальный робот — автомат, запрограммированный для такой операции.

Диод Шоттки обозначение и маркировка

Как и все электронные детали и элементы имеют обозначения, на принципиальных схемах этот электронный элемент изображается вот так (см. рис. 1), что несколько отличается от обозначения обычного полупроводника.

Еще на схемах можно встретить изображение сдвоенного диода Шоттки (см. рис. 2). Это два смонтированных электронных элемента в одном общем корпусе. Аноды или катоды у них спаяны, поэтому имеют три вывода.

Этот электронный элемент, как и большинство, маркируется сбоку. И если непонятны буквы и цифры на обозначении, то можно посмотреть по радиотехническому справочнику их расшифровку.

Достоинства и недостатки

У этого устройства есть свои положительные стороны и свои недостатки.

  1. Хорошо удерживает электрический ток в цепи;
  2. Маленькая емкость барьера из металлов — полупроводников, что увеличивает долгосрочную работоспособность диода;
  3. В отличие от других полупроводников, в диоде Шоттки наблюдается низкое падение напряжения;
  4. В электрической цепи данный диод Шоттки быстро действует.

Большой минус в том, что бывает очень большим обратный ток. В некоторых случаях, например, превышение нужного уровня обратного тока даже на несколько ампер, электронный элемент просто ломается или выходит из строя в самый неподходящий момент вне зависимости от того, новый он или старый. Также часто можно наблюдать утечки диодов, что может привести в некоторых случаях к печальным последствиям, если относится к проверке полупроводников с пренебрежением.

Диод Шоттки применение

Эти электронные элементы, представленные выше, можно встретить в нашем мире практически везде: в компьютерах, стабилизаторах, бытовой технике, радиовещании, телевидении, блоках питания, солнечных батареях, транзисторах и во многих других приборах из всех сферах жизни.

Во всех случаях поднимает эффективность и работоспособность, уменьшает численность потерь динамики напряжения, восстанавливает обратное сопротивление тока, принимает на себя излучение альфа, бета и гамма- зарядов, позволяет работать достаточно много времени без пробоев, удерживает ток в напряжении электрической цепи.

Диагностика диодов Шоттки

Можно провести диагностику электронного элемента Шоттки, если возникнет такая необходимость, но на это уйдет немного времени. Прежде всего, необходимо выпаять один элемент из диодного моста или электронной схемы. Осмотреть визуально и проверить тестером. В результате этих простых технических операций узнаете исправный ли полупроводник или нет. Хотя и необязательно выпаивать всю сборку, ведь это лишняя работа, а самое главное — затраты времени.

Также можно проверить данный диод или диодный мост мультиметром, при этом учитывайте то, что на приборе изготовитель пишет ток сбоку. Мы включаем мультиметр и подводим его щупы к концам анода и катода, и он покажет нам напряжение диода.

Иногда бывает так, что диод Шоттки может стать неисправным по некоторым причинам. Рассмотрим их:

  1. Если в полупроводниковом элементе возникнет пробоина, то он просто перестает держать ток и становится проводником.
  2. Если в полупроводнике или диодном мосту возникнет обрыв, тогда он вообще перестанет пропускать ток.

Причем в обоих случаях запаха гари вы не почувствуете и дыма не увидите, так как в корпусе встроена специальная защита против таких происшествий. Если вдруг в одном транзисторе сгорел вышесказанный диод, то убедитесь, что это единственное устройство, где вы нашли неисправность, потому что диоды обязательно нужно проверять все.

Хотя иногда может и не быть такой возможности для того, чтобы проверить диоды на исправность, когда это будет необходимо. Иногда бывает так, что компьютер начинает тормозить, включаться очень долго, «зависает». Возможно, дело связано именно с диодами, и каждый может разобрать процессор и посмотреть, что внутри случилось.

Нужно, прежде всего, обесточить компьютер и открыть блок питания в системном блоке. Сразу же можно заметить диоды. Проверьте, есть ли в них пробоины или обрывы. Если есть, то нужно их достать и заменить новым полупроводником, устранив неполадки самостоятельно, но лучше обратиться за помощью к профессионалам.

Полупроводники Шоттки в современном мире

Диоды Шоттки получили широкую популярность и распространение во всех сферах современной жизни, особенно в электронике. Их можно найти как сдвоенные выпрямительные диоды, где два полупроводника установлены в одном корпусе и концы анодов или катодов связаны между собой, так и простые, также бывают очень маленькими (например, очень часто встречается в мелких электрических деталях).

Этот полупроводник очень часто используют в импульсных блоках питания в бытовой технике, что значительно снижает потери и улучшает тепловой режим работы. Также данные электронные элементы используются в транзисторах в качестве выпрямителей тока, и в таких специальных диодах, которые используют для объединения параллельных источников питания.

Виды диодов

Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собраться, но есть небольшие отличия.

Простой диод выглядит на схемах вот так:

обозначение диода на схеме

Стабилитрон уже обозначается, как диод с “кепочкой”

обозначение стабилитрона на схеме

Диод Шоттки имеет две “кепочки”

обозначение диода шоттки на схеме

Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)

Обратное напряжение диода

Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.

Это значение можно найти в даташите

обратное напряжение диода

Для каждой марки диода оно разное

Если превысить это значение, то произойдет пробой, и диод выйдет из строя.

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

прямое падение напряжения на диоде

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

Vf – прямое падение напряжение на диоде, В

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

и будем снимать с них показания

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Замеряем ток утечки

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

Применение диодов Шоттки


Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

Шоттки в солнечных панелях

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

При написании данной статьи использовался материал с этого видео

Диодный мост, как его проверить

Диодный мост — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный).

Диодный мост или, как его ещё называют, выпрямитель нужен для преобразования переменного тока в постоянный. Его используют везде, где нужно получить питание постоянным напряжением независимо от мощности прибора, потребляемого тока или величины напряжения.

Устройство

Для выпрямления однофазного напряжения используют схему Гретца из четырёх диодов. Если в схеме стоит трансформатор с отводом от средней точки используют схему из двух диодов.

Мостом называется именно включение четырёх диодов.

Диодный мост может быть выполнен в одном корпусе, а может быть из дискретных диодов, то есть отдельных. Входом диодного моста называют точки подключения переменного напряжения, а выходом — точки с которых снимают постоянное.

Переменное напряжение подают в точки, в которых соединены анод с катодом диодов. На выходе получают плюс и минус, при этом с точки соединения катодов снимают положительный полюс, т.е. плюс питания, а точка соединения анодов является минусом.

На приведенном рисунке изображена схема диодного моста, где мест подключения переменного напряжения обозначены «AC ~», а выход постоянного «+» и «-«.

Некоторые новички наивно предполагают, исходя из принципа обратимости электрических машин, что подав постоянку на мост на оставшихся контактах они получат переменку. Это не так, это не электрическая машина и здесь нужен преобразователь.

На современных диодных мостах контакты помечены также: вход переменки «AC» или «~», а выход по стоянки «+» и «-«. Совместим схему с изображением реального моста, чтобы разобраться, как это выглядит на практике.

Где устанавливают

Диодный мост обычно установлен на входе цепи питания, если выпрямляется сетевое напряжение 220В, такое решение применяется в импульсных блоках питания, в том числе компьютерного блока питания, устройство которого было рассмотрено в одной, из ранее выложенных на сайте . Либо во вторичной обмотке трансформатора, такое включение применяется в обычных блоках питания, например маломощной магнитолы для дома или старого телевизора.

В современных блоках питания чаще используются импульсные схемы, в них диодный мост выпрямляет именно сетевое напряжение, а трансформатором управляют полупроводниковые ключи (транзисторы).

Будьте осторожны:

Если диодный мост стоит на входе по линии 220В, то на его выходе пульсирующее или сглаженное (если есть фильтрующий конденсатор) постоянное по знаку напряжение амплитудой в 310В. В любом случае выпрямленное напряжение увеличивается, относительно переменного.

Тоже касается и остаточного заряда фильтрующих электролитических конденсаторов, они могут биться током, даже когда питание на плату блока питания не подаётся. Их нужно предварительно разряжать лампой накаливания или резистором.

Не стоит разряжать емкость закорачиванием железным инструментом: вас может ударить током, вы можете повредить конденсаторы или дорожки платы.

Приступим к проверке диодного моста

Я буду рассуждать на примере типовой ситуации. Есть нерабочее устройство и его нужно отремонтировать.

Вы решили отремонтировать устройство, при разборке увидели на плате перегоревший предохранитель, защитный резистор или дорожку на печатной плате.

После замены сгоревшего элемента и восстановления дорожки не спешите включать. Начинающие электронщики любят делать «жучки» вместо предохранителя, тогда, тем более, нельзя включать плату.

Если предохранитель вышел из строя не случайно, а из-за проблем на плате блока питания вы получите повторное перегорание предохранителя. А если вместо него поставили жучек, то это включение сопроводить зрелищный фейерверк, возможное повреждение провода или розетки, выбитые пробки и автоматы.

Если пробит диодный мост, то после предохранителя на плате будет КЗ. Чтобы проверить диодный мост на пробой без мультиметра пользуйтесь проверенным способом: подключайте сомнительные блоки пиатния, через лампу накаливания на 40-100 Вт 220В. Она выполнит роль ограничителя тока и плата не повредится, и предохранитель не перегорит. Лампу подключают в разрыв одного из питающих кабелей 220В.

сли диодный мост пробит — лампа засветится в полный накал.

Это достаточно приблизительный способ диагностики диодного моста без мультиметра. Лампа может засветиться и при исправном мосте, если КЗ находится в схеме после него. Проверить диодный мост на обрыв без мультиметра можно и с помощью индикаторной отвёртки, на его выходе, как уже было сказано, должно быть высокое напряжение, если он установлен на линии 220В, неоновый индикатор в отвёртке должен засветиться.

Проверка диодного моста мультиметром

Любую деталь в электрической схеме нужно выпаивать перед её проверкой и прозвонкой. Можно, конечно, проверить и на плате, но есть вероятность получить ложные результаты измерений.

Также если вы будете прозванивать мост со стороны дорожек и контактных площадок на плате, есть вероятность отсутствия электрического контакта при визуально нормальной пайке. В тоже время, если диодный мост собран на плате из отдельных диодов, его зачастую удобно проверять, не выпаивая из плат, с её лицевой стороны. В таком случае вы получаете удобный доступ к металлическим ножкам диода.

Вам понадобится любой цифровой мультиметр, например самый дешёвый и распространенный типа dt-830. Включите режим прозвонки диодов, вы его можете найти по пиктограмме с условным его обозначением.

Часто этот режим совмещён с режимом звуковой прозвонки. Любая прозвонка и большинство омметров состоит из пары щупов, один из которых является плюсом, а второй — минусом. На мультиметра чаще всего красный щуп принимается за плюс, а чёрный за минус.

Как известно — диод проводит ток в одну сторону. При этом протекание тока возможно только при подключении положительного щупа (плюса) к аноду, а отрицательного к катоду. Тогда при проверке мультиметром в этом режиме силового кремниевого диода на дисплее отображаются цифры в диапазоне 500…700.

Это количество милливольт, которое падает на pn-переходе. Если вы увидели эти значения — диод уже наполовину исправен. Если цифры большие или у левой стороны экрана появилась единица и больше ничего — диод в обрыве. Если сработала звуковая прозвонка или на экране около 0 — диод пробит.

Теперь нужно определить, не проходит ли ток в обратном направлении. Для этого меняем щупы местами, на экране либо должно быть значение много больше 1000, порядка 1500, либо единица у левой стороны экрана — так обозначается большое значение, выходящее за пределы измерений. Если значения маленькие — диод неисправен, он пробит.

Если оба замера совпали с описанными — с диодом все в порядке.

Таким образом проверяют диодный мост из отдельных диодов.

У диодов Шоттки падение напряжения от 0.3В, то есть при проверке на экране мультиметра высветится цифра порядка 300-500.

Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.

Проверка диодного моста в корпусе мультиметром

Я начал статью с описания точек, куда подключается переменка и откуда снимается постоянка неспроста. Это поможет при его проверке, давайте разберемся!

Сразу оговорюсь, что черный щуп вставлен в разъём «COM» на мультиметре.

Ставим черный щуп мультиметра на контакт, помеченный как «+», а красным попеременно касаемся контактов «~» к которым подключают переменное напряжение по очереди. В обоих случаях на экране вы должны увидеть падение напряжения на прямовключенном pn-переходе, т.е. цифры около 600, если диод исправен. Поменяв щупы местами, если выпрямитель исправен, вы увидите большие значения или единицу.

На некоторых мультиметрах вместо единицы используют символы 0L.

Проверяем вторую пару диодов. Для этого красный щуп ставим на вывод «-» диодного моста, а красным по очереди касаемся выводов «~», вы должны увидеть на экране мультиметра значения прямого падения — около 600 при касании любого из контактов со знаком «~» (AC). Меняем щупы местами — на экране больше значения или бесконечность. Если что-то отличается, то диодный мост нужно заменить.

Быстрая проверка диодного моста

Иногда возникает необходимость экспресс проверки диодного моста, это можно сделать тремя касаниями щупов мультиметра к мосту. Можно проводить её не выпаивая мост из платы.

Первое положение щупов: ставим оба щупа между выводами для подключения переменного напряжения (на вход) «~». Если диодный мост пробит — сработает прозвонка, а если её нет, то на экране мультиметра значения устремятся к нулю.

Второе положение щупов: красный щуп ставим на вывод со знаком «-«, а черный на вывод со знаком «+», если диоды исправны — на экране мультиметра будут цифры в двое больше прямого падения на диоде, то есть 1200-1400 мВ. Если на экране около 600 — значит один диод пробит, и вы видите падение напряжения на одном оставшемся.

На рисунке ниже вы видите, как течет ток при такой проверке подумайте, почему получаются такие результаты.

Однако если один из диодов в обрыве ток потечет по уцелевшей ветви и на экране будут условно-исправные значения.

Третье положение щупов — красный щуп на вывод со знаком «-«, а черный на вывод со знаком «+», тогда на экране мультиметра будут такие же результаты как при проверке диода подключенного в обратном направлении (бесконечность). Если сработала прозвонка или на экране маленькие значения (от нуля до сотен) – значит, мост пробит.

Такая проверка эффективна, но не даст такой достоверности как описанная в предыдущем пункте статьи. Если устройство все равно не работает и на выходе диодного моста отсутствует напряжение, то выпаяйте мост и повторно проверьте его. 

Проверка другими средствами

Если у вас нет мультиметра, но у вас есть советский тестер или, как его еще называют «цешка» или какой-нибудь Омметр с пределом измерения до десятка кОм можно использовать и эти стрелочные приборы.

Логика проверки такая же самая, только в прямом включении стрелка будет указывать низкие сопротивления, а в обратном включении диода — высокое.

Если у вас и этого нет — вам поможет любая батарейка или несколько батареек с выходным напряжением больше пары вольт и лампочка накаливания (можно и светодиодом и кроной, батарейкой на 9В). Взгляните на картинку, и вам все станет ясно.

Заключение

Проверка диодного моста — базовый навык для тех, кто занимается ремонтом радиоэлектронной аппаратуры и электроприборов и для тех, кто хочет этому научиться. Для этого нужен минимальный набор инструментов, но хорошие понимание не только способа проверки, а и самой логики работы моста.

Использование мультиметра, цешки или прозвонки не меняет конечного результата при правильном проведении измерений. Однако на моей практике случалось так, что прибор показывал исправность диодного моста, а в реальности он не работал.

Возможно он «пробивался» под большим напряжением, чем на клеммах прибора, которым я проводил проверку. Поэтому самым точным способом «посмотреть» процессы, происходящие в схеме — это осциллограф.

В автоэлектрике, например по одной только осциллограмме напряжения в линии можно определить исправность диодного моста генератора, причем специалист может даже определить, что конкретно произошло — пробой или обрыв.

Ранее ЭлектроВести писали, что команда ученых из Херсона построила уникальный плавучий ветрогенератор мощностью 10 кВт-ч.

По материалам: electrik.info.

Введение в диоды и выпрямители | Диоды и выпрямители

Все о диодах

Диод представляет собой электрическое устройство, позволяющее току проходить через него в одном направлении с гораздо большей легкостью, чем в другом. Наиболее распространенным типом диодов в современной схемотехнике является полупроводниковый диод , хотя существуют и другие диодные технологии. Полупроводниковые диоды обозначены на схематических диаграммах, таких как рисунок ниже. Термин «диод» обычно используется для малосигнальных устройств, I ≤ 1 A.Термин выпрямитель используется для силовых устройств, I> 1 А.

Схематический символ полупроводникового диода: стрелки указывают направление тока.

При включении в простую схему «батарея-лампа» диод пропускает или предотвращает прохождение тока через лампу, в зависимости от полярности приложенного напряжения. (рисунок ниже)

Работа диода: а) ток разрешен; диод смещен в прямом направлении. (b) Текущий поток запрещен; диод имеет обратное смещение.

Когда полярность батареи такова, что ток может течь через диод, говорят, что диод имеет прямое смещение . И наоборот, когда батарея находится «в обратном направлении» и диод блокирует ток, говорят, что диод имеет обратное смещение . Диод можно рассматривать как переключатель: «замкнут» при прямом смещении и «разомкнут» при обратном смещении.

Направление стрелки символа диода указывает направление тока в обычном потоке.Это соглашение справедливо для всех полупроводников, на схемах которых есть «наконечники стрел». Обратное верно, когда используется поток электронов, когда направление тока направлено против «стрелки».

Гидравлический обратный клапан Аналог

Поведение диода аналогично поведению гидравлического устройства, называемого обратным клапаном . Обратный клапан позволяет жидкости проходить через него только в одном направлении, как показано на рисунке ниже.

Аналогия с гидравлическим обратным клапаном: (a) Допустимый ток.(b) Текущий поток запрещен.

Обратные клапаны — это, по сути, устройства, работающие под давлением: они открываются и пропускают поток, если давление на них имеет правильную «полярность» для открытия задвижки (в показанной аналогии большее давление жидкости справа, чем слева). Если давление имеет противоположную «полярность», разница давлений на обратном клапане закроется и удержит заслонку, так что потока не будет.

Как и обратные клапаны, диоды, по сути, представляют собой устройства, работающие от давления (напряжения).Существенная разница между прямым и обратным смещением заключается в полярности падения напряжения на диоде. Давайте подробнее рассмотрим простую схему батарея-диод-лампа, показанную ранее, на этот раз исследуя падение напряжения на различных компонентах на рисунке ниже.

Измерения напряжения диодной цепи: (a) Прямое смещение. (b) Обратное смещение.

Конфигурация диода прямого смещения

Диод с прямым смещением проводит ток и понижает на нем небольшое напряжение, в результате чего большая часть напряжения батареи падает на лампе.Если полярность батареи меняется, диод становится смещенным в обратном направлении и сбрасывает всех напряжения батареи, не оставляя лампе ничего. Если мы считаем диод самодействующим переключателем (замкнутым в режиме прямого смещения и разомкнутым в режиме обратного смещения), такое поведение имеет смысл. Наиболее существенное различие состоит в том, что диод при проводке падает намного больше напряжения, чем средний механический переключатель (0,7 вольт против десятков милливольт).

