Параллельное соединение ламп: Страница не найдена! — Сайт по ремонту, подключению, установке электрики своими руками!

Содержание

Последовательная схема подключения ламп

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше.

Последовательное соединение

Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:

    Лампы светятся не в полную силу, так как на них подается пониженное напряжение. Насколько пониженное — зависит от количества подключенных лампочек. Например, подключено к 220 В три лампы — делить надо на 3. Это значит, что на каждый светильник приходит по 73 В. Если подключено 5 ламп, делим на 5 и т.д.

Принцип последовательного соединения

Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.

Схема последовательного соединения лампочек (точечных светильников)

Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.

Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).

Схема последовательного подключения точечных светильников через одноклавишный выключатель

У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Схема параллельного подключения точечных светильников

Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

  • Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
  • Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.

Способы реализации параллельного подключения

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.

Способы соединения проводов при лучевом исполнении

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.

Пример исполнения лучевого подключения точечных светильников

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Фактическая реализация параллельного соединения шлейфным способом

В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Как подключить точечные светильники к двойному выключателю

Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Подключение встроенных потолочных светильников со светодиодными лампами на 12 в

Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.

Схема подсоединения точечных светильников на 12 В через общий трансформатор

В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.

Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).

Подключение светильников на 12 В через двойной выключатель

Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.

Подключение точечных светильников на 12 В с персональным трансформатором

С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.

Схема подключения точечных светильников на 12 В с персональным трансформатором

В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.

Выбор сечения проводов

При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.

Таблица для определения сечения кабеля при подключении точечных светильников на 12 В

Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм 2 . Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.

Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.

Особенности монтажа

Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем ВВГнг. По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.

Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.

Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.

Укладывать кабель для подключения точечных светильников можно в поперечные профили, которые находятся повыше

В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.

Если планируется натяжной потолок, кабели крепят в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий крепеж для кабеля — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.

Подписка на рассылку

О том, как подключать к электросети обыкновенные лампочки, знают практически все, но вот подключение низковольтных галогенных или люминесцентных ламп часто становится проблемой. В большинстве случаев используется иная схема подключения лампы — сложная, но более экономичная.

Подключение галогенных ламп

Рисунок 1. Схема подключения галогенной лампы через трансформатор В целях повышения безопасности эксплуатации и экономии электроэнергии все чаще применяется схема подключения лампы освещения, предполагающая использование пониженного напряжения. Низковольтные галогенные лампы такие же яркие, как и обычные, но при этом потребление энергии существенно сокращается.

Подключение галогенных ламп осуществляется при помощи специальных источников питания (трансформаторов) на 6 В, 12 В или 24 В. Кроме того, использование такой схемы подключения с применением понижающего трансформатора продлевает жизнь лампочек.

Сама схема подключения довольно проста: галогенные лампы соединяются между собой параллельно и подсоединяются к трансформатору, при этом общая мощность всех ламп не должна превышать мощности используемого трансформатора. Управление освещением осуществляется простым выключателем, подключаемым к трансформатору на стороне 220 В.

Единственное, чем такая схема подключения галогенных ламп неудобна — нужно где-то поместить трансформатор, что не всегда удобно, несмотря на небольшие размеры устройства.

Подключение люминесцентных ламп

Рисунок 2. Схема подключения одной люминесцентной лампы через стартер Рисунок 3. Схема подключения двух люминесцентных ламп через стартер Люминесцентные лампы проще всего включать в электрическую сеть по распространенной стартерной схеме. Такая схема подключения дневной лампы не только проста, но и эффективна. По подобной схеме можно подключать и несколько ламп (тандемная схема).

Здесь применяется специальный «пускатель» — стартер, который представляет собой биметаллический контакт. Есть два распространенных типа стартеров, на которых может базироваться схема подключения люминесцентных ламп: рассчитанных на сетевое напряжение в 127 В и 220 В.

Способы подключения ламп

Рисунок 4. Последовательное подключение ламп Галогенные, люминесцентные и прочие энергосберегающие лампы можно подключать двумя способами: последовательно и параллельно.

Последовательное подключение. Подразумевает подключение нуля и фазы к первой лампе, подключение к ней следующей и т. д. Эта схема применяется довольно редко, так как имеет ряд недостатков: уменьшение яркости ламп, а также тот факт, что если одна лампа в цепи перегорит, все последующие за ней тоже перестают работать.

Рисунок 5. Параллельное подключение ламп Параллельное соединение. Подразумевает, что все элементы электрической цепи будут своими контактами подключены к фазе и нулю. Если в такой схеме перегорит одна лампа, остальные будут и дальше гореть.

Кабельно-проводниковая продукция для подключения ламп

Как правило, для подключения большинства типов ламп вполне достаточно использование медного многожильного провода с сечением жил 0,5–1,5 мм (например, ПВС 2х1,5 или ПВС 3х1,5).

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.

Чем слабее, тем ярче

При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.

Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.

  • При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.

Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.

Перед последовательным соединением

Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.

  • Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.

Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.

Лучше соединять параллельно

Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.

  • Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
  • Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.

“>

Две лампочки подключены параллельно. Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы

Секция Физика

Номинация: Учебные проекты

Параллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.

Научный руководитель: Колегойда Е.А., учитель начальных классов

Актуальность: Последовательное соединение ламп накаливания в домашнем быту используется редко.

Ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным .

Если подать напряжение питания 220В на концы L и N , то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

Примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на рынок, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Именно «звездой» делают разводку по квартире при монтаже розеток.

Параллельное включение ламп применяется и при освещении дорог. В частности, электрические лампы и двигатели, предназначенные для работы при определенном напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Цель моей исследовательской работы: показать преимущества параллельного соединения ламп и предложить рекомендации по технике безопасности при работе с электричеством.

Практическая ценность проделанной работы: при параллельном соединении элементов требуется больше проводов в реальной жизни, но это компенсируется тем, что если ломается один элемент, то все остальные работают. При этом весь ток будет проходить через эту вторую лампу. Это очень удобно. Если елочная гирлянда имеет параллельно включенные лампочки, и одна из них перегорает, то вы можете этого и не заметить. А когда заметите, просто заменить погасшую лампочку.

Так, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.

Эквивалентным сопротивлением называется сопротивление, которое может заменить все элементы, входящие в данную цепь.

Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.

Исследования:

1. Для представления проекта параллельного соединения лампочки и электродвигателя я установил пропеллер, затем замкнул выключатель, электродвигатель начнет вращаться, а лампочка загорится. Если выкрутить лампочку, замкнуть выключатель, электродвигатель продолжит работать.

2. Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти. Для этого я собрал конструктор со звуком звездных войн и светом, управляемый сенсором. Заменил кнопку сенсорной пластиной. Прерывистое прикосновение пальцев к пластине позволяет управлять звездными войнами.

Полученные результаты и их оценка:

Первый эксперимент показал, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение, так если ломается один элемент, то все остальные работают.

Второй эксперимент показывает, что человеческое тело имеет не очень большое сопротивление (1кОм) и обладает свойствами электрического конденсатора (это устройство для накопления заряда и энергии ) . Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти.

Электричество – друг человечества. Однако, при неправильном обращении к нему, такая дружба может оказаться очень опасной. Чтобы снизить вероятность поражения электрическим током, необходимо соблюдать элементарные правила безопасной работы

Таким образом, я предлагаю рекомендации по технике безопасности при работе с электричеством.

Первая помощь при поражении электрическим током.

Электрический ток ничем не пахнет, не имеет цвета, не издает звуков и не осязается, поэтому предупредить человека о своем присутствии не может. О нем просто надо знать или быть предельно осторожным. При поражении электрическим током опасность усугубляется неспособностью пострадавшего помочь себе.

Обеспечь свою безопасность. Надень сухие перчатки (резиновые, шерстяные, кожаные и т.п.), резиновые сапоги. По возможности отключи источник тока. При подходе к пострадавшему по земле иди мелкими, не более 10 см, шагами.

Сбрось с пострадавшего провод сухим токонепроводящим предметом (палка, пластик). Оттащи пострадавшего за одежду не менее чем на 10 метров от места касания проводом земли или от оборудования, находящегося под напряжением.


Вызови (самостоятельно или с помощью окружающих) «скорую помощь».

Определи наличие пульса на сонной артерии, реакции зрачков на свет, самостоятельного дыхания.

При отсутствии признаков жизни проведи сердечно-легочную реанимацию.

При восстановлении самостоятельного дыхания и сердцебиения придай пострадавшему устойчивое боковое положение.

Если пострадавший пришел в сознание, укрой и согрей его. Следи за его состоянием до прибытия медицинского персонала, может наступить повторная остановка сердца.

Освобождение пострадавшего от тока.

Прежде всего необходимо быстро освободить пострадавшего от действия электрического тока, т.е. отключить цепь тока с помощью ближайшего штепсельного разъема, выключателя (рубильника) или путем вывертывания пробок на щитке.
В случае отдаленности выключателя от места происшествия можно перерезать провода или перерубить их (каждый провод в отдельности) топором или другим режущим инструментом с сухой рукояткой из изолирующего материала.
При невозможности быстрого разрыва цепи необходимо оттянуть пострадавшего от провода или же отбросить сухой палкой оборвавшийся конец провода от пострадавшего.
Необходимо помнить, что пострадавший сам является проводником электрического тока. Поэтому при освобождении пострадавшего от тока оказывающему помощь необходимо принять меры предосторожности, чтобы самому не оказаться под напряжением: надеть галоши, резиновые перчатки или обернуть свои руки сухой тканью, подложить себе под ноги изолирующий предмет — сухую доску, резиновый коврик или, в крайнем случае, свернутую сухую одежду.
Оттягивать пострадавшего от провода следует за концы его одежды, к открытым частям тела прикасаться нельзя. При освобождении пострадавшего от тока рекомендуется действовать одной рукой.
Если он находится на стремянке, подставке или каком-либо ином приспособлении, надо принять меры, чтобы предотвратить ушибы или переломы при падении.
Если человек попал под напряжение выше 1000 В такие меры предосторожности недостаточны. Необходимо обратиться к специалистам, которые немедленно снимут напряжение.
Первая помощь пострадавшему
Меры первой помощи зависят от состояния пострадавшего после освобождения от тока.
Для определения этого состояния необходимо:
— немедленно уложить пострадавшего на спину;
— расстегнуть стесняющую дыхание одежду;
— проверить по подъему грудной клетки, дышит ли он;
— проверить наличие пульса (на лучевой артерии у запястья или на сонной артерии на шее;
— проверить состояние зрачка (узкий или широкий).
Широкий неподвижный зрачок указывает на отсутствие кровообращения мозга.
Определение состояния пострадавшего должно быть проведено быстро, в течение 15 — 20 секунд.
1. Если пострадавший в сознании, но до того был в обмороке или продолжительное время находился под электрическим шоком, то ему необходимо обеспечить полный покой до прибытия врача и дальнейшее наблюдение в течение 2-3 часов.
2. В случае невозможности быстро вызвать врача необходимо срочно доставить пострадавшего в лечебное учреждение.
3. При тяжелом состоянии или отсутствии сознания нужно вызвать врача (Скорую помощь) на место происшествия.
4. Ни в коем случае нельзя позволять пострадавшему двигаться: отсутствие тяжелых симптомов после поражения не исключает возможности последующего ухудшения его состояния.
5. При отсутствии сознания, но сохранившемся дыхании, пострадавшего надо удобно уложить, создать приток свежего воздуха, давать нюхать нашатырный спирт, обрызгивать водой, растирать и согревать тело. Если пострадавший плохо дышит, очень редко, поверхностно или, наоборот, судорожно, как умирающий, надо делать искусственное дыхание.
6. При отсутствии признаков жизни (дыхания, сердцебиения, пульса) нельзя считать пострадавшего мертвым. Смерть в первые минуты после поражения — кажущаяся и обратима при оказании помощи. Пораженному угрожает наступление необратимой смерти в том случае, если ему немедленно не будет оказана помощь в виде искусственного дыхания с одновременным массажем сердца. Это мероприятие необходимо проводить непрерывно на месте происшествия до прибытия врача.
7. Переносить пострадавшего следует только в тех случаях, когда опасность продолжает угрожать пострадавшему или оказывающему помощь.

Сопротивление тела человека. От величины сопротивления зависит величина тока, проходящего через тело человека в случае попадания под напряжение. Чем больше сопротивление, тем лучше. Однако сопротивление тела человека имеет свойство меняться в меньшую или большую сторону. Уменьшение сопротивления зависит от таких факторов, как влажность организма, наличие алкоголя в крови, эмоциональное состояние человека и т.д. Здоровые и физически крепкие люди противостоят электричеству лучше больных и ослабленных, причем степень поражения во многом определяется состоянием человека. Пот, возбудимость или переутомление снижают сопротивляемость организма.

Смертельным фактором является сила тока, а не напряжение, причем в отличие от переменного тока к постоянному человек быстро привыкает, а вот переменный крайне опасен. Существует порогово ощутимый ток — 0,6-1,5 мА. Ток в 10-15 мА приводит к тому, что пострадавший уже не способен убрать руки от провода или электроприбора (неотпускающий ток). При 50 мА повреждаются органы дыхания и сердечно-сосудистая система, 100 мА (промышленный ток, к частным домам не подводящийся) вызывают остановку сердца.

Таким образом, чем дольше длится воздействие тока на человека, тем вероятнее летальный исход, поскольку сопротивляемость тела уменьшается.

Как правило, электрическую разводку делают как можно выше от пола, поэтому, чтобы упростить себе работу, полезно обзавестись складной лестницей.

    перед началом ремонтных работ, связанных с опасностью получить удар электрическим током, следует выключить групповой автомат на щитке в квартире или на лестничной клетке;

    надо разместить на электрощите на лестничной клетке предупреждающую табличку, иначе сосед может случайно включить электричество в самый неподходящий момент;

    перед тем как приступить к работам, с помощью индикаторной отвертки нужно удостовериться в действительном отсутствии электричества в сети;

    предохранители (пробки), которые сейчас в строительстве не используют, еще установлены в некоторых домах, поэтому следует помнить, что заменяют их только при перегорании. Кустарный ремонт в виде установки проволочек («жучков») может привести к пожару; Использование самодельных предохранителей. В старых жилых домах, где для защиты электрической сети применяются предохранители с плавкой вставкой, очень часто домашние умельцы делают самодельные плавкие вставки. Делать это категорически запрещается. Лучше использовать автоматические выключатели, либо поставить пробку-автомат.

    главным условием безопасного использования электроэнергии в быту является хорошее состояние изоляции, электротехники, предохранительных щитков, переключателей, розеток, ламповых патронов, светильников, шнуров. Изоляцию следует регулярно проверять и обновлять при необходимости. Чтобы не повредить ее, не рекомендуется подвешивать провода на гвозди, железные и деревянные предметы, перекручивать их, размещать за газовыми и водосточными трубами, радиаторами, использовать в качестве вешалки, вытаскивать вилку из розетки за шнур, покрывать их краской и белить, укладывать на работающие светильники. Нельзя использовать светильники с поврежденными вилкой, проводом или выключателем;

    покидая квартиру, не забудьте выключить свет и электроприборы, поскольку так не только экономится электричество, но и существенно уменьшается риск возникновения пожара;

    не следует пользоваться переносными светильниками в ванной комнате. Покупая светильник для нее, нужно внимательно прочитать инструкцию, поскольку есть светильники для сырых помещений, в конструкции которых использованы специальные элементы, чтобы сделать их безопасными;

    наиболее внимательно надо подойти к вопросу электробезопасности в помещениях, где обычно находятся дети;

    мощность лампочки в светильнике должна соответствовать допустимому для него пределу. В результате нарушения теплового режима могут произойти короткое замыкание и, как следствие, пожар;

    поскольку проводка в квартире, как правило, скрытая, нельзя произвольно сверлить отверстия и забивать гвозди. Если вы не уверены в том, что в данной зоне не проходят какие-либо провода, используйте особую электродрель с двойной изоляцией;

    осветительные устройства не стоит подвешивать на токоведущих проводах — только на специальных приспособлениях.

    Заземление бытовых приборов. Металлический корпус любой бытовой техники потенциально опасен. Это означает то, что если произойдёт пробой фазы на корпус, то прикосновение к корпусу повлечёт за собой поражение электрическим током. В современной технике вероятность пробоя достаточно мала, но она присутствует и поэтому металлические части необходимо заземлять. Делается это при помощи трёхжильной проводки (фаза, ноль, земля), европейской розетки и европейской вилки.

    Эксплуатация мощных потребителей.
    Если в советские времена нагрузка на проводку была незначительной, то сегодня дела обстоят по-другому. Стиральные машины, пылесосы, постоянно работающие электрические нагреватели воды (бойлеры) приводят к постепенному перегреву старой алюминиевой проводки. Это может привести к повреждению изоляции и возникновению короткого замыкания. Чтобы этого не произошло, можно заменить алюминиевые провода на медные, или увеличить сечение провода.

    Электробезопасность во влажных помещениях. Не стоит пользоваться в ванной комнате электрическими приборами, особенно находясь в воде. Влажные помещения особо опасны, т.к. вода – хороший электропроводник. В крайнем случае, необходимо находиться на безопасном расстоянии от воды. Кроме того, обязательно должны использоваться надёжные аппараты защиты сети, которые в случае короткого замыкания или даже маленькой утечки тока отключат напряжение.

    Использование инструмента и электроинструмента. Т.к. в большинстве случаев проводка выполняется скрытым способом, то любые работы по сверлению или штроблению стен, выполняемые электроинструментом, необходимо выполнять с особой осторожностью, дабы случайно не повредить провода и самому не попасть под напряжение.

    Общие советы по безопасности:
    Следите за целостностью сетевых шнуров бытовой техники, не перегружайте проводку мощными потребителями. Используйте современные комплектующие (выключатели, розетки, щитки). В случае необходимости не поленитесь проконсультироваться по разным электрическим вопросам с опытным электриком.

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше.

Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:

Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.


Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.

Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).


У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.


Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.


Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.


Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.


В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.


Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Подключение встроенных потолочных светильников со светодиодными лампами на 12 в

Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.


В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.

Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).


Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.

Подключение точечных светильников на 12 В с персональным трансформатором

С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.


В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.

Выбор сечения проводов

При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.


Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм 2 . Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.

Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.

Особенности монтажа

Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем . По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.

Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.

Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.


В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.

Если планируется натяжной потолок, кабели крепят в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.

Нет опасности появления на клеммах аккумулятора разных напряжений. Напряжения на всех параллельно соединенных аккумуляторах одинаковы в силу самого характера соединения. Значит параллельно соединенные аккумуляторы не могут «разбежаться» — они будут разряжаться или заряжаться синхронно.

С ледовательно, потенциальную опасность представляет начало разряда или , соединенных параллельно. Но в начале разряда или зарядки, как мы уже выяснили, могут без вреда для себя разряжаться или заряжаться токами, которые превышают установленные производителем ограничения. Поэтому можно было бы сказать, что параллельное соединение разнородных аккумуляторов не представляет опасности. Но мы будем осторожнее, и скажем, что такой опасности почти нет — но при параллельном соединении разной емкости или изготовленных по разным технологиям нужно избегать ситуаций, когда зарядный или разрядный ток в несколько раз превышает установленное производителем предельное значение зарядного или разрядного тока одного аккумулятора.

Иногда на практике нам приходится сталкиваться с необходимостью параллельного или последовательного соединения ламп накаливания. Нередко данная задача встает и в быту, причем это касается не только ламп в люстре. Кто-то может захотеть улучшить освещенность на кухне, а кому-то в голову придет светлая мысль продлить срок службы лампы, заменив ее двумя соединенными последовательно.

Давайте рассмотрим, как осуществляются эти соединения, на что важно обратить внимание, и каких принципов стоит придерживаться, выполняя различные соединения. На рисунках ниже будут приведены простые и понятные схемы.

Параллельное соединение ламп в быту

При параллельном соединении ламп, на каждую из них подается полное сетевое напряжение, то есть фаза и ноль подаются непосредственно на каждую из ламп параллельной цепи. И в случае, если одна из ламп перегорит, остальные будут светить, ибо их цепи останутся полностью целыми.

Параллельное соединение ламп используется всюду в быту. Например: одна лампа находится в ванной комнате, другая — в туалете, и если включить свет и там и там, то эти лампы окажутся соединены между собой параллельно. Выключение или перегорание одной из этих ламп никак не повлияет на работоспособность второй.


Когда необходимо улучшить освещенность в помещении, добавив лампу к существующей системе освещения (вместо того, чтобы заменять уже имеющуюся лампу более мощной), делают отвод от проводки, и обычно на скрутку или клеммником присоединяют патрон осветительного прибора второй лампы.

Здесь нет ничего сложного, достаточно отключить напряжение питания во всем помещении, и осуществить подключение. Так вы получите дополнительный источник света.

Важно, кстати, обратить внимание на то, чтобы коммутируемая выключателем нагрузка (осветительный прибор) всегда находилась на нулевом проводе, и только при переключении выключателя в положение «вкл» — присоединялась бы к фазе. В этом вам поможет отвертка — .

Обратите внимание, на рисунке каждая из ламп параллельной цепи присоединена к основной проводке своим проводом, так токовая нагрузка на все проводники окажется распределена равномерно, и если сечение этих проводов подобрано правильно, то ни один из них не будет перегреваться даже при длительной работе.

Последовательное соединение ламп в быту

Справедливости ради можно сразу отметить, что в быту последовательное соединение ламп используют очень редко. Хотя иногда люди прибегают к такому подходу, например если хотят надежно предотвратить преждевременное перегорание ламп — соединяют последовательно две лампы одинаковой мощности, получают гарантию, что даже при сильных скачках напряжения в сети обе лампы останутся целыми.


Такое последовательное соединение применяют часто в подъездах, когда чтобы не менять лампочку каждый сезон, просто устанавливают на потолке второй патрон на некотором расстоянии от первого, и в него вкручивают вторую лампочку. Так, вместо одной на 60 Вт — две последовательно по 95-100 Вт.

Лампы работают не при 220 вольтах, а при 110 вольтах, таким образом они всегда надежно защищены от токовой перегрузки, светят ровно и не мерцают, как если бы питались через диод (так иногда тоже делают, чтобы снизить средний ток через лампу).

На рисунке приведен вариант соединения ламп как в примере с подъездом. Очевидно, что последовательное соединение выполняется проводом одной и той же толщины, поскольку ток через последовательную цепь течет один и тот же. Напряжение 220 вольт подается на концы «гирлянды», и если ламп две, то на каждую лампу приходится по 110 вольт (при условии что лампы одинаковой мощности!)


Можно сделать цепь из трех одинаковых ламп, тогда на каждую лампу придется по 70-80 вольт переменного напряжения, ибо 210-240 вольт сетевого напряжения разделится на 3. По этому принципу изготавливают и , где много-много разноцветных лампочек, рассчитанных на напряжение в 1 вольт соединяют в длинные последовательные цепочки. Обратите внимание, в гирляндах очень тонкие провода, так как там очень маленький ток, буквально единицы миллиампер.

Таким же подходом руководствуются, делая осветительные сборки из автомобильных ламп на 12 вольт — соединяют по 20 штук 5 ваттных ламп последовательно, и получают осветительную сборку мягкого света мощностью 100 Вт.

Но у таких гирлянд есть один минус — если перегорит одна лампа — работать перестанет вся гирлянда. Поэтому если в вашем быту имеется сборка из последовательно соединенных ламп, необходимо всегда иметь купленные на всякий случай запасные лампы.

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.


Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.

Чем слабее, тем ярче

При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.

Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.

  • При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.

Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.



Перед последовательным соединением

Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.

  • Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.

Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.


Лучше соединять параллельно

Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.

  • Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
  • Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.

Способы подключения ламп: последовательное, параллельное

Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

Последовательная схема подключения

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.

Имеем:

  • две лампы вкрученные в патроны
  • два провода питания выходящие из патронов

Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Просто берете любой конец провода от каждой лампы и скручивает их между собой.

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки. Вот результат измерения силы тока такой сборки при фактическом питающем напряжении 240В.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

При этом, падение яркости будет равномерным только при условии, что лампочки у вас одинаковой мощности.

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

Что это дает нам в практическом смысле при реализации данных схем?

Какая лампочка будет светить ярче и почему

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.

Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.

Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.

Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Ошибки при сборке схемы и подключении выключателя

Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.

В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.

При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?

Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.

Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.

При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.

В то время как большей, практически потухнет. Все как и было описано выше.

  • Где же можно в быту, применить такую казалось бы не практичную схему?
  • Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.
  • Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

Как выполнить фазировку вводов лампочками накаливания

Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?

Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.

  1. Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.
  2. При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).
  3. А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.

Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В.

А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы. Но самое лучшее и практичное применение — это использовать данную схему вовсе не для освещения, а для обогрева.

То есть, ваши источники света в первую очередь будут работать не как светильники, а как обогреватели.

Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.

Что-то подобное зачастую применяется в инкубаторах.

Схема параллельного подключения

Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.

Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.

  • И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.
  • Напряжение на них подается одновременно и всегда составляет номинальные 220В.
  • Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).

Источник: https://svetosmotr.ru/posledovatelnoe-i-parallelnoe-soedinenie-lampochek/

Последовательное подключение лампочек: схема, смешанное подключение, плюсы и минусы

При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает. Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель.

Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например.

Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.

Последовательное соединение

Последовательная схема подключения

Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:

  • через все включенные в цепь осветительные элементы течет одинаковый ток;
  • распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
  • соответственно этому распределяется мощность, расходуемая на каждом осветителе.

При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.

При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая.

Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине.

Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).

Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:

  • при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
  • при установке различных по мощности лампочек они дают разное свечение;
  • невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).

Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.

Параллельное включение

Параллельное соединение лампочек

  • Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.
  • При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.
  • Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:
  • при перегорании одной из лампочек остальные продолжают работать;
  • в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
  • допускается использовать энергосберегающие лампочки;
  • для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.

Недостатков у этого метода практически нет, за исключением большого расхода проводников при сильно разветвленных цепях. Без проблем можно подключить несколько лампочек к одному проводу за счет использования принципа разводки. Типовая схема параллельного соединения лампочек с выключателем ничем особым не отличается от обычного включения. В этом случае в нее дополнительно вводится клавишный переключатель.

Законы смешанного соединения

Смешанное включение осветителей описывается следующим образом:

  • В его основе лежит параллельное соединение нескольких электрических ветвей.
  • В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.

В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.

При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:

  • Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
  • При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
  • С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
  • Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
  • При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.

Смешанный способ подключения имеет ряд преимуществ, определяемых достоинствами каждой из двух основных схем соединения. От последовательного он «унаследовал» его экономичность, а от параллельного – возможность работать даже при выходе из строя элемента в одной из комбинированных цепочек.

Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения.

Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения.

При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Источник: https://StrojDvor.ru/elektrosnabzhenie/kak-luchshe-podklyuchit-lampochki-posledovatelno-ili-parallelno/

Основные схемы подключения ламп | Полезные статьи — Кабель.РФ

О том, как подключать к электросети обыкновенные лампочки, знают практически все, но вот подключение низковольтных галогенных или люминесцентных ламп часто становится проблемой. В большинстве случаев используется иная схема подключения лампы — сложная, но более экономичная.

Подключение галогенных ламп

Рисунок 1. Схема подключения галогенной лампы через трансформатор В целях повышения безопасности эксплуатации и экономии электроэнергии все чаще применяется схема подключения лампы освещения, предполагающая использование пониженного напряжения. Низковольтные галогенные лампы такие же яркие, как и обычные, но при этом потребление энергии существенно сокращается.

Подключение галогенных ламп осуществляется при помощи специальных источников питания (трансформаторов) на 6 В, 12 В или 24 В. Кроме того, использование такой схемы подключения с применением понижающего трансформатора продлевает жизнь лампочек.

Сама схема подключения довольно проста: галогенные лампы соединяются между собой параллельно и подсоединяются к трансформатору, при этом общая мощность всех ламп не должна превышать мощности используемого трансформатора. Управление освещением осуществляется простым выключателем, подключаемым к трансформатору на стороне 220 В.

Единственное, чем такая схема подключения галогенных ламп неудобна — нужно где-то поместить трансформатор, что не всегда удобно, несмотря на небольшие размеры устройства.

Подключение люминесцентных ламп

Рисунок 2. Схема подключения одной люминесцентной лампы через стартер Рисунок 3. Схема подключения двух люминесцентных ламп через стартер Люминесцентные лампы проще всего включать в электрическую сеть по распространенной стартерной схеме. Такая схема подключения дневной лампы не только проста, но и эффективна. По подобной схеме можно подключать и несколько ламп (тандемная схема).

Здесь применяется специальный «пускатель» — стартер, который представляет собой биметаллический контакт. Есть два распространенных типа стартеров, на которых может базироваться схема подключения люминесцентных ламп: рассчитанных на сетевое напряжение в 127 В и 220 В.

Способы подключения ламп

Рисунок 4. Последовательное подключение ламп Галогенные, люминесцентные и прочие энергосберегающие лампы можно подключать двумя способами: последовательно и параллельно.

Последовательное подключение. Подразумевает подключение нуля и фазы к первой лампе, подключение к ней следующей и т. д. Эта схема применяется довольно редко, так как имеет ряд недостатков: уменьшение яркости ламп, а также тот факт, что если одна лампа в цепи перегорит, все последующие за ней тоже перестают работать.

Рисунок 5. Параллельное подключение ламп Параллельное соединение. Подразумевает, что все элементы электрической цепи будут своими контактами подключены к фазе и нулю. Если в такой схеме перегорит одна лампа, остальные будут и дальше гореть.

Кабельно-проводниковая продукция для подключения ламп

Как правило, для подключения большинства типов ламп вполне достаточно использование медного многожильного провода с сечением жил 0,5–1,5 мм (например, ПВС 2х1,5 или ПВС 3х1,5).

Источник: https://cable.ru/articles/id-404.php

Правила параллельного и последовательного соединения ламп

  • В связи с ростом популярности точечных светильников осветительных приборов в квартирах и частных домах стало больше.
  • При необходимости заменить лампочку проблем не возникает, сложнее добавить дополнительные источники света.
  • Если подобные работы выполняются самостоятельно, требуется умение определять преимущества каждого вида соединения и составлять схемы.

Особенности и характеристики схем подключения ламп

Способ и порядок подключения лампы зависит от ее вида. Методы, используемые для лампочек накаливания, не подойдут для галогенок, люминесцентных светильников или светодиодов.

Параллельной

При использовании схемы параллельного подключения источники света подключаются к фазе и нулю. Например, если нужно соединить 2 лампочки, скручиваются их питающие провода. Важно, чтобы сечение соответствовало нагрузке. Напряжение на всех светильниках одинаковое, они горят с яркостью, установленной производителем.  Перегорание отдельного элемента не влияет на функциональность остальных.

Справка! На практике при наличии нескольких источников света при параллельном соединении провода не скручиваются. Используется кабель, к которому подключаются все элементы.

Параллельное подключение может быть:

  • лучевое – на каждый светильник отдельный кабель;
  • шлейфное – фаза и ноль сначала идут на первый осветительный прибор, потом часть кабеля идет в остальные (кроме последнего, к которому подключаются две части).

При использовании параллельной лучевой модели перегорание одного элемента не мешает работе остальных. Перед тем, как выбрать шлейфную модель, необходимо учесть, что нарушение одного соединения выведет из строя элементы, расположенные после него. Но проблема решается быстро за счет легкого определения проблемного места.

При подключении галогенных источников с трансформатором необходимо учесть, что они присоединяются к вторичной обмотке преобразователя через клеммные колодки.

Главный недостаток люминесцентных ламп – мерцание. От него избавляет пускорегулирующая аппаратура, но она стоит дорого. Для снижения пульсации применяется специальная схема для двух светильников со сдвигом фазы на одном из них. Две лампочки соединяются параллельно, к одной подключается конденсатор, сдвигающий фазу.

Последовательной

  Где плюс и минус: определяем полярность светодиода

Сравнение достоинств и недостатков схем

Преимущества и недостатки последовательного подключения

Вид лампы Преимущества Недостатки
Накаливания, галогеновые, люминесцентные Продлевается срок службыСнижается мерцание люминесцентных ламп Падение напряженияПри выходе из строя отдельного элемента остальные не работаютУ источников света должна быть одинаковая мощность
Светодиодная Оптимальный вариант для обеспечения одинакового тока на всех источниках Для большого количества лампочек требуется источник питания с большой мощностиПри выходе из строя отдельного элемента перестают работать остальные

Преимущества и недостатки параллельного подключения

Вид лампы Преимущества Недостатки
Накаливания галогеновые, люминесцентные Возможно подключить к сети любое количество светильников по щлейфной схеме
  1. Перегорание отдельного элемента лучевой модели не влияет на работу остальных
  2. Накал полный на всех лампочках
  3. Можно подключить люстру с несколькими лампами
  4. Немного соединительных контактов
Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодкеПри щлейфной модели нарушение одного соединения мешает работе остальных
Светодиодная Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питанияПри перегорании отдельного источника остальные работают Схема не работает, если диоды подсоединяются через один резисторКонструкция громоздкая и дорогая из-за большого количества деталейПри выходе из строя отдельного элемента на остальных увеличивается нагрузка

В какой схеме лампочки одинаковой мощности будут светить ярче и почему

При использовании последовательной схемы вольтаж снижается с увеличением количества элементов. Лампочки горят в полнакала или даже меньше, так как напряжение делится равномерно. Общая мощность при последовательном соединении 2-х элементов по 100 Вт ниже, чем у одного (уровень освещенности снижается).

При параллельном соединении двух светильников на каждый подается 220 В, они работают в полный накал. Общая мощность увеличивается в 2 раза (уровень освещенности повышается).

Применение обеих схем в быту

Самые популярные изделия с последовательным соединением – гирлянды.

Эту модель можно использовать и для других целей:

  • сделать дешевую подсветку в длинном коридоре;
  • сэкономить на покупке лампочек из-за частого перегорания подключением дополнительной;
  • продлить срок эксплуатации источников света (если вместо одной на 60 Вт подключить 2 по 100 Вт).

Справка! Опытные электрики данное свойство используют для определения фаз в трехфазной сети.

В мастерских и гаражах мощные лампы накаливания или галогенки используют для обогрева. Два элемента по 1кВт соединяют последовательно и помещают в металлическую емкость, которую устанавливают на кирпич. Температура такого обогревателя примерно 60оС. Но следует учесть минус – лампы перегорают очень скоро.

Параллельная схема используется в помещениях любого назначения (в подсветке, люстрах), на улицах. Она позволяет включать отдельные источники света независимо от работы остальных, достаточно подключить несколько выключателей. Обычно не только светильники, но и все электроприборы в жилых домах соединяются параллельно и подключаются к бытовой сети на 220 В.

Для подключения светодиодных светильников часто используется смешанная модель. Создается несколько последовательных цепочек, которые между собой соединяются параллельно.

Частые ошибки при сборке схемы и подключении выключателя

Неграмотный специалист чаще всего вместо фазы вводит в выключатель ноль. Светильники могут работать, но в выключенном состоянии они будут под напряжением, что опасно при необходимости заменить лампы.

По неопытности заводят в выключатель и фазу, и ноль.

Важно! Ноль всегда уходит на осветительный прибор.

Третья ошибка – присоединение питающего провода на отвод вместо общего контакта. В результате работает только часть люстры.

Случается, что нулевой провод осветительного прибора подключается не к нулю в коробке, а к фазе.

Чтобы избежать ошибок с выключателем, следует внимательно отнестись к проводам. Желательно перед установкой выключателя промаркировать их, чтобы в процессе монтажа соединить одноименные.

Как выполнить фазировку вводов лампочками накаливания

Фазировка выполняется при необходимости параллельно подключить к источнику питания 2 трехфазных ввода. Путать фазы нельзя, чтобы не создалось межфазное короткое замыкание.

Используются 2 лампы накаливания с последовательным соединением. Один конец провода подключается к фазе, вторым нужно коснуться остальных жил. Если фазы одинаковые, лампочки не горят.

Важно! Не стоит подобным образом экспериментировать с одной лампочкой – она в сети 380 В сразу перегорит. Последовательное соединение двух элементов снижает напряжение в 2 раза.

Основные выводы

Некоторые владельцы городских квартир проводят ремонт самостоятельно. В процессе требуется монтаж новой электропроводки. Для проведения этой работы необходимо ориентироваться в основах электрики и уметь определять оптимальные варианты подключения, учитывающие особенности интерьера и предпочтения членов семьи.

Хотя большинства электроприборов в жилых помещениях подключаются параллельно, знания о том, как подключить лампочки последовательно, тоже не помешают. Они помогут, если появится желание устроить дешевую систему освещения в стиле лофт или сэкономить на покупках.

При самостоятельном выполнении работ важно обладать знаниями о видах проводов, кабелей, выключателей, способах их соединения, сферах использования. Если не ни знаний, ни опыта, подключение лампочек лучше доверить специалисту.

ПредыдущаяСледующая

Источник: https://svetilnik.info/lampy-i-svetilniki/parallelnoe-podklyuchenie-lampochek.html

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого.

Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток.

Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям.

Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры.

Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно.

Если их соединить последовательно, то при включении одной лампочки мы включим все остальные.

При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока
  • Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:
  • А = I х U х t, где А – работа тока, t – время течения по проводнику.
  • Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:
  • А=I х (U1 + U2) х t
  • Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения.

Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока
  1. При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:
  2. Р=U х I
  3. После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:
  4. Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

  • qобщ= q1 = q2 = q3
  • Для определения напряжения на любом конденсаторе, необходима формула:
  • U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

  1. С= q/(U1 + U2 + U3)
  2. Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:
  3. 1/С= 1/С1 + 1/С2 + 1/C3
  4. Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

  • С= (q1 + q2 + q3)/U
  • Это значение рассчитывается как сумма каждого прибора в схеме:
  • С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов.

Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/posledovatelnoe-i-parallelnoe-soedinenie/

Параллельное соединение проводников | Физика

При параллельном соединении все проводники (резисторы, лампы и т.д.) подключаются к одной и той же паре точек A и B (рис. 43). Связь между общими значениями силы тока, напряжения и сопротивления с их значениями на отдельных участках цепи при этом отличается от той, что была при последовательном соединении. Теперь соответствующие формулы имеют вид

I = I1 + I2, (17.1)     U = U1 = U2, (17.2)      R = (R1R2) / (R1 + R2). (17.3)

Чтобы убедиться в справедливости этих соотношений, следует собрать цепь и с помощью амперметра и вольтметра произвести необходимые измерения.

Итак, при параллельном соединении проводников напряжение на всех участках цепи одно и то же, общая сила тока равна сумме сил токов на отдельных проводниках, а общее сопротивление двух проводников находится как отношение произведения их сопротивлений к их сумме.

Первые две из этих закономерностей справедливы для любого числа параллельно соединенных проводников, последняя — только для двух.

Если R1 = R2, то

R = (R1R2) / (R1 + R2) = R12/2R1 = R1/2      (17.4)

Мы видим, что общее сопротивление двух одинаковых проводников в 2 раза меньше сопротивления одного проводника. Эта закономерность допускает обобщение: если параллельно соединено n одинаковых потребителей электроэнергии (резисторов, ламп и т.д.), то их общее сопротивление в n раз меньше сопротивления каждого из них:

R = R1/n      (17.5)

Отсюда следует, что с увеличением числа проводников общее сопротивление будет становиться все меньше и меньше. Это может показаться странным. На самом деле ничего удивительного в этом нет: ведь при параллельном соединении проводников происходит как бы увеличение общей площади их поперечного сечения, а с увеличением площади сечения проводника, как известно, его сопротивление уменьшается.

Отличительной особенностью параллельного соединения нескольких потребителей является то, что при выключении одного из них остальные продолжают работать. Так, например, вывернув одну лампу в цепи, изображенной на рисунке 44, мы увидим, что другая будет по-прежнему гореть.

Большинство потребителей электроэнергии — электронагревательные приборы, холодильники, швейные машины, магнитофоны, телевизоры и т. д. — рассчитаны на напряжение сети 220 В. Поэтому все они должны включаться в сеть параллельно, ибо только в этом случае они окажутся под одним и тем же напряжением (220 В) и будут продолжать работать при выключении одного из них.

На рисунке 45 приведена упрощенная схема квартирной электропроводки. Провода сети, между которыми существует напряжение 220 В, обозначены буквами Ф и О. Первый из них называют фазным, второй — нулевым. Нулевой провод соединен с землей. Именно с ним соединяют все потребители. И наоборот, все выключатели соединяют с фазным проводом. Такой порядок подключения потребителей и выключателей обеспечивает наибольшую безопасность человека.

??? 1. Какое соединение называют параллельным? 2. Начертите схему цепи, изображенной на рисунке 44. 3. Какие три закономерности справедливы для параллельного соединения проводников? 4. Как находится общее сопротивление параллельно соединенных проводников, когда они одинаковые? 5. Перечислите все элементы электрической цепи, изображенной на рисунке 45. 6. Предположим, что при замене лампы человек случайно коснулся металлического контакта в патроне лампы и одновременно с этим какой-либо заземленной части здания (например, батареи отопления). Под каким напряжением он окажется? Рассмотрите ситуацию, когда лампа и выключатель подсоединены к проводам сети так, как это показано на рисунке 45. Что произойдет, если лампу и выключатель поменять местами? 7. Почему у вольтметров делают большое внутреннее сопротивление, а у амперметров — малое?

ДРЛ — параллельное соединение ПРА


Я работаю электриком на машиностроительном заводе. Снабжение наше, оставляет желать лучшего. Дошло до того, что перестали выдавать эл. лампы, вернее почти перестали. Недавно разжились лампами ДРЛ на 400 Вт, но вот беда, подходящего дросселя не было в наличии. На заброшенном складе нашли фонари уличного освещения.

К нашему счастью ПРА оказались на месте. К сожалению не тех номиналов, которые нужны (250 Вт и 125 Вт).


Решил узнать, как можно использовать найденное, к моему разочарованию, поиски в недрах инета не увенчались успехом. Кто-то пишет, что параллельное соединение дросселей возможно только при условии их абсолютной идентичности и то не более 3 шт. Кто-то, что можно запитать через утюг, или лампу накаливание такой же мощности, со вторым утверждением я полностью согласен, так как существуют бездроссельные лампы ДРЛ, то есть получается как бы две лампы в одном флаконе
А с первым я решил поспорить, так как меня терзали смутные сомнения по поводу данного утверждения, да и терять было нечего. Дроссели не те, лампы не те, что ж теперь всё выкинуть или ждать пока какой нибудь добрый снабженец выдаст мне всё необходимое? Проще сразу выкинуть! Но уж больно захотелось сделать людям приятное.
И вот, что из этого получилось:

Два совершенно разных дросселя без ущерба для себя «тянут» лампу на 400 Вт, хотя их суммарная мощность составляет 125+250=375 Вт.
Причем ставил их как есть, то есть с конденсаторами, и с клемниками.


Потом решил немного усложнить схему, добавив световые сигналы, «сеть», «прожектор горит» и «смотреть лампу» — то есть либо лампа сгорела либо ее уже там нет .

Светодиод «Сеть» — тут все понятно, он включен на ввод, до выключателя и обозначает то, что на щит приходит напряжение. Светодиод «Смотреть лампу» — он подключен параллельно лампе — ДРЛ и сопротивление гасящего резистора выбранно так, что он загорается при отсутствии ДРЛ-ки. И наконец «Прожектор горит» — тут не обошлось без заморочек. Сразу не подумав, поставил светодиод параллельно дросселю. Немного погорев, после выключения он перестал работать. Проверил батарейкой — работает, но уже в схеме работать отказался. При выключении дросселя, он выдает бросок напряжения (Школьный курс). Пришлось использовать лампу накаливания на 24В 35 мА.

Запитал ее через гасящий резистор 5,6 кОм. Горит в полнакала (на дольше хватит). Светодиоды запитаны тоже через гасящий резистор. На светодиоде «Сеть» стоит резистор R=24 кОм, светится так же впол накала, как я писал выше » на дольше хватит». Резистор для светодиода «смотреть лампу» выбран экспериментально, хотя оказалось, что его номинал так же в районе 20-30 кОм. Схема подключения светодиода до безобразия проста:
Мощность резисторов по 2 Вт. Диоды, стоящие параллельно светодиоду можно не ставить, с ними надежнее. Они пропускают через себя обратную полуволну переменного тока, тем самым, защищая светодиод. Вот, что получилось в результате:

То же самое в работе:

И наконец вариант сданный в эксплуатацию:

Лампа стоит в прожекторе и ее не видно. Пускорегулирующий аппарат ДРЛ — теперь он так называется, благоразумно поставили в теплое помещение, защищенное от атмосферных осадков, так как дросселей больше взять негде (я уже писал о нашем снабжении). Прожектор радует рабочий класс, освещая дорогу в сумерках и я думаю, что надолго.
Так, что дерзайте, и не надо верить всему, что пишут во всемирной паутине. Было бы желание и все получится.
Прошу извинение за качество фото, они сделаны на мобильный телефон. На предприятие запрещено вносить фото-видео аппаратуру
Еще способ подключения ДРЛ — Подключение ДРЛ, через гасящие резисторы


В заводе на пенсию дядя пошел
Он сорок пять лет отработал как вол
За это рабочему грамоту дали
Оградку железную… и закопали.


Параллельное соединение радиоламп. Параллельное включение выходных ламп

Проделаем еще один опыт. Возьмем несколько одинаковых ламп и включим их одну вслед за другой (рис. 1.9). Такое соединение называют последовательным. Его следует отличать от ранее рассмотренного параллельного соединения.

Рис. 1.9. Генератор питает две последовательно включенные лампы. На схеме показаны амперметр и три вольтметра: один измеряет общее напряжение, два других измеряют напряжение на каждой из ламп

Размер отклонения сервоуправления определяет, что происходит. строительство очень просто. Мы прикрепляем контакты к ручке. Мы отрежем контактную пластину нуждающейся формы, и мы будем выжимать контактный напиток. Мы можем прикрепить контактную пластину непосредственно к сервоприводу. Существует множество других решений. Но это зависит от конкретной конструкции и универсального решения, которое не подходит всем.

Последние годы прошлого века и начала настоящего периода — это период быстрого развития источников света. В результате расширяется объем их практического применения. Тем более что, как и в случае с отобранными в настоящее время луковицами, обещания ограничить использование или ликвидацию широко используемых флуоресцентных ламп, скорее всего, скоро появятся.

При последовательном соединении нескольких участков цепи (скажем, нескольких ламп) ток в каждом из них одинаков.

Итак, возьмем две 100-ваттные лампы, такие же, какие были рассмотрены в предыдущем опыте, и включим их последовательно к генератору с напряжением 100 В.

Лампы будут еле светиться, их накал будет неполным. Почему? Потому что напряжение источника (100 В) разделится поровну между обеими последовательно включенными лампами. На каждой из ламп теперь окажется напряжение уже не 100, а только 50 В.

Последние оснащены колпачками, типичными для ранее известных источников света. Они могут использоваться взаимозаменяемо с существующими лампами накаливания и люминесцентными лампами. Большинство из них имеют стабильные выходные параметры. Только некоторые могут быть скорректированы.

Это значение, которое во много раз превышало мощность ламп, используемых для освещения интерьера. Большое количество излучаемого света вызвало необходимость регулировки светового потока. Правильная настройка яркости смешанных цветов может практически достигать любого цвета света.

Напряжение на лампах одинаково потому, что мы взяли две одинаковые лампы.

Если бы лампы были неодинаковы, общее напряжение 100 В разделилось бы между ними, но уже не поровну: например, на одной лампе могло бы оказаться 70 В, а на другой 30 В.

Как мы увидим впоследствии, более мощная лампа получает при этом меньшее напряжение. Но ток в двух последовательно включенных даже разных лампах остается одинаковым. Если одна из ламп перегорит (порвется ее волосок), погаснут обе лампы.

При этом соединении ток, протекающий через диод и резистор, ограничен, а напряжение питания делится на отдельные диоды. Эта система очень проста и дешева. Каждая ветвь может быть легко сведена к правильному уровню. И отказ одного диода не влияет на работу других ветвей.

Поэтому на практике используется слегка измененный макет. Эта схема дороже, поскольку для каждого диода требуется отдельный резистор. С дополнительными разъемами отказ одного диода почти не влияет на весь массив диодов, если существует несколько параллельных ветвей.

Было бы легче заменить потенциометр, существующий в цепи. Это время, которое, по крайней мере, в миллион раз короче того периода, когда лампа должна достигать состояния полного вдувания. Мне нужно больше времени для запуска. Корректировка — так называемая. заполнение импульсов. В таких случаях питание диода является непрерывным только тогда, когда заполнение составляет 100%. В других ситуациях он уменьшается. Регулирование заполнения импульсов состоит из циклического прерывания питания.

На рис. 1.9 показано, как нужно включить вольтметры, чтобы измерить напряжение на каждой из ламп в отдельности.

Опыт показывает, что общее напряжение на последовательных участках цепи всегда равно сумме напряжений на отдельных участках.

Лампы горели нормально, когда ток был равен 1 А, но для этого нужно было приложить к каждой из них напряжение 100 В. Теперь напряжение на каждой из ламп меньше 100 В, и ток будет меньше 1 А. Он будет недостаточным, чтобы раскалить нить лампы.

На рисунке 3 показан метод затемнения. В первые два периода мощность подается в течение всего периода. Следующие три были уменьшены до 80%. Это означает, что схема питания разомкнута в течение 20% времени, а в оставшиеся 80% времени источник питания работает с номинальной мощностью.

На разных частотах работает много диммеров. Обычно он составляет от 100 до 400 Гц. Чем выше частота, тем легче. Для среднего человека пульсация на частоте 100 Гц незаметна. Для установщика электричества наиболее важным является подключение диммера к установке. Большинство людей ожидают использовать существующие диммеры. И если это невозможно, то, по крайней мере, выберите устройство управления, которое может быть установлено на стене в скрытом корпусе. Сами диммеры вместе с источниками питания предназначены для установки в лампу или в пустое пространство здания.

Будем теперь регулировать работу генератора: будем повышать его напряжение. Что при этом произойдет? Вместе с увеличением напряжения увеличится ток.

Лампы начнут ярче светиться. Когда, наконец, мы поднимем напряжение генератора до 200 В, на каждой из ламп установится напряжение 100 В (половина общего напряжения) и ток ламп увеличится до 1 А. А это и есть условие их нормальной работы. Обе лампы будут гореть с полным накалом и потреблять нормальную для них мощность — 100 Вт. Общая мощность, отдаваемая при этом генератором, будет равна 200 Вт (две лампы по 100 Вт каждая).

Это большое неудобство, потому что вы не можете, поскольку все привыкли включать свет у входа в комнату. Они могут использоваться для контроля времени, группы, центра и сцены. Если используется один из этих методов, электрическая установка не требует каких-либо видимых изменений. Если в установке установлен нормальный выключатель, его необходимо будет заменить одним из вышеупомянутых регуляторов. Преимуществом является то, что они позволяют контролировать лампы любого размера и не требуют использования специальных устройств вместо переключателей.

Можно было бы включить последовательно не две лампы, а десять или пять. В последнем случае опыт показал бы нам, что лампы будут гореть нормально, когда общее напряжение будет увеличено до 500 В. При этом напряжение на зажимах каждой лампы (все лампы мы предполагаем одинаковыми) будет 100 В. Ток в лампах будет и теперь равен 1 А.

Итак, мы имеем пять ламп, включенных последовательно; все лампы горят нормально, каждая из них при этом потребляет мощность 100 Вт, значит, общая мощность будет равна 500 Вт.

Нормальных моностабильных скошенных кнопок достаточно. В зависимости от используемого контроллера можно использовать одностороннее или двунаправленное управление. Если две кнопки подключены к двум входам управления, каждая клавиша отвечает за другое направление работы. Например, левый для включения и выключения, а также для выключения и затемнения. Длительное нажатие кнопки всегда меняет интенсивность света, и чем короче выключатель включается или выключается. Если используется одна кнопка, последующие нажатия меняют направление работы.

Выходную мощность однотактного УНЧ можно повысить параллельным подключением к лампе выходного каскада еще одной или нескольких ламп. Таким образом, при том же питающем и анодном напряжении анодный ток и, соответственно, выходная мощность каскада увеличиваются в два или более раз. Пример параллельного подключения дополнительной лампы в оконечном каскаде однотактного УНЧ приведен на рис. 1.

То же самое и с потемнением. Они предназначены для замены традиционных лампочек. Они могут использоваться взаимозаменяемо вместо ламп, галогенных или люминесцентных ламп. Однако, как и в случае с компактными флуоресцентными лампами, не все могут регулироваться и не регулироваться. Прежде всего, убедитесь, что выбранные вами лампы являются затемняемыми. Поставщик должен знать, является ли электроника, в которой они оснащены, емкостной или индуктивной. К сожалению, эта информация обычно отсутствует.

Поэтому диммеры должны использовать универсальные диммеры, которые сами распознают природу лампы. Другой проблемой является диапазон затемнения. К сожалению, этот диапазон основан только на измерениях. Поэтому перед установкой таких ламп необходимо показать пользователю фактический диапазон затемнения.

Рис.1. Принципиальная схема однотактного УНЧ на одном (а) и двух (б) пентодах

В рассматриваемой схеме (рис. 1, а ) используется так называемое ультралинейное включение пентода, характерным признаком которого является соединение катода с защитной сеткой. Экранирующая сетка пентода подключена к выводу 2 выходного трансформатора Tpl, при этом количество витков между выводами 2 и 3 составляет примерно 43% от количества витков между выводами 1 и 3. Трансформатор Tpl рассчитан так, чтобы полное сопротивление первичной обмотки (выводы 1-3) равнялось величине нагрузочного сопротивления, определяемого для каждой лампы по каталоговой спецификации. Так, например, для лампы типа EL34 это сопротивление составляет примерно 3 кОм. Напряжение автоматического смещения формируется на резисторе R3, который шунтирован электролитическим конденсатором C2.

При покупке необходимо ознакомиться с параметрами приобретенных ламп. Обычно он составляет 350 мА или 700 мА. Из-за низкого напряжения требуются более высокие сечения. Другим ограничением является их длина. Чем короче кабель, тем меньше вероятность появления нежелательных явлений. Помимо падения напряжения, есть возможность «играть» провода и радиопомехи. Электромагнитные поля, испускаемые длинными проводами, могут создавать помехи для электронного оборудования. Его также можно услышать для людей в комнате.

Не первый, потому что даже домашние электрики среднего уровня смогли сделать это несколько лет назад, чтобы выпустить свет, не приближаясь к переключателю. Некоторое время готовые устройства этого типа доступны всем. Нет необходимости в подробных знаниях об эксплуатации электроприборов, нет необходимости заменять электрические кубы или ковать стены, чтобы найти, где вы можете спрятать беспроводные коммутаторы. Только одна лампочка ввинчивается в контакт с одной розеткой и смартфоном с приложением.

При параллельном подключении к лампе выходного каскада УНЧ дополнительной лампы (или ламп) потребуется откорректировать величины некоторых элементов. Так, например, при подключении одной дополнительной лампы (рис. 1, б ) величина сопротивления резистора R3 в цепи автоматического смещения должна быть уменьшена примерно в два раза по сравнению с ранее рассмотренной схемой (рис. 1, а ), а значение емкости шунтирующего конденсатора С2 — вдвое увеличено. Это объясняется тем, что при параллельном подключении двух ламп катодный ток возрастает в два раза. Следует отметить, что и мощность резистора R3 также должна быть увеличена в два раза, то есть с 5 до 10 Вт. Для достижения двукратного увеличения выходной мощности также в два раза потребуется уменьшить полное сопротивление первичной обмотки трансформатора Tpl.

Это звучит замечательно, но на самом деле? Каждый из них излучает 810 люменов света. К сожалению, цель должна быть куплена отдельно — ее стоимость составляет около 150 злотых. Каждая лампочка имеет специальный приемник посередине, который соединяется с затвором, подключенным к контакту.

Следует добавить, что это не первая попытка создать этот тип системы. Их работа основана на прямом подключении телефона к лампочке через «синий стандарт». Это действие обнаруживает ворота, которые останавливаются с помощью лампочки. Как только процесс будет завершен, управление лампой будет возможно через телефон. Мы можем изменить гораздо больше параметров: яркость, цветовую температуру, время освещения или даже установить почасовой оттенок, в котором сам свет должен загореться и погаснуть.

Теоретически подобным способом параллельно лампе выходного каскада можно подключить и большее количество аналогичных ламп с практически идентичными параметрами. Поэтому в продаже можно встретить уже подобранные пары и даже четверки ламп для использования в параллельном включении выходного каскада УНЧ.

Как и в однотактном ламповом УНЧ, повысить выходную мощность двухтактного усилителя можно параллельным подключением к лампам выходного каскада еще одной или нескольких ламп. При том же питающем и анодном напряжении анодный ток и, соответственно, выходная мощность каскада увеличиваются в два или более раз. Особенности такого подключения мы поясним на примере простого двухтактного усилителя мощности, принципиальная схема которого приведена на рис. 2 .

Для дистанционного управления лампой выключатель освещения должен быть постоянно установлен в положение включения. Это означает, что даже когда мы выключаем лампу на телефоне, она должна получить некоторую энергию от гнезда. Это необходимо для питания приемника, ожидающего сигнала переключения. К сожалению, нам не удалось точно определить, сколько энергии требуется, потому что каждая из наших редакторов не смогла зафиксировать такое низкое значение. Поэтому мы предполагаем, что лампа накаливания потребляет не более 0, 5 Вт, потому что это точность наших ваттметров.

Рис.2. Принципиальная схема простого двухтактного усилителя мощности

Данный усилитель представляет собой два одинаковых канала, основу каждого из которых составляет однотактный усилитель, рассмотренный ранее. Пример параллельного подключения дополнительных ламп в оконечном каскаде такого двухтактного УНЧ приведен на рис. 3 .

Это такая незначительная ценность, что после многих лет непрерывного использования она переведет значения пенни. Что, если у нас нет телефона под рукой, и комната впереди нас будет капать с тьмой? Просто переключите переключатель освещения дважды, и лампочка загорится нормально — без телефона.

Цена такого набора может быть очень страшной. Если мы добавим стоимость требуемых ворот, выясняется, что если мы хотим купить только одну такую ​​лампочку, тогда нам придется потратить более 200 злотых. Для среднего Смита эта сумма может быть запрещена. Вместо заполнения всей квартиры вы можете захотеть купить одну или две лампы, например, спальню или офис. Вечера могут быть более приятными, если вы ленитесь на кушетке, вам не нужно вставать, чтобы выключить ненужный свет.

Рис.3. Принципиальная схема простого двухтактного усилителя мощности с параллельным включением ламп

При выборе параметров элементов для двухтактного лампового УНЧ с параллельным подключением ламп справедливы все замечания и рекомендации, упомянутые ранее для однотактной схемы.

Параллельное соединение проводников

1103. Нарисуйте схему параллельного соединения проводников.

 

1104. В квартирах освещение и розетки для бытовой техники всегда соединяют параллельно. Почему?
Что бы при обрыве цепи, остальные потребители могли работать.

1105. На рисунке 114 изображены две параллельно соединенные проволоки одинаковой длины и одинакового сечения, но из разного материала: железная и медная. По какой из них пойдет ток большей силы? Почему?
Больший ток пойдет по той, у которой сопротивление меньше, т.е по медной.

1106. На рисунке 115 изображена схема параллельного соединения двух проводников сопротивлением 10 Ом каждый. Определите общее сопротивление цепи.

 1107. Чему равно общее сопротивление цепи на рисунке 116, если сопротивление каждой электролампочки равно 200 Ом?

1108. На участке цепи параллельно соединены две лампы сопротивлением 20 Ом и 5 Ом. Каково общее сопротивление этого участка цепи?

 

1109. Кусок изолированного провода имеет сопротивление 1 Ом. Его разрезали посередине и получившиеся половинки скрутили вместе по всей длине. Чему будет равно сопротивление скрутки?

1110. Лампа 1 сопротивлением R1 = 6 Ом и лампа 2 сопротивлением R2 = 12 Ом соединены параллельно и подключены к напряжению 12 В. Какова сила тока:
а) в лампе 1;
б) в лампе 2;
в) во всей цепи?

 1111. Сопротивления R1 = 24 Ом и R2 = 12 Ом соединены параллельно и подключены к напряжению 24 В. Определите силу тока:
а) в сопротивлении R1;
б) в сопротивлении R2;
в) во всей цепи.

 

1112. Три лампы сопротивлениями 10 Ом, 25 Ом и 50 Ом соединены параллельно и включены в сеть с напряжением 100 В. Каково общее сопротивление этого участка цепи? Какова сила тока в нем?

 

1113. Три лампочки сопротивлением R1 = 2 Ом, R2 = 4 Ом и R3 = 5 Ом соединены параллельно. В первой лампочке сила тока равна 2 А. Какова сила тока во второй и третьей лампочках?

 

1114. Проводник сопротивлением 200 Ом включен параллельно с неизвестным сопротивлением так, что общее сопротивление стало 40 Ом. Найдите неизвестное сопротивление.

 

1115. Начертите схему цепи, состоящую из источника, двух лампочек, соединенных параллельно, и амперметров, измеряющих силу тока в каждой лампочке и в проводе, подводящем ток к лампочкам. Допустим, что в цепи, составленной по вашей схеме, один из амперметров, измеряющий ток в лампочках, показал 0,1 А, а амперметр, измеряющий ток в подводящем проводе, — 0,15 А. Какой ток проходит через вторую лампочку?

 

1116. В комнатной электропроводке включено параллельно 4 лампы, каждая сопротивлением 330 Ом. Ток в каждой лампе 0,3 А. Определить ток, текущий по электропроводке, и сопротивление всей группы ламп.

 

1117. От группового распределительного щитка ток идет на две параллельные группы. В первой группе включено параллельно 10 ламп, каждая с сопротивлением 250 Ом, во второй группе 5 ламп, каждая с сопротивлением 300 Ом. Найдите ток в каждой группе, если ток, подводимый к щитку, равен 6,8 А.

 

1118. Между точками А и В включены три сопротивления (рис. 117). Определите общее сопротивление разветвленной части цепи, напряжение на концах разветвленной части цепи, ток в каждом из проводников, если ток в неразветвленной части цепи 5 А.

 

 

1119. Больше или меньше суммы сопротивлений общее сопротивление двух проводников, включенных последовательно?

1120. Больше или меньше суммы сопротивлений общее сопротивление двух проводников, включенных параллельно?

1121. Что больше: сопротивление одного проводника или общее сопротивление двух, включенных параллельно?

1122. Две проволоки — алюминиевая и никелевая — одинаковой длины и одинакового сечения включены в цепь параллельно. По какой из этих проволок пойдет ток большей силы? Почему?

1123. К каждой из двух лампочек накаливания подводится напряжение 120 В. Сопротивление первой лампочки 480 Ом, второй 120 Ом (рис. 118).
а) Чему равен ток в той и другой лампочке?
б) Какая будет гореть ярче?

1124. Те же две лампочки накаливания, что и в предыдущей задаче, включены в сеть с напряжением 120 В так, как показано на рисунке 119.
а) Сколько электрической энергии расходуется при прохождении одного кулона электричества от А до В (т.е. через обе лампочки)?
б) В какой из лампочек расходуется больше энергии?
в) Напряжение на какой из лампочек будет больше и во сколько раз?
г) Какая из лампочек будет гореть ярче?
д) Чему равно напряжение на каждой лампочке?
е) Чему равен ток через каждую лампочку?
ж) Чему равно сопротивление всего участка?

 

1125. Между двумя точками А и В (рис. 120) поддерживается напряжение 120 В.
а) Как между этими точками включить две лампочки, чтобы они горели так же ярко, как каждая в отдельности?
б) Какова будет сила тока в проводе, подводящем ток?
в) Чему равно сопротивление всего участка в этом случае?

 

1126. В сеть с напряжением 220 В включены параллельно 200 осветительных приборов, каждый сопротивлением 240 Ом. Каково сопротивление всего участка цепи? Какова сила тока, проходящего через каждый прибор? Какова сила тока во всей цепи?

 

1127. Провод сопротивлением 98 Ом разрезали на несколько одинаковых частей и получившиеся куски соединили параллельно. Измерили сопротивление этого участка — оно оказалось 2 Ом. На сколько частей разрезали провод?

 

1128. В сеть с напряжением 120 В включены пять одинаковых ламп (рис. 121), каждая сопротивлением 200 Ом. Какова сила тока в цепи?

 

1129. На рисунке 122 изображен участок цепи с двумя группами параллельно соединенных электроламп. В левой группе 8 лампочек сопротивлением по 400 Ом каждая, в правой группе 5 лампочек сопротивлением по 200 Ом каждая. Напряжение на каждой лампочке 120 В. Какова сила тока, проходящего через левую группу? через правую группу?

 1130. На рисунке 123 приведена схема электрической цепи с тремя одинаковыми лампами. Изменится ли накал ламп 1 и 2 после замыкания ключа, если напряжение в обоих случаях одинаково? Если да, то как именно?

 1131. Одинаковые сопротивления, каждое из которых равно 4 Ом, соединены параллельно (рис. 124). Определите общее сопротивление и силу тока, если напряжение на клеммах 12 В.

 1132. На рисунке 125 изображено соединение четырех одинаковых сопротивлений, каждое из которых равно 4 Ом. Напряжение на клеммах равно 12 В. Определите общее сопротивление и силу тока.

 1133. Четыре одинаковых сопротивления, каждое из которых равно 4 Ом, соединены как показано на рисунке 126. Каково общее сопротивление и сила тока, если напряжение на клеммах равно 12 В?

 

1134. Сопротивления по 4 Ом каждое включены в цепь по схеме на рисунке 127. Напряжение между клеммами равно 12 В. Каково общее сопротивление? Какова сила тока в цепи?

 

1135. На рисунке 128 приведено соединение четырех одинаковых сопротивлений, каждое из которых равно 4 Ом. Напряжение на клеммах 12 В. Определите общее сопротивление и силу тока в цепи.

 

1136. Для схемы соединения на рисунке 129 посчитайте общее сопротивление и силу тока в цепи, если сопротивления одинаковые — по 4 Ом каждое, а напряжение на клеммах равно 12 В.

 1137. Одинаковые сопротивления, каждое из которых равно 4 Ом, соединены как показано на рисунке 130. Каково общее сопротивление и сила тока, если напряжение на клеммах равно 12 В?

 

1138. Сопротивления по 4 Ом каждое соединены как показано на рисунке 131. Напряжение между клеммами равно 12 В. Каково общее сопротивление? Какова сила тока в цепи?

 

Лампы параллельно | IOPSpark

Напряжение / разность потенциалов

Электричество и магнетизм

Параллельные лампы

Практическая деятельность для 14-16

Демонстрация

Ток, протекающий в цепи, увеличивается по мере добавления дополнительных ламп параллельно друг другу.

Аппаратура и материалы

  • Лампы (12 В 6 Вт) в держателях, 4
  • Переключатели, однополюсные, 4
  • Амперметр, 0-5 А (для этого подойдет демонстрационный)
  • Источник питания низковольтный

Примечания по охране труда и технике безопасности

Прочтите наше стандартное руководство по охране труда

Процедура

  1. Подключите амперметр и четыре патрона лампы с переключателями к источнику низкого напряжения.
  2. Обратите внимание на ток, так как сначала включается одна, затем две, затем еще несколько ламп.

Учебные заметки

  • Любую передаваемую вами энергию можно измерить в джоулях. Пока источник питания поддерживает электрический ток через лампу, вы продолжаете получать поток энергии, который можно измерить:
    • путем улавливания светового излучения на светочувствительной бумаге
    • путем подогрева воды
    • путем измерения энергии, отдаваемой двигателем.
  • Итак, вы можете узнать, сколько джоулей энергии передается в секунду от источника питания к какому-либо другому компоненту.
  • Чем больше ламп подключается к источнику питания, тем увеличивается количество энергии, передаваемой лампами в окружающую среду в джоулях в секунду. То же самое и с током в кулонах в секунду, регистрируемым амперметром. Скорость передачи энергии увеличивается пропорционально току, потребляемому от источника питания.

Этот эксперимент прошел испытания на безопасность в октябре 2006 г.

лампочек последовательно и параллельно — Научные проекты

Сбор информации:

Узнайте об электричестве, напряжении и токе.Прочтите книги, журналы или спросите профессионалов, которые могут знать, чтобы узнать, как соединительные цепи влияют на распределение электричества между различными устройствами. Следите за тем, откуда вы получили информацию. Ниже приведены образцы информации, которую вы можете найти:

Что такое электричество? Электричество — это поток электронов в проводнике, таком как медный провод. (Это почти как поток воды в трубе. Чтобы вода текла с одной стороны на другую, с одной стороны должно быть некоторое избыточное давление.

Что такое напряжение? Напряжение — это разница в давлении или концентрации электронов между двумя точками. Откройте водопроводный кран и попытайтесь остановить воду рукой. Вы увидите, что давление высокое. Это давление, которое заставляет воду выходить с высокой скоростью. Когда мы говорим об электричестве, это давление называется напряжением.

Что сейчас? Текущее количество электронов, текущих в секунду. Представьте себе широкую реку. Хотя вода движется медленно, каждую секунду мимо вас проходит большое количество воды.Теперь о шланге для воды, которым вы поливаете свой сад. Хотя вода внутри шланга движется очень быстро, общее количество воды, проходящей через одну точку шланга, невелико. Заполнение бассейна одним шлангом может занять несколько дней; в то время как медленный поток воды в большой реке может заполнить тот же бассейн за несколько секунд. Таким образом, поток воды в реке высокий, а в шланге — низкий.

Что такое нагрузка? Нагрузка или резистор — это все, что потребляет электричество.Например, лампа в электрической цепи — это нагрузка.

Что такое параллельная цепь? Параллельная схема имеет более одного резистора (все, что использует электричество для работы) и получила свое название от наличия нескольких (параллельных) путей для движения. Заряды могут перемещаться по любому из нескольких путей. Если один из элементов в цепи сломан, заряды не будут перемещаться по этому пути, но другие пути будут продолжать пропускать заряды через них. Параллельные цепи встречаются в большинстве бытовых электропроводок.Это сделано для того, чтобы свет не переставал работать только из-за того, что вы выключили телевизор.

Что такое последовательная цепь?

Цепи серии

иногда называют токовой или гирляндной связью. Ток, протекающий в последовательной цепи, должен проходить через каждый компонент в цепи. Следовательно, все компоненты в последовательном соединении проводят одинаковый ток.

Решения

: параллельные лампы

Q1: Почему нить сгорает, плавится или окисляется?

Напряжение на нити накала остается то же самое при добавлении лампочек.Потому что луковицы добавлены параллельно снижается сопротивление в цепи от лампочек увеличение тока (потока электронов) через цепь. Нить накала нагревается из-за увеличения силы тока нагрузки, которая требуется носить. В конце концов он окислится и таять.

2 квартал: Если бы нить не была помещена в цепь, что бы произошло? к проводам в цепи?

Провода продолжали нагреваться и в конечном итоге будет поврежден во многом таким же образом.

3 квартал: Как меняется общий поток электронов с увеличением количества лампочек? добавлен в этот мод? Почему?

Суммарный поток электронов увеличивается потому что ток, потребляемый системой, увеличивается.

4 квартал: Как изменяется напряжение на каждой лампочке с увеличением количества лампочек? добавлен в этот мод? Почему?

Падение напряжения на лампочках будет продолжаться уменьшаться, потому что сопротивление уменьшается с каждым дополнительным лампочка.

Q5: Эта схема аналогична бытовой схеме, включающей предохранители или автоматические выключатели. Объясните эту аналогию, описывая что собой представляют аккумулятор, лампочки и нить накала.

Стальная вата действует как предохранитель, свет лампочки похожи на бытовые приборы, а аккумулятор — на электросеть. поставлен в дом.Если были подключены два многих прибора в, потребляя чрезмерный ток, тогда бытовая проводка будет нагреваться вверх, создавая опасность пожара. Автоматический выключатель или предохранитель предотвращает это. Предохранитель не подлежит замене или выключатель сбрасывается до тех пор, пока некоторые приборы не будут отключены, опускаясь ток до безопасного уровня для проводки.

Q6: При каких обстоятельствах схема работает? Когда он рассчитан на провал и почему?

Система работает только при замкнутом контуре.Система выходит из строя, когда через стальную вату проходит слишком большой ток, что приводит к сгоранию стальной ваты для разрыва цепи Конструкция такова, что стальная вата или предохранитель перегорает до того, как перегорели лампочки или приборы.

Серия

и параллельные схемы | Научный проект

При параллельном или последовательном подключении лампочки ярче?

  • Аккумулятор 9В
  • Лента
  • Алюминиевая фольга
  • Две одинаковые лампы фонарика
  1. Приклейте 8-дюймовую полоску алюминиевой фольги к положительной клемме 9-вольтовой батареи.Убедитесь, что алюминиевая фольга касается металла.
  2. Приклейте еще одну 8-дюймовую полосу алюминиевой фольги к отрицательной клемме 9-вольтовой батареи.
  3. Оберните конец алюминиевой ленты, прикрепленной к положительному выводу, вокруг металлической винтовой крышки лампочки.
  4. Возьмите 4-дюймовую полоску алюминиевой фольги и оберните один конец вокруг второй лампочки.
  5. Поместите нижнюю часть лампочки, прикрепленную к положительной клемме, на свободный конец полоски фольги другого аккумулятора.
  6. Поместите нижнюю часть второй лампочки на полосу из фольги, прикрепленную к отрицательной клемме.
  7. Вы создали последовательную цепь. Обратите внимание, как ярко светят луковицы.
  1. Теперь давайте создадим параллельную цепь. Сначала выньте из системы лампочки.
  2. Возьмите две 4-дюймовые полоски алюминиевой фольги и загните по одному концу каждого конца вокруг полосы, выходящей на положительный полюс батареи. Он должен выглядеть как ступеньки лестницы, но соединены только с одной стороны.
  3. Оберните свободные концы 4-дюймовых полосок вокруг металлической винтовой крышки каждой лампочки.
  4. Поместите нижнюю часть каждой лампочки напротив ленты из фольги, прикрепленной к отрицательной клемме.
  1. Запишите свои наблюдения, сравнив яркость двух созданных вами контуров.

Лампы в параллельной цепи будут ярче, чем лампы в последовательной цепи.

В параллельных цепях каждый независимый путь испытывает одинаковое падение напряжения .В последовательных цепях падение напряжения распределяется между компонентами (например, лампами) в зависимости от их сопротивления. Большие падения напряжения потребляют больший ток, что означает, что через лампу проходит больше электронов, что делает ее ярче.

Закон Ома — это уравнение, которое описывает взаимосвязь между напряжением (электрическая сила), током (поток электронов) и сопротивлением (сопротивлением объекта прохождению электрического тока).

I = V / R

Где В — напряжение, измеренное в вольтах (В), I — ток, измеренный в амперах (А), а R — электрическое сопротивление, измеренное в омах (Ом)

Заявление об ограничении ответственности и меры предосторожности

Образование.com предоставляет идеи проекта Science Fair для информационных только для целей. Education.com не дает никаких гарантий или заверений относительно идей проектов Science Fair и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проекта Science Fair, вы отказываетесь от отказаться от любых претензий к Education.com, которые возникают в связи с этим. Кроме того, ваш доступ к веб-сайту Education.com и идеям проектов Science Fair покрывается Образование.com Политика конфиденциальности и Условия использования сайта, которые включают ограничения об ответственности Education.com.

Настоящим дается предупреждение, что не все идеи проекта подходят для всех индивидуально или при любых обстоятельствах. Реализация идеи любого научного проекта должны проводиться только в соответствующих условиях и с соответствующими родительскими или другой надзор. Прочтите и соблюдайте правила техники безопасности всех Материалы, используемые в проекте, являются исключительной ответственностью каждого человека.За Для получения дополнительной информации обратитесь к справочнику по научной безопасности вашего штата.

Что такое последовательные и параллельные схемы?

Светильники можно подключать последовательно или параллельно. Все светильники, которые соединены последовательно, используют одну и ту же цепь, в то время как огни, соединенные параллельно, имеют свою собственную схему.


Краткий обзор самой важной информации:


  • последовательная цепь: все огни подключены к одной цепи
  • тандемная последовательная цепь: тип последовательной цепи, в которой два фонаря подключены к одному балласту
  • параллельная цепь: у каждого светильника своя цепь
  • двойная параллельная цепь: тип параллельной цепи, при которой два источника света соединены параллельно (индуктивная и емкостная).


Вверху: последовательная схема с двумя резисторами;
Внизу: параллельная цепь с двумя резисторами

По Saure — Собственная работа, CC0, Ссылка

Что такое последовательная цепь?

В последовательной цепи все компоненты подключены к одной и той же цепи.Это означает, что через все подключенные компоненты протекает один и тот же ток, и они разделяют ток. Вы можете подключить столько компонентов, сколько позволяет блок питания.

Очень распространенный пример последовательной цепи — гирлянда огней. Если, например, вы подключите цепочку из десяти ламп к розетке на 230 В, каждая лампочка получит 23 вольта. Напряжение равномерно распределяется между всеми компонентами. Если загорится одна лампочка, не загорится вся цепочка огней.

Цепь серии

для газоразрядных ламп

Если газоразрядные лампы имеют одинаковую номинальную схему, их можно включать последовательно.Убедитесь, что вы используете правильный балласт, чтобы не было превышено ограничение по току.

Схема серии

для ламп накаливания

Номинальная схема для ламп накаливания также должна быть идентична для их последовательного соединения.

Что такое тандемный контур?

Тандемная цепь — это тип последовательной цепи. Два источника света, например люминесцентные лампы, подключаются к одному балласту. Однако для каждой трубки по-прежнему нужен свой стартер.Стартер должен быть пригоден для использования в тандемной цепи. Подходящие стартеры содержат в названии продукта обозначение «серия» или аббревиатуру SER.

Некоторые из имеющихся у нас пускателей, которые подходят для последовательных / тандемных цепей, включают:

Одиночные пускатели

не подходят для использования с последовательными / тандемными цепями, поскольку они не работают с общим сетевым напряжением.

Тандемная схема для светодиодов

Если вы хотите перейти от люминесцентных ламп к светодиодным лампам с тандемными цепями, необходимо изменить подключение.Проконсультируйтесь по этому поводу у эксперта.

Что такое параллельная цепь?

Параллельная цепь соединяет два или более биполярных компонента. Важно соединять друг с другом только одинаковые полюса.

Каждый свет в параллельной цепи имеет свою собственную цепь. Отдельные токи складываются в общий ток. Напряжение для каждого светильника одинаковое. В отличие от последовательной цепи, если одна лампа не работает в параллельной цепи, другая лампа все равно загорается.

Параллельный контур для газоразрядных ламп

Газоразрядные лампы можно подключать параллельно только косвенно. Требуемый балласт можно подключить последовательно. Затем лампу и балласт можно соединить параллельно.

Что такое Duo Circuit?

Двойная цепь соединяет две ветви люминесцентной лампы. Одна ветвь индуктивная и состоит из обычного балласта и трубки. Другая ветвь является емкостной и также состоит из обычного балласта и трубки, а также дополнительного конденсатора для коррекции коэффициента мощности.Конденсатор включен последовательно с балластом. Используя двойную схему, можно избежать чрезмерных токов.

Определение: Что такое конденсатор?

Конденсатор — это электронный компонент, который может накапливать энергию. Поэтому свет может гореть некоторое время даже после выключения.

Освещение от Any-Lamp

Any-Lamp предлагает широкий ассортимент светодиодного освещения от различных высококачественных брендов.С помощью энергоэффективного светодиодного освещения может сэкономить до 70% затрат на электроэнергию .

Ознакомьтесь с нашими продуктами для светодиодного освещения

Как подключить лампы параллельно-EET-2021

Как объединить точки освещения параллельно

Общие бытовые цепи, используемые в установках электропроводки, параллельны (и должны быть). Часто переключатели, розетки, розетки, световые точки и т. Д. Подключаются параллельно, если один из них не может обеспечить подачу питания на другие электроприборы и устройства через горячие и нейтральные провода.

В нашем сегодняшнем руководстве по основному электрическому подключению мы покажем, как подключать параллельные светильники.

На приведенном выше рисунке ясно показано, что все лампочки подключены параллельно, то есть каждая лампочка подключена отдельной линией (также известной как фаза или фаза) и нулевым проводом.

В параллельной цепи добавление или удаление одной лампы из схемы не влияет на другие лампы или подключенные устройства и устройства, поскольку напряжение в параллельной цепи одинаково в каждой точке, но ток протока отличается.В этом типе схемы любая точка освещения или нагрузка могут быть добавлены (в соответствии с расчетом нагрузки схемы или подсхемы) путем удлинения проводников L и N до других ламп.

Поскольку каждая лампа или лампочка подключаются отдельно между линией L и нейтралью N, если одна лампочка неисправна, остальная часть цепи будет работать плавно, как показано на рисунке ниже. Здесь вы можете видеть, что линия, подключенная к лампе 3, имеет разрез в проводе, поэтому выключатель лампы выключен, а остальная часть цепи работает правильно i.е. лампочка тускнеет.

Кроме того, если мы управляем каждой лампой односторонним образом (SPST = однополюсный однополюсный) в параллельной цепи освещения, мы можем включить каждую лампу отдельным выключателем или, если мы выключим лампу, оставшиеся точки освещения будут не затронуты, потому что это только в последовательном соединении освещения, где все подключенные нагрузки будут отключены, если мы выключим.

Если контрольная лампочка от однонаправленного переключателя в перфорированном отверстии

Ниже рисунка мы управляли тремя лампочками от трех отдельных односторонних выключателей, подключенных между линией и нулевым проводом.Первые две лампочки светятся, потому что переключатели включены, а третья не горит.

Преимущества параллельных цепей освещения:
  • Каждое подключенное электрическое устройство и устройство не зависят друг от друга. Таким образом, включение / выключение устройства не повлияет на другие устройства и их работу.
  • В случае обрыва кабеля или удаления какой-либо лампы, не все цепи и подключенные нагрузки выйдут из строя, другими словами, другие светильники / лампы и электроприборы по-прежнему будут работать без сбоев.
  • Если добавить больше ламп в параллельную цепь освещения, это не приведет к уменьшению яркости (как это происходит только в серии электрических цепей). Потому что напряжение в каждой точке параллельной цепи одинаковое. Короче говоря, они получают такое же напряжение, как и напряжение источника.
  • Если цепь не перегружена, можно добавить дополнительные осветительные приборы и точки нагрузки в параллельную цепь, если это потребуется в будущем.
  • Добавление дополнительного оборудования и компонентов не только увеличит сопротивление, но и снизит общее сопротивление цепи, особенно при использовании устройств с высоким номинальным током, таких как кондиционеры и электрические обогреватели.
  • Параллельная проводка надежнее, безопаснее и проще в использовании.

Недостатки:

  • В параллельных цепях разводки освещения используются кабели и провода большего размера.
  • При добавлении дополнительных лампочек в параллельную цепь требуется больше тока.
  • Батарея быстро разряжается для установки постоянного тока.
  • Проектирование параллельной разводки сложнее, чем последовательной разводки.

Важная информация:

  • Линия выключателя и предохранителя (под напряжением) должна быть соединена проводом.
  • Параллельное подключение электрических устройств и устройств, таких как вентиляторы, розетки, лампочки и т. Д., Является предпочтительным методом замены последовательной проводки.
  • Метод параллельной или последовательно-параллельной проводки более надежен, чем проводка серии .

ЭЛЕКТРИЧЕСКИЕ СХЕМЫ И СХЕМЫ

Принципиальная электрическая схема и ее компоненты

Базовая домашняя электрическая схема

Типы электрических схем

vingepost Media Inc.(vingepostnowstarted.com) — это независимая новостная медиа-организация, которая предоставляет своим читателям новости из мира развлечений в Интернете… подробнее нажмите услышать-vingepost

Загрузите мобильные игры для Windows. Бесплатная и безопасная загрузка. Загрузите последнюю версию лучшего программного обеспечения, игр, программ и приложений 2020 года. Free-Games-Download-For-Windows-Mobile

Учитесь в блоге. Пошаговое руководство, чтобы узнать, как создать блог, выбрать лучшую платформу для ведения блога и избежать типичных ошибок ведения блога… подробнее читать нажмите кнопку прослушать блоггинг.nowstarted

Разработка мобильного приложения — это действие или процесс, посредством которого мобильное приложение разрабатывается для мобильных устройств, таких как персональные цифровые помощники, корпоративные цифровые… Разработка мобильных приложений Digital24x7.Nowstarted

Мы предлагаем широкий спектр услуг цифрового маркетинга и веб-разработки. Наши услуги включают веб-дизайн, веб-разработку, маркетинг в социальных сетях, SEO и многое другое. .. уникальный веб-узел

умная работа из дома

Параллельные цепи постоянного тока — инженерное мышление

Узнайте, как работают параллельные схемы и как их рассчитывать.Сценарии проблем также подробно описаны в конце этой статьи, чтобы вы могли их решить.

Прокрутите вниз, чтобы просмотреть руководство YouTube.

Что такое параллельные схемы?

Типы цепей

Мы можем соединять компоненты цепи последовательно, параллельно или в комбинации последовательно и параллельно.

Когда мы помещаем лампу последовательно или параллельно батарее, электроны будут течь от отрицательной клеммы батареи по проводу через лампу, а затем к положительной клемме батареи.

В этих анимациях мы используем поток электронов от отрицательного к положительному, но вы, возможно, привыкли видеть обычный поток от положительного к отрицательному. На самом деле происходит поток электронов. Традиционный поток был исходной теорией, и ее до сих пор преподают, потому что ее легче понять. Просто помните о двух и о том, какой из них мы используем.

Как он соотносится с последовательными схемами?

В серийной комплектации; электроны могут двигаться только по одному пути.Если мы включим две лампы в последовательную цепь, они обе будут светить, но если одна из лампочек сломается, вся цепь перестанет работать, потому что есть только один путь для движения. Вы могли видеть это с гирляндами огней, такими как гирлянды. Когда загорается одна лампочка, перестает работать вся вереница огней.

Решением этой проблемы является параллельное подключение ламп. Когда мы делаем это, мы предоставляем электронам несколько путей. Если одна лампа перестанет работать, цепь продолжит работать, за исключением разорванного пути.

Напряжение в параллельных цепях.

Допустим, мы возьмем батарею на 1,5 В, если мы используем мультиметр для измерения на двух концах, мы получим 1,5 В. Но если мы измеряем тот же конец, мы получим нулевое значение. Почему? Потому что мы можем измерить только разницу в напряжении между двумя разными точками.

Напряжение похоже на давление в водопроводной трубе

Напряжение похоже на давление в водопроводной трубе. Если вы наполняете бак, значит, давление воды высокое, мы можем измерить давление по манометру.Манометр сравнивает две точки: давление внутри трубы с давлением снаружи трубы, чтобы узнать, в чем разница. Когда резервуар пуст, манометр показывает ноль, потому что давление внутри и снаружи трубы одинаково, поэтому ему не с чем сравнивать, и поэтому он равен нулю.

То же с напряжением. Мы можем измерить только разницу в напряжении между двумя точками. Когда мы подключаем компонент к батарее, он испытывает разницу в напряжении между двумя точками или клеммами батареи.Напряжение или давление заставят электроны проходить через компонент.

В параллельных цепях напряжение одинаково везде в цепи. Неважно, куда мы подключаем мультиметр — мы получаем одинаковые показания. Почему? Потому что каждый компонент подключен напрямую как к положительной, так и к отрицательной клеммам батареи, поэтому они получают полное давление. В последовательных цепях компоненты были соединены друг с другом, поэтому напряжение уменьшилось. Но при параллельном подключении есть несколько маршрутов, и каждый подключается непосредственно к батарее.

Напряжение в параллельной цепи

Формулы напряжения для параллельной цепи

Когда мы используем напряжение в формулах для параллельных цепей, это очень просто, потому что это одно и то же значение, это просто напряжение подключенной батареи.

Например, в схеме ниже; общий ток составляет 2А, а полное сопротивление — 3 Ом. Какое напряжение у АКБ? Из закона Ома мы знаем, что нам нужна формула: напряжение = ток, умноженный на сопротивление, чтобы напряжение равнялось 2А, умноженному на 3 Ом, что дает нам 6 вольт.

Найдите напряжение

Другой пример, приведенная ниже цепь подключена к батарее 12 В. Какое падение напряжения на торцевой лампе? Легко, мы вычисляем напряжение, снова умножая ток и сопротивление. Через него протекает ток 1,5 А и сопротивление 8 Ом. 1,5 А, умноженные на 8 Ом, дают нам 12 В.

Падение напряжения на лампе 2

Если мы подключим две батареи по 1,5 В последовательно, напряжение возрастет до 3 В. Электроны усиливаются второй батареей, поэтому их давление или напряжение увеличиваются.

Однако, когда мы подключаем батареи параллельно, напряжение не увеличивается. Мы получаем только 1,5 В. Батареи не могут усиливать друг друга в этой конфигурации, пути для электронов соединяются, а затем разделяются, поэтому поток электронов распределяется между батареями. Таким образом, батареи не могут обеспечивать большее напряжение, однако их емкость увеличилась, поэтому они могут обеспечивать 1,5 В дольше, чем одна батарея на 1,5 В.

Батареи, подключенные в параллельную цепь

Мы подробно рассмотрели основы напряжения в предыдущей статье; проверьте, что ЗДЕСЬ .

Ток в параллельных цепях

Помните, что ток — это поток электронов. Нам нужно, чтобы электроны текли в одном направлении, чтобы приводить в действие такие вещи, как лампы. Мы прикладываем разность напряжений к компоненту, чтобы заставить электроны двигаться. Чем больше напряжение, тем больше электронов будет течь. Скорость электронов останется прежней, но количество движущихся электронов будет изменяться. Чем больше у нас движется электронов, тем выше ток. Мы обозначаем ток буквой I и измеряем ток в амперах, но обычно сокращаем это значение до ампер.

Больше электронов; The Higher The Current

Если мы подключим лампу с сопротивлением 1 Ом к батарее на 1,5 В, общий ток (It) в цепи будет 1,5 А. Мы можем измерить это, вставив в цепь мультиметр. Или мы можем рассчитать это, используя закон Ома и формулу: ток = напряжение, деленное на сопротивление.

Общий ток

Мы подробно рассмотрели закон сопротивления в предыдущей статье, проверьте ЗДЕСЬ .

Если мы затем подключим в цепь вторую резистивную лампу на 1 Ом, подключенную параллельно.Мультиметр показывает увеличение общего тока до 3 ампер. Но если мы измерим ток через лампы по отдельности, мы увидим, что мультиметры покажут 1,5 А на каждой. В проводе между двумя лампами мы также увидим ток 1,5 А. Так что здесь происходит? Мы видим, что ток разделится, и электроны будут течь по всем доступным маршрутам, чтобы вернуться к батарее, а затем рекомбинировать. Мы также можем видеть, что общий ток — это сумма тока в каждой ветви.Итак, рассчитываем общий ток по формуле It = I1 + I2

Если мы заменим лампу 1 резистивной лампой с сопротивлением 2 Ом, чтобы удвоить сопротивление на этой ветви, то общий ток уменьшится до 2,25 А, лампа 1 увидит ток 0,75 А и будет менее яркой, лампа 2 продолжит показывать 1,5 А, а на счетчике между лампами 1 и 2 по-прежнему будет 1,5 А. Таким образом, мы можем видеть, что ток, протекающий в каждой ветви, зависит от сопротивления ветви, и, опять же, общий ток в цепи является суммой токов в каждой из ветвей.Это = I1 + I2

Если мы добавим в схему третью лампу на 1 Ом и снова заменим лампу 1 на 1 Ом, то есть 3 лампы по 1 Ом, подключенные параллельно, мы увидим, что общий ток в цепи теперь составляет 4,5 А (It = I1 + I2 + I3 ), и каждая лампа продолжает получать ток всего 1,5 А. Мультиметр на проводе между лампами 1 и 2 увеличился до 3 А, но счетчик между лампами 2 и 3 показывает всего 1,5 А.

Если мы удвоим напряжение с 1,5 В до 3 В, то удвоится и ток. Общий ток увеличивается до 9А, ток между лампами 1 и 2 увеличивается до 6А, и теперь каждая лампа испытывает ток 3А.

Таким образом, мы можем видеть, что приложенное напряжение будет изменять ток. Общий ток также зависит от сопротивления каждой ветви и количества подключенных ветвей.

Давайте посмотрим более подробные объяснения того, как это вычислить, посмотрим, сможете ли вы решить эту проблему раньше, чем мы. Сначала попробуем простой. Найдем общий ток.

Расчет общего тока

Возьмем простую параллельную схему с 2 резисторами и аккумулятором на 12 В. Резистор 1 имеет сопротивление 15 Ом и ток 0.8A протекает через него. Резистор 2 имеет сопротивление 24 Ом, и через него протекает ток 0,5 А. Что покажет мультиметр для полного тока в цепи?

Ну, мы знаем, что полный ток в цепи равен сумме токов во всех ветвях. Таким образом, 0,8 А + 0,5 А составляют в сумме 1,2 А.

Общий ток

Что, если мы знаем общий ток и ток в одной ветви, как нам найти ток в другой ветви? Легко, мы просто вычитаем. Итак, в этом примере у нас есть батарея 12 В, подключенная к двум резисторам.Общий ток составляет 3А, а ток ответвления — 1,8А. Таким образом, ток во второй ветви равен 3А, вычесть 1,8А, что дает нам 1,2А.

Как рассчитать ток в простой ветке? Мы используем формулу Ток = Напряжение, деленное на сопротивление. Допустим, у нас есть три резистора, подключенных параллельно к батарее на 6 В. Сопротивление первого резистора составляет 10 Ом, второго резистора — 2 Ом, а третьего резистора — 5 Ом. Какой ток протекает через каждый?

Давайте сначала посмотрим на резистор, ток равен напряжению, деленному на сопротивление.Таким образом, 6 В, разделенное на 10 Ом, дает нам 0,6 А. Резистор 2 равен 6 В, разделенным на 2 Ом, что составляет 3 А, а третий резистор — 6 В, разделенным на 5 Ом, что составляет 1,2 А. Таким образом, ток в этой части будет 1,2 А, потому что есть ток только от одного резистора. Ток в этом проводе будет 4,2 А, потому что через него проходит ток второго и третьего резисторов. Ток здесь — это общий ток, равный 4,8 А, потому что через него протекает ток всех трех ветвей.

Пример полного тока

Суммарное сопротивление в параллельной цепи

Это та часть, с которой люди борются больше всего, она кажется сложной из-за формулы, которую мы используем.Но им легко пользоваться, и мы покажем вам, как это сделать.

Формула полного сопротивления

Чтобы упростить задачу, мы создали для вас бесплатный онлайн-калькулятор, который поможет вам найти полное сопротивление параллельной цепи.
Вы можете найти это ЗДЕСЬ .

В последовательной цепи полное сопротивление цепи было просто сложенным сопротивлением каждого компонента, почему? Поскольку электроны должны были пройти через каждый из них, поэтому чем больше резисторов они прошли, тем больше увеличивалось общее сопротивление.

Резисторы серии

Однако с параллельными цепями мы обеспечиваем множество разных путей для прохождения электронов. Поэтому вместо этого мы выясняем, насколько проводящей является каждая ветвь или насколько легко электричество может проходить через каждую ветвь. Затем мы объединяем эти значения и конвертируем обратно в сопротивление.

Рассмотрим простую параллельную схему с двумя резисторами 10 Ом. Как найти полное сопротивление цепи?

Мы используем эту формулу, RT = 1/1 / R1 + 1 / R2.Затем мы заменяем значения R1 и R2 на наши значения резистора 1 и резистора 2. Мы начинаем снизу и делим 1 на 10 Ом для обоих, что дает нам 0,1 + 0,1. Таким образом, формула теперь уменьшилась до 1, деленной на 0,1 + 0,1, поэтому мы складываем два десятичных знака вместе, чтобы получить 0,2, формула теперь 1, деленная на 0,2, поэтому мы делим 1 на 0,2, чтобы получить общее сопротивление 5 Ом.
Если вы делаете этот расчет на калькуляторе или в Excel, просто не забудьте использовать скобки.

Итак, хотя у нас было два резистора по 10 Ом, общее сопротивление всего 5 Ом.Это потому, что по мере того, как ток был разделен, сопротивление уменьшилось.

Если бы у нас было два резистора по 5 Ом, то общее сопротивление было бы 2,5 Ом.

Если бы у нас были резисторы на 10 и 5 Ом, то общее сопротивление было бы 3,33 Ом

Если у нас будет больше резисторов, мы просто продолжаем добавлять их в формулу. Например, три резистора на 10 Ом дают нам 1, разделенное на: 1 на R1, плюс 1 на R2, плюс 1 на R3. Мы вводим наши значения резистора, и мы снова получаем 3,33 Ом.

А 10 Ом, 5 Ом и резистор 2 Ом дают нам 1.Общее сопротивление 25 Ом.

Почему мы используем в формуле все эти единицы, разделенные на доли резисторов? Вам действительно не нужно помнить, зачем мы это делаем, вам просто нужно запомнить формулу, которую мы используем. Но мы просто кратко объясним, почему мы так поступаем.

Поскольку существует множество путей для прохождения тока, вместо этого мы выясняем, насколько хорошо электричество может проходить через каждый путь, то есть проводимость, противоположная сопротивлению или обратная ей. Поскольку мы уже знаем значения сопротивления резисторов, мы можем просто инвертировать значение, чтобы найти противоположное.

Рассматривая резистор 10 Ом, мы также можем написать 10 = 10, разделенное на 1. Поскольку 10, разделенное на 1, будет равно 10, и вы можете сделать это с любым числом. Затем мы инвертируем число, чтобы найти проводимость или обратную величину, и мы делаем это, переворачивая знаменатель и числитель. Таким образом, мы получаем 1, разделенную на 10, что составляет 0,1

. Пример инвертирования числа путем изменения знаменателя

. Мы можем вернуть его обратно к сопротивлению, снова уменьшив его на 1, потому что это наоборот. Таким образом, 1, разделенное на 0,1, равно 10.

Если бы у нас был резистор на 1 Ом, то у нас была бы проводимость 1. Если бы у нас был резистор на 1000 Ом, у нас была бы проводимость 0,001, поэтому вы можете видеть, что электричеству будет легче проходить через резистор 1 Ом, потому что у него лучшая проводимость.

Итак, как только мы выясним, насколько проводящим является каждый путь, мы складываем их вместе, чтобы найти нашу общую проводимость. Мы можем преобразовать это обратно в сопротивление, взяв обратную величину, так что 1, разделенная на общую проводимость, дает нам общее сопротивление.

Потребляемая мощность в параллельных цепях

Резисторы и компоненты преобразуют электрическую энергию в тепловую при столкновении электронов внутри компонента. Вот почему они становятся горячими, и мы можем увидеть это с помощью тепловизора.

Тепловизионная камера

Итак, сколько энергии потребляют в целом отдельные компоненты и цепь?

Для этого можно использовать две формулы: квадрат напряжения, деленный на сопротивление, или напряжение, умноженное на ток.2 = 36, поэтому 36/5 составляет 7,2 Вт. В качестве альтернативы 6 В, умноженное на 1,2 А, также дает нам 7,2 Вт

. Сопротивление мощности Второй пример

Таким образом, общая потребляемая мощность составляет 3,6 Вт + 7,2 Вт, что составляет 10,8 Вт

Мы также могли бы найти это, умножив напряжение на общий ток, общий ток для этой цепи составляет 1,8 А, поэтому 6 В, умноженное на 1,8 А, составляет 10,8 Вт

Или мы могли бы использовать квадрат напряжения, разделенный на общее сопротивление. Общее сопротивление этой цепи составляет 3,33 Ом, поэтому квадрат 6В равен 36, разделенному на 3.33 Ом — это 10,8 Вт

Общее сопротивление цепи

Проблемы и решения, вы можете их решить?

Теперь давайте посмотрим, сможете ли вы решить эти проблемы.

Вопрос 1) У нас четыре резистора параллельно. 10 Ом, 20 Ом, 2 Ом и 3 Ом. Какое полное сопротивление цепи?

Ответ

Формула ответа

Вопрос 2) У нас есть три резистора, подключенных параллельно к батарее 6В. Полный ток в цепи равен 2.5А, резистор 1 — 10 Ом при токе 0,6 А, резистор 2 — 15 Ом при неизвестном токе, а резистор 3 имеет неизвестное значение сопротивления и неизвестный ток. Рассчитайте ток, протекающий через резистор 2, а также ток и сопротивление резистора 3.

Ответ

Сначала мы находим ток в резисторе 2, используя закон Ома. Ток = напряжение, деленное на сопротивление.
6В разделить на 15 Ом равно 0,4А

Теперь мы находим ток в резисторе 3, вычитая ток резистора 1 и резистора 2 из общего тока.Общий ток составляет 2,5 А, вычесть 0,6 А, и 0,4 А дает нам 1,5 А, протекающие через резистор 3.

Теперь снова находим сопротивление резистора 3 по закону Ома. Сопротивление — это напряжение, деленное на ток. Таким образом, 6 В, разделенные на 1,5 А, дают нам сопротивление 4 Ом.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *