Встречно параллельное включение тиристоров схема включения
Встречно-параллельное включение — тиристор
Встречно-параллельное включение тиристоров используют для управления однофазной нагрузкой и регулирования напряжения на трехфазных асинхронных двигателях. [2]
Распространенным типом вентильной ячейки является встречно-параллельное включение тиристора и диода, позволяющее пропускать прямую полуволну переменного тока через управляемый вентиль, а обратную — через неуправляемый. Логика работы ячейки тиристор — диод следующая. В закрытом состоянии ток ячейки равен нулю и напряжение положительно, но управляющий импульс не подается. Выключается ячейка током при переходе его от отрицательных значений к положительным, а включается в момент ti, если напряжение 0 и приходит управляющий импульс. На ячейке может быть только положительное напряжение, при отрицательном открывается диодная ветвь ячейки. [3]
Принципиальная схема коммутирующего устройства при встречно-параллельном включении тиристоров приведена на рис, 8.11 а. В этой схеме основные тиристоры VT2 и VT3 управляются от напряжения питающей сети переменного тока, а дополнительный тиристор VT1 управляется сигналом Uy. Если сигнал Uy отсутствует, то на анод тиристора VT1 подается напряжение через фазосдвигающую цепь Cl, R1, которое опережает по фазе напряжение сети. [4]
Принципиальная схема коммутирующего устройства при встречно-параллельном включении тиристоров приведена на рис. 8.11, а. В этой схеме основные тиристоры VT2 и VT3 управляются от напряжения пита1 ющей сети переменного тока, а дополнительный тиристор VT1 управляется сигналом Uy. Если сигнал Uy отсутствует, то на анод тиристора VT1 подается напряжение через фазосдвигающую цепь Cl, R1, которое опережает по фазе напряжение сети. [5]
На рис. 4 представлена схема реверсивного преобразователя со встречно-параллельным включением тиристоров во вторичной цепи. Встречно-параллельно включенные тиристоры образуют два выпрямителя. Отключение неработающего выпрямителя осуществляется снятием отпирающих импульсов со всех управляющих электродов. [7]
На рис. 4.8 показана одна из схем со встречно-параллельным включением тиристоров . В цепь якоря двигателя включена индуктивность L для ограничения скорости нарастания тока. Наличие в схеме этой индуктивности увеличивает электромагнитную постоянную времени двигателя, а. [9]
На рис. 4 представлена схема реверсивного преобразователя со встречно-параллельным включением тиристоров во вторичной цепи. Встречно-параллельно включенные тиристоры образуют два выпрямителя. Отключение неработающего выпрямителя осуществляется снятием отпираюших импульсов со всех управляющих электродов. [11]
На рис. 4 представлена схема реверсивного преобразователя со встречно-параллельным включением тиристоров по вторичной цепи. Встречно-параллельно включенные тиристоры образуют два выпрямителя. Отключение неработающего выпрямителя осуществляется снятием отпнраюших импульсов со всех управляющих электродов. [13]
В схеме, изображенной на рис. 120, а используется встречно-параллельное включение тиристоров . Через один тиристор пропускается положительная полуволна переменного напряжения, через второй — отрицательная. Схема требует применения двух тиристоров на каждый ключ. [15]
Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.
Определение
Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.
Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).
Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.
Основные характеристики
Как и любых других электронных компонентов у тиристоров есть ряд характеристик:
Падение напряжения при максимальном токе анода (VT или Uос).
Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
Обратное напряжение (VR(PM) или Uобр).
Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
Обратный ток (IR) — ток при определенном обратном напряжении.
Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
Постоянное отпирающее напряжение управления (VGT или UУ).
Ток управления (IGT).
Максимальный ток управления электрода IGM.
Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)
Принцип работы
Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.
Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.
Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.
После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).
Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.
Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.
После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.
Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.
Распространенные схемы управления тиристорами или симисторами
Самой распространенной схемой является симисторный или тиристорный регулятор.
Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.
Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.
Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.
Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.
По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.
Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.
На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.
Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.
Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:
Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».
Заключение
Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…
Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.
Определение
Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.
Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).
Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.
Основные характеристики
Как и любых других электронных компонентов у тиристоров есть ряд характеристик:
Падение напряжения при максимальном токе анода (VT или Uос).
Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
Обратное напряжение (VR(PM) или Uобр).
Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
Обратный ток (IR) — ток при определенном обратном напряжении.
Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
Постоянное отпирающее напряжение управления (VGT или UУ).
Ток управления (IGT).
Максимальный ток управления электрода IGM.
Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)
Принцип работы
Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.
Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.
Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.
После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).
Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.
Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.
После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.
Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.
Распространенные схемы управления тиристорами или симисторами
Самой распространенной схемой является симисторный или тиристорный регулятор.
Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.
Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.
Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.
Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.
По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.
Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.
На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.
Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.
Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:
Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».
Заключение
Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…
Последовательное включение полупроводниковых приборов
Как правило, диоды и тиристоры и прочие полупроводниковые элементы подбираются по номинальным напряжениям и токам. Но иногда возникают ситуации когда выбранных номиналов не достаточно для нормальной работы устройств. В таком случае иногда используют параллельное или последовательное соединение вентилей. Последовательное – для повышения напряжения, проводимого элементами, а параллельное для увеличения тока устройства. Мы рассмотрим такие включения на примере диодов и тиристоров.
Последовательное включение вентилей как правило применяют в высоковольтных установках. Такой способ включения позволяет сэкономить на согласующих трансформаторах (а они как правило дорогие), а также убрать из цепи еще одно звено преобразования энергии (понижающий и повышающий трансформаторы).
Но эта система не так проста как кажется на первый взгляд. Поскольку каждый из вентилей имеет свою вольт – амперную характеристику и не всегда они совпадают. Схема включения таких элементов показана ниже:
Поскольку вентили включены последовательно, то согласно закону Кирхгофа, обратное напряжение, приложенное к тиристорам поделится на количество тиристоров включенных в цепь. В нашем случае на два.
Но как упоминалось выше, каждый тиристор имеет свою вольт – амперную характеристику, она приведена ниже:
Как мы можем видеть из характеристики, при протекании одного и того же обратного тока через вентили, напряжения UR1 и UR2 будут различны. В нашем случае UR1> UR2. Это нужно учитывать, так как UR1 может быть больше допустимого значения, что может привести к выходу из строя устройства.
В еще более тяжелом состоянии оказывается тиристор с меньшим временем восстановления запирающих свойств в динамических режимах. К нему будет прикладываться суммарное напряжение всей системы UR , что может привести к самопроизвольному открытию тиристора или пробоя его структуры.
Поэтому перед включением тиристоров в последовательную цепь проводят их подборку по свойствам восстановления их запирающих свойств с помощью специального устройства или проверка проводится заводом изготовителем по предварительному согласованию.
Так как идеально подобрать все вентили не удается, то применяют различные схемы для защиты их от неравномерного распределения напряжения.
В целях выравнивания напряжения на отдельных приборах применяют шунтирующий резистор Rш, примерное сопротивление которого считается по формуле:
Где: n – число приборов, которые включены последовательно; U – максимально допустимое напряжение прибора, В; Um – максимальное напряжение ветви с устройствами, В; IRm – максимальный обратный ток (в закрытом состоянии) в амплитудных значениях, А.
Мощность данного резистора мы можем рассчитать из известных каталожных данных URSM и полученного сопротивления шунтирующего резистора:
Для выравнивания напряжения в переходных режимах параллельно к тиристору подключают конденсатор, где его емкость рассчитывается по формуле:
Где: n – число приборов, которые включены последовательно; ∆QRR – наибольшая разность зарядов восстановления устройств, Кл; максимально допустимое напряжение прибора, В; Ек – максимальное напряжение, приложенное к цепи с включенными приборами, В.
Параллельно включенный конденсатор эффективно выравнивает напряжение в переходных режимах, но при этом увеличивается ток на интервале отпирания. Чтоб ограничить этот ток применяют демпфирующий резистор RД. Методика расчета этого резистора не приводится в данной статье, но как правило сопротивление этого резистора не превышает несколько десятков Ом. Схема показана ниже:
Чтоб ограничить скорость нарастания потенциала в закрытом состоянии, которое может вызывать самопроизвольное включение тиристора, параллельно к демпфирующим резисторам RД подключают диоды ДД, они имеют возможно меньшее время восстановления:
Также выравнивание потенциалов могут осуществлять с помощью лавинных диодов или стабилитронов, которые подключают параллельно. Максимальное значения напряжения диодов или стабилитронов должно быть либо немного меньше или равно напряжению переключения тиристора. Также данные устройства должны иметь минимальный разброс по пробою:
Если выравниванию подлежит и прямое и обратное напряжение, то применяют такую схему:
Если не предъявляют жестких требований к разбросу, то может использоваться такой вариант:
Также данные схемы требуют постоянного контроля за работой каждого тиристора, так как при выходе из строя одного, возрастет потенциал на других элементах, что может привести к выходу из строя целого плеча элемента.
Идея включения последовательно не очень хороша и имеет свои изъяны. Поэтому следует при использовании приведенных выше схем оценить их экономическую и техническую целесообразность.
Параллельное включение полупроводниковых приборов
В некоторых устройствах потребляемый ток настолько велик, что номинальных параметров полупроводниковых приборов не хватает (например, электродуговые печи, двигатели постоянного тока большой мощности). Для решения этой проблемы может существовать несколько решений:
- Усложнение системы охлаждения (вместо воздушного применяют жидкостное). Это вызывает добавление различных механизмов и систем и является не лучшим решением.
- Использование нескольких преобразовательных устройств при параллельной их работе.
- Параллельная работа нескольких полупроводниковых приборов.
В этой статье мы рассмотрим третий вариант на примере тиристоров и диодов. Итак, для того чтобы уменьшить ток, проходящий через один тиристор, к нему параллельно подключают еще один. Схема ниже:
Известно, что каждый тиристор имеет вольт – амперную характеристику и не всегда эти характеристики одинаковы. Пример вольт – амперных характеристик показан ниже:
Из этой характеристики видно, что при одном и том же напряжении токи тиристоров будут разных, а именно ток тиристора 1 будет больше чем 2.
Но самое отрицательное влияние разниц этих характеристик будет происходить при динамических режимах. При открытии тиристора (диода) имеющего наименьшее время включения весь ток цепи пройдет через него, что может повлечь за собой выход из строя устройства. Во избежание таких ситуаций применяют специальные устройства, а именно индуктивные делители тока. Они обеспечивают равномерное распределение нагрузки между вентилями.
Ниже приведены основные схемы включения индуктивных делителей:
Основным определителем эффективности делителей является в основном сечение магнитопровода. Рассчитывается оно по следующей формуле (кв.м.):
где ΔUFM – разбалансировка прямого напряжения (напряжения в открытом состоянии), В;
В0 – остаточная индукция в стали магнитопровода, Тл;
В1 – индукция, Тл, которая соответствует напряженности Н1;
ΔI – допустимая разбалансировка тока в параллельных ветвях (принимается в средних значениях), А;
lµ — средняя длина магнитной линии стали магнитопровода, м;
f – частота токовых импульсов, Гц;
m – скважность токовых импульсов;
w – число витков токоведущих проводов.
Значение Н1 находится по кривой намагничивания. Для этого необходимо взять точку в начальной области насыщения. Минимальная длина магнитного пути:
Минимальные габариты делителей достигаются следующим образом:
- Осуществляют подбор приборов по минимальному разбросу прямого напряжения;
- Уменьшают длину средней магнитной линии;
- Увеличивают число рабочих витков;
- Увеличивают допустимую разбалансировку токов ;
- Увеличивают отношение ;
Зачастую применяют одновитковые делители, так как они удобнее с точки конструктивного исполнения. Магнитопровод с пропущенным в его окно токоведущими шинами заливают эпоксидным компаундом, но при этом оставляют не изолированные концы для подключения делителя в схему.
При расчете индуктивных делителей следует учитывать возможный разброс по времени включения каких – то устройств. При числе параллельных устройств менее шести целесообразней всего применять схему «замкнутая цепь» (см. рис. выше а)). А если число приборов больше шести, то схемы б) и в) (см. рис. выше).
Можем сделать вывод, что параллельное соединение вентилей требует установку дополнительного оборудования. Поэтому нужно провести экономические и технические расчеты, для того, чтобы убедится стоит ли использовать параллельное включение полупроводников.
Параллельное включение полупроводниковых приборов
Параллельное соединение проводников
Параллельное соединение проводников выглядит вот так.
параллельное соединение резисторов
Ну что, думаю, начнем с сопротивления.
Сопротивление при параллельном соединении проводников
Давайте пометим клеммы как А и В
В этом случае общее сопротивление RAB будет находиться по формуле
Если же мы имеем только два параллельно соединенных проводника
То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.
Напряжение при параллельном соединении проводников
Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.
Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn
Сила тока при параллельном соединении проводников
Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.
Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.
Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
В этом случае, сила тока в цепи будет равна:
Задача
Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.
Решение
Воспользуемся формулами, которые приводили выше.
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
Следовательно,
I1 = U/R1 = 10/2=5 Ампер
I2 = U/R2 = 10/5=2 Ампера
I3 = U/R3 = 10/10=1 Ампер
Далее, воспользуемся формулой
чтобы найти силу тока, которая течет в цепи
I=I1 + I2 + I3 = 5+2+1=8 Ампер
2-ой способ найти I
I=U/Rобщее
Чтобы найти Rобщее мы должны воспользоваться формулой
Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.
I=U/Rобщее = 10/1,25=8 Ампер.
Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.
Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.
Последовательное соединение — диод
Последовательное соединение диодов без их шунтирования возможно при условии соединения диодов только одной группы, подобранной по величине наибольшего обратною тока.
Последовательное соединение диодов используется очень часто. Однако с дальнейшим увеличением ( / обр цены за каждый отдельно взятый диод заметно возрастают. В находится в пределах 10 дол.
Последовательное соединение диодов может производиться без специального подбора, если диоды шунтированы сопротивлениями.
Последовательное соединение диодов не допускается.
Допускается последовательное соединение диодов при условии шунтирования каждого диода резистором сопротивлением 100 кОм на каждые 100 В.
Допускается последовательное соединение диодов одного типономинала при условии обеспечения на каждом диоде значения максимально допустимого обратного напряжения для данного типономинала.
Допускается последовательное соединение одинаковых диодов для увеличения допустимого обратного напряжения и параллельное — для увеличения допустимого выпрямляемого тока. При последовательном соединении диодов обратное напряжение будет распределяться не равномерно, а пропорционально обратным сопротивлениям диодов, которые могут существенно отличаться по величине. Для выравнивания распределения напряжения на диодах параллельно каждому диоду включают сопротивление порядка 0 1 — н — т — 0 5 Мом. При параллельном включении диодов для исключения неравномерности нагрузки в них последовательно с каждым из них включают выравнивающее сопротивление в 10 — ь 50 ом.
При последовательном соединении диодов рекомендуется шунтировать диод резистором с сопротивлением 10 — 15 кОм на каждые 100 В амплитуды обратного напряжения.
При последовательном соединении диодов с целью увеличения выпрямленного напряжения рекомендуется применять диоды одного типа и шунтировать каждый прибор сопротивлением 10 — 15 кОм на каждые 100 В амплитуды обратного напряжения.
При последовательном соединении диодов с целью увеличения выпрямленного напряжения рекомендуется применять диоды одного типа и шунтировать каждый диод сопротивлением 10 — 15 кОм на каждые 100 В амплитуды обратного напряжения.
При последовательном соединении диодов с целью увеличения выпрямленного напряжения рекомендуется применять диоды одного типа и шунтировать каждый диод сопротивлением 10 — IS кОм на каждые 100 В амплитуды обратного напряжения.
При последовательном соединении диодов или тиристоров вследствие неодновременного окончания протекания обратного тока напряжение между вентилями не распределяется равномерно и воздействие перенапряжений на отдельные вентили усиливается.
При последовательном соединении диодов рекомендуется шунтировать диод резистором с сопротивлением 10 — 15 кОм на каждые 100 В амплитуды обратного напряжения.
При последовательном соединении диодов рекомендуется шунтировать диод резистором с сопротивлением 10 — 15 кОм на каждые 100 В амплитуды обратного напряжения.
При последовательном соединении диодов рекомендуется шунтировать диод резистором с сопротивлением 10 — 15 кОм на каждые 100 В амплитуды обратного напряжения.
Принципы подключения
Светоизлучающие диоды активно применяются в подсветке, индикации
Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов
К основным способам подключения относятся:
- параллельное;
- последовательное;
- комбинированное.
Основные причины выхода из строя светодиодных цепочек:
- неправильное соединение;
- некачественные диоды или блоки питания.
Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока
При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток
Полярность
Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.
Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.
При помощи тестера. Для этого нужно взять мультиметр, перевести его в положение «Прозвонка» и прикладывать щупы к электродам. Когда красный щуп коснется анода, а черный катода – светодиод загорится. Если при перестановке на шкале высвечивается и не меняется «бесконечное» сопротивление, есть неполадка с элементом. Так что мультитестер используется и для проверки работоспособности излучающих приборов.
Визуальный осмотр. Можно посмотреть внутрь колбы. Широкая часть – это катод, а узкая – анод. Мощные светодиоды сверхъяркого типа имеют маркировку выводов «+» и «–». Компоненты для поверхностного монтажа обычно имеют специальный скос, который указывает на катод.
Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.
По технической документации. В паспорте прибора будет написано, какая полярность.
После определения плюса и минуса электродов нужно разобраться с методом подсоединения.
Какие светодиоды можно подключить к 12 Вольтам
Продавцы уверяют, что продают светодиоды, которые возможно подключить к источнику питания на 12 В. На самом деле это утверждение некорректно. У лед-лампочки нет строго определенного рабочего вольтажа, поэтому можно говорить только об источнике света, изготовленном из диодов.
Следует определить, что происходит в лед-лампочке во время свечения. В данном процессе самые важные 2 параметра: максимальный и рабочий (необходимый для свечения) ток. Они учитываются в производстве лед-матриц, но не при выборе источника тока.
Напряжение на лампочке чаще всего от 1,5 до 3,5 вольт, цифра зависит от цвета лампочки. Меньшее значение – красные диоды, самое большое – сверхяркие. Светящийся диод на 12 вольт – это матрица (сборка), в состав которой может входить любое количество кристаллов, соединенных последовательно. Подобных цепочек может быть несколько, они соединяются друг с другом параллельно.
Параллельное соединение резисторов онлайн калькулятор
Соединение резисторов, при котором одноименные выводы каждого из элементов собираются в одну точку, называется параллельным. При этом ко всем резисторам подводится один и тот же потенциал, но величина тока через каждый из них будет отличаться
Для составления схем или при замене резисторов в уже существующих цепях важно знать их суммарное сопротивление, как показано на рисунке:
Данный калькулятор позволяет рассчитать суммарное сопротивление параллельно соединенных резисторов с любым количеством элементов.
Для этого вам необходимо:
- Указать в графе “количество резисторов” их число, в нашем примере их три;
- После того, как вы укажите количество элементов, в поле ниже появится три окошка для ввода значения сопротивления каждого из элементов, к примеру, у вас резисторы сопротивлением 20, 30 и 60 Ом;
- Далее нажмите кнопку “рассчитать” и в окошке “параллельное сопротивление в цепи” вы получите значение сопротивления в 10 Ом.
Чтобы рассчитать другую цепь или при подборе других элементов, нажмите кнопку “сбросить”, чтобы обнулить значение параллельно включенных элементов калькулятора.
Подключение магнитного пускателя через кнопочный пост видео
Для расчета суммарного сопротивления калькулятором используется такое соотношение:
- Rсум – суммарное сопротивление параллельно соединенных элементов
- R1 – сопротивление первого резистора;
- R2 – сопротивление второго резистора;
- R3 – сопротивление третьего резистора;
- Rn – сопротивление n-ого элемента.
Таким образом, в рассматриваемом примере параллельно включены три резистора, поэтому формула для определения суммарного сопротивления будет иметь такой вид:
Чтобы выразить величину суммарного сопротивления необходимо умножить обе половины уравнения на произведение сопротивлений всех трех резисторов. После этого перенести составляющие элементы по правилу пропорции и получить значение сопротивления:
Как видите, расчет параллельного сопротивления резисторов вручную требует немалых усилий, поэтому куда проще его сделать на нашем онлайн калькуляторе.
Обратите внимание, при наличии элементов с сопротивлением в разной размерности Ом, кОм, МОм, их необходимо привести к одной величине, прежде чем производить расчет. К примеру, в Ом и указывать в поле калькулятора для расчета параллельного соединения резисторов значение непосредственно в Омах
Онлайн калькулятор для расчета параллельного сопротивления позволит установить общее эквивалентное сопротивление в цепи R1 + R2 +Rn. Данный калькулятор можно смело назвать одним из самых простых и эффективных.
Литейная машина под давлением
Для получения результатов вам необходимо ввести:
- Количество резисторов.
- Указать мощность каждого резистора (Ом).
- Нажать кнопку «Расчитать».
В результате вы сможете получить точно сопротивление резисторов в сети
Калькулятор для расчета параллельного сопротивления позволит безошибочно все определить, а это очень важно, так как ручной расчет считается достаточно сложным и трудоемким процессом. Наш калькулятор с легкостью поможет вам справиться со всем
Для того чтобы определить общее эквивалентное сопротивление, можно воспользоваться точным и удобным калькулятором. Где, внеся данные по количеству резисторов, калькулятор произведет расчет в автоматическом режиме.
Данное соединение является одним из 2-ух видов, в данном случае оба вывода 1-го из резисторов соединяются с выводами 2-го резистора. В иных случаях их принято соединять параллельно или последовательно, чтобы можно было создать схемы сложного типа.
Многофункциональный станок своими руками чертежи
Для того чтобы найти ток, который протекает через определенный резистор, следует использовать формулу: Произведем расчеты согласно примеру Разрабатывается устройство, в котором есть необходимость использовать резистор, которое имеет сопротивление 8Ом. Исходя из того, что номинальный ряд согласно стандартным значениям таких резисторов не имеет, выходом будет использование 2-ух резисторов соединенных параллельно.
Для такого способа производятся следующие расчеты: Данная формула показывает, что в случае когда R1 = R2, R будет составлять ровно половину сопротивления 1-го из 2-ух резисторов. И если R=8Ом, то соответственно R1 и R2 = 2*8=16Ом.
Предложения и пожелания пишите на [email protected]
Поделитесь этим калькулятором на форуме или в сети!
Это помогает делать новые калькуляторы.
Параллельное подключение светодиодов
Здесь у нас всё наоборот. Силу тока нужно умножить на количество светодиодов, а падение напряжения посчитать только 1 раз.
Сила тока: I = 0,025 * 15 =0,375 А
Нам потребуется источник питания, способный выдать максимальный ток в 0,375 А. Округлим до 0,35 (помните, что лучше «недолить»?). По напряжению тоже укладываемся: 12 — 2 = 10. Остаётся с большим запасом.
Пытливый читатель, запнувшийся парой абзацев ранее, может воскликнуть: «Погодите! Так зачем нам 12 вольт, если мы можем обойтись и пятью?». «Можем!» — ответим ему мы. Но не торопитесь с выводами, это ещё не конец.
Мы определились, что светодиоды будут подключены параллельно. Необходимо ограничить ток в цепи. Допустим, специального драйвера у нас нет. Возьмём резистор. Рассчитаем необходимое сопротивление по давно известной формуле: 12 В * 0,35 А = 4,2 Ом. Подключим его между источником питания и анодами светодиодов:
Неправильное параллельное подключение трёх светодиодов
Вот, казалось бы, и всё. Но есть проблема:
ТАК ДЕЛАТЬ НЕЛЬЗЯ!!!
Как отмечалось выше, светодиоды не обязательно имеют те характеристики, которые заявлены производителем. Всегда есть разброс. И вот мы задали ток в 0,35 ампер и смотрим на светящуюся линейку светодиодов. Но всем им нужен разный ток. Одному , как мы и рассчитывали 25мА, другому — 20мА, третьему 21мА, а вот нашёлся совсем кривой светодиод, ему нужно всего 15мА. А мы пропускаем через него 25 — почти в 2 раза больше. Светодиод греется и быстро перегорает. В линейке стало на 1 светодиод меньше. Теперь для питания оставшихся светодиодов нам требуется 35мА. Пока всё не выглядит особенно плохо. Мы ограничили ток с запасом. Мы молодцы. Но не выдержал ещё один светодиод. Осталось 13. Теперь весь наш ток делится не на 15, а на 13 светодиодов. На каждый из них приходится по 26мА. Теперь абсолютно все светодиоды работают на повышенном токе. Очень скоро перегреется следующий. Самые стойкие получат уже по 29мА — 116% от номинала. Всего 2 перегоревших светодиода запустили цепную реакцию. Скоро вся линейка перегорит, а вы так и не поймёте почему (ну или поймёте, мы же только что всё разобрали). Собственно, избавиться от такого печального сценария просто. Нужно к каждому светодиоду поставить по собственному токоограничительному резистору. Для тока в 25мА и напряжения 12В нужен резистор на 480 Ом. Это не спасёт от проблемы «кривых» светодиодов, но их перегорание никак не повлияет на остальные.
Достоинства: высочайшая надёжность.Недостатки: высокое потребление тока, высокая стоимость схемы.
Правильное параллельное подключение трёх светодиодов
Параллельное подключение светодиодов — идеальный вариант. Всегда стремитесь к тому, чтобы подключать светодиоды параллельно и ограничивать ток каждого светодиода по отдельности своим резистором. Если вы используете светодиодные драйверы (стабилизаторы тока), то каждому светодиоду нужно подключать свой драйвер. Именно поэтому параллельные схемы с большим количеством светодиодов становятся слишком дорогими. В реальности приходится идти на компромисс и объединять светодиоды в цепочки.
Последовательное и параллельное соединения диодов.
Если для выпрямительной схемы нельзя выбрать нужный тип диода в соответствии с заданным значением обратного напряжения или прямого тока, то используют два или более однотипных диодов с меньшими значениями параметров, включая эти диоды последовательно или параллельно.
Параллельное соединение диодов
Параллельное соединение диодов
При параллельном соединении диодов из-за возможного разброса параметров их токи будут неодинаковыми. Один из этих токов может превысить максимально допустимое значение, что приведёт к выходу из строя сначала одного, а затем и другого диода. Более равномерное распределения тока между параллельно соединёнными диодами достигается включением последовательно с каждым из них одинаковых по номиналу резисторов Rд. Сопротивление резисторов Rд должно быть в 5…10 раз больше, чем сопротивление диода в прямом направлении. В мощных выпрямительных устройствах для этой же цели используются индуктивные выравниватели токов.
Расчёт параллельного соединения диодов
Для начала расчёта необходимо определить требуемое количество параллельно соединённых диодов, исходя из того, что ток, проходящий через один диод не должен превышать значения максимально допустимого значения тока для данного типа диода, тогда количество параллельно соединённых диодов будет равно
, гдеmTnp
При дробных значениях расчётного количества диодов округление ведётся в большую сторону.
Значение сопротивления добавочных резисторов определяется по формуле
, где
np.cp
Расчитаное сопротивление добавочных резисторов округляют до ближайшего стандартного сопротивления.
Пример расчёта параллельного соединения диодов
Рассчитать выпрямительную цепь, позволяющую получить выпрямленный ток Iвыпр = 550 мА, если используются диоды Д226Б.
Так как средний прямой ток диода Д226Б Iпр. ср = 300 мА, то необходимо применить несколько параллельно соединённых диодов с добавочными резисторами. Рассчитаем количество параллельно соединённых диодов, примем kT = 0,8
Возьмём n = 3.
Найдём значение сопротивлений добавочных резисторов
Выберем резистор из стандартного ряда сопротивлений Е24 (± 5%) Rдоб = 6,2 Ом
Последовательное соединение диодов
Последовательное соединение диодов
Для обеспечения возможности работы выбранного типа диода в схеме выпрямителя с обратным напряжением, превышающим его максимально допустимое значение, следует соединять однотипные диоды последовательно. Если параметры не совпадают, то один из диодов оказывается под значительно большим напряжением, чем другой. Это может привести к пробою одного, а затем и другого диода. Выравнивание обратного напряжения на последовательно соединенных диодах достигается шунтированием каждого из диодов резистором Rш. Ток, протекающий через эти резисторы, должен быть в 5…10 раз больше максимально возможного обратного тока диодов. В мощных высоковольтных выпрямительных устройствах для этой же цели диоды шунтируют конденсаторами Сш или RC-цепью.
Расчёт последовательного соединения диодов
Для начала расчёта необходимо определить количество последовательно соединенных диодов, исходя из того что падение напряжения на каждом отдельно взятом диоде не должно превышать амплитудного значения напряжения, тогда количество последовательно включённых диодов будет равно
, где
Um — амплитудное значение напряжения проходящее через диод, kH – коэффициент нагрузки по напряжению (может принимать значения от 0,5 до 0,8), Uobp max — максимально допустимое обратное напряжение диода.
При дробных значениях расчётного количества диодов округление ведётся в большую сторону.
Значение сопротивлений шунтирующих резисторов определяется по формуле
, где
Iобp max — максимально допустимый обратный ток диода при максимальной температуре.
Пример расчёта последовательного соединения диодов
Рассчитать выпрямительную цепь для напряжения с амплитудным значением 700В, используя диоды Д226Б.
Так как максимально допустимое обратное напряжение диода Uобр.max = 300В, то для выпрямления необходимо применить цепочку из последовательно соединённых диодов с шунтирующими резисторами. Рассчитаем количество последовательных диодов, примем kH = 0,7
Возьмём n = 4
Найдём значение сопротивлений шунтирующих резисторов
Выберем резистор из стандартного ряда сопротивлений Е24 (± 5%) Rш = 1 MОм
Включение дополнительных и шунтирующих резисторов неизбежно связано с увеличением потерь мощности и уменьшением КПД выпрямительной схемы.
Основные выводы
При подключении светодиодной лампы к любому блоку питания учитывается:
- рабочий ток лампочки;
- сопротивление и мощность стабилизирующего элемента;
- для подключения к аккумулятору автомашины при расчетах используется не 12 В, а 14,5 В.
Схема подключения не меняется зависимости от мощности светодиода
При соединении с другими элементами схемы важно учесть полярность, так как ток в этих источниках света течет только в одном направлении
Если используется драйвер, то перед подключением желательно проверить его мощность (особенно, если деталь китайская)
Важно так же учесть, что падение напряжения на лед-лампах зависит от их цвета
Предыдущая
СветодиодыОсобенности устройства и схема светодиодных ламп на 220 В
Следующая
СветодиодыЧто такое светодиод: описание и характеристики
Тиристоры и Триаки (симисторы) — Десять Золотых Правил — Компоненты и технологии
Промышленный ряд тиристоров и триаков (симисторов) Philips предоставляет широкие возможности для создания устройств управления мощностью. Соблюдение же десяти несложных правил по использованию тиристоров и триаков поможет избежать трудностей и ошибок при проектировании.
Тиристоры
Тиристор — управляемый диод, в котором управление током от анода к катоду происходит за счет малого тока управляющего электрода (затвора).
Открытое состояние тиристора
Тиристор переходит в открытое состояние при подаче на затвор положительного смещения относительно катода. При достижении порогового значения напряжения затвора VGT (ток через затвор имеет значение IGT), тиристор переходит в открытое состояние. Для стабильного перехода в открытое состояние при коротком управляющем импульсе (менее 1 мкс) пиковое значение порогового напряжения необходимо увеличить.
После достижения тока нагрузки значения IL тиристор будет оставаться в открытом состоянии при отсутствии тока затвора.
Необходимо отметить, что значения параметров VGT, IGT и IL указаны в спецификации для температуры перехода 25 °C. Эти значения возрастают при понижении температуры. Поэтому внешние цепи тиристора должны рассчитываться для поддержания необходимых амплитуд VGT, IGT и IL при минимальной ожидаемой рабочей температуре.
Чувствительный затвор тиристоров, таких, как BT150, при увеличении температуры перехода выше Tj max может вызывать ложное срабатывание за счет тока утечки от анода к катоду.
Во избежание ложных срабатываний можно посоветовать следующие рекомендации:
- Рабочая температура перехода должна быть меньше значения Tj max.
- Использовать тиристоры с меньшей чувствительностью, такие, как BT151, либо уменьшить чувствительность имеющегося тиристора включением резистора номиналом 1 кОм или менее между затвором и катодом.
- При невозможности использования менее чувствительного тиристора необходимо приложить небольшое обратное смещение к затвору в фазе закрытого состояния тиристора для увеличения IL. В фазе отрицательного тока затвора необходимо уделить внимание уменьшению мощности рассеивания затвора.
Коммутация тиристора
Для перехода тиристора в закрытое состояние ток нагрузки должен снизиться ниже значения тока удержания IH на время, позволяющее всем свободным носителям заряда освободить переход. В цепях постоянного тока это достигается тем, что цепь нагрузки уменьшает ток до нуля, чтобы дать возможность тиристору выключиться. В цепях переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этой точке тиристор переходит в закрытое состояние.
Тиристор может перейти в состояние проводимости, если ток нагрузки не будет удерживаться ниже IH достаточное время.
Обратите внимание, что значение IH указывается для температуры перехода 25 °C и, подобно IL, оно уменьшается при повышении температуры. Поэтому для успешной коммутации цепь должна позволять уменьшаться току нагрузки ниже IH достаточное время при максимальной ожидаемой рабочей температуре перехода.
Триаки (симисторы)
Триак представляет собой «двунаправленный тиристор». Особенностью триака является способность проводить ток как от анода к катоду, так и в обратном направлении.
Состояние проводимости
В отличие от тиристоров триак может управляться как положительным, так и отрицательным током между затвором и T1. (Правила для VGT, IGT и IL те же, что для тиристоров, см. «Правило 1».) Это свойство позволяет триаку работать во всех четырех секторах, как показано на рис. 4.
Когда затвор управляется постоянным током или однополярными импульсами с нулевым значением тока нагрузки, в квадрантах (3+,3–) предпочтителен отрицательный ток затвора по нижеследующим причинам. (Внутреннее строение переходов триака характерно тем, что затвор наиболее отдален от области основной проводимости в квадранте 3+.)
- При более высоком значении IGT требуется более высокий пиковый IG.
- При более длинной задержке между IG и током нагрузки требуется большая продолжительность IG.
- Низкое значение dIT/dt может вызывать перегорание затвора при управлении нагрузками, создающими высокий dI/dt (включение холодной лампы накаливания, емкостные нагрузки).
- Чем выше IL (это относится и к квадранту 1–), тем большая продолжительность IG будет необходима для малых нагрузок, что позволит току нагрузки с начала полупериода достичь значения выше IL.
В стандартных цепях управления фазой переменного тока, таких, как регуляторы яркости и регуляторы скорости вращения, полярность затвора и T2 всегда одинаковы. Это означает, что управление производится всегда в 1+ и 3– квадрантах, в которых коммутирующие параметры триака одинаковы, а затвор наиболее чувствителен.
Примечание: 1+, 1–, 3– и 3+ это система обозначений четырех квадрантов, использующаяся для краткости: вместо того, чтобы записать «MT2+, G+», пишется 1+ и т. д. Эти данные получены из графика вольт-амперной характеристики триака. Положительному напряжению T2 соответствует положительное значение тока через T2, и наоборот (см. рис. 5). Следовательно, управление осуществляется только в квадрантах 1 и 3. А указатели (+) и (–) относятся к направлению тока затвора.
Ложные срабатывание триака
В ряде случаев возможны нежелательные случаи включения триаков. Некоторые из них не приведут к серьезным последствиям, в то время как другие потенциально разрушительны.
1. Уменьшение шумовых сигналов затвора
В электрически шумных окружающих средах ложное срабатывание может происходить, если шумовое напряжение на затворе превышает VGT, поэтому тока затвора достаточно для включения триака. Первый способ защиты — минимизировать возникающий шум. Лучше всего это может быть достигнуто уменьшением длины проводников, ведущих к затвору, и соединением цепи управления затвором непосредственно с выводом T1 (или катодом для тиристора). В случае, если это невозможно, следует использовать витую пару или экранированный кабель.
Дополнительную шумовую устойчивость можно обеспечить, уменьшив чувствительность затвора с помощью включения резистора до 1 кОм между затвором и T1. Если в качестве высокочастотного шунта используется конденсатор, желательно включить последовательно резистор между ним и затвором, чтобы уменьшить пик тока конденсатора через затвор и минимизировать возможность повреждения затвора от перегрузки.
В качестве решения этих проблем можно использовать триаки ряда «H» из номенклатуры Philips (например BT139-600H). Этот нечувствительный ряд (IGT min = 10 мA) специально разработан для обеспечения высокой шумовой устойчивости.
2. Превышение максимального значения скорости нарастания напряжения коммутации dVCOM/dt
Этот эффект может возникнуть при питании реактивных нагрузок, где есть существенный сдвиг фазы между напряжением и током нагрузки. При выключении триака в то время, когда фаза тока нагрузки проходит через ноль, напряжение не будет нулевым из-за сдвига по фазе (см. рис. 6).
Если при этом скорость изменения напряжения превысит допустимое значение dVCOM/dt, триак может остаться в состоянии проводимости. Это происходит из-за того, что носителям заряда не хватает времени, чтобы освободить переход.
На параметр dVCOM/dt влияют два условия:
- Скорость уменьшения тока нагрузки при переключении dICOM/dt. Высокое значение dICOM/dt снижает значение dVCOM/dt.
- Температура перехода Tj. Чем выше Tj, тем ниже значение dVCOM/dt.
Если возможно превышение значения dVCOM/dt триака, то ложного срабатывания можно избежать использованием RC-демпфера между T1-T2. Это ограничит скорость изменения напряжения. Обычно выбирается углеродный резистор 100 Ом и конденсатор 100 нФ.
В качестве альтернативы можно предложить использование триаков Hi-Com (более подробно об этих триаках можно прочесть на сайте www.dectel.ru в разделе «Публикации» или в «КиТ» № 7’2002).
Обратите внимание, что резистор не может быть удален из демпфера, так как он используется в качестве ограничителя тока во избежание возникновения высокого значения dIT/dt в моменты коммутации.
3. Превышение максимального значения скорости нарастания тока коммутации dICOM/dt
Высокое значение dICOM/dt может быть вызвано повышенным током нагрузки, повышенной рабочей частотой (синусоидального тока) или несинусоидальным током нагрузки.
Известный пример — выпрямитель питания для индуктивных нагрузок, где применение стандартных триаков невозможно из-за того, что напряжение питания оказывается ниже напряжения обратной электромагнитной индукции нагрузки и ток триака резко стремится к нулю. Этот эффект проиллюстрирован на рис. 7.
При нулевом токе триака ток нагрузки будет спадать через мостовой выпрямитель. При индуктивных нагрузках возможно такое высокое значение dICOM/dt, при котором триак не может поддерживать даже небольшого значения dV/dt 50-герцовой синусоиды при прохождении нуля. В этом случае не будет эффекта от добавления демпфера.
Решение проблемы в том, что значение dICOM/dt может быть ограничено добавлением дросселя последовательно с нагрузкой. Альтернативное решение — использование Hi-Com-триаков.
4. Превышение максимального значения скорости нарастания напряжения в закрытом состоянии dVD/dt
Высокая скорость изменения напряжения на силовых электродах непроводящего триака (или тиристора с чувствительным затвором) без превышения его VDRM (см. рис. 8), вызывает внутренние емкостные токи. При этом внутреннего тока затвора может быть достаточно, чтобы перевести триак (тиристор) в состояние проводимости. Чувствительность к этому параметру увеличивается с ростом температуры.
Там, где возникает эта проблема, значение dVD/dt должно быть ограничено RC-демпфером между T1 и T2 для триака (или анодом и катодом для тиристора). Использование триаков Hi-Com в таких случаях может снять эти проблемы.
5. Превышение повторяющегося пикового напряжения в закрытом состоянии VDRM
Если напряжение на T2 превышает VDRM (это может происходить во время переходных процессов), то ток утечки T2-T1 достигнет значения, при котором триак может спонтанно перейти в состояние проводимости (рис. 9).
При нагрузке, допускающей выбросы тока, ток чрезвычайно высокой плотности может проходить через узкую открытую область перехода. Это может привести к выгоранию перехода и разрушению кристалла. Это может происходить в схемах управления лампами накаливания, емкостных нагрузках и схемах защиты мощных электронных ключей.
Превышение VDRM или dVD/dt не всегда приводит к потере работоспособности триака, а вот создаваемая dIT/dt скорость нарастания тока It может привести к выходу из строя прибора. Из-за того что требуется некоторое время для распространения проводимости по всему переходу, допустимое значение dIT/dt ниже чем, если бы триак был включен сигналом затвора. Если значение dIT/dt не будет превышать минимального значения, которое дается в его характеристиках, то, скорее всего, триак не выйдет из строя. Эта проблема может быть решена подключением ненасыщающейся индуктивности (без сердечника) последовательно с нагрузкой. Если это решение неприемлемо, то альтернативное решение может быть в том, чтобы обеспечить дополнительную фильтрацию и ограничение выбросов. Это повлечет использование параллельно питанию метал-оксидного варистора (МОВ) для ограничения напряжения и последовательное подключение LС-цепочки перед варистором.
Некоторые изготовители выражают сомнения в надежности схем с использованием MOB, так как они при высоких температурах окружающей среды входят в тепловой пробой и выходят из строя. Это является следствием того, что рабочее напряжение МОВ обладает обратным температурным коэффициентом. Однако при применении МОВ на 275 В (среднеквадратичное значение) для цепей 230 В риск перегорания МОВ минимален. Такие проблемы вероятны, если варистор на 250 В используется при высокой температуре окружающей среды в цепях со среднеквадратичным значением 230 В.
Состояние проводимости, dI
T/dtКогда триак (тиристор) находится в состоянии проводимости под действием сигнала затвора, проводимость начинается в участке кристалла, смежном с затвором, и затем быстро распространяется на активную область. Эта задержка накладывает ограничение на значение допустимой скорости нарастания тока нагрузки. Высокое значение dIT/dt может быть причиной выгорания прибора, в результате чего произойдет короткое замыкание между T1 и T2.
При работе в квадранте 3+ еще больше снижается разрешенное значение dIT/dt из-за структуры перехода. Это может привести к мгновенному лавинному процессу в затворе и перегоранию во время быстрого нарастания тока. Разрушение триака может произойти не сразу, а при постепенном выгорании перехода Затвор-T1, что приведет к короткому замыканию после нескольких включений. Чувствительные триаки наиболее подвержены этому. Эти проблемы не относятся к Hi-Com триакам, так как они не работают в квадранте 3+.
Значение dIT/dt связано со скоростью нарастания тока затвора (dIG/dt) и максимальным значением IG. Высокие значения dIG/dt и пикового IG (без превышения номинальной мощности затвора) дают более высокое значение dIT/dt.
Самый простой пример нагрузки, создающей высокий начальный бросок тока, — лампа накаливания, которая имеет низкое сопротивление в холодном состоянии. Для резистивных нагрузок этого типа значение dIT/dt достигнет максимального значения при начале перехода в состояние проводимости в пике напряжения сети. Если есть вероятность превышения номинального значения dIT/dt триака, необходимо ограничить это включением катушки индуктивности или терморезистором с обратным температурным коэффициентом последовательно с нагрузкой.
Дроссель не должен насыщаться в течение максимума пика тока. Для ограничения значения dIT/dt необходимо использовать катушку индуктивности без сердечника.
Есть более правильное решение, с помощью которого можно избежать необходимости включения последовательно с нагрузкой токоограничивающих приборов. Оно состоит в том, чтобы использовать режим включения при нулевой разности потенциалов. Это дало бы плавный рост тока с начала полуволны.
Примечание: Важно помнить, что режим включения при нулевой разности потенциалов применим только к резистивным нагрузкам. Использование того же метода для реактивных нагрузок, где есть сдвиг фазы между напряжением и током, может вызвать однополярную проводимость, ведущую к возможному режиму насыщения индуктивных нагрузок, разрушительно высокому току и перегреву. В этом случае требуется более совершенный способ переключения при нулевом токе или схема управления фазой включения.
Отключение
Триаки, использующиеся в цепях переменного тока, коммутируются в конце каждого полупериода тока нагрузки, если не приложен сигнал затвора, чтобы поддержать проводимость с начала следующего полупериода. Правила для IH те же, что и для тиристора (см. «Правило 2»).
Некоторые особенности триаков Hi-Com
Триаки Hi-Com имеют отличную от обычных триаков внутреннюю структуру. Одно из отличий состоит в том, что две половины тиристора лучше изолированы друг от друга, что уменьшает их взаимное влияние. Это дает следующие преимущества:
- Увеличение допустимого значения dVCOM/dt. Это позволяет управлять реактивными нагрузками (в большинстве случаев) без использования демпфирующего устройства, без сбоев в коммутации. Это сокращает количество элементов, размер печатной платы, стоимость и устраняет потери на рассеивание энергии демпфирующим устройством.
- Увеличение допустимого значения dICOM/dt. Это значительно улучшает работу на более высоких частотах и для несинусоидальных напряжений без необходимости в ограничении dICOM/dt при помощи индуктивности последовательно с нагрузкой.
- Увеличение допустимого значения dVD/dt. Триаки очень чувствительны при высоких рабочих температурах. Высокое значение dVD/dt уменьшает тенденцию к самопроизвольному включению из состояния отсутствия проводимости за счет dV/dt при высоких температурах. Это позволяет применять их при высоких температурах для управления резистивными нагрузками в кухонных или нагревательных приборах, где обычные триаки не могут использоваться.
Из-за особой внутренней структуры работа триаков Hi-Com в квадранте 3+ невозможна. В большинстве случаев это не является проблемой, так как это наименее желательный и наименее используемый квадрант. Поэтому замена обычного триака на Hi-Com возможна почти всегда.
Более подробную информацию по триакам Hi-Com можно найти в специальной документации Philips: «Factsheet 013 — Understanding Hi-Com Triacs» и «Factsheet 014 — Using Hi-Com Triacs».
Способы монтажа триаков
При малых нагрузках или коротких импульсных токах нагрузки (меньше 1 с), можно использовать триак без теплоотводящего радиатора. Во всех остальных случаях его применение необходимо.
Существует три основных метода фиксации триака к теплоотводу — крепление зажимом, крепление винтом и клепка. Наиболее распространены первые два способа. Клепка в большинстве случаев не рекомендуется, так как может вызвать повреждение или деформацию кристалла, что приведет к выходу прибора из строя.
Фиксация к теплоотводу зажимом
Это — предпочтительный метод с минимальным тепловым сопротивлением, так как зажим достаточно плотно прижимает корпус прибора к радиатору. Это одинаково подходит как для неизолированных (SOT82 и SOT78), так и для изолированных корпусов (SOT186 F-корпусов и более ранних SOT186A X-корпусов). SOT78 известен еще как TO220AB.
Фиксация к теплоотводу при помощи винта
- Набор для монтажа корпуса SOT78 включает прямоугольную шайбу, которая должна быть установлена между головкой винта и контактом без усилий на пластиковый корпус прибора.
- Во время установки наконечник отвертки не должен воздействовать на пластиковый корпус триака (тиристора).
- Поверхность теплоотвода в месте контакта с электродом должна быть обработана с чистотой до 0,02 мм.
- Крутящий момент (с установкой шайбы) должен быть между 0,55–0,8 Н·м.
- По возможности следует избегать использования винтов-саморезов, так как это снижает термоконтакт между теплоотводом и прибором.
- Прибор должен быть механически зафиксирован перед пайкой выводов. Это минимизирует чрезмерную нагрузку на выводы.
Тепловое сопротивление
Тепловое сопротивление Rth — это сопротивление между корпусом прибора и радиатором. Этот параметр аналогичен электрическому сопротивлению R = V/I, поэтому тепловое сопротивление Rth = T/P, где T — температура в кельвинах, и P — рассеяние энергии в ваттах.
Для прибора, установленного вертикально без радиатора, тепловое сопротивление задается тепловым сопротивлением «переход — окружающая среда» Rth = Rth j–a.
- Для корпуса SOT82 значение равно 100 К/Вт;
- Для корпуса SOT78 значение равно 60 К/Вт;
- Для корпусов F и X значение равно 55 К/Вт.
Для не изолированных приборов, установленных на теплоотвод, тепловое сопротивление является суммой сопротивлений «переход — корпус», «корпус — теплоотвод» и «теплоотвод — окружающая среда».
Для изолированных корпусов нет ссылки на термосопротивление Rth j–mb, так как Rth mb–h принят постоянным и дан с учетом использования термопасты. Поэтому тепловое сопротивление для изолированного корпуса является суммой тепловых сопротивлений «переходтеплоотвод» и «теплоотвод — окружающая среда».
Rth j–mb или Rth j–h фиксированы и даны в документации к каждому прибору. Rth mb–h также даются в инструкциях по установке для некоторых вариантов изолированного и неизолированного монтажа с использованием или без использования термопасты. Rth h–a регулируется размером теплоотвода и степенью воздушного потока через него. Для улучшения теплоотдачи всегда рекомендуется использование термопасты.
Расчет теплового сопротивления
Для вычисления теплового сопротивления теплоотвода для данного триака (тиристора) и данного тока нагрузки необходимо сначала вычислить рассеяние энергии в триаке (тиристоре), используя следующее уравнение:
Vo и Rs получены из «on-state» характеристики триака (тиристора). Если значения не указанны, то они могут быть получены из графика путем вычерчивания касательной к VT max. Точка на оси VT, где ее пересекает касательная, дает Vo, в то время как тангенс угла наклона касательной дает Rs.
Используя уравнение теплового сопротивления, данное выше, получаем:
Максимально допустимая температура перехода будет достигнута, когда Tj достигает Tj max при самой высокой температуре окружающей среды. Это дает нам T.
Полное тепловое сопротивление
Все расчеты по вычислению теплового сопротивления имеет смысл проводить для уже установившегося режима продолжительностью больше 1 с. Для импульсных токов или длительных переходных процессов меньше 1 с эффект отвода тепла уменьшается. Температура просто рассеивается в объеме прибора с очень небольшим достижением теплоотвода. В таких условиях нагрев перехода зависит от полного теплового сопротивления «переход — корпус прибора» Zth j–mb. Поэтому Zth j–mb уменьшается при уменьшении продолжительности импульса тока благодаря меньшему нагреву кристалла. При увеличении продолжительности до 1 с Zth j–mb увеличивается до значения, соответствующего установившемуся режиму Rth j–mb. Характеристика Zth j–mb приводится в документации для двунаправленного и однонаправленного электрического тока импульсами продолжительностью до 10 с.
Номенклатура и корпуса
Промышленный ряд тиристоров Philips начинается с 0,8 A в SOT54 (TO92) и заканчивается 25 A в SOT78 (TO220AB).
Промышленный ряд триаков (симисторов) Philips начинается с 0,8 A в SOT223 и заканчивается 25 A в SOT78.
Самый маленький корпус триака (тиристора) для поверхностного монтажа — SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.
Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса позволяет использовать его при более высоких номинальных токах и большей мощности.
На рис. 12 показан наименьший корпус для обычного монтажа — SOT54. В этот корпус ставится кристалл, которым оснащаются SOT223.
SOT78 — самый распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).
На рис. 15 показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1500 В между прибором и теплоотводом.
Один из последних корпусов — SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типами:
- Корпус имеет те же размеры, что и корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78 без изменений в монтаже.
- Корпус допускает в обычных условиях разность потенциалов 2500 В между прибором и теплоотводом.
Параллельное включение тиристоров | Техника и Программы
Балансировка по току очень проста. Достаточно включить последовательно с каждым тиристором резистор, который бы сделал не существенным разброс в прямых падениях напряжения на тиристорах. Этот прием прекрасно работает в импульсных преобразователях для исследовательских установок по ядерному синтезу с магнитным удержанием плазмы, в которых трубки из нержавеющей стали или монеля обеспечивают падение напряжения в несколько вольт при полном токе. К сожалению, из-за больших потерь этот прием балансировки оказывается пригодным только в импульсных системах с очень маленьким значением рабочего цикла.
Балансировка токов в преобразователях, предназначенных для постоянной работы, требует не только подбора тиристоров по прямому падению напряжения, но и особого внимания к собственным и взаимным индуктивностям в разных ветвях системы. На Рис. 11.6 приведено несколько примеров удачной и неудачной балансировки.
Рис. 11.6. Различные схемы параллельного включения тиристоров
В схеме А ток через тиристор 1 будет больше, чем через тиристор 2, так как тиристор 2 подключен к тиристору 1 через добавочные связи, имеющие и сопротивление, и индуктивность. Напротив, в схемах Б, В и Г добавочные сопротивления и индуктивности сбалансированы. В схеме Д через тиристор 2 будет протекать больший ток, чем через тиристоры 1 и 3, так как они подключены через дополнительные сопротивления и индуктивности. Ситуация исправлена переносом точки соединения в схеме E, так что в ней индуктивности и сопротивления токоведущих связей для каждого тиристора равны между собой. На схеме Ж обозначена интересная проблема, связанная со взаимной индуктивностью проводов. Если расстояния между входной и выходной шинами и проходящими параллельно им проводами мало, то для тиристора 1 их взаимная индуктивность приведет к уменьшению падения напряжения на подходящих к нему проводах и увеличению тока через него по сравнению с током через тиристор 2. Можно попытаться перенести точку соединения проводов, как показано на схеме
3, но нет гарантий, что это поможет. Надежное решение — либо использование схем Б, В и Г, либо увеличение расстояния между проводами.
На Рис. 11.7 проиллюстрировано влияние взаимной индукции. А — это входная шина, а В и С — провода связи с тиристорами, представленными на рисунке точками. Собственные индуктивности проводов В и С могут быть рассчитаны по обычным формулам, учитывающим их размеры и длину. Взаимная индуктивность между А и В равна приблизительно МАВ = МА МА_В, где МА и МА_В — взаимные индуктивности между проводниками длиной А и А В соответственно, находящимися на расстоянии S друг от друга. Если собственная индуктивность провода длиной В равна 1В, то эквивалентная индуктивность LT = ZB 2МАВ.
Рис. 11.7. Собственные и взаимные индуктивности параллельных проводов
Если зазор между проводами S мал по сравнению с длинами В и С, то никаким переносом точки соединения проводов добиться балансировки токов невозможно. Успеха можно добиться, только увеличив S или полностью изменив монтаж. Отметим, что в проведенном выше анализе маленькая взаимная индуктивность между А и С не принималась в расчет. В общем всегда, когда шины расположены параллельно друг другу, можно ожидать проблем с балансировкой токов.
Для получения баланса «Канадиан Дженерал Электрик Компани» (Canadian General Electric Company) и ряд других компаний применяют радиально-симметричные конструкции. Входные и выходные шины подходят к центру конструкции, а тиристоры расположены на концах радиально расположенных проводников. В этой конструкции при использовании тиристоров, подобранных по прямому падению напряжения, достигается прекрасная балансировка токов.
Источник: Сукер К. Силовая электроника. Руководство разработчика. — М.: Издательский дом «Додэка-ХХI, 2008. — 252 c.: ил. (Серия «Силовая электроника»).
Симистор и его применения — основы радиотехники
Тиристор идеально подходит для регулирования мощности переменного напряжения во всем, кроме одного: он является однополупериодным устройством, а это означает, что даже при полной проводимости используется только половина мощности. Можно включить параллельно два тиристора навстречу друг другу, как это показано на рис.1, чтобы обеспечить двух-полупериодный режим работы, однако для этого требуется подавать импульсы запуска на управляющие электроды от двух изолированных, но синхронных источников, как это видно из рисунка.
Рис.1 Двухполупериодный регулятор можно построить на двух тиристорах. Для изоляции источников импульсов от напряжения сети используются оптопары.
Самым полезным устройством для практического регулирования мощности переменного напряжения является двунаправленный тиристор или симистор. Как можно видеть на рис2. симистор можно рассматривать как два инверсно-параллельных тиристора с управлением от единственного источника сигнала. Симисторы являются настолько гибкими устройствами, что их можно переключать в проводящее состояние как положительным, так и отрицательным импульсом запуска независимо от мгновенной полярности источника переменного напряжения. Названия катод и анод теряют смысл для симистора; ближайший к управляющему электроду вывод назвали, не мудрствуя лукаво, основным выводом 1 (МТ1), а другой — основным выводом 2 (МТ2). Запускающий импульс всегда подается относительно вывода МТ1 так же, как в случае тиристора он подается относительно катода.
Рис2. Симистор: (а) структура, (b) условное обозначение.
Обычно для переключения симистора, рассчитанного на ток до 25 А, достаточен пусковой ток 20 мА, и одним из простейших примеров его применения является «твердотельное реле», в котором небольшой пусковой ток используется для управления большим током нагрузки (рис.3). В качестве ключа SW1 могут быть геркон, чувствительное термореле или любая контактная пара, рассчитанная на 50 мА; ток в цепи нагрузки ограничивается только параметрами симистора. Полезно отметить, что резистор R1 в цепи запуска находится под напряжением сети только в моменты включения симистора; как только симистор включается, разность потенциалов на резисторе R1 падает до величины около одного вольта, так что достаточен полуваттный резистор.
Рис.3 Простое «твердотельное реле» на симисторе.
Весьма распространенными применениями симистора являются регулятор яркости для лампы или управление скоростью вращения мотора. На рис.4 показана такая схема. Временное положение запускающих импульсов устанавливается RC-фазовращателем; потенциометром R2 регулируют яркость лампы, тогда как резистор R1 просто ограничивает ток, когда потенциометр установлен в положение с минимальным сопротивлением. Сами импульсы запуска формируются динистором, то есть двунаправленным триггерным диодом. Динистор можно представить себе как маломощный тиристор без управляющего электрода с низким напряжением лавинного пробоя (около 30 В). Когда разность потенциалов на конденсаторе С1 достигает уровня пробоя в динисторе, мгновенный импульс разряда конденсатора включает симистор.
Рис.4 Простейшая схема регулировки яркости лампы на симисторе с фазовым управлением.
Легко сделать автоматический фотоэлектрический выключатель лампы, присоединив параллельно конденсатору С1 фотоэлемент ORP12 (светозависимый резистор). Сопротивление фотоэлемента в темноте велико, порядка 1 МОм, но при дневном свете оно падает до нескольких килоом так, что симистор не может поджечься и лампа выключена. Если в автоматическом выключателе ручная регулировка не требуется, то резистор R2 можно заменить на короткое замыкание.
На рис.5 показано, как симистор управляет мощностью в нагрузке, отрезая начальную часть каждого полупериода. Длительность пропущенной части зависит от запаздывания пускового импульса по фазе, которое определяется сопротивлением R1+R2 и емкостью С1. В простейшей схеме управления на рис.4 фазовый сдвиг не может быть больше 90°, так как используется только одна RС-цепочка. Поэтому такая схема является плохим регулятором при малой мощности, поскольку в нем могут происходить неожиданные скачки от выключенного состояния к полной мощности.
Более совершенная схема приведена на рис.6; включение дополнительной RC-цепочки (R3С3) дает больший фазовый сдвиг для лучшего управления при малой мощности. Дальнейшие усовершенствования состоят во введении следующих элементов: (а) демпфера с постоянной времени R4С4 для предотвращения ошибочных переключений от противо-э.д.с. индуктивной нагрузки и (b) радиочастотного фильтра L1C1 для подавления помех. Последний элемент всегда следует вводить в симисторную или тиристорную схему, работающую по принципу «отсекания части колебания», поскольку быстрые включения и выключения могут создавать серьезные радиопомехи в питающей сети.
Рис.5 Форма напряжения на нагрузке в симисторном регуляторе при постепенном увеличении фазового сдвига.
Имеется большое число различных симисторов и тиристоров которые нашли широкое применение в бытовой технике. Как и в случае выпрямительных диодов, для того, чтобы выбрать прибор с нужными номинальными напряжением и током, можно обратиться к каталогам и справочным данным.
Рис.6 Симисторный регулятор мощности с широким диапазоном регулировки и встроенным подавлением помех.
Большинство производителей выпускают подходящие динисторы, но имеются также приборы, называемые quadrac, в которых объединены симистор и динистор.
На рис.7 показаны корпуса и цоколевка распространенных симисторов. Если симистор должен использоваться на полную допустимую мощность, то его необходимо закрепить на теплоотводе.
Подавление радиочастотных помех, создаваемых симисторными или тиристорными регуляторами с фазовым управлением, становится более трудным и дорогим при больших значениях тока нагрузки. В электрических нагревателях и в других нагрузках с большой инерционностью можно уменьшить помехи, пропуская каждый раз целое число полупериодов. Это позволяет избежать скачкообразных изменений тока, которые и вызывают радиочастотные помехи. Такой способ называется прерывистым запуском или управлением с целым числом периодов. Этот способ, как правило, не подходит для управления яркостью лампы из-за мерцания. Для осуществления управления с целым числом периодов подходят такие микросхемы, как SL441, включающиеся при нулевом напряжении. Они определяют пересечение напряжением сети нулевого уровня и обеспечивают запуск симистора от датчика, сопротивление которого меняется, например, от термистора.
Рис.7 Корпуса распространенных симисторов: (а) корпус Т066, (b) болтовой крепеж, (с) пластмассовый корпус Т0220.
параллельных TRIAC для большего рассеивания тепла
параллельных TRIAC для большего рассеивания теплаСеть обмена стеков
Сеть Stack Exchange состоит из 177 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 812 раз
\ $ \ begingroup \ $Возможно ли параллельное соединение TRIACS для снижения тепловыделения на устройство?
Если да, то какова будет наилучшая стратегия для обеспечения сбалансированного распределения тока между устройствами?
Целевое применение — переключение сетевого питания до 20 ампер.Физическое расположение исключает возможность теплоотвода (очень маленькое замкнутое пространство), а слышимые щелчки недопустимы. Кроме того, общая спецификация не может превышать 3,50–4,50 на переключаемую нагрузку.
задан 27 мая ’15 в 13:00
\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $Параллельное включение симисторов бесполезно.Использование двух устройств, помещенных в то же пространство, что и одно устройство (без радиатора), разрушит себя лишь немного медленнее, чем один симистор.
Симисторыимеют тепловые потери в диапазоне 1 Вт / А (среднеквадратичное значение), и если у вас всего несколько кубических дюймов, вам нужно будет найти способ получить оттуда ~ 20 Вт, сохраняя при этом температуру перехода на достаточно низком уровне. Это действительно неоспоримое требование. Возможно, вы можете вставить туда тепловую трубку и подключить ее к радиатору в другом месте. Используйте небольшой радиатор и монстр-вентилятор (и поймите, когда умирает вентилятор, умирает и симистор).Или жидкостное охлаждение. Или найдите производителя (Fujitsu производит некоторые, но не уверена, что они рассчитаны на 20 А), который делает реле с низким уровнем шума.
Создан 27 мая 2015, 16:49.
Спехро Пефани295k1212 золотых знаков246246 серебряных знаков618618 бронзовых знаков
\ $ \ endgroup \ $ \ $ \ begingroup \ $Серьезно, лучше использовать симистор большего размера, чем пытаться соединить их параллельно. IS возможно соединить их параллельно, если вы обратите особое внимание на бесполезные последовательные резисторы балансировки нагрузки, но даже в этом случае почти невозможно гарантировать, что весь стек будет включаться в одно и то же время, что заставляет одно устройство принимать только начальный импульс тока.
Создан 27 мая 2015, 16:09 как и другие.
Р ДрастР Драст4,0341313 серебряных знаков1818 бронзовых знаков
\ $ \ endgroup \ $ 2Не тот ответ, который вы ищете? Посмотрите другие вопросы с метками triac или задайте свой вопрос.
Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Асинхронный двигатель
переменного тока, управляемый ДВУМЯ ТРИАКАМИ. Они сдувают
Я схожу с ума от платы, предназначенной для привода асинхронного двигателя переменного тока, которая имеет две симметричные обмотки (для двух направлений движения), центральный отвод и требует рабочего конденсатора.
Мощность двигателя составляет около 900 Вт, он может потреблять максимум 5 ампер, но пока сейчас использовал без нагрузки, поэтому потребляет 1-2 ампера.
Идея состоит в том, чтобы управлять одним триаком одновременно обычным способом, регулируя импульсы для управления скоростью (поворотный энкодер обеспечивает обратную связь). Чтобы было ясно, контроль скорости / торможение / реверс работают хорошо, моя проблема в том, что плата ненадежна, триаки плавятся быстро даже без особых просьб, но когда они вменяемы, результаты хорошие.
Схема следующая:
Управляя тем или иным триаком, можно управлять включением направлении, а также замедлить (при пульсации TRIAC напротив направление вращения двигателя).
Схема работает по назначению, но очень хрупкая. Если система запитана от низкого напряжения (30 вольт переменного тока), все гладко; если система запитана заданным напряжением (сеть 230 В переменного тока), она проработает десятки секунд, а затем сгорают предохранители и сгорают триаки.
Если монтировать только один TRIAC, все работает (конечно, только в одну сторону): не горит. При установке второго симистора противоположный отвод двигателя уже не свободен, а подключается к цепи. Очевидно, что на противоположном отводе возникает высокое напряжение и всплески, которые необходимо устранить.
Я использовал осциллограф, чтобы проанализировать происходящее: искал перекрестное возбуждение симисторов, всплески дополнительного напряжения и т. д. Все кажется нормальным, но триаки продолжают взрывать.Они рассчитаны на 800 вольт. я затем попытался защитить их, используя два варистора на 750 В параллельно анодам. Варисторы сильно нагреваются, и это наводит на мысль, что есть высокие напряжения бегают, даже если я их не вижу в прицел.
Следующим шагом было использование TRIAC на 1,2 кВ (не имеют номер детали под рукой). Дела идут немного лучше, но когда TRIAC угол, с «малой» мощности (ближе к правому концу полуцикла) увеличивается при большей мощности (ближе к середине полуцикла) триаки снова взрываются.Предохранители удар также, но никакие другие компоненты не затронуты. Я думаю, что сначала Выходит из строя TRIAC (или два TRIAC выходят из строя), затем короткое замыкание приводит к срабатыванию предохранителя.
Когда плата выходит из строя, кажется, что оба триака плавятся, но я не очень уверен в этом — я имею ввиду, до сих пор я ни разу не видел ни одного TRIAC взорван, всегда два.
Я думаю, что мне чего-то не хватает: чтобы взорвать TRIAC на 1200 вольт, на 1200 вольт напряжение обязательно! Я понимаю, что обмотки могут вырабатывать высокое напряжение, но я этого не вижу.
Я попытался запитать эту часть платы напряжением 21 В переменного тока (среднеквадратичное значение) от трансформатора. Результирующая синусоидальная волна имеет от пика до пика 67,2 В. Двигатель работает ожидаемым образом (конечно, с очень небольшим крутящим моментом). Я никоим образом не вижу напряжения выше 88 вольт между любыми двумя точками цепи. На конденсаторе двигателя обнаруживается довольно высокое напряжение (от пика до пика): оно может составлять от 44 вольт с углами симистора «малой мощности» до 85 вольт (от пика к пику) при возбуждении симистора около середины (вверху ) полуцикла.
Расчет некоторой пропорции: если вместо 21 В переменного тока я использую 230 В переменного тока, то у меня должно быть около 800/900 вольт от пика до пика. Их было бы недостаточно, чтобы сжечь триаки на 1,2 кВ, но это случается!
Я не знаю, что делать. Кто-нибудь может мне помочь? Спасибо (большое) заранее.
TN228
Аннотация: абстрактный текст недоступен
|
Оригинал |
TN228 TN228 | |
1995-25-контактный параллельный разъем
Аннотация: таблица функций 74LS06 74LS374 ТЕХНИЧЕСКОЕ ОПИСАНИЕ Разъемы DDK centronics 74LS14 74LS06 Параллельная связь MB214 Конфигурация контактов ПЕРЕХОДНИКА FCN 74LS14
|
Оригинал |
CM41-00413-1E MB2142-03 MB2142-03 MB2141) МБ2142-03.25-контактный параллельный разъем 74LS06 таблица функций 74LS374 ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ Разъемы DDK centronics 74LS14 74LS06 параллельная связь MB214 ПЕРЕХОДНИК FCN конфигурация контактов 74LS14 | |
A15V
Аннотация: PIS01
|
OCR сканирование |
28 МГц 10 МГц The67417 PIS01 SIP01) A15V PIS01 | |
Cmos 4034
Абстракция: 4034B HCF4034B 4034
|
OCR сканирование |
4034b Cmos 4034 4034B HCF4034B 4034 | |
CTX5-4
Реферат: sm 0038 ctx12 Coiltronics VP1-0076 VP4-0140 Coiltronics up4-680 CTX2-4p 1052l CTX10-4 UP4-100
|
Оригинал |
TP1-R47 TP2-R47 TP3-R47 TP4-R47 47-1П 47-2П UP1B-R47 47-3П 47-4П UP2-R47 CTX5-4 см 0038 ctx12 Coiltronics VP1-0076 ВП4-0140 Coiltronics up4-680 CTX2-4p 1052л CTX10-4 UP4-100 | |
2014 — adg1606
Аннотация: Analog Devices ADG52xx ADG723
|
Оригинал |
ADG54xxF ADG46xx adg1606 Аналоговые устройства ADG52xx ADG723 | |
HCC4034B
Аннотация: HCC4034BF HCF4034B HCF4034BEY HCF4034BM1 P043A
|
Оригинал |
HCC / HCF4034B 100 нА HCC4034B HCC4034BF HCF4034B HCF4034BEY HCF4034BM1 P043A | |
керамические конденсаторы 1000p
Аннотация: uPC842C транзистор Ph400S48 Ph400S48 Ph400S48-5 ph400s r23
|
OCR сканирование |
Ph400S 600S-СЕРИЯ C113-04-14 Ph400S, керамические конденсаторы 1000p uPC842C Ph400S48 Ph400S48 Ph400S48-5 r23 транзистор | |
2002 — ХКФ4034БМ1
Аннотация: HCF4034B HCF4034M013TR
|
Оригинал |
HCF4034B 100 нА JESD13B HCF4034B HCF4034BM1 HCF4034M013TR | |
1996 — GPIB-1284CT
Аннотация: блок-схема ноутбука адаптер переменного тока параллельный порт 8-битный двунаправленный NAT4882 TNT4882C IBM параллельный порт интерфейс компьютерный интерфейс с параллельным портом для управления
|
Оригинал |
GPIB-1284CT GPIB-1284CT TNT4882C ГПИБ-128нконденсаторный блок-схема ноутбук адаптер переменного тока параллельный порт 8 бит, двунаправленный NAT4882 TNT4882C интерфейс параллельного порта ibm компьютерный интерфейс с параллельным портом для управления | |
67417J
Аннотация: 128X9 PIS01 последовательный вход параллельный выход
|
OCR сканирование |
64×8 / 9 28 МГц 10 МГц PIS01) SIP01 67417J 128X9 PIS01 последовательный вход параллельный выход | |
1997 — блок-схема сетевого адаптера ноутбука
Аннотация: компьютерный интерфейс с параллельным портом для управления GPIB1284CT NAT4882 TNT4882C NI4882
|
Оригинал |
GPIB-1284CT TNT4882C 25-контактный NI-488 24-контактный блок-схема ноутбук адаптер переменного тока компьютерный интерфейс с параллельным портом для управления GPIB1284CT NAT4882 NI4882 | |
4000B
Абстракция: 4034B
|
OCR сканирование |
4Q34B 10 В постоянного тока 4000B 4034B | |
2001-Fujitsu Цельсий
Аннотация: MB2141A MB2142-03
|
Оригинал |
CM41-00413-2E MB2142-03 MB2142-03 MB2141A) МБ2142-03.Fujitsu по Цельсию MB2141A | |
SPDT SPI
Аннотация: ADG723 ADG722 ADG721 ADG712 ADG711 ADG702 ADG701 общий переключатель SPST ADG752
|
Оригинал |
ADG701 ADG741 SC-70 ADG702 ADG742 ADG751A ADG706 ADG707 СК-70, SPDT SPI ADG723 ADG722 ADG721 ADG712 ADG711 ADG702 ADG701 общий переключатель spst ADG752 | |
2008 — AD5327
Аннотация: AD7849 AD5372 ad5627 AD5628 ad7112 DAC8413 AD7808 ad7537 AD7248
|
Оригинал |
AD5371 AD569 AD5379 AD669 AD7542 AD5445 AD7545A AD7846 AD660 AD5570 AD5327 AD7849 AD5372 ad5627 AD5628 ad7112 DAC8413 AD7808 ad7537 AD7248 | |
SL4034B
Аннотация: SL4034BD
|
Оригинал |
SL4034B SL4034B SL4034BD | |
1991 — НИ-488
Аннотация: абстрактный текст недоступен
|
Оригинал |
NI-488 NI-488® | |
TC4034BP
Аннотация: абстрактный текст недоступен
|
OCR сканирование |
TC4034BP TC4034BP -4VP51 | |
4034BDC
Аннотация: преобразование параллельно в последовательный 4000B 4034B
|
OCR сканирование |
4034B 4034B 4034BDC параллельное последовательное преобразование 4000B | |
1994 — П043А
Аннотация: HCC4034B HCC4034BF HCF4034B HCF4034BEY HCF4034BM1
|
Оригинал |
HCC / HCF4034B 100 нА P043A HCC4034B HCC4034BF HCF4034B HCF4034BEY HCF4034BM1 | |
2002 — HCF4034B
Аннотация: HCF4034BM1 HCF4034M013TR
|
Оригинал |
HCF4034B 100 нА JESD13B HCF4034B HCF4034BM1 HCF4034M013TR | |
2000 — макс. 1432
Аннотация: MAX1433 max1423 MAX1200 MAX1201 MAX5184 MAX1426 MAX1444 MAX1446 MAX1448
|
Оригинал |
74 дБн 60 Мбит / с 40 Мбит / с / 60 Мбит / с / 80 Мбит / с 80 Мбит / с MAX1448 60 Мбит / с MAX1446 40 Мбит / с MAX1444 40 МГц макс1432 MAX1433 макс1423 MAX1200 MAX1201 MAX5184 MAX1426 MAX1444 MAX1446 MAX1448 | |
Нет в наличии
Аннотация: абстрактный текст недоступен
|
OCR сканирование |
4034B 10 В постоянного тока | |
SPDT SPI
Аннотация: s7b sot-23 generic spst switch ADG774A ADG741 ADG736 ADG734 ADG702 ADG723 S9B DIGITAL
|
Оригинал |
07.02.01 ADG78x ADG736.ADG738 ADG739 ADG706 ADG707 СК-70, ОТ-23 SPDT SPI s7b сот-23 общий переключатель spst ADG774A ADG741 ADG736 ADG734 ADG702 ADG723 S9B ЦИФРОВОЙ |
% PDF-1.3 % 64 0 объект > эндобдж xref 64 68 0000000016 00000 н. 0000001725 00000 н. 0000001867 00000 н. 0000002006 00000 н. 0000002523 00000 н. 0000002754 00000 н. 0000002834 00000 н. 0000002958 00000 н. 0000003064 00000 н. 0000003170 00000 н. 0000003224 00000 н. 0000003331 00000 н. 0000003385 00000 н. 0000003536 00000 н. 0000003590 00000 н. 0000003687 00000 н. 0000003741 00000 н. 0000003829 00000 н. 0000003912 00000 н. 0000003966 00000 н. 0000004071 00000 н. 0000004125 00000 н. 0000004179 00000 н. 0000004283 00000 п. 0000004337 00000 н. 0000004471 00000 н. 0000004525 00000 н. 0000004578 00000 н. 0000004660 00000 н. 0000004762 00000 н. 0000004815 00000 н. 0000004868 00000 н. 0000004922 00000 н. 0000005004 00000 н. 0000005101 00000 п. 0000005154 00000 н. 0000005208 00000 н. 0000005409 00000 п. 0000005615 00000 н. 0000006302 00000 н. 0000006412 00000 н. 0000006628 00000 н. 0000006724 00000 н. 0000006940 00000 п. 0000007635 00000 н. 0000007657 00000 н. 0000008402 00000 п. 0000008424 00000 н. 0000008537 00000 н. 0000008843 00000 н. 0000008930 00000 н. 0000009632 00000 н. 0000009654 00000 п. 0000009767 00000 н. 0000010474 00000 п. 0000010496 00000 п. 0000011208 00000 п. 0000011230 00000 н. 0000011411 00000 п. 0000012124 00000 п. 0000012146 00000 п. 0000012819 00000 п. 0000012841 00000 п. 0000013413 00000 п. 0000013435 00000 п. 0000013514 00000 п. 0000002068 00000 н. 0000002501 00000 н. трейлер ] >> startxref 0 %% EOF 65 0 объект > эндобдж 66 0 объект B- | [Bd) / U (& E 䱃 -rZY} [] «9« / V) / П-12 >> эндобдж 67 0 объект > эндобдж 130 0 объект > поток ǬN} ~ {:}, R گ Ҋp` ۇ GɐRc) 95RfC ~ o.»QFic» «> Dq :: r Y ٮ og% _j¶xr {gH [@ GB $ 7? R * +. (Pq ژ * kC
Basic Triac-SCR Projects Circuits Tutorial
by Lewis Loflin
На этой странице обсуждаются базовые симисторы и тиристоры. Симистор — это двунаправленный трехконтактный двойной тиристорный переключатель (SCR). Это устройство может переключать ток в любом направлении, подавая небольшой ток любой полярности между затвором и вторым главным контактом.
Симистор изготовлен путем объединения двух тиристоров в обратном параллельном соединении.Он используется в приложениях переменного тока, таких как регулирование яркости света, управление скоростью двигателя и т. Д. Симисторы также могут использоваться для управления мощностью микроконтроллера с помощью схемы фазовой синхронизации.
Если кто-то не знаком с диодами и выпрямлением переменного тока, см. Следующее:
Включение / выключение диода
На рисунке выше изображен кремниевый управляемый выпрямитель (SCR) или тиристер. Это диод с «затвором». SCR не только проводит в одном направлении, как любой другой диод, но и затвор позволяет отключать и отключать саму проводимость.Когда переключатель ON нажат, SCR включается, и ток течет с отрицательного на положительный через SCR и нагрузку. После включения SCR будет оставаться включенным до тех пор, пока не будет нажат выключатель, нарушающий текущий путь.
Обратите внимание, что переключатель ON называется «нормально разомкнутым» (Н.О.) и при нажатии замыкает (замыкает) соединение. Выключатель OFF, называемый нормально замкнутым (N.C.), разрывает (размыкает) соединение при нажатии. Оба они кнопочные.
В цепи над нагрузкой есть лампа постоянного тока.Нажмите переключатель S1, и включатся и будут продолжать оставаться включенными, пока не будет нажат переключатель S2.
В этом примере мы разместили диод последовательно с переключателем включения / выключения затвора. Когда вы нажимаете переключатель ON, двигатель запускается, загорается свет и т. Д. Когда переключатель отпускается, питание прекращается без использования переключателя OFF. Это связано с тем, что входное напряжение переменного тока возвращается к нулю вольт на 180 и 360 градусов, отключая SCR. И как диод, SCR проводит только половину цикла.
В этом примере схемы мы разместили переменный резистор (потенциометр) последовательно с диодом затвора. (Это также было известно как ручка регулировки громкости старого типа.) «Поворачивая ручку», мы можем изменить точку срабатывания при включении SCR только части полупериода или, если сопротивление достаточно, выключить SCR.
Это иллюстрирует процесс с двухполупериодным нефильтрованным постоянным током
В другом примечании мы можем управлять двухполупериодным пульсирующим нефильтрованным постоянным током с помощью тиристора.См. Также «Основы выпрямления и фильтрации переменного тока»
.Подробнее см. Что такое светоактивированный кремниевый управляемый выпрямитель? (LASCR) и спецификация оптопары h21C6 SCR. (PDF файл)
Выше представлена практическая схема тестирования SCR. Лампа загорится только при нажатии Sw3. Лампа будет иметь половинную яркость, потому что тиристор действует как полуволновой выпрямитель. R4 может находиться в диапазоне от 100 до 470 Ом. Лампа должна быть полностью выключена, если выключатель не нажат или устройство не неисправно.(Полностью или частично закорочено.)
Эта схема также хороша для сравнения различных тиристоров одного и того же номера детали. Например, однажды у меня была неисправная печатная плата с шестью тиристорами, но один тиристор из шести при работе включался при совершенно другом напряжении срабатывания триггера, чем остальные пять. Лампа имела другой уровень яркости, чем остальные пять. Замена этого одного SCR устранила эту очень дорогую печатную плату.
Введение в симисторы
Симистор — это твердотельный переключатель переменного тока.Небольшой ток на клемме затвора может переключать очень большие токи переменного тока. Думайте о симисторе как о двух последовательно соединенных тиристорах, в которых катод одного тиристора соединен с анодом другого и наоборот. Ворота соединены между собой. Поскольку у нас есть две конфигурации типа SCR, можно переключать оба полупериода.
Примечание: я видел бумажные примеры использования двух тиристоров, расположенных один за другим, в качестве симистора, но это может не работать так же! Остерегайтесь этого.
В приведенном выше примере замыкание переключателя приведет к включению симистора.Идея состоит в том, чтобы использовать небольшой переключатель малой мощности для управления устройствами большой мощности, такими как двигатели или нагреватели. Опасность здесь заключается в том, что на самом переключателе присутствует высокое напряжение переменного тока. Это также может быть большой проблемой для твердотельных контроллеров, если они не используют небольшое реле, которое некоторые микроволновые печи делают именно так.
Выше представлена практическая схема тестирования TRIAC. Нажмите любой переключатель, и лампа включится с половинной яркостью. Сожмите оба вместе на полную яркость. Это позволяет тестировать обе стороны SCR по отдельности.Яркость должна быть одинаковой для обеих сторон, иначе TRIAC неисправен. Когда ни один переключатель не нажат, лампа должна быть полностью выключена. R1 и R2 должны быть в диапазоне от 100 до 470 Ом.
Схема симистора с наилучшим откликом и диак.
Ключ к успешному срабатыванию симистора состоит в том, чтобы убедиться, что затвор получает свое пусковое напряжение со стороны главной клеммы 2 схемы (основной клеммы на противоположной стороне символа TRIAC от клеммы затвора). Идентификация клемм Mt1 и Mt2 должна выполняться по номеру детали TRIAC со ссылкой на технический паспорт или книгу.
DIAC, или «диод переменного тока», представляет собой триггерный диод, который проводит ток только после того, как его напряжение пробоя было на мгновение превышено. Когда это происходит, сопротивление DIAC резко уменьшается, что приводит к резкому уменьшению падения напряжения на самом DIAC, что приводит к резкому увеличению тока, протекающего через затвор симистора.
Это обеспечивает быструю и чистую резку TRIAC. DIAC остается в режиме проводимости до тех пор, пока напряжение не упадет до очень низкого значения, намного ниже напряжения срабатывания.Это называется удерживающим током. Ниже этого значения диак снова переключается в состояние высокого сопротивления (выключено). Это двунаправленное поведение, то есть обычно одинаковое как для положительного, так и для отрицательного полупериодов.
Большинство DIAC имеют напряжение пробоя около 30 В. Таким образом, их поведение несколько похоже на (но гораздо более точно контролируется и происходит при более низких напряжениях, чем) неоновая лампа.
ЦИАПне имеют электрода затвора, в отличие от некоторых других тиристоров. Некоторые TRIAC содержат встроенный DIAC последовательно (я никогда не видел такого в полевых условиях) с терминалом «затвора» TRIAC для этой цели.ДИАП также называют симметричными триггерными диодами из-за симметрии их характеристической кривой. Поскольку DIAC являются двунаправленными устройствами, их выводы помечены не как анод и катод, а как A1 и A2 или Mt1 («Главный вывод») и Mt2. Большинство листов спецификаций не заботятся о маркировке A1 / A2 или Mt1 / Mt2.
Также см. Как проверить DIAC
Диммер для коммерческих ламп в странах с напряжением 220 В. Br100 — диак.
Диак обеспечивает более чистое переключение симистора.Диоды — это специализированные диоды Шокли, соединенные спина к спине.
Демпферы
Демпферная цепь (обычно RC-типа) часто используется между MT1 и MT2. Демпфирующие цепи используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети переменного тока или индуктивными нагрузками, такими как двигатели. Кроме того, резистор затвора или конденсатор (или оба параллельно) могут быть подключены между затвором и MT1 для дальнейшего предотвращения ложного срабатывания. Это может увеличить требуемый ток запуска и, возможно, задержку выключения при разрядке конденсатора.
В этой схеме выше «горячая» сторона линии переключается, а нагрузка подключается к холодной или заземленной стороне. Резистор на 100 Ом и конденсатор 0,1 мкФ предназначены для демпфирования симистора. Эти компоненты должны использоваться с индуктивными нагрузками, такими как двигатели, контакторы и т. Д.
Для получения дополнительной информации о вышеуказанном оптроне см. Оптоизолятор серии moc30xx (файл в формате pdf)
Что такое симистор — переключатель симистора »Электроника
Симисторы — это полупроводниковые устройства, которые широко используются для коммутации переменного тока средней мощности — их преимущество в том, что они могут переключать обе половины переменного цикла.
Triac, Diac, SCR Учебное пособие Включает:
Основы тиристоров
Конструкция тиристорного устройства
Работа тиристора
Затвор отключающий тиристор, ГТО
Характеристики тиристора
Что такое симистор
Технические характеристики симистора
Обзор Diac
Симисторы — это электронные компоненты, которые широко используются в системах управления питанием переменного тока. Они могут переключать высокие напряжения и высокие уровни тока и по обеим частям сигнала переменного тока.Это делает схемы симистора идеальными для использования в различных приложениях, где требуется переключение мощности.
Одно из конкретных применений симисторных цепей — диммеры для домашнего освещения, а также они используются во многих других ситуациях управления мощностью, включая управление двигателем и электронные переключатели.
Благодаря своим характеристикам симисторы, как правило, используются для электронных коммутационных устройств малой и средней мощности, оставляя тиристоры для коммутации мощности переменного тока в очень тепловых режимах.
Среднетоковый симисторОсновы симистора
Симистор является развитием тиристора. В то время как тиристор может управлять током только в течение одной половины цикла, симистор управляет им в течение двух половин сигнала переменного тока.
Таким образом, симистор можно рассматривать как пару параллельных, но противоположных тиристоров с двумя затворами, соединенными вместе, и анодом одного устройства, соединенным с катодом другого, и т. Д.
Форма сигнала переключения симистораТот факт, что действие переключения симистора происходит на обеих половинах сигнала переменного тока, означает, что для приложений электронного переключения переменного тока может использоваться полный цикл.Для базовых тиристорных цепей используется только половина формы волны, а это означает, что в базовых цепях, использующих тиристоры, не будут использоваться обе половины цикла. Для использования обеих половин требуются два устройства. Однако симистору требуется только одно устройство для управления обеими половинами формы волны переменного тока, и во многих отношениях это идеальное решение для электронного переключателя переменного тока.
Символ симистора
Как и другие электронные компоненты, симистор имеет собственное обозначение цепи для использования на принципиальных схемах, которое указывает на его двунаправленные свойства.Символ симистора можно рассматривать как пару символов тиристоров в противоположных смыслах, объединенных вместе.
Обозначение схемы симистораКак и тиристор, симистор имеет три вывода. Однако их названия немного сложнее присвоить, потому что основные токопроводящие клеммы подключены к тому, что фактически является катодом одного тиристора и анодом другого в пределах всего устройства.
Есть вентиль, который действует как спусковой крючок для включения устройства. В дополнение к этому, другие клеммы оба называются анодами или главными клеммами. Обычно они обозначаются как анод 1 и анод 2 или главный вывод 1 и главный вывод 2 (MT1 и MT2).При использовании симисторов MT1 и MT2 имеют очень похожие свойства.
Как работает симистор?
Прежде чем смотреть, как работает симистор, полезно понять, как работает тиристор. Таким образом, можно понять основные концепции более простого полупроводникового прибора, а затем применить их к более сложному симистору.
Что касается работы симистора, то из условного обозначения схемы можно представить, что симистор состоит из двух тиристоров, включенных параллельно, но по-разному.Таким образом можно рассматривать работу симистора, хотя реальная работа на полупроводниковом уровне гораздо сложнее.
Эквивалентная схема симистораСтруктура симистора показана ниже, и можно увидеть, что есть несколько областей материала N-типа и P-типа, которые образуют фактически пару встречных тиристоров.
Базовая структура симистораСимистор может работать разными способами — больше, чем тиристор. Он может проводить ток независимо от полярности напряжения на клеммах MT1 и MT2.Он также может запускаться как положительными, так и отрицательными токами затвора, независимо от полярности тока MT2. Это означает, что существует четыре режима или квадранта запуска:
- Режим I + Ток MT2 равен + ve, ток затвора + ve
- I- Mode Ток MT2 равен + ve, ток затвора равен -ve
- III + Mode: Ток MT2 -ve, ток затвора + ve
- III- Режим: Ток MT2 -ve, ток затвора -ve
Обнаружено, что чувствительность триггера по току триака максимальна, когда токи MT2 и затвора имеют одинаковую полярность, т.е.е. оба положительные или оба отрицательные. Если токи затвора и MT2 имеют противоположную полярность, тогда чувствительность обычно составляет примерно половину значения, когда они одинаковы.
Типичную ВАХ симистора можно увидеть на диаграмме ниже с обозначенными четырьмя различными квадрантами.
IV характеристика симистораПрименение симистора
Симисторы используются во многих приложениях. Эти электронные компоненты часто используются при коммутации переменного тока малой и средней мощности.Там, где требуется переключение больших уровней мощности, обычно используются два тиристора / тиристора, поскольку ими легче управлять.
Тем не менее, симисторы широко используются во многих приложениях:
- Управление освещением — особенно бытовые диммеры.
- Управление вентиляторами и небольшими двигателями.
- Электронные переключатели для общего переключения и управления переменным током
Естественно, существует много других применений симисторов, но это одни из самых распространенных.
В одном конкретном приложении симисторы могут быть включены в модули, называемые твердотельными реле. Здесь оптическая версия этого полупроводникового устройства активируется светодиодным источником света, включающим твердотельное реле в соответствии с входным сигналом.
Обычно в твердотельных реле светодиодный источник света или инфракрасного излучения и оптический симистор содержатся в одном корпусе, при этом обеспечивается достаточная изоляция, чтобы выдерживать высокие напряжения, которые могут достигать сотен вольт или, возможно, даже больше.
Твердотельные реле бывают разных форм, но те, которые используются для переключения переменного тока, могут использовать симистор.
Использование симисторов
При использовании симисторов следует обратить внимание на ряд моментов. Хотя эти полупроводниковые устройства работают очень хорошо, чтобы получить от них максимальную производительность, необходимо понять несколько советов по использованию симисторов.
Было обнаружено, что из-за их внутренней конструкции и небольших различий между двумя половинами эти электронные компоненты не срабатывают симметрично.Это приводит к генерации гармоник: чем менее симметрично срабатывает симистор, тем выше уровень создаваемых гармоник. Обычно нежелательно иметь высокие уровни гармоник в энергосистеме, и в результате симисторы не подходят для систем большой мощности. Вместо этого для этих систем можно использовать два тиристора, так как их срабатывание легче контролировать.
Чтобы помочь в преодолении проблемы несимметричного срабатывания симистора и возникающих в результате гармоник, другое полупроводниковое устройство, известное как диак (диодный переключатель переменного тока), часто подключается последовательно с затвором симистора.Включение этого полупроводникового устройства помогает сделать переключение более равномерным для обеих половин цикла и тем самым создать более эффективный электронный переключатель.
Это происходит из-за того, что характеристика переключения диакритического сигнала намного лучше, чем у симистора. Поскольку диак предотвращает протекание тока затвора до тех пор, пока напряжение триггера не достигнет определенного значения в любом направлении, это делает точку срабатывания симистора более равномерной в обоих направлениях.
Внутренняя схема симисторного регулятора освещенностиПримеры схем симистора
Есть много способов использования симисторов.Два приведенных ниже примера дают представление о том, что можно сделать с этими полупроводниковыми устройствами.
- Простая схема электронного переключателя симистора: Симистор может функционировать как электронный переключатель — он может активировать пусковой импульс переключателя малой мощности для включения симистора для управления гораздо более высокими уровнями мощности, которые могут быть возможны с простой переключатель. Схема простого симисторного переключателя
- Схема регулируемой мощности симистора или диммера: Одна из самых популярных схем симистора изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузке.
Базовая схема симистора, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке
Можно использовать гораздо больше схем симистора. Устройство очень универсально и может использоваться в различных схемах, обычно для обеспечения различных форм переключения переменного тока.
Примечание по схемам и конструкции симистора:
Цепи симисторамогут переключать обе половины на переменную форму волны с помощью одного устройства, что делает их очень привлекательными для использования во многих коммутационных схемах переменного тока малой и средней мощности.
Подробнее о Симисторные схемы и конструкция
Характеристики симистора
Симисторыимеют много характеристик, которые очень похожи на характеристики тиристоров, хотя, очевидно, они предназначены для работы симистора на обеих половинах цикла и должны интерпретироваться как таковые.
Однако, поскольку их работа очень похожа, они также являются базовыми типами спецификаций. Такие параметры, как ток срабатывания затвора, повторяющееся пиковое напряжение в закрытом состоянии и т.п., необходимы при проектировании схемы симистора, обеспечивая достаточный запас для надежной работы схемы.
Симисторы— идеальные устройства для использования во многих приложениях переменного тока малой мощности. Симисторные схемы для использования в качестве диммеров и небольших электронных переключателей широко распространены, и их легко и просто реализовать. При использовании симисторов диаки часто включаются в схему, как упоминалось выше, чтобы помочь снизить уровень генерируемых гармоник.
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
Что такое TRIAC: схема переключения и приложения
Силовые электронные переключатели, такие как BJT, SCR, IGBT, MOSFET и TRIAC, являются очень важными компонентами, когда дело доходит до схем переключения, таких как преобразователи постоянного тока в постоянный , Контроллеры скорости двигателя , Драйверы двигателей и Регуляторы частоты и т. Д. Каждое устройство имеет свои уникальные свойства и, следовательно, они имеют свои собственные специфические области применения. В этом уроке мы узнаем о TRIAC , который является двунаправленным устройством, что означает, что он может работать в обоих направлениях.Благодаря этому свойству TRIAC используется исключительно там, где задействован источник синусоидального переменного тока.
Введение в TRIAC
Термин TRIAC означает TRI ode для A lternating C urrent. Это трехконтактное переключающее устройство, подобное тиристору (SCR), но оно может работать в обоих направлениях, поскольку оно создается путем объединения двух тиристоров в антипараллельном состоянии. Символ и вывод TRIAC показаны ниже.
Поскольку TRIAC является двунаправленным устройством, ток может течь либо от MT1 к MT2, либо от MT2 к MT1, когда терминал затвора срабатывает. Для TRIAC это напряжение запуска, которое должно быть приложено к клемме затвора, может быть положительным или отрицательным по отношению к клемме MT2. Таким образом, это переводит TRIAC в четыре режима работы , как указано ниже
- Положительное напряжение на MT2 и положительный импульс на затворе (Квадрант 1)
- Положительное напряжение на MT2 и отрицательный импульс на затворе (квадрант 2)
- Отрицательное напряжение на MT2 и положительный импульс на затворе (квадрант 3)
- Отрицательное напряжение на MT2 и отрицательный импульс на затворе (квадрант 4)
Характеристики V-I TRIAC
На рисунке ниже показано состояние TRIAC в каждом квадранте.
Характеристики включения и выключения TRIAC можно понять, посмотрев на график характеристик VI для TRIAC, который также показан на рисунке выше. Поскольку TRIAC — это просто комбинация двух SCR в антипараллельном направлении, график характеристик V-I похож на график SCR. Как вы можете видеть, TRIAC в основном работает в 1 квадранте и 3 квадранте .
Характеристики включения
Для включения симистора необходимо подать положительное или отрицательное напряжение затвора / импульс на вывод затвора симистора.Когда срабатывает один из двух SCR внутри, TRIAC начинает проводить в зависимости от полярности выводов MT1 и MT2. Если MT2 положительный, а MT1 отрицательный, первый SCR проводит, а если вывод MT2 отрицательный, а MT1 положительный, то второй SCR проводит. Таким образом, любой из SCR всегда остается включенным, что делает TRIAC идеальным для приложений переменного тока.
Минимальное напряжение, которое должно быть приложено к выводу затвора для включения симистора, называется пороговым напряжением затвора (V GT ) , а результирующий ток через вывод затвора называется пороговым током затвора (I GT ). Как только это напряжение подается на вывод затвора, TRIAC смещается в прямом направлении и начинает проводить, время, необходимое для перехода TRIAC из выключенного состояния в состояние включения, называется временем включения (t на ).
Так же, как и SCR, TRIAC после включения останется включенным, если он не будет переключен. Но для этого условия ток нагрузки через TRIAC должен быть больше или равен току фиксации (I L ) TRIAC. Таким образом, можно заключить, что TRIAC будет оставаться включенным даже после удаления стробирующего импульса, пока ток нагрузки больше, чем значение тока фиксации.
Подобно току фиксации, существует еще одно важное значение тока, называемое током удержания. Минимальное значение тока для удержания TRIAC в режиме прямой проводимости называется удерживающим током (I H ). TRIAC войдет в режим непрерывной проводимости только после прохождения через ток удержания и ток фиксации, как показано на графике выше. Также значение тока фиксации любого TRIAC всегда будет больше, чем значение тока удержания.
Отключающие характеристики
Процесс выключения TRIAC или любого другого устройства питания называется коммутацией , а схема, связанная с ним для выполнения задачи, называется коммутационной схемой. Наиболее распространенный метод, используемый для отключения TRIAC, — это уменьшение тока нагрузки через TRIAC до тех пор, пока он не станет ниже значения тока удержания (I H ). Этот тип коммутации называется принудительной коммутацией в цепях постоянного тока.Мы узнаем больше о том, как TRIAC включается и выключается через его прикладные схемы.
Приложения TRIAC
TRIAC очень часто используется в местах, где необходимо контролировать мощность переменного тока, например, он используется в регуляторах скорости потолочных вентиляторов, схемах диммера ламп переменного тока и т. Д. Давайте рассмотрим простую схему переключения TRIAC, чтобы понять, как она работает на практике. .
Здесь мы использовали TRIAC для включения и выключения нагрузки переменного тока с помощью кнопки .Затем сетевой источник питания подключается к маленькой лампочке через TRIAC, как показано выше. Когда переключатель замкнут, фазное напряжение подается на вывод затвора TRIAC через резистор R1. Если это напряжение затвора выше порогового напряжения затвора, то через вывод затвора протекает ток, который будет больше, чем пороговый ток затвора.
В этом состоянии TRIAC входит в прямое смещение, и ток нагрузки будет проходить через лампу. Если нагрузка потребляет достаточно тока, TRIAC переходит в состояние фиксации.Но поскольку это источник питания переменного тока, напряжение будет достигать нуля в течение каждого полупериода, и, следовательно, ток также мгновенно достигнет нуля. Следовательно, фиксация в этой схеме невозможна, и TRIAC выключится, как только выключатель откроется, и здесь не требуется никакой схемы коммутации. Этот тип коммутации TRIAC называется естественной коммутацией . Теперь давайте соберем эту схему на макетной плате с использованием BT136 TRIAC и проверим, как она работает.
При работе с источниками питания переменного тока необходимо соблюдать особую осторожность. В целях безопасности снижается рабочее напряжение. Стандартное напряжение переменного тока 230 В 50 Гц (в Индии) понижается до 12 В 50 Гц с помощью трансформатора.Маленькая лампочка подключена как нагрузка. После завершения экспериментальная установка выглядит так, как показано ниже.
Когда кнопка нажата, контакт затвора получает напряжение затвора и, таким образом, TRIAC включается. Лампа будет светиться, пока кнопка удерживается нажатой. Как только кнопка будет отпущена, TRIAC перейдет в фиксированное состояние, но поскольку входное напряжение переменного тока, ток, хотя TRIAC будет ниже удерживающего тока, и, таким образом, TRIAC выключится, полную работу также можно найти в видео, данное в конце этого руководства.
Управление TRIAC с помощью микроконтроллеров
Когда TRIAC используются в качестве регуляторов освещенности или для управления фазой, импульс затвора, который подается на вывод затвора, должен управляться с помощью микроконтроллера. В этом случае штифт затвора также будет изолирован с помощью оптрона. Принципиальная схема для этого же показана ниже.
Для управления TRIAC с помощью сигнала 5V / 3.3V мы будем использовать оптрон , такой как MOC3021 , внутри которого есть TRIAC.Этот TRIAC может быть активирован 5 В / 3,3 В через светоизлучающий диод. Обычно сигнал ШИМ подается на вывод 1 st MOC3021, а частота и рабочий цикл сигнала ШИМ будут изменяться для получения желаемого выходного сигнала. Этот тип цепи обычно используется для регулировки яркости лампы или управления скоростью двигателя.
Эффект скорости — демпфирующие цепи
Все TRIAC страдают от проблемы, называемой эффектом скорости. То есть, когда клемма MT1 подвергается резкому увеличению напряжения из-за шума переключения, переходных процессов или скачков, TRIAC прерывает его в качестве сигнала переключения и автоматически включается.Это связано с наличием внутренней емкости между клеммами MT1 и MT2.
Самый простой способ решить эту проблему — использовать демпферную цепь. В приведенной выше схеме резистор R2 (50R) и конденсатор C1 (10 нФ) вместе образуют RC-цепь, которая действует как демпфирующая цепь. Любые пиковые напряжения, подаваемые на MT1, будут наблюдаться этой RC-цепью.
Эффект люфта
Другой распространенной проблемой, с которой столкнутся дизайнеры при использовании TRIAC, является эффект люфта.Эта проблема возникает, когда потенциометр используется для управления напряжением затвора TRIAC. Когда POT установлен на минимальное значение, на вывод затвора не будет подаваться напряжение, и, таким образом, нагрузка будет отключена. Но когда POT установлен на максимальное значение, TRIAC не будет включаться из-за эффекта емкости между выводами MT1 и MT2, этот конденсатор должен найти путь для разряда, иначе он не позволит TRIAC включиться. Этот эффект называется эффектом люфта. Эту проблему можно решить, просто включив резистор последовательно со схемой переключения, чтобы обеспечить путь для разряда конденсатора.
Радиочастотные помехи (RFI) и TRIAC Цепи переключения
TRIAC более подвержены радиочастотным помехам (EFI), потому что при включении нагрузки ток внезапно повышается от 0А до максимального значения, создавая, таким образом, всплеск электрических импульсов, который вызывает радиочастотный интерфейс. Чем больше ток нагрузки, тем хуже будут помехи. Использование схем подавления, таких как LC-подавитель, решит эту проблему.
TRIAC — Ограничения
Когда требуется переключать формы волны переменного тока в обоих направлениях, очевидно, что TRIAC будет первым выбором, поскольку это единственный двунаправленный силовой электронный переключатель.Он действует так же, как два SCR, подключенных вплотную друг к другу, и также имеют одни и те же свойства. Хотя при проектировании схем с использованием TRIAC необходимо учитывать следующие ограничения.
- TRIAC имеет внутри две структуры SCR, одна проводит в течение положительной половины, а другая — во время отрицательной. Но они не срабатывают симметрично, вызывая разницу в положительном и отрицательном полупериоде выхода .
- Кроме того, поскольку переключение не является симметричным, оно приводит к высокоуровневым гармоникам, которые вызывают шум в цепи.
- Эта проблема гармоник также приведет к электромагнитным помехам (EMI)
- При использовании индуктивных нагрузок существует огромный риск протекания пускового тока к источнику, поэтому необходимо убедиться, что TRIAC полностью отключен, а индуктивная нагрузка безопасно разряжается по альтернативному пути.
.