Это падение напряжения прямого смещения, проявляемое диодом, связано с действием области обеднения, образованной P-N переходом под влиянием приложенного напряжения.Если на полупроводниковый диод не подается напряжение, вокруг области P-N-перехода существует тонкая обедненная область, предотвращающая протекание тока. (Рисунок ниже (а)) Область обеднения почти лишена доступных носителей заряда и действует как изолятор:

Представления диодов: модель PN-перехода, схематическое обозначение, физическая часть.

Схематическое обозначение диода показано на рисунке выше (b), так что анод (указывающий конец) соответствует полупроводнику P-типа в точке (a).Катодный стержень, не указывающий конец, в точке (b) соответствует материалу N-типа в точке (a). Также обратите внимание, что катодная полоса на физической части (c) соответствует катоду на символе.

Конфигурация диода обратного смещения

Если напряжение обратного смещения приложено к переходу P-N, эта область истощения расширяется, дополнительно сопротивляясь току через нее. (Рисунок ниже)

Область истощения расширяется с обратным смещением.

прямое напряжение

И наоборот, если напряжение прямого смещения приложено к переходу P-N, область обеднения сжимается и становится тоньше.Диод становится менее резистентным к проходящему через него току. Для того, чтобы через диод шел устойчивый ток; тем не менее, область истощения должна быть полностью сжата под действием приложенного напряжения. Для этого требуется определенное минимальное напряжение, называемое прямым напряжением , как показано на рисунке ниже.

Увеличение прямого смещения от (a) до (b) уменьшает толщину обедненной области.

Для кремниевых диодов типичное прямое напряжение составляет 0,7 В, номинальное.Для германиевых диодов прямое напряжение составляет всего 0,3 вольта. Химическая составляющая P-N перехода, составляющего диод, определяет его номинальное значение прямого напряжения, поэтому кремниевые и германиевые диоды имеют такие разные прямые напряжения. Прямое падение напряжения остается примерно постоянным для широкого диапазона токов диодов, что означает, что падение напряжения на диоде не похоже на падение напряжения на резисторе или даже на обычном (замкнутом) переключателе. Для наиболее упрощенного анализа схемы падение напряжения на проводящем диоде можно считать постоянным при номинальном значении и не связанным с величиной тока.

Диодное уравнение

На самом деле, прямое падение напряжения более сложное. Уравнение описывает точный ток через диод с учетом падения напряжения на переходе, температуры перехода и нескольких физических констант. Это широко известно как уравнение диода :

Термин kT / q описывает напряжение, возникающее в переходе P-N из-за воздействия температуры, и называется термическим напряжением или Vt перехода.При комнатной температуре это примерно 26 милливольт. Зная это и принимая коэффициент «неидеальности» равным 1, мы можем упростить уравнение диода и переписать его как таковое:

Вам не нужно знать «уравнение диода» для анализа простых диодных цепей. Просто поймите, что падение напряжения на токопроводящем диоде меняет вместе с величиной тока, проходящего через него, но это изменение довольно мало в широком диапазоне токов. Вот почему во многих учебниках просто говорится, что падение напряжения на проводящем полупроводниковом диоде остается постоянным на уровне 0.7 вольт для кремния и 0,3 вольт для германия.

Однако в некоторых схемах намеренно используется присущее P-N-переходу экспоненциальное соотношение тока / напряжения, и поэтому их можно понять только в контексте этого уравнения. Кроме того, поскольку температура является фактором в уравнении диода, смещенный в прямом направлении P-N переход может также использоваться в качестве устройства измерения температуры и, таким образом, может быть понят, только если у человека есть концептуальное представление об этой математической зависимости.

Работа с обратным смещением

Диод с обратным смещением предотвращает прохождение тока через него из-за расширенной области обеднения.На самом деле очень небольшой ток может проходить и проходит через диод с обратным смещением, называемый током утечки , но его можно игнорировать для большинства целей.

Способность диода выдерживать напряжения обратного смещения ограничена, как и для любого изолятора. Если приложенное напряжение обратного смещения становится слишком большим, диод испытывает состояние, известное как пробой (рисунок ниже), которое обычно является деструктивным.

Максимальное напряжение обратного смещения диода известно как Peak Inverse Voltage или PIV , и его можно получить у производителя.Как и прямое напряжение, рейтинг PIV диода зависит от температуры, за исключением того, что PIV увеличивается на с повышением температуры, а уменьшается на , когда диод становится холоднее, что прямо противоположно значению прямого напряжения.

Диодная кривая: показывает излом при прямом смещении 0,7 В для Si и обратный пробой.

Обычно рейтинг PIV обычного «выпрямительного» диода составляет не менее 50 В при комнатной температуре. Диоды с рейтингом PIV в несколько тысяч вольт доступны по скромным ценам.

ОБЗОР:

  • Диод — это электрический компонент, действующий как односторонний клапан для тока.
  • Когда на диод подается напряжение таким образом, что диод пропускает ток, говорят, что диод имеет прямое смещение .
  • Когда напряжение подается на диод таким образом, что диод запрещает ток, говорят, что диод имеет обратное смещение .
  • Напряжение, падающее на проводящий диод с прямым смещением, называется прямым напряжением .Прямое напряжение диода изменяется незначительно при изменении прямого тока и температуры и фиксируется химическим составом P-N перехода.
  • Кремниевые диоды
  • имеют прямое напряжение примерно 0,7 В.
  • Германиевые диоды
  • имеют прямое напряжение приблизительно 0,3 В.
  • Максимальное напряжение обратного смещения, которое диод может выдержать без «поломки», называется номинальным значением пикового обратного напряжения или PIV .

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Резисторы

— Основной вопрос диода о падении напряжения

Пример схемы

Итак, для вашего развлечения, пожалуйста, проанализируйте следующую схему:

смоделировать эту схему — Схема, созданная с помощью CircuitLab

(Большая часть материалов, которые следует здесь, можно легко найти на этом сайте Википедии: моделирование диодов.{\ frac {V_ \ text {D}} {\ eta \, V_T}} — 1 \ right) $$

Это уравнение легко переработать для решения для \ $ V_ \ text {D} \ $:

$$ V_ \ text {D} = \ eta \, V_T \, \ operatorname {ln} \ left (\ frac {I_ \ text {D}} {I_ \ text {SAT}} + 1 \ right) $$

Итак, у нас есть две разные точки зрения на диод / светодиод.

Для малосигнального БЮТ с диодным подключением обычно коэффициент излучения (он же коэффициент неидеальности ) равен \ $ \ eta = 1 \ $. Но для многих дискретных диодов, таких как 1N4148 или 1N4007, \ $ \ eta> 1 \ $.(Не будет меньше 1.) Некоторые светодиоды будут иметь довольно высокие значения (нередко превышающие 4.)

Ток насыщения, \ $ I_ \ text {SAT} \ $, лучше всего рассматривать как экстраполированный отрезок оси \ $ y \ $. Я говорю об этом здесь, здесь и здесь.

\ $ V_T = \ frac {k \, T} {q} \ $ — статистическое тепловое напряжение и основной физический параметр, имеющий множество важных применений. При комнатной температуре это часто бывает \ $ \ приблизительно 26 \: \ text {mV} \ $.

Математическое закрытое решение

Уравнение KVL для указанной выше схемы:

$$ \ begin {align *} V_ \ text {CC} — R \, I_ \ text {D} — V_ \ text {D} & = 0 \: \ text {V} \\\\ V_ \ text {CC} — R \, I_ \ text {D} — \ eta \; V_T \, \ ln {\ left (\ frac {I_ \ text {D}} {I_ \ text {SAT}} \ right )} & = 0 \: \ text {V} \ end {align *} $$

Проблема здесь в решении для \ $ I_ \ text {D} \ $. {\ frac {V_ \ text {CC}} {\ eta \, V_T}}} \ right) \ end {align *} $$

(Для тех, кто интересуется более подробной информацией о функции журнала продуктов, известной как LambertW, посетите сайт Wolfram LambertW.)

Теперь предположим, что \ $ V_ \ text {CC} = 9 \: \ text {V} \ $ и \ $ R = 220 \: \ Omega \ $. Для светодиода воспользуемся параметрами, взятыми из светодиода Luminus PT-121-B: \ $ \ eta = 8.37 \ $ и \ $ I_ \ text {SAT} = 435.2 \: \ text {nA} \ $. (Предположим, конечно, \ $ V_T \ приблизительно 26 \: \ text {mV} \ $.) Тогда мы найдем \ $ I_ \ text {D} \ приблизительно 29.9 \: \ text {mA} \ $ и \ $ V_ \ text {D} \ приблизительно 2.42 \: \ text {V} \ $. Это очень похоже на симуляцию Spice для устройства и обстоятельств.

Или предположим, что мы используем параметры для 1N4148, \ $ \ eta = 1.752 \ $ и \ $ I_ \ text {SAT} = 2.53 \: \ text {nA} \ $ и используйте \ $ V_ \ text {CC} = 5 \: \ text {V} \ $ и \ $ R = 1 \: \ text {k} \ Omega \ $. Затем для этого обычного диода мы найдем \ $ I_ \ text {D} \ приблизительно 4.34 \: \ text {mA} \ $ и \ $ V_ \ text {D} \ приблизительно 654 \: \ text {mV} \ $.

Как видите, это работает для всех типов диодов. (Основным ограничением является тот факт, что \ $ I_ \ text {SAT} \ $ сильно меняется в зависимости от температуры — обсуждалось в конце обсуждения «упрощенных моделей диодов», где его вариации обусловлены одним из наиболее важных результатов статистических исследований. механика, фактор Больцмана, обсуждаются далее.)

Сводка

Закрытые решения для основных вопросов по диодам никогда не бывают простыми. Однако для большинства целей обычно достаточно сделать несколько упрощающих предположений и быть «достаточно близкими для всех намерений и целей». (Чтобы прочитать о некоторых из них, см. «Упрощенные модели диодов», уже упомянутые минуту назад.) Таким образом, вам, вероятно, никогда действительно не понадобится выполнять вышеуказанную работу. Просто приятно знать, о чем идет речь, если вы задумались об этом. (В основном, чтобы вы понимали, почему вы вместо этого используете эти упрощающие предположения.)

Также обратите внимание, что закрытое решение является масштабным решением и решает вопрос в очень, очень большом диапазоне обстоятельств.

Вам было интересно, что происходит, когда приложенное напряжение равно напряжению диода. Но на самом деле напряжение на диоде подстраивается под обстоятельства. Это не исправлено. Поэтому, если вы попытаетесь подать на схему так называемое «напряжение диода», диод вместо этого отрегулирует свое напряжение еще ниже, чтобы падение напряжения на резисторе было «достаточно», чтобы обеспечить ток, который «достаточно» для дайте необходимое напряжение на диоде, чтобы компенсировать разницу.Вот настоящий ответ. Вышеупомянутое математическое решение — это просто сложный способ сказать то же самое, но количественно, а не «махать рукой».

Все вышеперечисленное применимо точно так же, как и к любому прямому смещенному диоду любого типа. Даже со значительным (в приложении) омическим сопротивлением выводов (которое затем просто добавляется к последовательному сопротивлению для анализа).

Как тестировать диоды с помощью цифрового мультиметра

Цифровые мультиметры могут тестировать диоды одним из двух методов:

  1. Режим тестирования диодов: почти всегда лучший подход.
  2. Режим сопротивления: обычно используется, только если мультиметр не оборудован режимом проверки диодов.
Примечание: В некоторых случаях может потребоваться удалить один конец диода из схемы, чтобы проверить диод.
Что нужно знать о режиме сопротивления при проверке диодов:
  • Не всегда показывает, хороший ли диод или плохой.
  • Не следует принимать, когда в цепь включен диод, так как он может давать ложные показания.
  • Может использоваться для проверки неисправности диода в конкретном приложении после того, как тест диода показывает, что диод неисправен.

Диод лучше всего проверять путем измерения падения напряжения на диоде, когда он смещен в прямом направлении. Диод с прямым смещением действует как замкнутый переключатель, позволяя току течь.

В режиме проверки диодов мультиметра возникает небольшое напряжение между измерительными проводами. Затем мультиметр отображает падение напряжения, когда измерительные провода подключены к диоду при прямом смещении. Процедура тестирования диодов выполняется следующим образом:

  1. Убедитесь, что а) все питание цепи отключено и б) на диоде отсутствует напряжение.В цепи может присутствовать напряжение из-за заряженных конденсаторов. В таком случае необходимо разрядить конденсаторы. Настройте мультиметр на измерение постоянного или переменного напряжения.
  2. Переведите шкалу (поворотный переключатель) в режим проверки диодов. Он может разделять пространство на циферблате с другой функцией.
  3. Подключите измерительные провода к диоду. Запишите отображаемое измерение.
  4. Поменяйте местами измерительные провода. Запишите отображаемое измерение.

Анализ испытаний диодов

  • Хороший диод прямого действия показывает падение напряжения в диапазоне от 0.От 5 до 0,8 В для наиболее часто используемых кремниевых диодов. Некоторые германиевые диоды имеют падение напряжения от 0,2 до 0,3 В.
  • Мультиметр показывает OL, когда исправный диод имеет обратное смещение. Показание OL указывает на то, что диод работает как разомкнутый переключатель.
  • Неисправный (разомкнутый) диод не позволяет току течь ни в одном направлении. Мультиметр будет отображать OL в обоих направлениях, когда диод открыт.
  • Закороченный диод имеет такое же значение падения напряжения (приблизительно 0.4 В) в обоих направлениях.

Мультиметр, установленный в режим сопротивления (Ом), может использоваться в качестве дополнительной проверки диодов или, как упоминалось ранее, если мультиметр не поддерживает режим проверки диодов.

Диод смещен в прямом направлении, когда положительный (красный) измерительный провод находится на аноде, а отрицательный (черный) измерительный провод — на катоде.

  • Сопротивление хорошего диода в прямом смещении должно находиться в диапазоне от 1000 Ом до 10 МОм.
  • Измерение сопротивления высокое, когда диод смещен в прямом направлении, потому что ток от мультиметра течет через диод, вызывая измерение высокого сопротивления, необходимое для тестирования.
Диод имеет обратное смещение, когда положительный (красный) измерительный провод находится на катоде, а отрицательный (черный) измерительный провод находится на аноде.
  • Обратно смещенное сопротивление исправного диода показывает OL на мультиметре. Диод плохой, если показания одинаковы в обоих направлениях.

Процедура режима сопротивления выполняется следующим образом:

  1. Убедитесь, что а) все питание цепи отключено и б) на диоде отсутствует напряжение. В цепи может присутствовать напряжение из-за заряженных конденсаторов.В таком случае необходимо разрядить конденсаторы. Настройте мультиметр на измерение постоянного или переменного напряжения.
  2. Поверните шкалу в режим сопротивления (Ω). Он может разделять пространство на циферблате с другой функцией.
  3. Подключите измерительные провода к диоду после того, как он был отключен от цепи. Запишите отображаемое измерение.
  4. Поменяйте местами измерительные провода. Запишите отображаемое измерение.
  5. Для получения наилучших результатов при использовании режима сопротивления для проверки диодов сравните показания, снятые с заведомо исправным диодом.
Ссылка: Принципы цифрового мультиметра Глен А. Мазур, American Technical Publishers.

Связанные ресурсы

Диоды | Клуб Электроники

Диоды | Клуб электроники

Сигнал | Выпрямитель | Мостовой выпрямитель | Стабилитрон

Смотрите также: светодиоды | Блоки питания

Диоды позволяют электричеству течь только в одном направлении. Стрелка символа схемы показывает направление, в котором может течь ток. Диоды — электрическая версия вентиль и первые диоды на самом деле назывались вентилями.

Типы диодов

Обычные диоды можно разделить на два типа:

Дополнительно есть:

Подключение и пайка

Диоды должны быть подключены правильно, на схеме может быть указано a или + для анода и k или для катода (да, это действительно k, а не c, для катода!). Катод отмечен линией, нарисованной на корпусе. Диоды обозначены своим кодом мелким шрифтом, вам может потребоваться ручная линза, чтобы прочитать его.

Сигнальные диоды могут быть повреждены нагреванием при пайке, но риск невелик, если только вы используете германиевый диод (коды начинаются OA …), и в этом случае вы должны использовать радиатор (например, зажим «крокодил»), прикрепленный к проводу между соединением и корпусом диода.

Выпрямительные диоды достаточно прочные, и при их пайке не требуется специальных мер предосторожности.


Испытательные диоды

Вы можете использовать мультиметр или простой тестер. проект (батарея, резистор и светодиод), чтобы проверить, что диод проводит только в одном направлении.

Можно использовать лампу для проверки выпрямительного диода, но НЕ используйте лампу для проверки сигнальный диод, потому что большой ток, пропускаемый лампой, разрушит диод.


Падение напряжения в прямом направлении

Электричество потребляет немного энергии, проталкиваясь через диод, как человек. толкая дверь пружиной. Это означает, что есть небольшое прямое падение напряжения через проводящий диод. Для большинства диодов, сделанных из кремния, оно составляет около 0,7 В.

Прямое падение напряжения на диоде почти постоянно, независимо от тока, протекающего через диод, поэтому они имеют очень крутую характеристику (вольт-амперный график).

обратное напряжение

При подаче обратного напряжения проводит не идеальный диод, а настоящие диоды. утечка очень небольшого тока (обычно несколько мкА). Это можно игнорировать в большинстве схем. потому что он будет намного меньше, чем ток, текущий в прямом направлении. Однако все диоды имеют максимальное обратное напряжение (обычно 50 В или более), и если при превышении этого значения диод выйдет из строя и будет пропускать большой ток в обратном направлении, это называется пробой .



Диоды сигнальные (малоточные)

Сигнальные диоды обычно используются для обработки информации (электрических сигналов) в цепях, поэтому они требуются только для пропускания небольших токов до 100 мА.

Сигнальные диоды общего назначения, такие как 1N4148, изготовлены из кремния и имеют прямое падение напряжения 0,7 В.

Rapid Electronics: 1N4148

Германиевые диоды , такие как OA90, имеют более низкое прямое падение напряжения, равное 0.2V и это делает Их можно использовать в радиосхемах в качестве детекторов, выделяющих звуковой сигнал из слабого радиосигнала. Сейчас они используются редко, и их может быть трудно найти.

Для общего использования, где величина прямого падения напряжения менее важна, кремниевые диоды лучше, потому что они менее легко повреждаются теплом при пайке, имеют меньшее сопротивление при проводке и имеют очень низкие токи утечки при приложении обратного напряжения.

Защитные диоды для реле

Сигнальные диоды также используются для защиты транзисторов и микросхем от кратковременного высокого напряжения, возникающего при обмотке реле. выключен.На схеме показано, как защитный диод подключен к катушке реле «в обратном направлении».

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы. Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно.Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Выпрямительные диоды (большой ток)

Выпрямительные диоды используются в источниках питания для преобразования переменного тока (AC). к постоянному току (DC) этот процесс называется выпрямлением. Они также используются в других схемах, где через диод должен проходить большой ток.

Все выпрямительные диоды изготовлены из кремния и поэтому имеют прямое падение напряжения 0.7В. В таблице указаны максимальный ток и максимальное обратное напряжение для некоторых популярных выпрямительных диодов. 1N4001 подходит для большинства цепей низкого напряжения с током менее 1 А.

Rapid Electronics: 1N4001

Диод Максимальный
Ток
Максимум
Обратный
Напряжение
1N4001 1A 50V
1N4002
1N5401 3A 100V
1N5408 3A 1000V

Книг по комплектующим:



Мостовые выпрямители

Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель является одним из них и доступен в специальных пакетах, содержащих четыре необходимых диода. Мостовые выпрямители рассчитаны на максимальный ток и максимальное обратное напряжение. У них есть четыре вывода или клеммы: два выхода постоянного тока помечены + и -, два входа переменного тока помечены .

На схеме показана работа мостового выпрямителя при преобразовании переменного тока в постоянный. Обратите внимание, как проводят чередующиеся пары диодов.

Rapid Electronics: Мостовые выпрямители

Мостовые выпрямители различных типов

Обратите внимание, что у некоторых есть отверстие в центре для крепления к радиатору

Фотографии © Rapid Electronics


Стабилитроны

Стабилитроны

используются для поддержания постоянного напряжения.Они рассчитаны на «поломку» в надежных и неразрушающим способом, чтобы их можно было использовать в обратном направлении для поддержания фиксированного напряжения на их выводах.

Стабилитроны

можно отличить от обычных диодов по их коду и напряжению пробоя. которые напечатаны на них. Коды стабилитронов начинаются BZX … или BZY … Их напряжение пробоя обычно печатается с буквой V вместо десятичной точки, поэтому 4V7 означает, например, 4,7 В.

a = анод, k = катод

Rapid Electronics: стабилитроны

На схеме показано, как подключен стабилитрон с последовательно включенным резистором для ограничения тока.

Стабилитроны

имеют номинальное напряжение пробоя и максимальную мощность . Минимальное доступное напряжение пробоя составляет 2,4 В. Широко доступны номиналы мощности 400 мВт и 1,3 Вт.

Дополнительные сведения см. На странице источников питания.


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно никому не будет передано.На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google.Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Как работают диоды Шоттки | ОРЕЛ

Как и другие диоды, диод Шоттки управляет направлением тока в цепи. Эти устройства действуют как улица с односторонним движением в мире электроники, позволяя току проходить только от анода к катоду. Однако, в отличие от стандартных диодов, диод Шоттки известен своим низким прямым напряжением и возможностью быстрого переключения.Это делает их идеальным выбором для радиочастотных приложений и любых устройств с низким напряжением. Диод Шоттки имеет множество применений, в том числе:

  • Выпрямление мощности. Диоды Шоттки могут использоваться в приложениях с большой мощностью благодаря низкому прямому падению напряжения. Эти диоды потребляют меньше энергии и могут уменьшить размер радиатора.
  • Несколько источников питания. Диоды Шоттки также могут помочь разделить питание в схеме с двумя источниками питания, например, с сетью и батареей.
  • Солнечные элементы. Диоды Шоттки могут помочь максимизировать эффективность солнечных элементов благодаря низкому прямому падению напряжения. Они также помогают защитить ячейку от обратных зарядов.
  • Зажим. Диоды Шоттки также могут использоваться в качестве фиксаторов в транзисторных схемах, например, в логических схемах 74LS или 74S.

( Источник изображения )

Преимущества и недостатки диода Шоттки

Одним из основных преимуществ использования диода Шоттки перед обычным диодом является их низкое прямое падение напряжения.Это позволяет диоду Шоттки потреблять меньше напряжения, чем стандартному диоду, используя только 0,3-0,4 В на его переходах. На графике ниже вы можете видеть, что прямое падение напряжения примерно на 0,3 В начинает значительно увеличивать ток в диоде Шоттки. Это увеличение тока не вступит в силу до 0,6 В для стандартного диода.

( Источник изображения )

На изображениях ниже представлены две схемы, иллюстрирующие преимущества более низкого прямого падения напряжения.Схема слева содержит обычный диод, справа — диод Шоттки. Оба питаются от источника постоянного тока 2 В.

( Источник изображения )

Обычный диод потребляет 0,7 В, а для питания нагрузки остается только 1,3 В. Благодаря более низкому прямому падению напряжения диод Шоттки потребляет всего 0,3 В, оставляя 1,7 В для питания нагрузки. Если наша нагрузка требует 1,5 В, то для работы подойдет только диод Шоттки.

Другие преимущества использования диода Шоттки по сравнению с обычным диодом:

  • Более быстрое время восстановления .Небольшой заряд, накопленный в диоде Шоттки, делает его идеальным для приложений с высокоскоростным переключением.
  • Меньше шума . Диод Шоттки будет производить меньше нежелательных шумов, чем обычный диод с p-n переходом.
  • Лучшая производительность . Диод Шоттки потребляет меньше энергии и может легко удовлетворить требования низковольтных приложений.

Диоды Шоттки имеют некоторые недостатки. Диод Шоттки с обратным смещением будет испытывать более высокий уровень обратного тока, чем традиционный диод.При обратном подключении это приведет к большей утечке тока.

Диоды Шоттки

также имеют более низкое максимальное обратное напряжение, чем стандартные диоды, обычно 50 В или меньше. Как только это значение будет превышено, диод Шоттки выйдет из строя и начнет проводить большой ток в обратном направлении. Однако даже до достижения этого обратного значения диод Шоттки будет пропускать небольшой ток, как любой другой диод.

Как работает диод Шоттки

Типичный диод объединяет полупроводники p-типа и n-типа для образования p-n перехода.В диоде Шоттки металл заменяет полупроводник p-типа. Этот металл может варьироваться от платины до вольфрама, молибдена, золота и т. Д.

Когда металл соединяется с полупроводником n-типа, образуется переход m-s. Это соединение называется барьером Шоттки. Поведение барьера Шоттки будет отличаться в зависимости от того, находится ли диод в несмещенном, прямом или обратном смещении.

( Источник изображения )

Беспристрастное состояние

В несмещенном состоянии свободные электроны будут перемещаться от полупроводника n-типа к металлу, чтобы установить баланс.Этот поток электронов создал барьер Шоттки, где встречаются отрицательные и положительные ионы. Свободным электронам потребуется большая подводимая энергия, чем их встроенное напряжение, чтобы преодолеть этот барьер.

( Источник изображения )

Состояние с опережением

Подключение положительной клеммы батареи к металлической и отрицательной клеммы к полупроводнику n-типа создаст состояние с прямым смещением. В этом состоянии электроны могут пересекать переход от n-типа к металлу, если приложенное напряжение больше 0.2 вольта. Это приводит к протеканию тока, типичному для большинства диодов.

( Источник изображения )

Состояние с обратным смещением

Подключение отрицательной клеммы батареи к металлу и положительной клеммы к полупроводнику n-типа создаст состояние с обратным смещением. Это состояние расширяет барьер Шоттки и предотвращает прохождение электрического тока. Однако, если обратное напряжение смещения продолжает увеличиваться, это может в конечном итоге разрушить барьер.Это позволит току течь в обратном направлении и может повредить компонент.

( Источник изображения )

Производство и параметры диодов Шоттки

Существует множество методов изготовления диода Шоттки. Самый простой способ — подключить металлический провод к поверхности полупроводника, это называется точечным контактом. Некоторые диоды Шоттки до сих пор производятся с использованием этого метода, но он не известен своей надежностью.

( Источник изображения )

Самый популярный метод — это использование вакуума для осаждения металла на поверхность полупроводника. Этот метод представляет проблему разрушения металлических краев из-за воздействия электрических полей вокруг полупроводниковой пластины. Чтобы исправить это, производители будут защищать полупроводниковую пластину оксидным защитным кольцом. Добавление этого защитного кольца помогает улучшить порог обратного пробоя и предотвращает физическое разрушение соединения.

( Источник изображения )

Параметры диода Шоттки

Ниже вы найдете список параметров, которые следует учитывать при выборе диода Шоттки для вашего следующего электронного проекта:

Примеры диодов Шоттки

Это помогает увидеть, как эти параметры обычно указаны на веб-сайте производителя или в техническом описании. Вот два примера:

Диод Шоттки 1N5711 — это сверхбыстрый переключающийся диод с высоким обратным пробоем, низким прямым падением напряжения и защитным кольцом для защиты перехода.

Диод Шоттки 1N5828 представляет собой стержневой диод, используемый для выпрямления мощности.

Управляйте потоком

Планируете работать с ВЧ или силовым приложением, требующим работы от низкого напряжения? Диоды Шоттки — это то, что вам нужно! Эти диоды известны своим низким прямым падением напряжения и быстрой скоростью переключения. Независимо от того, используются ли они в солнечных элементах или в выпрямлении энергии, вы не сможете превзойти низкое падение напряжения 0,3 В и дополнительную эффективность.Autodesk EAGLE уже включает в себя массу бесплатных библиотек диодов Шоттки, готовых к использованию. Не нужно делать свое собственное. Загрузите Autodesk EAGLE бесплатно сегодня!

Идеальный диодный контроллер от 0 В до 18 В экономит мощность и пространство по сравнению с Schottky

Диоды Шоттки

используются по-разному для реализации систем питания с несколькими источниками. Например, электронные системы высокой доступности, такие как сетевые серверы и серверы хранения, используют схемы ИЛИ на диодах Шоттки, чтобы реализовать систему с резервированием. Диодное ИЛИ также используется в системах с альтернативными источниками питания, такими как сетевой адаптер переменного тока и питание от резервной батареи.Силовые диоды могут быть объединены с конденсаторами для поддержания напряжения нагрузки во время пониженного напряжения на входе. В этом случае силовые диоды включены последовательно с входным напряжением, а конденсаторы находятся на стороне нагрузки диода. В то время как конденсаторы обеспечивают питание, диод с обратным смещением изолирует нагрузку от провисающего входа.

диодов Шоттки достаточно для этих применений, когда токи ниже нескольких ампер, но для более высоких токов избыточная мощность, рассеиваемая в диоде из-за его прямого падения напряжения, требует лучшего решения.Например, ток 5 А, протекающий через диод с падением напряжения 0,5 В, тратит 2,5 Вт внутри диода. Это тепло необходимо отводить с помощью выделенной медной области на печатной плате или радиаторов, прикрепленных болтами к диоду, которые занимают значительное пространство. Прямое падение диода также делает его непрактичным для применений с низким напряжением. Эта проблема требует идеального диода с нулевым прямым падением напряжения для экономии энергии и места.

Контроллер идеальных диодов LTC4352 в тандеме с N-канальным MOSFET создает почти идеальный диод для использования с входными источниками питания от 0 до 18 В.Рисунок 1 иллюстрирует простоту этого решения. Эта идеальная диодная схема может заменить силовой диод Шоттки для создания высокоэффективной схемы ИЛИ или ограничения питания. На рисунке 2 показана экономия энергии идеальной диодной схемой по сравнению с диодом Шоттки. 3,5 Вт сохраняется при 10 А, и экономия увеличивается с увеличением тока нагрузки. Благодаря своему быстрому динамическому отклику, контроллер лучше всего подходит для низковольтных диодных ИЛИ, которые более чувствительны к падению напряжения.

Рис. 1. LTC4352, управляющий N-канальным MOSFET, заменяет силовой диод и связанный с ним радиатор для экономии энергии, площади печатной платы и падения напряжения.Также показано: небольшая площадь печатной платы идеальной диодной схемы с использованием LTC4352 в корпусе DFN-12 размером 3 × 3 мм и полевого МОП-транзистора размера SO-8.

Рис. 2. По мере увеличения тока нагрузки увеличивается экономия энергии за счет использования идеального диода (LTC4352 + Si7336ADP) вместо силового диода Шоттки (SBG1025L).

LTC4352 контролирует дифференциальное напряжение на клеммах MOSFET истока («анод») и стока («катод»). МОП-транзистор имеет внутренний диод исток-сток, который проводит ток нагрузки при начальном включении питания.Когда входное напряжение выше, чем выходное, MOSFET включается, что приводит к прямому падению напряжения I LOAD • R DS (ON) . R DS (ON) может быть подходящим образом выбран для обеспечения легкого 10-кратного уменьшения падения напряжения на диоде Шоттки. Когда входной сигнал падает ниже выходного, полевой МОП-транзистор выключается, имитируя поведение диода с обратным смещением.

Низкая техника управления идеальным диодом контролирует напряжение на МОП-транзисторе с помощью гистерезисного компаратора.Например, полевой МОП-транзистор можно включить всякий раз, когда напряжение от входа к выходу превышает 25 мВ. Однако выбор нижнего порога отключения может быть непростым. Установка его на положительное прямое падение напряжения, скажем 5 мВ, приводит к многократному выключению и включению полевого МОП-транзистора при малых токах нагрузки. Установка отрицательного значения, например –5 мВ, разрешает обратный постоянный ток.

LTC4352 реализует метод линейного управления, чтобы избежать проблем, связанных с методом на основе компаратора. Он управляет затвором полевого МОП-транзистора, чтобы поддерживать прямое падение напряжения на полевом МОП-транзисторе на уровне 25 мВ (AMP на рисунке 3).При малых токах нагрузки затвор полевого МОП-транзистора немного превышает его пороговое напряжение, создавая сопротивление 25 мВ / I LOAD . По мере увеличения тока нагрузки напряжение затвора повышается, чтобы уменьшить сопротивление полевого МОП-транзистора. В конечном счете, при больших токах нагрузки затвор MOSFET полностью включен, и прямое падение напряжения растет линейно с током нагрузки, как I LOAD • R DS (ON ). На рис. 4 показана полученная ВАХ идеального диода.

Рис. 3. Упрощенное внутреннее устройство LTC4352.

Рис. 4. Прямая ВАХ идеального диода LTC4352 по сравнению с диодом Шоттки.

В условиях обратного напряжения на затворе подается низкий уровень, чтобы полностью отключить полевой МОП-транзистор, что позволяет избежать постоянного обратного тока. Линейный метод также обеспечивает плавное переключение токов для медленно пересекающихся входных источников питания в приложениях с диодным ИЛИ. Фактически, в зависимости от полевого МОП-транзистора и импеданса трассы, входные источники разделяют ток нагрузки, когда их напряжения почти равны.

Большинство идеальных диодных схем имеют более медленную переходную характеристику по сравнению с обычными диодами.LTC4352, с другой стороны, быстро реагирует на изменения входного и выходного напряжения. Мощный драйвер отключает полевой МОП-транзистор, чтобы защитить входное питание и дорожки на плате от больших обратных токов. Точно так же драйвер быстро включает переключатель, чтобы ограничить падение напряжения во время переключения питания в приложениях с диодным ИЛИ.

На рис. 5 показано быстрое переключение, происходящее в цепи ИЛИ идеального диода на 3,3 В. Первоначально V IN1 обеспечивает полный ток нагрузки, поскольку он выше, чем V IN2 .В этом состоянии MOSFET Q1 включен, а Q3 выключен. Короткое замыкание приводит к падению V IN1 ниже V IN2 . Быстрый отклик LTC4352 отключает Q1 и включает Q3, так что теперь ток нагрузки может подаваться через V IN2 . Это быстрое переключение сводит к минимуму помехи в напряжении нагрузки, так что последующие цепи могут продолжать работать бесперебойно.

Рис. 5. Идеальное быстрое переключение диодного ИЛИ.

Для быстрого включения в LTC4352 используется внутренний зарядный насос с внешним накопительным конденсатором.Этот конденсатор подключается между выводами CPO и SOURCE. CPO — это выход зарядного насоса, который может выдавать подтягивающий ток до 100 мкА. Накопительный конденсатор накапливает и накапливает заряд, который может быть вызван для создания 1,5 А переходного подтягивающего тока GATE во время события быстрого включения. Напряжение накопительного конденсатора падает после быстрого включения, поскольку он разделяет заряд с входной емкостью затвора (C ISS ) полевого МОП-транзистора. Для приемлемого падения емкость накопительного конденсатора должна быть примерно в 10 раз больше, чем C ISS полевого МОП-транзистора.

Быстрое включение легко отключить. Отсутствие накопительного конденсатора замедляет время нарастания затвора, что определяется зарядкой повышающего тока CPO C ISS . Медленное включение затвора может привести к падению нагрузки примерно на вольт ниже входного, поскольку ток течет через основной диод полевого МОП-транзистора до тех пор, пока канал не будет усилен. Это может быть приемлемо для приложений с более высоким входным напряжением, например 12 В.

LTC4352 выходит за рамки функциональных возможностей диода, включая защиту от пониженного и перенапряжения на входе, выходы для сообщения информации о состоянии и сбоях, обнаружение открытого полевого МОП-транзистора и возможность пропускания обратного тока.

На рис. 6 показан LTC4352 в схеме идеального диода 5 В с защитой от пониженного и повышенного напряжения. Контакты UV и OV имеют компараторы с порогом срабатывания 0,5 В и гистерезисом 5 мВ (рисунок 3). Резистивные делители от источника питания к этим контактам создают окно входного напряжения, обычно от 4,36 В до 5,78 В, в котором работает идеальная функция диода. Вывод STATUS тянет на низкий уровень, чтобы загореться зеленый светодиод, когда на затворе высокий уровень и мощность течет через внешний полевой МОП-транзистор. Для V IN за пределами окна входного напряжения вентиль удерживается, а на выводе FAULT устанавливается низкий уровень, чтобы сигнализировать о неисправности.Красный светодиод D2 обеспечивает визуальную индикацию. Взаимосвязанные полевые МОП-транзисторы необходимы для блокирования проводимости через их внутренние диоды исток-сток в состоянии низкого уровня затвора. Один полевой МОП-транзистор Q1 может использоваться в случае, когда достаточно индикации выхода V IN за пределы допустимого диапазона. Но следует позаботиться о том, чтобы ток нагрузки, протекающий через основной диод Q1, когда его затвор низкий, не вызвал чрезмерного рассеивания тепла в полевом МОП-транзисторе.

Рис. 6. Схема идеального диода 5 В с защитой от пониженного и перенапряжения на входе.Идеальная функция диода работает при 4,36 В <В IN <5,78 В, иначе GATE низкий.

Переключатель MOSFET может выйти из строя, разомкнув цепь, или его R DS (ON) может ухудшиться за годы работы, увеличивая падение напряжения на переключателе. Большое падение также происходит, когда через полевой МОП-транзистор протекает чрезмерный ток, возможно, из-за короткого замыкания на выходе. LTC4352 обнаруживает такие сбои и отмечает их через свой вывод FAULT. Схема обнаружения разомкнутого полевого МОП-транзистора срабатывает всякий раз, когда обнаруживает прямое падение напряжения на полевом МОП-транзисторе более 250 мВ — даже при включенном затворе.Обратите внимание, что это условие приводит только к низкому уровню на выводе FAULT, но никаких действий для выключения переключателя не предпринимается. Таблица 1 переводит состояние светодиодов STATUS и FAULT в рабочее состояние LTC4352.

Вход на вывод REV настраивает поведение LTC4352 для обратного тока. Он имеет низкий уровень для нормальной работы диода, что препятствует прохождению обратного тока через внешний полевой МОП-транзистор. Если REV превышает 1 В, ворота полностью открываются до предела, даже в условиях обратного тока.

Только минимальное напряжение, повышенное напряжение и блокировка пониженного напряжения V CC может отменить это и отключить ворота. Эта функция удобна либо в приложениях управления трактом мощности, которые позволяют протекать обратным током, либо в целях тестирования.

Когда входная мощность диода проходит через разъем на плате с горячей заменой, LTC4352 может выполнять двойную функцию для управления пусковым током. Опять же, для этого приложения требуются соединенные друг с другом полевые МОП-транзисторы, чтобы блокировать проводимость через диоды в корпусе полевого МОП-транзистора.Пусковой ток ограничивается замедлением скорости нарастания напряжения нагрузки. Это делается путем ограничения dV / dt на затворе MOSFET и работы его в конфигурации «исток-повторитель».

На рисунке 7 показано приложение, в котором LTC4352 используется для управления пусковым током. Поскольку цель состоит в том, чтобы ограничить dV / dt на затворе, характеристика быстрого включения идеального диода отключается, если не использовать накопительный конденсатор CPO. Ток затвора теперь ограничен подтягивающим током CPO, равным 100 мкА. Чтобы еще больше снизить dV / dt, на воротах добавлена ​​RC-сеть.Резистор развязывает конденсатор во время быстрого отключения из-за обратного тока или перенапряжения. Резистор R G предотвращает высокочастотные колебания в Q2.

Рисунок 7. Контроль пускового тока.

При «горячем» подключении платы сначала контактируют длинные штырьки питания. LTC4352 включается, но блокирует его, поскольку УФ-излучение низкое. После задержки вставки платы в несколько миллисекунд происходит контакт короткого контакта UV. Если напряжение V IN выше 10,8 В, затвор MOSFET начинает увеличиваться.MOSFET включается, когда затвор достигает порогового напряжения, и ток начинает заряжать выход. Q2 работает в режиме повторителя от источника и страдает наибольшим рассеянием мощности. Его V DS начинается с V IN и уменьшается до 25 мВ / 2. Следует следить за тем, чтобы мощность, рассеиваемая во время броска тока, попадала в безопасную рабочую зону (SOA) полевого МОП-транзистора.

Рабочий диапазон V IN простирается до 0 В. Однако при работе с входами ниже 2.9V необходимо внешнее питание на выводе V CC . Это напряжение должно быть в диапазоне от 2,9 до 6 В. Для подмножества от 2,9 В до 4,7 В этого диапазона значение V IN всегда должно быть ниже, чем V CC . Между выводами V CC и GND также необходим байпасный конденсатор 0,1 мкФ. На рисунке 8 показана идеальная диодная схема, в которой питание 5 В питает вывод V CC . В этом случае V IN может работать от 0 В до 18 В.

Рис. 8. Идеальная диодная схема от 0 до 18 В.При подаче питания на вывод V CC от внешнего источника в диапазоне от 4,7 В до 6 В (здесь 5 В), V IN может работать от 0 В до 18 В.

Для входных источников питания от 2,9 В до 18 В внешний источник питания на выводе V CC не требуется. Вместо этого внутренний стабилизатор с малым падением напряжения (LDO на рис. 3) LTC4352, продолжение со страницы 27, генерирует напряжение 4,1 В на выводе V CC . Для V IN ниже 4,1 В, V CC следует примерно на 50 мВ ниже V IN .Конденсатор 0,1 мкФ V CC по-прежнему необходим для шунтирования и стабилизации LDO.

Постоянно присутствующей темой в проектировании электронных систем было объединение большего количества вычислений в меньшие форм-факторы и меньшие бюджеты мощности. Другая тенденция заключалась в снижении напряжения распределенной мощности, что увеличивает ток для поддержания уровней мощности. С учетом этих ограничений разработчики плат должны тщательно проверять каждый диод в цепи высокого тока на предмет его мощности и потребляемой площади.

Контроллер LTC4352 MOSFET обеспечивает те же функции, что и диод, но с более высоким КПД и более низкими температурами, особенно при увеличении токов.Он также включает в себя полезные функции, такие как быстрое управление переключением, режим 0 В, защита от пониженного и повышенного напряжения, обнаружение открытого MOSFET, возможность разрешения обратного тока, возможность горячей замены, а также выходы неисправностей и состояний. Вся эта функциональность заключена в компактные 12-контактные корпуса DFN (3 мм × 3 мм) и MSOP, что позволяет создать идеальное диодное решение с меньшими габаритами по сравнению с обычными диодами.

Общие сведения о технических характеристиках, параметрах и рейтингах диодов »Примечания по электронике

Диоды

могут показаться простыми, но они имеют множество технических характеристик, параметров и номиналов, которые необходимо учитывать при выборе одного из них в качестве замены или для новой конструкции электронной схемы.


Diode Tutorial:
Типы диодов Характеристики и номиналы диодов PN переходный диод ВЕЛ PIN-диод Диод с барьером Шоттки Варактор / варикап Стабилитрон


Понимание технических характеристик, параметров и номинальных характеристик диодов может быть ключом к выбору правильного электронного компонента для конкретной конструкции электронной схемы. На рынке доступно огромное количество диодов, поэтому выбор необходимого не всегда может показаться легким.

Большинство спецификаций, номинальных значений и параметров относительно просты для понимания, особенно с небольшими пояснениями, но некоторые из них могут потребовать немного большего объяснения, или они могут быть применимы к ограниченному количеству диодов.

Помимо технических характеристик, касающихся электрических характеристик, также важны физические упаковки. Диоды поставляются в различных корпусах, включая корпуса с выводами на проводах, а также мощные диоды, которые крепятся болтами к радиаторам, и с огромным количеством высокоавтоматизированных производств и сборок печатных плат, компоненты технологии поверхностного монтажа — диоды SMD используются в огромных количествах.

Технические характеристики диодов приводятся в технических паспортах и ​​содержат описание характеристик диода. Проверка рабочих параметров позволит оценить диод на предмет того, обеспечивает ли он требуемые рабочие характеристики для предполагаемой функции.

Различные параметры спецификации более применимы для диодов, используемых в различных приложениях, различных конструкциях электронных схем и т. Д. Для силовых приложений важны такие аспекты, как допустимый ток, прямое падение напряжения, температура перехода и т. Д., Но для конструкций RF емкость и напряжение включения часто представляют большой интерес.

Нижеприведенные аспекты подробно описывают некоторые из наиболее широко используемых параметров или спецификаций, используемых в технических паспортах для большинства типов диодов.

Характеристики и параметры диода

В приведенном ниже списке представлены подробные сведения о различных характеристиках диодов и параметрах диодов, которые можно найти в технических паспортах и ​​спецификациях диодов.

  • Материал полупроводника: Полупроводниковый материал, используемый в диоде с PN-переходом, имеет первостепенное значение, поскольку используемый материал влияет на многие из основных характеристик и свойств диодов.Кремний и германий — два широко используемых материала:
    • Кремний: Кремний — наиболее широко используемый материал, поскольку он обеспечивает высокие характеристики для большинства приложений и низкие производственные затраты. Технология кремния хорошо отработана, и кремниевые диоды можно изготавливать дешево. Напряжение прямого включения составляет около 0,6 В, что является высоким показателем для некоторых приложений, хотя для диодов Шоттки оно меньше.
    • Германий: Германий менее широко используется и предлагает низкое напряжение включения около 0.От 2 до 0,3 В.
    Другие материалы обычно предназначены для более специализированных диодов. Например, светодиоды используют составные материалы для обеспечения разных цветов.
  • Тип диода: Хотя большинство диодов имеют в основе конструкции PN переход, разные типы диодов разработаны для обеспечения разных характеристик, и иногда они могут работать по-разному. Ключевым моментом является выбор правильного типа диода для любого конкретного применения.Стабилитроны

    используются для обеспечения опорных напряжений, в то время как варакторные диоды используются для обеспечения переменного уровня емкости в ВЧ-схеме в соответствии с предусмотренным обратным смещением. В выпрямительных диодах может использоваться простой диод с PN переходом, или в некоторых случаях они могут использовать диод Шоттки для более низкого прямого напряжения. Каким бы ни было приложение, необходимо использовать диод правильного типа для достижения требуемых функциональных возможностей и характеристик.


  • Прямое падение напряжения, Vf: Любое электронное устройство, пропускающее ток, будет развивать результирующее напряжение на нем, и эта характеристика диода имеет большое значение, особенно для выпрямления мощности, где потери мощности будут выше для высокого прямого падение напряжения.Кроме того, диодам для ВЧ-схем часто требуется небольшое прямое падение напряжения, поскольку сигналы могут быть небольшими, но их все же необходимо преодолеть.

    Напряжение на диоде с PN переходом возникает по двум причинам. Первый связан с характером полупроводникового PN перехода и является результатом упомянутого выше напряжения включения. Это напряжение позволяет преодолеть обедненный слой и протечь ток. Вторая причина возникает из-за обычных резистивных потерь в устройстве. В результате будет дана величина прямого падения напряжения при заданном уровне тока.Этот показатель особенно важен для выпрямительных диодов, через которые может проходить значительный ток.

    График прямого падения напряжения для различных уровней тока, в частности, для выпрямительных диодов, обычно приводится в технических данных. Он будет иметь диапазон типичных значений, и с его помощью можно определить диапазон падения напряжения для ожидаемых уровней переносимого тока. Затем можно определить мощность, которая будет рассеиваться в области электронного перехода диода.

  • Пиковое обратное напряжение, PIV: Эти характеристики диода представляют собой максимальное напряжение, которое диод может выдерживать в обратном направлении. Это напряжение нельзя превышать, иначе устройство может выйти из строя.

    Это напряжение не является просто среднеквадратичным напряжением входящего сигнала. Каждую схему необходимо рассматривать по отдельности, но для простого однодидного полуволнового выпрямителя с некоторой формой сглаживающего конденсатора впоследствии следует помнить, что конденсатор будет удерживать напряжение, равное пику входящей формы волны напряжения.Тогда диод также будет видеть пик входящего сигнала в обратном направлении и, следовательно, в этих обстоятельствах он будет видеть пиковое обратное напряжение, равное размаху сигнала.

  • Напряжение обратного пробоя, В (BR) R : Это немного отличается от пикового обратного напряжения тем, что это напряжение является точкой, в которой диод выйдет из строя.

    IV характеристика диода PN, показывающая обратный пробой

    Диод может выдерживать обратное напряжение до определенной точки, а затем он выйдет из строя.В некоторых диодах и в некоторых схемах она нанесет непоправимый ущерб, хотя для Зинера / опорного напряжения диодов обратного пробоя сценария является то, что используется для опорного напряжения, хотя схема должна быть разработана, чтобы ограничить ток, протекающим, в противном случае диод может быть уничтожен.

  • Максимальный прямой ток: Для конструкции электронной схемы, которая пропускает любые уровни тока, необходимо обеспечить, чтобы максимальные уровни тока для диода не превышались.По мере повышения уровня тока дополнительное тепло рассеивается, и его необходимо удалить.

  • Рабочая температура перехода: Как и все электронные компоненты, диоды имеют максимальную рабочую температуру. В техническом паспорте будет раздел с указанием максимальной температуры перехода. По мере повышения температуры перехода надежность в долгосрочной перспективе падает. При превышении максимальной температуры перехода диод может выйти из строя и даже загореться.

    Следует помнить, что температура перехода относится к самому диодному переходу внутри корпуса, а не к температуре корпуса. Между температурой упаковки и температурой перехода должен быть допустимый запас. Часто в технических паспортах приводятся кривые, позволяющие определить температуру перехода. Также можно рассчитать температуру перехода, зная ток, прямое падение напряжения и тепловое сопротивление: спецификации, которые упоминаются в технических характеристиках и также упоминаются здесь.

    Принимая во внимание аспекты долгосрочной надежности, всегда лучше использовать диод в пределах своих номиналов. Это дает хороший запас для обеспечения надежной долгосрочной работы и для диода, чтобы приспособиться к любым кратковременным пикам. То же самое для любого электронного компонента.

  • Переход к тепловому сопротивлению окружающей среды, Θ JA : Этот параметр спецификации диода измеряется в ° C на ватт и означает, что для каждого ватта, рассеиваемого в переходе, будет определенное повышение температуры выше температуры окружающей среды. .Это означает, что для диода с тепловым сопротивлением перехода к окружающей среде 50 ° C / Вт температура перехода будет повышаться на 50 ° C на каждый ватт рассеиваемой мощности.

    Сопротивление перехода к температуре окружающей среды на самом деле является суммой ряда отдельных областей диода: тепловое сопротивление перехода к корпусу, тепловое сопротивление между корпусом и поверхностью и тепловое сопротивление поверхности к окружающей среде, как показано на рисунке. формула: θ JA = θ JC + θ CS + θ SA .

    Эта общая спецификация является ключом к возможности определить фактическую рабочую температуру перехода — ключевой параметр, который необходимо контролировать при проектировании схемы, в которой диоды пропускают значительный ток, так что прошедший ток приведет к рассеянию мощности.

    Температуру перехода можно рассчитать по формуле:

    Где:
    T J температура перехода
    T AMB = температура окружающей среды
    Θ JA = переход к тепловому сопротивлению окружающей среды.

  • Ток утечки: Если бы был идеальный диод, то при обратном смещении ток не протекал. Обнаружено, что для реального диода с PN-переходом очень малая величина тока течет в обратном направлении из-за наличия неосновных носителей заряда в полупроводнике. Уровень тока утечки зависит от трех основных факторов. Обратное напряжение очевидно. Он также зависит от температуры и заметно повышается с повышением температуры.Также обнаружено, что это очень зависит от типа используемого полупроводникового материала — кремний намного лучше германия.

    IV характеристика PN-диода, показывающая параметр

    тока утечки. Характеристика или спецификация тока утечки для диода с PN-переходом указывается при определенном обратном напряжении и определенной температуре. Спецификация обычно определяется в микроамперах, мкА или пикоамперах, пА, поскольку уровни обычно очень низкие до того, как произойдет обратный пробой.

  • Емкость перехода: Все диоды с PN переходом обладают емкостью перехода. Область обеднения — это диэлектрический промежуток между двумя пластинами, которые эффективно формируются на краю области обеднения и области с основными носителями. Фактическое значение емкости зависит от обратного напряжения, которое вызывает изменение области обеднения (увеличение обратного напряжения увеличивает размер области истощения и, следовательно, уменьшает емкость).

    Этот факт успешно используется в варакторах или варикапных диодах, а также в ВЧ-конструкциях генераторов переменной частоты и фильтров переменной частоты. Однако для многих других приложений, особенно для некоторых радиочастотных схем, где паразитная емкость диода может влиять на характеристики, это необходимо минимизировать. Поскольку емкость имеет важное значение, она указывается. Параметр обычно описывается как заданная емкость (обычно в пФ, поскольку уровни емкости относительно низкие) при заданном напряжении или напряжениях.Также для многих ВЧ приложений доступны специальные диоды с малой емкостью.

    Для многих применений с выпрямителями мощности емкость достаточно мала, чтобы не создавать проблем. Например, емкость перехода 1N4001 и 1N4004 составляет всего 15 пФ для обратного напряжения 4 В и менее при повышении напряжения. Диоды с более высоким напряжением могут быть меньше — 1N4007 имеет емкость перехода 8 пФ для обратного напряжения 4 вольта. Соответственно, влияние емкости замечается только при повышении частоты.Поскольку уровни емкости низкие, на частоты до 100 кГц она часто не влияет, и в большинстве случаев ее можно игнорировать вплоть до более высоких частот.

  • Тип корпуса: Диоды могут быть установлены в различных корпусах в зависимости от их применения, и в некоторых случаях, особенно в ВЧ приложениях, корпус является ключевым элементом при определении общих характеристик ВЧ диодов.

    Также для силовых приложений, где важно рассеивание тепла, корпус может определять многие общие параметры диодов, поскольку для мощных диодов могут потребоваться корпуса, которые можно прикрепить болтами к радиаторам, тогда как малосигнальные диоды могут быть доступны в выводном формате или в качестве устройств для поверхностного монтажа. .Также мощные диоды могут быть доступны в виде мостовых выпрямителей, содержащих четыре диода в мосте, подходящем для выпрямления волн.

    Диоды для поверхностного монтажа, SMD-диоды используются в огромных количествах, потому что большая часть производства электроники и сборки печатных плат осуществляется с использованием автоматизированных методов, а технология поверхностного монтажа подходит для этого.

    Схема мостового выпрямителя и маркировка

    В дополнение к этому, диоды доступны как с выводами, так и в корпусах с технологией поверхностного монтажа, в зависимости от диода.Большинство ВЧ диодов и диодов малой мощности доступны в корпусах для поверхностного монтажа, что делает их более подходящими для крупномасштабного производства.

  • Схемы кодирования и маркировки диодов: Большинство используемых диодов имеют номера деталей, соответствующие схемам JEDEC или Pro-Electron. Такие числа, как 1N4001, 1N916, BZY88 и многие другие, хорошо знакомы всем, кто занимается проектированием и производством электроники.

    Однако при использовании автоматизированных методов сборки печатных плат и технологии поверхностного монтажа обнаруживается, что многие устройства слишком малы, чтобы нести полное число, которое может быть использовано в техническом паспорте.В результате была разработана довольно произвольная система кодирования, в соответствии с которой упаковка устройства содержит простой двух- или трехзначный идентификационный код.

    Обычно его можно разместить на небольших корпусах диодов для поверхностного монтажа. Однако определить типовой номер SMD-диода производителя по коду корпуса может быть непросто на первый взгляд. Есть несколько полезных кодовых книг SMD, которые предоставляют данные для этих устройств. Например, код «13s» обозначает диод для поверхностного монтажа BAS125 в корпусе SOT23 или SOT323.

Пример типовых характеристик диода

Несмотря на то, что существует множество различных диодов с большим количеством различных спецификаций, иногда помогает увидеть, каковы различные характеристики и параметры и как они выражаются в формате, аналогичном тем, которые представлены в таблицах данных.

Типовой 1N5711 Характеристики / Технические характеристики
Характеристика Типичное значение Блок Детали
Макс.напряжение блокировки постоянного тока, В 70 В
Макс.продолжительный ток в прямом направлении, Ifm 15 мА
Напряжение обратного пробоя, В (БР) R 70 В при обратном токе 10 мкА
Обратный ток утечки, IR 200 мкА При VR = 50 В
Прямое падение напряжения, VF 0.41

1,00

В при IF = 1,0 мА

IF = 15 мА

Емкость перехода, Cj 2,0 пФ VR = 0 В, f = 1 МГц
Время обратного восстановления, trr 1 нС

Огромное количество диодов имеет огромное количество различных характеристик. Некоторые диоды могут быть предназначены исключительно для выпрямления, тогда как другие могут быть разработаны, чтобы излучать свет, обнаруживать свет, действовать в качестве опорного напряжения, обеспечивают переменную емкость и тому подобные.Диоды также поставляются в различных упаковках, подавляющее большинство из которых в наши дни продаются как диоды для поверхностного монтажа для автоматизированной сборки печатных плат.

Независимо от типа диода, многие из основных технических характеристик, параметров и номиналов, упомянутых выше, будут важны. Понимание основных параметров и характеристик этих электронных компонентов при просмотре спецификаций в технических паспортах является ключом к выбору правильного диода. Понимание спецификаций позволяет принимать мудрые решения в процессе проектирования электронной схемы для любого проекта с использованием диодов.

Другие электронные компоненты: Резисторы
Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *