Почему горят резисторы: Почему горит резистор на плате. Технология проверки резистора в домашних условиях. Как измерить сопротивление, когда номинал неизвестен

Содержание

Почему горит резистор на плате. Технология проверки резистора в домашних условиях. Как измерить сопротивление, когда номинал неизвестен

Чаще всего встречаются неисправности резисторов, связанные с выгоранием токопроводящего слоя или нарушением контакта между ним и хомутиком. Для всех случаев дефектов существует простой тест. Разберемся, как проверить резистор мультиметром.

Типы мультиметров

Прибор бывает стрелочным или цифровым. Для первого не требуется источник питания. Он работает как микроамперметр с переключением шунтов и делителей напряжения в заданные режимы измерений.

Цифровой мультиметр показывает на экране результаты сравнения разницы между эталонными и измеряемыми параметрами. Для него нужен влияющий на точность измерений по мере разрядки. С его помощью производится тестирование радиодеталей.

Виды неисправностей

Резистором называют электронный компонент с определенным или переменным значением электрического сопротивления. Перед тем как проверить резистор мультиметром, его осматривают, визуально проверяя исправность. Прежде всего определяется целостность корпуса по отсутствию на поверхности трещин и сколов. Выводы должны быть надежно закреплены.

Неисправный резистор часто имеет полностью обгоревшую поверхность или частично — в виде колечек. Если покрытие немного потемнело, это еще не характеризует наличие неисправности, а говорит лишь о его нагреве, когда выделяемая на элементе мощность в какой-то момент превысила величину допустимой.

Деталь может выглядеть как новая, даже если внутри оборвется контакт. У многих здесь возникают проблемы. Как проверить резистор мультиметром в данном случае? Необходимо наличие принципиальной схемы, по которой производятся замеры напряжения в определенных точках. Для облегчения поиска неисправностей в электрических цепях бытовой техники выделяются контрольные точки с указанием на них величины этого параметра.

Проверка резисторов производится в самую последнюю очередь, когда нет сомнений в следующем:

  • полупроводниковые детали и конденсаторы исправны;
  • на печатных платах нет сгоревших дорожек;
  • отсутствуют обрывы в соединительных проводах;
  • соединения разъемов надежны.

Все вышеперечисленные дефекты появляются со значительно большей вероятностью, чем выход из строя резистора.

Характеристики резисторов

Величины сопротивлений стандартизованы в ряды и не могут принимать любые значения. Для них задаются допустимые отклонения от номинала, зависимые от точности изготовления, температуры среды и других факторов. Чем дешевле резистор, тем больше допуск. Если при измерении величина сопротивления выходит за его пределы, элемент считается неисправным.

Еще одним важным параметром является мощность резистора. Одной из причин преждевременного выхода детали из строя является ее неправильный выбор по этому параметру. Мощность измеряется в ваттах. Ее выбирают такой, на которую он рассчитан. На схеме условного обозначения мощность резистора определяется по знакам:

  • 0,125 Вт — двойная косая черта;
  • 0,5 Вт — прямая продольная черта;
  • римская цифра — величина мощности, Вт.

Резистор для замены выбирается по тем же параметрам, что и неисправный.

Проверка резисторов на соответствие номиналам

Для проверки необходимо найти значения сопротивлений. Их можно увидеть по порядковому номеру элемента на схеме или в спецификации.

Измерение сопротивления является самым распространенным способом проверки резистора. В данном случае определяется соответствие номиналу и допуску.

Величина сопротивления должна быть в пределах диапазона, который на мультиметре устанавливается переключателем. Щупы подключаются к гнездам COM и VΩmA. Перед тем как проверить резистор тестером, сначала определяется исправность его проводов. Их замыкают между собой, и прибор должен показать величину сопротивления, равную нулю или немного больше. При измерениях малых сопротивлений эта величина вычитается из показаний прибора.

Если энергии элементов питания недостаточно, обычно получается сопротивление, отличное от нуля. В этом случае следует заменить батарейки, поскольку точность измерений будет низкой.

Новички, не зная, как проверить резистор на работоспособность мультиметром, часто касаются руками щупов прибора. Когда измеряются величины в килоомах, это недопустимо, поскольку получаются искаженные результаты. Здесь следует знать, что тело также имеет определенное сопротивление.

При фиксации прибором величины сопротивления, равной бесконечности, это является показателем наличия обрыва (на экране горит «1»). Редко встречается наличие пробоя резистора, когда его сопротивление равно нулю.

После измерения полученное значение сравнивается с номиналом. При этом учитывается допуск. Если данные совпадают, резистор исправен.

Когда появляются сомнения в правильности показаний прибора, следует замерить величину сопротивления исправного резистора с тем же номиналом и сравнить показания.

Как измерить сопротивление, когда номинал неизвестен?

Установка максимального порога при измерении сопротивления не обязательна. В режиме омметра можно установить любой диапазон. Мультиметр из-за этого не выйдет из строя. Если прибор покажет «1», что означает бесконечность, порог следует увеличивать, пока на экране не появится результат.

Функция прозвонки

А еще как проверить резистор мультиметром на исправность? Распространенным способом является прозвонка. Положение переключателя для данного режима обозначается значком диода с сигналом. Знак сигнала может быть отдельно, верхняя граница срабатывания его не превышает 50-70 Ом. Поэтому резисторы, номиналы которых превышают порог, прозванивать не имеет смысла. Сигнал будет слабым, и его можно не услышать.

При значениях сопротивления цепи ниже граничного значения прибор издает писк через встроенный динамик. Прозвонка делается путем создания напряжения между точками схемы, выбранными с помощью щупов. Чтобы данный режим работал, нужны подходящие источники питания.

Проверка исправности резистора на плате

Сопротивление замеряют, когда элемент не подключен к остальным в схеме. Для этого нужно освободить одну из ножек. Как проверить резистор мультиметром, не выпаивая из схемы? Это делается только в особых случаях. Здесь необходимо проанализировать схему подключений на наличие шунтирующих цепей. Особенно на показания прибора влияют полупроводниковые детали.

Заключение

Решая вопрос, как проверить резистор мультиметром, необходимо разобраться, как измеряется электрическое сопротивление и какие пределы устанавливаются. Прибор предназначен для ручного применения и следует запомнить все приемы использования щупов и переключателя.

Резистор или постоянное сопротивление – это одновременно самый простой и распространённый элемент в электрических схемах, его устанавливают во всех устройствах. Но, несмотря на свою простоту, при нарушении режимов работы или тепловых условий он может сгореть. Отсюда возникает вопрос, как проверить резистор на работоспособность мультиметром. Технология проверки исправности в домашних условиях будет изложена в этой статье.

Алгоритм поиска неисправности

Визуальный осмотр

Любой ремонт начинается с внешнего осмотра платы. Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара.

При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов. Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.

Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.

Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:

  1. Обрыв.
  2. Несоответствие номиналу.

Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:

Проверка резистора на обрыв

Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.

Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв.

Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром. Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.

Проверка короткого замыкания

Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к.

высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.

Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:

  1. Измерить омметром, прозвонкой или другим прибором участок цепи.
  2. Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
  3. Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
  4. Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
  5. Проверить результаты работы на наличие КЗ.

Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:

Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.

На видео ниже наглядно показывается, как проверить резистор мультиметром:

Определяем номинал резистора

У советских сопротивлений номинал был указан буквенно-цифровым способом. У современных выводных резисторах номинал зашифрован цветовыми полосами. Чтобы заменить сопротивление после проверки на исправность, нужно расшифровать маркировку сгоревшего.

Для определения маркировки по цветным полоскам есть масса бесплатных приложений на андроид. Раньше использовались таблицы и специальные приспособления.

Можно сделать вот такую шпаргалку для проверки:

Вырезаете цветные круги, прокалываете их по центру и соединяете, самый большой назад, маленький – спереди. Совмещая круги, вы определяете сопротивление элемента.

Кстати на современных керамических резисторах тоже используется явная маркировка с указанием сопротивления и мощности элемента.

Если вести речь об SMD элементах – здесь всё достаточно просто. Допустим маркировка «123»:

12 * 10 3 = 12000 Ом = 12 кОм

Встречаются и другие маркировки из 1, 2, 3 и 4 символов.

Если деталь сгорела так, что маркировку вообще не видно, стоит попробовать потереть её пальцем или ластиком, если это не помогло – у нас есть три варианта:

  1. Искать на схеме электрической принципиальной.
  2. В некоторых схемах есть несколько одинаковых цепей, в таком случае можно проверить номинал детали на соседнем каскаде. Пример: подтягивающие резисторы на кнопках у микроконтроллеров, ограничительные сопротивления индикаторов.
  3. Замерить сопротивление уцелевшего участка.

О первых двух способах добавить нечего, давайте узнаем, как проверить сопротивление сгоревшего резистора.

Начнем с того, что нужно очистить покрытие детали. После этого включите на мультиметре режим измерения сопротивления, он обычно подписан «Ohm» или «Ω».

Если вам повезло, и отгорел участок непосредственно возле вывода, просто замерьте сопротивление на концах резистивного слоя.

В примере как на фото можно замерить сопротивление резистивного слоя или определить по цвету маркировочных полос, здесь они не покрыты копотью – удачное стечение обстоятельств.

Ну а если вам не повезло и часть резистивного слоя выгорела – остаётся замерить небольшой участок и умножить результат на количество таких участков по всей длине сопротивления. Т.е. на картинке вы видите, что щупы подключаются к кусочку равному 1/5 от общей длины:

Тогда полное сопротивление равно:

R измеренное *5=R номинальное

Такая проверка позволяет получить результат близкий к реальному номиналу сгоревшего элемента. Этот метод подробно описан в видео:

Как проверить переменный резистор и потенциометр

Чтобы понять, в чем заключается проверка потенциометра, давайте рассмотрим его структуру. Переменный резистор от потенциометра отличается тем, что первый регулируется отверткой, а второй рукояткой.

Потенциометр – это деталь с тремя ножками. Он состоит из ползунка и резистивного слоя. Ползунок скользит по резистивному слою. Крайние ножки – это концы резистивного слоя, а средняя соединена с ползунком.

Чтобы узнать полное сопротивление потенциометра, нужно замерить сопротивление между крайними ножками. А если проверить сопротивление между одной из крайних ножек и центральной – вы узнаете текущее сопротивление на движке относительно одного из краёв.

Но самая частая неисправность такого резистора — это не отгорание концов, а износ резистивного слоя. Из-за этого сопротивление изменяется неправильно, возможна потеря контакта в определенных участках, тогда сопротивление подскакивает до бесконечности (разрыв цепи). Когда движок занимает то положение, в котором контакт ползунка с покрытием вновь появляется – сопротивление вновь становится «правильным». Эту проблему вы могли замечать, когда регулировали громкость на старых колонках или усилителе. Проявляется проблема в том, что при вращении ручки периодически в колонках раздаются щелчки или громкие стуки.

Вообще проверку плавности хода потенциометра нагляднее проводить аналоговым мультиметром со стрелкой, т.к. на цифровом экране вы просто можете не заметить дефекта.

Потенциометры могут быть сдвоенными, иногда их называют «стерео потенциометры», тогда у них 6 выводов, логика проверки такая же.

На видео ниже наглядно показывается, как проверить потенциометр мультиметром:

Методы проверки резисторов просты, но для получения нормального результата проверки нужен мультиметр или омметр с несколькими пределами измерений. С его помощью вы сможете померить еще и напряжение, ток, емкость, частоту и другие величины в зависимости от модели вашего прибора. Это основной инструмент мастера по ремонту электроники. Сопротивления иногда выходят из строя при внешней целостности, иногда уходят от номинального значения сопротивления. Проверка нужна для определения соответствия деталей номиналам, а также чтобы убедится рабочий или нет элемент. На практике способы проверки могут отличаться от описанных, хотя принцип тот же, всё зависит от ситуации.

Полезное

Ремонт электроники, а также ее реверс-инжиниринг представляют собой хоть и интересные, но все же довольно непростые занятия. Одной из сложностей такого времяпрепровождения является попытка распознавания номиналов сгоревших компонентов. Когда под рукой нет схемы устройства, это распознавание становится чуть ли не загадкой века. Резисторы в силу их большего распространения на печатных платах и большей склонности к выгоранию являются желанными объектами в плане выяснения их номиналов при практически полностью обугленных корпусах.

Несмотря на кажущуюся невозможность определения сопротивления сгоревшего резистора, его номинал все же можно узнать. При этом существуют три метода определения сопротивления.

Первый метод. Сначала уберите внешнее покрытие, которое, скорее всего, уже находится в обугленном виде. Очистите обгоревшую секцию резистора, где какая-либо проводимость уже исчезает. Измерьте сопротивление от одного конца резистора до поврежденного участка. Затем измерьте сопротивление от поврежденного участка до другого конца резистора. Сложите эти два измеренных сопротивления. Это будет приблизительное значение сожженного резистора. Для немного более точного значения итогового сопротивления можно добавить к этой сумме небольшое значение сопротивления сожженного участка. Предположим, что значение сожженного резистора было 1 КОм, но вы получили 970 Ом. Так что просто добавьте 30 Ом, и у вас будет 1 КОм.

Второй метод. Этот метод также может быть использован для определения значения резистора, а также он может применяться на подключенных резисторах в цепи в случае, если вы не знаете о цветовом кодировании резисторов, то есть что означают полоски на резисторе. Следует отметить, что резистор должен подавать хоть какие-то признаки жизни, то есть он не должен быть полностью выгоревшим. Итак, сначала подключите резистор к мультиметру и измерьте падение напряжения на интересующем резисторе. Теперь измерьте ток, текущий через резистор. Умножьте оба значения, и вы получите мощность резистора, поделите напряжение на ток, получите сопротивление (закон Ома).

Третий метод. Этот метод можно использовать лучше, если вы знаете ожидаемое выходное напряжение схемы, и у вас есть набор резисторов с той же мощностью, что и сгоревший резистор. Начните с высокого значения сопротивления и временно подключите такой резистор вместо сгоревшего резистора. Измерьте ожидаемое выходное напряжение цепи. Если вы получили то же напряжение, что и ожидаемое напряжение, то вы нашли искомое сопротивление. Если же нет, то продолжайте уменьшать значение резистора, пока не удовлетворитесь работой схемы.

.
&nbsp&nbsp&nbspЕсли Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
&nbsp&nbsp&nbspВы можее поддержать наш проект, пожертвовав любую сумму на его развитие.

Почему горит резистор? — Умные вопросы

Почему горит резистор? — Умные вопросы Меняю светодиоды в «стеклоподъемнике» в машине.
Стоят родные белые 3В. С ними в цепи на «+» стоит резистор номиналом (1. 8-2. 0 кОм) .
Меняю светодиод на мой (синий 3В) и он моментально сгорает. Долго мучился, пока не догодался припаять еще 1 резистор на 750 Ом.
Все работает. Но понять не могу, почему он сгорал. Я отдельно выпаял резистор и припаял на мой светодиод и стал тестить: подавал питание до 18 В терпел. (задавал калибратором) . Ток задавал до 22 мА. Все работало.
Почему в схеме перегорал?
Как я понял все подключено было последовательно. В цепи было 5 светодиодов.
Возможно я ошибаюсь, по 2 и 3 светодиода последовательно.
Перегорал из-за большего тока в цепи? так они все моментально, даже моргнуть не успели 5 годов назад от Ильназ ………

2 Ответы

Была у меня такая штука: стажеры сортировали кассетницу с резисторами. И один киломы в омы напихал (номинал пропечатанных цифр одинаковый) . Спустя год мне потребовался этот номинал — и я убился об стенку, почему схема не работает как надо. Может, ваш резистор не киломы, а омы? Мультиметром мерили? 5 годов назад от Александр Цок
Во время эксперимента вы ограничивали ток 22 мА, а в машине ограничителя, как понимаю не было. Вероятно в ТУ на «белые» светодиоды, что-то было указано, что они обходились без дополнительного резистора включенного последовательно, но с «синим» подобное не прокатило. Поищите ТУ на каждый тип светодиодов. Истина где-то рядом . 5 годов назад от lenyxa16

Связанные вопросы

1 ответ

3 годов назад от Аскар Исмагилов

2 ответов

9 годов назад от Max Nobel

1 ответ

5 годов назад от Phoebe Tonkin

Резистор в цепи затвора или как делать правильно / Хабр

Всем доброго времени суток!

Эта небольшая статья возможно станет шпаргалкой для начинающих разработчиков, которые хотят проектировать надежные и эффективные схемы управления силовыми полупроводниковыми ключами, обновит и освежит старые знания опытных специалистов или может хотя бы где-то поцарапает закрома памяти читателей.

Любому из этих случаев я буду очень рад.

В этой заметке я попробую описать наиболее распространенные вопросы выбора затворных резисторов для силовых электронных устройств. Она базируется на знаниях, почерпнутых мной из разной литературы, апноутов от TOSHIBA, Infineon, Texas Instruments а также из скромной практики. Стоит заметить, что эта информация не дает прямо универсальных рекомендаций для каждого силового ключа. Тем не менее, можно проанализировать какие предположения могут быть важны и какое влияние они могут оказать на выбор резисторов затвора для дискретных силовых транзисторов, а также для силовых модулей.

Основы

Затворный резистор расположен в цепи между драйвером силового транзистора и затвором самого транзистора, как показано на изображении в шапке статьи.

Открыт или закрыт полевой ключ (IGBT/MOSFET) зависит от приложенного к затвору напряжения. Изменение этого напряжения заряжает или разряжает затворные емкости силового устройства, которые состоят из емкостей затвора-коллектора и затвора-эмиттера и небольшой емкости самого затвора. Заряд входных емкостей ключа включит его (ток ), а разряд выключит (ток ).

Резистор в данной цепи ограничивает ток заряда/разряда входных емкостей, помимо этого, правильно подобранный резистор не даст ключу самопроизвольно открываться, что иногда может случиться, из-за быстрого изменения напряжения на силовых выводах ключа например, такое может случиться, когда в полумостовой топологии соседний ключ открывается. В таком случае емкость перезаряжается и ток, протекающий через затворный резистор вызывает на нем падение напряжения, которое и может открыть ключ. К тому же порог открывания ключа часто сильно опускается при росте температуры кристалла полупроводника.

Что нужно знать и как выбрать “правильный” резистор

1. Максимальный ток заряда/разряда выхода драйвера

Любая микросхема драйвера имеет такой параметр, как максимальный выходной ток. Если ток затвора при открытии/закрытии ключа превысит значение максимального выходного тока, то драйвер может выйти из строя, поэтому, в данном случае, затворный резистор ограничит выходной ток драйвера.

Можно составить эквивалентную модель цепи, по которой и рассчитать необходимое значение резистора:

Следуя несложным умозаключениям, можем получить формулы для расчета тока драйвера, и подобрать резистор затвора таким, чтобы не превысить максимально допустимые параметры драйвера:

2. Рассеиваемая мощность

Также одна из важных функций затворного резистора — рассеивать мощность выходного каскада микросхемы драйвера. В соответствии с моделью выше, рассеиваемую мощность можно посчитать с помощью следующих формул:

Тут

— заряд затвора ключа, а

— частота коммутации.

После расчета и подбора резистора важно соблюдать следующее условие:

где

— собственное потребление драйвера.

Тут еще есть небольшое примечание, в большинстве даташитов на ключи указывают заряд затвора при определенных условиях, например при напряжении управления затвором +15В…-15В, если же в Вашей схеме другое напряжение управления, например +15В. ..0В, или же +15…-8В, то достаточно точно определить заряд затвора помогут следующие соотношения:

3. Скорость включения и электромагнитная совместимость

Давайте рассмотрим потери на переключение, как функцию от сопротивления затворного резистора. Я возьму ключ, который я недавно использовал в своем небольшом проекте — IKW40N120 от любимых Infineon:

Как можно заметить, при увеличении сопротивления затвора, скорость переключения уменьшается и потери на переключения растут. Соответственно это повлияет на эффективность системы в целом. Напротив, если применять меньшее сопротивление затвора, переключение станет более быстрым и потери уменьшаться, но при этом шум, вызванный быстрым нарастанием тока и напряжения, будет увеличиваться, что может быть критично, когда нужно отвечать требованиям электромагнитной совместимости поэтому значение сопротивления затвора нужно выбирать очень аккуратно.

4. То самое “паразитное” включение

В начале, когда я писал о функциях затворного резистора, я упоминал о возможности ключа самопроизвольно включиться. Чтобы такого не случилось, можно рассчитать напряжение, которое может появиться на затворе транзистора, посмотрим на изображение ниже и запишем две небольшие формулы:

И не стоит забывать, что напряжение открытия ключа сильно зависит от температуры кристалла, и это тоже нужно учитывать.

Заключение

Теперь у нас есть формулы для оптимального (в какой-то степени) подбора с первого взгляда такого простого элемента силовой схемы, как затворный резистор.

Вполне возможно вы не нашли тут ничего нового, но я надеюсь, что хоть кому-то эта заметка окажется полезной.

Также для расширения кругозора в том числе в области управлении силовыми ключами очень советую выделять часик-два в неделю на прочтение всяких статей и апноутов от именитых производителей силовой электроники, в особенности о применении микросхем драйверов. Уверен, найдёте там очень много интересностей. Для старта, и чтобы углубится в рассмотренную тему предлагаю вот эту.

Спасибо за прочтение!

резисторов последовательно и параллельно

Введение

Цепи постоянного тока (DC) характеризуются величинами тока, напряжения и сопротивления. Ток — это скорость потока заряда. Единица СИ — ампер (А). Условно направление тока — это направление потока заряда, хотя в металлических проводниках ток возникает из-за потока отрицательного заряда (электронов) в противоположном направлении. Из-за сохранения заряда ток одинаков во всех точках однопетлевой цепи.В точке ветвления в цепи, где проводящий путь разделяется на два или более, общий ток в точке ветвления равен полному току из этой точки. Обычно ток течет от положительной клеммы батареи или источника питания к отрицательной клемме. Для поддержания тока в цепи должен быть полный проводящий путь. Напряжение — это мера разности электрических потенциалов между двумя точками в цепи. Единица СИ — вольт (В). Поскольку электрическая сила является консервативной, сумма напряжений увеличивается и уменьшается вокруг любого замкнутого контура, она равна нулю.Сопротивление — это свойство элемента схемы (проводника) препятствовать прохождению тока. Сопротивление определяется где В, — напряжение на элементе схемы, а I — ток, протекающий через него. Если R постоянно, то же самое для всех V , то элемент схемы подчиняется закону Ома. Единицей измерения сопротивления в системе СИ является ом (Ом). Сопротивление резистивного элемента цепи изменяется в зависимости от температуры. Два резистора R 1 и R 2 соединены последовательно, если весь ток, который проходит через R 1 , также проходит через R 2 .Следовательно, для двух последовательно соединенных резисторов ток I 1 R 1 такой же, как ток I 2 R 2 , и этот ток такой же, как ток ток, I , который входит в последовательную сеть:

I = I 1 = I 2 .

Общее напряжение В в последовательной сети представляет собой сумму напряжений В 1 и В 2 на каждом резисторе.То есть

V = V 1 + V 2 .

Эквивалентное сопротивление, R с , R 1 и R 2 последовательно определяется выражением Два резистора R 1 и R 2 подключены параллельно, если напряжения В 1 и В 2 на каждом одинаковы и равны напряжению В , через параллельную сеть.То есть

V = V 1 = V 2 .

Токи I 1 и I 2 через каждый из резисторов складываются, чтобы получить общий ток, I , текущий в сеть и из нее:

I = I 1 + I 2 .

Эквивалентное сопротивление R p из R 1 и R 2 параллельно определяется выражением Это также можно записать как Амперметры используются для измерения тока.Амперметр подключается последовательно к цепи, так что весь измеряемый ток течет через амперметр. Следовательно, амперметры должны иметь очень маленькое сопротивление, чтобы не изменять ток в цепи. Вольтметры используются для измерения напряжений. Вольтметр подключается параллельно в двух точках, между которыми должна быть измерена разность потенциалов. Следовательно, вольтметр должен иметь большое сопротивление, чтобы через него проходил очень небольшой ток.

Цель

В этой лаборатории мы будем измерять и анализировать токи и напряжения для цепей, содержащих один резистор, а также для двух последовательно включенных резисторов и двух параллельно.

Аппарат

  • Источник питания постоянного тока 0-40 вольт
  • Лампочка на 12 вольт и розетка
  • Резисторы 150 и 700 Ом
  • Цифровой мультиметр

Процедура

Распечатайте лист для этой лабораторной работы. Этот лист понадобится вам для записи ваших данных.

Измерение напряжения

1

Блок питания является источником разности потенциалов (напряжения). Найдите источник питания постоянного тока за столом. Нажмите кнопку POWER ON / OFF в положение ON. Затем нажмите кнопку RANGE в положение IN (0,85 A). Это устанавливает источник питания в диапазоне 0-35 В / 0-0,85 А. Поверните ручку регулировки напряжения и тока ADJUST против часовой стрелки. Затем установите максимальный выходной ток для этого эксперимента, нажав кнопку CC Set и, удерживая ее, поверните ручку регулировки тока ADJUST по часовой стрелке до тех пор, пока на дисплее AMPS не появится 0.30 A. Отпустите кнопку CC Set . Не перемещайте ручку текущей настройки ( CC Set ) в любой момент во время эксперимента.

2

Мультиметр — это измерительное устройство, которое используется для измерения разности напряжений, электрических токов и электрических сопротивлений. Он также может измерять другие электрические свойства. См. Рис. 1. В верхней части измерителя находится ЖК-дисплей (жидкокристаллический дисплей), в центре — переключатель функций / диапазона , (диск), а внизу — четыре входных разъема.

Примечание. Измеритель особенно чувствителен (и склонен к перегоранию предохранителя) при использовании входного разъема 200 мА (см. I в обозначении на Рисунке 1).

Ключ для рисунка 1:
  • A

    3-1 / 2-разрядный ЖК-дисплей с сигнализаторами.
  • B

    Кнопка ВКЛ / ВЫКЛ: включает и выключает питание измерителя.
  • С

    Кнопка HI / LO: выбирает высокий или низкий уровень запуска для измерения частоты.
  • D

    Кнопка MAX: выбирает функцию удержания максимального показания.
  • E

    Кнопка DC / AC: выбирает напряжение постоянного или переменного тока.
  • F

    Переключатель функции / диапазона: выбирает желаемую функцию и диапазон.
  • G

    Входной разъем V Ω: входной разъем для напряжения, сопротивления, проверки диодов, целостности цепи, частоты и логики.
  • H

    Входной разъем COM: входной разъем заземления.
  • I

    Входной разъем 200 мА: входной разъем для тока до 200 мА, L x (индуктивность), C x (емкость).
  • Дж

    Входной разъем на 10 А: входной разъем для тока до 10 А.
Чтобы измерить заданное количество, циферблат должен находиться в соответствующем положении и должны использоваться соответствующие два входных разъема.Таким образом, при повороте шкалы для перехода от одного типа измерения к другому (например, от разности напряжений к электрическому току) вам, возможно, также придется изменить входные разъемы. При перегрузке предохранитель может перегореть.

Осторожно:
Для защиты счетчик гудит при перегрузке; если он гудит, немедленно отсоедините провода счетчика!

Чтобы защитить измеритель от перегрузки при измерении неизвестного напряжения или тока, сначала необходимо установить измеритель на самый высокий масштаб для этой функции. Если показания недостаточно велики, чтобы дать по крайней мере три значащих цифры, шкалу следует переключить (если возможно) на такую, которая позволяет проводить точное измерение.

3

Чтобы включить мультиметр, нажимайте верхнюю левую кнопку на измерителе, пока на его циферблате не появится дисплей. Чтобы настроить мультиметр на измерение постоянного напряжения, В, , переключите верхнюю правую кнопку на постоянный ток. Убедитесь, что на дисплее глюкометра отображается постоянный ток. Поверните переключатель функций / диапазонов в положение диапазона напряжения (В) и установите значение 20.Теперь измеритель настроен на считывание напряжений до 20 вольт постоянного тока. Подключите банан к банановым выводам к общему разъему (COM) и к разъему напряжения (V).

4

Подключите выводы мультиметра к клеммам + и — источника питания. См. Рисунок 2. На блоке питания поверните ручку регулировки напряжения ADJUST по часовой стрелке, пока на дисплее вольт не отобразится 5,0 вольт. Сравните показания напряжения на мультиметре и на измерителе блока питания. Эти два показания могут не совпадать.Ожидается, что мультиметр будет точнее.

Ток и напряжение для одиночного резистора

1

Уменьшите напряжение источника питания (против часовой стрелки) до нуля вольт. Подключите блок питания к резистору на печатной плате с маркировкой 700 Ом. (Не настраивайте и не изменяйте настройку тока на источнике питания.) Мы будем использовать мультиметр для измерения постоянного тока через резистор 700 Ом в зависимости от приложенного напряжения. Для этого мы должны соединить мультиметр серии с резистором, чтобы одинаковый ток проходил через оба. Так как предохранитель легко перегорит, когда мультиметр настроен на текущую настройку, внимательно следуйте инструкциям. Установите шкалу мультиметра на шкалу тока 20 мА и подключите банановые штекеры к гнездам COM и мА на измерителе.

Внимание:
Не повышайте напряжение на блоке питания, пока ваш ТА не проверит вашу цепь.

2

После того, как ваш ТА даст добро, установите источник питания на 1 В и запишите в Таблицу 1 ток через резистор, как показано на мультиметре.Повторите то же самое с источником питания, установленным на 2, 3, 4 и 5 вольт.

3

Используйте Excel для построения графика данных с током по вертикальной оси и напряжением по горизонтальной оси. Инструкции по построению графиков в Excel см. В приложении к интерактивному руководству лаборатории. Если вы получите ожидаемые результаты, данные будут располагаться близко к прямой линии, проходящей через начало координат. Используйте Excel, чтобы найти наклон прямой линии, который лучше всего соответствует вашим данным, и запишите результат, включая единицы измерения.

4

Используйте закон Ома и наклон графика, чтобы рассчитать сопротивление резистора R в единицах Ом (Ом). Запишите свой результат.

Ток и напряжение для лампочки

1

УСТАНОВИТЕ НАПРЯЖЕНИЕ ПИТАНИЯ НА НУЛЬ, но не выключайте питание. Не изменяйте текущую настройку источника питания ( CC Set ). Мы будем использовать мультиметр для измерения постоянного тока через лампочку в зависимости от приложенного напряжения.Для этого мы должны соединить мультиметр серии с лампочкой, чтобы через оба проходил одинаковый ток. Так как предохранитель легко перегорит, когда мультиметр настроен на текущую настройку, внимательно следуйте инструкциям.

2

Установите шкалу мультиметра на шкалу постоянного тока 10 А. Используйте входные гнезда COM и 10 A. Подключите схему, как показано на рисунке 3.

Внимание:
Не повышайте напряжение на блоке питания, пока ваш ТА не проверит вашу цепь.

3

После того, как ваш ТА даст добро, переключите напряжение питания на 2 вольта. В таблице 2 запишите текущее показание мультиметра. Повторите эти действия для напряжений источника питания 4, 6, 8, 10 и 12 вольт.

4

Используйте Excel для построения графика данных с током по вертикальной оси и напряжением по горизонтальной оси. Ожидается, что ваши данные не будут приближаться к прямой. Определите и рассчитайте R для каждого набора значений V и I в таблице 2 и запишите в третий столбец таблицы 2. R увеличивается, уменьшается или остается таким же, как и ток, I , через лампочку увеличивается?

Два резистора в серии

1

Подключите на печатной плате два резистора с маркировкой 150 Ом и 700 Ом, как показано на рисунке 4. Говорят, что они подключены последовательно, потому что весь ток, проходящий через один, также проходит через другой. Убедитесь, что напряжение источника питания установлено на ноль. Подключите источник питания к комбинации последовательных резисторов, как показано на рисунке 4.Установите блок питания на 5 вольт. Установите шкалу мультиметра на диапазон 20 В и используйте гнезда COM и V. С помощью мультиметра измерьте и запишите разности потенциалов (напряжение) В 150 и В 700 на каждом резисторе и напряжение В на комбинации из двух резисторов.

2

Когда вы закончите эти измерения, установите напряжение источника питания на ноль и отключите мультиметр от цепи.Что из следующего лучше отражает ваши результаты?
  • В = В 150 + В 700

  • V = V 150 = V 700

3

Когда напряжение источника питания установлено на ноль, подключите мультиметр последовательно с резисторами, как показано на рисунке 5. Установите мультиметр на диапазон постоянного тока 200 мА и подключите выводы мультиметра к правильным гнездам.

Осторожно:
Перед тем, как продолжить, попросите инструктора лаборатории проверить правильность настройки: предохранитель может перегореть, если измеритель не подключен к нужным точкам в цепи.

Получив добро от ТА, включите источник питания и установите его на 5 вольт. Измерьте ток в проводе между двумя резисторами, проводе между резистором 700 Ом и источником питания и проводе между резистором 150 Ом и источником питания.Убедитесь, что эти три тока равны.

4

Продолжая схему, показанную на рисунке 5, установите напряжение источника питания на 2 вольта. В таблице 3 запишите текущие показания мультиметра. Повторите эти действия для напряжений источника питания 4, 6, 8, 10 и 12 вольт.

5

Используйте Excel для построения графика данных с током по вертикальной оси и напряжением по горизонтальной оси. Используйте Excel, чтобы найти наклон прямой линии, который лучше всего соответствует вашим данным, и запишите результат, включая единицы измерения.

6

Используйте закон Ома и наклон графика, чтобы рассчитать эквивалентное сопротивление, R с , двух последовательно соединенных резисторов в единицах Ом (Ом). Запишите свой результат.

Два параллельных резистора

1

Подключите на печатной плате два резистора с маркировкой 150 Ом и 700 Ом, как показано на Рисунке 6a. Они считаются параллельными, поскольку напряжение на каждом резисторе равно напряжению источника питания, а резисторы обеспечивают параллельные пути для прохождения тока.

2

Убедитесь, что напряжение источника питания установлено на ноль. Подключите источник питания к комбинации параллельных резисторов, как показано на рисунке 6b. Установите блок питания на 5 вольт. С помощью мультиметра измерьте и запишите токи I 150 и I 700 , протекающие через каждый резистор, и общий ток I , протекающий через источник питания.

3

Когда вы закончите эти измерения, установите напряжение источника питания на ноль и отключите мультиметр от цепи.

4

Что из следующего лучше отражает ваши результаты?
  • Я = Я 150 + Я 700

  • Я = Я 150 = Я 700

5

Продолжите параллельную сеть резисторов. Установив напряжение источника питания на ноль, подключите мультиметр для измерения полного тока I , протекающего через источник питания.Установите мультиметр на диапазон постоянного тока 200 мА.

Осторожно:
Перед тем, как продолжить, попросите инструктора лаборатории проверить правильность настройки: предохранитель может перегореть, если измеритель не подключен к нужным точкам в цепи.

Получив добро от ТА, включите источник питания и установите его на 2 вольта.

6

В таблице 4 запишите текущие показания мультиметра.Повторите эти действия для напряжений источника питания 4, 6, 8, 10 и 12 вольт.

7

Используйте Excel для построения графика данных с током по вертикальной оси и напряжением по горизонтальной оси. Используйте Excel, чтобы найти наклон прямой линии, который лучше всего соответствует вашим данным, и запишите результат, включая единицы измерения.

8

Используйте закон Ома и наклон графика, чтобы рассчитать эквивалентное сопротивление, R p , двух резисторов, включенных параллельно, в единицах Ом (Ом). Запишите свой результат.

Авторские права © 2012-2013 Advanced Instructional Systems Inc. и | Кредиты

Цепи серии

Представьте себе электрический ток, выходящий из батареи. Если резисторы подключены в такой способ, которым часть тока может проходить через один резистор, а остальная часть ток может проходить через другой резистор, тогда цепь параллельна Схема .

я т — полный ток параллельной цепи.Вы бы измерили этот ток в любом месте до или после трехканального разветвителя, ведущего к трем резисторам. В между перекрестком и R 1 , вы бы измерили I 1 . Между перекрестком и R 2 , Вы бы измерили I 2 и т. д.

Поскольку общий ток I T делится на три разные группы электронов, путешествующих каждый своим путем,

я т = Я 1 + Я 2 + Я 3 +.

В параллельных цепях все резисторы, независимо от их сопротивления, испытывают одинаковое падение напряжения или разность потенциалов, потому что все они имеют одинаковые точки входа и выхода (переходы).

V T = V 1 = V 2 = V 3 = V n

Если разделить формулу тока по соотношению напряжений получаем:

или R = [ 1 -1 + 2 -1 + 3 -1 +] -1

Пример 1

а. Какое полное сопротивление цепи?

R T = [ 1 -1 + 2 -1 + 3 -1 ] -1

R T = [12 -1 + 12 -1 +12 -1 ] -1 = 4 Вт

г. Какой общий ток?

I T = V / R T = 12/4 = 3 A

г.Какое напряжение ( 1 В) будет измеряется на каждом отдельном резисторе?

12 В (напряжение постоянно параллельно.)

г. Какой ток отводится каждый резистор?

I 1 = V / R 1 = 12/12 = 1 А. Остальные тоже нарисуйте по 1 А, всего 3 А.

Пример 2

рисунок кажется запутанным, но обратите внимание, что это параллельная схема, потому что у электронов есть выбор.На стыке (показано красной точкой) электроны следуйте либо зеленому маршруту, либо оранжевому маршруту.

Используйте I

1 = 1A; I 2 = 0,5 А; рэнд 1 = 10Вт.

  1. Найдите V 2 .

Помните, что параллельное напряжение постоянно. Итак, если мы найдем V 1 , мы будем знать V 2 .

В 1 = I 1 R 1 = 1 (10) = 10 В.

В 2 = В 1 = 10 В.

  1. Найдите R 2 .

R 2 = V / I 2 = 10 / 0,5 = 20 Вт.

  1. Используйте два метода, чтобы получить R T .

(1) R T = [R 1 -1 + R 2 –1 ] –1 = [20 –1 + 10 –1 ] -1 = 6.7 Вт.

(2) я т = I 3 = I 1 + I 2 = 1 + 0,5 = 1,5 А.

R T = V / I T = 10 / 1,5 = 6,7 W.

Пример 3

В параллельной цепи какой эффект дает добавление еще резисторов иметь по общему току?

Ток увеличивается !

В цепи серии добавление резисторов увеличивает общее сопротивление и, таким образом, снижает ток. Но в случае с параллельная схема, потому что добавление дополнительных резисторов параллельно создает больше вариантов а снижает общее сопротивление . Если такая же батарея подключена к резисторы, ток увеличится. Не убежден? Попробуйте:

[10 -1 + 10 -1 ] -1 = 5 Вт, но добавьте подключите резистор параллельно, и вы получите [10 -1 + 10 -1 + 10 -1 ] -1 = всего 3,3 Вт. чем меньше сопротивление, тем выше общий ток.

Еще одна интересная особенность параллельных цепей заключается в том, что если один компонент отключен, другие пути все еще жизнеспособны, так что электроны могут продолжать течь по цепи. Это причина того, что большинство светильников и розеток в доме подключены параллельно.

21.1 Последовательные и параллельные резисторы — College Physics: OpenStax

На рисунке 3 показаны резисторы параллельно , подключенные к источнику напряжения. Резисторы включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения с помощью соединительных проводов с незначительным сопротивлением.Таким образом, к каждому резистору приложено полное напряжение источника.

Каждый резистор потребляет такой же ток, как если бы он один был подключен к источнику напряжения (при условии, что источник напряжения не перегружен). Например, автомобильные фары, радио и т. Д. Подключены параллельно, так что они используют полное напряжение источника и могут работать полностью независимо. То же самое и в вашем доме, или в любом другом здании. (См. Рис. 3 (b).)

Чтобы найти выражение для эквивалентного параллельного сопротивления [латекс] \ boldsymbol {R _ {\ textbf {p}}} [/ latex], давайте рассмотрим протекающие токи и то, как они связаны с сопротивлением.Поскольку каждый резистор в цепи имеет полное напряжение, токи, протекающие через отдельные резисторы, составляют [латекс] \ boldsymbol {I_1 = \ frac {V} {R_1}} [/ latex], [латекс] \ boldsymbol {I_2 = \ frac {V} {R_2}} [/ latex] и [latex] \ boldsymbol {I_3 = \ frac {V} {R_3}} [/ latex]. Сохранение заряда подразумевает, что полный ток [латекс] \ boldsymbol {I} [/ latex], производимый источником, является суммой этих токов:

[латекс] \ boldsymbol {I =} [/ latex] [latex] \ boldsymbol {\ frac {V} {R_1}} [/ latex] [латекс] \ boldsymbol {+} [/ latex] [латекс] \ boldsymbol {\ frac {V} {R_2}} [/ latex] [латекс] \ boldsymbol {+} [/ latex] [латекс] \ boldsymbol {\ frac {V} {R_3}} [/ latex] [латекс] \ boldsymbol {= V} [/ latex] [латекс] \ boldsymbol {(\ frac { 1} {R_1}} [/ latex] [латекс] \ boldsymbol {+} [/ latex] [латекс] \ boldsymbol {\ frac {1} {R_2}} [/ latex] [латекс] \ boldsymbol {+} [ / latex] [латекс] \ boldsymbol {\ frac {1} {R_3})}.[/ latex]

[латекс] \ boldsymbol {I =} [/ latex] [латекс] \ boldsymbol {\ frac {V} {R_p}} [/ latex] [латекс] \ boldsymbol {= V} [/ латекс ] [latex] \ boldsymbol {(\ frac {1} {R_p})}. [/ latex]

Члены в скобках в последних двух уравнениях должны быть равны. Если обобщить на любое количество резисторов, общее сопротивление [латекс] \ boldsymbol {R_p} [/ latex] параллельного соединения связано с отдельными сопротивлениями соотношением

[латекс] \ boldsymbol {\ frac {1} {R_p}} [/ latex] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {1} {R_1}} [/ latex] [латекс] \ boldsymbol {+} [/ latex] [латекс] \ boldsymbol {\ frac {1} {R_2}} [/ latex] [латекс] \ boldsymbol {+} [/ latex] [латекс] \ boldsymbol {\ frac {1} {R_3}} [/ latex] [латекс] \ boldsymbol {+ \ cdots} [/ latex]

Это соотношение приводит к общему сопротивлению [латекс] \ boldsymbol {R_p} [/ latex], которое меньше наименьшего из отдельных сопротивлений. (Это видно в следующем примере.) При параллельном подключении резисторов от источника течет больше тока, чем протекает по любому из них по отдельности, поэтому общее сопротивление ниже.

Пример 2: Расчет сопротивления, тока, рассеиваемой мощности и выходной мощности: анализ параллельной цепи

Пусть выходное напряжение батареи и сопротивления в параллельном соединении на Рисунке 3 будут такими же, как в ранее рассмотренном последовательном соединении: [latex] \ boldsymbol {V = 12.0 \; \ textbf {V}} [/ latex], [latex] \ boldsymbol {R_1 = 1.00 \; \ Omega} [/ latex], [latex] \ boldsymbol {R_2 = 6.00 \; \ Omega} [/ латекс ] и [латекс] \ boldsymbol {R_3 = 13.0 \; \ Omega} [/ latex]. а) Каково полное сопротивление? (б) Найдите полный ток. (c) Рассчитайте токи в каждом резисторе и покажите, как они складываются, чтобы равняться общему выходному току источника. (d) Рассчитайте мощность, рассеиваемую каждым резистором. (e) Найдите выходную мощность источника и покажите, что она равна общей мощности, рассеиваемой резисторами.

Стратегия и решение для (а)

Общее сопротивление для параллельной комбинации резисторов находится с помощью следующего уравнения. Ввод известных значений дает

[латекс] \ boldsymbol {\ frac {1} {R_p}} [/ latex] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {1} {R_1}} [/ латекс ] [латекс] \ boldsymbol {+} [/ латекс] [латекс] \ boldsymbol {\ frac {1} {R_2}} [/ latex] [латекс] \ boldsymbol {+} [/ латекс] [латекс] \ boldsymbol { \ frac {1} {R_3}} [/ latex] [latex] \ boldsymbol {=} [/ latex] [latex] \ boldsymbol {\ frac {1} {1.00 \; \ Omega}} [/ latex] [латекс] \ boldsymbol {+} [/ latex] [latex] \ boldsymbol {\ frac {1} {6.00 \; \ Omega}} [/ latex] [латекс] \ boldsymbol {+} [/ latex] [латекс] \ boldsymbol {\ frac {1} {13.0 \; \ Omega}}. [/ latex]

Таким образом,

[латекс] \ boldsymbol {\ frac {1} {R_p}} [/ latex] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {1.00} {\ Omega}} [/ латекс] [латекс] \ boldsymbol {+} [/ латекс] [латекс] \ boldsymbol {\ frac {0. 1667} {\ Omega}} [/ латекс] [латекс] \ boldsymbol {+} [/ латекс] [латекс] \ boldsymbol {\ frac {0.07692} {\ Omega}} [/ latex] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {1.2436} {\ Omega}} [/ латекс]

(Обратите внимание, что в этих вычислениях каждый промежуточный ответ отображается с дополнительной цифрой.)

Мы должны перевернуть это, чтобы найти полное сопротивление [латекс] \ boldsymbol {R_p} [/ latex]. Это дает

[латекс] \ boldsymbol {R_p =} [/ latex] [латекс] \ boldsymbol {\ frac {1} {1.2436}} [/ latex] [латекс] \ boldsymbol {\ Omega = 0.8041 \; \ Omega}. [ / латекс]

Общее сопротивление с правильным количеством значащих цифр составляет [латекс] \ boldsymbol {R_p = 0.804 \; \ Omega} [/ latex]

Обсуждение для (а)

[latex] \ boldsymbol {R_p} [/ latex], как и предполагалось, меньше минимального индивидуального сопротивления.

Стратегия и решение для (b)

Полный ток можно найти из закона Ома, заменив полное сопротивление [латекс] \ boldsymbol {R_p} [/ latex]. Это дает

[латекс] \ boldsymbol {I =} [/ latex] [латекс] \ boldsymbol {\ frac {V} {R_p}} [/ latex] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {12.0 \; \ textbf {V}} {0.8041 \; \ Omega}} [/ latex] [latex] \ boldsymbol {= 14.92 \; \ textbf {A}} [/ latex]

Обсуждение для (б)

Текущий [латекс] \ boldsymbol {I} [/ latex] для каждого устройства намного больше, чем для тех же устройств, подключенных последовательно (см. Предыдущий пример).Схема с параллельным соединением имеет меньшее общее сопротивление, чем резисторы, включенные последовательно.

Стратегия и решение для (c)

Отдельные токи легко вычислить по закону Ома, поскольку каждый резистор получает полное напряжение. Таким образом,

[латекс] \ boldsymbol {I_1 =} [/ latex] [латекс] \ boldsymbol {\ frac {V} {R_1}} [/ latex] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {12.0 \; \ textbf {V}} {1.00 \; \ Omega}} [/ latex] [latex] \ boldsymbol {= 12. 0 \; \ textbf {A}}. [/ Latex]

Аналогично

[латекс] \ boldsymbol {I_2 =} [/ latex] [латекс] \ boldsymbol {\ frac {V} {R_2}} [/ latex] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {12.0 \; \ textbf {V}} {6.00 \; \ Omega}} [/ latex] [latex] \ boldsymbol {= 2.00 \; \ textbf {A}} [/ latex]

и

[латекс] \ boldsymbol {I_3 =} [/ latex] [латекс] \ boldsymbol {\ frac {V} {R_3}} [/ latex] [латекс] \ boldsymbol {=} [/ latex] [латекс] \ boldsymbol {\ frac {12.0 \; \ textbf {V}} {13.0 \; \ Omega}} [/ latex] [latex] \ boldsymbol {= 0.92 \; \ textbf {A}}. [/ Latex]

Обсуждение для (c)

Полный ток складывается из отдельных токов:

[латекс] \ boldsymbol {I_1 + I_2 + I_3 = 14.92 \; \ textbf {A}}. [/ Latex]

Это соответствует принципу сохранения заряда.

Стратегия и решение для (d)

Мощность, рассеиваемая каждым резистором, может быть найдена с помощью любого из уравнений, связывающих мощность с током, напряжением и сопротивлением, поскольку все три известны. 2} {13.0 \; \ Omega}} [/ latex] [latex] \ boldsymbol {= 11.1 \; \ textbf {W}}. [/ Latex]

Обсуждение для (d)

Мощность, рассеиваемая каждым резистором при параллельном подключении, значительно выше, чем при последовательном подключении к тому же источнику напряжения.

Стратегия и решение для (e)

Общую мощность также можно рассчитать несколькими способами. Выбрав [латекс] \ boldsymbol {P = IV} [/ latex] и введя общий ток, получим

[латекс] \ boldsymbol {P = IV = (14.92 \; \ textbf {A}) (12.0 \; \ textbf {V}) = 179 \; \ textbf {W}}. [/ Latex]

Обсуждение для (e)

Суммарная мощность, рассеиваемая резисторами, также 179 Вт:

[латекс] \ boldsymbol {P_1 + P_2 + P_3 = 144 \; \ textbf {W} + 24.0 \; \ textbf {W} + 11.1 \; \ textbf {W} = 179 \; \ textbf {W}}. [/ латекс]

Это соответствует закону сохранения энергии.

Общее обсуждение

Обратите внимание, что как токи, так и мощность при параллельном подключении больше, чем для тех же устройств, подключенных последовательно.

Последовательные резисторы

Когда резисторы включены последовательно, они выстраиваются в цепочку, поэтому ток имеет только один путь и, следовательно, одинаков на каждом резисторе.

Сумма разностей потенциалов на каждом резисторе равна общей разности потенциалов во всей цепи. Для двух последовательно включенных резисторов получаем:

DV = DV 1 + DV 2

I R eq = I R 1 + I R 2

Поскольку ток одинаков, получаем:

R eq = R 1 + R 2

Это верно в целом и может быть распространено на любое количество резисторов.Эквивалентное сопротивление последовательно включенных резисторов составляет:

R экв. = R 1 + R 2 + R 3 + …

Один эквивалентный резистор имеет тот же ток, что и каждый резистор в последовательной цепи, а разность потенциалов на нем равна общей разности потенциалов во всей цепочке резисторов. Батарея не может отличить последовательную цепочку резисторов от эквивалентного резистора.

Резисторы параллельно

Когда резисторы расположены параллельно, ток может проходить по нескольким путям.Параллельно все резисторы соединены вместе на одном конце, а также все соединены вместе на другом конце. Разность потенциалов на каждом резисторе одинакова, и токи складываются, чтобы равняться общему току, входящему (и выходящему) в параллельную комбинацию.

Для двух параллельно включенных резисторов:

Я = Я 1 + Я 2 .

Все разности потенциалов одинаковы, поэтому:

Это верно в целом и может быть применено к любому количеству резисторов.Эквивалентное сопротивление параллельно включенных резисторов составляет:

1
R экв
=
1
R 1
+
1
R 2
+
1
R 3
+. ..
Пример серии

Три резистора номиналом 8 Вт, 8 Вт, и 4 Вт подключены последовательно к 10-вольтовой батарее.

(а) Какой полный ток обеспечивает аккумулятор?

(b) Какова разность потенциалов на каждом резисторе?

Сначала найдите эквивалентное сопротивление, которое составляет 20 Вт, сумму отдельных сопротивлений.

Ток от АКБ:

I =
DV
R
=
10
20
= 0.5 А

Это ток, проходящий через каждый резистор. Разность потенциалов на каждом резисторе можно найти с помощью закона Ома:

Каждый резистор мощностью 8 Вт имеет разность потенциалов DV = I R = 4 В

Резистор 4 Вт имеет разность потенциалов DV = I R = 2 В

Сумма разностей потенциалов на каждом резисторе равна напряжению батареи, как и должно быть.

Пример параллельной

Три резистора номиналом 8 Вт, 8 Вт, и 4 Вт подключены параллельно друг к другу и к 10-вольтовой батарее.

(а) Какой полный ток обеспечивает аккумулятор?

(b) Какая мощность рассеивается на каждом резисторе?

Сначала найдите эквивалентное сопротивление, которое составляет:

Переверните это вверх дном, чтобы получить R экв. = 2 Вт

I =
DV
R экв
=
10
2
= 5 А

Ток через каждый резистор можно найти с помощью закона Ома.

Для каждого резистора 8 Вт I =
DV
R
=
10
8
= 1,25 А
Для резистора 4 Вт I =
DV
R
=
10
4
= 2. 5 А

Сумма токов равна общему току от батареи, как и должно быть.

Мощность, рассеиваемая каждым резистором, может быть определена различными способами. Вот один из способов:

Для каждого резистора 8 Вт I =
DV 2
R
=
10 * 10
8
= 12.5 Вт
Для резистора 4 Вт I =
DV 2
R
=
10 * 10
4
= 25 Вт

Это всего 50 Вт. Сравните это с мощностью, подаваемой на схему от аккумулятора:

P = DV I = 10 * 5 = 50 Вт.

Согласны, как надо.

Открытые учебники | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Класс 7Б

        • Класс 7 (комбинация A и B)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 8A

        • Марка 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 9А

        • Марка 9Б

        • Оценка 9 (комбинированные A и B)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • класс 4B

        • Класс 4 (комбинированные A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 5А

        • Марка 5Б

        • Оценка 5 (комбинированные A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 6A

        • класс 6Б

        • Оценка 6 (комбинированные A и B)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий. Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки каким-либо образом, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (версии без марочного знака)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием — дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

Сопротивление резистора

— стенограмма видео и урока

Расчет сопротивления

Поскольку сопротивление резистора зависит от материала, из которого он сделан, это учитывается в формуле для расчета сопротивления, которая математически может быть прочитана как:

В этом уравнении R обозначает сопротивление.Греческая буква ρ, похожая на букву p , обозначает удельное сопротивление материала, из которого изготовлен резистор. L обозначает длину резистора. А A обозначает площадь поперечного сечения резистора. Сопротивление измеряется в Ом.

Возможно использование двух резисторов одинакового размера из разных материалов с разным сопротивлением. Но не думайте, что сопротивление есть только у резисторов. Провода, которые сами проводят электричество, также имеют определенное сопротивление. Все, что проводит электричество, имеет определенное сопротивление. Провода обычно имеют гораздо меньшее сопротивление, чем резистор, предназначенный для защиты от электричества. Вы можете иметь сопротивление от нескольких Ом до миллионов Ом.

Вот пример расчета сопротивления углеродного резистора длиной 0,005 метра (5 миллиметров) и диаметром 0,001 метра (1 миллиметр). Этот конкретный углеродный резистор имеет удельное сопротивление 45 x 10-5 Ом-метр.Итак, в основном, мы умножаем это удельное сопротивление на 0,005 метра и делим его на π, умноженный на 0,0005 метра в квадрате.

Как мы видим, этот угольный резистор имеет сопротивление примерно 2,86 Ом. Обратите внимание, что символ ома — большая греческая буква омега (Ω).

Закон Ома

Все цепи, проводящие электричество, подчиняются так называемому закону Ома. Этот закон говорит вам, как ваше напряжение и ток связаны с вашим сопротивлением.

R обозначает сопротивление, V обозначает напряжение, а I обозначает ток. Единицами измерения являются омы для сопротивления, вольт для напряжения и амперы для тока. Эта формула говорит вам, что ваше сопротивление всегда равно напряжению, деленному на ток. Вы также можете сказать, что ваше напряжение равно вашему току, умноженному на ваше сопротивление, или В = IR в форме уравнения, где R = В / I .

Итак, если ваш резистор в вашей цепи имеет сопротивление 100 Ом, а ток, протекающий по цепи, составляет 0,5 А, тогда напряжение вашей цепи рассчитывается следующим образом:

Напряжение в вашей цепи составляет 50 В.

Расположение резисторов

Способ размещения резисторов также может по-разному изменить значение сопротивления.

Если ваши резисторы расположены последовательно, так что они соединены друг с другом, как в ожерелье, то полное или эквивалентное сопротивление является суммой значений ваших резисторов. Ток, протекающий через каждый резистор, будет одинаковым, но напряжение, протекающее через каждый резистор, разное.

Например, у вас есть резисторы на 200, 50 и 25 Ом, включенные последовательно. Общее сопротивление вашей цепи составляет 200 + 50 + 25 = 275 Ом.

Если ваши резисторы расположены параллельно, то есть каждый резистор подключен к одному источнику напряжения, то эквивалентное сопротивление находится по следующей формуле:

Напряжение для каждого резистора будет одинаковым, но ток, проходящий через каждый резистор, будет разным.

Например, предположим, что у вас есть те же резисторы 200 Ом, 50 Ом и 25 Ом, подключенные параллельно. Общее сопротивление можно найти следующим образом:

1/200 + 1/50 + 1/25 = 1/200 + 4/200 + 8/200 = 13/200 = 1 / 15,38

Обратите внимание, как последний шаг делит числитель и знаменатель на числитель. Это дает вам единицу по общему сопротивлению. Как только вы это сделаете, ваше полное сопротивление окажется 15,38 Ом.

Итоги урока

Хорошо, давайте рассмотрим.Резистор — это кусок материала, препятствующий прохождению электрического тока. Сопротивление резистора рассчитывается по следующей формуле:

Как мы узнали, в случае этой формулы R означает сопротивление. Греческая буква ρ, похожая на букву p , обозначает удельное сопротивление материала, из которого изготовлен резистор. L обозначает длину резистора. И, наконец, A обозначает площадь поперечного сечения резистора.Сопротивление измеряется в омах, а ваша длина и площадь — в метрах.

Все цепи следуют закону Ома, который говорит вам, что напряжение в цепи равно току, умноженному на сопротивление, или В = IR в форме уравнения, где R = В / I . И в этом случае R обозначает сопротивление, V обозначает напряжение, а I обозначает ток. Единицами измерения являются омы для сопротивления, вольт для напряжения и амперы для тока.

Если ваши резисторы включены последовательно, то эквивалентное сопротивление, которое видит схема, является суммой значений ваших резисторов. С другой стороны, если ваши резисторы размещены параллельно, то эквивалентное сопротивление определяется путем сложения значений, обратных вашим значениям резисторов.

Серия

и параллельные резисторы

  • Изучив этот раздел, вы сможете:
  • Рассчитайте значения общего сопротивления в цепях с последовательным сопротивлением.
  • Используйте соответствующие формулы для расчета сопротивления в цепях с параллельным сопротивлением.
  • • Вычисление суммы обратных величин.
  • • Произведение над суммой.
  • Рассчитайте значения общего сопротивления в последовательных / параллельных сетях.

Расчеты в последовательно- и параллельных резисторных цепях

Компоненты, включая резисторы в цепи, могут быть соединены вместе двумя способами:

ПОСЛЕДОВАТЕЛЬНО, так что один и тот же ток течет через все компоненты, но на каждом из них может существовать разная разность потенциалов (напряжение).

ПАРАЛЛЕЛЬНО, так что одинаковая разность потенциалов (напряжение) существует на всех компонентах, но каждый компонент может проводить разный ток.

Рис. 4.2.1 Резисторы серии

Рис. 4.2.2 Параллельные резисторы

В любом случае (для резисторов) общее сопротивление той части цепи, которая содержит резисторы, может быть рассчитано с использованием методов, описанных ниже.

Возможность рассчитать суммарное (общее) значение резисторов таким способом позволяет легко вычислить неизвестные значения сопротивления, тока и напряжения для довольно сложных цепей, используя относительно простые методы. Это очень полезно при поиске неисправностей.

ПЕРЕД ДАЛЬНЕЙШЕЙ ДАЛЬНОСТЬЮ ПОПРОБУЙТЕ ИСПОЛЬЗОВАНИЕ ФОРМУЛ ДЛЯ РАСЧЕТА ОБЩИХ ЗНАЧЕНИЙ СЕРИИ И ПАРАЛЛЕЛЬНЫХ РЕЗИСТОРОВ.

Для резисторов в серии:

Общее сопротивление двух или более резисторов, подключенных последовательно , определяется простым сложением индивидуальных значений резисторов, чтобы найти общую сумму (R TOT ):

Для резисторов, включенных параллельно:

Для расчета общего сопротивления цепи, в которой используются параллельные резисторы, можно использовать следующую формулу.

Обратите внимание, однако, что эта формула НЕ дает вам общего сопротивления R TOT . Это дает вам ВЗАИМОДЕЙСТВИЕ R TOT или:

Это совсем другое значение — и НЕ является полным сопротивлением. Он делится на 1, разделенный на R TOT . Чтобы получить правильное значение для R TOT (которое будет обратным 1 / R TOT , т. Е. TOT /1, просто нажмите соответствующую клавишу на вашем калькуляторе (отмеченную 1 / x или x-1) .

Другой способ расчета параллельных цепей.

Суммарное сопротивление двух резисторов, включенных параллельно , которое не включает обратные, определяется по формуле:

Эту формулу часто называют «произведение над суммой».

Он рассчитывает только ДВА резистора параллельно? Ну да, но это не большая проблема. Если имеется более двух параллельных резисторов, просто выберите два из них и определите общее сопротивление для этих двух — затем используйте это общее сопротивление, как если бы это был один резистор, и составьте еще одну пару с третьим резистором.Определите новую сумму и так далее, пока вы не включите все параллельные резисторы в этой конкретной сети.

О, еще одна вещь, которую следует помнить о произведении над суммой, видите скобки вокруг суммы (нижняя часть) формулы? Это означает, что вы должны решить это ДО того, как использовать его для разделения продукта (верхняя часть) на. Если вы этого не сделаете, ваш ответ будет неправильным.

Звучит сложно? Не совсем, это просто вопрос повторения, и на практике вы не часто встречаетесь с множеством параллельных сетей с гораздо более чем двумя резисторами.Тем не менее, какую формулу вы выберете, зависит от вас, взаимная или сумма продукта.

Подсказки

Использование обратного метода

Если вы используете МЕТОД ВЗАИМОДЕЙСТВИЯ для параллельных цепей, НЕ ЗАБУДЬТЕ, когда вы добавили обратные величины отдельных резисторов — вы должны снова найти обратную величину 1 / R1 + 1 / R2 + 1 / R3 = 1 / R TOT , и чтобы найти R TOT , вы должны найти обратную величину 1 / R TOT .

Упрощающие схемы

Для комбинированных последовательных и параллельных цепей сначала определите участок цепи (последовательный или параллельный).Затем перерисуйте схему, заменив участок, сопротивление которого вы нашли, одним резистором. Теперь у вас есть упрощенная схема, по которой можно найти R TOT .

Вы можете использовать формулу «произведение на сумму»:

Для цепей с более чем двумя параллельными резисторами просто определите два параллельных резистора одновременно, используя формулу произведения на сумму, а затем перерисуйте схему, заменив два резистора одним резистором, значение которого является объединенным сопротивлением двух .

Теперь вы можете использовать первое комбинированное значение в качестве единственного резистора со следующим параллельным резистором и так далее. Таким образом, можно выработать большое количество параллельных резисторов с использованием произведения на сумму.

Когда все параллельные резисторы одинакового номинала.

Если несколько одинаковых параллельных резисторов подключены, общее сопротивление будет равно номиналу резистора, умноженному на обратную величину количества резисторов.

, т. Е. Два параллельных резистора 12 кОм имеют общее сопротивление

12K x 1/2 = 6K

Три параллельных резистора 12 кОм имеют суммарное сопротивление

12K x 1/3 = 4K и т. Д.

Проверяю ответ

Суммарное значение любого количества параллельных резисторов всегда будет МЕНЬШЕ, чем значение наименьшего отдельного резистора в сети. Используйте этот факт, чтобы проверить свои ответы.

Серия

и параллельная комбинация

Попробуйте несколько вычислений, основанных на последовательной и параллельной цепях резисторов. Для этого вам просто нужно использовать информацию на этой странице и на странице «Советы по расчету резисторов». Вас просят вычислить общее сопротивление для каждой цепи.Вы можете выбрать, какую формулу использовать

Вы также можете получить помощь по математике, загрузив нашу бесплатную брошюру «Советы по математике».

Перед тем, как начать, подумайте об этих нескольких советах. Они упростят задачу, если вы будете внимательно им следовать.

1. Разработайте ответы с помощью карандаша и бумаги; перерисуйте схему, над которой работаете.

2. Конечно, ответ — это не просто число, это будет определенное количество Ом, не забудьте указать правильную единицу (например.грамм. Ω, KΩ или MΩ) или ваш ответ не имеет смысла.

3. Когда вы вводите значения в калькулятор, преобразуйте все значения KΩ или MΩ в Ом с помощью клавиши EXP. Если вы здесь ошибетесь, то получите действительно глупые ответы, в тысячи раз слишком большие или слишком маленькие.

Итак, теперь вы прочитали эти инструкции и готовы приступить к работе. Вот способ решить типичную проблему на бумаге, чтобы (со временем) вы не запутались.

Пример последовательной и параллельной цепей

.

Хорошо, есть что вспомнить, так почему бы не попробовать несколько практических вопросов в модуле резисторов 4.5 по определению общего сопротивления некоторых цепей резисторов?

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *