Принцип действия преобразователя частоты: Принцип работы преобразователя частоты — Как работает частотный преобразователь?

Содержание

Принцип работы преобразователя частоты — Как работает частотный преобразователь?

Частотный преобразователь — сложное электронное устройство, принцип работы которого основан на множестве взаимосвязанных механизмов. Попробуем разобрать всё по полочкам.

Каждый преобразователь — уникальный механизм с определённым расположением механизмов и предназначением. Но некоторынее части основные части остаются неизменными.

Входной неуправляемый выпрямитель.
Благодаря ему напряжение сети (220 или 380 V) выпрямляется диодным мостом.
Конденсаторы.
Совершают второй шаг после выпрямителя — фильтруют и сглаживают напряжение.
СУИ ШИМ.
Функция ШИМ состоит в формировании заданной последовательности импульсов определённой частоты (заданной пользователем или производителем). Это происходит за счёт управляемых микросхем и IGBT ключей.

Заданная цель каждого частотного преобразователя — интеграция и преобразование напряжения в график, близкий к синусоиде, достигается в самом конце. Прямоугольные пачки импульсов, выходящие из частотного преобразователя, превращаются в синусоидальное напряжение за счёт самого асинхронного двигателя — механизма, к которому он подключается, а именно способности его обмоток к индуктивности.
На схеме вы можете увидеть правильное подключение преобразователя по требованиям ЭМС. Не забывайте об основных требованиях эксплуатации: влажности менее 90%, недопустимости проникновения воды, воздействия электромагнитных импульсов вблизи устройства. Важно обеспечить хорошую вентиляцию в помещении с установленным преобразователем.
Таким образом, частотный преобразователь даёт массу преимуществ пользователям асинхронных двигателей. Особенно полезны они станут владельцам заводов и фабрик, которые уже давно используют преобразователи и получают массу плюсов, окупающих приобретение.

При правильном подключении и использовании, пусковые токи можно уменьшить в 4-5 раз. Экономия электроэнергии даже для трёхфазных и более систем может составлять 50% и более. Самостоятельная настройка оборудования становится намного легче, появляется возможность установки обратных связей между смежными проводами.

Принцип работы частотного преобразователя. Схема частотного привода.

Переити в каталог продукции: Частотные преобразователи

Электроприводы постоянного тока являются очень простыми с точки зрения организации системы регулирования скорости вращения двигателя, но сам электродвигатель является слабым звеном системы, ведь он достаточно дорогой и при этом не отличается особой надежностью. К тому же область применения данных двигателей ограничена из-за излишнего искрения щеток и, следовательно, повышенной электроэрозии и износа коллектора, что к общем не позволяет использовать двигатели постоянного тока в пыльных условиях и в средах с опасностью взрыва. Альтернативой электроприводам постоянного тока является комплексное применение асинхронных двигателей переменного тока с частотными преобразователями.

Асинхронные двигатели повсеместно используются в виду очень простого устройства и надежности, при меньших габаритах и массе они обеспечивают такую же мощность, как и двигатели постоянного тока. Главным минусом их является сложность организации системы регулирования скорости двигателя традиционными для двигателей постоянного тока методами. Теоретическая база для разработки первых частотных преобразователей, которые могли уже тогда стать решением вопроса регуляции скорости, была заложена еще в 30-е годы двадцатого века. Отсутствие микропроцессоров и транзисторов не позволяло воплотить теорию в практику, но с появлением транзисторных схем и управляющих микропроцессоров в Японии, США и Европе примерно в одно время были разработаны варианты частотных преобразователей.

При наличии других способов управления скорости вращения исполняющих механизмов (речь идет о механических вариаторах, резисторных группах, вводимыми в ротор/статор, электромеханических частотных преобразователях, гидравлике) наиболее эффективным является использование статических частотных преобразователей, который экономическим выгоднее других вариантов в виду дешевизны монтажа, эксплуатации и высокого КПД. Неприхотливость преобразователей также обусловлена отсутствием подвижных частей в виду того, что регуляция осуществляется на этапе подачи тока и основана на изменении параметров питания, а не на контроле за скоростью вращения при помощи средств механического управления.

Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы

Из выражения видно, что путем изменения частоты входного питающего напряжения (f1) изменяется угловая скорость статора, точнее его магнитного поля, но этом взаимозависимые характеристики. Эффект достигается при постоянном числе пар полюсов (p). Что это дает? В первую очередь, плавность регулирования (в особенности при пиковых нагрузках в момент пуска двигателя) скорости при очень высокой жесткости механических характеристик. Также достигается повышенное скольжение асинхронного двигателя, что существенно снижает потери мощности и увеличивает коэффициент полезного действия.

Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.

При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:

Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.

Ну и моменте нагрузки, который обратно пропорционален скорости получим:

      Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.

Основные достоинства применения регулируемых приводов на предприятиях.

Интеграция систем регулирования качественно изменяет технические характеристики всех участников технологического процесса, нуждающегося в регуляции. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения. Конечно же, максимальная эффективность достигается на объектах, предназначенных для перемещения жидких масс. До сих пор популярным способом регулирования скорости потока и мощности является применение заслонок и заглушек, в частных случаях различных регулирующих механических клапанов, но эти методы менее эффективны чем изменение скорости самого исполнительного механизма и чреваты потерями транспортируемой жидкости.

       Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.

Конструкция типового частотного преобразователя.

Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:

— Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.

— Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.

— Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.

Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.

Как работает частотный преобразователь?

Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)

На схеме отображены основные структурные части преобразователя, а именно: инвертор, диодный силовой выпрямитель, модуль управления широтно-импульсной модуляцией, система управления, дроссель и конденсатор фильтра. Регуляция выходной частоты и напряжения (fвых. и Uвых., соответственно) осуществляется путем широтно-импульсного управления высокой частоты. Управление зависит от периодичности модуляции. Это период, в течение которого статор по очереди получает сигнал от положительного и отрицательного полюса напряжения. Длительность периода модулируется согласно синусоидальному закону гармонических частот, дополнительное преобразование происходит уже в обмотках двигателя, где после фильтрации ток имеет уже строго синусоидальную форму.

      Сама кривая выходного напряжения – это двуполярная последовательность высокой частоты, созданная прямоугольными импульсами. Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Изменение характеристик выходного напряжения осуществляется одним из двух способов: изменение AP (амплитуды) путем регуляции значения входного напряжения Uвх.; при Uвх., имеющим постоянное значение, путем внесения изменений в программу, контролирующую периодичность переключения переключателей V1-V6. Наличие современных IBGT-транзисторов на микропроцессорном управлении применение второго способа является более продуктивным и широко используемым. ШИМ также позволяет добиться формы кривой тока близкой к синусоиде, но уже благодаря свойствам обмоток, выполняющих функции фильтра.

Данный метод управления также позволяет существенно увеличить коэффициент полезного действия преобразователя и по своим характеристикам полностью аналогично методике управления путем изменения амплитуды и частоты тока. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором. С примером можно ознакомиться на следующем рисунке. (рисунок 2) Здесь изображена мостовая трехфазная схема с использованием IGBT-транзисторов. Инвертор автономный. В данной схеме используется комплекс из 6 транзисторных ключей (на схеме V1-V6), емкостного фильтра тока. Транзисторы включены при помощи диодов обратного тока (на схеме D1-D6) по встречно-параллельной схеме.

Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;

Сф – конденсатор фильтра;

Переити в каталог продукции: Частотные преобразователи

его устройство и принцип действия

Электрические двигатели используются повсеместно, они задействованы во множестве технологических процессов на целом ряде производств. При этом для работы разных электродвигателей требуется ток разной частоты. Именно эта функция возложена на преобразователь частоты. Он управляет скоростью вращения вала асинхронного двигателя, изменяя частоту подаваемого электрического тока. Такое контролируемое изменение скорости вращения не только позволяет осуществлять всевозможные технологические процессы, но и создает условия для полной машинной автоматизации, а также приводит к экономии электроэнергии. Весьма существенной особенностью является то, что преобразователь частоты позволяет добиться согласованного или распределенного движения сразу нескольких электродвигателей.

Частотный преобразователь может найти применение практически в любой отрасли промышленности или строительства. Он нужен для управления электродвигателями в системах вентиляции, установках компрессорного и поршневого типа, насосных системах и т.п. В городском хозяйстве преобразователь частоты используется для работы эскалаторов и лифтов. На строительных площадках он может быть использован в качестве источника тока заданной частоты для управления бетономешалками, экструдерами, дробилками, крановым оборудованием и др.

На производстве в преобразователе частоты нуждаются многие обрабатывающие станки, конвейеры, упаковочные машины, складское оборудование. Даже в сельском хозяйстве изменение частоты электрического тока может понадобиться для работы сепараторов, мельниц, дробилок и центрифуг.

Основные параметры

При выборе преобразователя частоты в первую очередь стоит обратить внимание на входное напряжение. Оно может быть однофазным (220В) или трехфазным (380В). То же самое касается выходного напряжения. Следующая немаловажная характеристика, на которую стоит обратить внимание — это диапазон частот, измеряемый в герцах. Именно в этих пределах будет работать частотный преобразователь. Также не стоит забывать о том, что любой частотный преобразователь рассчитан на определенную мощность. Именно эта характеристика, измеряемая в киловаттах, определяет суммарную мощность электрооборудования, которое к данному преобразователю можно будет подключить.

Принцип работы

Основная суть работы частотного преобразователя заключается в том, что он из электрического тока одной частоты получает ток другой частоты. При этом напряжение и сила тока остаются прежними, а вот полученная частота может существенно отличаться от классической сетевой в 50 Гц. В зависимости от выбранной модели частотный преобразователь может генерировать ток с частотой от 0,5 до нескольких сотен герц.

Конструкция

Классический преобразователь частоты имеет конструкцию, состоящую из нескольких элементов, наиболее значимыми из которых являются выпрямитель и инвертор. Итак, входное напряжение поступает на выпрямитель, который представляет собой набор полупроводниковых элементов (как правило, это тиристоры). Здесь напряжение питающей сети преобразуется в ток с заданными параметрами. После этого ток поступает на входной дроссель, который играет роль фильтра от высокочастотных помех и сглаживает кривую тока. В итоге ток попадает на инвертор, где уже создается электрическое напряжение с заданной симметрией.

Особо стоит отметить такую разновидность частотно-пускового оборудования как устройство плавного пуска.

Не секрет, что в момент запуска двигателя пусковой ток и крутящий момент могут в несколько раз превышать номинальные значения. А это уже чревато перегревом обмоток и даже выходом из строя механической части электродвигателя. Удерживать параметры тока в заданных значениях позволит устройство плавного пуска. Оно обеспечит плавный разгон и остановку двигателя, а в процессе работы создаст правильное соотношение крутящего момента и текущей нагрузки. Более того, в насосных и поршневых системах устройство плавного пуска позволит избежать гидравлических ударов в момент запуска и остановки оборудования.

устройство и принцип работы прибора

Данное устройство, как частотный преобразователь является сложным, с его помощью осуществляется управление синхронным и асинхронным двигателем переменного тока. Чтобы настроить преобразователь на необходимые параметры работы, нужны начальные знания инженерно-технического дела. Стоит обратить внимание на то, купить частотный преобразователь

можно в специализированных магазинах, в том числе и у нас на сайте. Специалисты компании «Русэлт» помогут подобрать модель данного устройства.



Частотный преобразователь и его устройство

Чаще устройство основано на схеме двойного преобразования. Данный прибор содержит:

  • Постоянный ток и его звенья, состоящие из выпрямителя неуправляемого типа и защитных фильтров.
  • Инвертор импульсный силового типа состоит из 6 ключей транзистора, подключается к соответственной обмотке агрегата.
  • Налаженная систематизация преобразователя.

На первом этапе переменное напряжение электрической сети переходит в постоянное. Далее перейдя в инвертор, происходит преобразование в 3-х фазную переменную величину, необходимой амплитуды и величины.

Принцип действия устройства

Для детального описания принципа работы частотного преобразователя базировать его возможно на работе двигателя АИР, в котором частотность вращения магнитного поля прямо пропорционально зависимо от частоты напряжения источника электропитания.

В современных моделях данного устройства на выходе частотность может варьироваться в различных диапазонах. Данный показатель может быть на порядок ниже или выше частотности сети электропитания.

Выгодно купить частотный преобразователь

Если вы решили купить частотный преобразователь, то стоит быть внимательным: чем сложнее среда и условия эксплуатации, тем более требовательным нужно быть. Таким образом, ваша покупка сможет эффективно создавать алгоритмы в системе управления, а главное – продлить срок службы двигателю и рядом установленных деталей.

В случае сложности выбора подходящего устройства, необходимо воспользоваться помощью сотрудников магазина.

Принцип работы частотного преобразователя и критерии его выбора

Краткое описание назначения, принципа работы и критериев выбора частотного преобразователя, как устройства управления асинхронным электродвигателем

Асинхронный двигатель с короткозамкнутым ротором является сегодня самым массовым и надежным устройством для привода различных машин и механизмов. Но у каждой медали есть и обратная сторона.

Два основных недостатка асинхронного двигателя – это невозможность простой регулировки скорости вращения ротора, очень большой пусковой ток – в пять, семь раз превышающий номинальный. Если использовать только механические устройства регулирования, то указанные недостатки приводят к большим энергетическим потерям и к ударным механическим нагрузкам. Это крайне отрицательно сказывается на сроке службы оборудования.

Частотный преобразователь

В результате исследовательских работ в этом направлении родился новый класс приборов, позволивший решить эти проблемы не механическим, а электронным способом.

Частотный преобразователь с широтно–импульсным управлением (ЧП с ШИМ) снижает пусковые токи в 4-5 раз. Он обеспечивает плавный пуск асинхронного двигателя и осуществляет управление приводом по заданной формуле соотношения напряжение / частота.

Частотный преобразователь дает экономию по потреблению энергии до 50%. Появляется возможность включения обратных связей между смежными приводами, т.е. самонастройки оборудования под поставленную задачу и изменение условий работы всей системы.

Принцип работы частотного преобразователя

Частотный преобразователь с ШИМ представляет собой инвертор с двойным преобразованием напряжения. Сначала сетевое напряжение 220 или 380 В выпрямляется входным диодным мостом, затем сглаживается и фильтруется с помощью конденсаторов.

Это первый этап преобразования. На втором этапе из постоянного напряжения, с помощью микросхем управления и выходных мостовых IGBT ключей, формируется ШИМ последовательность определенной частоты и скважности. На выходе частотного преобразователя выдаются пачки прямоугольных импульсов, но за счет индуктивности обмоток статора асинхронного двигателя, они интегрируются и превращаются наконец в напряжение близкое к синусоиде.

Критерии выбора частотных преобразователей

Выбор по функциям

Каждый производитель пытается обеспечить себе конкурентное превосходство на рынке. Первое правило для обеспечения максимума продаж – это низкая цена. Поэтому производитель стремиться включить в свое изделие только необходимые функции. А остальные предлагает в качестве опций. Прежде чем купить частотный преобразователь, определитесь, какие функции вам нужны. Стоит выбирать тот прибор, который имеет большинство необходимых функций в базовом варианте.

По способу управления

Сразу отбрасывайте те преобразователи, которые не подходят по мощности, типу исполнения, перегрузочной способности и т.д. По типу управления, нужно определиться, что выбрать, скалярное или векторное управление.

Большинство современных частотных преобразователей реализуют векторное управление, но такие частотные преобразователи дороже, чем частотные преобразователи со скалярным управлением.

Векторное управление дает возможность более точного управления, снижая статическую ошибку. Скалярный режим только поддерживает постоянное соотношение между выходным напряжение и выходной частотой, но например, для вентиляторов это вполне достаточно.

По мощности

Если мощности оборудования примерно одинаковы, то выбирайте преобразователи одной фирмы с мощностью по мощности максимальной нагрузки. Так вы обеспечите взаимозаменяемость и упростите обслуживание оборудования. Желательно, чтобы сервис центр выбранного частотного преобразователя был в вашем городе.

По сетевому напряжению

Всегда выбирайте преобразователь с максимально широким диапазоном напряжений как вниз, так и вверх. Дело в том, что для отечественных сетей само слово стандарт может вызвать только смех сквозь слезы. Если пониженное напряжение приведет, скорее всего, к отключению частотного преобразователя, то повышенное может вызвать взрыв сетевых электролитических конденсаторов и входу прибора из строя.

По диапазону регулировки частоты

Частотный преобразователь Верхней предел регулировки частоты важен при использовании двигателей с высокими номинальными рабочими частотами, например для шлифовальных машин ( 1000 Гц и более). Убедитесь, что диапазон частот соответствует вашим потребностям. Нижний предел определяет диапазон регулирования скорости привода. Стандарт – это 1:10. Если вам нужен более широкий диапазон, то выбирайте только векторное управление, запросите параметры привода у производителя. Даже заявленный предел от 0 Гц, не гарантирует устойчивую работу привода.

По количеству входов управления

Дискретные входы нужны для ввода команд управления ( пуск, стоп, реверс, торможение и т.д.). Аналоговые входы необходимы для ввода сигналов обратной связи (регулировки и настройки привода в процессе работы). Цифровые входы нужны для ввода высокочастотных сигналов от цифровых датчиков скорости и положения (энкодеров). Количество входов много не бывает, но чем больше входов, тем сложнее систему можно построить, и тем она дороже.

По количеству выходных сигналов

Дискретные выходы используются для выхода сигналов о различных событиях (авария, перегрев, входное напряжение выше или ниже уровня, сигнал ошибки ит. д.). Аналоговые выходы используются для построения сложных систем с обратными связями. Рекомендации по выбору аналогичны предыдущему пункту.

По шине управления

Оборудование, с помощью которого вы будете управлять частотным преобразователем должно иметь ту же шину и количество входов выходов что и выбранный вами частотный преобразователь. Предусмотрите некоторый запас по входам и выходам для дальнейшей модернизации.

По сроку гарантии

Срок гарантии косвенно позволяет оценить надежность частотного преобразователя. Естественно, нужно выбирать частотный преобразователь с большим сроком. Некоторые производители оговаривают особо случаи поломок, которые не являются гарантийными. Всегда тщательно читайте документацию и посмотрите в интернете отзывы о моделях и производителях оборудования. Это поможет правильному выбору. Не жалейте денег на качественный сервис и обучение персонала.

По перегрузочным способностям

В первом приближении, мощность частотного преобразователя нужно выбирать на 10-15% больше мощности двигателя. Ток преобразователя должен быть больше номинального тока двигателя и чуть больше тока возможных перегрузок.

В описании на конкретный механизм обычно указывают токи перегрузок и длительность их протекания. Читайте документацию! Это вас развлечет, и возможно, обезопасит от поломок оборудования в будущем. Если для привода характерны еще и ударные (пиковые) нагрузки (нагрузки в течении 2-3 сек), то необходимо выбрать преобразователь по пиковому току. Опять возьмите запас 10%.

 

Популярные товары

Шины медные плетеные

Шины изолированные гибкие и твердые

Шинодержатели

Изоляторы

Индикаторы наличия напряжения

Принцип работы частотного преобразователя

Частотные преобразователи – это инверторы, которые имеют двойное преобразование напряжения. Принцип работы этого устройства достаточно простой.

  • Первый этап. Сначала сетевое напряжение, которое равняется 220 или 380 В выпрямляется с помощью входного диодного моста, после этого происходит его сглаживание. Следующий этап – это фильтрация, которая производится с участием конденсаторов. На этом и заканчивается первая часть изменения.
  • В ходе следующего этапа из постоянного напряжения формируется ШИП последовательность, которая имеет конкретную частоту и скважность. Происходит это с помощью микросхем управления, в преобразовании также участвуют мостовые IGBT, называемые выходными ключами.
  • Третий этап – это выход частотного преобразователя, на котором и выдаются пачки импульсов, которые имеют прямоугольную форму. Здесь они интегрируются и наконец-то и превращаются в напряжение, которое близко к синусоиде.

Благодаря частотным преобразователям можно контролировать частоту напряжения питания трех фаз, которое регулируется двигателем в районе от нуля до 400 Гц. Двигатель разгоняется и тормозит плавно, при необходимости применяется даже линейный закон от времени. Также такой преобразователь осуществляет реверс двигателя. Только представьте, если разогнать преобразователь, он может увеличить до ста пятидесяти процентов моменты динамические и пусковые.

Например, частотники Siemens созданы с настраиваемой электронной самозащитой, также здесь есть защита двигателей, которая способна уберечь от перегрузки по току, также защищается от перегрева и утечек. Частотные преобразователи помогают отслеживать выходной сигнал, для этого здесь есть цифровой индикатор. Сигнал этот уведомляет о заданном значении системы.

Также, важно отметить, что в зависимости от того, какой используется вид нагрузки – формируется необходимые вольт-частотные выходные характеристики.

А, например, в таких преобразователях, как Hyundai и вовсе существует векторное управления, которое может работать с полным моментом двигателя даже при нулевых частотах, также такие преобразователи поддерживают оптимальную скорость, даже если нагрузка переменная, и даже без датчиков обратной связи. Они точно контролируют момент на валу двигателя.

Частотные преобразователи используются в различных областях, так на их базе реализовываются системы регулирования скорости различных объектов, таких, как:

  • насосы как холодной, так и горячей воды;
  • питатели и дозаторы;
  • мешалки, мельницы, дробилки;
  • лифтовое оборудование;
  • оборудование, предназначенное для прокатных станков;
  • крановое и экскаваторное оборудование;
  • механизмы высокооборотные и системы.

Такие системы могут быть с любыми функциями, реализовать их можно за счет встроенных программируемых контролеров или же за счет дополнительных контролеров. И те и другие работают вместе с преобразователями.

Особый эффект дает использование частотных преобразователей для того, чтобы регулировать производительность насосных агрегатов.

Преимущества использования частотных преобразователей

Частотные преобразователи имеют множество преимуществ, ведь в них сочетаются уникальные качества, наряду с тем, что они надежны, имеют невысокую цену и высокий технический уровень.

  • Первое преимущество заключается в том, что на базе таких преобразователей создаются гибкие системы электропривода, также с помощью них регулируются технологические параметры.
  • Второе преимущество в том, что преобразователи можно встраивать в системы, которые уже существуют, при этом не нужно даже останавливать технологический процесс. К тому же, они легко приспосабливаются и модифицируются.
  • Третий важный аспект заключается в том, что преобразователи имеют широкий диапазон мощностей, благодаря разным вариантам систем управления можно подобрать решения для множества задач управления.
  • Еще одно важное преимущество в том, что благодаря этим преобразователям происходит экономия электроэнергии. Подсчитано, что в среднем эта экономия составляет от 50 до 79 процентов мощности.

Помимо уже перечисленных положительных сторон использования преобразователей, так же стоит отметить, что преобразователи способны повысить срок жизни двигателя с помощью того, что они ограничивают пуск тока на уровне номинального значения. Таким преимуществом обладают многие преобразователи, в частности и Toshiba.

Действующие технологические агрегаты можно модернизировать, не заменяя при этом насосное оборудование, и даже практически не нарушая его работу. На это способны и преобразователи частоты Веспер.

У преобразователей стандартный интерфейс, также здесь стандартные сигналы на выходе и на входе, все это для того, чтобы можно было включать их внешними управляющими системами, которые имеют более высокий уровень. Это также необходимо для того, чтобы подключать устройства, которые имеют дистанционное управление.

Частотные преобразователи

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Частотные преобразователи

 
Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Преобразователь частоты.

Частотный преобразователь — электронное устройство для изменения частоты электрического тока (напряжения).

Назначение

Частотный асинхронный преобразователь частоты служит для преобразования сетевого трёхфазного или однофазного переменного тока частотой 50(60)Гц в трёхфазный или однофазный ток, частотой от 1Гц до 800Гц.

Промышленностью выпускаются частотные преобразователи электроиндукционного типа, представляющего собой по конструкции асинхронный двигатель с фазным ротором, работающий в режиме генератора-преобразователя, и преобразователи электронного типа.

Частотные преобразователи электронного типа часто применяют для плавного регулирования скорости асинхронного электродвигателя или синхронного двигателя за счет создания на выходе преобразователя электрического напряжения заданной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f, в наиболее совершенных преобразователях реализовано так называемое векторное управление.

Частотный преобразователь электронного типа — это устройство, состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный, и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или транзисторы (IGBT) обеспечивают необходимый ток для питания электродвигателя.

Для улучшения формы выходного напряжения между преобразователем и двигателем иногда ставят дроссель, а для уменьшения электромагнитных помех — EMC-фильтр.

 

Устройство и принцип действия


ПЧ- преобразователь частоты; ИТ- преобразователь частоты источник тока; ИН- преобразователь частоты источник напряжения; АИМ- преобразователь частоты с амплитудно-импульсной модуляцией; ШИМ- преобразователь частоты с широтно-импульсной модуляцией
Функциональная схема преобразователя частоты, выполненного по схеме источника напряжения
Функциональная схема преобразователя частоты, выполненного по схеме источника тока

Электронный преобразователь частоты состоит из схем, в состав которых входит тиристор или транзистор, которые работают в режиме электронных ключей. В основе управляющей части находится микропроцессор, который обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

В зависимости от структуры и принципа работы электрического привода выделяют два класса преобразователей частоты:

    С непосредственной связью.
    С явно выраженным промежуточным звеном постоянного тока.

Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.


В преобразователях с непосредственной связью электрический модуль представляет собой управляемый выпрямитель. Система управления поочередно отпирает группы тиристоров и 

подключает обмоткидвигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. Частота выходного напряжения у таких преобразователей не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц, и как следствие — малый диапазон управления частотой вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование незапираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя. «Резаная» синусоида на выходе преобразователя с непосредственной связью является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению КПД системы в целом.


Наиболее широкое применение в современных частотно регулируемых модулях находят преобразователи с явно выраженным звеном постоянного тока. В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе, фильтруется фильтром, сглаживается, а затем вновь преобразуется инвертором в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению КПД и к некоторому ухудшению массо-габаритных показателей по отношению к преобразователям с непосредственной связью.
Для формирования синусоидального переменного напряжения используют автономный инвертор, который формирует электрическое напряжение заданной формы на обмотках электродвигателя (как правило, методом широтно-импульсной модуляции). В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия. Они имеют более высокий КПД (до 98 %) по отношению к преобразователям на IGBT транзисторах.

Преобразователи частоты являются нелинейной нагрузкой, создающей токи высших гармоник в питающей сети, что приводит к ухудшению качества электроэнергии.

Другие названия:

Инвертор (преобразователь)
Частотно-регулируемый привод


Преобразователи частоты

| Power Systems International

Aviation


Преобразователи частоты

Marine


Преобразователи частоты

От берега до корабля

Промышленные


Преобразователи частоты

От 50 Гц до 60 Гц / от 60 Гц до 50 Гц

Преобразователи частоты

Что такое преобразователь частоты?

Проще говоря, преобразователи частоты — это устройство преобразования энергии. Преобразователь частоты преобразует базовую синусоидальную мощность с фиксированной частотой и фиксированным напряжением (сетевое питание) в выходной сигнал переменной частоты и переменного напряжения, используемый для управления скоростью асинхронных двигателей.

Зачем нужен преобразователь частоты?

Основная функция преобразователя частоты в водной среде — экономия энергии. За счет управления скоростью насоса вместо регулирования потока с помощью дроссельных клапанов можно значительно сэкономить энергию.

В качестве примера, снижение скорости на 20% может дать экономию энергии на 50%. Ниже описывается снижение скорости и соответствующая экономия энергии. Помимо экономии энергии, значительно увеличивается срок службы крыльчатки, подшипников и уплотнений.

Доступно множество различных типов преобразователей частоты, которые предлагают оптимальный метод согласования производительности насоса и вентилятора с требованиями системы. Он преобразует стандартную мощность предприятия (220 В или 380 В, 50 Гц) в регулируемое напряжение и частоту для питания двигателя переменного тока. Частота, применяемая к двигателю переменного тока, определяет скорость двигателя.

Двигатели переменного тока обычно представляют собой такие же стандартные двигатели, которые можно подключать через линию питания переменного тока. За счет включения байпасных пускателей работа может поддерживаться даже в случае выхода инвертора из строя.

Преобразователи частоты также обладают дополнительным преимуществом — увеличенным сроком службы подшипников и уплотнений насоса. Благодаря поддержанию в насосе только давления, необходимого для удовлетворения требований системы, насос не подвергается воздействию более высоких давлений, чем необходимо. Следовательно, компоненты служат дольше.

Те же преимущества, но в меньшей степени, применимы и к вентиляторам, работающим от преобразователей частоты.

Для достижения оптимальной эффективности и надежности многие специалисты получают подробную информацию от производителей.Это может включать эффективность преобразователя частоты, необходимое техническое обслуживание, диагностические возможности преобразователя частоты и общие рабочие характеристики.

Затем они проводят подробный анализ, чтобы определить, какая система даст наилучшую окупаемость инвестиций.

Дополнительные преимущества преобразователей частоты

Помимо экономии энергии и лучшего управления технологическим процессом преобразователи частоты могут обеспечить другие преимущества:

  • Преобразователь частоты может использоваться для управления технологической температурой, давлением или расходом без использования отдельного контроллера. .Соответствующие датчики и электроника используются для сопряжения управляемого оборудования с преобразователем частоты.
  • Расходы на техническое обслуживание можно снизить, поскольку более низкие рабочие скорости приводят к увеличению срока службы подшипников и двигателей.
  • Устранение дроссельных клапанов и заслонок также устраняет необходимость технического обслуживания этих устройств и всех связанных с ними органов управления.
  • Устройство плавного пуска для двигателя больше не требуется.
  • Контролируемая скорость разгона в жидкостной системе может устранить проблемы гидравлического удара.
  • Способность преобразователя частоты ограничивать крутящий момент до уровня, выбранного пользователем, может защитить приводимое оборудование, которое не может выдерживать чрезмерный крутящий момент.

Анализировать систему в целом

Поскольку процесс преобразования входящей мощности с одной частоты на другую приведет к некоторым потерям, экономия энергии всегда должна происходить за счет оптимизации производительности всей системы.

Первым шагом в определении потенциала энергосбережения системы является тщательный анализ работы всей системы.Чтобы обеспечить экономию энергии, необходимы подробные знания о работе оборудования и технологических требованиях. Кроме того, следует учитывать тип преобразователя частоты, предлагаемые функции и общую пригодность для применения.

Преобразователи частоты | Внутренняя конфигурация

Преобразователи частоты содержат три первичные секции:

  • Схема выпрямителя — состоит из диодов, тиристоров или биполярных транзисторов с изолированным затвором. Эти устройства преобразуют мощность сети переменного тока в постоянный ток.
  • Шина постоянного тока — состоит из конденсаторов, которые фильтруют и накапливают заряд постоянного тока.
  • Инвертор — состоит из высоковольтных мощных транзисторов, которые преобразуют мощность постоянного тока в выход переменного тока с переменной частотой и напряжением, подаваемый на нагрузку.

Преобразователи частоты также содержат мощный микропроцессор, который управляет схемой инвертора для создания почти чистого синусоидального напряжения переменной частоты, подаваемого на нагрузку. Микропроцессор также управляет конфигурациями ввода / вывода, настройками преобразователя частоты, состояниями неисправности и протоколами связи.

Или для получения дополнительной информации о преобразователях частоты используйте форму ниже

Статический преобразователь частоты — JEMA Energy

Принцип работы

Статические преобразователи частоты используются для питания нагрузок, которым требуется питание переменного тока с фиксированной частотой, отличной от частоты сети. Используя промежуточное преобразование постоянного тока, устройство может выдавать эту мощность в требуемых условиях.

Далее один блок состоит из 2 подсистем:

  • Выпрямитель: преобразует входящее напряжение переменного тока в постоянный ток
  • Инвертор: преобразует постоянное напряжение в переменное на выходе с необходимой частотой

При необходимости в систему можно добавить батареи, чтобы она могла работать автономно в случае отказа сети.

Устройство устройства

Устройство имеет отличные динамические характеристики с транзисторами IGBT. Он управляется микропроцессором, который управляет устройством в ответ на различные ключевые слова и сигналы, которые он получает, и информирует пользователя о своем состоянии.

Функции управления:

  • История: 250 последних аварийных сигналов с указанием времени и даты
  • Автоматическое управление: программируемое включение и выключение
  • Диагностика: визуализировать и передать статус устройства
  • Измерения:
  • В ef и I ef всех фаз
    • Активная, полная и реактивная мощность
    • Внутренняя температура системы
    • Выход
    • Cos и входная и выходная частота
    • Тест: автоматический, местный / дистанционный, периодический и программируемый
    • Цифровые настройки: параметры настраиваются с клавиатуры
    • Настраиваемый: можно определить основные системные функции
    • Советы: использование клавиатуры

Общие характеристики прибора

  • Высокий коэффициент мощности на входе: 20.95
  • Идеальная синусоида на выходе с цифровым синтезом
  • Высокая стабильность частоты и выходное напряжение
  • Высокая производительность, простота и надежность
  • Отличное поведение при нелинейных неуравновешенных нагрузках
  • Многопроцессорное цифровое управление, ШИМ модуляция
  • Интерфейс с использованием дисплея, клавиатуры, светодиодов и последовательной связи
  • Встроенный трансформатор гальванической развязки
  • Может опционально работать параллельно с другими устройствами
  • Может включать вспомогательный источник питания от 28 В до 1000 А

Преобразователь частоты — преобразователь частоты

ЧТО ТАКОЕ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ?

Преобразователь частоты, также известный как преобразователь частоты сети, представляет собой устройство, которое принимает входящую мощность, обычно 50 или 60 Гц, и преобразует ее в выходную мощность 400 Гц.Существуют разные типы преобразователей частоты сети, в частности, есть как вращательные преобразователи частоты, так и твердотельные преобразователи частоты. Вращающиеся преобразователи частоты используют электрическую энергию для привода двигателя. Твердотельные преобразователи частоты принимают входящий переменный ток (AC) и преобразуют его в постоянный ток (DC).

Для чего нужен преобразователь промышленной частоты для коммерческого использования?

Стандартным источником питания для коммерческих сетей является переменный ток (AC).Под переменным током понимается количество циклов в секунду («герц» или Гц), при которых мощность колеблется, положительно и отрицательно, вокруг нейтральной точки отсчета. В мире существует два стандарта: 50 и 60 герц. 50 Гц распространен в Европе, Азии и Африке, а 60 Гц является стандартом в большей части Северной Америки и некоторых других странах (Бразилия, Саудовская Аравия, Южная Корея) по всему миру.

У одной частоты нет неотъемлемого преимущества перед другой. Но могут быть и существенные минусы.Проблемы возникают, когда нагрузка, на которую подается питание, чувствительна к входной частоте сети. Например, двигатели вращаются с частотой, кратной частоте сети. Таким образом, двигатель 60 Гц будет вращаться со скоростью 1800 или 3600 об / мин. Однако при подаче питания 50 Гц частота вращения составляет 1500 или 3000 об / мин. Машины, как правило, чувствительны к скорости, поэтому мощность их работы должна соответствовать предполагаемой расчетной скорости вращения. Таким образом, для типичного европейского оборудования требуется входная частота 50 Гц, а если он работает в Соединенных Штатах, требуется преобразователь частоты 60–50 Гц для преобразования имеющейся мощности 60 Гц в 50 Гц.То же самое относится и к преобразованию мощности 50 Гц в 60 Гц. Хотя для преобразователей частоты существуют стандартные номиналы мощности и мощности, наши преобразователи работают в диапазоне напряжений от 100 В до 600 В. Чаще всего указываются напряжения 110 В, 120 В, 200 В, 220 В, 230 В, 240 В, 380 В, 400 В и 480 В. Поскольку наши стандартные и нестандартные конструкции могут удовлетворить ряд требований энергосистем, Georator является вашим поставщиком преобразователей частоты в напряжение.

ПОЧЕМУ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ТАК ДОЛЖЕН?

Многие клиенты испытывают «шок от наклеек», когда смотрят на преобразователь частоты.Не имеет большого значения, является ли преобразователь промышленной частоты вращающимся блоком (мотор-генераторная установка) или твердотельным (электронным) блоком. И на самом деле разброс цен между поставщиками на удивление невелик.

Так что же делает преобразователи частоты такими дорогими? Что ж, это закон. В частности, законы физики.

В отличие от преобразования напряжения, для которого требуется только довольно пассивный трансформатор, преобразователь частоты должен полностью переделывать мощность, чтобы изменить частоту. Во вращающемся преобразователе поступающая электрическая энергия преобразуется в механическую энергию в приводном двигателе.Эта мощность вращения затем питает генератор, где энергия вращения снова преобразуется в электрическую мощность. Много движущихся частей, много оборудования, много затрат.

Аналогичным образом твердотельный преобразователь частоты преобразует поступающую мощность переменного тока в постоянный ток с помощью выпрямителя. Затем энергия постоянного тока снова преобразуется в мощность переменного тока с помощью секции инвертора. Опять же, много запчастей, много затрат.

Одним из положительных преимуществ преобразователей частоты любого типа является то, что любое желаемое преобразование напряжения происходит «бесплатно» как часть процесса преобразования частоты.К сожалению, это часто не утешает наших клиентов.

Извините, это просто закон.

ДЕЙСТВИТЕЛЬНО НУЖЕН ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ?

Когда потенциальные клиенты сталкиваются с необходимостью покупки преобразователя частоты, нашего или наших конкурентов, они часто считают, что его стоимость является серьезным препятствием. Им действительно нужен преобразователь частоты? Что ж, ответ заключается в том, какой тип нагрузки обслуживается.

Приложения, включающие нагрузки двигателей, часто нуждаются в преобразователе промышленной частоты, потому что характеристики вращения, в частности число оборотов в минуту (об / мин), являются прямой функцией входной частоты электричества.Двигатель с частотой 60 Гц будет вращаться со скоростью, кратной 60, например, 1800 об / мин. Одновременно двигатель с частотой 50 Гц будет вращаться с частотой, кратной 50, например 1500 об / мин. Таким образом, при работе с нагрузкой двигателя, особенно в машине с несколькими двигателями, может оказаться необходимым использование преобразователя частоты, чтобы двигатели вращались в соответствии с исходной конструкцией вращения.

Однако резистивные нагрузки, такие как резистивные нагреватели и некоторые источники света, не заботятся о частоте входящей мощности. Таким образом, если нагрузка является неустойчивой, преобразование частоты может не потребоваться.Единственное предостережение — напряжение должно быть в нужном диапазоне. Даже если только большая часть нагрузки является резистивной, может оказаться более экономичным разделить нагрузку на части и запитать только частотно-зависимый компонент с преобразователем.

Также разумно рассмотреть возможность замены двигателя (ов) в нагрузке на правильную частоту, так как это может дать менее затратное решение, чем использование преобразователя частоты.

Инженеры

Georator готовы обсудить с вами эти вопросы; свяжитесь с нашей командой для получения помощи.Хотя мы ценим ваш бизнес, мы не хотим продавать вам то, что вам не нужно.

без названия

% PDF-1.5 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > транслировать 2014-12-07T20: 48: 31 + 01: 002014-12-07T20: 47: 30 + 01: 002014-12-07T20: 48: 31 + 01: 00application / pdf

  • без названия
  • Acrobat Distiller 11.0 (Windows) uuid: 3b14c7b3-e8d1-4cfb-8afd-cf0f23fb63eeuuid: c7f13b51-fd81-4d3f-b586-ebf50d31983f конечный поток эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 6 0 obj 3260 эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 объект > эндобдж 41 0 объект > эндобдж 42 0 объект > эндобдж 43 0 объект > эндобдж 44 0 объект > эндобдж 45 0 объект > эндобдж 46 0 объект > эндобдж 47 0 объект > эндобдж 48 0 объект > эндобдж 49 0 объект > эндобдж 50 0 объект > эндобдж 51 0 объект > эндобдж 52 0 объект > эндобдж 53 0 объект > эндобдж 54 0 объект > эндобдж 55 0 объект > эндобдж 56 0 объект > эндобдж 57 0 объект > эндобдж 58 0 объект > эндобдж 59 0 объект > эндобдж 60 0 объект > эндобдж 61 0 объект > эндобдж 62 0 объект > эндобдж 63 0 объект > эндобдж 64 0 объект > эндобдж 65 0 объект > эндобдж 66 0 объект > эндобдж 67 0 объект > эндобдж 68 0 объект > эндобдж 69 0 объект > эндобдж 70 0 объект > эндобдж 71 0 объект > эндобдж 72 0 объект > эндобдж 73 0 объект > эндобдж 74 0 объект > эндобдж 75 0 объект > эндобдж 76 0 объект > эндобдж 77 0 объект > эндобдж 78 0 объект > эндобдж 79 0 объект > эндобдж 80 0 объект > эндобдж 81 0 объект > эндобдж 82 0 объект > эндобдж 83 0 объект > эндобдж 84 0 объект > эндобдж 85 0 объект > эндобдж 86 0 объект > эндобдж 87 0 объект > эндобдж 88 0 объект > эндобдж 89 0 объект > эндобдж 90 0 объект > эндобдж 91 0 объект > эндобдж 92 0 объект > эндобдж 93 0 объект > эндобдж 94 0 объект > эндобдж 95 0 объект > эндобдж 96 0 объект > эндобдж 97 0 объект > эндобдж 98 0 объект > эндобдж 99 0 объект > эндобдж 100 0 объект > эндобдж 101 0 объект > эндобдж 102 0 объект > эндобдж 103 0 объект > эндобдж 104 0 объект > эндобдж 105 0 объект > эндобдж 106 0 объект > эндобдж 107 0 объект > эндобдж 108 0 объект > эндобдж 109 0 объект > эндобдж 110 0 объект > эндобдж 111 0 объект > эндобдж 112 0 объект > эндобдж 113 0 объект > эндобдж 114 0 объект > эндобдж 115 0 объект > эндобдж 116 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект > эндобдж 119 0 объект > эндобдж 120 0 объект > эндобдж 121 0 объект > эндобдж 122 0 объект > эндобдж 123 0 объект > эндобдж 124 0 объект > эндобдж 125 0 объект > эндобдж 126 0 объект > эндобдж 127 0 объект > эндобдж 128 0 объект > эндобдж 129 0 объект > эндобдж 130 0 объект > эндобдж 131 0 объект > эндобдж 132 0 объект > эндобдж 133 0 объект > эндобдж 134 0 объект > эндобдж 135 0 объект > эндобдж 136 0 объект > эндобдж 137 0 объект > эндобдж 138 0 объект > эндобдж 139 0 объект > эндобдж 140 0 объект > эндобдж 141 0 объект > эндобдж 142 0 объект > эндобдж 143 0 объект > эндобдж 144 0 объект > эндобдж 145 0 объект > эндобдж 146 0 объект > эндобдж 147 0 объект > эндобдж 148 0 объект > эндобдж 149 0 объект > эндобдж 150 0 объект > эндобдж 151 0 объект > эндобдж 152 0 объект > эндобдж 153 0 объект > эндобдж 154 0 объект > эндобдж 155 0 объект > эндобдж 156 0 объект > эндобдж 157 0 объект > эндобдж 158 0 объект > эндобдж 159 0 объект > эндобдж 160 0 объект > эндобдж 161 0 объект > эндобдж 162 0 объект > эндобдж 163 0 объект > эндобдж 164 0 объект > эндобдж 165 0 объект > эндобдж 166 0 объект > эндобдж 167 0 объект > эндобдж 168 0 объект > эндобдж 169 0 объект > эндобдж 170 0 объект > эндобдж 171 0 объект > эндобдж 172 0 объект > эндобдж 173 0 объект > эндобдж 174 0 объект > эндобдж 175 0 объект > эндобдж 176 0 объект > эндобдж 177 0 объект > эндобдж 178 0 объект > эндобдж 179 0 объект > эндобдж 180 0 объект > эндобдж 181 0 объект > эндобдж 182 0 объект > эндобдж 183 0 объект > эндобдж 184 0 объект > эндобдж 185 0 объект > эндобдж 186 0 объект > эндобдж 187 0 объект > эндобдж 188 0 объект > эндобдж 189 0 объект > эндобдж 190 0 объект > эндобдж 191 0 объект > эндобдж 192 0 объект > эндобдж 193 0 объект > эндобдж 194 0 объект > эндобдж 195 0 объект > эндобдж 196 0 объект > эндобдж 197 0 объект > эндобдж 198 0 объект > эндобдж 199 0 объект > эндобдж 200 0 объект > эндобдж 201 0 объект > эндобдж 202 0 объект > эндобдж 203 0 объект > эндобдж 204 0 объект > эндобдж 205 0 объект > эндобдж 206 0 объект > эндобдж 207 0 объект > эндобдж 208 0 объект > транслировать HVˎ, 5Wo8N D, i ܑ {quUtE? Ej_k $ ̊ [m | ف o ^ ~) ^ ~ l> 50u-Y / * 1 @ \ b] k ^: Ś! KzM դ egy94?

    Преобразователь частоты и приложение

    Преобразователь частоты и его применение

    База данных по электронике, КИПиА
    Поставщик оборудования для преобразователя частоты
    50 Гц 60 Гц 400 Гц Поставщик преобразователя частоты

    Преобразователь частоты и приложение

    Частота Преобразователь представляет собой электронное или электромеханическое управляемое устройство, которое преобразует переменный ток (AC) одной частоты в переменный ток другой частоты.

    Электромеханический преобразователь частоты используется в мотор-генераторных установках или вращающихся преобразователях. Преобразователь частоты также может быть твердотельной электроникой. В полупроводниковых электронных устройствах обычно используется выпрямитель (вырабатывающий постоянный ток), который инвертируется для получения переменного тока желаемой частоты. Инвертор может использовать тиристоры или IGBT. Батарея также может быть встроена в цепь постоянного тока для улучшения рабочих характеристик преобразователя во время кратковременных перебоев в подаче электроэнергии. Преобразователи частоты доступны во многих диапазонах мощности от нескольких ватт до мегаватт, а также в различных частотных диапазонах.

    Применение:
    Преобразователи частоты используются для преобразования энергии из одного стандарта распределения в другой, преобразователи частоты также используются для управления скоростью и крутящим моментом двигателей переменного тока. В этом приложении типичный преобразователь частоты представляет собой трехфазный двухуровневый инвертор с источником напряжения. Фазовые напряжения контролируются с помощью силовых полупроводниковых переключателей и широтно-импульсной модуляции (ШИМ). Полупроводниковые переключающие устройства и встречно-параллельные диоды свободного хода объединены в мост, который используется для подключения всех фаз двигателя к положительному или отрицательному напряжению промежуточного звена.ШИМ изменяет соединения фаз между положительным и отрицательным напряжением промежуточного контура так, чтобы волновое напряжение имело желаемую частоту. Преобразователи частоты обычно используются для управления скоростью насосов и вентиляторов. Во многих приложениях достигается значительная экономия энергии и мощности.

    Стандартные промышленные, авиационные и европейские преобразователи частоты работают с частотой 50 Гц, 60 Гц и 400 Гц (для самолетов и судов).

    Преобразователь частоты — определение, настройка и типы

    Преобразователь частоты — это электронное устройство, которое позволяет преобразовывать электрическую переменную «ток».В этом случае преобразователь частоты преобразует переменный ток определенной (фиксированной) частоты в напряжение с переменной амплитудой и частотой. Короче говоря, это приводит к преобразованию напряжения. Преобразователи частоты могут приводить в действие широкий спектр оборудования, например: трехфазные двигатели, насосы и кондиционеры. В трехфазных двигателях скорость и крутящий момент двигателя переменного тока можно регулировать путем изменения частоты. Этот контроль не ограничивает производительность трехфазного двигателя, он просто повышает его эффективность.Такие двигатели часто используются в промышленных условиях и особенно распространены в области приводной техники.

    Техническая наладка преобразователя частоты

    Электронный преобразователь частоты состоит из выпрямителя, который подает так называемый «промежуточный постоянный ток», и инвертора, который воздействует на него. Это позволяет преобразовывать подаваемый ток в заданное напряжение.

    Конструкции / типы

    a) Преобразователь частоты Вольт-Герца

    Технически это самый простой тип преобразователя частоты.В этом случае регулировка напряжения и частоты подчиняется линейной зависимости. Если для управления двигателем используется преобразователь частоты Volt-Herz, существуют определенные зависимости. Нагрузка на двигатель напрямую влияет на результирующую полезную скорость. Если диапазон изменения скорости невелик или отсутствует прямая пусковая нагрузка, для управления двигателем можно использовать преобразователь частоты Volt-Herz.

    б) преобразователь частоты с векторным управлением

    Преобразователь частоты с векторным управлением не управляет двигателем переменного тока, используя соотношение напряжение / частота, а изменяя входную частоту и напряжение двигателя.Преимущество этого метода — оптимальное управление крутящим моментом. Преобразователи частоты с векторным управлением обладают и другими преимуществами. Например, трехфазные двигатели могут выполнять прямой пуск на высокой скорости, а регулировка скорости может более точно контролироваться.

    Особенности

    Преобразователи частоты, обеспечивающие реальное параметрическое управление, имеют КПД более 95%. Многие производители разрабатывают высококачественные электронные преобразователи частоты и адаптируют их общие функции к конкретным приложениям.С помощью светодиодных индикаторов, панелей управления и программируемых преобразователей частоты можно эффективно контролировать многие параметры и функции, такие как линейные изменения пуска и останова. Путем стандартизации отдельных модулей преобразователи частоты могут быть интегрированы в существующие системы SPS в виде модульных строительных блоков или доступны через последовательные интерфейсы или дополнительные аналоговые выходы. Таким образом, установка и электромонтаж выполняются быстрее благодаря модульному подходу и связанным с ним улучшениям конструкции.

    «Назад

    Преобразователь частоты переменного тока [Что это такое?]

    ♥ Поделиться — это забота ♥

    ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: КАК AMAZON ASSOCIATE Я ЗАРАБАТЫВАЮ НА КВАЛИФИКАЦИОННЫХ ПОКУПКАХ.ДАННЫЙ ПОЧТ СОДЕРЖИТ АФФИЛИРОВАННЫЕ ССЫЛКИ, ПО КОТОРЫМ МЕНЯ ВОЗНАГРАЖДЕН В ДЕНЕЖНОМ ИЛИ ИНОМ СЛУЧАЕ, КОГДА ВЫ ИСПОЛЬЗУЕТЕ ИХ ДЛЯ СОВЕРШЕНСТВОВАНИЯ КВАЛИФИКАЦИОННЫХ ЗАКУПОК. ДЛЯ ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ ПРОЧИТАЙТЕ ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ. ССЫЛКИ НА ЛЮБЫЕ ПРОДУКТЫ ИЛИ УСЛУГИ ПРЕДСТАВЛЯЮТ НАШЕ ЧЕСТНОЕ МНЕНИЕ О НАС, ЧТО, НА МЫ ДУМАЕМ, РЕШИТ ПРОБЛЕМУ НАИЛУЧШЕЕ. МЫ ДЕЙСТВИТЕЛЬНО ЗАБОТИМСЯ О ВАС И ДЕЛАЕМ ЭТО ТОЛЬКО ПОТОМУ ЧТО ЭТО НЕ ВЛИЯЕТ НА ВАШИ ЦЕНЫ. Надеемся, что вы не верите, и мы продолжим предоставлять вам отличный контент!

    Преобразователь частоты или преобразователь частоты — это электронное устройство, которое преобразует переменный ток (переменный ток) определенной частоты в переменный ток другой частоты.Это устройство также может изменять напряжение и является второстепенным по отношению к его основному назначению.

    Изначально это устройство представляло собой электромеханическую машину, известную как генератор-двигатель. С появлением твердотельной электроники стало возможным полностью модернизировать преобразователи частоты.

    Он содержит выпрямитель, который производит постоянный ток (DC), который затем инвертируется для генерации переменного тока. Указанный инвертор может использовать IGBT, IGCT или тиристоры.

    Для преобразования напряжения в выходной цепи или на входе переменного тока также задействован трансформатор.Он также изолирует цепи переменного тока i / p и o / p. Также можно добавить батарею, чтобы уменьшить перебои в питании i / p.

    Выпрямитель

    Как и при работе преобразователя частоты, он преобразует переменный ток в постоянный, а затем обратно в переменный. Итак, это 1-й основной компонент.

    Принцип работы такой же, как и у зарядного устройства. Диодные мосты удерживают синусоидальную волну в одном и том же направлении.

    Итак, волна переменного тока полностью изменилась на постоянный ток.Точно так же частота переменного тока преобразуется в постоянный ток (нулевое значение).

    Как показано на схеме ниже, преобразователь получает 3 входа переменного тока и преобразует их в выход постоянного тока. Трехфазные преобразователи также могут получать однофазное питание, но мощность в лошадиных силах будет снижаться по мере уменьшения генерируемого постоянного тока.

    Рисунок 1: Трехфазный мостовой выпрямитель

    Шина постоянного тока

    На самом деле он присутствует не во всех преобразователях частоты, так как он не учитывает работу с переменной частотой.Тем не менее, он будет постоянно присутствовать в высококачественных преобразователях частоты общего назначения.

    В нем используются катушки индуктивности и конденсаторы для фильтрации напряжения пульсаций до того, как оно попадет в инвертор.

    Инвертор IGBT

    Он использует преобразованный постоянный ток в переменный ток переменной частоты. ШИМ (широтно-импульсная модуляция) используется для управления частотой и напряжением в современных преобразователях.

    Этот инвертор выдает импульсы постоянного тока через 3 пары транзисторов с высокой коммутацией, и эти импульсы имитируют синусоидальные волны.Импульсы определяют не только напряжение, но и частоту.

    IGBT — это трехконтактное полупроводниковое устройство, используемое в качестве переключателя, включенное в инвертор и используемое для быстрого переключения и высокой эффективности. IGBT может обеспечивать очень высокую скорость переключения до 16000 Гц с меньшим тепловыделением.

    Меньше тепла указывает на небольшие радиаторы и устройства меньшего размера. Вот хорошее видео о том, как ШИМ работает в VFD:

    Силовой фильтр

    Это схема фильтра, которая включает в себя индуктивность, сопротивление и емкость.Этот фильтр может фильтровать определенную частоту, чтобы достичь требуемой частоты или отклонить определенную частоту.

    Фильтр электромагнитных помех

    Обычно это фильтр нижних частот, состоящий из шунтирующих конденсаторов и последовательных реакторов. Это позволяет сигналу поступать в оборудование при нормальной работе, а не мешать высокочастотному сигналу помехи.

    Выход инвертора

    Его o / p состоит из последовательных прямоугольных импульсов с регулируемой шириной и фиксированной высотой.Сумма площади импульса дает эффективное напряжение.

    Добавление ширины и пустых мест в них дает частоту.

    Рисунок 2: Выход инвертора.

    Разделительный трансформатор

    Его цель в преобразователе частоты — уменьшить шум и увеличить отношение сигнал / шум. Он используется для подачи питания переменного тока на устройства.

    Он также изолирует нагрузку от преобразователя. Он обеспечивает изоляцию тока для предотвращения электрических помех и поражения электрическим током.

    Он пропускает компоненты переменного тока и блокирует постоянный ток. Разделительный трансформатор, имеющий статическое экранирование, используется для источника питания чувствительного оборудования, такого как лабораторные инструменты, медицинское оборудование или компьютеры,

    • Эти преобразователи изменяют мощность переменного тока с одной частоты на другую, когда две сети работают на разных частотах.
    • Он используется для управления скоростью двигателей переменного тока, таких как вентиляторы и насосы.
    • Они используются в авиалиниях и авиакосмической промышленности.
    • Система HVDC может использоваться в качестве преобразователя частоты для большого количества нагрузок.

    АВТОР

    Аллам

    Аллам по профессии инженер. Он получил степень магистра и бакалавра в области электротехники и электроники. Аллам с отличием окончил университеты с мировым рейтингом и даже выиграл золотую медаль. Его профессиональные знания и опыт включают (но не ограничиваются):

      • Электротехника и электроника
      • Расширенная электроника
      • Аналоговая и цифровая электроника
      • Электронные схемы
      • Силовая электроника

    Готовы ли вы к другим решениям? Давайте займемся проблемами и наконец-то насладимся жизненными благами! Нажмите на изображение ниже, чтобы продолжить чтение …

    Раскрытие информации о аффилированных лицах. Несмотря на то, что мы рекомендуем продукты, которые нам нравятся, некоторые из них связаны с нашими аффилированными партнерами, которые будут платить нам небольшую комиссию БЕСПЛАТНО!

    Заявление об отказе от ответственности. Информация, содержащаяся на этом веб-сайте, должна быть максимально точной и актуальной, но случаются ошибки (вы всегда должны посещать веб-сайт производителя для получения точной информации и последних обновлений). Эта информация была собрана из различных источников и может быть изменена без предварительного уведомления.ElectricProblems.com не несет ответственности и отказывается от какой-либо ответственности за использование предоставленной информации кем-либо.

    Заявление об отказе от ответственности. Эта статья предназначена только для информационных целей и никоим образом не заменяет профессиональные советы. Вы принимаете на себя полную ответственность за использование предоставленной информации (будь то в текстовом, видео или графическом формате), и вы не несете ответственности ElectricProblems.com и его сотрудников (или писателей и редакторов) за травмы, смерть или повреждение оборудования в качестве результат.Вы используете предоставленную информацию на свой страх и риск, который включает, помимо прочего, техническое обслуживание или ремонт, эксплуатацию, установку и меры безопасности.

    Добавить комментарий

    Ваш адрес email не будет опубликован.