Принцип работы асинхронного электродвигателя: принцип работы, описание и функции

Содержание

Принцип работы и устройство асинхронного двигателя

Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.

Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.

В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.

Немного истории

Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла.

Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.

А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора. Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре. Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.

Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.

Каждый год доля асинхронных двигателей, среди всех двигателей мира, составляет 90%.

Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.

Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.

Устройство трехфазного двигателя

Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:

  • статор (неподвижная часть машины)
  • ротор (вращающаяся часть)

Помимо этого, в современных трех фазных двигателях можно найти следующие детали:

  • вал
  • подшипники
  • обмотку
  • заземление
  • корпус (в который монтируются все детали)

Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).

Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.

Ротором называют подвижную часть подобного мотора, которая необходима для плавного пуска. Устройство асинхронного двигателя с фазным ротором является полноценным, ведь именно во вращении ротора состоит основной принцип работы трехфазного мотора.

Принципы, использование которых лежит в работе такого приспособления, как устройство асинхронного двигателя:

  1. Правило левой руки буравчика.
  2. Закон электромагнитной индукции Фарадея.

Исходя из типа обмотки, ротор может быть короткозамкнутым или фазным.

Короткозамкнутым называют ротор, состоящий из множества стальных частей. Работа асинхронного двигателя с короткозамкнутым ротором заключается в следующем: в специальные пазы заливают алюминий, формирующий сердцевины, крепящиеся с обеих сторон стопорными кольцами, такая конструкция получила название «беличья клетка».

Называется так, потому что замкнута накоротко и в ней не может использоваться сопротивление.

Фазным называют ротор, который обмотан по принципу, аналогичному статору, подходящему для трехфазной сети. Края проводки сердцевины замыкают в звезду, а оставшиеся контакты подводят к контактным частям.

Согласно принципу обратимости, любым фазным асинхронным двигателям свойственна возможность работать в качестве двигателя, генератора или электромагнитного тормоза. Электромеханическая характеристика асинхронного двигателя:

  1. Двигатель.
  2. Самый частый вид использования механизма.
  3. Генератор.
  4. Действие машины можно обратить, то есть механическую энергию, приложенную к сердцевине можно превратить в электрический ток. Для этого центральной части нужно вращаться быстрей магнитного поля. Потребляя механическую энергию генератор начнет создавать тормозной момент, возвращая электрическую энергию.
  5. Электромагнитный тормоз.

Изменение порядка чередования фаз приводит к тому, что магнитное поле и сердцевина вращаются в различные стороны, при этом потребляется как механическая энергия, так и напряжение сети, создавая тормозной момент.

Собранная энергия приводит к нагреву машины.

Принцип работы трехфазного двигателя

Принцип работы асинхронного двигателя в следующем: подавая напряжение на статор, в его проводке возникает магнитное воздействие, которая благодаря углу размещения осей обмоток, суммируется и создает итоговый, вращающий магнитный поток.

Вращаясь, он создает в проводниках электродвижущую силу. Обмотка сердцевины, создана таким образом, что при включении в сеть, появляется сила, налаживающаяся на действие статора и создающая движение.

Устройство и принцип действия асинхронного двигателя зависит и от сердцевины. Движение сердцевины происходит, когда магнитная сила статора и пусковой момент преодолевают тормозную мощность ротора и внутренняя часть начинает движение, в этот момент проявляется такой показатель, как скольжение.

Скольжение очень важный параметр. В начале движения ротора оно равно 1, но вместе с ростом частоты движения, наблюдается выравнивание, и как следствие снижаются электродвижущие силы и ток в обмотках, это приводит к снижению вращающего момента.

Существует крайний предел скольжения, превышать это значение не стоит, ведь механизм может «опрокинуться», что приведет к нарушению его нормальной работы. Минимальное скольжение происходит на холостых оборотах мотора, при увеличении момента значение будет расти, до наступления критической отметки.

Для создания асинхронной работы нужно сделать так, чтобы напряжение статора и общий магнитный поток соответствовали значению переменного тока.

Во время пуска вектор результирующего магнитного поля неподвижной части плавно вращается с определенной частотой. Через сечение ротора проходит магнитный поток. Электроэнергия, подходящая к двигателю в момент пуска, уходит на перемагничивание статора и ротора.

Стоит заметить, что для электромоторов, в том числе асинхронных свойственно то, что во время пуска в короткий промежуток времени достигается до 150% крутящего момента. Пусковой ток превышает номинальный в 7 раз и из-за этого, в момент пуска падает напряжение во всей электрической сети.

Если падение напряжения слишком большое, то даже сам двигатель может не запуститься – таков принцип его действия. Поэтому на практике используют устройство плавного пуска.

Устройство плавного пуска

Устройства плавного пуска асинхронных двигателей имеет свою специфику. Оно используется для плавного пуска или остановки электромагнитных двигателей. Может быть механическим, электромеханичес ким или полностью электронным.

Пусковая характеристика асинхронного двигателя предназначена:

  • для плавного разгона асинхронного двигателя
  • для плавной остановки
  • для снижения тока во время пуска
  • для синхронизации нагрузки и крутящего момента

Принцип работы и действия устройства плавного пуска основаны на широкой вариативности переменных. Как следствие, появляются большие возможности для управления режимами работы.

Хорошие и плохие свойства асинхронных моторов

Асинхронный двигатель принцип работы и устройство имеет достоинства и недостатки. Трансформаторы, внутри которых находится вращающийся ротор, используемый для работы двигателя, получили обширное применение так как принцип действия у них простой и понятный, а само устройство работает бесперебойно. Однако и короткозамкнутым и фазным устройствам свойственны определенные недостатки. Причем именно принцип их действия лежит в основе данных минусов.

Плюсы:

  1. Короткозамкнутым и фазным устройствам свойственна простота конструкции.
  2. Так как принцип действия очень прост, устройства получаются дешевыми.
  3. Простота пуска и высокие эксплуатационные характеристики.
  4. Простота пуска обеспечивает легкое управление.
  5. Принцип действия и работы таков, что асинхронные моторы могут работать в тяжелых условиях.

Минусы:

  1. Принцип работы основан на том, что при изменении скорости, теряется мощность.
  2. Когда увеличивается нагрузка, практически сразу начинает снижаться крутящий момент.
  3. В момент плавного пуска, мощность асинхронного мотора достаточно низкая.

Стоит отметить, что в настоящее время, отдается предпочтение устройствам с короткозамкнутым ротором. А вот устройства, в которых ротор фазный используются в редких случаях, как правило, когда достигается большая мощность.

Устройство и принцип действия асинхронного двигателя. АЭ-92

Предмет: «Электрические машины»
Тема: «Устройство и принцип действия асинхронного двигателя. АЭ-92»
Профессия: «Машинист электровоза»
Ярославское подразделение Северного УЦПК
1 | Преподаватели ОАО «РЖД» Коркина И.В. | 2018
Цель
Изучить
назначение,
устройство, принцип действия и
технические
характеристики
асинхронных
двигателей
компрессоров и вентиляторов.
2 | Преподаватели ОАО «РЖД» | 2018
План занятия
1.
2.
3.
4.
5.
Устройство асинхронного двигателя.
Вращающееся магнитное поле статора.
Назначение и устройство АЭ-92.
Принцип действия асинхронного двигателя.
Скольжение асинхронного двигателя.
3 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Асинхронный двигатель состоит из статора и ротора.
Статор включает в себя корпус, подшипниковые щиты,
сердечник и обмотку.
Ротор включает в себя вал, сердечник и обмотку.
Сердечники и статора и ротора выполняются из листов
электротехнической стали. В зависимости от типа обмотки
ротор может быть фазным и короткозамкнутым.
4 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Обмотка статора состоит из отдельных катушек,
объединенных в группы по числу фаз. В каждой фазе катушки
электрически соединены.
Начала и концы фаз выводятся к
шести зажимам для того, чтобы
можно было подключать обмотку
статора по схеме «звезда» или
«треугольник».
При
последовательном
согласном
соединении каждые три катушки
дают пару полюсов.
5 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
6 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
7 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Обмотка короткозамкнутого ротора имеет вид беличьей
клетки. Она выполнена из медных или алюминиевых стержней,
замкнутых накоротко с торцов двумя кольцами. Стержни
обмотки вставляют в пазы сердечника ротора без изоляции, т.к.
напряжение в короткозамкнутой обмотке ротора равно нулю.
Достоинствами двигателей с короткозамкнутым ротором
являются простота конструкции и надежность в эксплуатации.
Недостатки – большой пусковой ток и сравнительно малый
пусковой момент.
8 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
а — беличья клетка, б — ротор с беличьей клеткой из стержней, в — ротор
с литой беличьей клеткой, 1 — короткозамыкающие кольца, 2 — стержни,
3 — вал, 4 — сердечник ротора, 5 — вентиляционные лопасти, 6 —
стержни литой клетки
9 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Асинхронный двигатель с
короткозамкнутым
ротором:
1 – вал ротора;
2 – крышка подшипника;
3 – подшипник;
4 – подшипниковый щит;
5 – корпус;
6 – обмотка статора;
7 – сердечник статора;
8 – короткозамкнутый
ротор;
9 – вентилятор;
10 – кожух; 11 – коробка
выводов;
12 – выводы обмотки
статора;
13 – обмотка ротора.
10 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Обмотка фазного ротора состоит из трех, шести, девяти т.д.
катушек (в зависимости от числа полюсов машины), сдвинутых одна
относительно другой на 120º (в двухполюсной машине), 60º (в
четырехполюсной) и т.д.
С одной стороны контакты проводников
фазного ротора соединяются вместе в
общую точку («звезда»), а противоположные
концы выводятся на контактные кольца, к
которым посредством щеток подключают
трехфазный реостат.
Достоинством двигателей с фазным ротором
является
большой
пусковой
момент.
Недостаток – сложность конструкции
11 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Подключение внешнего сопротивления в обмотку ротора используется для
облегчения пуска двигателя и для контроля скорости двигателя. По мере
пуска добавочное сопротивление в обмотке ротора уменьшают. Это
происходит или плавно, или ступенчато, в зависимости от используемой
пусковой аппаратуры.
12 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
Асинхронный
двигатель
с
фазным
ротором:
1, 7 – подшипники; 2, 6 – подшипниковые щиты; 3 – корпус; 4сердечник статора с
обмоткой; 5 – ротор; 8 – вал; 9 – коробка выводов; 10 – лапы; 11 – контактные
кольца.
13 | Преподаватели ОАО «РЖД» | 2018
Устройство асинхронного двигателя
14 | Преподаватели ОАО «РЖД» | 2018
Вращающееся магнитное поле
Электрические машины переменного тока подразделяются на два
основных вида: асинхронные и синхронные. Принцип действия этих машин
основан на использовании вращающегося магнитного поля.
В двухполюсной машине переменного тока вращающееся поле
создается при питании трехфазным током трех катушек (фаз) оси которых,
сдвинуты одна относительно другой в пространстве на 120°.
15 | Преподаватели ОАО «РЖД» | 2018
Вращающееся магнитное поле
16 | Преподаватели ОАО «РЖД» | 2018
Вращающееся магнитное поле
Продолжая рассматривать процесс прохождения токов,
по катушкам обмотки статора, можно легко доказать, что в
течение одного периода изменения тока магнитный поток
машины, а следовательно, и находящийся в ее поле магнит
повернутся на один оборот.
Т.о., при питании трехфазным током трех катушек,
сдвинутых одна относительно другой на угол 120°, возникает
магнитное поле, вращающееся в пространстве с постоянной
частотой вращения.
17 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Асинхронный двигатель АЭ92-4/02.
А – асинхронный;
Э – электровозный;
9 – диаметр сердечника статора 900 мм;
2 – длина сердечника статора 200 мм;
4 – число полюсов рабочих обмоток.
Асинхронный
трёхфазный
электродвигатель
с
короткозамкнутым ротором служит приводом главных
компрессоров и центробежных вентиляторов электровозов
переменного тока.
18 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Техническая характеристика:
Напряжение линейное
В
380
Ток фазный
А
90
Мощность
кВА
40
Гц
50
об/мин
1425
КПД

0,855
Масса
кг
390 – 400
Частота тока
Частота вращения ротора
19 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Состоит из стальной сварной станины образованной
из двух торцовых колец приваренных к продольным рёбрам и
обшивки. В станине закреплён сердечник статора состоящий
из шихтованных листов электротехнической стали, в пазах
которой уложена обмотка.
Обмотка статора состоит из жёстких пропитанных
катушек (медь прямоугольного сечения) которая в пазах
статора закреплены клиньями. Изоляция обмотки применена
класса Н, 6 выводов обмотки статора начало и конец
закреплены в коробке выводов, расположенной на станине
( две пары полюсов). Вывода соединены по схеме звезда.
20 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Ротор состоит из шихтованного сердечника так же набранного
из листов электротехнической стали. Пазы сердечника залиты
алюминиевым сплавом который образует короткозамкнутую
обмотку в виде «беличьего» колеса. В сердечнике ротора
имеются осевые вентиляционные каналы. Ротор вместе с валом
вращается в подшипниках установленных в капсулах
подшипниковых щитов.
Подшипниковые щиты крепят болтами к торцовым кольцам.
Подшипники закрывают крышками для защиты от пыли и
грязи. Подшипниковые щиты стальные, сварные, имеют
вентиляционные окна с сетками. К щиту крепятся 2
лабиринтные крышки (внутренняя и наружная) которые в
системе образуют капсулу для подшипников. В капсулу
заправляют смазку.
21 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
Внутри двигатель снабжён вентилятором. Вентилятор
центробежный, с радиальными лопатками и направляющим
диском, обтекаемой формы отлит из алюминиевого сплава.
Вентилятор засасывает воздух с противоположной стороны
через окна и отверстия в подшипниковом щите. Поступающий
воздух охлаждает лобные части обмоток статора, после чего
выбрасывается наружу через окна в подшипниковом щите.
22 | Преподаватели ОАО «РЖД» | 2018
Назначение и устройство АЭ-92
23 | Преподаватели ОАО «РЖД» | 2018
Принцип действия асинхронного двигателя
U→ВМП→ЭДС в обм. ротора→iрот.→Fэл.магн. →М→
→ ротор вращается в ту же сторону, что и МП статора
Частота вращения магнитного поля статора обозначается – n1, и
определяется по формуле:
60 f
n1
P
где: f – частота питающего тока
P – число пар полюсов
60 – коэффициент перевода единиц измерения из об/сек в
об/мин
24 | Преподаватели ОАО «РЖД» | 2018
Принцип действия асинхронного двигателя
Колтво
стат.
обм.
3
Кол-во
пар
полюсо
в (Р)
1
Подсчет Значение
n1
по n1
формуле ( об/мин)
Примечание
60×50/1
3000
2
60×50/2
1500
3
60×50/3
1000
3 обмотки по кругу занимают пространство
3600, поэтому за один период изменения
тока магнитное поле повернется на 3600.
3 обмотки из 6 по кругу занимают
пространство 1800, поэтому за один период
изменения тока магнитное поле повернется
на1800.
3 обмотки из 9 по кругу занимают
пространство 1200, поэтому за один период
изменения тока магнитное поле повернется
на1200.
6
9
Каждые 3 обмотки у асинхронного двигателя приравнивается к одной паре полюсов
25 | Преподаватели ОАО «РЖД» | 2018
Скольжение асинхронного двигателя
Частота
вращения
ротора
обозначается

n2
Для того, чтобы на валу ротора создавался вращающий момент,
необходимо
выполнение
данного
условия:
n2‹n1
Поэтому такие двигатели называются асинхронными. Приставка
«а» означает «не», то есть несинхронные двигатели.
Отставание ротора от магнитного поля статора характеризуется
скольжением (S). Скольжение определяется по данной
формуле:
.
n1 n2
S
100%
n1
26 | Преподаватели ОАО «РЖД» | 2018
Скольжение асинхронного двигателя
Скольжение показывает, на сколько процентов частота вращения
ротора меньше частоты вращения магнитного поля статорных
обмоток. Значение n2 при определенном скольжении для
различных асинхронных двигателей приведены в таблице:
Количест Количество
во
пар полюсов
статорных (Р)
обмоток
3
1
6
2
9
3
27 | Преподаватели ОАО «РЖД» | 2018
n1 (об/мин) S (%)
3000
1500
1000
n2 (об/мин)
4
4
4
2880
1440
960
Домашнее задание
1. А.В. Грищенко «Электрические машины и преобразователи
подвижного состава», стр. 215-220.
2. А.А. Дайлидко «Электрические машины тягового
подвижного состава », стр. 119-141, 143-146.
3. Работа с конспектом.
4. Подготовка к опросу по пройденному материалу.
28 | Преподаватели ОАО «РЖД» | 2018
Спасибо за внимание
Желаю успехов!
29
| преподаватели ОАО «РЖД» | 2018

Устройство и принцип работы асинхронного электродвигателя

1. Тема. Устройство и принцип работы асинхронного электродвигателя. Профессия: «Электромонтер по ремонту и обслуживанию

Министерство образования, науки и молодежи Республики
Крым
Ленинский филиал государственного бюджетного
профессионального образовательного учреждения
Республики Крым
«Приморский профессиональный техникум»
ТЕМА. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ АСИНХРОННОГО
ЭЛЕКТРОДВИГАТЕЛЯ.
ПРОФЕССИЯ: «ЭЛЕКТРОМОНТЕР ПО РЕМОНТУ И
ОБСЛУЖИВАНИЮ ЭЛЕКТРООБОРУДОВАНИЯ В
СЕЛЬСКОХОЗЯЙСТВЕННОМ ПРОИЗВОДСТВЕ»
ВЫПОЛНИЛ МАСТЕР ПРОИЗВОДСТВЕННОГО ОБУЧЕНИЯ
КАРПЕНКО А. В.

2. 1. Общие сведения об электрических машинах

1. ОБЩИЕ СВЕДЕНИЯ ОБ ЭЛЕКТРИЧЕСКИХ
МАШИНАХ
Электрические
машины — это
электромеханические преобразователи, в
которых осуществляется преобразование
электрической энергии в механическую или
механической в электрическую.
Электродвигатель – электрическая машина,
преобразующая электрическую энергию в
механическую.
Генератор — электрическая машина,
преобразующая механическую энергию в
электрическую.
Асинхронная машина – это машина, в
которой ротор вращается с частотой отличной
от частоты вращения магнитного поля
статора. (электродвигатели)
Синхронная машина – это машина, в
которой ротор вращается с частотой
совпадающей с частотой вращения
магнитного поля статора. (генераторы)
Трехфазные асинхронные двигатели
изобретены выдающимся русским
электротехником М. О. ДоливоДобровольским в 1889 г.
Электропривод
станков
Электромобили
Устройства
автоматики
Бытовые
электроприборы
Насосы
Подъёмнотранспортные
машины
Вентиляторы
Транспортеры

6.

2. УСТРОЙСТВО ТРЕХФАЗНОГО АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ Статор – неподвижная
часть электродвигателя
Ротор – подвижная часть
электродвигателя
Статор состоит из:
1 – станина из литой стали
2 – сердечник статора из
листов электротехнической
стали
3 – трёхфазная обмотка
статора из меди
Обмотка статора может быть соединена звездой или
треугольником
Υ/∆ : 660/380
380/220
Ротор бывает двух видов: короткозамкнутый и фазный.
Короткозамкнутый ротор состоит из:
1 – вал
2 – сердечник ротора
3 – обмотка ротора (алюминиевые или медные стержни)
4 – торцевые кольца
1
2
3
4
Фазный ротор состоит из:
1 – сердечник
2 – трехфазная обмотка
3 – контактные кольца
4 – вал
Асинхронный электродвигатель с
короткозамкнутым ротором
1 – станина
2 – сердечник статора
3 – обмотка статора
4 – сердечник ротора с
короткозамкнутой
обмоткой
5 – вал
Асинхронный электродвигатель с
короткозамкнутым ротором
Электродвигатель с фазным ротором
1 – станина
2 – обмотка статора
3 – ротор
4 – контактные кольца
5 – щетки
Условные обозначения асинхронных двигателей на
электрических схемах
Асинхронный двигатель
с короткозамкнутым
ротором
Асинхронный двигатель
с фазным ротором

14.

3. Принцип работы асинхронного двигателя 3. ПРИНЦИП РАБОТЫ АСИНХРОННОГО
ДВИГАТЕЛЯ
Принцип работы асинхронного
электродвигателя основан на явлении
электромагнитной индукции и законе Ампера.
На обмотку статора подается переменное
напряжение, под действием которого по этим
обмоткам протекает ток и создает вращающееся
магнитное поле. Магнитное поле воздействует на
обмотку ротора и по закону электромагнитной
индукции наводит в них ЭДС. В обмотке ротора
под действием наводимой ЭДС возникает ток.
Ток в обмотке ротора создаёт собственное
магнитное поле, которое вступает во
взаимодействие с вращающимся магнитным
полем статора. В результате на ротор действует
сила, которая создает вращающий момент.

16. 4. ПАРАМЕТРЫ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

60 f1
n1
p
— частота вращения магнитного
поля статора в об/мин
n1 n
S
100%
n1
— скольжение в %
n n1 (1 S )
f 2 f1 S
— частота вращения ротора в об/мин
— частота тока в стержнях ротора в Гц

17.

4. ПАРАМЕТРЫ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ P2
100%
P1
M ном
9,55 P2
n
— КПД асинхронного двигателя в %
— вращающий момент в Н·м

18. 5. Режимы работы трехфазной асинхронной машины

5. РЕЖИМЫ РАБОТЫ ТРЕХФАЗНОЙ
АСИНХРОННОЙ МАШИНЫ
Режим
двигателя
генератора
электромагнит
— ного тормоза
Скольжение
Частота
Характеристика
0
n ≤ n1 Ротор вращается в направлении
S
n > n1 Ротор вращается в направлении
S >1
n
вращения магнитного поля
статора. Вращающий момент
уравновешивает тормозной
момент
вращения магнитного поля
статора
противоположном направлению
вращения магнитного поля
статора

19. Спасибо за внимание!

СПАСИБО ЗА ВНИМАНИЕ!

Принцип действия асинхронного электродвигателя | мтомд.инфо

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу — Fэм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Принцип действия асинхронного электродвигателя

Частота вращения ротора n2 будет всегда меньше синхронной частоты n1, то есть ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой n2 равной частоте вращающегося поля статора n1. В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного электродвигателя принципиально не может вращаться синхронно c полем статора. Разность между частотами поля статора n2 и ротора n1 называется частотой скольжения Δn.

Отношение частоты скольжения к частоте поля называется скольжением:

В общем случае скольжение в асинхронном электродвигателе может изменяться от нуля до единицы. Однако номинальное скольжение Sн обычно составляет от 0,01 до 0,1 %. Преобразуя формулу скольжения,  получим выражение частоты вращения ротора:

Обмотка ротора асинхронного электродвигателя электрически не связана с обмоткой статора. В этом отношении электродвигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора — вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится неизменяющимся во времени магнитным потоком, а ЭДС в обмотках электродвигателя — потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора электродвигателя вместе с ним вращается.

ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном электродвигателе.

Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Δn. Она же наводит в обмотке ротора ЭДС E2, частота которой f2 связана со скольжением S:

Учитывая, что f1=рn1/60, f2=рn1S/60.

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при f1=50 Гц).

Принцип действия трехфазного асинхронного двигателя

Неподвижная часть асинхронного двигателя – статор имеет трехфазную обмотку, при включении которой в сеть возникает вращающееся магнитное поле. Скорость вращения этого поля

n1=f1∙60/p.

В расточке статора расположена вращающаяся часть двигателя – ротор, который состоит из вала, сердечника и обмотки. Обмотка ротора состоит из стержней, уложенных в пазы сердечника и замкнутых с двух сторон кольцами.

Вращающееся поле статора пересекает проводники (стержни) обмотки ротора и наводит в них э. д. с. Но так как обмотка ротора замкнута, то в стержнях возникают токи. Взаимодействие этих токов с полем статора создает на проводниках обмотки ротора электромагнитные силы Fпр, направление которых определяется по правилу «левой руки». Силы Fпр стремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил Fпр, приложенных к отдельным проводникам, создает на роторе электромагнитный момент М, приводящий его во вращение со скоростью n2. Вращение ротора через вал передается исполнительному механизму.

Таким образом, электрическая энергия, поступающая в обмотку статора из сети, преобразуется в механическую.

Направление вращения магнитного поля статора, а следовательно, и направление вращения ротора, зависит от порядка следования фаз напряжения, подводимого к обмотке статора. При необходимости изменить направление вращения ротора асинхронного двигателя следует поменять местами любую пару проводов, соединяющих обмотку статора с сетью. Например, порядок следования фаз АВС заменить порядком СВА. Скорость вращения ротора n2 асинхронного двигателя всегда меньше скорости вращения поля n1, так как только в этом случае возможно наведение э.д.с. в обмотке ротора. Разность скоростей ротора и вращающегося поля статора характеризуется величиной, называемой скольжением,

s=(n1 — n2)/n1.

Часто скольжение выражается в процентах:

s=[(n1 — n2)/n1]∙100.

Скольжение асинхронного двигателя может изменяться в пределах от 0 до 1. При этом s≈0 соответствует режиму холостого хода, когда ротор двигателя не испытывает противодействующих моментов, а s≈1 соответствует режиму короткого замыкания, когда противодействующий момент двигателя превышает вращающий момент и поэтому ротор двигателя неподвижен (n2=0).

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Так, например, для двигателей нормального исполнения мощностью от 1 до 1000 кВт номинальное скольжение приблизительно составляет соответственно 0,06-0,01, т.е. 6-1%.

Скорость вращения ротора асинхронного двигателя равна

n2=(1-s)∙n1.

На щитке двигателя указывается номинальная скорость вращения nн. Эта величина дает возможность определить синхронную скорость вращения n1, номинальное скольжение sн, а также число полюсов обмотки статора 2р.

Источник: Кацман М. М. Электрические машины и трансформаторы. — М.: 1971, с. 288-290.

Принцип работы асинхронного двигателя с короткозамкнутым ротором


Пожалуй, нет ни одного серьезного механизма или машины, где не применялись бы электрические двигатели. В автомобиле, с стиральной машине, сельхозтехнике и мелких бытовых приборах — везде используется электрический двигатель. Наибольшее распространение получил асинхронный электрический двигатель и о нем сегодня мы поговорим.

Содержание:

  1. Синхронные и асинхронные двигатели в машиностроении и в быту
  2. Преимущества АС двигателя
  3. Двигатель с фазным ротором
  4. Короткозамкнутый ротор и его особенности
  5. Как работает магнитное поле

Синхронные и асинхронные двигатели в машиностроении и в быту

Благодаря своей простоте и экономичности, асинхронный электромотор может пригодиться не только в машиностроении и в быту, но мы рассмотрим именно такие двигатели, которые встречаются чаще всего. Причиной популярности асинхронного двигателя переменного тока стали его доступность, возможность подключения к любой розетке электропитания без всяких выпрямителей и согласовательных устройств, а также простотой обслуживания и ремонта в случае чего.

 

Существуют два вида асинхронных электромоторов — с короткозамкнутым ротором и с фазным ротором. Но для начала стоит разобраться в конструкции и узнать принцип работы асинхронного двигателя с короткозамкнутым ротором, после чего станет понятна причина его популярности. Несмотря на то, что асинхронный мотор был разработан еще в конце 19 века, до сих пор его конструкция особенных изменений не претерпела.

Преимущества АС двигателя

Главной особенностью характеристик этого двигателя и самым ценные их проявлением, считают тот факт, что нагрузка на двигатель практически никак не зависит от частоты вращения вала. Магнитные поля и электродвижущую силу изучают уже лет двести, а наш асинхронный двигатель стал лучшим подтверждением тому, это один из самых эффективных методов трансформации энергии.

Принцип работы этого мотора как раз основан на взаимодействии подвижного магнитного поля и токопроводящего элемента, распложенного внутри этого поля. Двигатель, как известно еще со школьной скамьи, состоит из двух базовых узлов — рoтора и статора. Статoр как раз генерирует вращающееся магнитное поле. Конструктивно, статoр представляет собой металлический сердечник, на него намотана обмотка из медной проволоки с термолаковой изоляцией.

Внутри статора, внутри его магнитного поля, поместили ротор, который представляет собой вал с сердечником и обмоткой. На рисунке ниже изображена схема устройства асинхронного мотора.
По схеме понятно, что статор состоит из наборных пластин и нескольких обмоток, которые намотаны на пластинчатый сердечник. Эти обмотки могут подсоединяться по разным схемам, в зависимости от типа напряжения. Каждая их обмоток сдвинута друг отнoсительно друга на 120 градусов. А ротор такого двигателя может быть принципиально двух типов.

Двигатель с фазным ротором

Ротор фазного типа принципиально не отличается обмoткой от статора. Это трехфазная обмотка, концы которой соединены по схеме «звезда». Свободные концы обмоток подключены к токоприемным кольцам. Кольца контактируют с проводником посредством щеток и поэтому есть возможность установить в схему подключения дополнительный ограничивающий резистор.

Резистор, как устройство плавного пуска, служит для того, чтобы была возможность уменьшать значения пускового тока, который может достигать довольно крупных значений.

Короткозамкнутый ротор и его особенности

Короткoзамкнутый ротор представляет собой наборной сердечник из специальной листовой стали. Сердечник имеет каналы, которые не изолируют обмотки друг от друга, а наоборот — они залиты расплавленным легкоплавким легким металлом, а он образует прутки, которые в торцах фиксируются на кольцах.

Металл, из которого выполняют эти прутки и которым заливают пространства между сердечниками, зависит от требуемых характеристик двигателя и это может быть как медь, так и алюминий.

Как работает магнитное поле

Работает двигатель на основе процесса получения механической работы в результате воздействия на проводник движущегося магнитного поля. На обмотку статора подают напряжение, причем каждая фаза образует свой магнитный поток. Частота магнитного потока напрямую зависит от частоты подаваемого тока на концы обмотки.

За счет того, что обмотки сдвинуты на 120 градусов, сдвигаются и магнитные поля, причем сдвигаются они как в пространстве, так и во времени. Суммарный магнитный поток и будет вращать ротор двигателя. Это происходит потому, что вращающийся поток суммы частот каждой из обмоток, образуют в роторе электродвижущую силу. Поскольку ротор — короткозамкнутый, то он имеет свою собственную электрическую цепь, которая взаимодействуя с магнитным полем статора, образует крутящий момент, направленный в сторону движения магнитного потока статора.

Следовательно, принцип работы асинхронного двигателя с короткозамкнутым ротором, объясняется вращением магнитного суммарного потока статора и его взаимодействия с возникшим в результате подачи тока, магнитным полем ротора.

Читайте также:


Асинхронные Принцип действия — Энциклопедия по машиностроению XXL

Принцип действия индукционного насоса рассмотрим на примере трехфазного насоса. Работает он аналогично асинхронному электродвигателю. Трехфазная обмотка, расположенная на плоском или цилиндрическом магнитопроводе, создает бегущее или вращающееся магнитное поле, возбуждающее токи в жидком проводнике. Взаимодействие индуктированных в жидкости токов с магнитным полем приводит к появлению в потоке электромагнитной объемной силы, заставляющей проводящую среду двигаться в осевом направлении.[c.455]
Принцип действия однофазного конденсаторного асинхронного двигателя в основном не отличается от принципа действия трехфазного асинхронного двн-  [c.499]

Принцип действия потенциометра состоит в следующем при изменении э. д. с. термопары равновесие системы нарушается и на вход усилителя поступает напряжение разбаланса с соответствующим знаком. Последнее преобразуется и усиливается до величины, достаточной для приведения в действие асинхронного реверсивного двигателя типа РД-09. Ротор двигателя, вращаясь, перемещает подвижные контакты реохорда до момента наступления равенства между э. д. с. термопары и напряжением между точками А и В.  [c.60]

Принцип действия асинхронного электродвигателя трехфазного тока основан на взаимодействии вращающегося магнитного поля (статора) и помещенного в него короткозамкнутого витка (ротора).  [c. 16]

Устройство и принцип действия машин переменного тока. Синхронные машины. Асинхронные двигатели. Принцип действия асинхронных двигателей и их устройство. Роторы — фазовый и короткозамкнутый.  [c.507]

Крановые электродвигатели переменного тока. Асинхронные двигатели, основные части и детали, принцип действия, мощность, пуск в ход, регулирование скорости, реверсирование и торможение.  [c.521]

Принцип действия асинхронного электродвигателя. Понятие об электродвигателях с короткозамкнутым ротором и с фазовым ротором. Пуск в ход асинхронных электродвигателей, реверс, регулирование числа оборотов. Соединение обмоток электродвигателя на звезду и треугольник. Возможные неисправности электродвигателей и способы их предупреждения.  [c.551]

При совместном использовании синхронных и асинхронных вариаций получен расширенный аналог (обобщение) центрального уравнения Лагранжа. На основе этого уравнения составлено интегральное равенство (называемое здесь центральным интегральным равенством), связывающее действие по Лагранжу и действие по Гамильтону. Полученное интегральное равенство позволяет находить синхронные и асинхронные вариации действия при различных вариантах задания условий варьирования концевых точек траектории. Из центрального интегрального равенства как частные случаи следуют классические принципы стационарного действия и другие интегральные выражения изменения действия при варьировании.  [c.106]

Принцип действия вихревого тормозного генератора заключается в следующем. Частоту вращения вала асинхронного электродвигателя с контактными кольцами можно регулировать включением внешнего сопротивления в цепь ротора только в том случае, если электродвигатель достаточно нагружен. При небольшой нагрузке или при опускании груза этот способ регулирования неэффективен.  [c.148]


Двигатели переменного-тока по своему устройству и принципу действия делятся на синхронные и асинхронные.  [c.133]

Принцип действия асинхронного преобразователя частоты основан на зависимости частоты тока в обмотке ротора /, от скорости ротора п относительно скорости вращающегося магнитного поля статора п .  [c.68]

Расскажите принцип действия асинхронного электродвигателя.  [c.170]

Вращающееся поле, пересекая проводники обмотки ротора, па- Дит (индуктирует) в них электродвижущую силу (э. д. с.), а под ее влиянием в замкнутых проводниках ротора течет переменный ток. Взаимодействие тока в проводниках ротора с вращающимся магнитным полем создает усилие на проводниках или вращающий момент на валу двигателя. Двигатель называется индукционным в соответствии с принципом действия. Асинхронным (или несинхронным) двигателем он назван потому, что при одинаковой (т. е. синхронной) скорости вращения ротора и магнитного поля не будет пересечения полем проводников ротора, не будет индуктироваться э. д. с., не будет тока в проводниках ротора и не будет вращающего усилия на валу ротора. Асинхронный двигатель только тогда развивает момент вращения, когда скорость вращения его ротора будет меньше скорости вращения поля.  [c.73]

Принцип действия асинхронных электродвигателей основан на том что обмотка статора создает вращающееся поле, которое наводит э. д. с.  [c.108]

Случай голономной системы со связями, не зависящими от ВРЕМЕНИ и с консервативными силами, в предположении консервативных сил принцип стационарного действия допускает следующую специальную формулировку, аналогичную той, которая была указана без доказательства в п. 10 для принципа Гамильтона для голономной системы со связями, не зависящими от времени, соответствующее действие для какого-нибудь естественного движения между двумя достаточно близкими конфигурациями будет не только стационарным, но и минимальным по сравнению с тем, которое имелось бы для всякого асинхронно-варьированного изоэнергетического движения. Здесь мы также, чтобы не слишком задерживаться, откажемся от доказательства этого утверждения ),  [c.411]

Для приведения в действие привода дверей кабины и шахты используются малогабаритные односкоростные маломощные асинхронные электродвигатели. Устройство и принцип работы этих электродвигателей ничем не отличается от устройства и принципа работы асинхронных электродвигателей, описанных в гл. 10. На валу ротора при помощи шпоночного соединения крепится шкив 5.  [c.27]

Способы пуска в ход асинхронных двигателей. Перемена вращения и регулирование числа оборотов. Типы двигателей переменного тока. Коллекторные двигатели переменного тока, принцип их действия и устройство.  [c.507]

Об изменении действия по Гамильтону и действия по Лагранжу при синхронном и асинхронном варьировании. Левая часть интегрального равенства (8) представляет собой выражение, которое равно нулю при предположениях принципа Гамильтона-Остроградского. Действительно, если кривые сравнения получаются изохронным виртуальным варьированием (А = 0) и при условиях на концах  [c.108]

Стремление к унификации формул аналитической механики приводит к идее рассматривать реономные системы как склерономные с п + 1 обобщённой координатой, включив в это число время. Здесь изучается вспомогательная склерономная система, построенная на основе функционала действие по Якоби. Обсуждается обоснование расширенного принципа Гамильтона-Остроградского вспомогательной системы с применением асинхронного варьирования. Получены уравнения движения и условия трансверсальности.  [c.111]

Трудности, связанные с необходимостью применения асинхронного варьирования и теории связанных задач вариационного исчисления, устраняются, если исключить время из выражения принципа стационарного действия. Возможность этого обусловлена наличием интеграла энергии (10.1) последний может быть представлен в форме  [c.712]


Индукционный С. основан на принципе вращающегося магнитного поля и по идее представляет собой асинхронный двигатель. В однофазных индукционных С. (фнг. 2) вращающееся поле создается двумя полями (электромагниты А -а В), смещенными друг относительно друга на 90°. Действию вращающегося поля подвергается короткозамкнутый ротор (обычно алюминиевый диск В), могущий вращаться свободно. Его приводит во вращение взаимодействие между вращающимся полем и  [c.288]

Головные САПР ЭМП (см. рис. 2.5) отличаются от ОСАПР ЭМП в основном более у ким классом объектов проектирования. Обычно в основу классификации ЭМП берут ряд признаков уровень мощности (большой, средней и малой) принцип действия (синхронные, асинхронные, постоянного тока) целевое назначение (турбогенераторы, гидрогенераторы, приводные двигатели, машины систем автоматики и т. п.) и др. Используя эти приз-лаки, в отрасли выделяется ряд классов ЭМП, и для каждого класса создается головная САПР. По своим функциям и структуре головная САПР близка к отраслевой САПР, но только в рамках соответствующей подотрасли. САПР ЭМП отдельных организаций, их функции и структура рассмотрены выше в 2.4.  [c.53]

Принцип действия тахогенератора переменного тока. Асинхронный тахогепе-ратор состоит из двух неподвижных однофазных и электрически не связанных обмоток, расположенных в пазах статора, и цилиндрического неподвижного сердечника. Между расточкой статора и сердечником расположен тонкостенный цилиндрический ротор. Для большей точности работы цилиндрический ротор выполняется из металла с большим удельным сопротивлением (нейзильбер, фосфористая бронза и  [c.498]

Асннхронныв элеггродввгатель. Принцип действия асинхронного электродвигателя (см. рис. 9.1.2, в) основан на воздействии вращающегося магнитного поля обмоток статора на короткозамкнутые витки обмотки ротора. Вращающееся поле индуктирует токи в этих витках и заставляет их вращаться вместе с ротором с асинхронной скоростью, меньшей скорости вращения поля. С уменьшением относительной скорости убывают ЭДС и сила  [c.545]

Совершенно иной принцип действия асинхронных муфт (рис. 228). На валу 10 жестко закреплена ведущая часть 7 муфты. Она входит в выточку ведомой части 6 муфты и имеет на своей периферии катушку 2. При пропускании тока через катушку 2 вокруг нее создается магнитное поле. Так как вал 10 вращается, то с ним в )ащается и магнитное поле катушки. Оно увлекает за собой во вращение ведомую часть совершенно также, как вращающееся поле асинхронного двигателя увлекает за собой его ротор. Вращение ведомой части происходит с некоторым скольжением, т. е. скорость вращения ведомой части несколько меньше скорости ведущей. Величину этого расхождения можно менять в довольно значительных пределах, создавая тем самым регулирование скорости вращения ведомого вала при одной и той же скорости ведущего вала 10. Это достигается изменением силы тока, питающего катушку, с помощью реостата И и колец 8 п 9. Надо только иметь в виду, что при большом коэффициенте трансформации скорости вращения к. п. д. муфты будет низок. Так как катушка муфты имеет большое число витков, то для работы муфты достаточны небольшие токи, обеспечиваемые электронным устройством 1.  [c.439]

Основанное на дру. ом принципе действия поворотное ГУ (рис. 1.17) выпускает фирма Пайнер (ФРГ). На крюк 1 крана через переходное кольцо 2 навешивается подвесная скоба 3, на которую через подпятник опирается вал 4. Выходной конец послрднего, выполненный в виде замкнутой петли 8, используется для навески собственно ГУ для груза. На валу 4 закреплена статорная часть 5 асинхронного электродвигателя.. Роторная часть 6 закреплена в представляющем собой маховик корпусе 7, опирающемся на вал 4 через подшипники качения.  [c.40]

Принцип действия реле контроля скорости заключается в следующем. В реле типа РКС (рис. 102, б) валик 5 реле связывается с валом электродвигателя, скорость которого необходимо контролировать. На этом валике закрепляется постоянный магнит 6, выполненный из специального железонйкелевого сплава и имеющий форму цилиндра. На том же валике 5 на отдельных подшипниках устанавливается кольцо 7, несущее на внутренней своей поверхности обмотку 8, аналогичную обмотке ротора короткозамкнутого асинхронного двигателя. При вращении магнита в стержнях обмотки 8 наводится э. д. с. и появляется ток, в результате чего кольцо 7 повернется в сторону вращения магнита точно так же, как ротор асинхронного двигателя начинает вращаться вслед за полем. При повороте кольца 7 толкатель 9 в зависимости от направления вращения вала электродвигателя воздействует на контактную систему 11 или 12. При приближении скорости двигателя к нулю толкатель 9 перестает нажимать на контактные пружины 10 или 13 и контактная система приходит в нормальное положение. С валом электродвигателя реле соединяется посредством специального поводка с эластичной шайбой.  [c.167]

Аналогичное подразделение можно сделать и для коллекторных машин. Наиболее характерная конструкция щеточно-коллектор-ного узла ЭМММ представлена на рис. 1.3. Щетки / располагаются диаметрально в один ряд вдоль образующей коллектора 2 и крепятся с помощью прижимных пружин 3. Внутри каждой группы возможна дополнительная классификация по частоте вращения — тихоходные и быстроходные (частота вращения выше 20 Гц) по принципу действия — синхронные, асинхронные и т. д.  [c.8]

Компенсированный двигатель схемы Основа получил большое распространение благодаря лучшим условиям коммутирования. На роторе этой машины (схема фиг. 35) располагается первичная обмотка Их, присоединенная при помощи колец к питающёй сети. В тех же впадинах ротора, в которых уложена первичная обмотка, располагается добавочная, соединенная с коллектором и далее через щетки с обмоткой статора, замкнутой на реостат, к-рый оказывается введенным в ее нулевую точку. По принципу действия эта машина ничем не отличается от предыдущей. Коммутация такого двигателя протекает весьма удовлетворительно. Трансформаторная эдс имеет постоянную ы личину независимо от скорости ротора. Она м. б. сильно ограничена путем укорочения шага обмотки, соединенной с коллектором. Реактивная эдс в этом двигателе невелика. Двигатель м. б. построен для значительных мощностей, до1 ООО kW. Кпд двигателя Осноеа равен практически кпд нор-.мальной асинхронной машины, т. к. потери в железе в первом меньше благодаря относительно небольшому объему железа первичной системы, помеща-е.мой на роторе. Главный недостаток двигателя — невозможность включения в сеть с напряжением выше 500 V без особого трансформатора, к-рый д. б. рассчитан на полную мощность двигателя.  [c.323]


Принципиально несложно в обобщенной модели ЭМ также учесть влияние высщих гармоник магнитного поля, вызываемых размещением обмотки I конечном числе пазов и неравномерностью воздушного зазора, если предположить линейность ее параметров (отсутствуют высшие гармоники насыщения). Это позволяет рассматривать действие каждой к-м высшей гармоники независимо от других и использовать принцип суперпозиции. Так, реальный асинхронный ЭД при этом предположении можно заменить системой связанных общим валом ЭД с последовательно соединенными обмотками статоров, в воздушном зазоре каждого из которых присутствует только одна гармоника поля. Каждый такой элементарный ЭД имеет в к раз большее число пар полюсов, а скорость поля в нем в к раз. меньше скорости основной волны, и поэтому ЭДС, индуктируемые в их обмотках, имеют частоту, сети. Описание процессов для каждого ЭД выполняется идентично и при принятой интерпретации система уравнений равновесия АД будет включать уравнение обмотки статора и и (по числу учитываемых гармоник) подобных уравнений ротора.  [c.110]

Эта двойная формулировка, определяющая естественное движение по сравнению с асинхронно-варьированными изоэнергетическими движениями, и составляет так называемый принцип стационарного действия в только что указанной общей форме, обнимающей также и случай неконсервативных сил, формулировка этого принципа принадлежит Гёльдеру ).  [c.410]

Кроме того, если примем во внимание, что, с одной стороны, полная энергия Е остается неизменной при переходе от естественного движения к какому-нибудь асинхронно-варьированному изоэнергетиче-скому движению и что, с другой стороны, этот переход в метрическом многообразии равносилен замене динамической траектории естественного движения произвольной бесконечно близкой кривой с теми же концами принципа стационарного действия (24 ) будем иметь, что динамическая траектория естественного движения между двумя указанными конфигурациями Q, Q при заданном значении энергии будет некоторой кривой метрического многообразия для которой криволинейный интеграл (25 ) имеет стационарное или минимальное, если обе конфигурации достаточно близки) значение.  [c.413]

Тождество (54), как характеристическое для решений лагранжевой системы, по сравнению со всеми возможными асинхронно-варьиро-ванными решениями выражает так называемый принцип варьированного действия.  [c.441]

Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]

Составляются интегральные равенства, представляющие собой выражения изменения действия при варьировании. В качестве действия рассматриваются классические действия по Гамильтону, по Лагранжу и вириальная форма действия для систем Четаева-Румянцева. Обобщения интегральных равенств получены при рассмотрении истинной траектории и варьированных кривых при совместном применении синхронного и асинхронного варьирования. Даётся обоснование расширенного принципа Гамильтона-Остроградского в теории реономных систем. На основе способа варьирования по Гельмгольцу сформулированы новые обобщения принципа Гёльдера.  [c.106]

Электродвигатель. Для осуществления вращения шпинделя сверлильного станка применяется асинхронный электродвигатель, состоящий нз статора и коротко-замкнутого ротора. Работа асинхронного двигателя с короткозамкнуты.м роторо.м основана на принципе вращающегося магнитного поля, которое образуется в результате действия трехфазного тока, поступающего  [c.170]


Принцип работы асинхронного двигателя

Двигатель, работающий по принципу электромагнитной индукции , известен как асинхронный двигатель. Электромагнитная индукция — это явление, при котором электродвижущая сила индуцирует электрический проводник, когда он находится во вращающемся магнитном поле.

Статор и ротор — две важные части двигателя. Статор является неподвижной частью, и он несет перекрывающиеся обмотки, в то время как ротор несет основную обмотку или обмотку возбуждения.Обмотки статора равномерно смещены друг от друга на угол 120 °.

Асинхронный двигатель — это двигатель с одним возбуждением, то есть питание подается только на одну часть, то есть на статор . Термин «возбуждение» означает процесс создания магнитного поля на частях двигателя.

Когда на статор подается трехфазное питание, на нем создается вращающееся магнитное поле. На рисунке ниже показано вращающееся магнитное поле, созданное в статоре:

Считайте, что вращающееся магнитное поле индуцирует против часовой стрелки.Вращающееся магнитное поле имеет подвижные полярности. Полярность магнитного поля меняется в зависимости от положительного и отрицательного полупериода питания. Изменение полярности заставляет магнитное поле вращаться.

Проводники ротора неподвижны. Этот неподвижный проводник отсекает вращающееся магнитное поле статора, и из-за электромагнитной индукции в роторе индуцируется ЭДС. Эта ЭДС известна как ЭДС, индуцированная ротором, и возникает из-за явления электромагнитной индукции.

Проводники ротора закорачиваются либо концевыми кольцами, либо с помощью внешнего сопротивления. Относительное движение между вращающимся магнитным полем и проводником ротора индуцирует ток в проводниках ротора. Когда ток течет по проводнику, на нем наводится магнитный поток. Направление потока ротора такое же, как и направление тока ротора.

Теперь у нас есть два потока: один из-за ротора, а другой из-за статора. Эти потоки взаимодействуют друг с другом.На одном конце проводника потоки нейтрализуют друг друга, а на другом конце плотность потока очень высока. Таким образом, поток высокой плотности пытается подтолкнуть проводник ротора к области потока низкой плотности. Это явление вызывает крутящий момент на проводнике, и этот крутящий момент известен как электромагнитный крутящий момент.

Направление электромагнитного момента и вращающегося магнитного поля одинаковы. Таким образом, ротор начинает вращаться в том же направлении, что и вращающееся магнитное поле.

Скорость ротора всегда меньше вращающегося магнитного поля или синхронной скорости. Ротор пытается вращаться со скоростью ротора, но всегда ускользает. Таким образом, двигатель никогда не работает со скоростью вращающегося магнитного поля, и по этой причине асинхронный двигатель также известен как асинхронный двигатель.

Почему ротор никогда не работает с синхронной скоростью?

Если скорость ротора равна синхронной скорости, относительного движения между вращающимся магнитным полем статора и проводниками ротора не происходит.Таким образом, на проводнике не наводится ЭДС, и на нем возникает нулевой ток. Без тока крутящий момент также не создается.

По вышеуказанным причинам ротор никогда не вращается с синхронной скоростью. Скорость ротора всегда меньше скорости вращающегося магнитного поля.

В качестве альтернативы принцип работы асинхронного двигателя можно также объяснить следующим образом.

Давайте разберемся в этом, рассмотрев единственный проводник на неподвижном роторе.Этот проводник рассекает вращающееся магнитное поле статора. Учтите, что вращающееся магнитное поле вращается по часовой стрелке. Согласно закону электромагнитной индукции Фарадея, в проводнике индуцируется ЭДС.

Когда цепь ротора замыкается внешним сопротивлением или концевым кольцом, ротор индуцирует ЭДС, которая вызывает ток в цепи. Направление индукционного тока ротора противоположно направлению вращающегося магнитного поля. Ток ротора индуцирует магнитный поток в роторе.Направление потока ротора такое же, как у тока.

Взаимодействие потоков ротора и статора создает силу, которая действует на проводники ротора. Сила действует на ротор по касательной и, следовательно, вызывает крутящий момент. Крутящий момент толкает проводники ротора, и, таким образом, ротор начинает двигаться в направлении вращающегося магнитного поля. Ротор начинает движение без какой-либо дополнительной системы возбуждения, поэтому двигатель называется самозапускающимся двигателем .

Работа двигателя зависит от напряжения, наведенного на ротор, поэтому его называют асинхронным двигателем .

Каков принцип работы асинхронного двигателя | by Starlight Generator

Асинхронный двигатель

Асинхронный двигатель, также известный как «асинхронный двигатель», представляет собой устройство, которое помещает ротор во вращающееся магнитное поле и получает вращающий момент под действием вращающегося магнитного поля. поле, тем самым вращая ротор.

Статор — это не вращающаяся часть двигателя. Основная задача — создать вращающееся магнитное поле. Вращающееся магнитное поле не достигается механически. Вместо этого он подключен к паре электромагнитов переменным током, так что его свойства магнитного полюса меняются циклически, поэтому он эквивалентен вращающемуся магнитному полю.

Принцип работы

Вращающееся магнитное поле, создаваемое статором (скорость вращения — это синхронная скорость вращения n1) и относительное движение обмотки ротора, линия магнитной индукции, режущая обмотку ротора, создает наведенную электродвижущую силу, тем самым генерирование индуцированного тока в обмотке ротора.Индуцированный ток в обмотке ротора взаимодействует с магнитным полем, создавая электромагнитный момент, который заставляет ротор вращаться. Поскольку индуцированный ток постепенно уменьшается по мере того, как скорость ротора постепенно приближается к синхронной скорости, генерируемый электромагнитный крутящий момент также соответственно уменьшается. Когда асинхронный двигатель работает в режиме двигателя, скорость ротора меньше синхронной скорости.

Разница между синхронным двигателем и асинхронным двигателем

Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока.Разница между этими двумя типами заключается в том, что синхронный двигатель вращается со скоростью, привязанной к частоте сети, поскольку он не полагается на индукцию тока для создания магнитного поля ротора. Напротив, асинхронный двигатель требует скольжения: ротор должен вращаться немного медленнее, чем переменный ток, чтобы вызвать ток в обмотке ротора.

Маленькие синхронные двигатели используются в устройствах синхронизации, таких как синхронные часы, таймеры в приборах, магнитофонах и прецизионных сервомеханизмах, в которых двигатель должен работать с точной скоростью; Точность скорости — это точность частоты линии электропередачи, которая тщательно контролируется в крупных взаимосвязанных сетевых системах.

Синхронные двигатели доступны от самовозбуждающихся субфракционных размеров в лошадиных силах до мощных промышленных размеров.

Starlight Power обеспечивает синхронный генератор мощностью от 20 до 2500 кВт различных производителей, таких как Stamford, Siemens, Marathon, Engga, Leroy-Somer и генератор переменного тока Starlight. Свяжитесь с нами по электронной почте: [email protected]

В диапазоне дробных лошадиных сил большинство синхронных двигателей используются там, где требуется точная постоянная скорость. Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время.В промышленных масштабах большой мощности синхронный двигатель выполняет две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в работу. Во-вторых, он может работать с опережающим или единичным коэффициентом мощности и тем самым обеспечивать коррекцию коэффициента мощности.

Электродвигатель

— Принципы работы трехфазного двигателя — роторный, полевой, магнитный и синхронный

Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока.Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения. По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается.Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3600 об / мин.

В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а по сути являются короткозамкнутыми. Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, сильно напоминает ходовое колесо, используемое в клетках для песчанок .Когда двигатель первоначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, перемещающееся с синхронной скоростью. Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть токопроводящие проводники находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться.Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован. Асинхронный двигатель имеет высокий пусковой момент.

В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.

Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей. В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока.Беличья клетка не действует на синхронных скоростях по причине, описанной выше.

Однофазные асинхронные и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным принципам, описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с расщепленной фазой, конденсатором , пуском или заштрихованными полюсами.Синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. Д., Основаны на схемах сопротивления или гистерезиса.

Введение в индукционный электродвигатель и электродвигатель переменного тока

Асинхронный электродвигатель — это электродвигатель переменного тока, в котором электрический ток в роторе электродвигателя, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора. Один из наиболее распространенных электродвигателей, используемых в большинстве приложений, известен как асинхронный двигатель.Чаще всего используются трехфазные и однофазные асинхронные двигатели . Асинхронный электродвигатель также называют асинхронным электродвигателем, потому что он работает со скоростью, меньшей, чем синхронная скорость, которая представляет собой скорость вращения магнитного поля во вращающейся машине, и зависит от частоты и количества полюсов электродвигателя.

Принцип работы асинхронного двигателя / синхронного двигателя

Когда переменный ток подается на обмотку статора асинхронного двигателя, переменный ток начинает течь через статор или главную обмотку.Этот переменный ток создает переменный поток, называемый основным потоком. Этот основной поток также связывается с проводниками ротора и, следовательно, разрезает проводник ротора. Асинхронные электродвигатели работают по закону электромагнитной индукции Фарадея.

Согласно закону электромагнитной индукции Фарадея , в роторе индуцируется ЭДС. Поскольку цепь ротора замкнута, ток начинает течь в роторе. Эти токи называют током ротора. Этот ток ротора создает свой собственный поток, называемый потоком ротора.Поскольку этот поток создается по принципу индукции, двигатель, работающий по этому принципу, получил название асинхронный двигатель . Теперь есть два потока, один из которых является основным, а другой называется потоком ротора. Эти два потока создают желаемый крутящий момент, необходимый двигателю для вращения. Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.

В асинхронный двигатель всегда работает со скоростью, меньшей, чем синхронная скорость, потому что вращающееся магнитное поле, которое создается в статоре, будет генерировать магнитный поток в роторе, который заставит ротор вращаться, но из-за отставания магнитного потока в роторе от магнитного потока в статоре, ротор никогда не достигнет скорости i своего вращающегося магнитного поля.е. синхронная скорость. В основном существует два типа асинхронного электродвигателя , которые зависят от входного источника питания: однофазный асинхронный двигатель и трехфазный асинхронный двигатель.

Скольжение асинхронного двигателя / синхронного двигателя

Ротор асинхронного двигателя всегда вращается со скоростью, меньшей, чем синхронная скорость. Разница между потоком (Ns) и скоростью ротора (N) называется скольжением.

% Скольжение = (Нс — Н) x 100 / Н

Скорость скольжения = Нс — Н

Различные типы асинхронных двигателей

ОДНОФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ

  • Двухфазные асинхронные двигатели
  • Конденсаторные индукционные электрические двигатель
  • Конденсатор пусковой конденсатор асинхронный двигатель
  • Асинхронный двигатель с экранированными полюсами •

ТРЕХФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ

  • Асинхронные электродвигатели с короткозамкнутым ротором
  • Асинхронный электродвигатель с контактным кольцом
Конструкция трехфазного асинхронного двигателя
Трехфазный асинхронный двигатель является наиболее широко используемым электродвигателем.Почти 80% механической энергии, используемой в промышленности, обеспечивается трехфазными асинхронными электродвигателями из-за их простой и прочной конструкции, низкой стоимости, хороших рабочих характеристик, отсутствия коммутатора и хорошего регулирования скорости. В трехфазном асинхронном электродвигателе мощность передается от статора к обмотке ротора посредством индукции. Электродвигатель индукционного типа также называется асинхронным двигателем , поскольку он работает со скоростью, отличной от синхронной.

Как и любой другой электродвигатель, асинхронные двигатели также имеют две основные части, а именно ротор и статор.

Статор: Как видно из названия, статор является неподвижной частью электродвигателя. Обмотка статора помещается в статор асинхронных двигателей, и на нее подается трехфазное питание.

Ротор: Ротор — это вращающаяся часть асинхронного электродвигателя. Ротор связан с механической нагрузкой через вал. Ротор трехфазных асинхронных двигателей дополнительно классифицируется как ротор с короткозамкнутым ротором, , ротор с контактным кольцом, ротор с фазной обмоткой или ротор с фазовой обмоткой.В зависимости от типа конструкции ротора трехфазный асинхронный двигатель классифицируется как: асинхронный двигатель с короткозамкнутым ротором, асинхронный двигатель с контактным кольцом, асинхронный двигатель с фазной обмоткой или асинхронный двигатель с фазной обмоткой.

УПРАВЛЕНИЕ СКОРОСТЬЮ ИНДУКЦИОННЫХ ДВИГАТЕЛЕЙ

Скорость асинхронного двигателя можно легко контролировать, изменяя частоту трехфазного источника питания. Чтобы поддерживать постоянную (номинальную) плотность потока, приложенное напряжение также должно изменяться в той же пропорции, что и частота (как диктуется законом Фарадея).Этот метод управления скоростью электродвигателя известен как вольт на Гц. При превышении номинальной скорости приложенное напряжение обычно поддерживается постоянным на номинальном значении; эта операция называется постоянным HP. На низких частотах (т. Е. Скоростях) необходимо повышать напряжение, чтобы компенсировать влияние сопротивления статора.

Применение трехфазных и однофазных двигателей

Трехфазный асинхронный двигатель — это двигатели, наиболее часто используемые в различных отраслях промышленности.Они просты, прочны, дешевы и просты в обслуживании. Они работают практически с постоянной скоростью от нуля до полной нагрузки. Скорость зависит от частоты, и, следовательно, эти двигатели нелегко приспособить для управления скоростью. В трехфазной системе есть три однофазных линии с разностью фаз 120 °. Таким образом, вращающееся магнитное поле имеет ту же разность фаз, которая заставляет ротор двигаться. Помимо того, что однофазный двигатель также преобладает для бытовых и маломощных двигателей, это связано с тем, что он используется в бытовой технике и портативных станках.Как правило, они используются, когда трехфазное питание недоступно. Конструкция однофазного асинхронного электродвигателя почти аналогична трехфазному асинхронному двигателю с короткозамкнутым ротором, за исключением того, что в случае однофазного асинхронного электродвигателя статор имеет две обмотки вместо одной фазы, по сравнению с одной обмоткой статора на каждую. фаза в трехфазном асинхронном двигателе.

Преимущества асинхронных двигателей
  • Асинхронные электродвигатели имеют только одну движущуюся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными.Электродвигатели постоянного тока , напротив, имеют коллектор и угольные щетки, которые изнашиваются и нуждаются в периодической замене. Трение между щетками и коллектором также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Недостатки асинхронных двигателей

Поскольку скорость асинхронного электродвигателя зависит от частоты переменного тока, который его питает, он вращается с постоянной скоростью, если вы не используете частотно-регулируемый привод.По сравнению с асинхронными двигателями, скорость двигателей постоянного тока намного проще контролировать, просто повышая или понижая напряжение питания. Двигатели такого типа могут быть довольно тяжелыми из-за их катушечной обмотки. В отличие от двигателей постоянного тока , они не могут работать от батарей или любого другого источника постоянного тока без использования инвертора. Это потому, что им нужно изменяющееся магнитное поле, чтобы вращать ротор .

Принцип работы электрического асинхронного двигателя / синхронного двигателя Видео-гид

Кредит: 1, 2, 3

Каков принцип работы трехфазного асинхронного двигателя?

Электродвигатель преобразует электрическую энергию в механическую, которая затем подается на различные типы нагрузок.Двигатели переменного тока работают от источника переменного тока и делятся на синхронные, однофазные, трехфазные асинхронные двигатели и двигатели специального назначения. Из всех типов трехфазные асинхронные двигатели наиболее широко используются в промышленности, главным образом потому, что для них не требуется пусковое устройство.

Трехфазный асинхронный двигатель получил свое название от того факта, что ток ротора индуцируется магнитным полем, а не электрическими соединениями.

Принцип действия трехфазного асинхронного двигателя основан на создании вращающегося магнитного поля (r.м.ф.).

Создание вращающегося магнитного поля

Статор асинхронного двигателя состоит из нескольких перекрывающихся обмоток, смещенных на электрический угол 120 °. Когда первичная обмотка или статор подключены к трехфазному источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью.

Направление вращения двигателя зависит от последовательности фаз линий питания и порядка, в котором эти линии подключены к статору.Таким образом, изменение мест подключения любых двух первичных клемм к источнику питания изменит направление вращения на противоположное.

Число полюсов и частота приложенного напряжения определяют синхронную скорость вращения статора двигателя. Двигатели обычно имеют 2, 4, 6 или 8 полюсов. Синхронная скорость, термин, обозначающий скорость вращения поля, создаваемого первичными токами, определяется следующим выражением.

Синхронная скорость вращения = (120 x частота питания) / Число полюсов статора

Производство магнитного потока

Вращающееся магнитное поле в статоре — это первая часть работы.Чтобы создать крутящий момент и, таким образом, вращаться, роторы должны пропускать ток. В асинхронных двигателях этот ток исходит от проводников ротора. Вращающееся магнитное поле, создаваемое в статоре, пересекает токопроводящие стержни ротора и индуцирует электродвижущую силу (ЭДС).

Обмотки ротора асинхронного двигателя либо замкнуты через внешнее сопротивление, либо напрямую закорочены. Следовательно, ЭДС, индуцированная в роторе, заставляет ток течь в направлении, противоположном направлению вращающегося магнитного поля в статоре, и приводит к скручивающему движению или крутящему моменту в роторе.

Как следствие, скорость ротора не достигает синхронной скорости среднеквадратичного значения в статоре. Если бы скорости совпадали, ЭДС не было бы. индуцированный в роторе, ток не будет протекать, и, следовательно, не будет создаваться крутящий момент. Разница между скоростями статора (синхронной скорости) и ротора называется скольжением.

Вращение магнитного поля в асинхронном двигателе имеет то преимущество, что не требуется никаких электрических соединений с ротором.

В результате получается мотор:
  • Самозапуск
  • Взрывозащищенный (из-за отсутствия контактных колец или коммутаторов и щеток, которые могут вызвать искрение)
  • Прочная конструкция
  • Недорого
  • Легче в обслуживании

Каков принцип электродвигателя?

Все мы слышали об электродвигателях, но всегда возникал вопрос: «Каков принцип электродвигателя»? Электродвигатель — это устройство, преобразующее электрическую энергию в механическую.В основном существует три типа электродвигателей.

  1. Двигатель постоянного тока.
  2. Асинхронный двигатель.
  3. Синхронный двигатель.

Все эти двигатели работают по более или менее одинаковому принципу. Работа электродвигателя в основном зависит от взаимодействия магнитного поля с током.

Принцип действия электродвигателя: движение электродвигателя за счет электромагнетизма

Основная идея электродвигателя действительно проста: вы помещаете в него электричество на одном конце, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять какой-либо машиной.Как это работает на практике? Как именно преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, нам нужно вернуться почти на 200 лет назад.

Предположим, вы берете кусок обычного провода, делаете из него большую петлю и прокладываете его между полюсами мощного постоянного подковообразного магнита. Теперь, если вы подключите два конца провода к батарее, провод ненадолго подпрыгнет. Удивительно, когда видишь это впервые. Это похоже на волшебство! Но есть совершенно научное объяснение, .

Когда электрический ток начинает течь по проводу, он создает вокруг него магнитное поле. Если вы поместите провод рядом с постоянным магнитом, это временное магнитное поле будет взаимодействовать с полем постоянного магнита. Вы знаете, что два расположенных рядом магнита либо притягиваются, либо отталкиваются. Точно так же временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнита, и это то, что заставляет провод подпрыгивать.

Принцип действия электродвигателя: правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя удобную мнемонику (вспомогательное средство для запоминания), называемую правилом левой руки Флеминга (иногда называемым правилом моторики).

Вытяните большой, указательный и второй пальцы левой руки так, чтобы все три были под прямым углом. Если вы укажете пальцем C в направлении тока C (который течет от положительного к отрицательному полюсу батареи), а первый палец F — в направлении поля F (который течет от северного полюса магнита к южному), ваш thu M b покажет направление, в котором движется провод M .

Это…

  • F Первый палец = F ield
  • Se C нижний палец = C текущий
  • Чт M b = M otion

Принцип действия электродвигателя: принцип работы электродвигателя

Теоретически предположим, что мы сгибаем наш провод в квадратную U-образную петлю, так что фактически через магнитное поле проходят два параллельных провода. Один из них отводит электрический ток от нас по проводу, а другой возвращает ток обратно.Поскольку ток течет в проводах в противоположных направлениях, правило левой руки Флеминга говорит нам, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включаем электричество, один из проводов будет двигаться вверх, а другой — вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно — и мы были бы на пути к созданию электродвигателя. Но этого не может произойти с нашей нынешней настройкой: провода быстро запутаются.Более того, если бы катушка могла вращаться достаточно далеко, произошло бы кое-что еще.

Когда катушка достигает вертикального положения, она переворачивается, поэтому электрический ток течет через нее в противоположном направлении. Теперь силы на каждой стороне катушки меняются местами. Вместо того, чтобы постоянно вращаться в одном и том же направлении, он движется назад в том направлении, откуда только что пришел! Представьте себе электропоезд с таким двигателем: он продолжает двигаться вперед и назад на месте, фактически никуда не уезжая.

На практике есть два способа решить эту проблему. Один из них — использовать электрический ток, который периодически меняет направление, известный как переменный ток (AC). В небольших двигателях с батарейным питанием, которые мы используем дома, лучшим решением является добавление компонента, называемого коммутатором, к концам катушки.

Не беспокойтесь о бессмысленном техническом названии: это немного старомодное слово «коммутация» немного похоже на слово «коммутируют». Это просто означает движение туда и обратно так же, как поездка на работу означает движение туда и обратно.В своей простейшей форме коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины, и его задача — реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждой половине коммутатора.

Электрический ток от аккумуляторной батареи подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару незакрепленных соединителей, называемых щетками, сделанных либо из кусочков графита (мягкий углерод, похожий на «грифель» карандаша), либо из тонких кусков упругого металла, который (как следует из названия) «задевает» коммутатор.Когда коммутатор установлен, при прохождении электричества по цепи катушка будет постоянно вращаться в одном и том же направлении.

Такой простой экспериментальный двигатель, как этот, не способен развивать большую мощность. Мы можем увеличить вращающую силу (или крутящий момент), которую может создать двигатель, тремя способами: либо у нас может быть более мощный постоянный магнит, либо мы можем увеличить электрический ток, текущий через провод, либо мы можем сделать катушку так, чтобы она много «витков» (петель) очень тонкой проволоки вместо одного «витка» толстой проволоки.

На практике двигатель также имеет постоянный магнит, изогнутый в форме круга, поэтому он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большую силу может создать двигатель.

Хотя мы описали несколько различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

Вы можете посмотреть здесь, чтобы получить более наглядное представление о принципе работы электродвигателей.

Подробнее о Linquip

Простое руководство по эффективности двигателя: что это такое и что делать

Принцип работы электродвигателя: работа двигателей постоянного тока

Принцип работы двигателя постоянного тока в основном зависит от правила левой руки Флеминга.В базовом двигателе постоянного тока между магнитными полюсами размещен якорь. Если обмотка якоря питается от внешнего источника постоянного тока, ток начинает течь по проводникам якоря. Поскольку проводники проводят ток внутри магнитного поля, они испытывают силу, которая стремится вращать якорь.

Предположим, что проводники якоря под N полюсами полевого магнита проводят ток вниз (крестики), а проводники под S полюсами проводят ток вверх (точки).Применяя правило левой руки Флеминга, можно определить направление силы F, испытываемой проводником под N полюсами, и силу, испытываемую проводниками под S-полюсами. Обнаружено, что в любой момент силы, действующие на проводники, имеют такое направление, что они стремятся вращать якорь.

Опять же, из-за этого вращения проводники под N-полюсами попадают под S-полюс, а проводники под S-полюсами попадают под N-полюс. В то время как проводники идут от N-полюса к S-полюсу и S-полюса к N-полюсу, направление тока через них меняется на противоположное с помощью коммутатора.

Из-за этого реверсирования тока все проводники проходят под N-полюсами, переносят ток в нисходящем направлении, а все проводники, проходящие под S-полюсами, переносят ток в восходящем направлении, как показано на рисунке. Следовательно, каждый проводник находится под N-полюсом, испытывающим силу в одном и том же направлении, и то же самое верно для проводников, проходящих под S-полюсами. Это явление помогает развивать постоянный и однонаправленный крутящий момент.

Принцип работы электродвигателя: работа асинхронных двигателей

Работа электродвигателя в случае асинхронного двигателя немного отличается от электродвигателя постоянного тока.В однофазном асинхронном двигателе, когда на обмотку статора подается однофазное питание, создается пульсирующее магнитное поле, а в трехфазном асинхронном двигателе, когда трехфазное питание подается на трехфазную обмотку статора, возникает вращающееся магнитное поле. производится.

Ротор асинхронного двигателя может быть с обмоткой или с короткозамкнутым ротором. Каким бы ни был тип ротора, проводники на нем закорочены на концах, образуя замкнутый контур. Из-за вращающегося магнитного поля поток проходит через воздушный зазор между ротором и статором, проходит мимо поверхности ротора и, таким образом, разрезает проводник ротора.

Следовательно, согласно закону электромагнитной индукции Фарадея, в проводниках замкнутого ротора будет циркулировать индуцированный ток. Величина наведенного тока пропорциональна скорости изменения магнитной связи во времени. Опять же, эта скорость изменения магнитной связи пропорциональна относительной скорости между ротором и вращающимся магнитным полем. В соответствии с законом Ленца ротор будет пытаться уменьшить все причины возникновения в нем тока. Следовательно, ротор вращается и пытается достичь скорости вращающегося магнитного поля, чтобы уменьшить относительную скорость между ротором и вращающимся магнитным полем.

Принцип работы электродвигателя: работа синхронных двигателей

В синхронном двигателе, когда сбалансированное трехфазное питание подается на неподвижную трехфазную обмотку статора, создается вращающееся магнитное поле, которое вращается с синхронной скоростью. Теперь, если внутри этого вращающегося магнитного поля поместить электромагнит, он будет магнитно заблокирован с вращающимся магнитным полем, и первый будет вращаться вместе с вращающимся магнитным полем с той же скоростью, что и с синхронной скоростью.

Принцип работы асинхронного двигателя

| GoHz.com

Асинхронные двигатели работают по принципу индукции тока в роторе, который должен вращаться со скоростью, меньшей, чем синхронная скорость, чтобы возникла индукция. Это называется скоростью скольжения, и ее не следует путать со скольжением шеста.

Почему у асинхронных двигателей нет проскальзывания полюсов и почему у других двигателей есть проскальзывание полюсов? Я попытаюсь ответить вам на этот вопрос, но сначала давайте определим полюса и синхронную скорость применительно к работе электродвигателя.

Полюса в электродвигателе относятся к полюсам магнитной цепи и входят в комплект по два, как и у обычного магнита. Один на севере (N), а другой на юге (S). Если у двигателя два полюса, у него будет один N-полюс и один S-полюс. Если у двигателя четыре полюса, у него будет 2 полюса N, 2 полюса S и так далее.

Синхронная скорость в электродвигателе — это скорость, которая создается бегущей волной магнитного поля, когда она вращается вокруг магнитной цепи статора. Синхронная скорость двигателя равна 120 * f / p, где f = системная частота в Гц, а p равно количеству полюсов в асинхронном двигателе.

Все двигатели переменного тока состоят из двух основных частей: (1) обмотка статора и железный сердечник и (2) обмотка ротора и железный сердечник, который может свободно вращаться и соединен с валом двигателя. В трехфазном асинхронном двигателе, когда на статор подается трехфазный источник напряжения, создается магнитное поле, которое вращается с синхронной скоростью. Когда этот магнитный поток пересекает обмотку ротора, он индуцирует ток (через закон индукции Фарадея) в обмотке ротора, который создает второй магнитный поток.Эти два магнитных потока вращаются с синхронной скоростью и соединяются вместе как два магнита и, таким образом, передают крутящий момент непосредственно на вал ротора.

Теперь это ключевая мысль, которую вы должны понять, чтобы понять принцип работы асинхронного двигателя и почему нет проскальзывания полюсов. Чтобы статор, поданный в поле, индуцировал ток в цепи ротора, ротор должен вращаться медленнее, чем синхронная скорость, чтобы соблюдался закон индукции Фарадея и магнитный поток проходил через обмотки ротора.Если ротор вращается с синхронной скоростью, магнитный поток статора не будет проходить через обмотки ротора, и в роторе не будет индуцироваться ток, и второе магнитное поле будет равно нулю. Следовательно, ротор должен вращаться со скоростью, меньшей, чем синхронная скорость, чтобы в цепи ротора возникла индукция. Это называется скоростью скольжения, и ее не следует путать со скольжением шеста.

Другой тип (переменного тока) двигателя — это синхронный двигатель, в котором на роторе имеется обмотка возбуждения с независимым возбуждением.Для работы синхронного двигателя вал ротора вращается с синхронной скоростью, и магнитное поле, создаваемое обмоткой возбуждения, соединяется с полем статора, и крутящий момент передается на вал. В случае, когда крутящий момент на валу превышает силу магнитного поля, действующую на ротор, может произойти проскальзывание полюсов, что приводит к очень высоким значениям тока статора и крутящего момента на валу. Это состояние может привести к серьезному повреждению двигателя и срабатыванию автоматических выключателей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *