Последовательное соединение напряжение – Напряжение при параллельном и последовательном соединении

Содержание

Последовательное соединение резисторов. Схема соединения и примеры расчета

Во многих электрических схемах мы можем обнаружить последовательное и параллельное соединение резисторов. Разработчик схем может, например, объединить несколько резисторов со стандартными значениями (E-серии), чтобы получить необходимое сопротивление.

Последовательное соединении резисторов — это такое соединение, при котором ток, протекающий через каждый резистор одинаков, поскольку имеется только одно направление для протекания тока. В тоже время падение напряжения будет пропорционально сопротивлению каждого резистора в последовательной цепи.

Последовательное соединение резисторов

На рисунке ниже, резисторы R1, R2 и R3 связаны друг с другом последовательно между точками А и В с общим током I, который протекает через них.

Эквивалентное сопротивление нескольких последовательно соединенных резисторов можно определить по следующей формуле:

R = R1 + R2 + R3

То есть, в нашем случае общее сопротивление цепи будет равно:

R = R1 + R2 + R3 = 1 кОм + 2 кОм + 6 кОм = 9 кОм

Таким образом, мы можем заменить эти три резистора всего лишь одним «эквивалентным» резистором, который будет иметь значение 9 кОм.

Там, где четыре, пять или более резисторов связаны вместе в последовательную цепь, общее или эквивалентное сопротивление всей цепи так же будет равно сумме сопротивлений отдельных резисторов.

Следует отметить, что общее сопротивление любых двух или более резисторов, соединенных последовательно всегда будет больше, чем самое большое сопротивление резистора входящего в эту цепь. В приведенном выше примере R = 9 кОм, тогда как наибольшее значение резистора только 6 кОм (R3).

Напряжение на каждом из резисторов, соединенных последовательно, подчинено другому правилу, нежели протекающий ток. Как известно, из приведенной выше схемы, что общее напряжение питания на резисторах равно сумме разности потенциала на каждом из них:

Используя закон Ома , напряжение на отдельных резисторов может быть вычислена следующим образом:

В итоге сумма разностей потенциалов на резисторах равна общей разности потенциалов всей цепи, нашем примере это 9В.

В частности, ряд резисторов, соединенных последовательно, можно рассматривать как делитель напряжения:

Пример № 1

Используя закон Ома, необходимо вычислить эквивалентное сопротивление серии последовательно соединенных резисторов (R1. R2, R3), а так же падение напряжения и мощность для каждого резистора:

Все данные могут быть получены с помощью закона Ома и для лучшего понимания представлены в виде следующей таблицы:

Пример № 2

Необходимо рассчитать падение напряжения на выводах «А» и «В»:

а) без подключенного резистора R3

б) с подключенным резистором R3

Как вы можете видеть, выходное напряжение U без нагрузочного резистора R3, составляет 6 вольт, но то же выходное напряжение при подключении R3 становится всего лишь 4 В. Таким образом, нагрузка, подключенная к делителю напряжения, провоцирует дополнительное падение напряжение. Данный эффект снижения напряжения может быть компенсирован с помощью потенциометра установленного вместо постоянного резистора, с помощью которого можно скорректировать напряжение на нагрузке.

Онлайн калькулятор расчета сопротивления последовательно соединенных резисторов

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных последовательно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или несколько резисторов соединены вместе (вывод одного соединяется с выводом другого резистора) — то это последовательное соединение резисторов. Ток, протекающий через резисторы имеет одно и тоже значение, но падение напряжения на них не одно и то же. Оно определяется сопротивлением каждого резистора, которое рассчитывается по закону Ома (U = I * R).

www.joyta.ru

Последовательное и параллельное соединение резисторов. Видеоурок. Физика 10 Класс

На этом уроке мы более подробно изучим понятие сопротивления. Мы введем также понятие идеальных и неидеальных проводников, а также понятие о резисторах и способах их соединения.

Тема: Законы постоянного тока
Урок: Последовательное и параллельное соединение резисторов

На прошлом уроке мы ввели понятие сопротивления. Сопротивление является основной электрической характеристикой проводников и большинства приборов.       

В реальности как каждый прибор обладает своим собственным сопротивлением, так и проводники, соединяющие их. Для решений задач же мы считаем все проводники идеальными (не обладающими сопротивлением), а все сопротивление в цепи – сосредоточенным в подключенных элементах.

Практически все сопротивление цепи заключено в приборах – резисторах (рис. 1). Понятия резистор и сопротивление так тесно связаны, что их часто отождествляют, что, конечно же, неверно.

Рис. 1. Резисторы (Источник)

На электрической схеме резистор обозначается так (рис. 2):

Рис. 2. Обозначение резистора на электрической схеме

Отдельно взятый резистор является участком цепи, и для него справедлив закон Ома:

Из которого:

Перемножив силу тока, протекающего через резистор, и сопротивление резистора, можно получить значение напряжения на резисторе, или же напряжение на концах резистора.

Для получения нужной нам силы тока гораздо удобнее подбирать необходимое сопротивление при постоянном напряжении, чем подбирать нужный источник питания. И иногда резистор нужного сопротивления нельзя достать, в таком случае необходимо соединить определенным образом несколько других резисторов (как и в случае с конденсаторами из прошлой темы). Принципиально разных соединений существует два: последовательное и параллельное. Начнем с первого.

Последовательное соединение осуществляется подключением резисторов друг за другом без разветвления проводника (рис. 3):

Рис. 3. Пример последовательного соединения

Основная задача – это понять, как связаны параметры каждого резистора в соединении с параметрами эквивалентного резистора (как будто весь блок последовательных резисторов  мы заменили одним резистором )

В первую очередь такое соединение не дает никакой возможности зарядам в разном количестве проходить через разные резисторы в цепи, поэтому:

Напряжение же, напротив, будет разным. Так как работа электрического поля по переносу заряда через весь блок – это сумма работ по переносу заряда через каждый резистор:

Воспользовавшись законом Ома в последнем равенстве:

мы получим выражение для сопротивлений:

Главная проблема последовательного соединения – это то, что в случае разрыва цепи в каком-то одном месте ток перестает идти во всей цепи. Ярким примером последовательного соединения являются гирлянды (рис. 4).

Рис. 4. Лампочки гирлянд соединены последовательно (Источник)

Параллельным называется соединение, при котором концы всех резисторов имеют общую точку – «узел» (рис. 5):

Рис. 5. Параллельное сопротивление

В данном соединении эквивалентные напряжение, сила тока и сопротивления ищутся по-другому.

Во-первых, так как концы всего блока совпадают с концами каждого резистора, все напряжения равны между собой и равны эквивалентному:

Заряд же, прошедший за единицу времени через весь блок, равен сумме зарядов, прошедших через каждый отдельный резистор в соединении. Поэтому:

Теперь, подставив в последнее равенство закон Ома:

мы получим выражение для эквивалентного сопротивления:

Стоит отметить, что в большинстве цепей применяются смешанные соединения.

На следующем уроке мы будем изучать работу и мощность электрического тока.

 

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Dvo.sut.ru (Источник).
  2. Go-radio (Источник).
  3. Sxemotehnika.ru (Источник).

 

Домашнее задание

  1. Стр. 103: № 795–799. Физика. Задачник. 10-11 классы. Рымкевич А.П. – М.: Дрофа, 2013. (Источник)
  2. Как следует подключать одинаковые резисторы для получения минимального сопротивления?
  3. К источнику питания 48 В подключили три резистора, соединенных последовательно. Сила тока через первый – 1 А, сопротивление второго – 12 Ом, а напряжение на третьем – 18 В. Найти сопротивления первых двух резисторов.
  4. *Как следует подключать амперметр для измерения силы тока? Какое должно быть сопротивление амперметра?
  5. *Как следует подключать вольтметр для измерения напряжения? Какое должно быть сопротивление вольтметра?

interneturok.ru

Последовательное соединение — это… Что такое Последовательное соединение?


Последовательное соединение

Последовательное соединение проводников.

Параллельное соединение проводников.

Последовательное и параллельное соединение в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все, входящие в цепь, элементы объединены двумя узлами и не имеют связей с другими узлами. При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же: I = I1 = I2

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи: U = U1 + U2

Резисторы

A diagram of several resistors, connected end to end, with the same amount of current going through each.

R_\mathrm{total} = R_1 + R_2 + R_3 + \cdots + R_n

Катушка индуктивности

A diagram of several inductors, connected end to end, with the same amount of current going through each.

L_\mathrm{total} = L_1 + L_2 + \cdots + L_n

Электрический конденсатор

A diagram of several capacitors, connected end to end, with the same amount of current going through each.

\frac{1}{C_\mathrm{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}.

Мемристоры

M_\mathrm{total} = M_1 + M_2 + \cdots + M_n

Параллельное соединение

Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединенных проводниках: I = I1 + I2

Напряжение на участках цепи АВ и на концах всех параллельно соединенных проводников одно и то же: U = U1 = U2

Резисторы

A diagram of several resistors, side by side, both leads of each connected to the same wires.

\frac{1}{R_\mathrm{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_n}.

Катушка индуктивности

A diagram of several inductors, side by side, both leads of each connected to the same wires.

\frac{1}{L_\mathrm{total}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}.

Электрический конденсатор

A diagram of several capacitors, side by side, both leads of each connected to the same wires.

C_\mathrm{total} = C_1 + C_2 + \cdots + C_n.

Мемристоры

M_{total} = M_1 \

См. также


Wikimedia Foundation. 2010.

  • Последняя фантазия
  • Последовательности баркера

Смотреть что такое «Последовательное соединение» в других словарях:

  • последовательное соединение — Электрическое соединение, при котором через рассматриваемые участки электрической цепи возможен только один и тот же электрический ток. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия Синонимы последовательное соединение участков… …   Справочник технического переводчика

  • ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ — в электротехнике 1) соединение двухполюсников, при котором через них проходит один и тот же ток.2) Соединение четырехполюсников, при котором напряжение и ток на выходе предыдущего четырехполюсника равны напряжению и току на входе последующего …   Большой Энциклопедический словарь

  • последовательное соединение — в электротехнике, 1) соединение двухполюсников, при котором через них проходит один и тот же ток. 2) Соединение четырёхполюсников, при котором напряжение и ток на выходе предыдущего четырёхполюсника равны напряжению и току на входе последующего.… …   Энциклопедический словарь

  • последовательное соединение — nuoseklusis jungimas statusas T sritis automatika atitikmenys: angl. connection in series; series connection vok. Reihenschaltung, f; Serienschaltung, f rus. последовательное соединение, n pranc. couplage en série, m; couplage série, m …   Automatikos terminų žodynas

  • последовательное соединение — nuoseklusis jungimas statusas T sritis chemija apibrėžtis Elektrinės grandinės elementų jungimas vienas paskui kitą (kiekviename jų teka tokio pat stiprio srovė). atitikmenys: angl. series connection rus. последовательное соединение …   Chemijos terminų aiškinamasis žodynas

  • последовательное соединение — nuoseklusis jungimas statusas T sritis fizika atitikmenys: angl. connection in series; series connection vok. Reihenschaltung, f; Reihenschluß, m; Serienschaltung, f rus. последовательное соединение, n pranc. connexion en série, f; montage en… …   Fizikos terminų žodynas

  • Последовательное соединение —         в электротехнике, 1) соединение Двухполюсников, при котором через них проходит один и тот же ток, т.к. для него имеется один единственный путь. П. с. источников электроэнергии применяется для получения напряжения, превышающего эдс одного… …   Большая советская энциклопедия

  • ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ — в электротехнике 1) соединение двухполюсников, при к ром через них проходит один и тот же ток, т. к. для него имеется единств. путь. П. с. источников электроэнергии применяется для получения напряжения, превышающего эдс одного источника. При П. с …   Большой энциклопедический политехнический словарь

  • последовательное соединение — см. в ст. Электрическая цепь. Энциклопедия «Техника». М.: Росмэн. 2006 …   Энциклопедия техники

  • Последовательное соединение элементов системы — [serial linkage] такое соединение элементов в единую систему, при котором выход предыдущего  является входом следующего. Таким образом, вход системы совпадает со входом первого звена, а выходом системы служит выход последнего звена. (Рис. П.4).… …   Экономико-математический словарь


dic.academic.ru

Последовательное и параллельное соединение — Википедия

Материал из Википедии — свободной энциклопедии

Последовательное соединение проводников. Параллельное соединение проводников.

Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова. При этом общее напряжение в цепи равно сумме напряжений на концах каждого из проводников.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включённых проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же: I=I1=I2=⋯=In{\displaystyle I\mathrm {=} I_{1}=I_{2}=\cdots =I_{n}} (так как сила тока определяется количеством электронов, проходящим через поперечное сечение проводника, и если в цепи нет узлов, то все электроны в ней будут течь по одному проводнику).

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника питания, равно сумме напряжений на отдельных участках цепи: U=U1+U2+⋯+Un{\displaystyle U\mathrm {=} U_{1}+U_{2}+\cdots +U_{n}}.

Резисторы

R=R1+R2+⋯+Rn{\displaystyle R=R_{1}+R_{2}+\cdots +R_{n}}

Катушка индуктивности

L=L1+L2+⋯+Ln{\displaystyle L=L_{1}+L_{2}+\cdots +L_{n}}

Электрический конденсатор

1C=1C1+1C2+⋯+1Cn{\displaystyle {\frac {1}{C}}={\frac {1}{C_{1}}}+{\frac {1}{C_{2}}}+\cdots +{\frac {1}{C_{n}}}}.

Мемристоры

M=M1+M2+⋯+Mn{\displaystyle M=M_{1}+M_{2}+\cdots +M_{n}}

Выключатели

Цепь замкнута, когда замкнуты все выключатели. Цепь разомкнута, когда разомкнут хотя бы один выключатель. (См.также Логическая операция И).

Параллельное соединение

Сила тока в неразветвлённой части цепи равна сумме сил тока в отдельных параллельно соединённых проводниках: I=I1+I2+⋯+In{\displaystyle I\mathrm {=} I_{1}+I_{2}+\cdots +I_{n}}

Напряжение на участках цепи АВ и на концах всех параллельно соединённых проводников одно и то же: U=U1=U2=⋯=Un{\displaystyle U\mathrm {=} U_{1}=U_{2}=\cdots =U_{n}}

Резисторы

При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость 1R{\displaystyle {\frac {1}{R}}} складывается из проводимостей каждого резистора 1Ri{\displaystyle {\frac {1}{R_{i}}}})

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.

Доказательство

Для двух параллельно соединённых резисторов их общее сопротивление равно: R=R1R2R1+R2{\displaystyle R={\frac {R_{1}R_{2}}{R_{1}+R_{2}}}}.

Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=R1n{\displaystyle R={\frac {R_{1}}{n}}}.

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Катушка индуктивности

1Ltotal=1L1+1L2+⋯+1Ln{\displaystyle {\frac {1}{L_{\mathrm {total} }}}={\frac {1}{L_{1}}}+{\frac {1}{L_{2}}}+\cdots +{\frac {1}{L_{n}}}}

Электрический конденсатор

Ctotal=C1+C2+⋯+Cn{\displaystyle C_{\mathrm {total} }=C_{1}+C_{2}+\cdots +C_{n}}.

Мемристоры

Mtotal=M1‖M2‖⋯‖Mn=(M1−1+M2−1+⋯+Mn−1)−1{\displaystyle M_{total}=M_{1}\|M_{2}\|\cdots \|M_{n}=\left(M_{1}^{-1}+M_{2}^{-1}+\cdots +M_{n}^{-1}\right)^{-1}}

Выключатели

Цепь замкнута, когда замкнут хотя бы один из выключателей.

Примеры использования

  • Батареи гальванических элементов или аккумуляторов, в которых отдельные химические источники тока соединены последовательно (для увеличения напряжения) или параллельно (для увеличения тока).
  • Регулировка мощности электрического устройства, состоящего из нескольких одинаковых потребителей электроэнергии, путём их переключения с параллельного на последовательное соединение. Таким способом регулируется мощность конфорки электрической плиты, состоящей из нескольких спиралей; мощность (скорость движения) электровоза, имеющего несколько тяговых двигателей.
  • Делитель напряжения
  • Балласт
  • Шунт

См. также

Литература

  • Перышкин А. В. Учебник для общеобразовательных учреждений 10 класс. М.: 2011. С.121
  • Перышкин А. В. Учебник для общеобразовательных учреждений 8 класс № 42

Ссылки

wikipedia.green

Соединение элементов в цепи переменного напряжения и тока

Всем доброго времени суток! В прошлой статье я рассказал о воздействии переменного напряжения на элементы цепи (сопротивление, индуктивность и ёмкость) и воздействие этих элементов на напряжение, ток и мощность. В данной статье я расскажу о последовательном и параллельном соединении элементов цепи и воздействии на такие цепи переменного напряжения и тока.

Последовательное соединение элементов цепи при переменном напряжении

Начнём с последовательного соединения сопротивления R, индуктивности L и ёмкости C и рассмотрим воздействие на неё переменного напряжения с частотой ω.


Последовательное соединение элементов цепи.

В данной цепи входное переменное напряжение U в соответствии со вторым законом Кирхгофа будет равно алгебраической сумме переменных напряжений на отдельных элементах

последовательное соединениепоследовательное соединение

где UR, UL, UC – напряжение на элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,

Im­ – амплитудное значение переменного тока.

Графическое изображение напряжений и токов на последовательно соединённых элементах цепи представлено ниже


Напряжения и токи при последовательном соединении.

Итоговое выражение является тригонометрической формой записи второго закона Кирхгофа для мгновенных напряжений и его можно переписать в виде

Напряжения и токи при последовательном соединенииНапряжения и токи при последовательном соединении

где R – активное сопротивление,

Х – реактивное сопротивление.

Значение активного сопротивления R всегда только положительно, а реактивное сопротивление Х может принимать, как положительное значение Х > 0, тогда оно имеет индуктивный характер, так и отрицательное значение X < 0, в этом случае реактивное сопротивление имеет ёмкостный характер.

В случае же нулевого значения реактивного сопротивления, имеет место резонанс напряжений

Напряжения и токи при последовательном соединенииНапряжения и токи при последовательном соединении

В этом случае сопротивление цепи представлено только активной нагрузкой R, а следовательно сдвиг фаз между напряжением и током будет нулевым.

При расчётах нас интересует не столько ток и напряжение на отдельных элементах, сколько ток и напряжение всей цепи. Для этого продолжим преобразовывать напряжение

Напряжения и токи при последовательном соединенииНапряжения и токи при последовательном соединении

где Z – полное сопротивление цепи,

ψ – разность фаз между напряжением и током.

Таким образом, амплитудное значение напряжения Um и амплитудное значение тока Im связаны между собой следующим соотношением

Напряжения и токи при последовательном соединенииНапряжения и токи при последовательном соединении

где Um­ – амплитудное значение переменного напряжения,

Im­ – амплитудное значение переменного тока,

Z – полное сопротивление цепи.

Параллельное соединение элементов цепи при переменном напряжении

Теперь рассмотрим параллельное соединение элементов цепи (сопротивления, индуктивности и ёмкости) и прохождение по ним переменного тока.


Параллельно соединение элементов цепи.

Подадим на вход такой цепи переменное напряжение U, тогда электрический ток в цепи I, в соответствии с первым законом Кирхгофа, будет равняться алгебраической суммы токов проходящей через элементы цепи

Параллельно соединение элементов цепиПараллельно соединение элементов цепи

IR, IL, IC – токи в элементах цепи, сопротивлении R, индуктивности L и ёмкости С, соответственно,

Um­ – амплитудное значение переменного тока.

Графическое изображение напряжений и токов в параллельно соединённых элементах цепи представлено ниже


Напряжение и токи при параллельном соединении.

Аналогично второму закону Кирхгофа, для первого закона также существует тригонометрическая форма записи, которая соответствует получившемуся выражению. Выполним ещё одно преобразование данного выражения

Напряжение и токи при параллельном соединенииНапряжение и токи при параллельном соединении

где g – активная проводимость, b – реактивная проводимость.

Как видно из формулы, реактивная проводимость может быть положительной b > 0, тогда она имеет индуктивный характер, а может быть отрицательной b < 0, тогда реактивная проводимость имеет ёмкостный характер. А активная проводимость может быть только положительной.

Отдельный случай представляет собой реактивная проводимость равная нулю, то есть в этом случае проводимость индуктивности и ёмкости одинаковы

Напряжение и токи при параллельном соединенииНапряжение и токи при параллельном соединении

Такой случай называется резонансом токов, в этом случае общая проводимость будет определяться только активной проводимостью, а сдвиг фаз между напряжением и током в цепи будет нулевым.

Определим зависимость между напряжением и силой тока в параллельной цепи

Напряжение и токи при параллельном соединенииНапряжение и токи при параллельном соединении

где y – полная проводимость,

ψ – разность фаз между напряжением и током в цепи.

Тогда зависимость между напряжением и током в цепи с параллельно соединёнными элементами будет иметь вид

Напряжение и токи при параллельном соединенииНапряжение и токи при параллельном соединении

где Um­ – амплитудное значение переменного напряжения,

Im­ – амплитудное значение переменного тока,

y – полная проводимость цепи.

Чему равна мощность в цепи при синусоидальном напряжении?

Мощность является основной энергетической характеристикой, поэтому рассмотрим мощность в цепи переменного напряжения. Мгновенная мощность в цепи будет равна

Напряжение и токи при параллельном соединенииНапряжение и токи при параллельном соединении

Как видно из получившегося выражения, мгновенная мощность состоит из постоянной составляющей UIcos(φ) и переменной составляющей UIcos(2ωt – φ), изменяющейся с удвоенной частотой по сравнению с частотой напряжения (тока).

Теперь определим среднее значение мощности за период или активную мощность, которая будет равна

Напряжение и токи при параллельном соединенииНапряжение и токи при параллельном соединении

где U – действующее значение переменного напряжения,

I – действующее значение переменного тока,

cos(φ) – коэффициент мощности.

Таким образом, активная мощность в цепи переменного напряжения (тока), равна произведению действующих значений напряжения и тока на коэффициент мощности.

При разработке и проектировании цепей переменного напряжения стараются сделать коэффициент мощности как можно больше, в идеале должен быть равен единице cos(φ) = 1. При небольших значениях данного коэффициента для создания в цепи необходимой мощности Р необходимо повышать величину напряжения U (тока I).

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

www.electronicsblog.ru

Напряжение при параллельном и последовательном соединении резисторов

Содержание:
  1. Напряжение при последовательном соединении
  2. Напряжение при параллельном соединении

Во всех электрических схемах используются резисторы, представляющие собой элементы, с точно установленным значением сопротивления. Благодаря специфическим качествам этих устройств, становится возможной регулировка напряжения и силы тока на любых участках схемы. Данные свойства лежат в основе работы практически всех электронных приборов и оборудования. Так, напряжение при параллельном и последовательном соединении резисторов будет отличаться. Поэтому каждый вид соединения может применяться только в определенных условиях, чтобы та или иная электрическая схема могла в полном объеме выполнять свои функции.


Напряжение при последовательном соединении

При последовательном соединении два резистора и более соединяются в общую цепь таким образом, что каждый из них имеет контакт с другим устройством только в одной точке. Иначе говоря, конец первого резистора соединяется с началом второго, а конец второго – с началом третьего и т.д.

Особенностью данной схемы является прохождение через все подключенные резисторы одного и того же значения электрического тока. С возрастанием количества элементов на рассматриваемом участке цепи, течение электрического тока становится все более затрудненным. Это происходит из-за увеличения общего сопротивления резисторов при их последовательном соединении. Данное свойство отражается формулой: Rобщ = R1 + R2.

Распределение напряжения, в соответствии с законом Ома, осуществляется на каждый резистор по формуле: VRn = IRn x Rn. Таким образом, при увеличении сопротивления резистора, возрастает и падающее на него напряжение.


Напряжение при параллельном соединении

При параллельном соединении, включение резисторов в электрическую цепь выполняется таким образом, что все элементы сопротивлений подключаются друг к другу сразу обоими контактами. Одна точка, представляющая собой электрический узел, может соединять одновременно несколько резисторов.

Такое соединение предполагает течение отдельного тока в каждом резисторе. Сила этого тока находится в обратно пропорциональной зависимости с сопротивлением резистора. В результате, происходит увеличение общей проводимости данного участка цепи, при общем уменьшении сопротивления. В случае параллельного соединения резисторов с различным сопротивлением, значение общего сопротивления на этом участке всегда будет ниже самого маленького сопротивления отдельно взятого резистора.

На представленной схеме, напряжение между точками А и В представляет собой не только общее напряжение для всего участка, но и напряжение, поступающее к каждому отдельно взятому резистору. Таким образом, в случае параллельного соединения, напряжение, подаваемое ко всем резисторам, будет одинаковым.

В результате, напряжение при параллельном и последовательном соединении будет отличаться в каждом случае. Благодаря этому свойству, имеется реальная возможность отрегулировать данную величину на любом участке цепи.

electric-220.ru

Параллельное и последовательное соединение. Последовательное и параллельное соединения проводников

В физике изучается тема про параллельное и последовательное соединение, причем это могут быть не только проводники, но и конденсаторы. Здесь важно не запутаться в том, как выглядит каждое из них на схеме. А уже потом применять конкретные формулы. Их, кстати, нужно помнить наизусть.

параллельное и последовательное соединение

Как различить эти два соединения?

Внимательно посмотрите на схему. Если провода представить как дорогу, то машины на ней будут играть роль резисторов. На прямой дороге без каких-либо разветвлений машины едут одна за другой, в цепочку. Так же выглядит и последовательное соединение проводников. Дорога в этом случае может иметь неограниченное количество поворотов, но ни одного перекрестка. Как бы ни виляла дорога (провода), машины (резисторы) всегда будут расположены друг за другом, по одной цепочке.

Совсем другое дело, если рассматривается параллельное соединение. Тогда резисторы можно сравнить со спортсменами на старте. Они стоят каждый на своей дорожке, но направление движения у них одинаковое, и финиш в одном месте. Так же и резисторы — у каждого из них свой провод, но все они соединены в некоторой точке.

соединение проводников последовательно

Формулы для силы тока

О ней всегда идет речь в теме «Электричество». Параллельное и последовательное соединение по-разному влияют на величину силы тока в резисторах. Для них выведены формулы, которые можно запомнить. Но достаточно просто запомнить смысл, который в них вкладывается.

Так, ток при последовательном соединении проводников всегда одинаков. То есть в каждом из них значение силы тока не отличается. Провести аналогию можно, если сравнить провод с трубой. В ней вода течет всегда одинаково. И все препятствия на ее пути будут сметаться с одной и той же силой. Так же с силой тока. Поэтому формула общей силы тока в цепи с последовательным соединением резисторов выглядит так:

I общ = I 1 = I 2

Здесь буквой I обозначена сила тока. Это общепринятое обозначение, поэтому его нужно запомнить.

Ток при параллельном соединении уже не будет постоянной величиной. При той же аналогии с трубой получается, что вода разделится на два потока, если у основной трубы будет ответвление. То же явление наблюдается с током, когда на его пути появляется разветвление проводов. Формула общей силы тока при параллельном соединении проводников:

I общ = I 1 + I 2

Если разветвление составлено из проводов, которых больше двух, то в приведенной формуле на такое же количество станет больше слагаемых.

параллельное соединение

Формулы для напряжения

Когда рассматривается схема, в которой выполнено соединение проводников последовательно, то напряжение на всем участке определяется суммой этих величин на каждом конкретном резисторе. Сравнить эту ситуацию можно с тарелками. Удержать одну из них легко получится одному человеку, вторую рядом он тоже сможет взять, но уже с трудом. Держать в руках три тарелки рядом друг с другом одному человеку уже не удастся, потребуется помощь второго. И так далее. Усилия людей складываются.

Формула для общего напряжения участка цепи с последовательным соединением проводников выглядит так:

U общ = U 1 + U 2, где U — обозначение, принятое для электрического напряжения.

Другая ситуация складывается, если рассматривается параллельное соединение резисторов. Когда тарелки ставятся друг на друга, их по-прежнему может удержать один человек. Поэтому складывать ничего не приходится. Такая же аналогия наблюдается при параллельном соединении проводников. Напряжение на каждом из них одинаковое и равно тому, которое на всех них сразу. Формула общего напряжения такая:

U общ = U 1 = U 2

последовательное соединение формулы

Формулы для электрического сопротивления

Их уже можно не запоминать, а знать формулу закона Ома и из нее выводить нужную. Из указанного закона следует, что напряжение равно произведению силы тока и сопротивления. То есть U = I * R, где R — сопротивление.

Тогда формула, с которой нужно будет работать, зависит от того, как выполнено соединение проводников:

  • последовательно, значит, нужно равенство для напряжения — Iобщ * Rобщ = I1 * R1 + I2 * R2;
  • параллельно необходимо пользоваться формулой для силы тока — Uобщ / Rобщ = U1 / R1 + U2 / R2 .

Далее следуют простые преобразования, которые основываются на том, что в первом равенстве все силы тока имеют одинаковое значение, а во втором — напряжения равны. Значит, их можно сократить. То есть получаются такие выражения:

  1. R общ = R 1 + R 2 (для последовательного соединения проводников).
  2. 1 / R общ = 1 / R 1 + 1 / R 2 (при параллельном соединении).

При увеличении числа резисторов, которые включены в сеть, изменяется количество слагаемых в этих выражениях.

Стоит отметить, что параллельное и последовательное соединение проводников по-разному влияют на общее сопротивление. Первое из них уменьшает сопротивление участка цепи. Причем оно оказывается меньше самого маленького из использованных резисторов. При последовательном соединении все логично: значения складываются, поэтому общее число всегда будет самым большим.

ток при последовательном соединении

Работа тока

Предыдущие три величины составляют законы параллельного соединения и последовательного расположения проводников в цепи. Поэтому их знать нужно обязательно. Про работу и мощность необходимо просто запомнить базовую формулу. Она записывается так: А = I * U * t, где А — работа тока, t — время его прохождения по проводнику.

Для того чтобы определить общую работу при последовательном соединении нужно заменить в исходном выражении напряжение. Получится равенство: А = I * (U 1 + U 2) * t, раскрыв скобки в котором получится, что работа на всем участке равна их сумме на каждом конкретном потребителе тока.

Аналогично идет рассуждение, если рассматривается схема параллельного соединения. Только заменять полагается силу тока. Но результат будет тот же: А = А 1 + А 2.

Мощность тока

При выведении формулы для мощности (обозначение «Р») участка цепи опять нужно пользоваться одной формулой: Р = U * I. После подобных рассуждений получается, что параллельное и последовательное соединение описываются такой формулой для мощности: Р = Р 1 + Р 2.

То есть, как бы ни были составлены схемы, общая мощность будет складываться из тех, которые задействованы в работе. Именно этим объясняется тот факт, что нельзя включать в сеть квартиры одновременно много мощных приборов. Она просто не выдержит такой нагрузки.

Как влияет соединение проводников на ремонт новогодней гирлянды?

Сразу же после того, как перегорит одна из лампочек, станет ясно, как они были соединены. При последовательном соединении не будет светиться ни одна из них. Это объясняется тем, что пришедшая в негодность лампа создает разрыв в цепи. Поэтому нужно проверить все, чтобы определить, какая перегорела, заменить ее — и гирлянда станет работать.

Если в ней используется параллельное соединение, то она не перестает работать при неисправности одной из лампочек. Ведь цепь не будет полностью разорвана, а только одна параллельная часть. Чтобы отремонтировать такую гирлянду, не нужно проверять все элементы цепи, а только те, которые не светятся.

соединение конденсаторов параллельно

Что происходит с цепью, если в нее включены не резисторы, а конденсаторы?

При их последовательном соединении наблюдается такая ситуация: заряды от плюсов источника питания поступают только на внешние обкладки крайних конденсаторов. Те, что находятся между ними, просто передают этот заряд по цепочке. Этим объясняется то, что на всех обкладках появляются одинаковые заряды, но имеющие разные знаки. Поэтому электрический заряд каждого конденсатора, соединенного последовательно, можно записать такой формулой:

q общ = q 1 = q 2.

Для того чтобы определить напряжение на каждом конденсаторе, потребуется знание формулы: U = q / С. В ней С — емкость конденсатора.

Общее напряжение подчиняется тому же закону, который справедлив для резисторов. Поэтому, заменив в формуле емкости напряжение на сумму, мы получим, что общую емкость приборов нужно вычислять по формуле:

С = q / (U 1 + U 2).

Упростить эту формулу можно, перевернув дроби и заменив отношение напряжения к заряду емкостью. Получается такое равенство: 1 / С = 1 / С 1 + 1 / С 2.

Несколько по-другому выглядит ситуация, когда соединение конденсаторов — параллельное. Тогда общий заряд определяется суммой всех зарядов, которые накапливаются на обкладках всех приборов. А значение напряжения по-прежнему определяется по общим законам. Поэтому формула для общей емкости параллельно соединенных конденсаторов выглядит так:

С = (q 1 + q 2 ) / U.

То есть эта величина считается, как сумма каждого из использованных в соединении приборов:

С = С 1 + С 2.

Как определить общее сопротивление произвольного соединения проводников?

То есть такого, в котором последовательные участки сменяют параллельные, и наоборот. Для них по-прежнему справедливы все описанные законы. Только применять их нужно поэтапно.

Сперва полагается мысленно развернуть схему. Если представить ее сложно, то нужно нарисовать то, что получается. Объяснение станет понятнее, если рассмотреть его на конкретном примере (см. рисунок).

схема параллельного соединения

Ее удобно начать рисовать с точек Б и В. Их необходимо поставить на некотором удалении друг от друга и от краев листа. Слева к точке Б подходит один провод, а вправо направлены уже два. Точка В, напротив, слева имеет два ответвления, а после нее расположен один провод.

Теперь необходимо заполнить пространство между этими точками. По верхнему проводу нужно расположить три резистора с коэффициентами 2, 3 и 4, а снизу пойдет тот, у которого индекс равен 5. Первые три соединены последовательно. С пятым резистором они параллельны.

Оставшиеся два резистора (первый и шестой) включены последовательно с рассмотренным участком БВ. Поэтому рисунок можно просто дополнить двумя прямоугольниками по обе стороны от выбранных точек. Осталось применить формулы для расчета сопротивления:

  • сначала ту, которая приведена для последовательного соединения;
  • потом для параллельного;
  • и снова для последовательного.

Подобным образом можно развернуть любую, даже очень сложную схему.

Задача на последовательное соединение проводников

Условие. В цепи друг за другом подсоединены две лампы и резистор. Общее напряжение равно 110 В, а сила тока 12 А. Чему равно сопротивление резистора, если каждая лампа рассчитана на напряжение в 40 В?

Решение. Поскольку рассматривается последовательное соединение, формулы его законов известны. Нужно только правильно их применить. Начать с того, чтобы выяснить значение напряжения, которое приходится на резистор. Для этого из общего нужно вычесть два раза напряжение одной лампы. Получается 30 В.

Теперь, когда известны две величины, U и I (вторая из них дана в условии, так как общий ток равен току в каждом последовательном потребителе), можно сосчитать сопротивление резистора по закону Ома. Оно оказывается равным 2,5 Ом.

Ответ. Сопротивление резистора равно 2,5 Ом.

Условие. Имеются три конденсатора с емкостями 20, 25 и 30 мкФ. Определите их общую емкость при последовательном и параллельном соединении.

Решение. Проще начать с параллельного подключения. В этой ситуации все три значения нужно просто сложить. Таким образом, общая емкость оказывается равной 75 мкФ.

Несколько сложнее расчеты будут при последовательном соединении этих конденсаторов. Ведь сначала нужно найти отношения единицы к каждой из этих емкостей, а потом сложить их друг с другом. Получается, что единица, деленная на общую емкость, равна 37/300. Тогда искомая величина получается приблизительно 8 мкФ.

Ответ. Общая емкость при последовательном соединении 8 мкФ, при параллельном — 75 мкФ.

fb.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о