Подобрать сопротивление для понижения напряжения: Расчёт сопротивления для понижения напряжения — Александр Крылов

Содержание

Как понизить напряжение переменного и постоянного тока?

За счет наличия большого количества международных стандартов и технических решений питание электронных устройств может осуществляться от различных номиналов. Но, далеко не все они присутствуют в свободном доступе, поэтому для получения нужной разности потенциалов придется использовать преобразователь. Такие устройства можно найти как в свободной продаже, так и собрать самостоятельно из радиодеталей.

В связи с наличием двух родов электрического тока: постоянного и переменного, вопрос,  как понизить напряжение, следует рассматривать в  ключе каждого из них отдельно.

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

Рис. 1. Замена резистора или стабилитрона

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов.

В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

Рис. 2. Понижение постоянного напряжения диодами

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи.  Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Понижение напряжения переменного тока

Переменное напряжение в 220 Вольт повсеместно используется для бытовых нужд, за счет физических особенностей его куда проще понизить до какой-либо величины или осуществлять любые другие манипуляции. В большинстве случаев, электрические приборы и так рассчитаны на питание от электрической сети, но если они были приобретены за рубежом, то и уровень напряжения для них может существенно отличаться.

К примеру, привезенные из США устройства питаются от 110В переменного тока, и некоторые умельцы берутся перематывать понижающий трансформатор для получения нужного уровня. Но, следует отметить, что импульсный преобразователь, которым часто комплектуется различный электроинструмент и приборы не стоит перематывать, так как это приведет к его некорректной работе в дальнейшем. Куда целесообразнее установить автотрансформатор или другой на нужный вам номинал, чтобы понизить напряжение.

С помощью трансформатора

Изменение величины напряжения при помощи электрических машин используется в блоках питания и подзарядных устройствах. Но чтобы понизить  вольтаж источника в такой способ, можно использовать различные типы преобразовательных трансформаторов:

  • С выводом от средней точки – могут выдавать разность потенциалов как 220В, так и в два раза меньшее – 127В или 110В. От него вы сможете взять установленный номинал на те же 110В со средней точки. Это заводские изделия, которые массово устанавливались в старых советских телевизорах и других приборах. Но у этой схемы преобразователя имеется существенный недостаток – если нарушить целостность обмотки ниже среднего вывода, то на выходе трансформатора получится номинал значительно большей величины.
Рис. 3. Понижение трансформатором с отводом от средней точки
  • Автотрансформатором – это универсальная электрическая машина, которая способна не только понизить вольтаж, но и повысить его до нужного вам уровня. Для этого достаточно перевести ручку в нужное положение и проследить полученные показания на вольтметре.
Рис. 4. Использование автотрансформатора
  • Понижающим трансформатором с преобразованием 220В на нужный вам номинал или с любого другого напряжения переменной частоты. Реализовать этот метод можно как уже готовыми моделями трансформаторов, так и самодельными. За счет наличия большого количества инструментов и приспособлений, сегодня каждый может собрать трансформатор с заданными параметрами в домашних условиях.
    Более детально об этом вы можете узнать из соответствующей статьи: https://www.asutpp.ru/transformator-svoimi-rukami.html

Выбирая конкретную модель электрической машины, чтобы понизить напряжение, обратите внимание на характеристики конкретной модели по отношению к тем устройствам, которые вы хотите запитать.

Наиболее актуальными параметрами у трансформаторов являются:

  • Мощность – трансформатор должен не только соответствовать, подключаемой к нему нагрузке, но и превосходить ее, хотя бы на 10 – 20%. В противном случае максимальный ток приведет к перегреву обмоток трансформатора и дальнейшему выходу со строя.
  • Номинал напряжения – выбирается и для первичной, и для вторичной цепи. Оба параметра одинаково важны, так как, выбрав модель с входным напряжением на 200 или 190В, на выходе вы при питании от 220В получится пропорционально большая величина.
  • Защита от поражения электротоком – все обмотки и выводы от них должны обязательно иметь достаточную изоляцию и защиту от прикосновения.
  • Класс пыле- влагозащищенности – определяет устойчивость оборудования к воздействию окружающих факторов. В современных приборах обозначается индексом IP.

Помимо этого любой преобразователь напряжения, даже импульсный трансформатор, следовало бы защитить от токов короткого замыкания и перегрузки в обмотках. Это существенно сократит затраты на ремонт при возникновении аварийных ситуаций.

С помощью резистора

Для понижения напряжения в цепь нагрузки последовательно включается  делитель напряжения в виде активного сопротивления.

Основной сложностью в регулировке напряжения на подключаемом приборе является зависимость от нескольких параметров:

  • величины напряжения;
  • сопротивления нагрузки;
  • мощности источника.

Если  вы будете понижать от бытовой сети, то ее можно считать источником бесконечной мощности и принять эту составляющую за константу. Тогда расчет резистора будет выполняться таким методом:

R = Uc/I — Rн ,

где

  • R – сопротивление резистора;
  • RН – сопротивление прибора нагрузки;
  • I – ток, который должен обеспечиваться в номинальном режиме прибора;
  •  UC – напряжение в сети.

После вычисления номинала резистора можете подобрать соответствующую модель из имеющегося ряда. Стоит отметить, что куда удобнее менять потенциал при помощи переменного резистора, включенного в цепь. Подключив его последовательно с нагрузкой, вы можете подбирать положение таким образом, чтобы понизить напряжение до необходимой величины. Однако эффективным способ назвать нельзя, так как помимо работы в приборе, электрическая энергия будет просто рассеиваться на резисторе, поэтому этот вариант является временным или одноразовым решением.

Видео по теме

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях — Help for engineer

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо, между нулевой и минусом – нижнее плечо.

Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин.

Простейший делитель состоит из двух последовательно соединенных резисторов:

На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.

В соответствии с законом Ома (1):

Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):


Тогда напряжение на всем участке цепи (4):

Отсюда определим, чему равно значение тока без включения нагрузки (5):

Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):


Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.

Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.

Онлайн подбор сопротивлений для делителя

Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.

Таким образом, напряжения: U=24 B, U2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R1=1000 Ом, тогда используя формулу (7) получим:

выразим отсюда R2:

Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):

Ток, который протекает через делитель, находится по формуле (5):

Схема делителя напряжения на резисторах рассчитана выше и промоделирована:


Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):



По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:

1. R1=1 кОм, P1=0,324 Вт.
2. R2=333,3 Ом, P2=0,108 Вт.

Полная мощность, которая потеряется:



Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.


Сопротивление конденсатора рассчитывается по формуле (10):

где С – ёмкость конденсатора, Ф;
f – частота сети, Гц.

Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f. Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):


Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):

где L – индуктивность, Гн.


Падение напряжения на индуктивностях (14,15):

Недостаточно прав для комментирования

Потенциометр и делитель напряжения | Класс робототехники

В одном из предыдущих уроков, для ограничения тока через светодиод, мы использовали резисторы. Как было тогда отмечено, существует множество резисторов разного номинала и рассчитанных на разную мощность. Но оказывается, кроме обычных резисторов есть и элементы с изменяемым сопротивлением, называемые переменными резисторами.

Обычно, переменные резисторы делают в виде делителя напряжения, и такие элементы называются потенциометрами. Кстати, потенциометры часто называют реостатами, хотя это и не совсем так. Вот так выглядит типичный регулировочный потенциометр.

Для чего может быть полезен прибор с переменным сопротивлением? Если говорить о чисто переменном резисторе, то он бывает нужен в ситуациях, когда нам требуется регулировать ток в цепи. Возьмем всё тот же светодиод. Если в цепи светодиода мы поставим переменный резистор — потенциометр, скажем, на 20 кОм, то с помощью него мы сможем регулировать яркость свечения.

Соберем эту схему на плате и проверим в действии. В этом макете мы используем потенциометр на плате от RobotClass. К нему удобно подключать провода и втыкать его в макетную плату.

Крутим ручку потенциометра — светодиод светится ярче или тусклее. Кроме самого потенциометра в схеме также можно заметить обычный резистор. Зачем он нужен? Дело в том, что поворачивая ручку потенциометра мы можем менять его сопротивление в диапазоне от 20 кОм до нуля. Получается, что в крайнем положении без дополнительного защитного резистора через светодиод потечет слишком большой ток и он сгорит!

Конечно, мы можем не крутить ручку потенциометра до упора, но разве можно удержаться?:) Лучше поставим дополнительный резистор, который в крайнем положении ручки не даст светодиоду сгореть. Для случая с кроной, подойдет резистор на 1 кОм. Если будем питать схему от Arduino (то есть от 5 Вольт), то можно поставить 200 Ом.

Вконтакте

Facebook

Twitter

Принципы подбора резистора для понижения мощности: параметры, маркировка

Резисторы – радиоэлементы, без которых нельзя построить ни одну электрическую схему. На их долю приходится примерно половина всех монтируемых в схеме деталей. Резисторы позволяют контролировать, ограничивать и распределять ток между другими элементами. Их основной характеристикой является сопротивление, измеряемое в Ом.

Обозначение резисторов

Графический знак резистора, принятый среди наших соотечественников, – прямоугольник. За рубежом его изображают в виде ломаной линии, напоминающей букву W. На схемах рядом с графическим изображением указывают буквенно-цифровую маркировку, которая включает букву R, число, которое обозначает номер элемента на схеме, значение сопротивления. Если к номеру позиции элемента добавлен значок «*», то это означает, что величина сопротивления указана приблизительно. Точное значение придется подбирать при настройке устройства. Поэтому постоянные резисторы для данной области применения не пригодны. Внутри графического символа может указываться номинальная мощность рассеивания.

Виды резисторов

Производители предлагают широчайший ассортимент резисторов, из которого нужно подобрать деталь, подходящую по конструкции, назначению и цене. Рассмотрим характеристики самых распространенных видов этих радиоэлементов. По материалу резистивного элемента различают изделия проволочные, непроволочные, металлофольговые.

Проволочные

Это традиционная разновидность, применяемая нашими папами и дедушками. Токопроводящую проволоку с большим удельным сопротивлением изготавливают на основе сплавов из меди, никеля, марганца – манганина, константана, никелина. В ходе работы могут нагреваться.

Непроволочные

В конструкцию входят: диэлектрическое основание и покрытие, обладающее определенным сопротивлением. Такое покрытие называют резистивом, оно может быть пленочным или объемным. Пленочные бывают:

  • Тонкопленочными. Их толщина измеряется в нанометрах. Резистив наносят вакуумным напылением на диэлектрическую подложку. Стоимость такой продукции выше стоимости толстопленочных аналогов. Ее преимущества: хороший температурный коэффициент сопротивления, невысокие – паразитная индуктивность и уровень шума. Востребованы в основном для устройств СВЧ, в которых требуется точность и стабильность.
  • Толстопленочными. Эти изделия имеют толщину в десятых долях миллиметра. Бывают – лакосажевые, керметные, на базе токопроводящих пластмасс. Это недорогие резисторы, их отклонение от номинального значения составляет 1-2%.

Сопротивление пленочных резисторов регулируют за счет толщины покрытия. Основные характеристики этих изделий: стабильность, точность, широкий диапазон значений сопротивления – от нескольких Ом до МОм.

Классификация резисторов по принципу работы

В зависимости от области применения, используют резисторы:

  • Постоянные. Эти элементы лишены способности менять сопротивление во время эксплуатации.
  • Подстроечные. Такие элементы имеют три вывода. Сопротивление между двумя выводами постоянное. Если третий связывают с подвижным контактом, то получают делитель напряжения. Используются для настройки чувствительности датчиков и другой аппаратуры.
  • Переменные, называемые «потенциометрами». С их помощью регулируют работу аппаратуры путем изменения сопротивления.

Разновидности полупроводниковых резисторов

В категорию полупроводниковых резисторов входят:

  • Терморезисторы. Сопротивление таких элементов изменяется, в зависимости от температуры окружающей среды.
  • Варисторы. Изменение сопротивления происходит в соответствии с изменением величины напряжения. Используйте эти детали, если хотите защитить основные элементы схемы от скачков напряжения в сети.
  • Фоторезисторы – очень популярная продукция, используемая в электронных схемах часов, управления уличным освещением. Реагирует на степень освещенности. При ее низком уровне сопротивление этого элемента достигает 1 мОм, при ярком освещении оно резко падает.

Параметры, учитываемые при покупке резисторов

При покупке этих деталей учитывают:

  • Самый важный параметр – сопротивление, которое определяется нормативной документацией. Его номинальное значение указывается на корпусе детали. Значения до 999 Ом выражаются в Ом, 1000-99000 Ом – в кОм, от 1 000 000 Ом – в МОм. Помимо сопротивления, необходимо правильно подобрать допуск на точность, который может находиться в пределах 0,5-10%. При выборе величины допуска следует помнить: чем выше точность, тем меньше эксплуатационный температурный интервал.
  • Номинальная мощность – это максимально допустимая мощность, рассеиваемая на резисторном элементе, при которой рабочие характеристики резистора сохраняются в течение всего установленного эксплуатационного периода. Например, если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может составить 90-110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью замера омметром или мультиметром.
  • Температурный коэффициент сопротивления. Эта величина характеризует относительное изменение сопротивления детали при повышении или понижении температуры на 1°C. ТКС для одного резистора в разных температурных интервалах может иметь разное значение.
  • Электрическая прочность. Указывает на предельное напряжение, при котором элемент может функционировать без выхода из строя на протяжении всего установленного срока службы.

Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Основы измерения тока: Токоизмерительные резисторы.

Часть 1

Начинаем публикацию статьи, состоящей из трех частей, в которой рассматриваются недооцениваемые особенности чувствительности при измерении тока. В первой части статьи обсуждаются общие настройки, выбор и реализация токоизмерительного резистора. Во второй части будут рассматриваться действующие совместно схемы, такие как необходимый аналоговый усилительный интерфейс (analog front-end (AFE)) и измерительный усилитель. В третьей части обсуждается использование усилителей при измерении тока в тех случаях, когда нагрузка находится под более высокими напряжениями.

Основы измерения тока

Сила тока является одним из наиболее распространенных параметров, используемых для оценки, контроля и диагностики эффективности работы электронных систем. Поскольку это широко распространенное измерение, разработчики часто сталкиваются с проблемами, если недооценивают особенности точного измерения силы тока.

Наиболее распространенным чувствительным элементом, используемым для регистрации тока, является прецизионный низкоомный резистор, устанавливаемый в разрыв цепи тока. На этом резисторе, обычно называемом шунтом, создается падение напряжения, пропорциональное проходящему через него току. Поскольку шунтовый резистор не должен оказывать существенного влияния на ток, он часто имеет довольно маленькое номинальное сопротивление, порядка нескольких миллиом или долей миллиом. В результате падающее на шунтовом резисторе напряжение также довольно маленькое и часто требует усиления перед преобразованием с помощью АЦП.

Таким образом, общая конфигурация сигнальной цепи для контроля тока включает аналоговый усилитель (AFE) падающего на шунтовом резисторе напряжения, АЦП для преобразования усиленного напряжения в цифровое представление и системный контроллер (рис. 1).

Рис. 1. Самый простой способ измерения протекающего тока связан с использованием шунтового резистора (крайний слева), на котором падает напряжение, пропорциональное протекающему через него току. Усилитель AFE усиливает низкое напряжение на шунтовом резисторе, чтобы использовать полный диапазон измерений АЦП.  

В качестве усилителя AFE обычно используется операционный усилитель или специализированный токовый усилитель, который преобразует небольшое, падающее на шунтовом резисторе дифференциальное напряжение, в повышенное выходное напряжение, которое использует в АЦП полный измерительный диапазон. АЦП, который может быть автономным устройством или встроенным блоком в микроконтроллере или системе на кристалле (SoC), оцифровывает сигнал напряжения и передает полученную информацию управляющему процессору. Системный контроллер использует оцифрованное измерение силы тока, чтобы оптимизировать характеристики системы или внедрить протоколы безопасности, чтобы предотвратить повреждение системы, если ток превышает заданный предел.

Поскольку для преобразования тока в напряжение использован сенсорный компонент в цепи, все физические характеристики резистора (сопротивление, допуск величины, мощность, тепловой коэффициент и тепловая ЭДС) влияют на точность. Следовательно, выбор подходящего шунтового резистора имеет решающее значение для оптимизации измерения тока.

Величина шунтового резистора и падающее на нем напряжение оказывают воздействие на систему. Например, шунтовый резистор со слишком большим сопротивлением может вызвать ненужные потери и понизить напряжение на нагрузке.

Например, при измерении тока, протекающего через обмотку двигателя, пониженное напряжение уменьшает доступную для двигателя электрическую мощность, влияет на его эффективность и/или крутящий момент. Кроме того, большие токи (десятки или сотни ампер), протекающие через шунтовый резистор, приводят к тому, что на резисторе рассеивается значительная энергия в виде выделяемого тепла, понижая точность и эффективность измерения. По этим причинам сопротивление шунта должно быть как можно меньше.

Выбор шунтового резистора для измерения тока

Тот факт, что на шунтовых резисторах рассеивается мощность при протекании через них тока нагрузки, требует минимального значения их сопротивления. Кроме того, для стабильности измерения токоизмерительные резисторы также должны иметь очень низкий температурный коэффициент сопротивления (ТКС). Малый ТКС приведет к высокой точности измерения при низкой зависимости от температуры.

Тепловая ЭДС токочувствительного резистора является еще одной важной характеристикой. Токовые шунтовые резисторы должны работать в широком диапазоне токов. Когда ток низкий, например, в приборе с батарейным питанием в режиме сна или ожидания, тепловая ЭДС шунта добавляет измерительную ошибку к напряжению, создаваемому протекающим через резистор током. Это напряжение ошибки должно быть значительно меньше, чем наименьшее ожидаемое напряжение, создаваемое протекающим через шунтовый резистор током, сводя к минимуму ошибку измерения.

Шунтовые резисторы для датчиков тока доступны с двумя или четырьмя контактами. Шунтовый резистор с двумя контактами является наиболее простым случаем для понимания, поскольку он работает так же, как и любой двухконтактный резистор. При протекании тока через двухконтактный шунтовый резистор на его контактах появляется напряжение, пропорциональное протекающему через него току.

Примерами двухконтактных шунтовых резисторов является серия шунтовых резисторов Bourns CSS2 и серия шунтовых резисторов Vishay WSLP. Серия Bourns CSS2 включает шунтовые резисторы с номинальной мощностью от 2 до 15 Вт, сопротивлением от 0,2 до 5 мОм и с максимальным диапазоном тока от 140 до 273 ампер. Типичный резистор из этих серий, CSS2H-2512R-L500F, поставляется в корпусе для поверхностного монтажа 2512, имеет сопротивление 0,5 мОм и номинальную мощность 6 Вт.

Семейство шунтовых резисторов Vishay WSLP включает устройства в нескольких типах корпусов для поверхностного монтажа в диапазоне размеров от 0603 до 2512, с допустимой мощностью от 0,4 до 3 Вт, с сопротивлениями от 0,5 мОм до 0,1 Ом, при допуске 0,5% или 1%. Типичным шунтовым токовым резистором Vishay является WSLP1206R0200FEA, который поставляется в корпусе 1206 с сопротивлением 20 мОм, допуском 1% и номинальной мощностью 1 Вт.

Обратите внимание, что эти токовые шунтовые резисторы для поверхностного монтажа (SMD) имеют незначительные размеры и занимают очень мало места на плате, но поскольку они могут рассеивать значительное количество тепла, их следует размещать достаточно далеко от чувствительных к нагреву компонентов.

Три сопротивления в одном шунтовом резисторе

Несмотря на их внешний вид, современные шунтовые резисторы не так просты, как кажутся. В частности, сопротивление шунтового резистора фактически состоит из трех частей (рис. 2). Во-первых, есть сопротивление самого шунтового резистора. Затем, есть сопротивления выводов этого резистора и дорожек на печатной плате, подключаемых к шунтовому резистору. Обычно сопротивления выводов и дорожек незначительные, но и сами шунтовые резисторы обычно имеют очень низкие значения сопротивления. При измерениях больших токов даже небольшие сопротивления выводов вносят в результаты измерения погрешность, поскольку они не учтены производителем в спецификациях шунтового резистора.

Рис. 2. Токовый шунтовый резистор с двумя контактами фактически состоит из трех последовательно соединенных сопротивлений: сопротивление самого шунтового резистора  (Rshunt), сопротивление двух выводов резистора (Rlead) и сопротивление подводящих дорожек на плате, подключенных к резистору (не показано). Сопротивление выводов может вызвать ошибку измерений для большого тока. 

Одним из способов, позволяющих избежать ошибок измерения, вносимых внешними сопротивлениями выводов, является создание соединения Кельвина, выполнив раздельные токоизмерительные дорожки к двухконтактному шунтовому резистору (рис. 3).

Рис. 3. Соединение Кельвина с двухконтактным токочувствительным резистором уменьшает погрешность измерения, вызываемую сопротивлением выводов резистора и дорожек печатной платы. Пример изображения двухконтактных токовых шунтовых резисторов показан справа.

В этой конфигурации ток, протекающий через резистор токового шунта, проходит через широкие подводящие дорожки на печатной плате. Гораздо более узкие дорожки, которые  находятся не в основном канале протекающего тока, но расположены непосредственно рядом с резистивным элементом шунтового резистора, снимают падающее на нем напряжение и передают его на вход AFE. Разделение токоведущих и токочувствительных контактов характеризует соединение Кельвина.

Полученное в результате схематическое представление соединения Кельвина с использованием двухконтактного шунтирующего резистора показано на рис. 4.

Рис. 4. Использование соединения Кельвина с двухконтактным шунтовым резистором выводит линии измерения напряжения из основной цепи тока, что приводит к более точному измерению напряжения на шунтовом резисторе

Очень малый ток протекает через два токочувствительных резистора (Rsense), показанных на рис. 4, потому что они подключены к имеющим высокий импеданс входам усилителя либо АЦП, что делает их сопротивления намного менее критичными, чем значения сопротивления выводов, через которые протекает большой ток шунтового резистора. Следовательно, падение напряжения на резисторах Rsense довольно небольшое и не является значительным источником ошибки при измерении тока.

Что лучше, два вывода или четыре?

Как видно из монтажной схемы печатной платы на рис. 3, невозможно полностью исключить сопротивления выводов в двухконтактном шунтовом резисторе даже при использовании соединения Кельвина. Должен быть определен некоторый допуск для размещения печатной площадки, чтобы учесть ошибку позиционирования, когда шунтовый резистор устанавливается для впаивания на печатную плату.

Кроме того, ТКС медных дорожек печатной платы (3900 м.д. (миллионных долей)/ ?C) намного выше, чем ТКС резистивного элемента шунтового резистора (часто менее 50 м.д./ ?C).  Эти параметрические различия приводят к тому, что изменение сопротивления в дорожках печатной платы намного больше, чем в токочувствительном резисторе, что дает более высокую температурную зависимость токочувствительной цепи.

При использовании двухконтактного шунтового резистора с соединением Кельвина, часто уровень точности для чувствительности по току может оказаться недостаточным во многих случаях с очень высоким током. Для таких случаев производители предлагают шунтовые резисторы с четырьмя контактами, в которых соединение Кельвина реализовано внутри резистора. Таким образом, производитель может полностью контролировать все допуски и температурные коэффициенты, относящиеся к соединению Кельвина (рис. 5).

High Current Trace – Цепь для мощного тока
Current Sensing Trace – Токочувствительная цепь
Current Sensing Resistor – Токочувствительный резистор
Copper Trace – Медная дорожка
Рис. 5. Четырехконтактный шунтовый резистор обеспечивает высокоточное соединение Кельвина с токочувствительными соединениями, расположенными рядом с шунтовым резистором. Пример изображения токового четырех контактного шунтового резистора представлен справа.

Токочувствительный резистор с четырьмя контактами, использующий соединение Кельвина, имеет отдельные выводы для протекающего через резистор большого тока и для измерения напряжения, что помогает повысить точность измерений. Кроме того, использование четырехконтактного шунтового резистора с соответствующим соединением Кельвина снижает влияние ТКС, обеспечивая улучшенную температурную стабильность, по сравнению с двухконтактным шунтовым резистором, использующим компоновку печатной платы для реализации соединения Кельвина.

Bourns предлагает несколько четырехконтактных шунтовых резисторов из серии для поверхностного монтажа CSS4 (рис. 6).

Рис. 6. Шунтовые резисторы Bourns CSS4 для поверхностного монтажа используют четырехконтактное соединение Кельвина для максимальной точности измерения тока.

В состав серии Bourns CSS4 входят шунтовые резисторы CSS4J-4026R-L500F 0,5 мОм, 1%, 5 Вт, и  CSS4J-4026K-2L00F 2 мОм, 1%, 4 Вт. Оба эти шунта имеют низкий ТКС, низкую тепловую ЭДС и занимают на плате площадку не более 10 мм × 7 мм.

Заключение

Первым шагом в процессе измерения тока является преобразование электрического тока в более легко измеряемый параметр – напряжение. Токовые шунтовые резисторы являются недорогими компонентами, которые выполняют эту задачу. Однако, как показано в статье, номинальное значение шунтового резистора должно быть низким, чтобы минимизировать его влияние на цепь и рассеиваемую мощность на самом резисторе.

К другим важным параметрам для токовых шунтовых резисторов относятся ТКС и тепловая ЭДС, которые могут значительно повлиять на точность измерения тока.

Наконец, для того, чтобы максимизировать точность измерения, крайне важно не допустить ограничения силы тока, протекающего через шунт, минуя токочувствительный тракт либо с помощью специальной компоновки печатной платы, которая создает соединение Кельвина для двухконтактного шунта, либо с помощью четырехконтактного шунтового резистора.

Поскольку низкое значение сопротивления подразумевает, что падение напряжения на токочувствительном резисторе будет небольшим, во второй части этой статьи будут обсуждаться соображения по проектированию AFE, который усиливает низкое напряжение, упрощая процесс измерения с помощью АЦП.

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Характеристики резисторов

1. Основной параметр резистора – это номинальное сопротивление.

2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

1. Паразитная индуктивность.

2. Паразитная ёмкость.

Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

Мощность резистора

Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I

Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:

I=U/R

Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:

I=U/R

Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. 2/1=144/1=144 Вт.

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0. 5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Заключение

Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

Ранее ЭлектроВести писали, что JinkoSolar объявила, что она установила новый рекорд эффективности для монокристаллических PERC-панелей, который составил 24,38%. Компания также разработала модуль мощностью 469,3 Вт. Кроме того, китайский производитель фотоэлектрических элементов поравнялся с фирмой Trina Solar, которая на прошлой неделе заявила о рекордном 24,58% показателе КПД монокристаллических панелей n-типа.

По материалам: electrik.info.

Калькулятор светодиодов

Я уже прочитал статью, сразу перейти к калькулятору.

Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода. Если необходимо подключить светодиоды индикаторные, рабочий ток которых не превышает 50-100мА, можно ограничить ток посредством резисторов. Если речь идет о питании мощных светодиодов с рабочими токами от сотен миллиампер до единиц ампер, то не обойтись без специальных устройств – драйверов (подробнее об этих устройствах читайте в статье «Драйвера для светодиодов», готовые модели драйверов можно увидеть здесь.). Далее рассмотрим варианты, когда требуемый ток небольшой и обойтись резисторами все же можно.

Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле

P = I2R, где P — выделяемое тепло в ваттах, I — сила тока в цепи в амперах, R — сопротивление в омах.

Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.

Схема подключения одного светодиода

Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:

R = (U — UL) / I, где R — требуемое сопротивление в омах, U — напряжение источника питания, UL — падение напряжения на светодиоде в вольтах, I — нужный ток светодиода в амперах.

Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.

Схема последовательного подключения светодиодов

Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток. Напряжение источника питание должно быть больше, чем суммарное падение напряжения.

Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.

Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение. Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса. В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.

Схема параллельного подключения светодиодов

Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора. Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально. Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить. По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.

Схема правильного и неправильного параллельного подключения светодиодов

Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.

Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока. Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами. Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.

Быстро рассчитать сопротивление резистора при подключении одного или нескольких одинаковых светодиодов поможет предложенная ниже форма онлайн-калькулятора светодиодов.

Расчет резистора для светодиода

Тип подключения:

Выбрано: Один светодиод

Общая потребляемая мощность:

Общий ток источника питания:

На резисторах рассеивается:

На светодиодах рассеивается:

КПД схемы:

Требуемая мощность резисторов — очень большая!!

Выбирайте резисторы с номиналом не меньше рассчитанного!

Снижение напряжения с помощью резисторов — Обмен электротехнического стека

Есть несколько способов получить 5 В от источника 12 В. У каждого есть свои преимущества и недостатки, поэтому я составил 5 основных схем, чтобы показать их плюсы и минусы.

  • Цепь 1 — это простой последовательный резистор, точно такой же, как тот, о котором вам говорили «некоторые».

Работает, НО работает только при одном значении тока нагрузки и расходует большую часть подаваемой мощности.Если значение нагрузки изменится, изменится и напряжение, так как регулирования нет. Однако он выдержит короткое замыкание на выходе и защитит источник 12 В от короткого замыкания.

  • Цепь 2 представляет собой последовательный стабилитрон (или вы можете использовать ряд обычных диодов, последовательно включенных для компенсации падения напряжения — скажем, 12 кремниевых диодов)

Работает, НО большую часть мощности рассеивает стабилитрон. Не очень эффективно! С другой стороны, это дает некоторую степень регулирования при изменении нагрузки. Однако, если вы закоротите выход, волшебный синий дым вырвется из стабилитрона … Такое короткое замыкание может также повредить источник 12 В после разрушения стабилитрона.

  • Схема 3 представляет собой последовательный транзистор (или эмиттерный повторитель) — показан переходной транзистор, но аналогичная версия может быть построена с использованием полевого МОП-транзистора в качестве истокового повторителя.

Работает, НО большая часть мощности должна рассеиваться транзистором, и это не является стойким к короткому замыканию.Как и в схеме 2, вы можете повредить источник 12 В. С другой стороны, регулирование будет улучшено (из-за эффекта усиления тока транзистора). не диод Зенера больше не должен принимать полный ток нагрузки, поэтому намного дешевле / меньше / меньше энергии Зенера или другое опорное напряжение устройства может быть использована. Эта схема на самом деле менее эффективна, чем схемы 1 и 2, потому что для стабилитрона и связанного с ним резистора требуется дополнительный ток.

  • Контур 4 — трехконтактный регулятор (IN-COM-OUT).Это может быть выделенная ИС (например, 7805) или дискретная схема, построенная из операционных усилителей / транзисторов и т. Д.

Работает, НО устройство (или цепь) должно рассеивать больше мощности, чем подается на нагрузку. Это даже более неэффективно, чем схемы 1 и 2, потому что дополнительная электроника потребляет дополнительный ток. С другой стороны, он выдержит короткое замыкание и, следовательно, является улучшением схем 2 и 3. Он также ограничивает максимальный ток, который может потребоваться в условиях короткого замыкания, защищая источник 12 В.

  • Circuit 5 — это понижающий стабилизатор (импульсный регулятор постоянного / постоянного тока).

Работает, НО выход может быть немного резким из-за высокочастотной коммутации устройства. Однако он очень эффективен, поскольку использует накопленную энергию (в катушке индуктивности и конденсаторе) для преобразования напряжения. Имеет разумную регулировку напряжения и ограничение выходного тока. Он выдержит короткое замыкание и защитит аккумулятор.

Все эти 5 цепей работают (т.е. все они производят 5 В при нагрузке), и у всех есть свои плюсы и минусы. Некоторые работают лучше других с точки зрения защиты, регулирования и эффективности. Как и большинство инженерных задач, это компромисс между простотой, стоимостью, эффективностью, надежностью и т. Д.

Что касается «постоянного тока» — у вас не может иметь фиксированное (постоянное) напряжение и постоянный ток с переменной нагрузкой . Приходится выбирать — постоянное напряжение ИЛИ постоянный ток.Если вы выберете постоянное напряжение, вы можете добавить какую-либо схему к , чтобы ограничить максимального тока до безопасного максимального значения — например, в схемах 4 и 5.

Как выбрать номинал резистора в делителе напряжения?

Главное актуально.

Взгляните на эту схему. Наведите указатель мыши на символ заземления, и вы увидите, что ток равен 25 мА. Теперь взгляните на эту схему, и вы увидите, что выходной ток равен \ $ 2.5 \ mbox {} \ mu A \ $.

Теперь посмотрим, как схемы ведут себя под нагрузкой. Вот первая схема с нагрузкой. Как вы можете видеть, ток 2,38 мА проходит через нагрузочный резистор справа, и напряжение на нем больше не ожидаемое 2,5 В, а вместо 2,38 В (поскольку два нижних резистора включены параллельно). Если мы посмотрим на вторую схему здесь, мы увидим, что теперь верхний резистор падает примерно на 5 В, в то время как два нижних резистора имеют напряжение 4,99 мВ. Это потому, что здесь изменилось соотношение резисторов.Поскольку два нижних резистора теперь включены параллельно, и у нас есть один резистор со значительно большим сопротивлением, чем другой, их общее сопротивление незначительно по сравнению с сопротивлением только нижнего правого резистора (вы можете проверить это, используя формулы параллельного резистора). Таким образом, теперь выходное напряжение значительно отличается от 2,5 В, которые мы получаем в случае отсутствия нагрузки.

Теперь посмотрим на противоположную ситуацию: здесь два небольших резистора в делителе напряжения и один большой в качестве нагрузки.И снова суммарное сопротивление двух нижних резисторов меньше, чем сопротивление меньшего из двух резисторов. Однако в этом случае это не оказывает большого влияния на напряжение, воспринимаемое нагрузкой. Напряжение на нем еще 2,5 В и пока все нормально.

Итак, при определении сопротивления резисторов мы должны учитывать входное сопротивление нагрузки, а два резистора делителя напряжения должны быть как можно меньше.

С другой стороны, давайте сравним ток, протекающий через делитель в цепи с большими резисторами на делителе и в цепи с маленькими резисторами на делителе.Как видите, большие резисторы имеют ток всего \ $ 2.5 \ mbox {} \ mu A \ $, проходящий через них, а маленькие резисторы имеют ток 25 мА. Дело в том, что ток тратится впустую делителем напряжения, и если бы он был, например, частью устройства с батарейным питанием, это оказало бы негативное влияние на срок службы батареи. Поэтому резисторы должны быть как можно большими, чтобы снизить потери тока.

Это дает нам два противоположных требования: иметь как можно меньше резисторов для лучшего регулирования напряжения на выходе и как можно больше резисторов, чтобы получить как можно меньшие потери тока.Итак, чтобы получить правильное значение, мы должны увидеть, какое напряжение нам нужно на нагрузке, насколько оно должно быть точным, получить входное сопротивление нагрузки и на основе этого рассчитать размер резисторов, которые нам нужны, чтобы получить нагрузку с приемлемым Напряжение. Затем нам нужно поэкспериментировать с более высокими значениями резисторов делителя напряжения и посмотреть, как они повлияют на напряжение, и найти точку, в которой мы не можем иметь большее изменение напряжения в зависимости от входного сопротивления. На данный момент у нас (в целом) есть хороший выбор резисторов делителя напряжения.

Еще один момент, который необходимо учитывать, — это номинальная мощность резисторов. Это идет в пользу резисторов с большим сопротивлением, потому что резисторы с меньшим сопротивлением будут рассеивать больше мощности и больше нагреваться. Это означает, что они должны быть больше (и обычно дороже), чем резисторы с большим сопротивлением.

На практике, сделав несколько делителей напряжения, вы увидите несколько популярных значений резисторов делителя напряжения. Многие люди просто выбирают один из них и не слишком заморачиваются вычислениями, если с выбором нет проблем.Например, для небольших нагрузок вы можете выбрать резисторы из диапазона \ $ 100 \ mbox {} k \ Omega \ $, а для больших нагрузок вы можете использовать \ $ 10 \ mbox {} k \ Omega \ $ или даже \ $ 1 \ mbox {}. резисторов k \ Omega \ $, если у вас есть запасной ток.

Уменьшает ли резистор напряжение или ток?

Резистор играет важную роль в мире электричества и электроники, и его можно найти в любой цепи.

Это пассивный компонент, основная задача которого — обеспечение «сопротивления» в цепи, отсюда и название резистор.

Но снижает ли резистор напряжение или ток? Резистор имеет способность уменьшать напряжение и ток при использовании в цепи. Основная функция резистора — ограничивать ток. Закон Ома гласит, что увеличение номинала резистора приведет к уменьшению тока.

Для снижения напряжения резисторы устанавливаются в конфигурации, известной как «делитель напряжения». Кроме того, с каждым компонентом в цепи резистор понижает напряжение на его выводах.

Ниже я объясню закон Ома и то, как резистор снижает ток и напряжение.

Как резистор снижает ток

Основная функция резистора заключается в ограничении или противодействии протеканию тока в цепи путем обеспечения «сопротивления».

Лучшая аналогия — садовый шланг, по которому течет вода. Вода представляет собой течение.

Если вы случайно сжали садовый шланг, вы окажете «сопротивление» и ограничите поток воды. Чем больше вы его сжимаете, тем меньше воды может течь.

Вы сжимаете садовый шланг — это резистор, который делает то же самое в цепи.

Как устроен резистор, уменьшающий ток

Резистор снижает ток в основном за счет его физической конструкции и материалов, используемых внутри.

Существует множество различных типов резисторов, каждый из которых сконструирован определенным образом. Ниже приведены некоторые распространенные типы резисторов:

Углерод — этот тип резистора известен как резистор углеродного состава (CCR).Внутри этого резистора находится твердый цилиндрический резистивный элемент, который представляет собой смесь мелкодисперсного порошка углерода и изоляционного материала. Увеличение количества углерода снижает сопротивление, поскольку углерод является хорошим проводником.

Карбоновая куча — В резисторах этого типа используются наборы дисков, которые сделаны из углерода для уменьшения / противодействия току. Эти диски уплотнены внутри корпуса резистора между двумя металлическими пластинами.

Углеродная пленка — Углеродная пленка помещается на изолирующий материал с вырезанной в ней спиралью для создания длинного узкого пути, уменьшающего ток.Варьируя форму и размер, можно получить ряд значений сопротивления.

Металлическая пленка — Многие сквозные резисторы изготавливаются из металлопленки. Они покрыты хромоникелем (NiCr).

Оксид металла — Эти типы резисторов изготовлены из оксидов металлов, что позволяет резистору выдерживать гораздо более высокие температуры.

Проволочная обмотка — Этот резистор снижает ток за счет использования металлической проволоки, намотанной в катушку. Используемый металл обычно представляет собой нихром, намотанный на сердечник из керамики, пластика или стекловолокна.

Закон Ома, определяющий, как резистор снижает ток

Чтобы правильно понять взаимосвязь между током, сопротивлением и напряжением, нам нужно узнать о законе Ома.

Этот закон был разработан Георгом Симоном Омом в 1827 году.

Не вдаваясь в подробности, он обнаружил, что количество электрического заряда, проходящего через металлический проводник в цепи, прямо пропорционально напряжению на нем, что можно резюмировать уравнением, показанным ниже.

Если мы изменим формулу, мы получим сопротивление, которое равно делению напряжения на ток.

Теперь вы можете видеть, что соотношение между сопротивлением и током обратно пропорционально.

Увеличение номинала резисторов приведет к уменьшению тока, тем самым уменьшив его, в то время как уменьшение сопротивления вызовет увеличение тока.

Как резистор может снизить напряжение?

Теперь, когда мы знаем, как резистор снижает ток, мы можем посмотреть, как он снижает напряжение.

Существует несколько распространенных способов уменьшения напряжения резистором, в том числе падение напряжения на его выводах и делитель напряжения.

Первый способ, которым резистор снижает напряжение:

Падение напряжения на его выводах

В области электроники падение напряжения происходит в каждом компоненте, имеющем сопротивление. Падение напряжения на компоненте регулируется законом Ома.

Например, представьте, что у нас есть простая схема, состоящая из напряжения питания и лампы.

Здесь Лампа имеет сопротивление 10 Ом (из-за того, что все в цепи имеет какое-то сопротивление).

Поскольку нам известны значения напряжения и сопротивления, мы можем рассчитать ток, используя закон Ома (I = V / R), который дает нам ток 1,2 ампера.

Итак, ток 1,2 А будет течь через лампу и питать ее. Если мы возьмем ток (1,2 А) и умножим его на сопротивление лампы (10 Ом), снова используя закон Ома (V = IR), мы получим напряжение 12 вольт.

Следовательно, на лампе падение напряжения составляет 12 вольт.

Теперь мы знаем, как рассчитать падение напряжения, мы можем взглянуть, как эта теория применяется к резистору для уменьшения напряжения.

Если мы заменим указанную выше лампу резистором с эквивалентным сопротивлением (10 Ом), мы все равно получим такое же значение падения напряжения на нем.

Теперь мы добавим второй резистор (R2 с сопротивлением 5 Ом) последовательно с резистором 10 Ом (R1).

Как и в случае с лампой, нам нужно найти значение тока, протекающего по цепи.

На этот раз полное сопротивление складывается из двух резисторов; R1 (10 Ом) + R2 (5 Ом), что дает нам общее сопротивление RT = 15 Ом.

Теперь, используя закон Ома (I = V / RT), мы получаем ток 0,8 ампер.

Это тот же ток, который проходит через оба резистора. Таким образом, мы можем рассчитать падение напряжения на каждом резисторе, который дает нам;

R1 Падение напряжения = 0.8 x 10 = 8 вольт

R2 Падение напряжения = 0,8 X 5 = 4 вольт.

Используя закон Ома, мы можем определить, на сколько напряжение понижает резистор, понижая напряжение на нем, если нам известны напряжение питания и полное сопротивление.

Падение напряжения на определенном сопротивлении зависит от тока и величины сопротивления резистора.

Резистор второго направления снижает напряжение:

Делитель напряжения

Второй способ использования резистора для понижения напряжения — использование делителя напряжения.В делителе напряжения используются два резистора в конфигурации, показанной ниже.

Выходное напряжение на Vout определяется Vin, а также значениями двух резисторов (R1 и R2). Приведенная ниже формула используется для расчета выходного напряжения.

Так, например, если Vin составляет 5 вольт, R1 составляет 10 Ом, а R2 также составляет 10 Ом, если мы воспользуемся уравнением, мы получим выходное напряжение 2,5 вольта.

Самое замечательное в этой конфигурации то, что мы можем выбрать, какое напряжение мы хотим на Vout, переставив формулу выше, чтобы вычислить значение резистора R2, чтобы получить желаемое выходное напряжение.

Допустим, вам нужно напряжение 3 вольта на Vout.

Используя преобразованную формулу, мы можем вычислить значение резистора R2, чтобы получить 3 вольта. Используя те же значения для Vin и R1 и 3 вольта для Vout, мы получаем значение 15 Ом для R2.

Как видите, это отличный способ использовать резисторы для снижения напряжения до желаемого значения.

Зачем нужен резистор для уменьшения тока?

Мир электрики и электроники наполнен множеством различных компонентов и устройств различных форм, размеров, функций и т. Д.

Еще одна вещь, которая меняется от одного компонента к другому, — это его рейтинги. Каждый компонент имеет максимальное номинальное напряжение и ток.

Эти рейтинги никогда не должны превышаться, так как их превышение может привести к их повреждению.

Итак, резистор используется последовательно со многими компонентами, чтобы уменьшить ток и избежать их повреждения.

Примером может служить стандартный светоизлучающий диод (LED) с ограничением тока 20 мА. Если источник напряжения подключен непосредственно к светодиоду без использования токоограничивающего резистора, вы рискуете взорвать светодиод.

Токоограничивающий резистор необходимо подключить последовательно со светодиодом, чтобы снизить ток до уровня ниже 20 мА.

Зачем использовать резистор для понижения напряжения?

Возможность снижения напряжения с помощью такой конфигурации, как делитель напряжения, имеет множество применений и применений.

Некоторые распространенные применения понижения напряжения включают регулировку уровня смещения активных устройств в усилителях и измерение напряжений.

В мультиметре также используются делители напряжения.

В делителях напряжения

используются резисторы фиксированного номинала для регулировки выходного напряжения. Однако, если на резисторе R2 используется переменный резистор, выходное напряжение можно изменять, регулируя переменный резистор. Отличное приложение для этого — регулировка громкости в музыкальной системе.

Какие типы резисторов используются для уменьшения тока и напряжения?

Как вы видели ранее, существует много разных способов изготовления резистора.

Резисторы

бывают разных значений сопротивления, размеров, форм и номинальной мощности.

Два распространенных типа резистора: сквозное отверстие и для поверхностного монтажа.

Выбор из них зависит от типа схемы, в которой вы их будете использовать.

Поскольку в электронике используются приложения с низким и высоким энергопотреблением, существуют резисторы, разработанные с разной номинальной мощностью, чтобы справиться с этими мощностями.

Ома и закон Ома | Зонд питания Tek

Категории:
Блоги

Пытаясь объяснить электричество и электрические концепции, мы часто используем воду и водопровод в качестве примеров. Они не совсем одинаковы, но достаточно похожи, чтобы большинство людей могло усвоить основные принципы. Несмотря на то, что мы не можем буквально «видеть» протекание электричества, мы все наблюдали давление и поток воды, так что это может немного облегчить понимание основных концепций электрических потоков.
В электрических терминах напряжение эквивалентно давлению воды в трубе. Требуется некоторое давление, чтобы создать любой поток воды, без давления (или напряжения), без потока. Поток воды в трубе будет электрическим эквивалентом тока (или ампера).Все, что может замедлить или ограничить поток воды, будет электрическим эквивалентом сопротивления.

Закон

Ома — это простая формула, объясняющая взаимосвязь между напряжением, сопротивлением и током.
В нем указано, что V = I x R или напряжение = амперы x Ом. Символ тока — (I) для силы тока. Формула обычно обозначается цифрой

в круге или треугольнике.


Здесь также показано, как можно изменить формулу для расчета напряжения, тока или сопротивления. Если я когда-нибудь запутаюсь, как это работает, я нарисую эту небольшую диаграмму и запомню, что если я закрою ту, которую пытаюсь найти, большим пальцем, два других символа, показывающих, говорят мне, что делать, чтобы вычислить ответ.
Это все еще может немного сбивать с толку, поэтому мне также нравится думать о них как об отдельных функциях —
1. Если сопротивление остается неизменным, ток будет прямо пропорционален напряжению.
Проще говоря, это означает, что для любого заданного сопротивления при увеличении напряжения увеличивается ампер
.Имеет смысл — добавьте больше давления воды (вольт) и больше галлонов воды (ампер) потечет
. Это прямая зависимость, увеличьте напряжение, и амперы покажут соответствующее увеличение
.
2. Если напряжение не изменится, ток будет обратно пропорционален сопротивлению.
Проще говоря, это означает, что для любого заданного напряжения, когда сопротивление увеличивается, амперы будут уменьшаться на
. Это также имеет смысл, поскольку сопротивление пытается ограничить поток, чем больше сопротивление
, тем меньше расход (в амперах).
Это последнее правило, вероятно, самое важное для тех из нас, кто работает с легковыми и грузовыми автомобилями. В системах, над которыми мы работаем, напряжение обычно фиксируется на уровне 12 или 24 вольт. Таким образом, по большей части напряжение никогда не меняется, что упрощает расчет ампер или сопротивления. Сопротивление задействованного компонента будет определять, какой ток (в амперах) будет потреблять цепь. Вы не можете нагнетать больше ампер в цепь, и компонент не будет потреблять больше тока, чем позволяет его сопротивление.(Если вы не применили большее давление / напряжение.)
Кроме того, в идеале компонент или нагрузка являются единственным сопротивлением в цепи и, следовательно, единственным фактором при определении силы тока в цепи. В действительности, однако, есть крошечные сопротивления через каждый разъем, переключатель или даже участок провода, но обычно они очень малы и оказывают минимальное влияние на ток в цепи. Любое чрезмерное сопротивление в этих разъемах и проводах (из-за коррозии или ослабленных соединений) будет влиять на общий ток, который цепь может обеспечивать элементом нагрузки, и отрицательно сказывается на характеристиках этого компонента.


Измерение падения напряжения и сопротивления

Измерение падения напряжения и сопротивления

Поиск и устранение неисправностей базовой электрической диагностики

Каждый раз, когда вы приближаетесь к поиску и устранению неисправностей электрической диагностики, полезно вернуться к основам. Как вы знаете, назначение напряжения в цепи — обеспечить необходимую силу тока для работы нагрузки. Когда ток проходит через нагрузку, он преобразуется в свет, тепло или электромагнитное движение.При измерении напряжения в цепи вы обнаружите, что после нагрузки (сопротивления) оно ниже, чем было до нагрузки. «Падение напряжения» или величина, на которую напряжение падает при прохождении через нагрузку, является показателем или мерой того, сколько электроэнергии было использовано при преобразовании в другую форму энергии (свет, тепло или электромагнитное движение).

Что мы проверяем? Причины многих распространенных проблем в цепи — обрыв, утечка тока или короткое замыкание.

Открытые схемы

Для протекания электричества цепь должна быть под напряжением (требуется напряжение) и находиться в замкнутом контуре.

Обрыв цепи приводит к прекращению работы компонентов или систем и возникает при перебоях в подаче электроэнергии. Обычно достаточно «разрыва», чтобы остановить поток электронов в цепи. Обрыв может быть обрывом провода, ослабленным соединителем или неисправным компонентом (обрыв «внутренней» цепи), в котором нет пути для прохождения тока между двумя точками в цепи.

Короткие замыкания

Нагрузкой можно назвать все, что вызывает сопротивление.Мы знаем, что на наших автомобилях это провода и устройства, такие как переключатели, диоды, лампы или двигатели и т. Д. Но сопротивление также может быть создано из-за частичного подключения, вызванного ослабленными клеммами, ослабленными соединениями или даже коррозией. Короткое замыкание — это ненормальное соединение между двумя точками цепи. Если это происходит, это может создать путь с низким сопротивлением, по которому может протекать чрезмерный ток, в результате чего системы или компоненты будут работать неправильно или даже перестать работать, потому что для работы нагрузки доступно меньшее напряжение.Если натертая проволока, трущаяся о металлический корпус, содержит только несколько жил, она все равно может пройти проверку на непрерывность. Но в то же время это может вызвать короткое замыкание, из-за которого предохранитель «перегорит» или периодически отключается.

Симптомами короткого замыкания могут быть: тусклый свет или даже нагревание проводов. Когда происходит короткое замыкание, ток электричества «сокращается» где-то в цепи. Как правило, это приводит к «сгоранию» предохранителя, поскольку он предназначен для защиты цепи.Сильный ток на землю вызывает перегорание предохранителей. Короткое замыкание может позволить току пройти в обход намеченной «нагрузки» (компонента, для работы которого предназначена схема). В худшем случае это может привести к повреждению электрической цепи. Это известно как «замыкание на землю».

Использование вольтметра

‘Series’ соединение VOM:

Вольтметр можно использовать для проверки питания нагрузки (фары и т. Д.), Подключив его последовательно с частью цепи питания и заземлением аккумуляторной батареи.Показание счетчика, равное напряжению батареи, указывает на целостность цепи. Это хороший первый шаг при устранении неполадок.

«Параллельное» соединение VOM:

Вольтметр может быть подключен параллельно или «поперек» различных частей подозрительного компонента или цепи. Падение напряжения — это способ идентификации или проверки величины напряжения (или потери) в этой части цепи.

Этот метод лучше, чем просто «проверка целостности (сопротивления)», потому что он проверяет цепь под нагрузкой во время ее работы.

Всегда проверяйте разъемы, которые являются частью схемы, с которой вы работаете, просто чтобы убедиться, что они чистые и правильно соединены. Если свет тусклый, начните с самой простой проверки: лампочки. Пока вы занимаетесь этим, не упускайте из виду возможные ошибки из-за прошлых ремонтов. Возможно, лампочка исправна, но ранее была установлена ​​не та лампочка. С помощью простой проверки электрического счетчика цепь под нагрузкой можно легко проверить на предмет любых нежелательных ограничений с помощью теста на падение напряжения.Падение напряжения — это способ определения или проверки величины напряжения, используемого в цепи. Помните, что один вольт — это величина электрического давления, необходимая для того, чтобы пропустить один ампер тока через один ом сопротивления.

Испытание на падение напряжения

Значение «падение напряжения» — это величина напряжения, потребляемого нагрузкой во время работы схемы. Сумма всех падений напряжения в цепи равна доступному напряжению. При испытании на падение напряжения необходимо проверить напряжение источника перед снятием показаний падения напряжения.Проверка падения напряжения выполняется при наличии тока в цепи. Другими словами, цепь должна быть активирована или включена при протекании тока. Вольтметр используется для измерения разности потенциалов между двумя точками. Падение напряжения — это разница в измеренном напряжении между любыми двумя разными точками полной цепи во время работы нагрузки. Измерение падения напряжения выполняется путем измерения напряжения перед входом в нагрузку и напряжения на выходе из нагрузки. Электропроводка и соединения цепи не должны иметь сопротивления или иметь небольшое сопротивление, а все напряжение должно проходить через нагрузку.«Нагрузка» — это любое устройство, использующее энергию, такое как освещение, стартер, стеклоподъемники, звуковые сигналы, топливные форсунки и т. Д. Измерьте после нагрузки, и доступное напряжение ниже, чем до нагрузки.

Испытание на падение напряжения предоставляет метод определения величины напряжения, которое используется проводом или компонентом во время работы системы. Помните, что плохие соединения, ослабленные клеммы, обжим и / или проблемы с коррозией соединений могут быть причиной того, что устройство не работает должным образом. Любое сопротивление в цепи снижает электрическое давление. Эти условия не могут быть обнаружены при измерении напряжения, если в цепи не приложена правильная нагрузка, т. Е. Фара включена и т. Д.

Испытания на падение напряжения используются для поиска компонентов или цепей с чрезмерным сопротивлением. Положительный вывод VOM должен быть подключен к цепи в направлении источника питания, а отрицательный вывод — к земле.

Когда вы помещаете вольтметр «поперек» или подключаете параллельно к проверяемой цепи, вы предоставляете другой путь для прохождения напряжения.Положительный провод должен быть подключен к цепи в направлении источника питания, а отрицательный провод — к земле. Включите цепь или приведите в действие. Напряжение всегда будет следовать по пути наименьшего сопротивления. Таким образом, если в цепи, которую вы тестируете, имеется чрезмерное сопротивление, то ваш измеритель становится «путем наименьшего сопротивления» и будет давать показания напряжения.

При тестировании цепей вам часто нужно определять напряжения в различных точках. Падение напряжения может произойти в любой части цепи при ее работе.В зависимости от сопротивления каждая нагрузка будет иметь разное падение напряжения. Измеритель может указывать величину напряжения, используемого той частью цепи, которую вы тестируете. При проверке падения напряжения на нагрузке нагрузка использует большую часть доступного напряжения. Если в цепи возникает сопротивление, для работы нагрузки доступно меньшее напряжение. Если схема работает нормально, все напряжение будет поступать непосредственно на нагрузку, и ваш счетчик будет регистрировать приемлемые показания.

Падение напряжения — это величина потери или потребления электрического давления, когда напряжение проходит через нагрузку или сопротивление.Приемлемое показание для большинства цепей, кроме систем управления подачей топлива (форсунки, датчики и т. Д.), Составляет менее 0,400 вольт, хотя предпочтительнее 0,100 вольт или меньше. Некоторые схемы стартера могут допускать напряжение до 0,500 вольт во время испытания на падение напряжения. Все, что выше этих значений, указывает на необходимость ремонта. При подозрении на неисправность следует проверить обе стороны цепи. Поскольку для цепи требуются источник, нагрузка и заземление, всегда проверяйте сторону заземления цепи. Возможный ремонт в этом случае обычно включает в себя очистку соединений от коррозии, ремонт неисправных клеммных обжимов, затяжку креплений и разъемов или обеспечение достаточного заземления для компонента.

падения напряжения — хорошо или плохо?

Испытания падения напряжения обычно выполняются, когда нагрузка не работает должным образом. Исходя из этого, можно предположить, что падение напряжения нехорошо. Но падение напряжения может быть хорошим или плохим; все зависит от того, где они происходят.

Очень важно хорошее падение напряжения. Без них нагрузки не пойдут. Доступное напряжение должно падать на нагрузке, иначе она не сможет работать.

Высокие перепады напряжения позволят «упасть» доступному напряжению при высоком сопротивлении в другом месте цепи; это отнимает у нагрузки электрическую энергию.Высокое падение напряжения в цепи преобразует электрическую энергию в тепло.

У всего есть сопротивление

Поймите, что сопротивление и непрерывность — противоположности. Мультиметр измеряет сопротивление в омах; он не может измерить непрерывность. Когда сопротивление невелико, существует большая преемственность. Итак, когда есть большое сопротивление, мало преемственности. Одним из важных измерений, которое можно выполнить с помощью мультиметра, является измерение сопротивления.Провода, соединители и контакты переключателя, составляющие цепь, имеют некоторое сопротивление. В нормально работающей цепи нормальное сопротивление достаточно мало, чтобы не мешать нагрузке работать должным образом. Если вы попытаетесь измерить сопротивление компонента в работающей цепи, вы получите ложные показания и можете повредить мультиметр. Отсоедините компонент, а затем измерьте сопротивление. Нежелательное или чрезмерное сопротивление в цепи снижает количество доступной электрической энергии, подаваемой на нагрузку.Функция омметра цифрового мультиметра работает от внутренней батареи. Он используется для подачи небольшого напряжения на схему или компонент и измерения силы тока, протекающего через него, а затем для отображения результатов в виде сопротивления.

На рисунке выше показание выше, чем указано в спецификации, указывает на неисправный компонент. Если цепь имеет чрезмерное сопротивление, это препятствует тому, чтобы провод или компонент пропускали достаточный ток в условиях высокой нагрузки. Сопротивление может быть вызвано коррозией, ослабленными контактами проводки, ямками на контактах реле и другими физическими повреждениями.Эти условия могут привести к измерениям постоянного или даже переменного сопротивления. Чрезмерное падение напряжения, вызванное высоким сопротивлением, можно определить по неработающим компонентам, более медленным, чем обычно, оборотам электродвигателя, или даже по тусклым или прерывистым мерцаниям ламп.

Для измерения сопротивления компонента не следует включать его в цепь. Если вы попытаетесь измерить сопротивление компонента в цепи, вы получите ложные показания (даже если источник питания отключен), и вы можете повредить мультиметр.Отсоедините компонент, а затем измерьте сопротивление.

При проверке сопротивления важно знать, каким должно быть значение сопротивления проверяемого компонента. В идеале падение напряжения на нагрузке должно быть таким же, как и напряжение на нагрузке. В этом случае падение напряжения хорошее. Падение напряжения на нагрузке часто бывает ниже доступного. Это не проблема, пока падает достаточно напряжения для работы нагрузки.Если падение напряжения на нагрузке намного ниже доступного напряжения, то нагрузка не будет работать должным образом. Это означает, что где-то в цепи наблюдается чрезмерное падение напряжения, что лишает нагрузку необходимой мощности.

Всегда ли практично тестировать прямо под нагрузкой?

Нет, у вас не всегда может быть прямой доступ к нагрузке. Например, вы не можете подключить провода измерителя к клеммам топливного насоса в баке. Вы можете выполнить проверку падения напряжения только на тех частях цепи, которые доступны для проводов вашего измерителя.Тестирование переключателей или реле — еще одно распространенное применение тестирования сопротивления. Когда напряжение источника для компонента низкое из-за неисправного переключателя, вы должны проверить каждую из возможных неисправностей с помощью теста падения напряжения. При проверке переключателя используйте тест на падение напряжения. Падение напряжения на переключателе никогда не должно превышать 0,300 вольт (300 мВ).

Всегда проверяйте ESM

В некоторых цепях транспортного средства может быть намеренно установлен резистор для снижения напряжения и тока, доступных для нагрузки.Примеры включают реостат, который затемняет приборную панель, балластные резисторы в некоторых цепях топливных форсунок и резисторы двигателя, используемые для ограничения скорости нагнетательного вентилятора и электрического топливного насоса. Убедитесь, что вы знаете свою схему и определите любое «преднамеренное» падение напряжения, проверив конструкцию схемы на электрической схеме в ESM.

Осень 2011 г. Авторские права © 2011 Nissan North America, Inc.

Содержание


Путь наименьшего сопротивления

Вопреки распространенному мнению, электричество проходит всеми доступными путями — обратно пропорционально импедансу путей .Величина тока, протекающего по пути, зависит от напряжения и сопротивления пути. Чем ниже импеданс (при условии, что напряжение остается постоянным), тем больше ток. И наоборот, чем выше импеданс (при условии, что напряжение остается постоянным), тем меньше ток.


Представьте себе два параллельно подключенных резистора разного размера. Ток, протекающий через один резистор, зависит от размера этого резистора , а не ближайшего к нему. Предполагая, что источник питания бесконечен, вы можете добавить 1000 резисторов параллельно, и ток в этом резисторе не изменится.

IEEE Std. 80 использует значение 1000 Ом для человеческого тела для расчета напряжения прикосновения. Заземляющий стержень на 25 Ом, подключенный параллельно человеку с сопротивлением 1000 Ом, не сделает установку более безопасной от поражения электрическим током. Например, если вы прикоснетесь к металлическому полюсу, находящемуся под напряжением от межфазного замыкания 120 В, и нет эффективного пути тока замыкания, напряжения прикосновения будет достаточно, чтобы вас убить — даже если вы прикрепите металлический полюс к стержню заземления с измеренное сопротивление заземления 25 Ом. Рисунок Рисунок помогает проиллюстрировать следующее:

  1. Заземляющий стержень с сопротивлением 25 Ом не обеспечивает эффективного пути тока короткого замыкания.Полюс останется под напряжением опасного прикосновения, потому что ток повреждения составит всего 4,8 А (I = 120 В ÷ 25 Ом). Этого недостаточно для срабатывания выключателя на 15 А.

  2. Электроны проходят все доступные пути, и один из этих путей — ваше тело с сопротивлением 1000 Ом.

  3. OSHA и NFPA 70E утверждают, что опасное напряжение прикосновения превышает 30 В. Смерть от поражения электрическим током может наступить от всего лишь 50 мА за несколько секунд. Напряжение прикосновения к объекту под напряжением составляет около 75% от линейного напряжения.Таким образом, при межфазной неисправности 120 В возникает напряжение прикосновения 90 В. Это может привести к тому, что через человеческое тело будет бесконечно протекать ток 90 мА.

В течение многих лет в сфере уличного освещения и сигнализации для заземления металлических частей электрической системы использовались заземляющие стержни без эффективного пути тока короткого замыкания. Электрики считали эти установки безопасными, потому что «электричество проходит по пути с наименьшим сопротивлением и в обход путей с высоким сопротивлением». К сожалению, такое мышление привело к нескольким смертельным случаям.Это мышление все еще существует. В некоторых инструкциях по установке оборудования требуется заземляющий стержень без заземляющего провода, что означает, что это безопасная установка. Электричество действительно идет по путям с низким сопротивлением, в том числе по пути наименьшего сопротивления. Но он также использует любой другой доступный ему путь. Вы не можете приостановить действие закона Ома и закона Кирхгофа, вбивая в землю 10 футов покрытой медью стали. Чтобы сделать установку безопасной, убедитесь, что напряжение прикосновения к металлическим частям не превышает 30 В дольше нескольких секунд.Это можно сделать, подключив все металлические части к эффективному пути тока короткого замыкания в соответствии со ст. 250.

Шунтирующий резистор | Применение резистора

Определение шунтирующего резистора

Шунтирующий резистор используется для измерения электрического тока переменного или постоянного тока. Это делается путем измерения падения напряжения на резисторе.

Шунтирующий резистор для измерения тока

Устройство для измерения электрического тока называется амперметром. Большинство современных амперметров измеряют падение напряжения на прецизионном резисторе с известным сопротивлением. Ток рассчитывается по закону Ома:

Большинство амперметров имеют встроенный резистор для измерения тока. Однако, если ток слишком велик для амперметра, требуется другая настройка. Решение состоит в том, чтобы разместить амперметр параллельно с точным шунтирующим резистором. Другой термин, который иногда используется для обозначения этого типа резистора, — шунт амперметра.

Обычно это манганиновый резистор высокой точности с низким значением сопротивления. Ток делится между шунтом и амперметром, так что через амперметр протекает только небольшой (известный) процент.Таким образом, все еще можно измерить большие токи. Правильно масштабируя амперметр, можно напрямую измерить действительную силу тока. Используя эту конфигурацию, теоретически максимальная сила тока, которую можно измерить, бесконечна. Однако нельзя превышать номинальное напряжение измерительного устройства. Это означает, что максимальный ток, умноженный на значение сопротивления, не может быть выше номинального напряжения. Кроме того, значение сопротивления должно быть как можно более низким, чтобы ограничить помехи в цепи.Напротив, разрешение становится тем меньше, чем меньше сопротивление и, следовательно, падение напряжения.

Пример расчета

В качестве примера используется шунтирующий резистор с сопротивлением 1 мОм. Резистор включается в цепь, и на резисторе измеряется падение напряжения 30 милливольт. Это означает, что ток равен напряжению, разделенному на сопротивление, или: I = V / R = 0,030 / 0,001 = 30 А. Можно провести тот же расчет, но теперь с неизвестным значением сопротивления и известными напряжением и током. .Это используется для калибровки сопротивления шунта.

Положение шунта в цепи для измерения тока

A. Часто шунт размещается на стороне заземления, чтобы исключить синфазное напряжение. Однако существуют и другие недостатки. В этой конфигурации синфазное напряжение может быть слишком высоким для амперметра.

Важно тщательно выбирать положение шунта в цепи. Когда цепь имеет общую землю с измерительным устройством, часто выбирается размещение шунта как можно ближе к земле.Причина в том, чтобы защитить амперметр от синфазного напряжения, которое может быть слишком высоким и повредить устройство или дать ошибочные результаты. Недостатком такой настройки является то, что утечки в обход шунта могут не обнаруживаться. В случае, если шунт размещается в незаземленной ножке, он должен быть изолирован от земли или включать в себя делитель напряжения или усилитель изоляции для защиты прибора. Возможны другие способы не подключать измерительный прибор напрямую к цепи высокого напряжения, например, с помощью эффекта Холла.Однако современные шунты обычно более доступны и дешевле.

Указание шунтирующего резистора

Для выбора шунтирующего резистора важны несколько параметров. Шунтирующие резисторы имеют максимальный номинальный ток. Значение сопротивления определяется падением напряжения при максимальном номинальном токе. Например, шунтирующий резистор номиналом 100 А и 50 мВ имеет сопротивление 50/100 = 0,5 мОм. Падение напряжения при максимальном токе обычно составляет 50, 75 или 100 мВ.

Другие важные параметры включают допуск сопротивления, температурный коэффициент сопротивления и номинальную мощность.Номинальная мощность указывает количество электроэнергии, которое резистор может рассеять при данной температуре окружающей среды без повреждения или изменения параметров резистора. Производимая мощность может быть рассчитана по закону Джоуля. Шунтирующие резисторы обычно имеют коэффициент снижения номинальных характеристик 66% для продолжительной работы. Это определено для времени работы более двух минут. Высокие температуры отрицательно влияют на точность шунта. С 80 градусов по Цельсию начинается термический дрейф. Ситуация ухудшается с повышением температуры, и от 140 градусов резистор выйдет из строя, и значение сопротивления изменится безвозвратно.

Что такое шунт в электронике?

В этой статье рассматриваются шунтирующие резисторы, основной целью которых является измерение тока. Однако значение термина «шунт» в электронике шире. Шунт — это элемент, который используется в цепи для перенаправления тока вокруг другой части. Области применения сильно различаются. Для некоторых приложений могут использоваться другие электрические устройства, кроме резисторов. Приведено несколько примеров, иллюстрирующих разнообразие шунтов.

Защита цепи от перенапряжения

Метод защиты цепи от слишком высокого напряжения — использование ломовой цепи.Когда напряжение становится слишком высоким, происходит короткое замыкание устройства. Это приводит к тому, что ток течет параллельно цепи. Это сразу вызывает падение напряжения в цепи. Сильный ток через шунт должен вызвать срабатывание прерывателя цепи или предохранителя.

Обход неисправного устройства

Когда один элемент в последовательной цепи выходит из строя, он разрывает всю цепь. Для решения этой проблемы можно использовать шунт. Более высокое напряжение, которое существует из-за неисправности, вызовет короткое замыкание шунта. Электричество будет проходить вокруг неисправного элемента. Хороший пример — рождественское освещение.

Электрический шум байпаса

Шунты с конденсатором иногда применяются в цепях, где высокочастотный шум является проблемой. Прежде чем нежелательный сигнал достигнет элементов схемы, конденсатор перенаправляет шум на землю.

Проверки безопасности при измерении сопротивления

1.Перед подключением выводов омметра отключите питание в цепи.
2. При подключении выводов к источнику постоянного тока или напряжения убедитесь, что положительный и отрицательный полюсы выбраны правильно.
3. Установите на глюкометре правильные настройки (переменный ток, постоянный ток, сопротивление и т. Д.)
4. Достаточно ли высока дальность действия измерителя для тестовой цепи?
5а. При измерении тока или напряжения включите питание и проверьте значение измерителя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *