Принцип работы трансформатора простым языком – как работает устройство и принцип его действия

Содержание

применение, принцип действия, каких типов бывает

Одним из ключевых моментов в развитии электроники стало изобретение трансформатора. Трудно назвать какое-либо электротехническое устройство, в работе которого он бы не использовался. Благодаря этому простому изобретению человечество научилось управлять электроэнергией путём преобразования её параметров. Поэтому одной из главных задач в области электроники является усовершенствование радиоприбора для повышения надёжности схем электропитания.

История изобретения

Появившийся в XIX веке прибор, названный впоследствии трансформатором, является радиоэлектронным устройством, предназначенным для преобразования одних значений напряжения в другие.

В 1831 году английский физик Майкл Фарадей, проводя ряд экспериментов, открыл явление электромагнитной индукции, которое послужило основой для создания трансформатора. Принцип явления основан на возникновении тока при изменении магнитного поля. Изучая электромагнетизм, учёный выявил, что электродвижущая сила (ЭДС) зависит от скорости изменения магнитного поля, ограниченного проводящим контуром. Таким образом, была открыта возможность превращать магнетизм в электричество.

Первый прототип трансформатора был создан в 1848 году немецким инженером Генрихом Румкорфом. Это устройство было названо катушкой индуктивности и позволяло преобразовывать низкое напряжение постоянной величины в высокое. Конструктивно оно состояло из железного сердечника, вокруг которого были намотаны две обмотки.

Датой же рождения преобразовательного прибора считается 30 ноября 1876 года. Именно тогда русским инженером Яблочковым был получен патент на изобретение устройства. Сконструированный им трансформатор представлял собой сердечник с намотанной на него катушкой. Первый же в классическом понимании радиоприбор был создан в Англии братьями Гопкинсонами, а через год в Венгрии учёные Отто Блати, Карой Циперновский и Микша Дери усовершенствовали его путём использования замкнутого магнитопровода.

Существенную роль в развитии устройства сыграло применение Свинберном масленого охлаждения, повысившего надёжность и стабильность электротрансформатора. Развитие изобретения позволило изучать переменный ток, в результате чего была создана трёхфазная система, запатентованная Теслой в 1889 году.

Первоначально сердечник изготавливался в виде формы Н, пока англичанин Стэнли не предложил использовать форму Ш. Благодаря этому появилась возможность отдельно наматывать катушки, а после надевать их на сердечник. Первые образцы трансформаторов характеризовались значительными потерями мощности. Введение примесей кремния в сердечник позволило улучшить характеристики. Дальнейшее развитие технологии изготовления электрических трансформаторов сводилось к усовершенствованию материала сердечника.

Устройство и его суть

В узлах электропитания радиоэлектронных устройств для преобразования тока используются различные виды трансформаторов. В принципе их действия лежит явление электромагнитной индукции, характеризующееся преобразованием переменного тока одной разности потенциалов в другую. При этом скважность и период сигнала остаются неизменными.

Конструктивно классический трансформатор состоит из трёх частей:

  • первичной обмотки;
  • вторичной катушки;
  • сердечника.

Обмотка, к которой подводится электрический сигнал, называется первичной, а с которой снимается — вторичной. Изготавливаются они из алюминиевой или медной проволоки. Сердечник же делается из электротехнической стали или феррита.

При работе устройства возникают вихревые токи, приводящие к нагреву магнитопровода. Это, в свою очередь, влияет на передачу энергии, приводя к её потерям. Чтобы при нагревании не происходило расплавление изоляционного слоя катушек и сплавление с пластинами, используется дополнительная изоляция как сердечника, так и обмоток.

Отдельно выделяют автотрансформаторы. Это преобразователи, состоящие из одной или нескольких катушек, соединённых электрически между собой, в результате чего действующее магнитное поле на них является общим. Сердечник для них выполняется из мягкого ферромагнетика.

Слово «трансформатор» произошло от латинского transformate, что в дословном переводе на русский язык обозначает «превращение», «преобразование».

Принцип действия трансформатора основан на двух базовых положениях:

  1. Переменный электрический ток образует изменяющийся магнитный поток во времени.
  2. Проходя через катушку магнитное поле, наводит в ней ЭДС.

То есть используется явление электромагнетизма и электромагнитной индукции.

Суть работы электромагнитного аппарата сводится к следующему: электрический ток, изменяемый во времени по величине и направлению, поступает на первичную катушку. Проходя по ней, он создаёт переменное магнитное поле. Потоки, образующиеся от этого поля, воздействуют на вторичную обмотку, наводя в ней напряжение переменной величины. Значение этой разности потенциалов зависит от числа витков в первичной и вторичной катушках, а также скорости изменения магнитного поля.

Виды трансформаторов

Согласно определению, трансформатор (transformator) — это статический электромагнитный прибор, состоящий из нескольких катушек, располагающихся на общем магнитопроводе. Используется такое устройство как для преобразования переменного сигнала, так и для создания гальванической связи. Работает при переменном токе.

Все преобразователи классифицируются по следующим признакам:

  • количеству фаз — промышленность выпускает одно- и трёхфазные конструкции;
  • числу обмоток — существуют двух- или трёхобмоточные конструкции;
  • виду изоляции — разделяются на сухой тип, масляный или использующий негорючее заполнение;
  • по охлаждению — могут быть с естественным или искусственным его видом.

Кроме этого, бывают трансформаторы, использующие не только проволочные обмотки, но и ленточные, а также без сердечника. Последние применяются для работы на высоких частотах. Изделия характеризуются различными параметрами. Основными из них являются: мощность, коэффициенты затухания и трансформации, рабочая частота.

Мощность обозначает количество энергии, которую может пропустить через себя устройство без ухудшения характеристик. Измеряется она в ваттах и находится как сумма мощностей всех вторичных выводов. Коэффициент трансформации определяется отношением числа витков вторичной обмотки к их числу в первичной катушке. Затухание же обозначает величину ослабления сигнала за счёт паразитных связей. Для неё будет верной следующая формула: η=P2/P1, где P — мощность, подводимая к устройству (P1) и снимаемая с нагрузки, подключённой к его выходу (P2).

Силовой прибор

Является одним из самых распространённых типов, выпускаемых промышленностью трансформаторов. Относится к низкочастотному виду. Используется для повышения или понижения разности потенциалов. Основное применение — аналоговые источники питания и линии электропередач. Необходимость в применении таких преобразователей заключается в использовании различных величин рабочих напряжений.

Например, ЛЭП — 35−750 кВ, городские подстанции — 6−10 кВ, электроприборы — от единиц вольт до киловольт. По своей сути является классическим трансформатором переменного тока. Изменяемый по величине сигнал, проходя через устройство, создаёт магнитное поле в каждом витке вторичной катушки, сумма напряжений которых и формирует выходное напряжение.

Форма сердечника чаще всего используется Ш-образного вида, но также может быть и тороидальной. Коэффициент полезного действия (КПД) силовых устройств составляет порядка 0,9 -0,98. Мощность, которую может преобразовать электронное устройство, определяется поперечным сечением магнитопровода, обозначаемым символом S. Количество витков соответственно находится по формуле: w = 50/S.

При нахождении мощности используется правило: токи, протекающие по обмоткам трансформатора обратно пропорциональны числу их витков. То есть коэффициент трансформации будет равен отношению Iн/Iвх или Uвх/Uн. Поэтому, изменяя число витков в катушках, легко получить как повышенное, так и пониженное напряжение на выходе трансформатора.

Автотрансформаторная конструкция

Отличием от других типов устройств является присутствие электрического контакта между первичной и вторичной обмоткой. В результате этого катушки связаны не только магнитным потоком, но и гальванически. Выходная обмотка имеет не меньше трёх выводов. Автотрансформаторы относятся к приборам специального назначения. В их конструкции также используется магнитопровод, на котором размещаются две обмотки. Выводы отводятся от общего контакта обмоток и их концов.

Использование нескольких выводов позволяет регулировать напряжение путём перемещения скользящего контакта, подключённого к нагрузке. Так как значения входного и выходного тока примерно совпадают друг с другом, а витки направлены встречно, то короткого замыкания не происходит.

Автотрансформаторы, или ещё их называют ЛАТРы, используются как лабораторные блоки питания. Это связано с тем, что их коэффициент трансформации делается не более двух, так как при большем значении КПД устройства значительно снижается. Высокое же его значение при коэффициенте до единицы обусловлено тем, что часть энергии не преобразовывается, а напрямую подпитывает вторичную катушку.

Кроме этого их применяют в узлах питания выпрямительных блоков, согласования телефонных линий, железнодорожных локомотивах. При изготовлении автотрансформаторов используется провод небольшого сечения и малогабаритные сердечники, что в итоге уменьшает их стоимость.

Импульсный преобразователь

Такой трансформатор предназначен для преобразования импульсного сигнала с минимальными искажениями. Используется он в автоматических и измерительных приборах, а также электронно-вычислительной технике. Работа его выглядит следующим образом.

При подаче на вход серии импульсов, характеризующихся продолжительностью L и периодом T, в первичной катушке устройства начнёт увеличиваться ток. Соответственно, его изменение будет создавать магнитное поле, меняющееся по такому же закону. В результате во вторичной обмотке возникнет ток, проявляемый также в виде импульсов.

Из-за специфики использования такие приборы обладают рядом преимуществ:

  • малым весом;
  • высоким КПД;
  • широким диапазоном рабочих напряжений;
  • высоким коэффициентом трансформации.

Существует четыре вида импульсных трансформаторов, разделяемых по виду сердечников. Они могут быть: тороидальными (круглые), броневыми (Ш-образные), стержневыми (П-образные), и бронестержневыми. По виду намотки катушки они выполняются спиральной, цилиндрической или конической формы.

Разделительный и согласующий

Разделительный тип применяется в тех случаях, в которых требуется гальванически развязать одну часть электрической сети от другой. Например, в помещениях с повышенной электробезопасностью. Их использование помогает существенно снизить вероятность поражения электрическим током при возникновении пробоя. Кроме того, разделительные конструкции устанавливаются в качестве защитных устройств в интерфейсных цепях, например, сетевые карты. Предотвращая резкие перепады входного сигнала, они предохраняют нагрузочные цепи от повреждений, а человеческий организм от удара током.

Трансформатор называется разделительным, если его вторичная катушка не заземлена, а он сам имеет коэффициент передачи равный единице. Разделение катушек в приборе происходит путём применения усиленной электроизоляции.

Согласующий же трансформатор используется при необходимости выровнять сопротивление различных частей электрической схемы. Их применяют в приборах усиления, например, микрофоны, телевизоры, приёмники. Из конструктивных особенностей выделяют, что согласующие устройства не нуждаются в толстой изоляции, а корпус чаще всего выполняется цилиндрического вида. Устройство собирается на диэлектрической подложке, на которой размещается пластина из феррита с намотанной первичной обмоткой. А затем через слой изоляции накручивается вторичная обмотка.

Измеритель тока

Им называется прибор, первичная катушка которого коммутируется напрямую к источнику тока, а вторичная — к защитным или измерительным приборам, обладающим небольшим внутренним сопротивлением. Основное назначение этого типа — измерение тока и защита. Его применение безопасно, так как первичная и вторичная цепь гальванически изолированы друг от друга.

Первичная катушка (чаще всего один виток), подключается последовательно к схеме, в которой требуется определить значение переменного тока. В итоге получается, что ток вторичной обмотки зависит от тока первичной, но при этом вторичная катушка должна быть обязательно подключена к нагрузке. Если этого не сделать, значение разности потенциалов на выходе может достичь таких значений, что пробьёт изоляцию. Кроме того, если вторичную катушку преобразователя разомкнуть, то через магнитопровод начнёт течь большой ток.

В состав трансформатора входит сердечник из шихтованной кремнистой холоднокатаной электротехнической стали. На него наматываются изолированные обмотки. Чаще всего первичную катушку делают шиной либо пропускают через сердечник проводник, на котором измеряется ток.

Сварочный аппарат

Назначение сварочных аппаратов — понижать однофазное или трёхфазное напряжение, а ток увеличивать в несколько раз. Достигается это путём секционирования отношения обмоток во входной и выходной части устройств.

Так как сварочный трансформатор относится к понижающему типу, то количество витков во вторичной обмотке у него меньше. Сила же тока регулируется путём изменения зазора между катушками. Сведение их увеличивает ток, а разведение уменьшает. Существует два режима работы устройства:

  • короткое замыкание;
  • холостой ход.

В первом случае выходная обмотка замыкается с источником питания (первичной катушкой). В результате возникает ток короткого замыкания, сопровождающийся значительным выделением энергии. При холостом ходе в трансформаторе создаются две силы — магнитное поле и поток рассеивания. Ответвляясь от потока магнитопровода, они образуют замкнутые линии через воздух. Результатом этих взаимодействий будет возникновение напряжения, порядка 48 вольт.

Другие типы

Кроме основных типов, существуют ещё и другие разновидности трансформаторных устройств. Они не получили широкого применения, так как разрабатывались для использования в специфических задачах. Им на смену были изобретены устройства с лучшими параметрами и характеристиками, например, трансфлюксор и используемые вместо него доменные ячейки памяти.

Можно выделить следующие дополнительные виды трансформаторов:

  1. Пик-трансформатор — способен преобразовывать переменный сигнал в импульсный. Достигается это использованием сердечника переменного сечения. Первичная катушка размещается в области большого сечения, а вторичная — малого. При возникновении тока насыщение суженого участка магнитопровода возникает раньше. В итоге на выходе образуются пиковые броски напряжения — импульсы. Используются такие приборы в исследовательской технике как генераторы.
  2. Сдвоенный дроссель — другое его название компенсационный фильтр. В конструкции используется две одинаковые обмотки. Принцип работы основан на возникновении взаимоиндукции. Применяются в качестве фильтров блоков питания.
  3. Трансфлюксор — разрабатывался как прибор, предназначенный для хранения информации. Вызывал довольно большой интерес разработчиков ЭВМ и даже планировался использоваться на космических ракетах. Но испытания, проводимые в военно-инженерном институте радиоэлектроники Казахстана, оказались удручающими. Трансформаторлар (казахское — трансформатор) при считывании разрушал хранимые информационные блоки. Отличие же его от других видов заключалось в увеличенной намагниченности из-за использования сердечника с двумя отверстиями.
  4. Вращающийся трансформатор — представляет собой прибор, сердечник которого разделён на две части. На каждой половине намотана своя обмотка. Одна из них вращается по отношению к другой, что позволяет передавать сигналы на подвижные части различных радиоустройств, например, головку видеомагнитофона.

Обозначение на схеме

Условное обозначение трансформаторов на схеме и в специализированной литературе зависит от конструктивных особенностей изображаемой модели устройства. Но в общем случае на его рисунке указывается сердечник — толстая вертикальная линия, первичная обмотка (слева) и вторичная (справа). Сами катушки изображаются параллельно сердечнику в виде полуокружностей. Их количество нигде не регламентируется. Жирная точка, стоящая у полуокружностей, обозначает начало обмотки.

При указании особенности конструкции изображение сердечника может изменяться. Так, магнитопровод с магнитным зазором выполняется линией с разрывом посредине, если сердечник изготовлен из магнитодиэлектрика, используется тонкая пунктирная линия. Если есть необходимость указать материал, из которого сделан сердечник, то сверху линии ставится символ, соответствующий таблице Менделеева, например, Cu.

Таким образом, под словом трансформатор понимается электронный аппарат, предназначенный для повышения или понижения напряжения электрического тока. Эти его свойства нашли широкое применение как в аналоговой, так и цифровой технике. При этом ключевым элементом, обеспечивающим передачу энергии от электростанций к потребителям, также является трансформатор.

rusenergetics.ru

Принцип работы трансформатора. Устройство и режимы работы

Здравствуйте, дорогие читатели! Сегодня поговорим про принцип работы трансформатора, рассмотрим его устройство и режимы работы. И так…

В энергетике, электронике и других отраслях прикладной электротехники большая роль отводится преобразованиям электромагнитной энергии из одного вида в другой. Этим вопросом занимаются многочисленные трансформаторные устройства, которые создаются под различные производственные задачи.

Одни из них, имеющие наиболее сложную конструкцию, выполняют трансформацию мощных потоков высоковольтной энергии, например 500 или 750 киловольт в 330 и 110 кВ или в обратном направлении.

   Высоковольтный трансформатор

Другие работают в составе малогабаритных устройств бытовой техники, электронных приборов, системах автоматизации. Они также широко используются в различных блоках питания мобильных устройств.

 
   Плата с трансформатором, от блока питания, для мобильных устройств

Трансформаторы работают только в цепях переменного напряжения разной частоты и не предназначены для применения в схемах постоянного тока, в которых используются преобразователи других типов.

Общий принцип работы трансформатора

Мы знаем, что электромагнитная энергия неразрывна. Но ее принято представлять двумя составляющими:

  1. электрической
  2. магнитной

Так проще понимать происходящие явления, описывать процессы, делать расчеты, конструировать различные устройства и схемы. Целые разделы электротехники посвящены раздельным анализам работы электрических и магнитных цепей.

Электрический ток, как и магнитный поток, протекает только по замкнутой цепи, обладающей сопротивлением (электрическим или магнитным). Его создают внешние приложенные силы — источники напряжения соответствующих энергий.

Однако, при рассмотрении принципов работы трансформаторных устройств придётся одновременно исследовать оба этих фактора, учесть их комплексное воздействие на преобразование мощности.

Простейший трансформатор состоит из двух обмоток, выполненных намоткой витками изолированной проволоки, по которым протекает электрический ток и одной магистрали для магнитного потока. Ее принято называть сердечником или магнитопроводом.

   Принцип работы трансформатора

К вводу одной обмотки приложено напряжение от источника электроэнергии U1, а с выводов второй оно после преобразования в U2, подается на подключенную нагрузку R.

Под действием напряжения U1 в первой обмотке по замкнутой цепи протекает ток I1, величина которого зависит от полного сопротивления Z, состоящего из двух составляющих:

  1. активного сопротивления проводов обмотки
  2. реактивной составляющей, обладающей индуктивным характером

Величина индуктивного сопротивления оказывает большое влияние на работу трансформатора.

Протекающая по первичной обмотки электрическая энергия в виде тока I1 представляет собой часть электромагнитной, магнитное поле которой направлено перпендикулярно движению зарядов или расположению витков проволоки. В его плоскости размещен сердечник трансформатора — магнитопровод, по которому замыкается магнитный поток Ф.

Все это наглядно отражено на картинке и строго соблюдается при изготовлении. Сам магнитопровод тоже замкнут, хотя в отдельных целях, например, для снижения магнитного потока в нем могут делать зазоры, увеличивающие его магнитное сопротивление.

За счет протекания первичного тока по обмотке магнитная составляющая электромагнитного поля проникает в магнитопровод и циркулирует по нему, пересекая витки вторичной обмотки, которая замкнута на выходное сопротивление R.

Под действием магнитного потока во вторичной обмотке наводится электрический ток I2. На его величине сказывается значение приложенной напряженности магнитной составляющей и полной сопротивление цепи, включая подключенную нагрузку R.

При работе трансформатора внутри магнитопровода создается общий магнитный поток Ф и его составные части Ф1 и Ф2.

Как устроен и работает автотрансформатор

Среди трансформаторных устройств особой популярностью пользуются упрощенные конструкции, использующие в работе не две разные отдельно выполненные обмотки, а одну общую, разделенную на секции. Их называют автотрансформаторами.

   Схема устройства автотрансформатора

Принцип работы трансформатора такой схемы практически остался прежним. Происходит преобразование входной электромагнитной энергии в выходную. По виткам обмотки W1 протекают первичные токи I1, а по W2 — вторичные I2. Магнитопровод обеспечивает путь движения для магнитного потока Ф.

У автотрансформатора имеется гальванически связь между входными и выходными цепями. Так как преобразованию подвергается не вся приложенная мощность источника, а только часть ее, то создается более высокий КПД, чем у обычного трансформатора.

Такие конструкции позволяют экономить на материалах: стали для магнитопровода, меди для обмоток. Они обладают меньшим весом и стоимостью. Поэтому их эффективно используют в системе энергетики от 110 кВ и выше.

Особых отличий в режимах работы трансформатора и автотрансформатора практически нет.

Рабочие режимы трансформатора

При эксплуатации любой трансформатор может находиться в одном из состояний:

  1. выведен из работы
  2. номинальный режим
  3. холостой ход
  4. короткое замыкание
  5. перенапряжение

1. Режим вывода из работы

Для его создания достаточно снять питающее напряжение источника электроэнергии с первичной обмотки и этим исключить прохождение электрического тока по ней, что и делают всегда в обязательном порядке с подобными устройствами.

Однако на практике при работе со сложными трансформаторными конструкциями такая мера не обеспечивает полностью меры безопасности: на обмотках может оставаться напряжение и приносить вред оборудованию, подвергать опасности обслуживающий персонал за счет случайного воздействия разрядов тока.

Как это может произойти?

У малогабаритных трансформаторов, которые работают в качестве блока питания, как показано на верхней фотографии, постороннее напряжение никакого вреда не причинит. Ему там просто неоткуда взяться. А на энергетическом оборудовании его обязательно следует учитывать. Разберём две часто встречающиеся причины:

  1. Подключение постороннего источника электроэнергии
  2. Действие наведенного напряжения
   Подключение постороннего источника электроэнергии

На сложных трансформаторах работает не одна, а несколько обмоток, которые используются в разных цепях. Со всех их необходимо отключать напряжение.

Кроме того, на подстанциях, эксплуатируемой в автоматическом режиме без постоянного оперативного персонала к шинам силовых трансформаторов подключают дополнительные трансформаторы, обеспечивающие собственные нужды подстанции электроэнергией 0,4 кВ. Они предназначены для питания защит, устройств автоматики, освещения, отопления и других целей.

Их так и называют — ТСН или трансформаторы собственных нужд. Если со входа силового трансформатора снято напряжение и его вторичные цепи разомкнуты, а на ТСН проводятся работы, то существует вероятность обратной трансформации, когда напряжение 220 вольт с низкой стороны проникнет на высокую по подключенным шинам питания. Поэтому их необходимо обязательно отключать.

   Действие наведенного напряжения

Если около шин отключенного трансформатора проходит высоковольтная линия, находящаяся под напряжением, то токи, протекающие по ней, способны наводить напряжение на шинах. Необходимо применять меры для его снятия.

2. Номинальный режим работы

Это обычное состояние трансформатора во время его эксплуатации для которого он и создан. Токи в обмотках и приложенные к ним напряжения соответствуют расчетным значениям.

Трансформатор в режиме номинальной нагрузки потребляет и преобразует мощности, соответствующие проектным значениям в течение всего предусмотренного ему ресурса.

3. Режим холостого хода

Он создается в том случае, когда на трансформатор подано напряжение от источника питания, а на выводах выходной обмотки отключена нагрузка, то есть разомкнута цепь. Этим исключается протекание тока по вторичной обмотке.

Трансформатор в режиме холостого хода потребляет минимально возможную мощность, определяемую его конструкторскими особенностями.

4. Режим короткого замыкания

Так называют ситуацию, когда нагрузка, подключенная к трансформатору оказывается закороченной, наглухо зашунтированной цепочками с очень малыми электрическими сопротивлениями и на нее действует вся мощность питания источника напряжения.

В этом режиме протекание огромных токов КЗ ни чем практически не ограничивается. Они обладают огромной тепловой энергией и способны сжечь провода или оборудование. Причем действуют до тех пор, пока схема питания через вторичную или первичную обмотку не выгорит, разорвавшись в наиболее слабом месте.

Это самый опасный режим, который способен возникнуть при работе трансформатора, причем, в любой, самый неожиданный момент времени. Его появление можно предвидеть, а развитие следует ограничивать. С этой целью используют защиты, которые отслеживают превышение допустимых токов на нагрузке и максимально быстро их отключают.

5. Режим перенапряжения

Обмотки трансформатора покрыты слоем изоляции, который создается для работы под определенным напряжением. При эксплуатации возможно его превышение по различным причинам, возникающим как внутри электрической системы, так и в результате воздействия атмосферных явлений.

В заводских условиях определяется величина допустимого превышения напряжения, которое может действовать на изоляцию до нескольких часов и кратковременных перенапряжений, создаваемых переходными процессами при коммутациях оборудования.

Для предотвращения их воздействия создают защиты от повышения напряжения, которые при возникновении аварийной ситуации отключают питание со схемы в автоматическом режиме или ограничивают импульсы разрядов.

Видео, принцип работы трансформатора

 

Смотрите также по теме:

   Трансформатор Тесла (Tesla coil). Делаем своими руками.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Принцип работы трансформатора тока, напряжения, тесла: видео — Asutpp

Для того, чтобы в домашних условиях самостоятельно повысить эффективность работы многих устройств и напряжение в электрической сети, часто используются регулирующие устройства. Предлагаем, в связи с этим, рассмотреть принцип работы трансформатора тока понижающего, повышающего, импульсного, Тесла, а также автотрансформатора.

Принцип работы и классификация трансформаторов

Принцип работы измерительного трансформатора (как и разделительного), очень прост. Он подчиняется закону Фарадея электромагнитной индукции. На самом деле взаимная индукция между двумя или более обмотками отвечает за действия преобразования в электрическом трансформаторе.

В соответствии с этим, закон Фарадея гласит: «скорость изменения потокосцепления по времени прямо пропорциональна наведенной ЭДС в проводнике или катушки».

Основы теории трансформатора

Скажем, у нас трансформатор с одной обмоткой, которая соединена с переменным электрическим источником тока. Переменный ток через обмотку производит постоянно меняющийся поток, который окружает катушку. Если любая другая обмотка приближена к предыдущей, определенная часть потока соединяется с ней. Этот поток постоянно меняется в амплитуде и направлении, но в этих случаях должно происходить изменение потокосцепления во вторую обмотку или обмотки.

Согласно закону Фарадея электромагнитной индукции, должно быть ЭДС, которое индуцируется раз в секунду. Если цепь последней обмотки закрыта, то через неё должен проходить электрический ток. Это простейший принцип работы электрического силового или сварочного трансформатора и это основной принцип работы трансформатора.

Схема силового трансформатора

Всякий раз, когда мы используем движение переменного тока к электрической катушки, поток энергии окружает эту обмотку. Поток тока будет неравномерным, и скорость его постоянно изменяется. Естественно ЭКГ будет производиться в нем, как в законе Фарадея, где говорится о явлении электромагнитной индукции. Это наиболее фундаментальное понятие теории трансформатора

Обмотка, которая принимает электрическую мощность от источника, как правило, известна как первичная обмотка трансформатора.

Обмотка, что дает требуемое выходное напряжение из-за взаимной индукции в трансформаторе, называется вторичной обмоткой трансформатора.

Основные конструкционные части трансформатора

Существует три основные части трансформатора:

1. Первичная обмотка трансформатора – производит магнитный поток, когда подключена к электрическому источнику.
2. Магнитный сердечник трансформатора — магнитный поток, создаваемый первичной обмоткой, создает замкнутую магнитную цепь.
3. Вторичная обмотка трансформатора – намотана на сердечник.

Как работает силовой или сварочный трансформатор

Электрический силовой трансформатор является статическим устройством, которое преобразует электрическую энергию от одной схемы к другой без непосредственного соединения, с помощью взаимной индукции между своих обмоток. Он преобразует энергию от одной схемы к другой, не меняя свою частоту, но может работать в разных уровнях напряжения, например если сварщик поменял флюс, или произошел сбой генератора при сварке.

Трехфазный трансформатор

Работа однофазного трансформатора напряжения

Принцип работы однофазного трансформатора не слишком отличается от трехфазного понижающего прибора. Когда электрический ток проходит в первичной обмотке, она создает МП, у которого достаточно мощные силовые линии. Они пронизывают первичную катушку полностью, и вторичную частично. Все эти линии замкнуты вокруг проводников катушек, но их часть замкнута непосредственно на проводниках.

Видео: наглядный урок, который рассказывает о принципе работы трансформатора

Согласно закону о магнитной связи, чем ближе объекты друг к другу, тем сильнее эта связь, но чем они дальше расположены — тем она слабее, и так пока не станет нулевой. Это объясняется тем, что при расположении коаксиального типа, чем обмотки расположены дальше, тем меньше сцепление силовых линий и их проникновение в трансформаторные катушки.

Схема: однофазный трансформатор

Нужно понимать, что в однофазном трансформаторе сила магнитного поля также зависит от тока. Скачки переменного электрического тока могут значительно снизить силу МП, или наоборот. Это еще называется законом электродвижущей силы. Т.е. в первой обмотке производится самоиндукция, а во вторичной – взаимоиндукция.

Как только концы этих обмоток соединятся – устройство, которому необходимо получить результаты работы трансформатора, станет снабжаться электрическим током, принцип работы будет запущен, в определенной последовательности катушки начнут работать.

Работа автотрансформатора

Чаще всего в домашних условиях используется трансформатор не с двумя обмотками, а с одной. Рассмотрим принцип работы электронного автотрансформатора (вольтодобавочного трансформатора), и его характеристики. Данные устройства относятся к трансформаторам специального использования, т.к. их обмотка низкого напряжения у обычных трансформаторов, является обмоткой высокого напряжения, те они связаны между собой не только магнитным полем, но и гальваническим.

Схема: автотрансформатор

Переключая обмотки при желании можно получить либо высокое, либо низкое напряжение. Подключая источник переменного тока к сердечнику, мы получим переменное магнитное поле. И между точками сердечника возникнет, и будет усиливаться ЭДС. Благодаря тому, что сердечник выполнен особенным образом, в нем протекает очень малое количество тока, которое создает достаточно сильное МП. Т.е. при экономии материалов мы получаем разное по необходимости, напряжение.

Автотрансформаторы целесообразнее использовать в областях, где нужно совсем незначительное изменение напряжения и РПН, но на продолжительный отрезок времени. Это лаборатории, небольшие предприятия или домашние хозяйства.

Бывают еще и узкоспециализированные лабораторные трансформаторы, у них несколько иная схема:

Обмотка выполнена из специального ферромагнитного материала, которая сводит вероятность резонансного движения к минимуму. Основные отличия от обычного прибора – это:

  1. Кроме ферромагнетика они обмотаны медным проводом;
  2. Низкие допустимые параметры — максимальная мощность до 7 кВА;
  3. Здесь работает система строчного ролика – на поверхности трансформатора имеется дорожка, по которой передвигается контактирующий ролик или щетка.

Но у такого обмоточного трансформатора есть свои недостатки:

  • нужно изолировать вторичные и первичные цепи, т.к. они имеют достаточно сильную электрическую связь;
  • нельзя использовать дл защиты в мощных сетях, допустим предел от 6 до 10 кВ;
  • ремонт и содержание требует значительных вложений.

Работа гидротрансформатора

Каждый водитель бульдозера либо другой машины, знаком с принципом работы трансформатора АКПП или гидротрасформатора, но какое его назначение. На самом деле, данный прибор является модернизированной муфтой, которая вращается не один раз, а два, газовое оборудование требует установки даже нескольких таких приборов.

Его необходимо установить между двигателем и трансмиссией, чтобы получить вращательное движение, которое после перейдет на колеса. Внешне механизм напоминает бублик, за что и получил такое «прозвище» от автослесарей, но у нег достаточно сложная конструкция:

По краю с обеих сторон встроены насосы, а в центре установлен мини реактор. Последний прибор должен передавать жидкость (масло, к примеру), на турбинное колесо, которое в свою очередь распределяет её равномерно по всей поверхности трансформатора.

Переднее колесо жестко соединено с главным валом машинного двигателя, захватывая жидкость, передает её далее по механизму. Но реактор при необходимости блокирует это движение и выводит колесо из работы.

Помимо блокировки вращающегося момента, конструкция масляного трехобмоточного трансформатора позволяет ему выполнять функции демпфинирования. Т.е., если авто достигло своего предела, скажем, 80 км/час, то для предотвращения несчастного случая вращающийся момент начинает передаваться уже через демпфинирующие пружины. Таким образом, производится защита от холостого хода и резкой остановки двигателя.

Таким образом и можно объяснить принцип работы трансформатора, как видите, все очень похоже, но есть некоторые нюансы у разных моделей в зависимости от области применения и конструкции.

www.asutpp.ru

Трансформаторы — устройство, принцип работы и область применения, основные типы и характеристики

ВИДЫ И ТИПЫ — ХАРАКТЕРИСТИКИ — ПРИМЕНЕНИЕ

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения. Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.
Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Импульсные трансформаторы.
Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Разделительный трансформатор.
Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Пик—трансформатор.
Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.
Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

В начало

ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

В начало

ОБЛАСТЬ ПРИМЕНЕНИЯ

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Силовые.

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Тока.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Напряжения.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

В начало

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


eltechbook.ru

Виды и принцип работы трансформаторов

Трансформатор нужен для преобразования электрической энергии одного напряжения к электрической энергии другого напряжения. Используется для повышения или понижения напряжения. Нет разницы в понижении или повышении, так как трансформатор является обратимой электрической машиной (возможно преобразование электроэнергии как в большую, так и меньшую сторону). Однако производители выпускают трансформаторы для определенных целей – или повышающим или понижающим трансом.

На электрической станции турбогенератором вырабатывается электроэнергия с генераторным напряжением, например 15кВ, далее она трансформируется повышающими трансформаторами (описываемые элементы обозначены на схеме) до напряжения линии электропередач (например, 35кВ, 110кВ, 220кВ, 330кВ, 750кВ). Далее по ЛЭП электроэнергия передается к потребителям и снижается через понижающие трансформаторы до величины 10, 6, 0,4кВ.

Зачем передачу электроэнергии делают на высокие напряжения? Это необходимо для снижения потерь электроэнергии, что достигается увеличением напряжения. Какие бывают трансформаторы

По назначению:

  • самыми распространенными являются силовые трансформаторы, предназначенные для передачи и распространения электроэнергии
  • существуют силовые трансформаторы специального назначения – сварочные, печные
  • трансформаторы тока и напряжения (измерительные и релейные) тоже относятся к трансформаторам
  • испытательные трансформаторы – для подачи высокого напряжения для проверки прочности изоляции
  • а также радиотрансформаторы, импульсные трансформаторы, пик-трансформаторы

Трансформаторы подразделяются на разные виды в зависимости от числа обмоток на двухобмоточные и многообмоточные (одна первичная и одна или несколько вторичных обмоток).

В зависимости от числа фаз – однофазные, трехфазные, многофазные.

По способу охлаждения – масляные, сухие.

Принцип действия трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции. Возьмем для примера двухобмоточный однофазный трансформатор. К первичной обмотке подключается источник переменного тока. Этот ток протекает по обмотке и создает переменный магнитный поток Ф, который пронизывает обмотки трансформатора и изменяясь наводит в них ЭДС. Так как обмотки имеют различное число витков, то и величина ЭДС будет в них различная.

В повышающих трансах вторичное напряжение будет больше первичного, а в понижающих – наоборот. К вторичной обмотке подключается нагрузка и возникает вторичный ток, созданный индуцируемой магнитным потоком ЭДС. Таким образом, в трансформаторе происходит передача электроэнергии из первичной обмотки с напряжением U1 и током I1 во вторичную обмотку с током I2 и напряжением U2 посредством магнитного потока.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

устройство и принцип работы, назначение, схемы, фото и видео-инструкция как сделать и подключить трансформатор своими руками

Вопрос, что такое трансформатор, для опытных и даже начинающих электриков совершенно простой. Но обычные обыватели, которые с электрикой не дружат, даже и не представляют, как выглядит трансформатор, для чего он необходим, а тем более, не осведомлены о его конструкции и принципе работы. Поэтому в этой статье будем разбираться с этим прибором, рассмотрим вопрос, а можно ли сделать трансформатор своими руками, и так далее. Итак, трансформатор – это электромагнитное устройство, которое  может изменять напряжение переменного тока (увеличивать или уменьшать).

Трансформаторы тока

Устройство и принцип работы

Итак, конструкция трансформатора достаточно проста и состоит из сердечника и двух катушек из медной проволоки. В основе принципа работы лежит электромагнитная индукция. Чтобы вы поняли, как работает этот прибор, рассмотрим, как магнитное поле, образуемое в катушках (обмотках) устройства, изменяет показатель напряжения.

Подаваемый на первую обмотку электрический ток (он переменный, поэтому изменяется по направлению и величине) образует в катушке магнитное поле (оно также переменное). В свою очередь магнитное поле образует во второй катушке электрический ток. Такой своеобразный обмен параметрами. Но просто так изменение напряжения не произойдет, оно зависит от того, сколько витков медной проволоки в каждой обмотке. Конечно, величина изменения магнитного поля (скорость) также влияет на величину напряжения.

Что касается количества витков, то получается так:

  • если число витков в первичной катушке больше, чем во вторичной, то это понижающий трансформатор;
  • и, наоборот, если количество витков во вторичной обмотке больше, чем в первичной, то это повышающий трансформаторный прибор.

Поэтому существует формула, которая определяет так называемый коэффициент трансформации. Вот она:

k=w1/w2, где w – это число витков в катушке с соответствующим номером.

Внимание! Любой трансформатор может быть и понижающим, и повышающим, все зависит от того, к какой обмотке (катушке) подсоединяется питающий кабель сети переменного тока.

И еще один момент, касающийся устройства. Это сердечник трансформатора. Все дело в том, что существуют разные виды этого устройства, в которых сердечник присутствует или отсутствует.

  • Так вот, в тех видах, где сердечник трансформатора отсутствует или изготовлен из феррита или альсифера называются высокочастотными (выше 100 кГц).
  • Приборы с сердечником из стали, феррита или пермаллои – низкочастотные (ниже 100 кГц).

Первые используются в радио- и электросвязи. Вторые в для усиления звуковых частот, к примеру, в телефонии. Со стальным сердечником используется в электротехнике (в бытовых приборах в том числе).

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение. Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта.

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).

Расшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:

Обозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Как сделать самостоятельно

Итак, как сделать трансформатор самому? Зная, принцип работы установки и его конструктивные особенности, можно собрать своими руками простейший аппарат. Для этого вам понадобится любое металлическое кольцо, на котором надо накрутить два участка обмотки. Самое важно – обмотки не должны касаться друг друга, а место их намотки не зависит конкретно от их расположения. То есть, они могут быть размещена напротив друг друга или рядом. Важно – даже небольшое расстояние между ними.

Внимание! Трансформатор работает только от сети переменного тока. Так что не стоит подключать к вашему устройству батарейку или аккумулятор, где присутствует ток постоянный. Работать от этих источников электроэнергии он не будет.

Как уже было сказано выше, количество витков в обмотках определяет, какой прибор вы собираете – понижающий или повышающий. К примеру, если вы на первичной обмотке соберете 1200 витков, а на вторичной всего лишь 10, то на выходе вы получите напряжение 2 вольта. Конечно, при подключении первичной катушки к напряжению 220-240 вольт. Если фазировка трансформатора будет заменена, то есть, провести подсоединение 220 вольт к вторичной обмотке, то на выходе первичной получится ток напряжением 2000 вольт. То есть, к назначению трансформатора надо подходить осторожно, учитывая тот самый коэффициент трансформации.

Как правильно подключить

Что касается монтажа трансформатора, особенно его понижающего типа в быту дома, то необходимо знать некоторые нюансы проводимого процесса.

  • Во-первых, это касается самого устройства. При монтаже трансформатора иногда появляется необходимость подключения не одного потребителя, а сразу нескольких. Поэтому обращайте внимание на количество выходных клемм. Конечно, необходимо знать, что суммарная потребляемая мощность потребителей не должна быть больше мощности самого трансформаторного устройства. Во всяком случае, специалисты рекомендуют, чтобы второй показатель был всегда больше первого на 15-20%.
  • Во-вторых, подключение трансформатора производится электрической проводкой. Так вот ее длина и до прибора, и после не должна быть очень большой. К примеру, понижающий аппарат для светодиодного освещения предполагает наличие проводки от него до светильников не больше двух метров. Это позволит избежать больших потерь мощности.
Схема подключения понижающего трансформатора

Внимание! Нельзя процесс монтажа трансформатора проводить и в том случае, если потребляемая мощность потребителей будет меньше мощности самого агрегата.

  • В-третьих, место установки электрического понижающего прибора должно быть выбрано правильно. Самое важное, чтобы до него всегда можно было бы добраться просто, особенно когда есть необходимость провести демонтаж со следующей заменой и монтажом трансформатора. Поэтому перед тем как подключить трансформатор, необходимо определиться с его местом установки.

Схема замещения

Буквально несколько слов о том, что такое схема замещения трансформатора. Начнем с того, что две катушки соединены между собой магнитным полем, поэтому проанализировать работы трансформатора, а тем более его характеристики, очень сложно. Поэтому для этих целей сам прибор заменяют моделью, которая и называется схема замещения трансформатора.

По сути, все переводится на математический уровень, а точнее, в уравнения (токов и электрического состояния). Здесь важно, чтобы все уравнения, касающиеся прибора и его модели, совпадали. Кстати, для многих схема замещения трансформатора достаточно сложна, поэтому существует упрощенный вариант, в котором нет тока холостого хода, ведь на него приходится незначительная часть.

Фазировка

Фазировка трансформатора – это испытание его выходов, когда в одну цепь подключены несколько приборов параллельно. Ведь обязательное условие эффективной работы цепи с отсутствием больших потерь мощности – это правильное соединение фаз между собой, чтобы образовался замкнутый контур.

Если фазы не совпадут, то падает мощности и растет нагрузка. Если не совпадает чередование фаз, то произойдет короткое замыкание.

Заключение по теме

Итак, был сделан небольшой обзор всего, что касается трансформаторных установок, поэтому будем считать, что вопрос, зачем нужны трансформаторы, исчерпан, хотя и не полностью. Об этом приборе можно говорить долго. К примеру, самые простые варианты: как разобрать трансформатор, как прозвонить его, как подключить или демонтировать самому дома.

onlineelektrik.ru

Принцип работы трансформатора: этапы работы

Трансформатор – это регулирующее устройство, которое достаточно часто используется для того, чтобы повысить эффективность многих устройств. Эти устройства могут использоваться для повышения и понижения напряжения в сети. В этой статье вы узнаете принцип работу трансформатора тока.

Принцип работы трансформатора тока

Измерительные трансформаторы имеют достаточно простой принцип работы. Его работа подчиняется закону про электромагнитную индукцию. Если разобраться более детально, то взаимная индукция будет отвечать за действие преобразования напряжения. В соответствии с этим законом Фарадей гласит: «скорость изменения потокосцепления будет пропорциональной наведенной ЭДС в проводнике».

Основы теории трансформатора

Представьте, что у вас есть трансформатор с одной обмоткой, которая соединяется с электрическим током. Переменный ток будет производить меняющийся поток, который окружает катушку. Определенная ее часть может соединяться в том случае, если переменный ток постоянно будет проходить через обмотку. Этот поток может постоянно меняться в своем направлении.

Следуя из закона Фарадея у нас должно быть ЭДС, которое будет производить индукцию раз в секунду. Если в последней обмотке цепь будет закрыта, тогда через нее пройдет ток. Этот принцип работы трансформатора считается простейшим. Тороидальный трансформатор имеет немного другой принцип работы.

Когда вы будете использовать движение переменного тока к электрической катушке, поток энергии будет ее окружать. Поток будет неравномерным, а его скорость может изменяться. Это понятие считается фундаментальным в работе трансформатора. Обмотка, которую он содержит, будет принимать электрическую мощность от источника. Она дает выходное напряжение благодаря взаимной индукции.

Конструктивные части трансформатора

На сегодняшний день устройство трансформатора включает в себя три основные части, к которым относят:

  • Первичную обмотку. Когда подключается к источнику, она будет производить магнитный поток.
  • Магнитный сердечник. Магнитный поток будет создан в замкнутую цепь.
  • Вторичная обмотка. Ее необходимо наматывать на сердечник.

Это три основные части, из которых будет состоять силовой трансформатор.

Принцип работы трансформатора

Электрический силовой трансформатор является статистическим устройством. Принцип работы сварочного трансформатора заключается в том, что он будет преобразовывать энергию от схемы одного устройства к другому. Этот процесс проходит благодаря индукции между обмотками. Преобразование энергии будет происходить на основе изменения частоты. Он может работать в разных уровнях напряжения.

Работа однофазного трансформатора

Принцип работы однофазного трансформатора на сегодняшний день ничем не отличается от других устройств. Когда ток будет проходить по первичной обмотке, то будет создано магнитное поле. У него имеются мощные силовые линии. Первичную катушку они будут пронизывать полностью. Все линии являются замкнутыми между вокруг проводников катушек.

Закон про магнитную связь гласит о том, чем ближе расположены объекты, тем сильнее будет их связь. Вам следует знать, что в однофазном трансформаторе сила магнитного поля будет зависеть от напряжения. Именно поэтому скачки напряжения могут снизить силу МП. При соединении концов обмотки устройство начнет снабжаться электрическим током.

Принцип работы автотрансформатора

Здесь мы рассмотрим принцип работы автотрансформатора. Эти устройства можно отнести к трансформаторам, которые имеют специальное использование. Обмотки в этом устройстве связаны между собою не только магнитным полем, но и гальваническим.

При переключении обмоток можно получить как высокое, так и низкое напряжение. Переменное магнитное поле возникает в момент подключения переменного тока к сердечнику. Благодаря устройству сердечника небольшое напряжение способно создавать сильное МП. Автотрансформаторы довольно часто используют в областях, где существует незначительное изменение напряжения.

На сегодняшний день существуют также узкоспециализированные лабораторные трансформаторы. Они имеют другой принцип работы трансформатора.

Их обмотка должна выполняться из ферромагнитного материала. Она сводит резонансное движение к минимуму. К основным его отличиям относят:

  1. Кроме ферромагнетика используют медный провод.
  2. Он имеет низкие допустимые параметры.
  3. В нем работает система строчного ролика.

Эти трансформаторы также могут иметь недостатки, к которым относят:

  • Все цепи нужно изолировать, так как они имеют сильную связь.
  • Его нельзя использовать для защиты в мощных цепях.
  • Ремонт стоит достаточно дорого.

Работа гидротрансформатора

Наверное, каждый водитель бульдозера знает принцип работы гидротрансформатора. На самом деле прибор является муфтой, которая вращается два раза. Устанавливать его необходимо между двигателем. Это необходимо чтобы получить вращательное движение. Механизм напоминает бублик, но у него достаточно сложная конструкция:

  • По краям находятся специальные насосы. Передний прибор будет передавать жидкость на турбинное колесо.
  • Переднее колесо необходимо соединить с главным валом. Благодаря этому он будет передавать жидкость по механизму.

Как видите, принцип работы трансформатора у всех устройств практически одинаковый. Существуют некоторые особенности, но все зависит от его модели.

Вам будет интересно: типы трансформаторов тока.

vse-elektrichestvo.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *