Плавный пуск для асинхронного двигателя своими руками: Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя

Содержание

Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя

Александр Ситников (Кировская обл.)


Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.


Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети. При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора. Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах. Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается. На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном < Iдоп/4 = 17,5 А. Просматривая стандартный ряд мощностей электродвигателей, находим, что к УПП допустимо подключать двигатель мощностью 7,5 кВт с номинальным током фазы Iн= 15 А. В случае, если пусковой ток превысит Iдоп (по причине подключения двигателя большей мощности или слишком малого времени пуска), процесс пуска будет остановлен, поскольку сработает автоматический выключатель QF1 со специально подобранной характеристикой.

Параллельно тиристорам подключены демпфирующие RC-цепочки R48, C20, C21, R50, C22, C23, R52, C24, C25, предотвращающие ложное включение тиристоров, а также варисторы R49, R51 и R53, поглощающие импульсы перенапряжения свыше 700 В. Обходные реле К1, К2, К3 типа TR91-12VDC-SC-C с номинальным током 40 А шунтируют силовые тиристоры после завершения пуска.

Питание системы управления осуществляется от трансформаторного блока питания, запитанного от межфазного напряжения Uав.

В блок питания входят понижающие трансформаторы TV1, TV2, диодный мост VD1, токоограничивающий резистор R1, сглаживающие конденсаторы С1, С3, С5, помехоподавляющие конденсаторы С2, С4, С6 и линейные стабилизаторы DA1 и DA2, обеспечивающие напряжение 12 и 5 В соответственно.

Система управления построена с применением микроконтроллера DD1 типа PIC16F873. Микроконтроллер выдаёт импульсы управления тиристорами VS1 – VS6 путём «зажигания» оптосимисторов ОРТ5-ОРТ10 (MOC3052). Для ограничения тока в цепях управления тиристоров VS1 – VS6 служат резисторы R36 – R47. Импульсы управления подаются одновременно на два тиристора с задержкой относительно начала полуволны межфазного напряжения. Цепи синхронизации с сетевым напряжением состоят из трёх однотипных узлов, состоящих из зарядных резисторов R13, R14, R18, R19, R23, R24, диодов VD3 – VD8, транзисторов VT1 – VT3, накопительных конденсаторов С17 – С19 и оптопар OPT2 – OPT4. C выхода 4 оптопар OPT2, OPT3, OPT4 на входы микроконтроллера RC2, RC1, RC0 поступают импульсы длительностью примерно 100 мкс, соответствующие началу отрицательной полуволны фазных напряжений Uab, Ubc, Uca.

Диаграммы работы узла синхронизации приведены на рисунке 5. Если принять верхний график за сетевое напряжение Uав, то среднийграфик будет соответствовать напряжению на конденсаторе С17, а нижний – току через фотодиод оптопары ОРТ2. Микроконтроллер регистрирует поступающие на его входы синхроимпульсы, определяет наличие, порядок чередования, отсутствие «слипания» фаз, а также производит расчёт времени задержки импульсов управления тиристорами. Входы цепей синхронизации защищены от перенапряжения варисторами R17, R22 и R27.

С помощью потенциометров R2, R3, R4 задаются параметры, соответствующие диаграмме работы УПП, приведённой на рисунке 2; соответственно R2 – Tпуск, R3 – Тторм, R4 – Uначи Uотс. Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП. Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов.

Конденсаторы С8 – С10 – помехоподавляющие.

Команда «ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог. 1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“. Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

  • HL1 (зелёный) «Готовность» – отсутствие аварийных состояний, готовность к запуску;
  • HL2 (зелёный) «Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
  • HL3 (красный) «Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.

Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

На рисунке 6 приведён упрощённый алгоритм работы УПП. После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех. Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0», после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“. После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок

на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном
порядке.

Плавный запуск электродвигателя своими руками

У всех кто пользуется болгаркой не один год, она ломалась. Поначалу каждый мастер пытался отремонтировать шлифовальную машинку сверкающую искрами самостоятельно, надеясь, что она заработает после замены щёток. Обычно после такой попытки, сломанный инструмент остается лежать на полке с прогоревшими обмотками. А на замену покупается новая болгарка.

Дрели, шуруповёрты, перфораторы, фрезеры в обязательном порядке оборудованы регулятором набора оборотов. Некоторые так называемые калибровочные шлифмашинки также снабжаются регулятором, а обычные болгарки имеют только кнопку включения.

Маломощные болгарки производители не усложняют дополнительными схемами преднамеренно, ведь такой электроинструмент должен стоить дешево. Понятно конечно, что срок службы недорого инструмента всегда короче, чем у более дорогого профессионального.

Самую простую болгарку можно модернизировать, так что у неё перестанут повреждаться редуктор и обмоточные провода якоря. Эти неприятности преимущественно происходят при резком, другими словами, ударном пуске болгарки.

Вся модернизация заключается всего лишь в сборке электронной схемы и закреплении её в коробке. В отдельном коробке, потому что в ручке шлифмашинки очень мало места.

Проверенная, рабочая схема выложена ниже. Она первоначально предназначалась для регулировки накала ламп, то есть для работы на активную нагрузку. Её главное достоинство ? простота.

  1. Изюминкой устройства плавного пуска, принципиальную схему которого вы видите, является микросхема К1182ПМ1Р. Эта микросхема узкоспециализированная, отечественного производства.
  2. Время разгона можно увеличить, выбрав конденсатор С3 большей емкости. Во время заряжания этого конденсатора, электродвигатель набирает обороты до максимума.
  3. Не нужно ставить взамен резистора R1 переменное сопротивление. Резистор сопротивлением 68 кОм оптимально подобран для этой схемы. При такой настройке можно плавно запустить болгарку мощностью от 600 до 1500 Вт.
  4. Если собираетесь собрать регулятор мощности, тогда нужно заменить резистор R1 переменным сопротивлением. Сопротивление в 100 кОм, и больше, не занижает напряжение на выходе. Замкнув ножки микросхемы накоротко, можно вовсе выключить подключенную болгарку.
  5. Вставив в силовую цепь семистор VS1 типа ТС-122-25, то есть на 25А, можно плавно запускать практически любую доступную в продаже шлифмашинку, мощностью от 600 до 2700 Вт. И остается большой запас по мощности на случай заклинивания шлифмашинки. Для подключения болгарок мощностью до 1500 Вт, достаточно импортных семисторов BT139, BT140. Эти менее мощные электронные ключи дешевле.

Семистор в приведенной выше схеме полностью не открывается, он отрезает около 15В сетевого напряжения. Такое падения напряжения никак не сказывается на работе болгарки. Но при нагреве семистора, обороты подключенного инструмента сильно снижаются. Эта проблема решается установкой радиатора.

У этой простой схемы есть ещё один недостаток – несовместимость её с установленным в инструмент регулятором оборотов.

Собранную схему нужно запрятать в коробок из пластмассы. Корпус из изоляционного материала важен, ведь нужно обезопасить себя от сетевого напряжения. В магазине электротоваров можно купить распределительную коробку.

К коробке прикручивается розетка и подключается кабель с вилкой, что делает эту конструкцию внешне похожей на удлинитель.

Если позволяет опыт и есть желание, можно собрать более сложную схему плавного пуска. Приведенная ниже принципиальная схема является стандартной для модуля XS–12. Этот модуль устанавливается в электроинструмент при заводском производстве.

Если нужно менять обороты подключенного электродвигателя, тогда схема усложняется: устанавливается подстроечный, на 100 кОм, и регулировочный резистор на 50 кОм. А можно просто и грубо внедрить переменник на 470 кОм между резистором 47 кОм и диодом.

Параллельно конденсатору С2 желательно подсоединить резистор сопротивлением 1 МОм (на приведенной ниже схеме он не показан).

Напряжение питания микросхемы LM358 находится в пределах от 5 до 35В. Напряжение в цепи питания не превышает 25В. Поэтому можно обойтись и без дополнительно стабилитрона DZ.

Какую бы вы схему плавного пуска ни собрали, никогда не включайте подключенный к ней инструмент под нагрузкой. Любой плавный пуск можно сжечь, если торопиться. Подождите пока болгарка раскрутиться, а затем работайте.

Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения звезда-треугольник, автотрансформатора и т. д.

В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.

Зачем нужны УПП?

Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

  1. снижение стартового тока;
  2. уменьшение затрат на электроэнергию;
  3. повышение эффективности;
  4. сравнительно низкая стоимость;
  5. достижение максимальной скорости без ущерба для агрегата.

Как плавно запустить двигатель?

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.

  • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.

  • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
  • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.

  • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.

Регулятор оборотов коллекторного двигателя

Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.

Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.

Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.

Заключение

УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.

Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.

Электрические двигатели получили широкое применение в любых сферах деятельности человека. Однако при запуске электродвигателя происходит семикратное потребление тока, вызывающее не только перегрузку сети питания, но и нагрев обмоток статора, а также выход из строя механических частей. Для устранения этого нежелательного эффекта радиолюбители советуют применять устройства плавного пуска электродвигателя.

Плавный пуск двигателя

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют активная и реактивная составляющие сопротивления (R). Значение реактивной составляющей зависит от частотных характеристик питания и во время запуска колеблется в пределах от 0 до расчетного значения (при работе инструмента). Кроме того, изменяется ток, называемый пусковым.

Ток пуска превышает в 7 раз значение номинального. При этом процессе происходит нагрев обмоток статорной катушки и, в том случае, если провод, из которого состоит обмотка, является старым, то возможно межвитковое КЗ (при уменьшении величины R ток достигает максимального значения). Перегрев влечет снижение срока эксплуатации инструмента. Для предотвращения этой проблемы существуют несколько вариантов использования устройств плавного пуска.

Переключением обмоток устройство плавного пуска двигателя (УПП) состоит из следующих основных узлов: 2 вида реле (управление временем включения и нагрузкой) , трех контакторов (рисунок 1).

Рисунок 1 — Общая схема устройства плавного пуска асинхронных двигателей (мягкого пуска).

На рисунке 1 изображен асинхронный двигатель. Его обмотки соединены по типу подключения «звезда». Запуск осуществляется при замкнутых контакторах K1 и K3. Через определенный временной интервал (задается при помощи реле времени) контактор К3 размыкает свой контакт (происходит отключение) и происходит включение контактом К2. Схема на рисунке 1 применима и для УПП двигателей различного типа.

Главным недостатком считается образование токов КЗ при одновременном включении 2-х автоматов. Эта проблема исправляется внедрением в схему вместо контакторов рубильника. Однако обмотки статора продолжают греться.

При электронном регулировании частоты пуска электромотора используется принцип частотного изменения питающего напряжения. Основным элементом этих преобразователей является преобразователь частоты, включающий в себя:

  1. Выпрямитель собирается на полупроводниковых мощных диодах (возможен вариант тиристорного исполнения). Он преобразует величину сетевого напряжения в пульсирующий постоянный ток.
  2. Промежуточная цепь сглаживает помехи и пульсации.
  3. Инвертор необходим для преобразования сигнала, полученного на выходе промежуточной цепи, в сигнал переменной амплитудной и частотной характеристиками.
  4. Электронная схема управления генерирует сигналы для всех узлов преобразователя.

Принцип действия, виды и выбор

Во время увеличения вращающего момента ротора и Iп в 7 раз для продления срока службы необходимо использовать УПП, которое отвечает следующим требованиям:

  1. Равномерное и плавное увеличение всех показателей.
  2. Управление электроторможением и пуском двигателя в определенные временные интервалы.
  3. Защита от скачков напряжения, пропадании какой-либо фазы (для 3-х фазного электродвигателя) и помех различного рода.
  4. Повышение износостойкости.

Принцип действия симисторного УПП: ограничение величины напряжения благодаря изменению угла открытия симисторных полупроводников (симисторов) при подключении к статорным катушкам электродвигателя (рисунок 2).

Рисунок 2 — Схема плавного пуска электродвигателя на симисторах.

Благодаря применению симисторов появляется возможность снизить пусковые токи в 2 и более раз, а наличие контактора позволяет избежать перегрева симисторов (на рисунке 2: Bypass). Основные недостатки симисторных УПП:

  1. Применение простых схем возможно только при небольших нагрузках или холостом запуске. В противном случае схема усложняется.
  2. Происходит перегрев обмоток и полупроводниковых приборов при продолжительном запуске.
  3. Двигатель иногда не запускается (приводит к значительному перегреву обмоток).
  4. При электротормозе электромотора возможен перегрев обмоток.

Широко применяются УПП с регуляторами, в которых отсутствует обратная связь (по 1 или 3 фазам). В моделях этого типа необходимо устанавливать время пуска электромотора и напряжение непосредственно перед началом пуска. Недостаток устройств — невозможность регулировать вращающий момент подвижных механических частей по нагрузке. Для устранения этой проблемы нужно применить устройство по снижению Iп, защиты от различной разности фаз (возникает во время перекоса фаз) и механических перегрузок.

Более дорогостоящие модели УПП включают в себя возможность слежения за параметрами работы электродвигателя в непрерывном режиме.

В устройствах, содержащих электромоторы, предусмотрены УПП на симисторах. Они отличаются схемой и способом регуляции сетевого напряжения. Простейшие схемы — схемы с однофазным регулированием. Они исполняются на одном симисторе и позволяют смягчить нагрузки на механическую часть, и применяются для электромоторов с мощностью менее 12 кВ. На предприятиях применяется 3-х фазное регулирование напряжения для электромоторов мощностью до 260 кВт. При выборе вида УПП необходимо руководствоваться следующими параметрами:

  1. Мощность устройства.
  2. Режим работы.
  3. Равенство Iп двигателя и УПП.
  4. Количество запусков за определенное время.

Для защиты насосов подходят УПП, защищающие от ударов с гидравлической составляющей трубы (Advanced Control). УПП для инструментов выбираются, исходя из нагрузок и больших оборотов. В дорогих моделях этот тип защиты в виде УПП присутствует, а для бюджетных необходимо изготавливать его своими руками. Применяется в химических лабораториях для плавного запуска вентилятора, охлаждающего жидкости.

Причины применения в болгарке

Благодаря особенностям конструкции при старте угловой шлифовальной машинки происходят высокие динамические нагрузки на детали инструмента. При начальном вращении диска, ось редуктора подвержена действию сил инерции:

  1. Инерционный рывок может вырвать болгарку из рук. Происходит угроза жизни и здоровью, так как этот инструмент очень опасен и требует строгого соблюдения техники безопасности.
  2. При запуске происходит перегрузка по току (Iпуска = 7*Iном). Происходит преждевременный износ щеток, перегрев обмоток.
  3. Изнашивается редуктор.
  4. Разрушение режущего диска.

Ненастроенный инструмент становится очень опасным, ведь существует вероятность причинения вреда здоровью и жизни. Поэтому необходимо его обезопасить. Для этого и собираются УПП для электроинструмента своими руками.

Создание своими руками

Для бюджетных моделей угловой шлифовальной машинки и другого инструмента необходимо собрать свое УПП. Сделать это несложно, ведь благодаря интернету, можно найти огромное количество схем. Наиболее простая и, в то же время, эффективная — универсальная схема УПП на симисторе и микросхеме.

При включении болгарки или другого инструмента происходит повреждение обмоток и редуктора инструмента, связанного с резким запуском. Радиолюбители нашли выход из этой ситуации и предложили простой плавный пуск для электроинструмента своими руками (схема 1), собранную в отдельном блоке (в корпусе очень мало места).

Схема 1 — Схема плавного пуска электроинструмента.

УПП своими руками реализуется на основе КР118ПМ1 (фазовое регулирование) и силовой части на симисторах. Основной изюминкой устройства является его универсальность, ведь его можно подключить к любому электроинструменту. Оно не только легко монтируется, но и не требует предварительной настройки. В основном подключение системы к инструменту не является сложным и устанавливается в разрыв кабеля питания.

Особенности работы модуля УПП

При включении болгарки на КР118ПМ1 подается напряжение и на управляющем конденсаторе (С2) происходит плавный рост напряжения по мере роста заряда. Тиристоры, находящиеся в микросхеме, открываются постепенно с определенной задержкой. Симистор открывается с паузой, равной задержке тиристоров. Для каждого последующего периода напряжения происходит постепенное уменьшение задержки и инструмент плавно запускается.

Зависит время набора оборотов от емкости С2 (при 47 мк время запуска равно 2 секунды). Эта задержка является оптимальной, хотя ее можно менять путем увеличения емкости С2. После выключения углошлифовальной машинки (УШМ) происходит разряд конденсатора С2 благодаря резистору R1 (время разрядки примерно равно 3 секунды при 68к).

Эту схему для регулировки оборотов электродвигателя можно модернизировать путем замены R1 на переменный резистор. При изменении величины сопротивления переменного резистора меняется мощность электромотора. Резистор R2 выполняет функцию контроля величины силы тока, который протекает через вход симистора VS1 (желательно предусмотреть охлаждение вентилятором), являющийся управляющим. Конденсаторы С1 и С3 служат для защиты и управлением микросхемы.

Симистор подбирается со следующими характеристиками: напряжение прямое максимальное до 400–500 В и минимальный ток пропускания через переходы должен быть не менее 25 А. При изготовлении УПП по этой схеме запас по мощности может колебаться от 2 кВт до 5 кВт.

Таким образом, для увеличения срока службы инструментов и двигателей, необходимо производить их плавный запуск. Это связано с конструктивной особенностью электромоторов асинхронного и коллекторного типов. При запуске происходит стремительное потребление тока, из-за которого происходит износ электрической и механической частей. Использование УПП позволяет обезопасить электроинструмент, благодаря соблюдению правил техники безопасности. При модернизации инструмента возможна покупка уже готовых моделей, а также сборка простого и надежного универсального устройства, которое не только отличается, но и даже превосходит некоторые заводские УПП.

Плавный пуск для асинхронного двигателя своими руками

Устройства плавного пуска электродвигателя

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применения разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи

Пусковые токи достигают значений в 7…10 раз выше, чем в рабочем режиме. Это приводит к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя. Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

Перегрузки исполнительных механизмов

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз. Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов. Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяет избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

Устройства плавного пуска в настоящее время выпускается многими фирмами, например Siemens, Danfoss, Schneider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменные устройства обладают одним недостатком, – достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

В первой части статьи рассказывалось о специализированной микросхеме КР1182ПМ1, представляющей фазовый регулятор мощности. Были рассмотрены типовые схемы ее включения, устройства плавного запуска ламп накаливания и просто регуляторы мощности в нагрузке. На основе этой микросхемы возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на рисунке 1.

Рисунок 1. Схема устройства плавного пуска двигателя.

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

Описание схемы

В конструкции используется трехфазный электродвигатель 50 Гц, 380 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах включенных встречно – параллельно. В конструкции применены импортные тиристоры типа 40TPS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение 1200 В. Кроме них в ключах присутствуют еще несколько элементов. Их назначение следующее: демпфирующие RC цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8C11, R9C12, R10C13), а с помощью варисторов RU1…RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500 В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1…DA3 типа КР1182ПМ1. Эти микросхемы достаточно подробно были рассмотрены в первой части статьи. Конденсаторы С5…С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1…К3 в устройстве имеется блок питания, который состоит всего из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока. Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя. Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи. Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный. В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.

В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ – 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя. Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством». Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами. Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы, имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm — магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров, выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

  1. Плавное увеличение нагрузки.
  2. Возможность запуска двигателя через определенные интервалы времени.
  3. Обеспечение защиты от линейных скачков U, пропадания фазы (для 3-фазного электродвигателя) и различных помех электрической составляющей.
  4. Значительно повышение срока эксплуатации.

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Электрические двигатели получили широкое применение в любых сферах деятельности человека. Однако при запуске электродвигателя происходит семикратное потребление тока, вызывающее не только перегрузку сети питания, но и нагрев обмоток статора, а также выход из строя механических частей. Для устранения этого нежелательного эффекта радиолюбители советуют применять устройства плавного пуска электродвигателя.

Плавный пуск двигателя

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют активная и реактивная составляющие сопротивления (R). Значение реактивной составляющей зависит от частотных характеристик питания и во время запуска колеблется в пределах от 0 до расчетного значения (при работе инструмента). Кроме того, изменяется ток, называемый пусковым.

Ток пуска превышает в 7 раз значение номинального. При этом процессе происходит нагрев обмоток статорной катушки и, в том случае, если провод, из которого состоит обмотка, является старым, то возможно межвитковое КЗ (при уменьшении величины R ток достигает максимального значения). Перегрев влечет снижение срока эксплуатации инструмента. Для предотвращения этой проблемы существуют несколько вариантов использования устройств плавного пуска.

Переключением обмоток устройство плавного пуска двигателя (УПП) состоит из следующих основных узлов: 2 вида реле (управление временем включения и нагрузкой) , трех контакторов (рисунок 1).

Рисунок 1 — Общая схема устройства плавного пуска асинхронных двигателей (мягкого пуска).

На рисунке 1 изображен асинхронный двигатель. Его обмотки соединены по типу подключения «звезда». Запуск осуществляется при замкнутых контакторах K1 и K3. Через определенный временной интервал (задается при помощи реле времени) контактор К3 размыкает свой контакт (происходит отключение) и происходит включение контактом К2. Схема на рисунке 1 применима и для УПП двигателей различного типа.

Главным недостатком считается образование токов КЗ при одновременном включении 2-х автоматов. Эта проблема исправляется внедрением в схему вместо контакторов рубильника. Однако обмотки статора продолжают греться.

При электронном регулировании частоты пуска электромотора используется принцип частотного изменения питающего напряжения. Основным элементом этих преобразователей является преобразователь частоты, включающий в себя:

  1. Выпрямитель собирается на полупроводниковых мощных диодах (возможен вариант тиристорного исполнения). Он преобразует величину сетевого напряжения в пульсирующий постоянный ток.
  2. Промежуточная цепь сглаживает помехи и пульсации.
  3. Инвертор необходим для преобразования сигнала, полученного на выходе промежуточной цепи, в сигнал переменной амплитудной и частотной характеристиками.
  4. Электронная схема управления генерирует сигналы для всех узлов преобразователя.

Принцип действия, виды и выбор

Во время увеличения вращающего момента ротора и Iп в 7 раз для продления срока службы необходимо использовать УПП, которое отвечает следующим требованиям:

  1. Равномерное и плавное увеличение всех показателей.
  2. Управление электроторможением и пуском двигателя в определенные временные интервалы.
  3. Защита от скачков напряжения, пропадании какой-либо фазы (для 3-х фазного электродвигателя) и помех различного рода.
  4. Повышение износостойкости.

Принцип действия симисторного УПП: ограничение величины напряжения благодаря изменению угла открытия симисторных полупроводников (симисторов) при подключении к статорным катушкам электродвигателя (рисунок 2).

Рисунок 2 — Схема плавного пуска электродвигателя на симисторах.

Благодаря применению симисторов появляется возможность снизить пусковые токи в 2 и более раз, а наличие контактора позволяет избежать перегрева симисторов (на рисунке 2: Bypass). Основные недостатки симисторных УПП:

  1. Применение простых схем возможно только при небольших нагрузках или холостом запуске. В противном случае схема усложняется.
  2. Происходит перегрев обмоток и полупроводниковых приборов при продолжительном запуске.
  3. Двигатель иногда не запускается (приводит к значительному перегреву обмоток).
  4. При электротормозе электромотора возможен перегрев обмоток.

Широко применяются УПП с регуляторами, в которых отсутствует обратная связь (по 1 или 3 фазам). В моделях этого типа необходимо устанавливать время пуска электромотора и напряжение непосредственно перед началом пуска. Недостаток устройств — невозможность регулировать вращающий момент подвижных механических частей по нагрузке. Для устранения этой проблемы нужно применить устройство по снижению Iп, защиты от различной разности фаз (возникает во время перекоса фаз) и механических перегрузок.

Более дорогостоящие модели УПП включают в себя возможность слежения за параметрами работы электродвигателя в непрерывном режиме.

В устройствах, содержащих электромоторы, предусмотрены УПП на симисторах. Они отличаются схемой и способом регуляции сетевого напряжения. Простейшие схемы — схемы с однофазным регулированием. Они исполняются на одном симисторе и позволяют смягчить нагрузки на механическую часть, и применяются для электромоторов с мощностью менее 12 кВ. На предприятиях применяется 3-х фазное регулирование напряжения для электромоторов мощностью до 260 кВт. При выборе вида УПП необходимо руководствоваться следующими параметрами:

  1. Мощность устройства.
  2. Режим работы.
  3. Равенство Iп двигателя и УПП.
  4. Количество запусков за определенное время.

Для защиты насосов подходят УПП, защищающие от ударов с гидравлической составляющей трубы (Advanced Control). УПП для инструментов выбираются, исходя из нагрузок и больших оборотов. В дорогих моделях этот тип защиты в виде УПП присутствует, а для бюджетных необходимо изготавливать его своими руками. Применяется в химических лабораториях для плавного запуска вентилятора, охлаждающего жидкости.

Причины применения в болгарке

Благодаря особенностям конструкции при старте угловой шлифовальной машинки происходят высокие динамические нагрузки на детали инструмента. При начальном вращении диска, ось редуктора подвержена действию сил инерции:

  1. Инерционный рывок может вырвать болгарку из рук. Происходит угроза жизни и здоровью, так как этот инструмент очень опасен и требует строгого соблюдения техники безопасности.
  2. При запуске происходит перегрузка по току (Iпуска = 7*Iном). Происходит преждевременный износ щеток, перегрев обмоток.
  3. Изнашивается редуктор.
  4. Разрушение режущего диска.

Ненастроенный инструмент становится очень опасным, ведь существует вероятность причинения вреда здоровью и жизни. Поэтому необходимо его обезопасить. Для этого и собираются УПП для электроинструмента своими руками.

Создание своими руками

Для бюджетных моделей угловой шлифовальной машинки и другого инструмента необходимо собрать свое УПП. Сделать это несложно, ведь благодаря интернету, можно найти огромное количество схем. Наиболее простая и, в то же время, эффективная — универсальная схема УПП на симисторе и микросхеме.

При включении болгарки или другого инструмента происходит повреждение обмоток и редуктора инструмента, связанного с резким запуском. Радиолюбители нашли выход из этой ситуации и предложили простой плавный пуск для электроинструмента своими руками (схема 1), собранную в отдельном блоке (в корпусе очень мало места).

Схема 1 — Схема плавного пуска электроинструмента.

УПП своими руками реализуется на основе КР118ПМ1 (фазовое регулирование) и силовой части на симисторах. Основной изюминкой устройства является его универсальность, ведь его можно подключить к любому электроинструменту. Оно не только легко монтируется, но и не требует предварительной настройки. В основном подключение системы к инструменту не является сложным и устанавливается в разрыв кабеля питания.

Особенности работы модуля УПП

При включении болгарки на КР118ПМ1 подается напряжение и на управляющем конденсаторе (С2) происходит плавный рост напряжения по мере роста заряда. Тиристоры, находящиеся в микросхеме, открываются постепенно с определенной задержкой. Симистор открывается с паузой, равной задержке тиристоров. Для каждого последующего периода напряжения происходит постепенное уменьшение задержки и инструмент плавно запускается.

Зависит время набора оборотов от емкости С2 (при 47 мк время запуска равно 2 секунды). Эта задержка является оптимальной, хотя ее можно менять путем увеличения емкости С2. После выключения углошлифовальной машинки (УШМ) происходит разряд конденсатора С2 благодаря резистору R1 (время разрядки примерно равно 3 секунды при 68к).

Эту схему для регулировки оборотов электродвигателя можно модернизировать путем замены R1 на переменный резистор. При изменении величины сопротивления переменного резистора меняется мощность электромотора. Резистор R2 выполняет функцию контроля величины силы тока, который протекает через вход симистора VS1 (желательно предусмотреть охлаждение вентилятором), являющийся управляющим. Конденсаторы С1 и С3 служат для защиты и управлением микросхемы.

Симистор подбирается со следующими характеристиками: напряжение прямое максимальное до 400–500 В и минимальный ток пропускания через переходы должен быть не менее 25 А. При изготовлении УПП по этой схеме запас по мощности может колебаться от 2 кВт до 5 кВт.

Таким образом, для увеличения срока службы инструментов и двигателей, необходимо производить их плавный запуск. Это связано с конструктивной особенностью электромоторов асинхронного и коллекторного типов. При запуске происходит стремительное потребление тока, из-за которого происходит износ электрической и механической частей. Использование УПП позволяет обезопасить электроинструмент, благодаря соблюдению правил техники безопасности. При модернизации инструмента возможна покупка уже готовых моделей, а также сборка простого и надежного универсального устройства, которое не только отличается, но и даже превосходит некоторые заводские УПП.

Плавный пуск электродвигателя своими руками: устройство и полезные советы

Автор Aluarius На чтение 4 мин. Просмотров 1.3k. Опубликовано

Всем известно, что при пуске электродвигателя возникает так называемый пусковой момент, который просаживает напряжение питающей сети за счет возникновения пусковых токов, которые в 6-10 раз больше, чем токи при рабочем режиме. Во-первых, это негативно сказывается на работе других потребителей. Во-вторых, это негативно сказывается на работе самого электрического двигателя, потому что сам запуск мотора затягивается, а это приводит к перегреву обмоток, а, значит, и к сокращению срока эксплуатации агрегата. Поэтому все чаще в питающую сеть двигателя устанавливаются приборы, которые его запуск делают плавным. И по этому случаю, многие домашние электрики задаются вопрос, а можно ли сделать плавный пуск электродвигателя своими руками?

В принципе, ничего невозможного нет, и мы в этой статье такой вариант разберем обязательно. Но перед этим необходимо разобраться с пусковым моментом досконально и понять, по какой схеме его можно сгладить, так сказать, сделать плавным.

Пусковые перегрузки электрических моторов

Что собой представляет момент запуска? Это, по сути, начало вращения вала мотора, который соединен с передаточными механизмами (редукторы, блок шкивов или звездочек). При этом момент вращения ротора очень нестабилен. Тем более вал начинает вращаться под нагрузкой от передаточных механизмов. Такая нестабильность приводит к ударным нагрузкам, что негативно сказывается на передаточных механизмах, особенно от этого страдают шпонки на валу мотора и валу редуктора.

Устройство плавного пуска уменьшает пусковые нагрузки. Вращение вала начинается с малых оборотов, и скорость увеличивается постепенно. То есть, ударов нет, а, значит, нет и нагрузок на передаточные элементы. В этом и есть принцип действия плавного пуска электродвигателя.

Необходимо отметить, что устройства плавного пуска, выпускаемые в производстве, это многофункциональные приборы, которые могут быть использованы для разных целей. Это и сам плавный пуск мотора, и плавное его торможение, и защита сети и оборудования от перегрузок, и так далее. Каждый потребитель найдет под определенные нужды необходимое устройство. Правда, у этих приборов есть один существенный недостаток – высокая цена. А если есть возможность собрать его своими руками, при этом затратив минимум времени и деталей, то стоит ли покупать заводской вариант.

Устройство плавного пуска на микросхемах

Давайте рассмотрим теперь вид устройства плавного пуска электродвигателя на микросхеме КР1182ПМ1. Внизу на рисунке показана схема плавного пуска.

Описывать всю схему не будем. Единственное скажем, что она предназначена для трехфазного электродвигателя (380В, 50 Гц). И в ней есть определенные особенности, о которых надо сказать обязательно.

  • Соединение обмоток в двигателе – звезда.
  • Входные ключи – это тиристоры, которые соединены по встречно-параллельной схеме.
  • Параллельно тиристорам в цепь включены демпфирующие цепочки (RC). Они здесь используются специально, основная цель – предотвращать ложные включения тиристоров.
  • В схеме могут возникнуть и коммутационные помехи, которые поглощаются варисторами (RU).
  • Есть в схеме и блок питания, состоящий из трансформатора, конденсатора и выпрямителя. Этот блок предназначен для питания установленных реле (К). Кстати, на выходе после выпрямительного мостика установлен стабилизатор интегрального типа DA Именно он обеспечивает на выходе напряжение в 12 вольт. К тому же стабилизатор обеспечивает защиту от перегрузок и КЗ.

Полезные советы

  1. Собранную своими руками схему надо обязательно несколько раз проверить на соответствие деталей и очередности их подсоединения. Небольшая ошибка может привести к неприятным последствиям. С электричеством шутки плохи.
  2. Но даже после тщательной многоразовой проверки устанавливать прибор на электродвигатель не рекомендуется. Лучше провести тестирование. Каким образом? Для этого вам потребуются три лампочки накаливания мощностью 60-100 ватт, которые соединяются последовательно. Надо добиться результата, чтобы все лампы горели одинаково ярко.
  3. Обратите внимание на емкость установленных конденсаторов. Здесь очень важно, чтобы время их включения не имело большой разницы. Допустимое значение до 10%.
  4. Время отключения-включения конденсаторов можно отрегулировать резисторами (R). Правда, этот вариант выравнивания можно использовать, если разница времени откл/вкл не меньше 30%.

И вот только после этих манипуляций можно подключать устройство к электродвигателю.

Принципиальная схема плавного пуска. Плавный пуск электродвигателя своими руками. Методы снижения пусковых токов

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки — проблема?

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей , что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов : систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Видео: Плавный пуск, регулировка и защита колектор. двигателя

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже , чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций , таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя , после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов — хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель , который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

Особенности конструкции некоторых инструментов, например, угловой шлифовальной машины, влекут к высокому воздействию на двигатель устройства динамических нагрузок. Для устранения неравномерных нагрузок на электроприбор и его составные части рекомендуется приобретать или сделать своими руками устройство плавного пуска (УПП).

Общая информация

В электроинструментах, в которых рабочая часть представлена диском, что вращается с высокой скоростью, в начале их работы на ось редуктора воздействуют силы инерции. Это воздействие влечет за собой нижеследующие негативные моменты:

  1. Инерционный рывок, созданный в результате нагрузки на ось при резком старте, может вырвать агрегат из рук, тем более, если используются большие в диаметре и массе диски;

Важно! Из-за таких инерционных рывков при работе со стальными и алмазными дисками необходимо держать инструмент двумя руками и быть готовым к его удержанию, так как в противном случае можно травмироваться при срыве агрегата.

  1. Резкое поступление рабочего электронапряжения на двигатель создает большую перегрузку по току, которая происходит после того, как агрегат набрал минимальное значение оборотов. Это влечет к перегреву обмоток мотора и быстрому износу щеток. Частое включение и выключение инструмента может привести к короткому замыканию, так как существует высокая вероятность оплавления изоляционного слоя обмоток;
  2. Резкий набор оборотов УШМ или дисковой пилы из-за большого крутящегося момента приводит к быстрому изнашиванию шестерни редуктора. Иногда возможно заклинивание редуктора или даже отламывание его зубьев;
  3. Перегрузки, что воспринимает на себе при резком запуске рабочий диск, могут привести к его разрушению. Присутствие защитного кожуха на подобных электроинструментах обязательно.

Важно! При запуске болгарки открытый участок кожуха должен находиться в противоположной стороне от человека, чтобы защитить его от летящих осколков при возможном разрушении рабочего диска.

Для сокращения пагубных воздействий резкого и динамического пуска на электроинструмент производители выпускают модели со встроенным плавным пуском и регулировкой оборотов.

Для информации. Подобные приспособления встраиваются в агрегаты из средней и высокой ценовой категории.

Устройство плавного пуска и регулятор оборотов отсутствуют во многих экземплярах электроинструмента, который имеется в большинстве домашних хозяйств. Если приобрести мощную технику (диаметр рабочего диска более 20 см) без УПП, резкий пуск двигателя повлечет к скорому износу механики и электрочасти, также такой агрегат сложно удержать в руках при включении. Установка УПП – это единственный выход.

На рынке комплектующих к электроинструменту представлено много моделей уже готовых блоков плавного пуска и оборотных регуляторов.

Готовое устройство плавного пуска для электроинструмента можно монтировать как внутрь корпуса при наличии свободного места, так и подключать в разрыв кабеля питания. Однако можно не приобретать готовое изделие, а изготовить его своими руками, так как схема этого приспособления достаточна проста.

Самостоятельное изготовление УПП

Для изготовления самого популярного устройства плавного пуска для электроинструмента на основе платы КР1182ПМ1Р понадобятся нижеследующие инструменты и материалы:

  • паяльник с припоем;
  • микросхема фазовой регулировки КР1182ПМ1Р;
  • резисторы;
  • конденсаторы;
  • симисторы;
  • прочие вспомогательные элементы.

В устройстве, которое получено по схеме выше, управление происходит посредством платы КР1182ПМ1Р, а симисторы выступают в качестве силовой части.

Преимуществами данной сборки УПП являются следующие признаки:

  • простота изготовления;
  • отсутствие необходимости в дополнительных настройках после сборки УПП;
  • устройство плавного пуска монтировать можно в любой тип и модель электроинструмента, что рассчитан на переменное электронапряжение в 220 В;
  • отсутствие требований к выносу отдельной питающей кнопки – доработанный агрегат приводится в действие штатной клавишей;
  • возможность установки такого блока внутрь оборудования либо в разрыв кабеля питания с собственным корпусом;
  • изготовить подобное приспособления может любой домашний мастер, который обладает основами пайки и чтения микросхем.

Рекомендация. Самым практичным вариантом подключения УПП является подсоединения его к розетке, которая служит источником питания для электроинструмента. Для этого потребуется на выход устройства (гнездо XS1 на схеме) подключить питающую розетку, а на вход (гнездо ХР1 на схеме) подать питание напряжением 220В.

Принцип работы УПП

Принцип работы такого блока плавного пуска, установленного в болгарку, состоит из следующих процессов:

  1. После нажатия клавиши запуска на болгарке напряжение подается на микросхему;
  2. На управляющем конденсаторе (С2) происходит процесс плавного нарастания электронапряжения: по мере заряда этого элемента оно достигает рабочих показателей;
  3. Тиристоры, находящиеся в составе управляющей платы, открываются с задержкой, которая зависит от времени полного заряда конденсатора;
  4. Симистор (VS1) находится под управлением тиристорами и открывается с той же задержкой;
  5. В каждой половине периода переменного электронапряжения такая пауза уменьшается, что ведет к его плавной подаче на вход рабочего агрегата;
  6. После выключения болгарки конденсаторный элемент разряжается сопротивлением резистора.

Именно вышеописанные процессы определяют плавный пуск болгарки, что позволяет исключить инерциальный шок для редуктора за счет постепенного возрастания оборотов диска.

Время, за которое электроинструмент наберет рабочее количество оборотов, определяется только емкостью управляющего конденсатора. Если, к примеру, конденсаторный элемент будет иметь емкость в 47 мкФ, то плавный пуск будет обеспечиваться за 2-3 секунды. Такого времени достаточно для того, чтобы начало использования инструмента происходило комфортно, а он сам не подвергался шоковым нагрузкам.

Если резистор имеет сопротивление, равное 68 кОм, то время разряда конденсатора будет составлять примерно 3 секунды. При прошествии этого временного промежутка устройство плавного пуска полностью готово к очередному циклу запуска электроинструмента.

На заметку. Данная схема может быть подвергнута небольшой доработке, которая добавит к устройству плавного пуска еще функцию регулятора оборотов. Для этого необходимо поменять обычный резистор (R1) на переменный вариант. Контролируя сопротивление, можно регулировать мощность электродвигателя, меняя количество его оборотов.

Иные элементы схемы предназначены для нижеследующего:

  • резистор (R2) отвечает за контроль величины силы электротока, что протекает через вход симистора;
  • конденсатор (С1) – один из дополнительных компонентов системы управления платой КР1182ПМ1Р, использующийся в типовом варианте схемы включения.

Советы по сборке конструкции и выбору материалов:

  1. Простоту монтажа и компактность будущего изделия можно обеспечить припаиванием конденсирующих элементов и резисторов напрямую к ножкам управляющей платы;
  2. Симистор необходимо выбирать с минимальным пропускным электротоком 25 А и электронапряжением не более 400 В. Величина электротока будет полностью зависеть от показателя мощности двигателя электроинструмента;
  3. Из-за плавного пуска агрегата ток не будет больше номинальных показателей, которые установлены производителем. В некоторых случаях, например, заклинивание рабочего диска болгарки, может потребоваться дополнительный запас электротока, соответственно, лучше выбрать симистор с рабочим током, который равен удвоенному значению номинального показателя инструмента;
  4. Мощность УШМ или иного вида инструмента при работе с устройством плавного пуска по схеме КР1182ПМ1Р не должна превышать 5 000 Вт. Такое условие обусловлено особенностями работы платы.

Также существуют и другие схемы плавного пуска для электроинструментов и разнообразных двигателей, которые разительно отличаются друг от друга по всем параметрам: от способа монтажа и внешнего вида до метода подключения и составных компонентов.

К сведению. Вышеописанная схема является самой простой и применяется повсеместно, так как она доказала свою работоспособность и надежность.

Устройство плавного пуска для электроинструмента – экономия средств на ремонте и полная защита основных компонентов прибора. Перед каждым стоит выбор: покупать УПП или сделать самостоятельно. Если есть некие познания в электротехнике и пайке радиодеталей, то рекомендуется выполнить самостоятельную сборку, так как она надежна и проста. В противном случае следует приобрести в любом специализированном магазине либо на радиорынке готовое приспособление плавного пуска электроинструмента.

Видео

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы , имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm — магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров , выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Асинхронные электродвигатели, помимо очевидных преимуществ имеют два существенных недостатка – большой пусковой ток (до семи раз больше номинального) и рывок на старте. Данные недостатки негативно влияют на состояние електросетей, требуют применения автоматических выключателей с соответствующей времятоковой характеристикой, создают критические динамические нагрузки на оборудование.

С эффектом запуска мощного асинхронного двигателя знакомы все: «проседает напряжение и сотрясается все вокруг электродвигателя. Поэтому, для уменьшения негативных воздействий были разработаны способы и схемы, позволяющие смягчить рывок и сделать запуск асинхронного двигателя с короткозамкнутым ротором более плавным.

Способы плавного пуска асинхронных двигателей

Кроме негативного влияния на цепи питания и окружение, стартовый импульс электродвигателя вреден и для его обмоток статора, ведь момент увеличенной силы при запуске прикладывается к обмоткам. То есть, сила рывка ротора усиленно давит на обмоточные провода, тем самым убыстряя износ их изоляции, пробой которой называют межвитковым замыканием.


Иллюстрация принципа действия асинхронного электродвигателя

Поскольку конструктивно нельзя уменьшить пусковой ток, придуманы способы, схемы и аппараты, обеспечивающие плавный пуск асинхронного двигателя. В большинстве случаев, на производствах с мощными линиями питания и в быту данная опция не является обязательной – так как колебания напряжения и пусковые вибрации не оказывают существенного влияния на производственный процесс.


Графики изменения токов при прямом запуске и при помощи устройств плавного пуска

Но существуют технологии, требующие стабильных, не превышающих норм параметров, как электроснабжения, так и динамических нагрузок. Например – это может быть точное оборудование, работающее в одной сети с чувствительными к напряжению потребителями электроэнергии. В этом случае, для соблюдения технологических норм для мягкого запуска электродвигателя применяют различные способы:

  • Переключение звезда – треугольник;
  • Запуск при помощи автотрансформатора;
  • устройства плавного пуска асинхронного двигателя (УПП).

В приведенном ниже видео перечислены основные проблемы, возникающие при запуске электродвигателя, а также описаны достоинства и недостатки различных устройств плавного пуска асинхронных электродвигателей с короткозамкнутым ротором.


По-иному УПП еще называют софт стартерами, от английского «soft» – мягкий. Ниже будут кратко описаны виды и предлагаемые опции в широко распространенных УПП (софт стартерах). Также вы можете ознакомиться с дополнительными материалами по устройствам плавного пуска


Промышленные софт стартеры для электродвигателей различной мощности

Ознакомление с принципом плавного запуска

Для того, чтобы осуществить плавный пуск асинхронного электродвигателя максимально эффективно и с минимальными затратами, приобретая готовые софт стартеры, необходимо прежде ознакомиться с принципом действия подобных устройств и схем. Понимание взаимодействия физических параметров позволит сделать оптимальный выбор УПП.

При помощи устройств плавного пуска можно добиться снижения пускового тока до значения трехкратного превышения номинального (вместо семикратной перегрузки)

Для плавного пуска асинхронного электродвигателя необходимо уменьшить пусковой ток , что позитивно скажется как на нагрузке электросети, так и на динамических перегрузках обмоток двигателя и приводных механизмов. Достигают уменьшения пускового тока, снижая напряжение питания электродвигателя. Заниженное пусковое напряжение используется во всех трех предложенных выше способах. Например, при помощи автотрансформатора пользователь самостоятельно занижает напряжение при запуске, поворачивая ползунок.


Понижая напряжение на старте можно добиться плавного запуска електродвигателя

При использовании переключения «звезда-треугольник» меняется линейное напряжение на обмотках электродвигателя. Переключение осуществляется при помощи контакторов и реле времени, рассчитанное на время запуска электродвигателя. Подробное описание плавного пуска асинхронного электродвигателя при помощи имеется на данном ресурсе по указанной ссылке.


Схема переключения «звезда-треугольник» с использованием контакторов и реле времени
Теория осуществления плавного запуска

Для понимания принципа плавного старта необходимо понимание закона сохранения энергии, необходимой для раскрутки вала ротора электромотора. Упрощенно можно считать энергию разгона пропорциональной мощности и времени, E = P*t, где P – мощность, равная умножению силы тока на напряжение (P = U*I). Соответственно, E = U*I *t. Поскольку для уменьшения пускового момента и снижения нагрузок на сеть необходимо уменьшить стартовый ток I, то сохраняя уровень потраченной энергии нужно увеличить время разгона.

Увеличение времени разгона за счет снижения пускового тока возможно только при небольшой нагрузке на валу. Это является основным недостатком всех УПП

Поэтому для оборудования с тяжелыми условиями старта (большой нагрузкой на валу во время запуска), применяются специальные электродвигатели с фазным ротором. Узнать о свойствах данных двигателей можно из соответствующего раздела в на данном ресурсе, перейдя по ссылке.


Звигатель с фозім ротором, необходим для оборудования с тіжелім запуском

Также необходимо учитывать, что во время мягкого запуска происходит увеличенный нагрев обмоток и электронных силовых ключей пускового устройства. Для охлаждения полупроводниковых ключей необходимо использование массивных радиаторов, которые увеличивают стоимость аппарата. Поэтому уместно использование УПП для кратковременного разгона двигателя с дальнейшим шунтированием ключей прямым напряжением сети. Подобный режим (переключение байпас ) делает компактней и дешевле электронное устройство плавного пуска асинхронных двигателей, но ограничивает количество запусков в определенном интервале ввиду требуемого времени для охлаждения ключей.


Структурная схема шунтирования силовых полупроводниковых ключей (байпас)

Основные параметры и характеристики УПП

Ниже в тексте будут приведены схемы аппаратов плавного запуска для изучения и собственноручного изготовления. Для тех, кто не готов осуществить плавный пуск асинхронного электродвигателя своими руками, полагаясь на готовое изделие, будет полезной информация о существующих разновидностях софт стартеров.


Пример аналогово и цифрового УПП, в модульном исполнении (устанавливается на DIN-рейку)

Одним из главных параметров при выборе УПП является мощность обслуживаемого электромотора, выраженная в киловаттах. Не менее важным является время разгона и возможность регулировки интервала запуска. Данными характеристиками обладают все существующие софт стартеры. Более совершенные УПП являются универсальными и позволяют настраивать параметры мягкого запуска в широком диапазоне значений относительно характеристик двигателя и требований технологического процесса.

Пример универсального софтстартера

В зависимости от типа софт стартера в них могут присутствовать различные опции, повышающие функциональность аппарата и позволяющие осуществлять контроль работы электродвигателя. Например, при помощи некоторых УПП возможно осуществление не только плавного запуска электромотора, но и его торможение. Более совершенные софт стартеры осуществляют защиту двигателя от перегрузок и позволяют также регулировать вращательный момент ротора при пуске, останове и работе.


Пример различий в технических характеристиках различных УПП от одного производителя

Разновидности софт стартеров

По способу подключения УПП подразделяются на три вида:


УПП своими руками

Для самостоятельного изготовления УПП используемая схема плавного пуска асинхронного двигателя своими руками будет зависеть от возможности и навыков мастера. Самостоятельное смягчение пусковых перегрузок при помощи автотрансформатора доступно практически любому пользователю без специальных знаний, но данный способ является неудобным ввиду необходимости ручной регулировки старта электродвигателя. В продаже можно встретить недорогие устройства плавного запуска, которые придется самостоятельно подключить к электроинструменту, не обладая глубокими познаниями в радиотехнике. Пример работы до и после софт стартера, а также его подключение показано на видео ниже:


Для мастеров, обладающих общими знаниями в электротехнике, и владеющих практическими навыками электромонтажа подойдет для собственноручного осуществления плавного запуска схема переключения «звезда-треугольник». Данные схемы, несмотря на их солидный возраст, широко распространены и успешно используются по сей день ввиду простоты и надежности. В зависимости от квалификации мастера в сети интернет можно найти схемы УПП для повторения своими руками.

Пример схемы относительно простого двухфазного УПП

Современные софт стартеры имеют внутри сложную электронную начинку из множества электронных деталей, работающих под управлением микропроцессора. Поэтому для изготовления аналогичного УПП своими руками по имеющимся в сети интернет схемам необходимо не только мастерство радиолюбителя, но и навыки программирования микроконтроллеров.

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки — проблема?

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей, что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов: систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже, чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.
Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций, таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя, после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов — хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель, который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

elektro.guru

Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения звезда-треугольник, автотрансформатора и т. д.

В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.

Зачем нужны УПП?

Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

  1. снижение стартового тока;
  2. уменьшение затрат на электроэнергию;
  3. повышение эффективности;
  4. сравнительно низкая стоимость;
  5. достижение максимальной скорости без ущерба для агрегата.

Как плавно запустить двигатель?

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.

  • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.

  • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
  • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.

  • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.

Регулятор оборотов коллекторного двигателя

Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.

Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.

Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.

Заключение

УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.

Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.

electricdoma.ru

Плавный пуск асинхронного электродвигателя. Устройство и принцип работы

Асинхронные электродвигатели, помимо очевидных преимуществ имеют два существенных недостатка – большой пусковой ток (до семи раз больше номинального) и рывок на старте. Данные недостатки негативно влияют на состояние електросетей, требуют применения автоматических выключателей с соответствующей времятоковой характеристикой, создают критические динамические нагрузки на оборудование.

С эффектом запуска мощного асинхронного двигателя знакомы все: «проседает напряжение и сотрясается все вокруг электродвигателя. Поэтому, для уменьшения негативных воздействий были разработаны способы и схемы, позволяющие смягчить рывок и сделать запуск асинхронного двигателя с короткозамкнутым ротором более плавным.

Способы плавного пуска асинхронных двигателей

Кроме негативного влияния на цепи питания и окружение, стартовый импульс электродвигателя вреден и для его обмоток статора, ведь момент увеличенной силы при запуске прикладывается к обмоткам. То есть, сила рывка ротора усиленно давит на обмоточные провода, тем самым убыстряя износ их изоляции, пробой которой называют межвитковым замыканием.

Иллюстрация принципа действия асинхронного электродвигателя

Поскольку конструктивно нельзя уменьшить пусковой ток, придуманы способы, схемы и аппараты, обеспечивающие плавный пуск асинхронного двигателя. В большинстве случаев, на производствах с мощными линиями питания и в быту данная опция не является обязательной – так как колебания напряжения и пусковые вибрации не оказывают существенного влияния на производственный процесс.

Графики изменения токов при прямом запуске и при помощи устройств плавного пуска

Но существуют технологии, требующие стабильных, не превышающих норм параметров, как электроснабжения, так и динамических нагрузок. Например – это может быть точное оборудование, работающее в одной сети с чувствительными к напряжению потребителями электроэнергии. В этом случае, для соблюдения технологических норм для мягкого запуска электродвигателя применяют различные способы:

  • Переключение звезда – треугольник;
  • Запуск при помощи автотрансформатора;
  • устройства плавного пуска асинхронного двигателя (УПП).

В приведенном ниже видео перечислены основные проблемы, возникающие при запуске электродвигателя, а также описаны достоинства и недостатки различных устройств плавного пуска асинхронных электродвигателей с короткозамкнутым ротором.

По-иному УПП еще называют софт стартерами, от английского «soft» – мягкий. Ниже будут кратко описаны виды и предлагаемые опции в широко распространенных УПП (софт стартерах). Также вы можете ознакомиться с дополнительными материалами по устройствам плавного пуска

Промышленные софт стартеры для электродвигателей различной мощности

Ознакомление с принципом плавного запуска

Для того, чтобы осуществить плавный пуск асинхронного электродвигателя максимально эффективно и с минимальными затратами, приобретая готовые софт стартеры, необходимо прежде ознакомиться с принципом действия подобных устройств и схем. Понимание взаимодействия физических параметров позволит сделать оптимальный выбор УПП.

При помощи устройств плавного пуска можно добиться снижения пускового тока до значения трехкратного превышения номинального (вместо семикратной перегрузки)

Для плавного пуска асинхронного электродвигателя необходимо уменьшить пусковой ток, что позитивно скажется как на нагрузке электросети, так и на динамических перегрузках обмоток двигателя и приводных механизмов. Достигают уменьшения пускового тока, снижая напряжение питания электродвигателя. Заниженное пусковое напряжение используется во всех трех предложенных выше способах. Например, при помощи автотрансформатора пользователь самостоятельно занижает напряжение при запуске, поворачивая ползунок.

Понижая напряжение на старте можно добиться плавного запуска електродвигателя

При использовании переключения «звезда-треугольник» меняется линейное напряжение на обмотках электродвигателя. Переключение осуществляется при помощи контакторов и реле времени, рассчитанное на время запуска электродвигателя. Подробное описание плавного пуска асинхронного электродвигателя при помощи переключения «звезда-треугольник» имеется на данном ресурсе по указанной ссылке.

Схема переключения «звезда-треугольник» с использованием контакторов и реле времени

Теория осуществления плавного запуска

Для понимания принципа плавного старта необходимо понимание закона сохранения энергии, необходимой для раскрутки вала ротора электромотора. Упрощенно можно считать энергию разгона пропорциональной мощности и времени, E = P*t, где P – мощность, равная умножению силы тока на напряжение (P = U*I). Соответственно, E = U*I *t. Поскольку для уменьшения пускового момента и снижения нагрузок на сеть необходимо уменьшить стартовый ток I, то сохраняя уровень потраченной энергии нужно увеличить время разгона.

Увеличение времени разгона за счет снижения пускового тока возможно только при небольшой нагрузке на валу. Это является основным недостатком всех УПП

Поэтому для оборудования с тяжелыми условиями старта (большой нагрузкой на валу во время запуска), применяются специальные электродвигатели с фазным ротором. Узнать о свойствах данных двигателей можно из соответствующего раздела в статье на данном ресурсе, перейдя по ссылке.

Звигатель с фозім ротором, необходим для оборудования с тіжелім запуском

Также необходимо учитывать, что во время мягкого запуска происходит увеличенный нагрев обмоток и электронных силовых ключей пускового устройства. Для охлаждения полупроводниковых ключей необходимо использование массивных радиаторов, которые увеличивают стоимость аппарата. Поэтому уместно использование УПП для кратковременного разгона двигателя с дальнейшим шунтированием ключей прямым напряжением сети. Подобный режим (переключение байпас) делает компактней и дешевле электронное устройство плавного пуска асинхронных двигателей, но ограничивает количество запусков в определенном интервале ввиду требуемого времени для охлаждения ключей.

Структурная схема шунтирования силовых полупроводниковых ключей (байпас)

Основные параметры и характеристики УПП

Ниже в тексте будут приведены схемы аппаратов плавного запуска для изучения и собственноручного изготовления. Для тех, кто не готов осуществить плавный пуск асинхронного электродвигателя своими руками, полагаясь на готовое изделие, будет полезной информация о существующих разновидностях софт стартеров.


Пример аналогово и цифрового УПП, в модульном исполнении (устанавливается на DIN-рейку)

Одним из главных параметров при выборе УПП является мощность обслуживаемого электромотора, выраженная в киловаттах. Не менее важным является время разгона и возможность регулировки интервала запуска. Данными характеристиками обладают все существующие софт стартеры. Более совершенные УПП являются универсальными и позволяют настраивать параметры мягкого запуска в широком диапазоне значений относительно характеристик двигателя и требований технологического процесса.

Пример универсального софтстартера

В зависимости от типа софт стартера в них могут присутствовать различные опции, повышающие функциональность аппарата и позволяющие осуществлять контроль работы электродвигателя. Например, при помощи некоторых УПП возможно осуществление не только плавного запуска электромотора, но и его торможение. Более совершенные софт стартеры осуществляют защиту двигателя от перегрузок и позволяют также регулировать вращательный момент ротора при пуске, останове и работе.

Пример различий в технических характеристиках различных УПП от одного производителя

Разновидности софт стартеров

По способу подключения УПП подразделяются на три вида:

УПП своими руками

Для самостоятельного изготовления УПП используемая схема плавного пуска асинхронного двигателя своими руками будет зависеть от возможности и навыков мастера. Самостоятельное смягчение пусковых перегрузок при помощи автотрансформатора доступно практически любому пользователю без специальных знаний, но данный способ является неудобным ввиду необходимости ручной регулировки старта электродвигателя. В продаже можно встретить недорогие устройства плавного запуска, которые придется самостоятельно подключить к электроинструменту, не обладая глубокими познаниями в радиотехнике. Пример работы до и после софт стартера, а также его подключение показано на видео ниже:

Для мастеров, обладающих общими знаниями в электротехнике, и владеющих практическими навыками электромонтажа подойдет для собственноручного осуществления плавного запуска схема переключения «звезда-треугольник». Данные схемы, несмотря на их солидный возраст, широко распространены и успешно используются по сей день ввиду простоты и надежности. В зависимости от квалификации мастера в сети интернет можно найти схемы УПП для повторения своими руками.

Пример схемы относительно простого двухфазного УПП

Современные софт стартеры имеют внутри сложную электронную начинку из множества электронных деталей, работающих под управлением микропроцессора. Поэтому для изготовления аналогичного УПП своими руками по имеющимся в сети интернет схемам необходимо не только мастерство радиолюбителя, но и навыки программирования микроконтроллеров.

infoelectrik.ru

Устройство плавного пуска двигателей — Сайт по ремонту, подключению, установке электрики своими руками!

Здравствуйте, уважаемые мои читатели. В этой статье мы рассмотрим возможные варианты плавного запуска двигателей.

Уже давно ни для кого не секрет, что все электродвигатели в момент запуска страдают одной неприятной болезнью – большими пусковыми токами. Без специальных «лекарств» это никак не лечится. Если вкратце, то полное (или эквивалентное) сопротивление катушки индуктивности (обмотка двигателя, как частный случай) состоит из активного (сопротивление катушки постоянному току) сопротивления и индуктивного (реактивного), которое зависит от частоты переменного напряжения и индуктивности. Более подробно о сопротивлениях можно прочитать в этой статье.

Вот тут-то и кроется причина болезни двигателей. Когда двигатель развивает номинальные обороты индуктивное сопротивление очень велико, и, следовательно, сумма сопротивлений активного и реактивного тоже велика, но когда двигатель остановлен, индуктивное сопротивление практически равно нулю, остается только активное, а оно мало. По закону Ома сила тока в цепи обратно пропорциональна сопротивлению, т.е. чем оно меньше, тем больше ток. Ну а там, где большие токи ничего хорошего не ждите. Большой ток означает большую силу, а большая сила в большинстве своем старается сломать все на своем пути. Вот здесь то и пригодятся устройства плавного пуска.

Одним из вариантов можно рассматривать применение частотных преобразователей. Преимуществом такого способа плавного пуска является возможность регулировки оборотов двигателя в очень точных пределах, гибкая регулировка времени запуска, возможность удаленной регулировки оборотов и запуска, применение в зависимых схемах (когда скорость оборотов регулируется от какого-либо прибора, датчика и т. д.). Недостаток этого способа только цена и сложность настройки в некоторых моделях. Ну и довольно часто бывает так, что покупаем дорогую «игрушку» а используем процентов 15 из того, что она может.

Есть другой, довольно интересный, но в тоже время недорогой способ плавного запуска. Но тут есть одна маленькая загвоздка. Двигатель нужно подобрать такой, чтобы при способе соединения «треугольник» он подходил для нашего напряжения, то есть если у нас имеется три фазы с напряжением между ними 380 вольт, то двигатель должен быть 660/380 вольт. Принцип заключается в том, что при соединении звездой двигатель работает более плавно и, кстати сказать, не развивает своей номинальной мощности. При соединении обмоток треугольником двигатель выдает заявленную мощность полностью, но при этом «рвет с места». Данная схема позволяет раскрутить двигатель на «звезде» фактически на пониженном напряжении (то есть двигателю в нашем примере надо 660 вольт при соединении звездой, а мы ему даем 380), а потом мы его переключаем в треугольник, но он уже работает на номинальных или близко к номинальным оборотам и сильного броска тока не произойдет.

Простота схемы имеет ряд недостатков. Лучше всего использовать не два автомата, а рубильник, который будет переключать контакты. Ибо если включить сразу два автомата произойдет короткое замыкание. Еще один недостаток в том, что при такой схеме довольно сложно организовать реверсирование, только если делать еще один блок управления, но только уже реверсом. Ну и общий недостаток асинхронных трехфазных двигателей в том, что при соединении в треугольник температура двигателя выше и работает он жестче, чем при соединении звездой, но это и понятно, он ведь выдает полную мощность.

Еще один способ использование реостатов. Сложность заключается в том, что они должны быть мощные, их должно быть три штуки, и они должны регулироваться одновременно. Принцип работы мы рассмотрим чуть ниже.

Мир не стоит на месте и в сфере электроники придумали решение для таких случаев. Это решение называется «софстартер». Если говорить грубо, это почти частотный преобразователь, но простой до безобразия. В нем нет таких возможностей для программирования, как в преобразователе. А какие возможности есть, мы сейчас узнаем.

Принцип действия устройства плавного пуска двигателей

Оно простое. Вспоминаем закон Ома, сила тока в цепи прямо пропорциональна напряжению, а значит, чтобы уменьшить ток, надо уменьшит напряжение. Именно этим и занимается софстартер. По сути, это замена реостатов, о которых мы говорили выше. Принципиальная схема такого устройства вполне может выглядеть так:

Мы видим набор микросхем, управляющих тиристорными ключами, которые ограничивают напряжение, подаваемое на двигатель. В данном случае, схема очень примитивна, временной интервал здесь задан жестко и не регулируется. В современных моделях имеются различные настройки.

Принцип работы прост. Схемой задается некое начальное напряжение (30-60% от номинального) и задается время, в течение которого это начальное напряжение поднимется до номинального значения.На что стоит обратить внимание при выборе такого устройства. В первую очередь, конечно же, мощность (в ответственных случаях имеет смысл взять с запасом не менее 30%, это позволяет надеяться на то, что устройство проработает дольше), второй параметр это время повторного запуска (этот показатель говорит о том, через какой промежуток времени вы снова можете запустить полностью остановившийся двигатель). Остальные параметры определит только ваш аппетит и ваши запросы. Ну и как обычно – пожелание: удачных вам творений!

jelektro.ru

Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя

Александр Ситников (Кировская обл.)

Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.

Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети. При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора. Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах. Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается. На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном

Параллельно тиристорам подключены демпфирующие RC-цепочки R48, C20, C21, R50, C22, C23, R52, C24, C25, предотвращающие ложное включение тиристоров, а также варисторы R49, R51 и R53, поглощающие импульсы перенапряжения свыше 700 В. Обходные реле К1, К2, К3 типа TR91-12VDC-SC-C с номинальным током 40 А шунтируют силовые тиристоры после завершения пуска.

Питание системы управления осуществляется от трансформаторного блока питания, запитанного от межфазного напряжения Uав. В блок питания входят понижающие трансформаторы TV1, TV2, диодный мост VD1, токоограничивающий резистор R1, сглаживающие конденсаторы С1, С3, С5, помехоподавляющие конденсаторы С2, С4, С6 и линейные стабилизаторы DA1 и DA2, обеспечивающие напряжение 12 и 5 В соответственно.

Система управления построена с применением микроконтроллера DD1 типа PIC16F873. Микроконтроллер выдаёт импульсы управления тиристорами VS1 – VS6 путём «зажигания» оптосимисторов ОРТ5-ОРТ10 (MOC3052). Для ограничения тока в цепях управления тиристоров VS1 – VS6 служат резисторы R36 – R47. Импульсы управления подаются одновременно на два тиристора с задержкой относительно начала полуволны межфазного напряжения. Цепи синхронизации с сетевым напряжением состоят из трёх однотипных узлов, состоящих из зарядных резисторов R13, R14, R18, R19, R23, R24, диодов VD3 – VD8, транзисторов VT1 – VT3, накопительных конденсаторов С17 – С19 и оптопар OPT2 – OPT4. C выхода 4 оптопар OPT2, OPT3, OPT4 на входы микроконтроллера RC2, RC1, RC0 поступают импульсы длительностью примерно 100 мкс, соответствующие началу отрицательной полуволны фазных напряжений Uab, Ubc, Uca.

Диаграммы работы узла синхронизации приведены на рисунке 5. Если принять верхний график за сетевое напряжение Uав, то среднийграфик будет соответствовать напряжению на конденсаторе С17, а нижний – току через фотодиод оптопары ОРТ2. Микроконтроллер регистрирует поступающие на его входы синхроимпульсы, определяет наличие, порядок чередования, отсутствие «слипания» фаз, а также производит расчёт времени задержки импульсов управления тиристорами. Входы цепей синхронизации защищены от перенапряжения варисторами R17, R22 и R27.

С помощью потенциометров R2, R3, R4 задаются параметры, соответствующие диаграмме работы УПП, приведённой на рисунке 2; соответственно R2 – Tпуск, R3 – Тторм, R4 – Uначи Uотс. Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП. Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.

Команда «ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог. 1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“. Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

  • HL1 (зелёный) «Готовность» – отсутствие аварийных состояний, готовность к запуску;
  • HL2 (зелёный) «Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
  • HL3 (красный) «Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.

Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

На рисунке 6 приведён упрощённый алгоритм работы УПП. После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех. Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0», после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“. После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставокна потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратномпорядке.

www.zvezda-el.ru

Плавный пуск электродвигателя — ElectrikTop.ru


Электродвигатели – самые распространенные в мире электрические машины. Ни одно промышленное предприятие, ни один технологический процесс без них не обходится. Вращение вентиляторов, насосов, перемещение лент конвейеров, движение кранов – вот неполный, но уже весомый перечень задач, решаемых с помощью двигателей.

Однако есть один нюанс работы всех без исключения электромоторов: в момент старта они кратковременно потребляют большой ток, называемый пусковым.

Чем опасен пусковой ток электродвигателя

При подаче напряжения на обмотку статора скорость вращения ротора равна нулю. Ротор нужно стронуть с места и раскрутить до номинального частоты вращения. На это тратится значительно большая энергия, чем та, что нужна для номинального режима работы.

Под нагрузкой пусковые токи больше, чем на холостом ходу. К весу ротора прибавляется механическое сопротивление вращению от приводимого двигателем в движение механизма. На практике влияние этого фактора стремятся минимизировать. Например, у мощных вентиляторов на момент запуска автоматически закрываются шиберы в воздуховодах.

В момент протекания пускового тока из сети потребляется значительная мощность, расходуемая на выведение электродвигателя на номинальный режим работы. Чем мощнее электромотор, тем большая мощность для разгона ему требуется. Не все электрические сети переносят этот режим без последствий.

Перегрузка питающих линий неизбежно приводит к снижению напряжения в сети. Это не только еще более затрудняет процесс запуска электродвигателей, но и влияет на других потребителей.

Да и сами электродвигатели во время пусковых процессов испытывают повышенные механические и электрические нагрузки. Механические связаны с увеличением вращающего момента на валу. Электрические же, связанные с кратковременным увеличением тока, воздействуют на изоляцию обмоток статора и ротора, контактные соединения и пусковую аппаратуру.

Методы снижения пусковых токов

Маломощные электромоторы с недорогой пускорегулирующей аппаратурой вполне достойно запускаются и без применения каких-либо средств. Снижать их пусковые токи или изменять частоту вращения нецелесообразно экономически.

Но, когда влияние на режим работы сети в процессе запуска оказывается существенным, пусковые токи требуют снижения. Этого добиваются за счет:

  • применения электродвигателей с фазным ротором;
  • использование схемы для переключения обмоток со звезды на треугольник;
  • использование устройств плавного пуска;
  • использование частотных преобразователей.

Для каждого механизма подходит один или несколько указанных методов.

Электродвигатели с фазным ротором

Применение асинхронных электродвигателей с фазным ротором на участках работы с тяжелыми условиями труда – самая древняя форма снижения пусковых токов. Без них невозможна работа электрифицированных кранов, экскаваторов, а также – дробилок, грохотов, мельниц, редко запускающихся при отсутствии продукции в приводимом механизме.

Снижение пускового тока достигается за счет поэтапного вывода из цепи ротора резисторов. Первоначально, в момент подачи напряжения, к ротору подключено максимально возможное сопротивление. По мере разгона реле времени один за другим включают контакторы, шунтирующие отдельные резистивные секции. В конце разгона добавочное сопротивление, включенное к цепи ротора, равно нулю.

Крановые двигатели не имеют автоматического переключения ступеней с резисторами. Это происходит по воле крановщика, передвигающего рычаги управления.

Переключение схемы соединения обмоток статора

В брно (блок распределения начала обмоток) любого трехфазного электромотора выведено 6 выводов от обмоток всех фаз. Таким образом, их можно соединить либо в звезду, либо в треугольник.

За счет этого достигается некоторая универсальность применения асинхронных электродвигателей. Схема включения звездой рассчитывается на большую ступень напряжения (например, 660В), треугольником – на меньшую (в данном примере – 380В).

Но при номинальном напряжении питания, соответствующем схеме с треугольником, можно воспользоваться схемой со звездой для предварительного разгона электромотора. При этом обмотка работает на пониженном напряжении питания (380В вместо 660), и пусковой ток снижается.

Для управления процессом переключения потребуется дополнительный кабель в брно электродвигателя, так как задействуются все 6 выводов обмоток. Устанавливаются дополнительные пускатели и реле времени для управления их работой.

Частотные преобразователи

Первые два метода можно применить не везде. А вот последующие, ставшие доступными относительно недавно, позволяют осуществить плавный пуск любого асинхронного электродвигателя.

Частотный преобразователь – сложное полупроводниковое устройство, сочетающее силовую электронику и элементы микропроцессорной техники. Силовая часть выпрямляет и сглаживает сетевое напряжение, превращая его в постоянное. Выходная часть из этого напряжения формирует синусоидальное с изменяемой частотой от нуля до номинального значения – 50 Гц.

За счет этого достигается экономия электроэнергии: приводимые во вращение агрегаты не работают с избыточной производительностью, находясь в строго требуемом режиме. К тому же технологический процесс получает возможность тонко настраиваться.

Но важное в спектре рассматриваемой проблемы: частотные преобразователи позволяют осуществлять плавный пуск электродвигателя, без толчков и рывков. Пусковой ток полностью отсутствует.

Устройства плавного пуска

Устройство плавного пуска электродвигателя – это тот же частотный преобразователь, но с ограниченным функционалом. Работает он только при разгоне электродвигателя, плавно изменяя скорость его вращения от минимально заданного значения до номинальной.

Чтобы исключить бесполезную работу устройства по окончании разгона электродвигателя, рядом устанавливается шунтирующий контактор. Он подключает электродвигатель напрямую к сети после завершения запуска.

При выполнении модернизации оборудования – это самый простой метод. Он зачастую может быть реализован своими руками, без привлечения узкопрофильных специалистов. Устройство устанавливается на место магнитного пускателя, управляющего пуском электромотора. Может потребоваться замена кабеля на экранированный. Затем в память устройства вносятся параметры электромотора, и оно готово к действию.

А вот с полноценными частотными преобразователями справиться самостоятельно по силам не каждому. Поэтому их применение в единичных экземплярах обычно лишено смысла. Установка частотных преобразователей оправдана лишь при проведении общей модернизации электрооборудования предприятия.

electriktop.ru

Плавный пуск электродвигателя своими руками

Устройство плавного пуска электродвигателя

Одним из самых главных недостатков асинхронных электродвигателей с короткозамкнутым ротором является наличие у них больших пусковых токов. И если теоретически методы их снижения были хорошо разработаны уже довольно давно, то вот практически все эти разработки (использование пусковых резисторов и реакторов, переключение со звезды на треугольник, использование тиристорных регуляторов напряжения и т. д.) применялись очень в редких случаях.

Все резко изменилось в наше время, т.к. благодаря прогрессу силовой электроники и микропроцессорной техники на рынке появились компактные, удобные и эффективные устройства плавного пуска электродвигателей (софтстартеры) .

Устройства плавного пуска асинхронных двигателей — это устройства, которые значительно увеличивают срок эксплуатации электродвигателей и исполнительных устройств, работающих от вала этого двигателя. При подаче напряжения питания обычным способом, происходят процессы, разрушающие электродвигатель.

Пусковой ток и напряжение на обмотках двигателей, в момент переходных процессов, значительно превышают допустимые значения. Это приводит к износу и пробою изоляции обмоток, подгоранию контактов, значительно сокращает срок службы подшипников, как самого двигателя, так и устройств сидящих на валу электродвигателя.

Для обеспечения необходимой пусковой мощности, приходится увеличивать номинальную мощность питающих электрических сетей, что приводит к значительному удорожанию оборудования и перерасходу электроэнергии.

Кроме того просадка напряжения питания в момент пуска электродвигателя — может привести к порче оборудования, задействованного от этих же источников питания, эта же просадка наносит серьезный ущерб оборудованию электроснабжения, уменьшает срок его службы.

В момент пуска электродвигатель является серьезным источником электромагнитных помех, нарушающих работу электронного оборудования, запитанного от этих же электрических сетей, или находящихся в непосредственной близости от двигателя.

Если произошла аварийная ситуация и двигатель перегрелся или сгорел, то, в результате нагрева, параметры трансформаторной стали изменятся настолько, что номинальная мощность, отремонтированного двигателя, может снизиться на величину до 30%, в результате, этот электродвигатель окажется непригодным к использованию на прежнем месте.

Устройство плавного пуска электродвигателей объединяет функции плавного пуска и торможения, защиты механизмов и электродвигателей, а также связи с системами автоматизации.

Плавный пуск с помощью софтстартера реализуется медленным подъемом напряжения для плавного разгона двигателя и снижения пусковых токов. Регулируемыми параметрами обычно являются начальное напряжение, время разгона и время торможения электродвигателя. Очень маленькое значение начального напряжения может очень сильно уменьшить пусковой момент электродвигателя, поэтому оно обычно устанавливается 30-60% от значения номинального напряжения.

При запуске напряжения скачком увеличивается до устанволенного значения начального напряжения, а потом плавно за заданное время разгона поднимается до номинального значения. Электродвиагетль будет при этом плавно и быстро разгоняться до номинальной скорости.

Применение софстартеров позволяет уменьшить пусковой бросок тока до минимальных значений, уменьшает количество применяемых реле и контакторов. выключателей. Обеспечивает надежную защиту электродвигателей от аварийной перегрузки, перегрева, заклинивания, обрыва фазы, снижает уровень электромагнитных помех.

Устройства плавного пуска электродвигателей просты в устройстве, монтаже и эксплуатации.

Пример схемы подключения устройства плавного пуска электродвигателя

При выборе устройства плавного пуска необходимо учитывать следующее:

1. Ток электродвигателя. Необходимо выбирать устройство плавного пуска по полному току нагрузки двигателя, который не должен превышать ток предельной нагрузки устройства плавного пуска.

3. Напряжение сети. Каждое устройство плавного пуска рассчитано на работу при определенном напряжении. Напряжение сети питания должно соответствовать паспортному значению софтстартера.

Устройства плавного пуска

скачать прайс-лист скачать руководство

Плавный пуск — одно из неотъемлемых условий для безопасной и долговременной работы трехфазных асинхронных электродвигателей.

Серия LD1000

Устройство плавного пуска серии LD1000 обеспечивает плавный разгон и торможение электродвигателя, тем самым снижает нагрузку на электросеть и пускаемые механизмы. Данную задачу LD1000 реализует за счѐт ограничения пускового тока и крутящего момента путѐм плавного нарастания подаваемого напряжения на электродвигатель.

Если Вы не уверены какое именно устройство плавного пуска выбрать, вам всегда помогут наши менеджеры по телефону +7 495 981-54-56.

Только здесь вы можете купить устройства плавного пуска, при оптимальном соотношении цена — качество!

Основные технические характеристики:

  • Напряжение питания 380В, 50 Гц
  • Ограничение пускового тока до 450% от номинального тока двигателя
  • Управление обходным контактором (система «bypass»)
  • Защита электродвигателя (короткое замыкание, перенапряжение, падение напряжения, перегрузка, обрыв фазы, перегрузка по току и др.)
  • Рабочая температура от 0 до +50˚С, относительная влажность воздуха не более 95% без образования конденсата
  • Максимальное время разгона 60 с.

Плавный пуск вентилятора охлаждения

Наконец-то появилась свободная минутка и я решил сделать очередное устройство для своего авто) Добрался я в этот раз до вентилятора системы охлаждения двигателя. В штатном варианте, когда включается ВСОД, происходит просадка напряжения бортовой сети. Когда я поставил сделанное устройство у меня получилось плавное нарастание тока в обмотке двигателя при его включении, исключив резкий скачок тока, а также провалов и резкой просадки напряжения бортовой сети

P.S. Данное устройство размещается максимально близко к вентилятору иначе могут образоваться помехи, которые будут мешать нормальной работе автомобиля.

Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя

Устройства плавного пуска электродвигателя

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применения разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи

Пусковые токи достигают значений в 7 10 раз выше, чем в рабочем режиме. Это приводит к просаживанию напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя. Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

Перегрузки исполнительных механизмов

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз. Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов. Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяет избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

Устройства плавного пуска в настоящее время выпускается многими фирмами, например Siemens, Danfoss, Schneider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменные устройства обладают одним недостатком, — достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

В первой части статьи рассказывалось о специализированной микросхеме КР1182ПМ1. представляющей фазовый регулятор мощности. Были рассмотрены типовые схемы ее включения, устройства плавного запуска ламп накаливания и просто регуляторы мощности в нагрузке. На основе этой микросхемы возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на рисунке 1.

Рисунок 1. Схема устройства плавного пуска двигателя.

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

Описание схемы

В конструкции используется трехфазный электродвигатель 50 Гц, 380 В. Обмотки двигателя, соединенные звездой, подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка звезды подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах включенных встречно – параллельно. В конструкции применены импортные тиристоры типа 40TPS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение 1200 В. Кроме них в ключах присутствуют еще несколько элементов. Их назначение следующее: демпфирующие RC цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8C11, R9C12, R10C13), а с помощью варисторов RU1 RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500 В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1 DA3 типа КР1182ПМ1. Эти микросхемы достаточно подробно были рассмотрены в первой части статьи. Конденсаторы С5 С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1 К3 в устройстве имеется блок питания, который состоит всего из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1 К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1 DA3 через резисторы R1 R3. Это обстоятельство не дает заряжаться конденсаторам С1 С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1 К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1 С3 от внутренних генераторов тока. Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя. Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1 К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1 С3 через резисторы R1 R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи. Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный. В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и перекосом фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15 17 В.

В качестве реле К1 К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11 С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10 15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ – 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя. Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать опыты с электричеством. Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60 100 Вт. При испытаниях следует добиться, чтобы лампы разжигались равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1 С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1 R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами. Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Источники.

Устройство плавного пуска асинхронных двигателей своими руками

На чтение 32 мин. Обновлено

Устройство плавного пуска асинхронных двигателей своими руками

Александр Ситников (Кировская обл.)

Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.

Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети. При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора. Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах. Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается. На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном

Источник

Оптимальные схемы для плавного пуска электродвигателя, созданных своими руками

Широкое использование асинхронных трехфазных двигателей в различных механизмах и оборудовании часто сталкивается с проблемой резкого пуска силовой установки, что во многих случаях влияет на долговечность эксплуатации или приводит к выходу из строя приводимых в действие элементов.

Кроме того, при резком запуске, пусковой ток электродвигателя в несколько раз превышает его рабочие показатели и тем самым влияет на срок эксплуатации не только электрического оборудования, но и сетей, к которым он подключен. Для устранения этого недостатка и негативных его последствий для оптимальной работы применяют устройство плавного пуска (УПП) электродвигателя.

Функции прибора

Аппаратура, которая осуществляет процесс плавного пуска также реализует и функцию торможения, что тоже немаловажно для лояльной работы многих агрегатов на основе электрических приводов.

Софтстартеры, так называют устройства плавного пуска, реализованы на базе симисторов, которые в отличие от других схем запуска электродвигателя обеспечивает поступательный бесступенчатый разгон двигателя, ограничивая пусковой ток.

Этот принцип не только оптимизирует пусковой момент, но выполняет функции управления и защиты, а кроме того дает вполне определяемый экономический эффект.

Следует определить, что УПП в большинстве случаев реализует функции:

  • по ограничению пускового тока до 3 – 4,5 номинального значения,
  • понижению напряжения питания при наличии соответствующего по мощности трансформатора и подводящих шин,
  • оптимизации пускового и тормозного момента,
  • аварийной защиты сети от токовых перегрузок,
  • предотвращение заклинивания вала электродвигателя.

При этом необходимо понимать, что УПП не может производить регулировку частоты вращения, реверсировать направление вращения, увеличивать пусковой момент и снижать пусковой ток до значения ниже, чем требуется для старта вращения ротора.

Плавный пуск электродвигателя может быть реализован несколькими вариантами включения симисторов в цепи управления и разделяется на однофазные, двухфазные и трехфазные схемы включения, каждая из которых имеет функциональные отличия и стоимость исполнения соответственно. Кроме того, при использовании для питания двигателя соединения типа «треугольник» существует возможность включить симистор в разрыв обмотки.

Симистор, как известно, представляет собой включенных два встречно параллельных тиристора с управляющим входным каналом. В схеме УПП тиристоры исполняют роль быстродействующих контакторов, которые включаются напряжением, а выключаются током.

Однофазная схема регулирования (рис.

1) предполагает запуск электродвигателя мощностью не более 11 кВт в том случае, если требуется смягчить пусковой удар, а уже торможение, длительный запуск и ограничения на пусковой ток не имеют значения, так как при этом варианте реализовать такие функции нет возможности. Подобные УПП в последнее время сняты с производства как следствие значительного удешевления полупроводниковых приборов, в том числе и тиристоров.

Двухфазные УПП (рис. 2) применяются для регулирования пуска двигателей мощностью до 250 кВт. Такие устройства, хотя иногда и снабжают байпасными контакторами (by pass) с целью удешевления, но этим решением не устраняют недостаток, заключенный в несимметричности питания каждой фазы, что в итоге может привести к перегреву.

Самой совершенной схемой, осуществляющей не только мягкий пуск электродвигателя, но и обеспечивающей универсальное применение УПП, является трехфазное регулирование.

Мощность управляемых УПП двигателей ограничивается тепловой и электрической прочностью симисторов, а функциональность таких устройств позволяет реализовать множество решений.

в том числе динамическое торможение, подхват обратного хода и симметричность ограничений силы магнитного поля и тока.

Важной составляющей устройства плавного пуска является байпасный контактор, о котором упоминалось ранее, позволяющий создать наиболее комфортные условия, как для работы электродвигателей, так и для самого УПП.

Байпасный, или иначе ,обходной контактор (БК), предназначен для облегчения теплового режима системы плавного запуска для питания двигателя при выходе на установленные обороты.

Схематично включение БК выглядит, как указано на рисунке.

Варианты схем включения УПП в систему питания и управления электродвигателем

Стандартная схема включения устройства для плавного запуска электродвигателя предусматривает использование магнитного пускателя, теплового реле, быстродействующих предохранителей или автоматических выключателей, причем, последние должны иметь регулировку по токам перегрузки. Ниже на рисунках изображено принципиальное включение элементов УПП относительно обмоток электродвигателя по трех проводной и шести проводной схеме.

Схема включения, исключающая потерю мощности

В предложенной схеме используется шунтирующий пускатель, который обеспечивает работу двигателя после его выхода на установленное число оборотов и отключает устройство плавного пуска.

Важной характеристикой шунтирующего (байпасного) пускателя является то, что он в отличие от сетевого адаптера не должен проводить через себя пусковой ток и рассчитываются его параметры только по номинальной (установившейся) нагрузке.

Подобная схема включения УПП является единственно правильной при управлении параллельно несколькими двигателями, которые должны работать в синхронном режиме. Кроме того байпасная схема рекомендуется к применению для двигателей большой мощности.

Современные устройства плавного пуска выпускаются с возможностью сопряжения с программируемыми контролерами и компьютерными системами через совместимый интерфейс и могут включаться по требованию оператора или общей системы управления.

Кроме всех преимуществ, отмеченных выше, стоит отметить, что изменение характеристик пусковых токов несет экономическую выгоду, которая определяется сохранностью оборудования и питающих сетей и может быть просчитана в долгосрочном режиме.

Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя

Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.

Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети.

При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора.

Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах.

Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается.

На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном Читайте также: Как подключить блок розетка-выключатель в одном корпусе: схема и последовательность действий

Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП.

Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.

Команда «ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог.

1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“.

Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

  • HL1 (зелёный) «Готовность» – отсутствие аварийных состояний, готовность к запуску;
  • HL2 (зелёный) «Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
  • HL3 (красный) «Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.

Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

На рисунке 6 приведён упрощённый алгоритм работы УПП.

После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех.

Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0», после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“.

После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок
на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном
порядке.

Схема плавного запуска трехфазного двигателя, выполненная на базе микросхем КР1182ПМ1

Устройства плавного пуска электродвигателя

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применении разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи достигают значений в 7-10 раз выше, чем в рабочем режиме.

Это привод к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя.

Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз.

Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов.

Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяют избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

Устройства плавного пуска в настоящее время выпускается многими фирмами, например, Siemens, Danfoss, Scheider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменных устройства обладают одним недостатком, — достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

На основе микросхемы КР1182ПМ1 возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на Рис.1.

Рис.1. Схема устройства плавного пуска двигателя

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

В конструкции используется трехфазный электродвигатель 50 Гц, 350 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах, включенных встречно-параллельно. В конструкции применены импортные тиристоры типа 40ТРS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение – 1200 В.

Кроме них в ключах присутствуют еще несколько элементов.

Их назначение следующее: демпфирующие RC-цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8С11, R9С12, R10С13), а с помощью варисторов RU1- RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1-DA3 типа КР1182ПМ1. Конденсаторы С5-С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1-К3 в устройстве имеется блок питания, который состоит из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока.

Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя.

Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи.

Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный.

В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.

В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ– 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя.

Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством».

Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами.

Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Плавный пуск электродвигателя

Электродвигатели – самые распространенные в мире электрические машины. Ни одно промышленное предприятие, ни один технологический процесс без них не обходится. Вращение вентиляторов, насосов, перемещение лент конвейеров, движение кранов – вот неполный, но уже весомый перечень задач, решаемых с помощью двигателей.

Однако есть один нюанс работы всех без исключения электромоторов: в момент старта они кратковременно потребляют большой ток, называемый пусковым.

Чем опасен пусковой ток электродвигателя

При подаче напряжения на обмотку статора скорость вращения ротора равна нулю. Ротор нужно стронуть с места и раскрутить до номинального частоты вращения. На это тратится значительно большая энергия, чем та, что нужна для номинального режима работы.

Под нагрузкой пусковые токи больше, чем на холостом ходу. К весу ротора прибавляется механическое сопротивление вращению от приводимого двигателем в движение механизма. На практике влияние этого фактора стремятся минимизировать. Например, у мощных вентиляторов на момент запуска автоматически закрываются шиберы в воздуховодах.

В момент протекания пускового тока из сети потребляется значительная мощность, расходуемая на выведение электродвигателя на номинальный режим работы. Чем мощнее электромотор, тем большая мощность для разгона ему требуется. Не все электрические сети переносят этот режим без последствий.

Перегрузка питающих линий неизбежно приводит к снижению напряжения в сети. Это не только еще более затрудняет процесс запуска электродвигателей, но и влияет на других потребителей.

Да и сами электродвигатели во время пусковых процессов испытывают повышенные механические и электрические нагрузки. Механические связаны с увеличением вращающего момента на валу. Электрические же, связанные с кратковременным увеличением тока, воздействуют на изоляцию обмоток статора и ротора, контактные соединения и пусковую аппаратуру.

Методы снижения пусковых токов

Маломощные электромоторы с недорогой пускорегулирующей аппаратурой вполне достойно запускаются и без применения каких-либо средств. Снижать их пусковые токи или изменять частоту вращения нецелесообразно экономически.

Но, когда влияние на режим работы сети в процессе запуска оказывается существенным, пусковые токи требуют снижения. Этого добиваются за счет:

  • применения электродвигателей с фазным ротором;
  • использование схемы для переключения обмоток со звезды на треугольник;
  • использование устройств плавного пуска;
  • использование частотных преобразователей.

Для каждого механизма подходит один или несколько указанных методов.

Электродвигатели с фазным ротором

Применение асинхронных электродвигателей с фазным ротором на участках работы с тяжелыми условиями труда – самая древняя форма снижения пусковых токов. Без них невозможна работа электрифицированных кранов, экскаваторов, а также – дробилок, грохотов, мельниц, редко запускающихся при отсутствии продукции в приводимом механизме.

Снижение пускового тока достигается за счет поэтапного вывода из цепи ротора резисторов. Первоначально, в момент подачи напряжения, к ротору подключено максимально возможное сопротивление. По мере разгона реле времени один за другим включают контакторы, шунтирующие отдельные резистивные секции. В конце разгона добавочное сопротивление, включенное к цепи ротора, равно нулю.

Крановые двигатели не имеют автоматического переключения ступеней с резисторами. Это происходит по воле крановщика, передвигающего рычаги управления.

Переключение схемы соединения обмоток статора

В брно (блок распределения начала обмоток) любого трехфазного электромотора выведено 6 выводов от обмоток всех фаз. Таким образом, их можно соединить либо в звезду, либо в треугольник.

За счет этого достигается некоторая универсальность применения асинхронных электродвигателей. Схема включения звездой рассчитывается на большую ступень напряжения (например, 660В), треугольником – на меньшую (в данном примере – 380В).

Но при номинальном напряжении питания, соответствующем схеме с треугольником, можно воспользоваться схемой со звездой для предварительного разгона электромотора. При этом обмотка работает на пониженном напряжении питания (380В вместо 660), и пусковой ток снижается.

Для управления процессом переключения потребуется дополнительный кабель в брно электродвигателя, так как задействуются все 6 выводов обмоток. Устанавливаются дополнительные пускатели и реле времени для управления их работой.

Частотные преобразователи

Первые два метода можно применить не везде. А вот последующие, ставшие доступными относительно недавно, позволяют осуществить плавный пуск любого асинхронного электродвигателя.

Частотный преобразователь – сложное полупроводниковое устройство, сочетающее силовую электронику и элементы микропроцессорной техники. Силовая часть выпрямляет и сглаживает сетевое напряжение, превращая его в постоянное. Выходная часть из этого напряжения формирует синусоидальное с изменяемой частотой от нуля до номинального значения – 50 Гц.

За счет этого достигается экономия электроэнергии: приводимые во вращение агрегаты не работают с избыточной производительностью, находясь в строго требуемом режиме. К тому же технологический процесс получает возможность тонко настраиваться.

Но важное в спектре рассматриваемой проблемы: частотные преобразователи позволяют осуществлять плавный пуск электродвигателя, без толчков и рывков. Пусковой ток полностью отсутствует.

Устройства плавного пуска

Устройство плавного пуска электродвигателя – это тот же частотный преобразователь, но с ограниченным функционалом. Работает он только при разгоне электродвигателя, плавно изменяя скорость его вращения от минимально заданного значения до номинальной.

Чтобы исключить бесполезную работу устройства по окончании разгона электродвигателя, рядом устанавливается шунтирующий контактор. Он подключает электродвигатель напрямую к сети после завершения запуска.

При выполнении модернизации оборудования – это самый простой метод. Он зачастую может быть реализован своими руками, без привлечения узкопрофильных специалистов. Устройство устанавливается на место магнитного пускателя, управляющего пуском электромотора. Может потребоваться замена кабеля на экранированный. Затем в память устройства вносятся параметры электромотора, и оно готово к действию.

А вот с полноценными частотными преобразователями справиться самостоятельно по силам не каждому. Поэтому их применение в единичных экземплярах обычно лишено смысла. Установка частотных преобразователей оправдана лишь при проведении общей модернизации электрооборудования предприятия.

Плавный пуск для болгарки своими руками – экономия ваших средств и защита электроинструмента

В связи с особенностями конструкции, старт угловой шлифовальной машины сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:

    1. Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;

ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.

    1. При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;

В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.

    1. Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;

В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.

    1. Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.

Поэтому наличие защитного кожуха обязательно.

ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.

Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.

Схематический чертеж расположение рабочих органов и систем управления в болгарке

Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.

Регулировка оборотов находится на рукоятке инструмента

Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов.

Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.
Выход один – установить плавный пуск болгарки самостоятельно.

Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.

Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.

Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

Электрическая схема регулировки плавного пуска для болгарки

Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения.

По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора.

Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

Посмотрите видео с подробным разъяснением как сделать и какую схему применить

В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.

Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

Остальные детали схемы работают следующим образом:

  • Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
  • Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.

Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.
Схема рабочая, многократно исполненная домашними мастерами.

Устройство плавного пуска электродвигателя :

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный.

Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %.

Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться «звездой» и «треугольником». Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы «звезда» и «треугольник».

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме «звезда», когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы «треугольник» контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме «треугольник» электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя:

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал.

Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные.

Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Виды УПП

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска.

Недостатком является отсутствие регулирования момента по нагрузке на двигатель.

Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Выбор УПП

Большинство УПП — это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых — это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Выбор УПП

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

Упп для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

Источник

Устройство плавного пуска электродвигателя 2.2-3 кВт, ATS01N206QN (6 А)| Schneider Electric

Устройство плавного пуска 2.2-3 кВт, ATS01N206QN (6 А)

Данный софт-стартер позволяет осуществить плавный пуск и останов асинхронного трехфазного электродвигателя мощностью до 3 кВт.

Тип устройстваУстройство плавного пуска и торможения
МаркаAltistart 01
ПрименениеКонвейеры; ленточные транспортеры; насосы; вентиляторы; компрессоры; автоматические двери; небольшие портальные краны; ременные механизмы.

 

СЕТЕВОЕ ПИТАНИЕ

Напряжение питания3х380-415 В, 50/60 Гц

 

ПРИВОД

Номинальный ток, А6
Кол-во контролируемых фаз2
ЗащитаНет
Функция байпасаВстроенный байпас
Частота коммутации10 пусков/час (время пуска 10 с)
Мощность двигателя (при U=400В), кВт3
Тип двигателяАсинхронный

 

ВХОДЫ/ВЫХОДЫ И ИНТЕРФЕЙС

Аналоговые входы
Аналоговые выходы
Дискретные входы3 входа =24 В
Дискретные выходы1 выход =24 В, 1 релейный выход
ИнтерфейсНет

 

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Температура окружающей среды при эксплуатации-10…+40 °C без ухудшения характеристик, +50 °C с ухудшением
Температура окружающей среды при эксплуатации (мин), °С-10
Температура окружающей среды при эксплуатации (макс), °С50
Влажность окружающей среды при эксплуатацииОт 5 до 95 % без конденсации и каплеобразования, в соответствии с МЭК 60068-2-3
Температура окружающей среды при хранении-25…+70 °C
Степень защиты корпусаIP20
ИсполнениеНавесное
Габаритные размеры (В/Ш/Г), мм124/45/130,7
Вес, кг0.42

Страна производитель — Германия.

Гарантия — 12 месяцев.

Подробная техническая информация об устройстве плавного пуска ATS01N206QN в Инструкции.

Руководство по плавному запуску | Что такое Soft Start

Вы когда-нибудь задумывались, есть ли альтернативный способ запуска двигателей различных машин и оборудования? Обычный стартап выполняет свою работу, но во многих отношениях она не идеальна. Есть ли альтернативный метод, который вы могли бы использовать? Если так, то, что это?

Если вы когда-либо задавали себе какой-либо из этих вопросов, мы рады сообщить вам, что ответ положительный — есть альтернативный метод.Это называется «мягкий старт». Сегодня мы потратим немного времени на то, чтобы обсудить это с вами.

Что такое плавный пуск двигателя?

Устройство плавного пуска — это дополнительное устройство, которое можно добавить к обычному электродвигателю переменного тока, что позволит двигателю использовать другой метод запуска. Назначение этого устройства — снизить нагрузку на двигатель во время типичной фазы включения двигателя.

Для этого устройство плавного пуска будет медленно и постепенно подавать на двигатель возрастающие напряжения.Это обеспечивает плавное ускорение мощности вместо внезапного и резкого скачка мощности, который потенциально может вызвать повреждение двигателя и машины в целом.

В то время как в большинстве типичных запусков в двигатель сразу подается электрический ток, плавный пуск обеспечивает плавный и устойчивый линейный наклон мощности. Это снижает общий износ цепей двигателя, в результате чего в целом машина становится более здоровой, и вероятность ее быстрого выхода из строя снижается. В зависимости от того, какую конкретную модель устройства плавного пуска вы выберете, некоторые из них могут регулировать пусковое напряжение и время, необходимое для полного включения двигателя.

Как работает мягкий старт?

По сути, устройство плавного пуска работает, контролируя величину напряжения, протекающего через цепи двигателя. Это достигается за счет ограничения крутящего момента в двигателе. Это, в свою очередь, позволяет устройству плавного пуска снижать напряжение и позволяет ему постепенно прекращать снижение напряжения, чтобы обеспечить плавное изменение тока.

В дополнение к этому в некоторых моделях устройств плавного пуска могут использоваться твердотельные устройства. Эти устройства — еще одно средство управления количеством электрического тока, протекающего через двигатель.Это позволяет устройству плавного пуска управлять током в трех отдельных фазах, чтобы обеспечить более точные уровни управления.

Многие электрические устройства плавного пуска также используют серию кремниевых выпрямителей (SCR) или тиристоров, чтобы ограничить напряжение до более управляемой величины для двигателя, когда он начинает запускаться. Эти тиристоры имеют состояние ВКЛ, когда они позволяют току течь, и состояние ВЫКЛ, где они контролируют и ограничивают электрический ток. Когда вы включаете свою машину, эти SCR активируются, ограничивают напряжение, а затем расслабляются, когда машина достигает полной мощности.Это снижает нагрев двигателя и снижает общую нагрузку.

Хотя электрические устройства плавного пуска являются одним из примеров возможного решения для плавного пуска, они не единственное доступное решение. Существуют также механические варианты, которые меньше зависят от электрического тока и больше от физических, механических решений.

В механических устройствах плавного пуска

используются муфты и различные муфты, в которых используются жидкости, стальная дробь или магнитные силы для уменьшения крутящего момента в двигателе. Как обсуждалось ранее, это ограничивает скачок напряжения, протекающего через двигатель, и позволяет ему включаться более мягко и легко.

Каковы некоторые распространенные применения устройств плавного пуска?

Теперь, когда у вас есть некоторое представление о том, что такое мягкий старт, как он работает и для чего он используется, возникает следующий логичный вопрос: когда мне нужен мягкий старт? Он нужен для каждого мотора? Это необходимо только для некоторых из ваших машин, или вам следует установить устройство плавного пуска на каждый свой двигатель?

Первый ответ: ни один двигатель не нуждается в устройстве плавного пуска. Без них может обойтись любой мотор.Это означает, что вы не должны испытывать чрезмерного давления при их установке.

Тем не менее, существует множество двигателей, для которых установка устройства плавного пуска принесет большую пользу, и некоторые двигатели принесут больше пользы, чем другие. Это связано с тем, что некоторые двигатели более подвержены выходу из строя и износу из-за чрезмерного электрического тока во время фазы запуска. Вот лишь несколько мест, где устройства плавного пуска обычно используются для облегчения процесса запуска:

1. Насосы

В насосах различного назначения существует риск скачков напряжения. При установке устройства плавного пуска и постепенной подачи электрического тока на двигатель этот риск значительно снижается.

2. Конвейерные ленты

С конвейерными лентами всегда возможно, что внезапный запуск может вызвать проблемы. Ремень может дергаться и смещаться. Обычный пуск также увеличивает ненужную нагрузку на компоненты привода ремня.При установке устройства плавного пуска ремень будет запускаться более плавно, и у ремня будет больше шансов оставаться на правильном пути.

3. Вентиляторы и аналогичные системы

В системах с ременными приводами потенциальные проблемы аналогичны тем, которые возникают с конвейерными лентами. Внезапный и резкий старт означает, что ремень может соскользнуть с пути. Мягкий запуск исправляет эту проблему.

4. Электрические вертолеты

Нетрудно понять, почему для вертолета может быть катастрофой внезапный, резкий старт.Это может быть опасно, если пропеллеры внезапно и резко начнут работать с внезапным всплеском. Вместо этого мягкий пуск позволяет гребным винтам запускаться плавно.

В чем преимущество использования устройств плавного пуска?

Почему вы должны использовать устройства плавного пуска? В конце концов, это будет означать вложение дополнительных денег. Это действительно того стоит? Стоит ли вкладывать свое время и деньги в это дополнение к вашему мотору?

Хотя это зависит от самого двигателя, мы думаем, что оно того стоит.Вот некоторые из основных преимуществ, которые вы можете ожидать от установки устройства плавного пуска на свой двигатель:

1. Сниженное потребление энергии

Снижение количества энергии, необходимой вашим машинам, всегда является идеальной целью. Имеет смысл только то, что устройство плавного пуска способствовало этому. При обычном пуске двигатель немедленно начинает расходовать максимальное количество энергии и продолжает это делать все время, пока двигатель работает.

При плавном пуске напряжение постепенно нарастает до максимума.Это означает, что в целом расходуется меньше энергии.

2. Снижение риска скачков напряжения

Когда максимальное напряжение немедленно достигает вашего двигателя, чтобы запустить его, всегда есть вероятность, что цепи будут перегружены, и ваш двигатель испытает скачок напряжения. Плавный пуск — отличная мера защиты от скачков напряжения. Вместо того, чтобы бросать в цепи сразу всю мощность, напряжение нарастает постепенно.

3. Регулируемое время разгона

Не все устройства плавного пуска оснащены этой опцией, но некоторые из них есть, и это дает значительное преимущество. С помощью этой опции вы можете выбрать, сколько времени вы хотите, чтобы ваш двигатель включался.

Если вы знаете, что ваш двигатель или машина подвержены скачкам напряжения или, например, старые и изношенные, вы можете настроить их так, чтобы они включались через некоторое время. Если, с другой стороны, вы знаете, что ваша машина прочная и надежная, возможно, у вас все в порядке, если ей потребуется меньше времени для включения.В любом случае такая гибкость и настраиваемость — огромное преимущество.

4. Потенциальное увеличение количества возможных пусков в час

Для обычного включения двигателя требуется много энергии. Это означает, что, в зависимости от машины, она может не включать чрезмерное количество раз в течение определенного часа.

Однако при плавном пуске ваш двигатель будет расходовать меньше энергии при каждом включении, а это означает, что он может включаться чаще.

5. Снижение риска перегрева

Сильный выброс энергии, связанный с обычным запуском, иногда может вызвать перегрев двигателя. Этот перегрев может быть безвредным, но он также может привести к временному отключению двигателя и даже вызвать долговременное повреждение двигателя.

Само собой разумеется, что плавный пуск не требует этого начального выброса мощности. Вместо этого на двигатель подается небольшой скачок электричества, что значительно снижает риск перегрева.

6. Повышение операционной эффективности

Обычные стартапы иногда могут работать отлично. Однако в других случаях они могут вызвать проблемы. Двигатель может перегреться. Машина может работать неправильно. Возможно, произошел скачок напряжения.

Поскольку риск этих проблем устраняется или значительно снижается с помощью плавного пуска, ваша машина сможет работать более эффективно и с меньшим риском проблем и повреждений.

7. Увеличенный срок службы

Невозможно гарантировать что-то вроде срока службы машины.Все может случиться, и в любой момент может произойти повреждение. Однако можно поспорить, что, добавив к машине устройство плавного пуска, вы продлите срок ее службы.

В этом есть смысл — вы снижаете риск многих инцидентов и несчастных случаев, которые могут привести к окончанию срока службы машины.

В чем разница между плавным пуском и ЧРП?

ЧРП имеет некоторое сходство с устройством плавного пуска, но существует достаточно различий, чтобы выделить его в отдельный класс.Официально известный как частотно-регулируемый привод, частотно-регулируемый привод — это устройство управления двигателем, которое контролирует скорость асинхронного двигателя переменного тока. Это означает, что он может контролировать, насколько быстро двигатель работает во время циклов пуска и останова, а также во время обычного рабочего цикла.

Исходя из этого, легко увидеть сходство между ЧРП и плавным пуском. У обоих есть способ контролировать количество мощности, проходящей через двигатель во время его запуска, и оба могут помочь предотвратить такие вещи, как скачки напряжения и проблемы во время запуска.Однако они различаются по методу, который они используют для достижения этой цели.

Что использовать: устройство плавного пуска или частотно-регулируемый привод?

ЧРП обычно предпочтительнее, если вашей главной целью является экономия энергии. Это связано с тем, что частотно-регулируемый привод ограничивает не только скорость двигателя во время фазы включения. Это также может помочь вам контролировать скорость во время обычного рабочего цикла, а также во время фазы отключения питания. Это делает их идеальными для снижения мощности, когда она не нужна, что приводит к снижению общих затрат энергии.

ЧРП

также является хорошим выбором в ситуациях, когда важно иметь возможность контролировать скорость и плавность работы машины. Под это описание подходят такие приложения, как лифты и эскалаторы. В подобных приложениях вы сможете контролировать постоянную скорость этих единиц оборудования и не допускать возникновения неожиданных скачков напряжения.

Каковы некоторые распространенные причины неудач плавного запуска?

Каким бы прекрасным ни был плавный пуск, он не является безошибочным.Как и в случае любого другого оборудования или механизмов, правильное сочетание проблем может привести к их выходу из строя или поломке. Хотя в обозримом будущем устройство плавного пуска должно быть в хорошем рабочем состоянии, вы никогда не знаете, что может случиться.

Если вы заметили проблему или неисправность в устройстве плавного пуска, это может быть связано с одной из следующих проблем:

  • Слишком много тепла: Как упоминалось ранее, перегретая машина может вызвать множество других проблем.У машины с плавным пуском вероятность перегрева меньше, чем у машины с обычным пуском, но это все же возможно.
  • Слишком высокое напряжение: Поскольку вся цель плавного пуска состоит в том, чтобы сначала ограничить величину электрического тока, это маловероятно. Однако, если во время запуска на двигатель подается более высокое напряжение, чем обычно, это может привести к проблемам.
  • Слишком большой ток: Это проблема, аналогичная проблеме слишком большого напряжения.Если сначала в ваш двигатель будет протекать слишком большой ток, это может привести к перегрузке цепей и возникновению неисправности.

Хотя это может создать впечатление, что плавный пуск чреват проблемами и сбоями, на самом деле все наоборот. Плавный запуск делает ваши двигатели и оборудование менее склонными к сбоям и отлично защищает их от таких вещей, как перегрев и скачки напряжения. Они также значительно продлевают срок службы большинства двигателей.

Нельзя сказать, что плавный пуск никогда не выходит из строя и не вызывает проблем, но, как правило, он очень надежен и обеспечивает дополнительный уровень безопасности и защиты ваших двигателей.

Ремонт устройств плавного пуска

Обратитесь в глобальную электронную службу по вопросам ремонта сегодня

У вас есть двигатели, промышленная электроника, гидравлика или другое оборудование, которые нуждаются в обслуживании и ремонте? Если да, то Global Electronic Services всегда готова помочь. Наш стандартный срок ремонта составляет от одного до пяти дней, и мы также предлагаем срочные услуги от одного до двух дней, если работа требует срочного внимания. Чтобы начать ремонт, просто свяжитесь с нами и запросите ценовое предложение.Если у вас возникнут дополнительные вопросы, мы будем рады ответить на них по телефону 877-249-1701.

Запросить цену

Control Engineering | Плавный запуск и остановка двигателей

Фрэнк Дж. Бартос 1 сентября 2005 г.

КРАТКИЙ ОБЗОР
  • Снижение пускового тока двигателя

  • Не пренебрегайте плавной остановкой

  • Регулировка изменения крутящего момента

  • Твердотельные пускатели уменьшают размер блока

  • Байпасный контактор отключает нагрев

  • Диагностика, связь

К веским причинам не запускать (или останавливать) асинхронные двигатели переменного тока при полном входном напряжении относятся воздействие чрезвычайно высоких токов заторможенного ротора и крутящих моментов, составляющих до 230% от крутящего момента полной нагрузки.Твердотельные устройства плавного пуска пониженного напряжения (SSRV) служат для смягчения разрушительного воздействия таких очень высоких пусковых токов двигателя и возникающих в результате механических нагрузок на подключенное оборудование или компоненты системы.

Многие новые устройства плавного пуска не должны быть рассчитаны на длительную работу. Встроенный байпасный контактор срабатывает после того, как двигатель достигает рабочей скорости, соединяя двигатель с линией, после чего пускатель может быть выключен. Роль устройств плавного пуска в области защиты и диагностики также возрастает благодаря использованию твердотельных элементов управления в качестве логического механизма.Однако кремниевые выпрямители (SCR) остаются основными силовыми компонентами.

Компания ABB Inc. делает упор на более широкую функцию устройств плавного пуска в качестве релейных устройств защиты двигателя. «Сейчас ожидается, что устройства плавного пуска будут делать больше, чем просто плавный пуск / останов асинхронных двигателей», — говорит Пол Терри, менеджер по продукции ABB Low Voltage Products & Systems. Терри перечисляет дисбаланс фаз, реверс фаз, обрыв фазы и мгновенные отключения для условий перегрузки / недогрузки среди защитных функций, обеспечиваемых устройствами плавного пуска высшего уровня — на основе входных значений тока двигателя, напряжения и температуры.В устройствах ABB серии PST запрограммированный пользователем порог времени и более точные датчики двигателя ограничивают ложное срабатывание.

Чарльз Форсгард, директор подразделения управления двигателями Североамериканского операционного подразделения Schneider Electric, отмечает, что устройства SSRV изначально имели простую конструкцию с линейным нарастанием напряжения, которая обеспечивала «более мягкий» механический пуск и снижение пускового тока двигателя, но их эффект зависел от характеристики ведомой нагрузки. «Если двигатель был слегка нагружен, не могло быть никакого эффекта« плавного пуска »», — говорит он.

Новый подход фокусируется на нарастании крутящего момента, а не на методах линейного нарастания напряжения. Он основан на алгоритме управления нового поколения, способном определять мощность и коэффициент мощности, используя информацию о напряжении и токе двигателя, из которых устройство плавного пуска получает реальную мощность статора, потери статора и, как следствие, реальную мощность, подаваемую на ротор. «Мощность, подаваемая на ротор, используется для расчета фактического крутящего момента двигателя, а пускатель SSRV будет следовать линейному изменению крутящего момента, пока нагрузка двигателя не превышает установленный предел тока», — продолжает Форсгард.

При линейном изменении крутящего момента контроллер крутящего момента (см. Диаграмму) использует введенные оператором значения номинального крутящего момента двигателя, начального крутящего момента и предела крутящего момента — вводимые в блоке «задание / изменение крутящего момента» — плюс время изменения крутящего момента, чтобы генерировать желаемое крутящий момент двигателя. «Затем контроллер используется для управления срабатыванием тиристора в соответствии с фактическим крутящим моментом двигателя по сравнению с желаемым значением», — заявляет Фосгард. «[Важно], крутящий момент двигателя больше не зависит строго от приложенного напряжения двигателя или его скоростно-крутящих характеристик, а увеличивается в соответствии с заданным темпом.”

Балансировка полярности, устройства меньшего размера

Последней особенностью устройств плавного пуска SSRV в компании Siemens Energy and Automation Inc. является запатентованный метод управления, называемый «балансировкой полярности». Двухфазное управление обеспечивает плавный и бесшумный запуск за счет создания однородных пусковых характеристик двигателя (скорость, крутящий момент и ток), что позволяет избежать использования компонентов постоянного тока, отмечает Стив Кох, менеджер по продукции RVSS Starters в Siemens E&A.

Для максимальной гибкости и адаптируемости к изменяющимся нагрузкам система плавного пуска SSRV от Schneider Electric позволяет настраивать начальный крутящий момент, предел крутящего момента и время разгона пользователем.

Он объясняет, что ток, возникающий в результате перекрытия двух контролируемых фаз, будет течь в третьей неуправляемой фазе, что приведет к асимметричному распределению трехфазных токов во время пуска двигателя. Кроме того, силовые полупроводники, переключающиеся в двух контролируемых фазах, создают компоненты постоянного тока, которые могут приводить к нежелательному шуму двигателя при пусковых напряжениях ниже 50%. Сообщается, что балансировка полярности устраняет эти эффекты во время запуска. (Двухфазное управление часто используется в устройствах плавного пуска из соображений экономии.)

«Акустическое качество процесса пуска практически соответствует качеству пуска с трехфазным управлением. Это возможно благодаря непрерывной динамической регулировке или уравновешиванию полуволн тока различной полярности во время запуска двигателя », — говорит Кох.

Среди недавних разработок, отмеченных Джеффом Лавлейсом, менеджером по продукции приводов в Baldor Electric Co., являются более компактные устройства плавного пуска с той же выходной мощностью благодаря значительно меньшим размерам тиристоров. Он также упоминает более быструю логику управления благодаря большему использованию более дешевых микропроцессоров и программированию устройств плавного пуска с клавиатуры вместо использования потенциометров.«Поскольку микропроцессор является встроенным, мы можем настроить управляющий выход для повышения коэффициента мощности при работе с небольшой нагрузкой», — заявляет Лавлейс. Он называет это «оптимизацией», которая позволяет избежать перенапряжения двигателя.

Дуглас Йейтс, специалист по продукции Danfoss North America Motion Controls, упоминает об инновационной технологии с низким тепловым расширением (LTE), в которой используются новые материалы для практически устранения эффектов теплового расширения (и других проблем), возникающих при использовании типичной технологии микросхемы питания, используемой в обычных источниках питания. реле.Он объясняет, что чрезмерное тепло, выделяемое силовым чипом, может привести к усталости металла из-за разной степени теплового расширения чипа, теплопровода и зажима-держателя тока. «Кроме того, воздушные карманы в процессе пайки могут создавать горячие точки на кристалле, что также может ухудшить производительность и вызвать поломки».

Конструкция

LTE включает меньшее количество точек пайки для увеличения теплоотвода. Сообщается, что новый однократный процесс вакуумной пайки предотвращает образование воздушных карманов и горячих точек.Технология LTE, используемая в устройствах плавного пуска Danfoss MCI, обеспечивает скорость переключения твердотельных реле и длительный срок службы устройства. «Эта технология может в 10 раз дольше обычных твердотельных реле, что означает значительно большую надежность и долговечность для заказчика», — говорит Йейтс.

Встроенный байпас

Стив Литцау, менеджер по продукции Rockwell Automation, подчеркивает компактность и более высокую функциональность пускателей SS по сравнению с устройствами предыдущего поколения. Сегодняшние конструкции имеют встроенный байпас, который открывается при достижении двигателем полной скорости, чтобы уменьшить потери мощности (тепла) в твердотельной силовой части.Это означает, что шкафы намного меньше и не требуют специального охлаждения. В Литзау около 75-80% новых стартеров выпускаются со встроенным байпасом. «Этот процент продолжает расти», — говорит он, добавляя, что «твердотельные пускатели обычно имеют встроенные настраиваемые входы / выходы; и вместо того, чтобы работать в автономном режиме, их можно настраивать, контролировать и использовать для обеспечения обратной связи по мониторингу через сети, такие как DeviceNet ».

Eaton Corp. также считает заслуживающим внимания «режим обхода работы» устройств плавного пуска.Эта функция, входящая в линейку продуктов IT (Intelligent Technologies), значительно снижает тепло, выделяемое пускателем, что сводит к минимуму размеры корпуса и затраты. «Кроме того, байпасный контактор находится внутри устройства плавного пуска, что устраняет необходимость в дополнительных устройствах, дополнительно уменьшает размеры корпуса и минимизирует время установки», — говорит Родни Партейн, менеджер по продукции, управление мощностью. В низковольтных устройствах плавного пуска Eaton для ИТ (таких как S752, S801 и S811) используется управление катушкой с широтно-импульсной модуляцией (ШИМ) 24 В постоянного тока для байпасного контактора, который, как утверждается, потребляет минимальную мощность всего 5 Вт в установившемся режиме.«Катушки ШИМ в сочетании с эффективным источником питания работают, чтобы уменьшить негативное воздействие сбоев в электрической системе и защитить от потери мощности», — добавляет он.

Низковольтные устройства плавного пуска IT (упомянутые выше) и среднего напряжения MV801 имеют плавное управление пуском / остановом и гибкие защитные функции. Стартер S811 добавляет коммуникационные возможности через модуль цифрового интерфейса (DIM), который, по словам Партейна, включает простой в использовании интерфейс оператора. DIM позволяет пользователям безопасно настраивать, вводить в эксплуатацию, контролировать и устранять неполадки в своей системе.S811 подключается к различным сетям, включая DeviceNet, Ethernet и Profibus, с помощью встроенных коммуникационных возможностей Cutler-Hammer QCPort (Quick Connect).

Стой мягко, тоже

Все авторы статьи отметили важность функций «плавного останова» в пускателях SSRV, особенно для снижения шумных разрушительных эффектов гидравлического удара в насосных установках.

Терри из ABB считает, что «плавным остановом» часто пренебрегают установщики и пользователи, хотя многие устройства плавного пуска предлагают эту функцию.Это может быть связано с «опасением» частого изменения заводских настроек по умолчанию через сложные интерфейсы или просто из-за незнания преимуществ плавной остановки. Чтобы изменить этот эффект, ABB включила текстовый HMI (интерфейс) в свои стартеры серии PST, чтобы помочь оператору / установщику выполнить настройку, выбрав из четко сформулированных групп программирования на основе приложений, наиболее подходящих для приложения (см. Фото) .

Лавлейс из Baldor соглашается с «скрытой» возможностью плавной остановки. «Большинство людей рассматривают возможность использования« плавного пуска »именно для этой цели, чтобы запустить двигатель.Они не осознают преимуществ, которые он предлагает для плавной остановки груза », — говорит он. Среди преимуществ — предотвращение механических нагрузок на машину при резкой остановке двигателя.

Ограничение более ранних (линейно нарастающих по напряжению) пускателей SSRV также расширено до плавного останова из-за отсутствия реального контроля замедления. По словам Форсгарда из Schneider Electric, это особенно важно при работе с малонагруженными двигателями. Однако при современном управлении крутящим моментом линейно уменьшающаяся рампа крутящего момента пускателя SSRV может замедлить нагрузку центробежного насоса.«Постепенное снижение скорости позволяет координировать закрытие обратного клапана, не вызывая гидроудара», — добавляет Форсгард. Устройство плавного пуска непрерывно контролирует крутящий момент нагрузки двигателя, чтобы быть готовым к запуску линейного замедления нагрузки насоса, когда оно получает команду останова, даже если двигатель загружен только на 60-70%.

Siemens предлагает три способа остановки двигателей в своих пускателях Sirius: выбег до остановки, плавный останов и подача постоянного тока. Новый Sirius 3RW44 сочетает в себе торможение впрыском постоянного тока и управление крутящим моментом с обратной связью (при котором напряжение постепенно снижается с помощью программного обеспечения и обратной связи по току), что позволяет быстро останавливать движущиеся нагрузки.Акцент на плавной остановке сильно зависит от области применения. «Мягкая остановка особенно важна для гидравлических насосов, чтобы избежать гидроудара», — говорит Кох.

В стартере

Sirius 3RW44 используется регулирование крутящего момента с обратной связью, чтобы предотвратить резкое изменение давления воды при выключении насоса или уменьшить механические нагрузки на останавливающуюся ленту конвейера. Сименс также упоминает фрезерные станки как требующие оптимального торможения. Например, когда фрезерная головка с двигателем мощностью 15 кВт, которая обрабатывает отверстия в алюминиевом блоке двигателя автомобиля, выключается, происходит длительное время остановки из-за высокого момента инерции фрезерной головки.В результате недопустимо большое время простоя при смене инструмента или настройке станка. «Регулирование крутящего момента с обратной связью и динамическое торможение постоянным током используются в стартере Siemens 3RW44, чтобы сократить длительное время остановки машины», — добавляет Кох.

Напротив стартовой

Плавный останов — прямая противоположность плавному пуску, отмечает Йейтс, от Данфосс. Линейное напряжение, подаваемое на двигатель, постепенно снижается до нуля (или до заданной нижней точки), чтобы увеличить время остановки двигателя. Семейство Danfoss Ci-tronic относится к устройствам управления двигателями, которые обеспечивают плавный останов и плавный пуск с легко регулируемой точностью.Время разгона / торможения может быть установлено от 0,5 до 10 секунд, а пусковой крутящий момент регулируется в пределах 0-85% от номинального крутящего момента. Кроме того, функция быстрого запуска (полный крутящий момент прилагается в течение 200 мс) доступна для приложений с высоким крутящим моментом отрыва, таких как нагруженные конвейеры и упаковочные машины.

По словам Йейтса, контроллеры

Ci-tronic обрабатывают приложения с частыми запусками и остановками. «Многие такие контроллеры включают технику переключения через нуль (контактор всегда переключается при нулевом напряжении) для обеспечения оптимальной скорости и точности», — добавляет он.

Rockwell Automation также указывает на способность устройств плавного пуска сокращать, а также увеличивать время остановки двигателя. В то время как многие приложения стремятся избежать внезапных остановок, другие полагаются на торможение для более быстрой остановки, чтобы повысить производительность или эффективность работы. Литцау предлагает пример ленточной пилы, в которой торможение быстрее, чем торможение по инерции до упора, может помочь в обслуживании и минимизировать общее время простоя.

«Слишком много продуктов ориентированы исключительно на плавный пуск и не обсуждают преимущества плавного останова», — говорит Партейн из Eaton.Устройства плавного пуска Cutler-Hammer IT предлагают различные варианты останова. S801 и MV801 включают опцию управления насосом, в которой сложные алгоритмы, как сообщается, сводят к минимуму скачки давления, вызывающие гидравлический удар при запуске или останове насосов. Кроме того, опция торможения постоянным током контроллера плавного пуска S701 позволяет быстро останавливать высокоинерционные нагрузки и устранять механический тормоз, объясняет Партейн.

Безопасное управление 24 В постоянного тока

Использование низкого напряжения постоянного тока для фактического управления устройствами плавного пуска дает преимущества защиты оператора и соответствия стандартам безопасности.Постоянное напряжение чаще всего преобразуется внутри устройства, однако некоторые производители предлагают внешнее (прямое) исполнение на 24 В постоянного тока.

Компания Eaton уже некоторое время является сторонником низковольтного управления постоянным током, представив в 1999 году семейство устройств плавного пуска IT Soft Starts исключительно с управлением 24 В постоянного тока ( CE , июль 1999 г., стр. 9-10). Этот тип управления исключает опасность для персонала при работе с системами управления. «Кроме того, использование управления напряжением 24 В постоянного тока упрощает соблюдение норм NEC и OSHA», — говорит Партейн.«С глобальной точки зрения, одно постоянное напряжение позволяет обойтись без необходимости преобразовывать различные входные переменные напряжения, используемые во всем мире». В низковольтных пускателях Eaton S752, S801 и S811 используется управление 24 В постоянного тока.

Примерно в то же время компания ABB начала использовать управление напряжением 24 В постоянного тока. Его устройства плавного пуска вырабатывают низкое постоянное напряжение, как правило, через внутренний источник питания переменного тока в постоянный, пониженный на плате управления. В новой серии PST внутренний источник питания имеет широкий вход 100–250 В переменного тока, подходящий для мировых рынков. «Безопасность оператора остается неизменной, поскольку все выходные контакты находятся под напряжением 24 В постоянного тока», — объясняет Терри.«Это дает лучшее из обоих методов — простоту 110 В переменного тока (или 220 В) и безопасность 24 В постоянного тока», — добавляет он.

Baldor’s Lovelace считает, что внедрение управления 24 В постоянного тока зависит от рынка. Пользователи в США одобряют управление 120 В переменного тока, в то время как европейские пользователи, побуждаемые особыми правилами, ищут устройства управления 24 В постоянного тока. «Чтобы ваш контроль работал на обоих рынках, может потребоваться дополнительное оборудование», — говорит он, добавляя, что более новые системные интеграторы в США уделяют внимание низковольтному контролю постоянного тока.

Litzau в Rockwell Automation видит, что управление низковольтным постоянным током, во многом схожее с возможностями связи, становится популярным в твердотельных пускателях. «Низкое напряжение обеспечивает более высокую степень защиты внутри контроллера от случайного контакта», — говорит он. «Это также позволяет пользователям использовать тот же источник питания, что и архитектура связи для общего управления». Rockwell предлагает управление 24 В постоянного и 120–240 В переменного тока для своих устройств плавного пуска.

Снижение стоимости технологии частотно-регулируемых приводов (VFD) — и ее доступность до «микро» размеров — в течение некоторого времени упоминалось как потенциальная угроза жизнеспособности пускателей электродвигателей.С добавлением управления крутящим моментом к устройствам плавного пуска SSRV, Schneider Electric по-прежнему видит непрерывность, существующую для этих устройств, за счет того же сокращения затрат и размеров, что и в случае частотно-регулируемых приводов. «Привлекательность устройств плавного пуска SSRV сохранится, особенно для приложений с большой мощностью, где не требуется регулирование скорости процесса», — добавляет Форсгард.

Litzau соглашается с тем, что пускатели SS сохранят свою жизнеспособность в качестве альтернативы управления двигателем для пуска с частотно-регулируемым приводом или пускателей прямого включения / полного напряжения. «Они являются отличным решением, когда управление скоростью двигателя не требуется, но когда пользователи и OEM-производители по-прежнему хотят управлять запуском и остановкой двигателей на своем оборудовании.Кроме того, твердотельные пускатели вырабатывают меньше гармоник и имеют меньшую стоимость монтажа, чем контроллеры с регулируемой частотой », — заключает он.

Как обеспечить плавный запуск синхронных двигателей с помощью электроники

Что такое плавный запуск?

Плавный пуск, как следует из названия, представляет собой плавный пуск двигателя без каких-либо движущихся контакторов. В нем используется электронная схема для запуска тиристоров на общей печатной плате. Плавный пуск считается эффективным методом электронного переключения.

Зачем нужен плавный пуск синхронных двигателей?

Возьмем случай, когда синхронный двигатель сначала запускается как асинхронный, а позже приводится в синхронное состояние. В этом случае, когда синхронный двигатель подключен напрямую к трехфазному источнику переменного тока без какого-либо пускателя, через обмотку статора протекает очень большой ток статора. Ток статора, потребляемый двигателем во время запуска, будет в пять-восемь раз больше тока полной нагрузки. Это связано с тем, что ротор снижает максимальную скорость магнитного потока, создавая большой наведенный ток в роторе двигателя из-за большой наведенной ЭДС.Из-за этого повышенного тока статора и ротора коэффициент мощности источника питания будет очень низким, как правило, с запаздыванием около 0,2. Это возрастает до 0,5 с запаздыванием без нагрузки, а затем примерно до 0,85 с запаздыванием при полной нагрузке. Этот пусковой импульсный ток уменьшается по мере разгона двигателя до его рабочей скорости.

Двигатель, работающий с низким коэффициентом мощности (отставание 0,5) в условиях малой нагрузки, снижает эффективность, поскольку ток питания относительно высок, вызывая значительные резистивные потери I2R (потери в меди).Чтобы добиться хорошего КПД двигателя, необходимо повысить коэффициент мощности.

Единственный способ улучшить коэффициент мощности двигателя при небольшой нагрузке — это снизить напряжение питания, подаваемое на двигатель. Этого можно добиться с помощью соответствующего регулятора напряжения. Тип регулятора напряжения, работающего на электронных схемах, используемых для управления напряжением питания двигателя, называется устройством плавного пуска.

Устройство плавного пуска, представляющее собой электронный регулятор напряжения, также известно как энергоменеджер.Он может согласовывать напряжение питания с условиями запуска и нагрузки. Такой контроллер нацелен на поддержание рабочего коэффициента мощности на максимально высоком уровне, чтобы минимизировать ток питания и потери мощности. Важно отметить, что этот тип контроллера напряжения не контролирует скорость двигателя; который можно регулировать частотой питания. Однако такое управление скоростью возможно только в асинхронном двигателе, тогда как синхронный двигатель — это двигатель с постоянной скоростью, который работает на своей синхронной скорости.

Плавный запуск синхронного двигателя

Устройства плавного пуска, используемые для пуска синхронного двигателя, имеют встречные тиристоры или симисторы в каждой трехфазной линии подачи переменного тока к двигателю. Эти тиристоры запираются так, чтобы задерживать включение с каждым полупериодом переменного тока, а задержанное переключение прикладывает пониженное среднее напряжение переменного тока к двигателю, что означает, что он подает постепенно возрастающее напряжение переменного тока во время запуска. Приложенное напряжение двигателя постепенно увеличивается программой пускателя, пока не будет достигнут полный уровень напряжения.Когда двигатель достигает номинальной скорости, тиристор позволяет номинальному току течь по линиям к двигателю и, следовательно, к нему прикладывается полное напряжение за счет достижения максимальной эффективности. Строго говоря, для нормальной работы схема электронного переключения отключена. Он также использует схему управления затвором, которая контролирует функцию тиристора. Команды пуска и останова могут подаваться от этой схемы управления. Тиристор работает по команде, подаваемой в схему управления затвором.

Устройство плавного пуска может быть дополнительно адаптировано для работы в качестве регулятора напряжения или регулятора напряжения в диапазоне нагрузки при работе двигателя, и поэтому оно называется менеджером энергии.Он подает напряжение в соответствии с нагрузкой двигателя. В этом типе приложения для эффективного управления энергией контроллер контролирует коэффициент мощности двигателя, который является средством нагрузки двигателя, и в соответствии с коэффициентом мощности двигателя устройство плавного пуска подает напряжение на двигатель.

При небольшой нагрузке и полном напряжении коэффициент мощности низкий, поэтому контроллер снижает напряжение двигателя, что снижает ток, одновременно улучшая коэффициент мощности и эффективность.

Список литературы

Справочник по устройству плавного пуска

— библиотека.abb.com

Электроэнергия для сельского хозяйства — books.google.co

20 л.с. (15 кВт) Устройство плавного пуска, 240 В / 380 В / 460 В / 690 В

Устройство плавного пуска мощностью 20 л.с., трехфазный двигатель мощностью 240 В, 380 В, 460 В, 690 В переменного тока мощностью 15 кВт, снижение пускового тока и напряжения двигателя, защита двигателя от перенапряжения, перегрузки по току, асимметрии фаз и т. Д.

Бесплатная доставка

Входное напряжение (трехфазное) ± 15%
— 220В [+ 69 долларов.00] 240 В [+ 69,00 $] 380В 400 В 420 В 440В [+ $ 20,00] 460В [+ $ 20.00] 480 В [+ $ 20,00] 660В [+ 79,00 $] 690 В [+ 79,00 $]
RS485
— Никто Включено [+ $ 129.00]

Старая цена: $ 459,00

Цена: $ 389,21

Устройство плавного пуска мощностью 20 л.с., трехфазное устройство пуска двигателя мощностью 15 кВт, 240 В, 380 В, 460 В, 690 В переменного тока.

Модель GS2-015 (240 В), GS3-015 (380 В), GS4-015 (460 В), GS6-015 (690 В).
Вместимость 20 л.с. (15 кВт)
Текущий 30 А при 380 В / 480 В, 60 А при 220 В
Масса 5 кг
Размер 270 * 146 * 160 мм
Ввод Напряжение Трехфазный 240 В, 380 В, 460 В, 690 В переменного тока
Частота 50 Гц / 60 Гц
Адаптивный двигатель Трехфазный асинхронный двигатель с короткозамкнутым ротором
Время начала Не рекомендуется превышать 20 раз в час.
Связь Интерфейс DB9, вилка, ① — RS485 +, ⑥ — RS485-
Режим управления (1) Панель управления. (2) Панель управления + внешнее управление. (3) Внешний контроль. (4) Внешнее управление + управление через COM. (5) Панель управления + внешнее управление + COM. (6) Панель управления + управление через COM. (7) Управление COM. (8) Нет запуска или остановки.
Режим запуска (1) Ограничение тока для запуска.(2) Пуск напряжения. (3) Контроль крутящего момента + ограничение тока для запуска. (4) Контроль крутящего момента + линейное изменение напряжения для запуска. (5) Текущая линейная скорость для запуска. (6) Пуск с двойным замкнутым контуром с ограничением напряжения.
Режим остановки (1) Плавный останов. (2) Бесплатная остановка.
Защитная функция (1) Защита от разомкнутого контура для внешних клемм мгновенного останова. (2) Защита устройства плавного пуска от перегрева. (3) Защита от слишком долгого пуска.(4) Защита от обрыва фазы на входе. (5) Защита от обрыва фазы на выходе. (6) Несимметричная трехфазная защита. (7) Пусковая защита от перегрузки по току. (8) Защита от перегрузки. (9) Защита от пониженного напряжения питания. (10) Защита от перенапряжения для напряжения питания. (11) Защита при настройке параметров неисправности устройства плавного пуска. (12) Защита от короткого замыкания нагрузки. (13) Автоматический перезапуск или защита от неправильного подключения. (14) Неправильная защита клемм внешнего управления остановом.
Окружающая среда Используемое место Внутри помещения с хорошей вентиляцией, без агрессивных газов и токопроводящей пыли.
Высота Ниже 1000 м. Он должен увеличить номинальную мощность устройства плавного пуска, когда высота превышает 1000 м.
Температура-30 +55 o C
Влажность 90% относительной влажности без конденсации росы.
Вибрация <0,5 г
Структура Корпус IP20
Охлаждение Естественное ветровое охлаждение.

Советы: выберите устройство плавного пуска для двигателя с фиксированной скоростью
Частотно-регулируемый привод (VFD) намного дороже устройства плавного пуска и имеет гораздо более высокие потери энергии, поэтому он более дорог в эксплуатации. Для асинхронного двигателя с фиксированной частотой вращения устройство плавного пуска требует меньших капитальных затрат и более низких эксплуатационных затрат, чем ЧРП. VFD может не потребоваться, если не требуется управление скоростью или крутящим моментом. Конечно, если речь не идет о деньгах, частотно-регулируемый привод гораздо лучше устройство плавного пуска, и в него обычно встроены все функции плавного пуска.

Напишите свой отзыв о Устройство плавного пуска мощностью 20 л.с. (15 кВт), 240 В / 380 В / 460 В / 690 В

  • Только зарегистрированные пользователи могут оставлять отзывы

Коммутация и методы управления двигателем

Область управления движением обычно не известна своими громкими открытиями или стремительными разработками.Конструкции двигателей, как правило, развиваются медленно, и инженеры по понятным причинам осторожны, когда дело касается изменения проверенных временем подходов. Однако в последнее время наблюдается уйма активности вокруг использования передовых методов контроля тока, в частности, полевого контроля (FOC). Этот математически насыщенный метод управления бесщеточными асинхронными двигателями постоянного и переменного тока стал основным направлением индустрии управления движением из-за его потенциала для повышения производительности и снижения энергопотребления.

Управление, ориентированное на поле, является значительным улучшением по сравнению со стандартным подходом для бесщеточных двигателей постоянного тока с трапецеидальной коммутацией по Холлу и имеет преимущество диапазона скоростей по сравнению с более сложной техникой синусоидальной коммутации.Для асинхронных двигателей переменного тока FOC является значительным улучшением по сравнению со стандартными методами привода с регулируемой скоростью и является двоюродным братом управления вектором магнитного потока, который является в некоторой степени аналогичным методом управления недорогими трехфазными асинхронными двигателями переменного тока, чтобы заставить их работать так, как если бы они были больше дорогие бесщеточные двигатели постоянного тока. Фактически, многие производители используют эти два термина как синонимы.

По сравнению с другими типами серводвигателей, такими как DC Brush, которые до сих пор используются в ряде важных приложений, бесщеточные асинхронные двигатели постоянного и переменного тока обеспечивают большую удельную мощность, гораздо большую надежность, а в случае асинхронного двигателя переменного тока — меньшую стоимость. .Чтобы получить полный доступ к этим возможностям, дизайнеры и инженеры движения используют платформы быстрых алгоритмов в форме DSP (процессоров цифровых сигналов) и специализированных микропроцессоров для улучшения производительности и повышения эффективности.

В бесщеточных двигателях постоянного тока более высокая производительность означает более плавное движение и большую рабочую скорость. Потенциал асинхронных двигателей переменного тока еще более захватывающий. По сравнению с простым управлением «все включено / выключено», FOC означает, что двигатели могут работать более эффективно, иметь более оптимальный размер и работать с меньшим тепловыделением.Это также позволяет использовать такие функции, как изменение направления, и может позволить исключить внешнее оборудование, такое как тормоза или сцепления. Учитывая, что 60–65% всей энергии в США используется для привода электродвигателей, неудивительно, что рынок все больше требует более эффективных двигателей.

Магнитный аттракцион

С точки зрения создания крутящего момента хорошей рабочей моделью для большинства двигателей является простой стержневой магнит. Стержневой магнит вращается вокруг своего центра (моделируя ротор двигателя) и взаимодействует с магнитными полями, создаваемыми в статоре неподвижными неподвижными катушками.В бесщеточных двигателях постоянного тока магнитное поле ротора создается магнитами, установленными непосредственно на роторе. В асинхронных двигателях переменного тока магнитное поле ротора создается за счет индукции (отсюда и название двигателя) магнитных полей в статоре. Направление этого магнитного поля, в отличие от бесщеточного двигателя постоянного тока, изменяется в зависимости от нескольких факторов, включая частоту и ток возбуждения статора, скорость ротора и крутящий момент, испытываемый двигателем.

Обмотки статора для бесщеточных двигателей постоянного тока обычно имеют трехфазную конфигурацию, как и обмотки асинхронных двигателей переменного тока, используемых с технологиями ВОК.В частности, для асинхронных двигателей переменного тока следует отметить, что также используются другие конфигурации обмоток, в частности, однофазный асинхронный двигатель переменного тока. Этот двигатель является рабочей лошадкой, которую можно найти в большинстве семейных кондиционеров, холодильников, стиральных машин и сушилок, но он не поддается наиболее передовым методам векторного управления, поскольку обмотки статора не могут управляться индивидуально.

В любом случае три фазы статора расположены на расстоянии 120 электрических градусов друг от друга.Это сумма сил, генерируемых этими тремя фазами, которые в конечном итоге создают полезное вращение двигателя. В зависимости от того, как отдельные магнитные катушки сфазированы, они могут взаимодействовать, создавая силу, которая не создает вращающий момент, или они могут создавать силу, которая приводит во вращение. Эти два различных вида силы известны как квадратурная (Q) и прямая (D), при этом полезные квадратурные силы (не путать со схемой квадратурного кодирования для устройств с обратной связью по положению) действуют перпендикулярно полюсной оси ротора, а не создающие крутящего момента прямые силы, действующие параллельно оси полюса ротора.На рисунке 1 это показано.

Уловка для создания вращения состоит в том, чтобы максимизировать Q (квадратуру) при минимизации D (прямого) крутящего момента. В случае бесщеточного двигателя постоянного тока это, по крайней мере, концептуально, просто, потому что бесщеточные двигатели постоянного тока имеют магниты, установленные непосредственно на роторе. Таким образом, если угол ротора измеряется с помощью датчика Холла или датчика положения, направление магнитного поля от ротора известно. Все становится более интересным для приложений управления скоростью и крутящим моментом, в которых применяется бессенсорное управление.Поскольку прямые механические измерения положения ротора недоступны, угол должен быть выведен из профиля напряжения обратной ЭДС на трех обмотках. Хотя это и нетривиально, управление обратной ЭДС в наши дни довольно распространено. Однако помните, что обратная ЭДС требует, чтобы двигатель вращался, поэтому она не подходит для приложений позиционирования, которые должны удерживаться в устойчивом положении.

В случае асинхронного двигателя переменного тока используется аналогичный подход, однако из-за дополнительных требований по поддержанию некоторого количества индуктивного потока сила D приводится не к нулю, а к небольшому постоянному значению, характерному для мотор.Кроме того, измерения местоположения ротора с помощью датчиков Холла или энкодера недостаточно для определения магнитного угла ротора, потому что он не сообщает нам эффективный угол магнитного поля, создаваемого ротором. Напомним, что это магнитное поле индуцировано и поэтому изменяется непрерывно.

Эта разница между положением ротора и магнитным углом ротора называется углом скольжения. Чем больше фактический крутящий момент на двигателе, тем больше величина скольжения и, следовательно, больше компенсирующий крутящий момент двигателя.Это равновесие мало чем отличается от работы гидростатической трансмиссии. Чем больше разница в скорости между двигателем и колесами, тем больше крутящий момент, создаваемый трансмиссией. Это означает, что скорость вращения двигателя будет меньше, чем частота вращения статора.

Для применений, в которых обычно используется индукция переменного тока, таких как кондиционеры, стиральные машины, сушилки и т. Д., Снижение скорости двигателя с пониженным проскальзыванием не является проблемой. Но для приложений позиционирования или для запуска двигателя с максимальным КПД это скольжение необходимо явно контролировать.Есть несколько способов сделать это, но все они требуют измерения или оценки индуцированного электрического поля ротора. Еще раз, общий способ добиться этого — использовать методы обратной ЭДС. Другой популярный подход известен как управление вектором магнитного потока, которое измеряет механический угол ротора и пытается вычислить магнитный угол ротора алгоритмически, используя оценки для различных характеристик двигателя.

Поле ориентированного контроля сновидений

Управление с ориентацией на поле стало важным методом управления / коммутации для бесщеточных двигателей постоянного тока, а также для асинхронных двигателей переменного тока, поскольку оно обеспечивает широкий диапазон используемых скоростей двигателя.Поучительно сравнить FOC с наиболее распространенным ранее методом для бесщеточных двигателей постоянного тока — синусоидальной коммутацией.

На рисунке 2 (ниже) показаны схемы управления как для синусоидальной коммутации, так и для управления, ориентированного на поле. В подходе с синусоидальным управлением команда крутящего момента «векторизуется» с помощью синусоидальной справочной таблицы, тем самым создавая отдельные команды для каждой обмотки двигателя. По мере продвижения ротора угол обзора увеличивается. Как только векторизованная команда фазы сгенерирована, она передается в токовый контур, по одному на каждую обмотку, который пытается поддерживать фактический ток обмотки на желаемом значении тока.

Важной особенностью этого подхода является то, что с увеличением частоты вращения двигателя возрастает сложность поддержания желаемого тока. Это связано с тем, что токовый контур напрямую «видит» частоту вращения, и любая задержка в токовом контуре, определенная величина которой неизбежна, приводит к ошибке между желаемым крутящим моментом статора и фактическим. Это отставание, незначительное при низких скоростях вращения, приводит к увеличению количества D (нежелательного) крутящего момента при более высоких скоростях вращения, что приводит к снижению доступного крутящего момента.

Схема управления для подхода, ориентированного на поле, отличается тем, что токовая петля происходит без привязки к вращению двигателя. То есть независимо от вращения двигателя. В подходе FOC есть две фактические токовые петли: одна для крутящего момента Q и одна для крутящего момента D. Контур крутящего момента Q управляется желаемым пользователем крутящим моментом от сервоконтроллера. Контур D управляется нулевой входной командой, чтобы минимизировать нежелательную прямую составляющую крутящего момента.

Уловка для выполнения всей этой работы — это интенсивные математические операции преобразования, известные как Преобразование Парка и Кларка , которые преобразуют векторизованный фазовый угол в опорный кадр D и Q без привязки.Это делается дважды: один раз для преобразования выходных сигналов контуров управления D и Q в команду трехфазного двигателя и один раз для преобразования измерения угла ротора обратно в кадры D и Q. Хотя об этих преобразованиях было известно уже много лет, их практическая реализация в бесщеточных индукционных приводах постоянного и переменного тока требует появления дешевых, высокопроизводительных DSP и микропроцессоров.

Теперь, когда они доступны, асинхронные двигатели переменного тока, в которых используется метод ВОК, могут развивать КПД двигателя более 85%, по сравнению с примерно 60% для подходов, не ориентированных на поле.Для сравнения, бесщеточные двигатели, использующие подход FOC, могут достичь еще более высокого КПД — до 95%. Синусоидальная коммутация для бесщеточных двигателей постоянного тока также работает очень эффективно, но не так эффективно, как FOC, в самом высоком диапазоне скоростей двигателя.

Где магнитное поле падает на дорогу

С практической точки зрения, ваш выбор двигателя и усилителя часто определяет метод управления, который вы будете использовать.

Если вы используете бесщеточный двигатель постоянного тока для позиционирования, то бессенсорное управление не подходит.Вам понадобится энкодер и, скорее всего, датчик Холла. Если вы хотите получить от своего двигателя максимальную производительность, вы будете стремиться к управлению, ориентированному на поле. Однако, если вы не готовы создать свой собственный усилитель (для большинства это непростая задача), вы купите диск в комплекте со встроенной этой функцией.

В этой конфигурации привод обычно включает высокоуровневые функции управления движением, такие как создание профиля, контур сервопривода положения и входы и выходы в стиле ПЛК.Существует ряд компактных одноосных приводов, которые предлагают управление по Холлу, синусоидальное или полевое управление. Эти приводы обычно располагаются на RS / 485, CANbus, Ethernet или другой последовательной шине. Все, что вам нужно сделать, это подключить двигатель и питание и отправить команды.

Если вы используете карточный подход, будь то купленный вами или разработанный вами, ваша способность применять ориентированный на поля контроль ограничена. Это связано с тем, что большинство стандартных усилителей вводят аналоговый управляющий сигнал +/- 10 В и не обеспечивают управление, ориентированное на поле.Те, которые есть, обычно дороги, потому что включают в себя множество функций, которые вы не будете использовать, имея отдельную карту движения. Однако есть и хорошие новости: есть ряд поставщиков, которые предлагают управление синусоидальной коммутацией. Это можно сделать в плате управления движением, выдав два аналоговых сигнала +/- 10 В, представляющих требуемый ток фазы A и B. Для многих приложений синусоидальная коммутация обеспечивает огромное улучшение по сравнению с 6-ступенчатой ​​коммутацией на основе Холла и по-прежнему является отличным выбором для широкого диапазона приложений движения.

Если вы используете бесщеточные двигатели постоянного тока для управления скоростью, например, в центрифугах, ленточных накопителях или других приложениях, не связанных с позиционированием, у вас есть несколько вариантов конструкции. Бессенсорное управление, безусловно, возможно, хотя приводы, предлагающие бессенсорное управление по полю, все еще редки. Чаще встречаются бессенсорные приводы, которые обеспечивают синусоидальную функцию коммутации. Их можно приобрести на уровне IC или на уровне привода.

Если вы работаете с асинхронными двигателями переменного тока, вы, вероятно, разрабатываете приложения для управления скоростью или крутящим моментом, а не для приложений позиционирования.Много обсуждаемые в технических журналах, практические примеры использования асинхронных двигателей переменного тока для позиционирования встречаются редко, за исключением некоторых специализированных областей, таких как приводы очень большой мощности.

В любом случае у вас есть выбор, но обычно они подразделяются на подход «спроектируйте самостоятельно» или подход «купи двигатель». Если вы решите купить привод, у вас будет ряд уровней производительности на выбор: от простых инверторов управления скоростью до очень сложных приводов, ориентированных на поле, и приводов с вектором потока.

Если вы решите создать свою собственную плату контроллера или усилитель, простого регулирования скорости не так уж и сложно добиться, если вы знакомы с базовой конструкцией инвертора и методами переключения MOSFET или IGBT. Для более продвинутых проектов вы можете обратиться к доступным стандартным ИС для выполнения ориентированного на поля управления асинхронными двигателями переменного тока.

Сводка

Развитие технологий управления движением, растущий спрос на энергоэффективность и доступные недорогие микропроцессоры в совокупности значительно подняли планку характеристик бесщеточных асинхронных двигателей постоянного и переменного тока.Независимо от того, создаете ли вы свой собственный контроллер или покупаете готовый продукт, знание того, как реализовать эти новые подходы, важно для максимизации рентабельности и минимизации времени разработки проекта.

Вас также может заинтересовать:

Будьте впереди конкурентов.

Если ваше существующее оборудование требует повышения производительности или если вам нужно разработать новый продукт в кратчайшие сроки, узнайте о решениях для управления движением от Performance Motion Devices.

  • Разработка в 2 раза быстрее
  • Решения движения от микросхем до плат под ключ
  • Простота внедрения
  • Всегда поддерживается

Схема плавного пуска дрели. Мягкий пуск электроинструмента своими руками. Изготовление регулятора скорости

Иногда отказы ручных электроинструментов — шлифовальных машин, электродрелей и лобзиков — часто связаны с их высоким пусковым током и значительными динамическими нагрузками на детали коробки передач, возникающими при резком запуске двигателя.
Описанное устройство плавного пуска коллекторного двигателя сложное по схеме, имеет несколько прецизионных резисторов и требует кропотливой настройки. Используя микросхему фазорегулятора КР1182ПМ1, удалось изготовить гораздо более простое устройство аналогичного назначения, не требующее настройки. К нему может подключиться любой желающий без каких-либо изменений. ручной электроинструмент с питанием от однофазной сети 220 В, 50 Гц. Двигатель запускается и останавливается выключателем электроинструмента, а в выключенном состоянии устройство не потребляет ток и может оставаться подключенным к сети неограниченное время.

Схема предлагаемого устройства представлена ​​на рисунке. Вилка XP1 вставляется в розетку электросети, а вилка электроинструмента вставляется в розетку XS1. Несколько розеток могут быть установлены и подключены параллельно для чередования инструментов.
Когда цепь двигателя электроинструмента замыкается собственным выключателем, на фазорегулятор DA1 подается напряжение. Начинается зарядка конденсатора С2, напряжение на нем постепенно увеличивается. В результате задержка включения внутренних тиристоров регулятора, а вместе с ними и симистора VSI в каждом последующем полупериоде сетевого напряжения уменьшается, что приводит к плавному увеличению тока, протекающего через двигатель, и , как следствие, увеличение его скорости.При указанной на схеме емкости конденсатора С2 разгон электродвигателя до максимальной скорости занимает 2 … 2,5 с, что практически не создает задержки в работе, но полностью исключает тепловые и динамические удары в механизме инструмента.
После выключения двигателя конденсатор С2 разряжается через резистор R1. и через 2 … 3 сек. все готово к перезагрузке. Заменив постоянный резистор R1 на переменный, можно плавно регулировать мощность, подаваемую на нагрузку.Он уменьшается с уменьшением сопротивления.
Резистор R2 ограничивает ток управляющего электрода симистора, а конденсаторы С1 и С3 являются элементами типовой схемы включения фазорегулятора DA1.
Все резисторы и конденсаторы припаяны непосредственно к выводам микросхемы DA1. Вместе с ними он помещен в алюминиевый корпус от стартера люминесцентной лампы и залит эпоксидным компаундом. Выведено всего два провода, подключенных к выводам симистора.Перед заливкой в ​​нижней части корпуса просверливали отверстие, в которое продвигался винт МЗ наружу. Этим винтом блок фиксируется на радиаторе симистора VS1 площадью 100 см «. Такая конструкция зарекомендовала себя достаточно надежной при работе в условиях повышенной влажности и запыленности.
Устройство не требует Любая регулировка.Можно использовать любой симистор с классом напряжения не ниже 4 (то есть с максимальным рабочим напряжением не менее 400 В) и с максимальным током 25-50 А.Благодаря плавному запуску двигателя пусковой ток не превышает номинальный. Запас нужен только на случай заклинивания инструмента.
Устройство протестировано с электроинструментами мощностью до 2,2 нкВт. Поскольку регулятор DA1 обеспечивает протекание тока в цепи управляющих электродов симистора VS1 в течение всей активной части полупериода, ограничений на минимальную мощность нагрузки нет. Автор даже подключил к изготовленному устройству электробритву «Харьков».

К.Мороз, Надым, ЯНАО

ЛИТЕРАТУРА
1. Бирюков С. Автоматический плавный пуск коллекторных электродвигателей — Радио 1997, N * 8.s 40 42
2. Немич А. Микросхема КР1182ПМ1 — фазорегулятор — Радио 1999, N «7, стр. 44- 46. ​​

У всех, кто пользуется болгаркой не один год, сломалась. Поначалу каждый мастер пытался отремонтировать сверкающую кофемолку самостоятельно, надеясь, что после замены щеток она заработает. Обычно после такой попытки сломанный инструмент остается на полке с перегоревшими обмотками.И на замену покупается новая болгарка.

Дрели, шуруповерты, перфораторы, фрезы в обязательном порядке оснащаются регулятором скорости. Некоторые так называемые калибровочные кофемолки также оснащены регулятором, в то время как обычные кофемолки имеют только кнопку включения.

Производители намеренно не усложняют маломощные болгарки дополнительными схемами, ведь такой электроинструмент должен быть дешевым. Понятно, конечно, что срок службы недорогого инструмента всегда короче, чем у более дорогого профессионального.

Самый простой шлифовальный станок можно модернизировать, чтобы не повредить провода обмотки редуктора и якоря. В основном эти неприятности возникают при резком, иными словами, шоковом пуске болгарки.

Вся модернизация заключается в том, чтобы собрать электронную схему и закрепить ее в коробке. В отдельной коробке, потому что в ручке кофемолки очень мало места.

Проверенная рабочая схема представлена ​​ниже. Изначально он предназначался для регулировки накаливания ламп, то есть для работы от активной нагрузки.Его главное преимущество? простота.

  1. Изюминкой устройства плавного пуска, принципиальную схему которого вы видите, является микросхема К1182ПМ1Р. Данная микросхема узкоспециализированная, отечественного производства.
  2. Время разгона можно увеличить, выбрав конденсатор С3 большей емкости. Во время зарядки этого конденсатора электродвигатель набирает максимальную скорость.
  3. Нет необходимости заменять резистор R1 на переменное сопротивление. Резистор 68 кОм оптимально согласован с этой схемой.С этой настройкой вы можете плавно запустить кофемолку мощностью от 600 до 1500 Вт.
  4. Если вы собираетесь собрать регулятор мощности, то вам нужно заменить резистор R1 на переменное сопротивление. Сопротивление 100 кОм и более не снижает выходного напряжения. Закоротив ножки микросхемы, можно полностью отключить подключенную болгарку.
  5. Вставив полупроводник VS1 типа ТС-122-25, то есть на 25А, в цепь питания можно плавно запустить практически любую имеющуюся в продаже кофемолку мощностью от 600 до 2700 Вт.И есть большой запас мощности на случай заклинивания шлифовального станка. Для подключения болгарки мощностью до 1500 Вт достаточно импортных полуисторов ВТ139, ВТ140. Эти менее мощные электронные ключи дешевле.

Полистор в приведенной выше схеме не открывается полностью, он отключает около 15 В сетевого напряжения. Такое падение напряжения никак не влияет на работу болгарки. Но когда полуистор нагревается, обороты подключенного инструмента сильно уменьшаются.Эта проблема решается установкой радиатора.

У этой простой схемы есть еще один недостаток — ее несовместимость с регулятором скорости, установленным в приборе.

Собранную схему нужно спрятать в пластиковый ящик. Изоляционный кожух важен, потому что вам нужно защитить себя от сетевого напряжения. Купить распределительную коробку можно в магазине электротоваров.

К коробке прикручивается розетка и подключается кабель с вилкой, что делает эту конструкцию похожей на удлинитель.

Если опыт позволяет и есть желание, можно собрать более сложную схему плавного пуска. Приведенная ниже принципиальная схема является стандартной для модуля XS — 12. Этот модуль устанавливается в электроинструмент на заводе.

Если нужно изменить скорость подключенного электродвигателя, то схема усложняется: устанавливается подстроечный резистор на 100 кОм, а регулировочный резистор на 50 кОм. Или вы можете просто и грубо ввести переменную 470 кОм между резистором 47 кОм и диодом.

Параллельно конденсатору С2 желательно подключить резистор 1 МОм (на схеме ниже он не показан).

Напряжение питания микросхемы LM358 находится в диапазоне от 5 до 35В. Напряжение в цепи питания не превышает 25В. Поэтому можно обойтись без дополнительного стабилитрона ДЗ.

Какой бы мягкий пускатель вы ни построили, никогда не запускайте подключенный инструмент под нагрузкой. Любой мягкий старт может сгореть, если поторопишься. Подождите, пока кофемолка не раскрутится, а затем приступайте к работе.

Ремонт стиральной машины своими руками Ремонт трансформаторов со сварными сердечниками. Литий-ионный аккумулятор своими руками: как правильно зарядить

Я никогда раньше не делал устройства плавного пуска. Чисто теоретически я представил, как реализовать эту функцию на симисторе, хотя этот вариант не лишен недостатков — требуется потеря мощности и радиатор.
Бродя по пыльным китайским хранилищам, тщетно пытаясь найти что-то стоящее, но не дорогое, в залежах контрафактной и неликвидной продукции наткнулся на этот товар.

Бла-бла-бла

Покупка была не ради покупки, а осознанной необходимости. Решил написать обзор на стол поставить ручной фрезер … А у меня он без плавного старта, он резко запускается, самоуничтожаясь и разрушая окружающую среду вокруг. Мягкий старт и мягкий старт — это не одно и то же? Конечно, были сомнения, хотя к термисторам я не имел отношения, видел их только в компьютерных блоках питания, всегда думал, что они реагируют на «скачки и скачки», то есть быстро, а «напряжение нарастать медленно» «и» примерно через пять секунд «породили червя сомнения.Кроме того, и «или другие машинные приложения с высоким пусковым током».
Так как недостаток знаний делает нас расточительными и решительными, я заказал это устройство и ни на секунду не пожалел.


Вот что о нем пишет продавец:
Блок питания с плавным пуском для усилителя класса А, перспективный: мощность 4 кВт и 40 А через контакты реле на 150-280 В переменного тока. Размеры 67 мм х 61 мм х 30 мм, продавец называет его сверхмалым — ага-ха. Как будто мой нынешний резак попадает в раму, даже если китайские ампера разделить пополам, но в таком размере плата внутри ящика для инструмента не напирает.
И да, это конструктор. Паять нужно!


Товар пришел именно в таком виде, плюс для лучшей сохранности был завернут в клочок газеты на китайском / корейском / японском, который исчез, опрос домочадцев и многочисленной прислуги не уточнил, кому и для чего нужен этот кусок была нужна, поэтому фото газеты нет, сверху была еще одна сумка без прыщиков.
Паять легко — все нарисовано и подписано.


Плата — может кому пригодится


Пайка:


задняя сторона


Принципиальная схема


Как это работает: когда R2 включен, сопротивление велико, напряжение на нагрузке меньше 220 В, термистор нагревается, его сопротивление стремится к нулю, а напряжение на нагрузка до 220 В.Соответственно, двигатель набирает обороты.


При этом выпрямленное и стабилизированное напряжение VD2 (24 В, хотя по первому даташиту должно быть 25, но там вольт, здесь вольт …) питает цепь переключения реле. Конденсатор С3 заряжается через R1, емкость которого определяет время срабатывания реле. Через 5 секунд транзистор VT2 открывается, реле шунтирует термистор R2 и двигатель работает на максимальной мощности.
На бумаге было гладко… Реально подключение этого устройства не дает никакого плавного пуска двигателю, термистор моментально нагревается, мотор сразу лупит сколько зря, только реле издевательски щелкает через 5 сек. Пробовал мотор на 150 Вт — эффект тот же.

Бла-бпа-бла

Он отругал китайского купца. Домашние животные, дошкольники и сослуживцы, наблюдавшие за экспериментом, рассыпались и спрятались в темных углах, свекровь на всякий случай вынула из рукава пестик.Но не стоит вводить в заблуждение доверчивых российских покупателей. Прикончил одонку из бутылки, оставшейся от позапрошлой коронации, откусил холодного кулебяка, успокоился … Достал из мусорного ведра доску, снял с нее шелуху подсолнечника.


«Если работа не удалась, каждая попытка ее спасти только усугубит ситуацию», — говорит Эдвард Мерфи. «Слишком многие люди терпят поражение, даже не осознавая, насколько они были близки к успеху в момент, когда они падали духом», — спорит с ним Томас Эдисон.Эти две цитаты не имеют никакого отношения к делу, они приведены здесь для того, чтобы показать, что автор отчета не просто халявный и тупой потребитель китайских товаров, а начитанный человек, приятный собеседник и интеллектуал. Фигли. Но по делу.
Пара микросхем К1182ПМ1Р валялась у меня в шкафу на антресоли в шляпной коробке.

Выписка из даташита:

Непосредственное использование ИС — для плавного включения и выключения электрических ламп накаливания или регулировки их яркости.IP может также успешно использоваться для регулирования скорости вращения электродвигателей мощностью до 150 Вт (например, вентиляторы) и для управления более мощными силовыми устройствами (тиристорами) .


На одном из них я собрал устройство плавного пуска, которое не без изъянов, но работает как надо.


C1 задает время плавного пуска, R1 устанавливает напряжение на нагрузке. У меня получилось максимальное напряжение на 120 Ом. При C1 100 мкФ время разгона около 2 секунд. Изменяя R1 на переменную, вы можете регулировать скорость коллекторного двигателя, конечно, без обратной связи (хотя это реализовано на подавляющем большинстве продаваемых электроинструментов).Симистор VS1 любой нашел, подходит по мощности. У меня валяется BTA16 600B.


задняя сторона


Все работает.

Теперь осталось скрестить два устройства, которые дополняют друг друга, сводя на нет недостатки, присущие каждому в отдельности.

Бла-бла-бла


В принципе задача не сложная для живого, пытливого ума. Снял термистор и выбросил до лучших времен, на его место припаял два провода, идущие от катода и анода симистора второй платы.Я уменьшил емкость C3 на первой плате до 22 мкФ, чтобы реле замыкало катод и анод симистора не через 5 секунд, а примерно через две.



При температуре воздуха 30 градусов. При температуре диодного моста 50 градусов, стабилитрона 65 градусов, реле 40 градусов.
Вот и все — переделка окончена.

Бла-бла-бла

Другой, менее уверенный в своих силах, обрадуется результату, устроит пир как гора, устроит праздник с медведями и цыганами.Я просто открыл бутылку шампанского, заставил девочек танцевать хороводы во дворе и отменил субботнюю порку.


Осталось только разложить все это в корпусе, я уже хотел, но дома почему-то нет металлической пластины, с помощью которой корпус будет крепиться к столу. Все будет выглядеть примерно так:


Выводы неоднозначные, оценки необъективны, рекомендации сомнительны.
Все устало, а эти коты все время лезли в раму — замучили ездить.Планирую купить +21 Добавить в избранное Обзор понравился +92 +163

Кто хочет напрячься, тратить свои деньги и время на переоборудование устройств и механизмов, которые уже отлично работают? Как показывает практика — многим. Хотя не каждый в жизни сталкивается с промышленным оборудованием, оснащенным мощными электродвигателями, но в быту постоянно встречаются, пусть и не такие прожорливые и мощные, электродвигатели. Ну, наверное, все пользовались лифтом.

Есть проблемы с двигателями и нагрузками?

Дело в том, что практически любые электродвигатели в момент пуска или остановки ротора испытывают огромные нагрузки.Чем мощнее двигатель и приводимое в движение оборудование, тем дороже его запуск.

Вероятно, наиболее значительной нагрузкой на двигатель в момент пуска является кратное, хотя и кратковременное превышение номинального рабочего тока агрегата. Через несколько секунд работы, когда электродвигатель достигнет своей номинальной скорости, потребляемый им ток также вернется к своему нормальному уровню. Для обеспечения необходимого электроснабжения необходимо увеличить мощность электрооборудования и токопроводящих линий , что приводит к их удорожанию.

При запуске мощного электродвигателя из-за его большого потребления происходит «падение» питающего напряжения, что может привести к сбоям в работе или выходу из строя оборудования, питаемого от него по той же линии. Кроме того, сокращается срок службы оборудования электроснабжения.

В случае нештатных ситуаций, приводящих к перегоранию двигателя или сильному перегреву, свойства трансформаторной стали могут настолько измениться, что после ремонта двигатель потеряет до тридцати процентов своей мощности.В таких условиях он уже непригоден для дальнейшего использования и требует замены, что тоже недешево.

Для чего нужен мягкий старт?

Казалось бы, все правильно, и оборудование для этого рассчитано. Но всегда есть «но». В нашем случае их несколько:

  • на момент пуска электродвигателя ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, что не очень хороший;
  • пуск двигателя прямым переключением приводит к рывкам, которые в первую очередь влияют на плотность одних и тех же обмоток, увеличивая трение проводников во время работы, ускоряя разрушение их изоляции и со временем могут привести к межвитковому короткому замыканию;
  • ,
  • , вышеупомянутые толчки и вибрации передаются на всю ведомую машину.Это уже совершенно нездорово, потому что может повредить свои движущиеся части : зубчатые передачи, приводные ремни, конвейерные ленты или просто представьте себя едущим в дергающемся лифте. В случае насосов и вентиляторов это риск деформации и разрушения турбин и лопаток;
  • также не следует забывать о продукции, которая может находиться на производственной линии. Они могут упасть, рассыпаться или сломаться из-за такого рывка;
  • ну и, наверное, последний из моментов, заслуживающих внимания, это стоимость эксплуатации такого оборудования.Речь идет не только о дорогостоящем ремонте, связанном с частыми критическими нагрузками, но и о ощутимом количестве неэффективно потребляемой электроэнергии.

Казалось бы, все вышеперечисленные сложности в эксплуатации присущи только мощному и громоздкому промышленному оборудованию, однако это не так. Все это может стать головной болью для любого обывателя. В первую очередь это касается электроинструмента.

Специфика использования таких агрегатов, как лобзиковые пилы, сверла, шлифовальные машины и т.п., подразумевает многократные циклы пуска и остановки в течение относительно короткого периода времени.Такой режим работы влияет на их долговечность и энергопотребление в такой же степени, как и на их промышленные аналоги. При этом не забывайте, что системы плавного пуска не могут регулировать рабочую скорость двигателя или изменять их направление. Также нельзя увеличить пусковой момент или уменьшить ток ниже того, который требуется для запуска вращения ротора электродвигателя.

Видео: Плавный пуск, регулировка и защита коллектора.двигатель

Опции для систем плавного пуска электродвигателей

Система звезда-треугольник

Одна из наиболее широко используемых систем пуска промышленных асинхронных двигателей. Главное его преимущество — простота. Двигатель запускается при коммутации обмоток звездообразной системы, после чего при установке номинальной скорости автоматически переключается на коммутацию треугольником. Этот вариант пуска позволяет добиться тока почти на треть ниже, чем при прямом пуске электродвигателя.

Однако этот метод не подходит для механизмов с малой инерцией вращения. К ним относятся, например, вентиляторы и небольшие насосы из-за небольшого размера и веса их турбин. В момент перехода из конфигурации «звезда» в «треугольник» они резко снизят скорость или даже остановятся. В результате после переключения электродвигатель по существу перезапускается. То есть в итоге вы не добьетесь не только экономии ресурса двигателя, но, скорее всего, получите перерасход электроэнергии.

Видео: Подключение трехфазного асинхронного электродвигателя со звездой или треугольником

Электронная система плавного пуска электродвигателя

Мягкий запуск двигателя может осуществляться с помощью симисторов, включенных в цепь управления. Возможны три схемы такого включения: однофазная, двухфазная и трехфазная. Каждый из них отличается своим функционалом и конечной стоимостью соответственно.

С помощью таких схем, как правило, можно снизить пусковой ток до двух-трех номинальных.Кроме того, можно уменьшить значительный нагрев, присущий вышеупомянутой системе звезда-треугольник, что помогает увеличить срок службы электродвигателей. Благодаря тому, что запуск двигателя контролируется снижением напряжения, ротор ускоряется плавно, а не скачкообразно, как в других схемах.

В целом перед системами плавного пуска двигателей возлагается несколько ключевых задач:

  • основной — снижение пускового тока до трех-четырех номинальных;
  • снижение напряжения питания двигателя, если имеются соответствующие мощности и проводка;
  • улучшение параметров трогания с места и торможения;
  • Аварийная защита сети от сверхтока.

Однофазная пусковая цепь

Эта цепь предназначена для пуска электродвигателей мощностью не более одиннадцати киловатт. Этот вариант используется в том случае, если требуется смягчить удар при пуске, а торможение, плавный пуск и снижение пускового тока значения не имеют. В первую очередь из-за невозможности организации последнего по такой схеме. Но из-за удешевления производства полупроводников, в том числе симисторов, они сняты с производства и встречаются редко;

Схема двухфазного пуска

Схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт.Такие устройства плавного пуска иногда оборудуют байпасным контактором для снижения стоимости устройства, однако это не решает проблему несимметрии в подаче фаз, которая может привести к перегреву;

Схема трехфазного пуска

Эта схема является наиболее надежной и универсальной системой плавного пуска электродвигателей. Максимальная мощность двигателей, управляемых таким устройством, ограничена исключительно максимальной температурой и электрической выносливостью используемых симисторов.Его универсальность позволяет реализовать множество функций , таких как: динамический тормоз, ретракционный захват или балансировка магнитного поля и ограничение тока.

Важным элементом последней упомянутой схемы является шунтирующий контактор, о котором упоминалось ранее. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя после выхода двигателя на нормальную рабочую частоту вращения, предотвращая его перегрев.

Существующие устройства плавного пуска электродвигателей, помимо вышеперечисленных свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации.У них есть возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах в момент включения нагрузок могут появиться помехи, которые могут привести к сбоям в работе автоматики, а значит, стоит позаботиться о системах защиты. Использование схем плавного пуска позволяет значительно снизить их влияние.

Плавный пуск своими руками

Большинство из перечисленных выше систем фактически неприменимы в домашних условиях.В первую очередь по той причине, что мы редко используем дома трехфазные асинхронные двигатели. Но и коллекторных однофазных двигателей более чем достаточно.

Существует множество схем устройств плавного пуска двигателя. Выбор конкретного зависит исключительно от вас, но в принципе, обладая определенными знаниями радиотехники, умелыми руками и желанием, вполне можно собрать достойный самодельный стартер , который продлит жизнь вашему электроинструменту и бытовой технике на долгие годы.

Многие электроинструменты выходят из строя из-за износа двигателя. Современные модели болгарок имеют устройство плавного пуска. По его словам, это способ работать надолго. Принцип работы элемента основан на изменении рабочей частоты. Чтобы больше узнать о стартовом устройстве, стоит рассмотреть схему штатной модели.

Устройство плавного пуска

Стандартная болгарская схема плавного пуска состоит из симистора, выпрямителя и набора конденсаторов. Для увеличения рабочей частоты используются резисторы, пропускающие ток в одном направлении.Стартер защищен компактным фильтром. low поддерживается для моделей. Однако в этом случае многое зависит от максимальной мощности мотора, который установлен в болгарке.

Как подключить модель?

Подключение плавного пуска болгарки осуществляется через переходник. Его входные контакты подключены к выпрямительному блоку. В этом случае важно определить нулевую фазу в приборе. Для исправления контактов потребуется Проверить работоспособность стартера через тестер.В первую очередь определяется отрицательное сопротивление. При установке стартера важно помнить о пороговом напряжении, которое может выдержать устройство.

Схема устройства болгарки с симистором на 10 А

Схема плавного пуска болгарки, сделанного вручную, предполагает использование контактных резисторов. Коэффициент полярности модификаций, как правило, не превышает 55%. Многие модели выпускаются с блокираторами. Проводной фильтр отвечает за защиту устройства.Для передачи тока используются низкочастотные трансиверы. Процесс понижения порогового напряжения осуществляется на транзисторе. Симистор в этом случае действует как стабилизатор. При подключении модели выходное сопротивление при перегрузке 10 А должно быть около 55 Ом. Крышки стартеров изготовлены из полупроводников. В некоторых случаях устанавливаются магнитные трансиверы. Они хорошо справляются с низкими оборотами и могут поддерживать номинальную частоту.

Модель для шлифовальных машин с симистором 15 А

Плавный пуск болгарки с симисторами 15 А универсален и часто встречается в моделях малой мощности.Отличие приборов — низкая проводимость. Схема (устройство) мягкого пуска болгарки предполагает использование приемопередатчиков контактного типа, работающих на частоте 40 Гц. Многие модели используют компараторы. Эти элементы устанавливаются с фильтрами. Номинальное напряжение стартеров начинается от 200 В.

Стартеры для шлифовальных машин с симистором 20 А

Устройства с симистором 20 А подходят для профессиональных шлифовальных машин. Во многих моделях используются контакторные резисторы. В первую очередь они способны работать на высоких частотах.Максимальная температура стартеров — 55 градусов. Большинство моделей имеют хорошо защищенный корпус. Стандартная схема устройства предполагает использование трех контакторов емкостью 30 пФ. Эксперты отмечают, что устройства отличаются своей проводимостью.

Минимальная частота для пускателей 35 Гц. Они способны работать в сети постоянного тока. Модификации подключаются через переходники. Такие устройства хорошо подходят для моторов мощностью 200 Вт. Фильтры часто устанавливаются с триодами. Их индекс чувствительности не более 300 мВ.Проводные компараторы с системой защиты встречаются довольно часто. Если рассматривать импортные модели, то в них есть встроенный преобразователь с изоляторами. Токопроводимость составляет около 5 микрон. При сопротивлении 40 Ом модель способна стабильно поддерживать высокие обороты.

Модели для болгарки 600 Вт

Для болгарки мощностью 600 Вт используются стартеры с контактными симисторами, у которых перегрузка не превышает 10 А. Также стоит отметить, что существует множество устройств с пластинами.Они отличаются своей безопасностью и не боятся высоких температур. Минимальная частота для болгарки мощностью 600 Вт — 30 Гц. В этом случае сопротивление зависит от установленного триода. Если он используется линейного типа, то указанный выше параметр не превышает 50 Ом.

Если говорить о дуплексных триодах, то сопротивление на высоких оборотах может доходить до 80 Ом. Очень редко в моделях есть стабилизаторы, работающие от компараторов. Чаще всего они крепятся непосредственно к модулям.Некоторые модификации сделаны на проводных транзисторах. Их минимальная частота начинается от 5 Гц. Боятся перегрузок, но способны поддерживать высокую скорость на

Аппараты для болгарки 800 Вт

Болгарки на 800 Вт работают с низкочастотными стартерами. Довольно часто используются симисторы на 15 А. Если говорить о модельной схеме, то стоит отметить, что в них используются расширительные транзисторы, у которых допустимая нагрузка по току начинается от 45 мкм. Конденсаторы используются с фильтрами и без них, а емкость элементов не более 3 пФ.Также стоит отметить, что стартеры различаются по чувствительности.

Если рассматривать профессиональные болгарки, то для них подходят модификации на 400 мВ. В этом случае токопроводимость может быть низкой. Также есть устройства с регулируемыми транзисторами. Они быстро нагреваются, но поддерживать высокую скорость болгарки не в состоянии, а их проводимость по току составляет около 4 мкм. Если говорить о других параметрах, то номинальное напряжение начинается от 230 В. Минимальная частота для моделей с широкополосными симисторами — 55 Гц.

Стартеры для болгарки 1000 Вт

Стартеры для этих болгарок выполнены на симисторах с перегрузкой 20 А. В штатную схему устройства входят триод, пластина стабилизатора и три транзистора. Выпрямительный блок чаще всего устанавливают на проводной основе. Конденсаторы можно использовать с фильтром или без него. Минимальная частота обычной модели — 30 Гц. На 40 Ом пускатели способны выдерживать большие перегрузки. Однако проблемы могут возникнуть на малых оборотах болгарки.

Как сделать стартер из симистора ТС-122-25?

Сделать плавный пуск болгарки своими руками с симистором ТС-122-25 достаточно просто. В первую очередь рекомендуется подготовить контакторный резистор. Для конденсаторов потребуется однополюсный тип. Всего в стартере установлено три элемента. Емкость одного конденсатора не должна превышать 5 пФ. Для увеличения рабочей частоты к пластине припаивается контактор. Некоторые специалисты говорят, что фильтры могут улучшить проводимость.

Используется выпрямительный блок с проводимостью 50 мкм. Он способен выдерживать большие перегрузки и сможет обеспечить высокие обороты. Далее для того, чтобы собрать на болгарке своими руками плавный пуск, устанавливается тиристор. По окончании работы модель подключается через переходник.

Сборка модели с симисторами серии VS1

Собрать плавный пуск болгарки на симисторе VS1 можно своими руками, используя несколько выпрямительных блоков.Конденсаторы для устройства подходят линейного типа емкостью 40 пФ. Начать сборку модификации стоит с пайки резисторов. Конденсаторы устанавливаются последовательно между изоляторами. Номинальное напряжение качественного стартера — 200 В.

Далее, чтобы сделать плавный пуск болгарки своими руками, в начале схемы берется подготовленный симистор и припаивается. Его минимальная рабочая частота должна быть 30 Гц. В этом случае тестер должен показать значение 50 Ом.Если есть проблемы с перегревом конденсаторов, то следует использовать дипольные фильтры.

Модель для болгарки с регулятором КР1182ПМ1

Для сборки мягкого пуска болгарки своими руками с регулятором КР1182ПМ1 берутся контактный тиристор и выпрямительный блок. Для двух фильтров целесообразнее использовать триод. Также стоит отметить, что для сборки стартера требуется три конденсатора емкостью не менее 40 пФ.

Индекс чувствительности элементов должен составлять 300 мВ.Специалисты говорят, что симистор можно установить за крышкой. Также следует помнить, что пороговое напряжение не должно опускаться ниже 200 В. В противном случае модель не сможет работать на пониженных оборотах болгарки.

Управление трехфазным асинхронным двигателем с помощью частотно-регулируемого привода и ПЛК

Различные процессы автоматизации в промышленности требуют управления асинхронными двигателями переменного тока с помощью приводов переменного тока. Здесь представлена ​​надежная система для включения / выключения, изменения скорости и направления вращения промышленного трехфазного асинхронного двигателя с использованием частотно-регулируемого привода и ПЛК.Мы используем здесь моторный привод Delta AC для его работы.

Простая панель управления подключается с помощью ПЛК Allen Bradley для демонстрации. Также может быть разработана расширенная SCADA-система Wonderware для Intouch.

Электродвигатель — это электромеханическое устройство, преобразующее электрическую энергию в механическую. В случае трехфазного переменного тока наиболее широко используемым двигателем является трехфазный асинхронный двигатель, так как этот тип двигателя не требует никакого пускового устройства, поскольку является самозапускающимся двигателем.

Рис. 1: Общий вид системы Рис. 2: Блок-схема привода

Какие есть приводы

Часто в промышленности возникает потребность в управлении скоростью 3-фазного асинхронного двигателя. Электроприводы переменного тока Delta способны эффективно управлять скоростью двигателя, улучшать автоматизацию машин и экономить энергию. Каждый привод в своей серии частотно-регулируемых приводов (VFD) разработан для удовлетворения конкретных потребностей применения.

Приводы переменного тока

точно регулируют крутящий момент, плавно справляются с повышенными нагрузками и обеспечивают множество настраиваемых режимов управления и конфигурации.ЧРП можно использовать для изменения скорости, направления и других параметров трехфазного двигателя. Мы используем 2-проводной метод управления скоростью и направлением двигателя.

Работа частотно-регулируемого привода

Первой ступенью ЧРП является преобразователь, состоящий из шести диодов, похожих на обратные клапаны, используемые в водопроводных системах. Они позволяют току течь только в одном направлении; направление показано стрелкой в ​​символе диода. Например, всякий раз, когда напряжение фазы A (напряжение аналогично давлению в водопроводной системе) больше положительного, чем напряжения фазы B или C, этот диод открывается и пропускает ток.

Когда фаза B становится более положительной, чем фаза A, диод фазы B открывается, а диод фазы A закрывается. То же самое и с тремя диодами на отрицательной стороне шины. Таким образом, мы получаем шесть импульсов тока при открытии и закрытии каждого диода. Это называется 6-импульсным частотно-регулируемым приводом, который является стандартной конфигурацией для современных частотно-регулируемых приводов.

Мы можем избавиться от пульсаций переменного тока на шине постоянного тока, добавив конденсатор. Конденсатор работает аналогично резервуару или аккумулятору в водопроводной системе. Он поглощает пульсации переменного тока и обеспечивает плавное постоянное напряжение.

Диодный мостовой преобразователь, преобразующий переменный ток в постоянный, иногда называют просто преобразователем. Преобразователь, который преобразует постоянный ток обратно в переменный, также является преобразователем, но, чтобы отличить его от диодного преобразователя, его обычно называют инвертором. В промышленности стало обычным называть любой преобразователь постоянного тока в переменный инвертором.

Когда мы замыкаем один из верхних переключателей в инверторе, эта фаза двигателя подключается к положительной шине постоянного тока, и напряжение на этой фазе становится положительным.Когда мы замыкаем один из нижних переключателей в преобразователе, эта фаза подключается к отрицательной шине постоянного тока и становится отрицательной. Таким образом, мы можем сделать любую фазу двигателя положительной или отрицательной по желанию и, таким образом, можем генерировать любую частоту, которую мы хотим. Таким образом, мы можем сделать любую фазу положительной, отрицательной или нулевой.

Рис. 3: Принципиальная схема ЧРП Рис. 4: Формы сигналов при различных рабочих частотах и ​​средних напряжениях

Обратите внимание, что выходной сигнал частотно-регулируемого привода имеет прямоугольную форму. VFD не выдают синусоидального сигнала.Эта прямоугольная форма волны не будет хорошим выбором для распределительной системы общего назначения, но вполне подходит для двигателя.

Если мы хотим снизить частоту двигателя, мы просто переключаем выходные транзисторы инвертора медленнее. Но если мы уменьшаем частоту, мы также должны уменьшать напряжение, чтобы поддерживать соотношение В / Гц. Это делает широтно-импульсная модуляция (ШИМ).

Представьте себе, мы могли бы контролировать давление в водопроводе, открывая и закрывая клапан на высокой скорости. Хотя это было бы непрактично для сантехнических систем, это очень хорошо работает для частотно-регулируемых приводов.

Обратите внимание, что в течение первого полупериода напряжение присутствует половину времени и выключено в остальное время. Таким образом, среднее напряжение составляет половину 480В, то есть 240В. Импульсируя выход, мы можем получить любое среднее напряжение на выходе частотно-регулируемого привода.

Выбор Delta VFD-M в качестве привода переменного тока

Рис. 5: Delta VFD-M

Delta VFD-M — это векторный микропривод переменного тока без датчика. Его компактная конструкция идеально подходит для работы с двигателями малой и средней мощности. Привод M разработан для обеспечения сверхмалошумной работы и включает несколько инновационных технологий, снижающих помехи.

Этот привод может найти множество применений, таких как упаковочная машина, машина для производства пельменей, беговая дорожка, вентилятор с контролем температуры / влажности для сельского хозяйства и аквакультуры, миксер для пищевой промышленности, шлифовальный станок, сверлильный станок, малогабаритный токарный станок с гидравлическим приводом, элеватор, оборудование для нанесения покрытий, малогабаритный фрезерный станок, роботизированный манипулятор литьевого станка (зажим), деревообрабатывающий станок (двусторонний строгальный станок), кромогибочный станок, эластификатор и т. д.

Рис. 6: Схема подключения выводов для VFD-M Рис.7: Управление цифровой клавиатурой на Delta VFD-M

Шаги для полного управления двигателем

  1. Проверить соединения L1, L2, L3; T1, T2, T3 (используются для подачи 3-фазного входа на частотно-регулируемый привод и подключения к нему двигателя) и провода, выходящие из M0, M1 и GND.
  2. Включите трехфазное питание.
  3. Для программирования VFD-M:
    (i) Нажмите Mode
    (ii) На F60.0 нажмите Enter
    (iii) Нажмите Mode
    (iv) Выберите соответствующий параметр, используя клавиши вверх / вниз на клавиатуре.
    (v) Например, для Pr0 выберите P 00.
    (vi) В соответствии с руководством установите параметры для требуемого режима работы
    (vii) Нажмите EnterEnd

Примечание: В любой момент нажмите Mode, чтобы перейти к предыдущему шагу.

Для двигателя, работающего от внешнего управления, у нас есть три режима работы; два — 2-проводный метод, а один — 3-проводный. Помимо этого, существует метод по умолчанию, которым можно управлять с цифровой клавиатуры.

Сначала выполните пробный запуск, чтобы проверить все соединения.

Пробный пуск для VFD

Заводская установка источника управления — с цифровой клавиатуры (Pr.01 = 00). Вы можете выполнить пробный запуск с помощью цифровой клавиатуры, выполнив следующие действия:

  1. После подачи питания убедитесь, что на дисплее отображается F60.0Hz. Когда привод двигателя переменного тока находится в режиме ожидания, загораются светодиоды STOP и FWD.
  2. Нажмите кнопку «Вниз», чтобы установить частоту 5 Гц.
  3. Нажмите кнопку запуска. Загораются светодиоды RUN и FWD, что указывает на поступление рабочей команды.А если вы хотите перейти на обратный ход, вам следует нажать кнопку «вниз». И если вы хотите замедлить, чтобы остановиться, нажмите кнопку остановки / сброса.

Программирование VFD-M

Есть два контакта, M0 и M1. Каждый раз, когда M0 закрыт, VFD переходит в рабочий режим. Если он открыт, двигатель не вращается. M1 определяет направление вращения. Если M1 открыт, он вращается в прямом направлении; если закрыт, в обратном направлении.
Параметры для указанного выше режима установлены как:

Пр.00 настроен на 01 (для управления главной частотой с помощью потенциометра)
Pr.01 настроен на 01 (внешнее управление, через M0, M1)
Параметр 38 установлен на 01 (M0, M1 настроены как запуск / останов и вперед / назад)

Задайте для Pr.00 значение 00 для управления основной частотой с цифровой клавиатуры и 01 для управления с помощью потенциометра, прикрепленного, как показано на схеме подключения первого контакта.

Пар.38 должен быть установлен на 01, как показано на схемах выше.

После того, как все эти параметры установлены, выполните шаги в 2-проводном режиме для запуска двигателя.

Рис. 8: Двухпроводный режим: только Пар.38 может быть установлен на «1»

Рис.9: лестничная диаграмма для управления

Использование ПЛК Рис. 10: Плата управления двигателем. Программируемые логические контроллеры (ПЛК)

очень эффективно поддерживают цифровой ввод / вывод. Таким образом, ПЛК также может использоваться для управления работой частотно-регулируемого привода, а значит, и для управления подключенным трехфазным асинхронным двигателем.

Рис. 11: Подключение ПЛК Allen Bradley

ПЛК Allen Bradley MicroLogix 1000 подключается к Delta VFD-M и программируется с помощью лестничного программирования с использованием RS Logix.

Мы подключили M0 и M1 к O2 и O3 (выходам) ПЛК и управляем O2 и O3 с помощью лестничной логики. На рис. 4 показана логика, определенная для режима 01, то есть Pr.38 = 01. O: 0,0 / 2 подключен к M0.

Рис. 12: Изменение скорости асинхронного двигателя с помощью потенциометра

Когда I: 0,0 / 2 установлено на, он переводит двигатель в рабочий режим. Теперь, даже если I: 0.0 / 2 выключен, O: 0.0 / 2 остается включенным из-за определенной логики. Его можно остановить только повторным нажатием I: 0,0 / 2.

I: 0,0 / 3 контролирует O: 0.0/5, который, в свою очередь, подключен к M1, который определяет направление вращения двигателя.

Рис. 13: Трехфазный асинхронный двигатель

0: 0,0 / 3 — это светодиод, который загорается, когда двигатель находится в рабочем режиме.

0: 0,0 / 5 — это светодиод, который загорается, когда двигатель вращается в прямом направлении, и выключается при обратном вращении.

Любите читать эту статью? Вам также может понравиться создание системы управления ПК с использованием Wonderware InTouch SCADA и Allen Bradley PLC

Джоби Энтони — магистр компьютерных технологий из США, в настоящее время работает инженером в ядерном межуниверситетском ускорительном центре (IUAC) в Нью-Дели.Он также был приглашенным ученым в ЦЕРН, Женева,

.

Акшай Кумар — студент технологического факультета Делийского технологического университета, Нью-Дели, в настоящее время стажер в IUAC

Эта статья была впервые опубликована 22 июля 2016 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *