Принцип работы преобразователя напряжения: Как работает преобразователь напряжения? Виды, мощность, схемы

Содержание

Как работает преобразователь напряжения? Виды, мощность, схемы

В этой статье рассматриваются электросхемы преобразователей напряжения, назначение и принцип работы оборудования. Также здесь объясняется, какие бывают устройства, даются рекомендации по их выбору, указываются ключевые характеристики.

Принцип работы преобразователей напряжения

Преобразователи представляют собой устройства, предназначенные для преобразования входного напряжения. Они могут повышать или понижать его, преобразовывать постоянный электроток в переменный и наоборот. Соответственно, принцип функционирования оборудования зависит от его типа. Существуют следующие основные разновидности устройств.

Преобразователи постоянного напряжения в постоянное

Они также называются DC/DC‑конвертеры. Применяются в вычислительной аппаратуре, средствах связи, схемах управления и автоматики. Обеспечивают снижение или повышение напряжения от источника электропитания (например, аккумуляторов или гальванических элементов) до нужного для питания нагрузки значения. Некоторые модели также могут инвертировать сигнал для получения напряжения с обратной полярностью. Электросхема конвертеров обычно включает такие элементы, как входной фильтр, конденсатор, катушки индуктивности, ключевого транзистора или тиристора, диода. Управление ключом осуществляется с помощью ШИМ. Ниже представлена функциональная схема повышающего преобразователя.

В категорию DC/DC‑конвертеров входят высоковольтные преобразователи. Они используются для нагрузок с малыми потребляемыми токами, которые не требуют значительной мощности источника электропитания. К ним относятся, например, счетчики радиационных излучений, ионизаторы воздуха, аноды электроннолучевых трубок в осциллографах.

Большинство современных ДС/ДС‑преобразователей имеет гальваническую развязку. В таких устройствах входные и выходные электроцепи разделены изоляционным барьером. Это решение позволяет защитить людей и подключаемую нагрузку от аварийного повышения напряжения на входе, а также улучшает помехозащищенность конвертера.

Преобразователи переменного напряжения в постоянное (выпрямители)

AC/DC‑преобразователи применяются для преобразования переменного напряжения (например, стандартного напряжения бытовых или промышленных электросетей 220/380 В) в стабилизированное постоянное напряжение. Устройства широко применяются в промышленной автоматизации, изготовлении источников питания, телекоммуникациях, на транспорте, в гальванике, энергосиловых установках, сварочных аппаратах. В зависимости от используемых силовых ключей, выпрямители бывают:

1. Тиристорными. Они состоят, как правило, из таких основных компонентов:

  • трансформатор. Необходим для понижения/повышения напряжения, а также гальванической развязки выпрямителя от электросети;
  • тиристорный мост (вентильная группа). Предназначен для преобразования переменного электротока в постоянный и регулирования (стабилизации) параметров выпрямленного тока, вне зависимости от колебаний напряжения на входе;
  • блок управления вентильной группой;
  • емкостной, индуктивный или комбинированный фильтр (LC-фильтр).
    Предназначен для сглаживания пульсаций выходных параметров.

2. Транзисторными. В состав таких выпрямителей входят следующие элементы:

  • входной LC-фильтр. Необходим для защиты питающей сети от помех, создаваемых выпрямителем;
  • диодный мост;
  • ВЧ-преобразователь. Предназначен для преобразования постоянного тока в высокочастотный импульсный и регулирования (стабилизации) параметров выпрямленного тока, вне зависимости от колебаний входного напряжения;
  • ВЧ-трансформатор. Предназначен для понижения/повышения напряжения импульсного тока;
  • диодный или транзисторный выпрямительный мост. Предназначен для преобразования высокочастотного импульсного тока в постоянный;
  • блок управления;
  • выходной LC-фильтр.

Преобразователи постоянного напряжения в переменное

Эти устройства называют DC/AC‑инверторами. Они могут применяться как отдельная аппаратура или входить в состав источников бесперебойного питания и систем преобразования электроэнергии. Формирование переменного напряжения осуществляется с помощью транзисторов и ШИМ. Периодическое высокочастотное открывание/закрывание транзисторов в электросхеме обеспечивает изменение направление движения тока и получение синусоиды.

Важно не только то, как работает инвертор напряжения, но и какую топологию формирования синусоидального сигнала он использует. Есть два основных варианта:

Топология «полумост» со сквозной нейтралью. Она отличается минимальным количеством силовых транзисторов и достаточно простой схемой. К недостаткам относится необходимость применения двухполярного источника электропитания, удвоенное число высоковольтных конденсаторов. Этот вариант используют обычно для не очень мощных нагрузок (0,5-1 кВт).

Мостовая топология. Наиболее распространенная схема в силовых преобразователях. Характеризуется повышенной надежностью, не требует большой входной емкости, обеспечивает минимальные пульсации на транзисторах. К недостаткам относится повышенная сложность драйверов и увеличенное число транзисторов.

Критерии выбора и расчет инвертора напряжения

Важнейшие характеристики инвертора:

  • частота преобразователя напряжения и форма напряжения. Желательно приобрести аппарат, который выдает чистый синусоидальный сигнал. К такому преобразователю можно подключать даже высокочувствительное оборудование;
  • номинальная мощность. Она должна быть выше, чем суммарная нагрузка всех подключенных потребителей;
  • максимальная пиковая мощность. Это значение определяет, какую наибольшую нагрузку выдержит устройство при подключении техники с малым значением коэффициента cos ф. К такому оборудованию относятся электродвигатели, насосы, компрессоры;
  • значение входного/выходного напряжения и силы электротока.

Чтобы выполнить расчет необходимой мощности DC/AC преобразователя, необходимо:

  1. Сложить мощность, потребляемую подключаемым оборудованием. Ее берут из паспортных данных на технику. Например, холодильник — 200 Вт, стиральная машина — 1500 Вт, пылесос — 1000 Вт. Итого в сумме: 200 + 1500 + 1000 = 2700 Вт.
  2. Учесть пиковую нагрузку. Для этого полученную сумму умножаем на коэффициент 1,3 (для рассматриваемого примера: 2700*1,3 = 3510 Вт).
  3. Учесть коэффициент cos ф для получения результата в вольт-амперах. Его значение для разного оборудования варьируется в пределах 0,60…0,99. Для расчета лучше принять минимальную величину. 3510/0,6 = 5850 ВА ≈ 6 кВА. Именно на это значение следует ориентироваться при выборе инвертора.

Заключение

В статье были рассмотрены основные разновидности преобразователей напряжения, особенности их работы и сферы применения. Также были приведены типовые электросхемы преобразователей напряжения и описаны критерии выбора DC/AC инверторов.

Частотные преобразователи — структура, принцип работы

Внимание! Приведенная ниже информация носит теоретический характер. Если Вам необходимо решить конкретную задачу или разобраться как и какое оборудование следует применить в Вашем случае, воспользуйтесь бесплатной консультацией связавшись с нами одним из указанных вверху данной страницы или на странице «Контакты» способов, либо заполните опросный лист. Инженер службы технической поддержки направит Вам рекомендации на указанный Вами адрес электронной почты. 

 

Частотные преобразователи – это устройства, предназначенные для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

 

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

 

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

 

Частотные преобразователи, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

    1. С явно выраженным промежуточным звеном постоянного тока.
    2. С с непосредственной связью (без промежуточного звена постоянного тока).
      • Практически самый высокий КПД относительно других преобразователей (98,5% и выше).
      • Способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах, относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

 

Каждый из существующих классов имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

 

Исторически первыми появились преобразователи с непосредственной связью (рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристоров и подключает статорные обмотки двигателя к питающей сети.

 

 

 

 

  

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжения для одной из фаз нагрузки. На входе выигрывают у тиристорных действует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1: 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

 

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

 

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

 

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

 

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

 

Наиболее широкое применение в современных частотно регулируемых приводах находят частотники с явно выраженным звеном постоянного тока (рис. 6.)

 

В частотных преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

 

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

 

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

 

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

 

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%).

 

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 — 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

 

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

 

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

 

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая не энергоемкая система управления, самая высокая рабочая частота.

 

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

 

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

 

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в частотных преобразователях снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

 

Частотные преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

 

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

 

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

 

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 – 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

 

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких единичных модулей.

 

Структура и принцип работы низковольтного преобразователя частоты на IGBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента инвертора.

 

Переменное напряжение питающей сети (uвх.)с постоянной амплитудой и частотой (U вх = const, f вх = const) поступает на управляемый или неуправляемый выпрямитель (1).

 

Для сглаживания пульсаций выпрямленного напряжения (uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

 

С выхода фильтра постоянное напряжение u d поступает на вход автономного импульсного инвертора (3).

 

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

 

 

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение u и изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

 

При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

 

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uи может достигаться регулированием величины постоянного напряжения ud, а изменение частоты – режимом работы инвертора.

 

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

 

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (вых = var, f вых = var).

 


Сделать заказ на частотный преобразователь

Как работают импульсные преобразователи напряжения (27 схем)

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 1), повышающие (рис. 2) и инвертирующие (рис. 3).

Общими для всех этих видов преобразователей являются пять элементов:

  1. источник питания,
  2. ключевой коммутирующий элемент,
  3. индуктивный накопитель энергии (катушка индуктивности, дроссель),
  4. блокировочный диод,
  5. конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий импульсный преобразователь

Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

 

 

Рис. 1. Принцип действия понижающего преобразователя напряжения.

 

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь

Повышающий импульсный преобразователь напряжения (рис. 2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки RH с параллельно подключенным конденсатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Рис. 2. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии.

Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.

Инвертирующий преобразователь импульсного типа

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.

Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Рис. 3. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.

Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Импульсные преобразователи и стабилизаторы

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Узлы и схемы импульсных преобразователей

Задающий генератор (рис. 4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 5, 6) на микросхеме КР1006ВИ1 работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепоч-ки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%.

 

 

Рис. 4. Схема задающего генератора для импульсных преобразователей напряжения.

 

 

Рис. 5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В.

 

 

Рис. 6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В.

Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 5, 6) составляет 140 мА.

В выпрямителе преобразователя (рис. 5, 6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 — R3.

Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226).

В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х структуры п-р-п — КТ815, КТ817 (рис. 4.5) и р-п-р — КТ814, КТ816 (рис. 6) и другие.

Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер — коллектор транзистора диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

Преобразователь с задающим генератором-мультивибратором

Для получения выходного напряжения величиной 30…80 В П. Беляцкий использовал преобразователь с задающим генератором на основе несимметричного мультивибратора с выходным каскадом, нагруженным на индуктивный накопитель энергии — катушку индуктивности (дроссель) L1 (рис. 7).

 

 

Рис. 7. Схема преобразователя напряжения с задающим генератором на основе несимметричного мультивибратора.

Устройство работоспособно в диапазоне питающих напряжений 1,0. ..1,5 В и имеет КПД до 75%. В схеме можно применить стандартный дроссель ДМ-0,4-125 или иной с индуктивностью 120. . .200 мкГн.

Вариант выполнения выходного каскада преобразователя напряжения показан на рис. 8. При подаче на вход каскада управляющих сигналов прямоугольной формы 7777-уровня (5 В) на выходе преобразователя при его питании от источника напряжением 12 В получено напряжение 250 В при токе нагрузки 3…5 мА (сопротивление нагрузки около 100 кОм). Индуктивность дросселя L1 — 1 мГн.

В качестве VT1 можно использовать отечественный транзистор, например, КТ604, КТ605, КТ704Б, КТ940А(Б), КТ969А и др.

 

 

Рис. 8. Вариант выполнения выходного каскада преобразователя напряжения.

 

 

Рис. 9. Схема выходного каскада преобразователя напряжения.

Аналогичная схема выходного каскада (рис. 9) позволила при питании от источника напряжением 28В и потребляемом токе 60 мА получить выходное напряжение 250 В при токе нагрузки 5 мА, Индуктивность дросселя — 600 мкГч. Частота управляющих импульсов — 1 кГц.

В зависимости от качества изготовления дросселя на выходе может быть получено напряжение 150…450 В при мощности около 1 Вт и КПД до 75%.

Преобразователь напряжения на основе КР1006ВИ1

Преобразователь напряжения, выполненный на основе генератора импульсов на микросхеме DA1 КР1006ВИ1, усилителя на основе полевого транзистора VT1 и индуктивного накопителя энергии с выпрямителем и фильтром, показан на рис. 10.

На выходе преобразователя при напряжении питания и потребляемом токе 80…90 мА образуется напряжение 400…425 В. Следует отметить, что величина выходного напряжение не гарантирована — она существенно зависит от способа выполнения катушки индуктивности (дросселя) L1.

 

 

Рис. 10. Схема преобразователя напряжения с генератором импульсов на микросхеме КР1006ВИ1.

 

Для получения нужного напряжения проще всего экспериментально подобрать катушку индуктивности для достижения требуемого напряжения или использовать умножитель напряжения.

Схема двуполярного импульсного преобразователя

Для питания многих электронных устройств требуется источник двухполярного напряжения, обеспечивающий положительное и отрицательное напряжения питания. Схема, приведенная на рис. 11, содержит гораздо меньшее число компонентов, чем аналогичные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.

Рис. 11. Схема преобразователя с одним индуктивным элементом.

Схема преобразователя (рис. 11) использует новое сочетание основных компонентов и включает в себя генератор четырехфазных импульсов, катушку индуктивности и два транзисторных ключа.

Управляющие импульсы формирует D-триггер (DD1.1). В течение первой фазы импульсов катушка индуктивности L1 запасается энергией через транзисторные ключи VT1 и VT2. В течение второй фазы ключ VT2 размыкается, и энергия передается на шину положительного выходного напряжения.

Во время третьей фазы замыкаются оба ключа, в результате чего катушка индуктивности вновь накапливает энергию. При размыкании ключа VT1 во время заключительной фазы импульсов эта энергия передается на отрицательную шину питания. При поступлении на вход импульсов с частотой 8 кГц схема обеспечивает выходные напряжения ±12 В. На временной диаграмме (рис. 11, справа) показано формирование управляющих импульсов.

В схеме можно использовать транзисторы КТ315, КТ361.

Преобразователь напряжения со стабильными 30В

Преобразователь напряжения (рис. 12) позволяет получить на выходе стабилизированное напряжение 30 В. Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.

 

Рис. 12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В.

На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц.

К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления.

Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.

Преобразователь напряжения с индуктивным накопителем энергии

Преобразователь напряжения с индуктивным накопителем энергии, позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 13.

 

 

Рис. 13. Схема преобразователя напряжения со стабилизацией.

Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.

Аналоги транзисторов: ВС237В — КТ342А, КТ3102; ВС307В — КТ3107И, BF459—КТ940А.

Понижающие и инвертирующие преобразователей напряжения

Два варианта — понижающего и инвертирующего преобразователей напряжения [4.1] показаны на рис. 14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА, второй — позволяет получить напряжение отрицательной полярности (-19,4 В) при таком же токе нагрузки. Выходной транзистор ѴТЗ должен быть установлен на радиатор.

Рис. 14. Схемы стабилизированных преобразователей напряжения.

Аналоги транзисторов: 2N2222 — КТЗ117А  2N4903 — КТ814.

Понижающий стабилизированный преобразователь напряжения

Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту потоку нагрузки, показан на рис. 15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА.

Рис. 15. Схема понижающего преобразователя напряжения.

При изменении сопротивления нагрузки на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%.

Аналоги транзисторов: 2N1613 — КТ630Г, 2N2905 — КТ3107Е, КТ814.

Двухполярный инвертор напряжения

Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.

Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра СЗ и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.

 

Рис. 16. Схема инвертора напряжения +15/-15 В.

Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%.

Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем.

В качестве L1 использован дроссель ДМ-0,2-200.

Инверторы на специализированных микросхемах

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения, используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

На рис. 17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Рис. 17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 В и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мВ.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12x8x3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части.

В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при UBX=15 В. Размах пульсаций напряжения на конденсаторах СЗ и С4 — 50 мВ.

Рис. 18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5.

 

 

Рис. 4.19. Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5.

Дроссель L1 индуктивностью 220 мкГч намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 4.19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5, Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя — 30 кГц при UBX=5 S; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12x8x3 М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7. Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГч. Диод VD1 во всех схемах (рис. 17 — 19) должен быть диодом Шотки.

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 20 показана возможность преобразования напряжения низкого уровня (4,5…5 6) в двухполярное выходное напряжение 12 (или 15 6) при токе нагрузки до 130 (или 100 мА).

Рис. 20. Схема преобразователя напряжения на микросхеме МАХ743.

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80…82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0…4,5 6) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765. Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7…5,5 В.

Рис. 21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В.

Схема преобразователя, показанная на рис. 21, содержит незначительное количество внешних (навесных) деталей.

Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц.

Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В. соответственно. Максимальный выходной ток преобразователя — 100 мА. Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5-6 и 300 мА при напряжении 3,3 В. КПД преобразователя — до 80%.

Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 6 и ниже).

Дроссель L1 выполняют на кольце К10x6x4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГч. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм.

Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГч.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня высокочастотных помех), VD1 — диод Шотки (1 N5818, 1 N5819, SR106, SR160 и др.).

Сетевой блок питания фирмы «Philips»

Преобразователь (сетевой блок питания фирмы «Philips», рис. 22) при входном напряжении 220 В обеспечивает выходное стабилизированное напряжение 12 В при мощности нагрузки 2 Вт.

Рис. 22. Схема сетевого блока питания фирмы «Philips».

Источник питания для питания портативных и карманных приемников

Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.

Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.

Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 4.23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, СЗ.

При этом от конденсатора С2 будет заряжаться конденсатор СЗ большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на СЗ — увеличиваться.

Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и СЗ не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора СЗ через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора СЗ через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.

Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.

Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1…2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.

Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.

Схемы устройств для преобразования энергии

Схемы устройств для преобразования энергии показаны на рис. 4.24 и 4.25. Они представляют собой понижающие преобразователи энергии с питанием от выпрямителей с гасящим конденсатором. Напряжение на выходе устройств стабилизировано.

Рис. 24. Схема понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

 

Рис. 25. Вариант схемы понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

В качестве динисторов VD4 можно использовать отечественные низковольтные аналоги — КН102А, Б. Как и предыдущее устройство (рис. 23), источники питания (рис. 24 и 25) имеют гальваническую связь с питающей сетью.

Преобразователь напряжения с импульсным накоплением энергии

В преобразователе напряжения С. Ф. Сиколенко с «импульсным накоплением энергии» (рис. 26) ключи К1 и К2 выполнены на транзисторах КТ630, система управления (СУ) — на микросхеме серии К564.

 

Рис. 26. Схема преобразователя напряжения с импульсным накоплением.

Накопительный конденсатор С1 — 47 мкФ. В качестве источника питания используется батарея напряжением 9 В. Выходное напряжение на сопротивлении нагрузки 1 кОм достигает 50 В. КПД составляет 80% и возрастает до 95% при использовании в качестве ключевых элементов К1 и К2 КМОП-структур типа RFLIN20L.

Импульсно-резонансный преобразователь

Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.

Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.

Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

виды, особенности и принцип работы

Преобразователи напряжения широко используются как в быту, так и на производстве. Для производства и промышленности чаще всего изготавливаются по индивидуальному заказу, ведь там нужен мощный преобразователь и не всегда с напряжением стандартной величины. Стандартные величины выходных и входных параметров применяются зачастую в бытовых условиях. То есть преобразователь напряжения — это электронное устройство, которое предназначено для изменения вида электроэнергии, её величины или же частоты.

По своей функциональности они делятся на:

  1. Понижающие;
  2. Повышающие;
  3. Бестрансформаторные;
  4. Инверторные;
  5. Регулируемые с настройкой частоты и величины выходного переменного напряжения;
  6. Регулируемые с настройкой величины постоянного выходного напряжения.

Некоторые из них могут выполняться в специальном герметичном исполнении, такие типы устройств используются для влажных помещений, или же, вообще, для установки под водой.

Итак, что же из себя представляет каждый вид.

Высоковольтный преобразователь напряжения

Такое электронное устройство, которое предназначено для получения переменного или постоянного высокого напряжения (до нескольких тысяч вольт). Например, такие устройства применяются для получения высоковольтной энергии на кинескопы телевизоров, а также для лабораторных исследований и проверки электрооборудования напряжением, повышенным в несколько раз. Кабеля или же силовые цепи масляных выключателей, рассчитанных на напряжение 6 кВ, испытывают напряжением 30 кВ и выше, правда, такая величина напряжения не обладает высокой мощностью, и при пробое сразу же отключается. Эти преобразователи довольно компактны ведь их приходится переносить персоналу от одной подстанции к другой, чаще всего вручную. Нужно заметить, что все лабораторные блоки питания и преобразователи обладаю почти эталонным, точным напряжением.

Более простые высоковольтные преобразователи применяются для запуска люминесцентных ламп. Сильно повысить импульс до нужного можно за счёт стартера и дросселя, которые могут иметь электронную или же электромеханическую основу.

Промышленные установки, выполняющие преобразование более низкого напряжения в высокое, имеют множество защит и выполняются на повышающих трансформаторах (ПТН). Вот одна из таких схем дающая на выходе от 8 до 16 тысяч Вольт, при этом для его работы необходимо всего около 50 В.

Из-за того, что в обмотках трансформаторов вырабатывается и протекает довольно высокое напряжение, то и к изоляции этих обмоток, а также к её качеству предъявляются высокие требования. Для того чтобы устранить возможность появления коронирующих разрядов, детали высоковольтного выпрямителя должны быть припаяны к плате аккуратно, без заусенцев и острых углов, после чего залиты с обеих сторон эпоксидной смолой или слоем парафина толщиной 2…3 мм, обеспечивающим изоляцию друг от друга. Иногда данные электронные системы и устройства называют повышающий преобразователь напряжения.

Следующая схема представляет собой линейный резонансный преобразователь напряжения, который работает в режиме повышения. Он основан на разделении функций повышения U и его чёткой стабилизации в абсолютно разных каскадах.

При этом некоторые инверторные блоки можно заставить работать с минимальными потерями на силовых ключах, а также на выпрямленном мосте, где появляется высоковольтное напряжение.

Преобразователь напряжения для дома

С преобразователями напряжения для дома обычный человек сталкивается очень часто, ведь во многих устройствах есть блок питания. Чаще всего это понижающие преобразователи, имеющие гальваническую развязку. Например, зарядные устройства мобильных телефонов и ноутбуков, персональные стационарные компьютеры, радиоприёмники, стереосистемы, различные медиапроигрыватели и этот перечень можно продолжать очень долго, так как их разнообразие и применения в быту в последнее время очень широко.

Бесперебойные блоки питания оснащены накопителями энергии в виде аккумуляторов. Такие устройства применяются также для поддержания работоспособности системы отопления, во время неожиданного отключения электроэнергии. Иногда преобразователи для дома могут быть выполнены по инверторной схеме, то есть подключив его к источнику постоянного тока (аккумулятору), работающего за счёт химической реакции можно получить на выходе обычное переменное напряжение, величина которого будет 220 Вольт. Особенностью данных схем является возможность получить на выходе чистый синусоидальный сигнал.

Одной из очень важных характеристик, применяемых в быту преобразователей, является стабильная величины сигнала на выходе устройства, независимо от того сколько вольт подаётся на его вход. Эта функциональная особенность блоков питания связана с тем, что для стабильной и продолжительной работы микросхем и других полупроводниковых устройств необходимо чётко нормированное напряжение, да ещё и без пульсаций.

Основными критериями выбора преобразователя для дома или квартиры являются:

  1. Мощность;
  2. Величина входного и выходного напряжения;
  3. Возможность стабилизации и её пределы;
  4. Величина тока на нагрузке;
  5. Минимизация нагрева, то есть лучше чтобы преобразователь работал в режиме с запасом по мощности;
  6. Вентиляция устройства, может быть естественная или принудительная;
  7. Хорошая шумоизоляция;
  8. Наличие защит от перегрузок и перегрева.

Выбор преобразователя напряжения дело не простое, ведь от правильно выбранного преобразователя зависит и работа питаемого устройства.

Бестрансформаторные преобразователи напряжения

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор.

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат. Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций. Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Регулируемый преобразователь напряжения

Эти устройства направлены на работу как в режиме повышения напряжения, так и в режиме понижения. Чаще всего это всё-таки аппараты, выполняющие плавную регулировку величины выходного сигнала, который ниже входного. То есть на вход подаётся 220 Вольт, а на выходе получаем регулируемую постоянную величину, допустим, от 2 до 30 вольт. Такие приборы с очень тонкой регулировкой применяются для проверки стрелочных и цифровых приборов в лабораториях. Очень удобно когда они оснащены цифровым индикатором. Нужно признать, что каждый радиолюбитель брал за основу своих первых работ именно этот вид, так как питание для определённой аппаратуры может быть разное по величине, а этот источник питания получался весьма универсальным. Как сделать качественный и работающий долгое время преобразователь, вот основная проблема юных радиолюбителей.

Инверторный преобразователь напряжения

Данный тип преобразователей положен в основу инновационных компактных сварочных устройств. Получая для питания переменное напряжение 220 Вольт аппарат выпрямляет его, после чего снова делает его переменным, но уже с частотой несколько десятков тысяч Гц. Это даёт возможность значительно снизить габариты сварочного трансформатора, установленного на выходе.

Также инверторный способ применяется для питания отопительных котлов от аккумуляторных батарей в случае неожиданного отключения электроэнергии. За счёт этого система продолжает работать и получает 220 вольт переменного напряжения из 12 Вольт постоянного. Мощный повышающий аппарат такого назначения должен эксплуатироваться от батареи большой ёмкости, от этого зависит как долго он будет снабжать котёл электроэнергией. То есть емкость при этом играет ключевую роль.

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д. Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса. Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели. Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи. Он входит в состав какого-либо измерительного прибора.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода. Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки. В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Ремонт преобразователя напряжения

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно. Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Принцип работы инвертора напряжения

Инвертор напряжения (ИН, DC/AC converter) предназначен для преобразования электрической энергии, получаемой от источника постоянного тока в электрическую энергию переменного тока.

Эта технология применяется в различных сферах. Преобразователи работают как автономно, так и в составе сложных систем, предназначенных для обеспечения электрической энергией различных объектов. Востребованность инверторов связана с развитием технологий и появлением риска потери ценных данных и остановки оборудования при отключении питания.
В этой статье мы рассмотрим принцип работы инвертора напряжения с чистым синусом и отметим преимущества данной технологии. Вы узнаете об отличительных особенностях эксплуатации преобразователей от ведущих производителей.

Как работает инвертор напряжения с «чистым синусом»

Принцип работы такого инвертора напряжения выглядит следующим образом.

1. В результате предварительного преобразования формируется напряжение постоянного тока, близкое по значению к выходному синусоидальному напряжению. После этого энергия направляется на мостовой инвертор.

2. На мостовом ИН происходит преобразование постоянного напряжения в переменное. Его форма приближена к синусоидальной. Нужные характеристики достигаются за счет применения специального принципа управления транзисторами (многократной широтно-импульсной коммутации).
Принцип этой технологии заключается в следующем. На интервале каждого полупериода соответствующая пара транзисторов мостового ИН многократно коммутируется на высокой частоте. Длительность подачи импульсов варьируется по синусоидальному закону.

3. Высокочастотный фильтр нижних частот придает напряжению точную синусоидальную форму («чистый синус»).
Кроме описанной выше схемы существуют и другие принципы построения и работы инверторов.

Такое оборудование применяют реже, т. к. устройства имеют существенные недостатки по сравнению с инверторами с «чистым синусом».

Преимущества применения инверторов с «чистым синусом»

Начнем с того, что многие современные аппараты оснащают импульсными блоками питания. Для них форма напряжения не имеет значения. Присутствующие на рынке телевизоры, магнитофоны, зарядные устройства и некоторые другие виды техники будут одинаково хорошо работать при подключении к любому инвертору. На режим работы оборудования повлияет только действующее значение напряжения.

Однако существует большая группа приборов, которая либо совсем не будет работать при подключении к инвертору с прямоугольной/ступенчатой формой напряжения, либо будет работать, но при этом ухудшатся эксплуатационные характеристики и сократится срок службы. Некоторые виды техники могут в скором времени выйти из строя. В эту группу оборудования входят приборы с трансформаторными БП, некоторые LCD-телевизоры, синхронные электродвигатели, насосы и газовые котлы, применяемые в системах отопления, кондиционеры и другие используемые в промышленности и быту агрегаты.

Вывод: преобразователи напряжения с «чистым синусом» универсальны. Режим работы любого устройства, подключенного к такому инвертору, будет правильным и стабильным.

Особенности оборудования ведущих производителей

Основные лидеры рынка — Victron Energy и Out Back Power. Инверторы этих концернов распространены по всему миру и находят применение в различных сферах.

Работа инверторов обеспечивает резервное электроснабжение:

  • загородных домов;
  • фермерских хозяйств;
  • банков;
  • медицинских учреждений;
  • передвижных лабораторий;
  • транспортных средств;
  • технических помещений;
  • промышленных предприятий;
  • коммерческих зданий и других объектов различного назначения.

Инверторные установки Victron Energy имеют ряд преимуществ:

  • Надежность. Концерны применяют передовые технологии в процессе производства оборудования. Инверторы устойчивы к двукратным перегрузкам.
  • Долговечность. Техника служит десятки лет.
  • Простота введения в эксплуатацию. Подключение агрегатов происходит без каких-либо проблем.
  • Удобство. Инверторы запускаются в автоматическом режиме. Работа не сопровождается образованием выхлопных газов. Устройства практически бесшумны.
  • Большой набор полезных функций. При необходимости вы сможете добавить мощность к сети или генератору или подключить инверторы к альтернативным источникам энергии.

 

1 декабря 2016


Принцип работы и разновидности DC-DС преобразователей

Что такое DC/DC преобразователь постоянного тока или описание принципа работы DC/DC преобразователей применяемых для построения источников питания

DC/DC преобразователи питания постоянного тока широко применяются в различных электронных приборах, вычислительной технике, устройствах телекоммуникации, автоматизированных системах управления (АСУ), мобильных устройствах и т.д.
DC/DC преобразователи применяются для изменения выходного напряжения как в большую, так и в меньшую сторону, относительно напряжения на входе.

Типы DC DC преобразователей

DC-DC модуль

Buck-boost DC-DC Модуль преобразования напряжения

Сегодня на рынке существует различные типы DC/DC конвертеров, которые используются потребителями.

  1. DC/DC преобразователи без индуктивности.

Для питания маломощных нагрузок выгодно использовать преобразователи на коммутируемых конденсаторах. Использование таких устройств не требует наличия дорогих моточных компонентов, поэтому они позволяют создать дешевые и компактные модули питания. Подобные преобразователи могут быть как с фиксированным напряжением, так регулируемые.

  1. DC/DС преобразователи с индуктивностью.

Большой популярностью пользуются преобразователи без гальванической развязки между входом и выходом. В данном типе DC-DC конвертера находится единичный изолированный источник питания. В зависимости от положения ключа, напряжение может повышаться, понижаться или инвертироваться в напряжение с обратной полярностью. Ключевыми элементами часто выступают биполярные транзисторы с изолированным затвором (IGBT) и полевые транзисторы разного типа (FET).

Среди конвертеров с индуктивностью можно встретить следующие типы:

  • Понижающий импульсный DC-DC преобразователь. В роли ключа выступает транзистор, управляемый с помощью широтно-импульсного модулятора.
  • Повышающий импульсный DC-DC преобразователь. Его особенности мы рассмотрим ниже.
  • Преобразователь с регулируемым выходным напряжением. Такие устройства позволяют получить как повышенное, так и пониженное напряжение на выходе. Зачем это нужно? Например, для использования в устройствах, где напряжение задается Li-ионной батареей. Со временем, когда батарея ослабевает, её напряжение уменьшается, но использование такого преобразователя позволяет всегда поддерживать заданное значение на выходе.
  • Преобразователь с любым выходным напряжением. Они способны производить как повышенное, так и пониженное напряжение на выходе. Зачем они нужны? Например, для использования в схемах, где напряжение задается Li-ионной батареей. Они имеют напряжение 3,3 В. Со временем эксплуатации ее напряжение уменьшается, и поэтому есть смысл преобразовывать его до 3,3В на выходе. Примером такого устройства является Buck-boost DC DC преобразователь от Террател.

Рис. Составные узлы DC-DC преобразователя

  1. DC/DC преобразователь с гальванической развязкой.

В таких преобразователях постоянного тока применяются импульсные трансформаторы с несколькими обмотками, благодаря чему отсутствует связь между входной и выходной цепями.
Для таких устройств характерна большая разница потенциалов между входным и выходным напряжением. Например, они используются в блоках питания импульсных фотовспышек, которые имеют на выходное напряжение около 400В.

Принцип работы DC-DC преобразователя

Описания принципа работы DC/DC преобразователя рассмотрим на следующем примере.

Итак, у нас есть 5В постоянного тока из которых нам необходимо получить большее напряжение. Существует несколько вариантов решения данной задачи. Например, параллельно заряжать конденсаторы, а потом последовательно их переключать. Причем делать это надо очень быстро, по несколько раз в секунду. Конечно, на практике это нереально, поэтому существуют специальные DC/DC преобразователи для решения этой задачи.

Чтобы понять, что такое DC/DC конвертер и какой у него принцип роботы, представим вариант работы системы подачи воды потребителю.

Этап 1 – Процесс разгона турбины.
Для начала нам необходимо разогнать турбину. Для этого открывается заслонка, и вода быстро сливается, передавая часть своей энергии турбине, благодаря чему последняя начинает раскручиваться.

Этап 2 – Заполнение емкости накопителя воды и давления.

Заслонка закрывается. Порция воды, толкаемая раскрученной турбиной-маховиком, приоткрывает клапан и наполняет емкость накопителя воды и давления. Другая часть воды направляется к потребителю, только уже с повышенным давлением от емкости-накопителя. При этом клапан препятствует обратному ходу воды в сторону турбины в случае возникновения большего давления от емкости накопителя.

Этап 3 – Получение энергии из емкости накопителя давления и разгон турбины.

Скорость турбины начинает падать. Давления воды уже не достаточно для продавливания клапана, а энергии в емкости накопителя воды накоплено достаточно. Затем, заслонка открывается снова, и вода начинает быстро раскручивать турбину. При этом поток воды к потребителю не прекращается, так как он получает её из емкости накопителя.

Дальше цикл раскрутки турбины и заполнения емкости накопителя воды и давления повторяется.

По аналогичному принципу работает любой DC DC преобразователь.

Ниже представлена электрическая схема DC DC преобразователя, на которой мы рассмотрим принцип его работы.

При этом роль турбины в электрической схеме DC DC преобразователя выполняет индуктивный дроссель. Вместо заслонки, которая управляет потоком воды, применяется транзистор. Роль клапана выполняет диод, а конденсатор является емкостью для накопителя давления.

Как работает DC DC преобразователь? Все аналогично.

Этап 1 – Накопление заряда индуктивностью.

Ключ замкнут. Индуктивность, получая ток от источника, накапливает энергию.

Этап 2 – Передача энергии в конденсатор.

Ключ размыкается, при этом катушка удерживает накопленную энергию в магнитном поле. Ток старается остаться на том же уровне, но дополнительная энергия из индуктивности подымает напряжение, тем самым открывая путь через диод. Часть энергии попадает к потребителю, а остальная накапливается в конденсаторе.

Этап 3 – Накопление энергии в индуктивности и передача заряда потребителю.

Затем ключ замыкается, и энергия снова начинает накапливаться в катушке. Потребитель, в это время, получает энергию из конденсатора.

Область применения DC/DC преобразователей и дросселей

В различных электронных устройствах, работающих от автономных источников энергии, необходимые уровни напряжений, возможно, получить только с использованием DC/DC преобразователей постоянного тока.

DC/DC конвертеры, преобразователи или дроссели напряжения постоянного тока широко применяются в различных портативных электронных приборах, вычислительной технике, телекоммуникационном оборудовании, автоматизированных системах управления АСУ, автомобилестроении и т.д.

Зачем нужен преобразователь напряжения (инвертор)

Время прочтения: 5 мин

Дата публикации: 25-12-2020

Все мы знаем, что для работы однофазного электрооборудования, сертифицированного в Украине, требуется подача на его вход напряжения 220 вольт частотой 50 герц с некоторыми допустимыми отклонениями. Если требуется автономная работа потребителя либо при временном отсутствии электроснабжения, либо на удалении от него, приходится прибегать к резервным источникам питания.

К резервным источникам питания, которые вырабатывают электроэнергию, относятся топливные генераторы. Как бензиновые, так и дизельные генераторы способны справится с огромным перечнем задач, однако проблема в том, что не каждый может себе позволить топливную электростанцию, да и не каждому она нужна для редкой автономной работы пары электроприборов. Купить генератор разумно лишь тогда, когда регулярно требуются немалые объемы автономной электроэнергии. Если же необходимость в этом не столь регулярна, да и ее большие объемы не требуются, лучше воспользоваться источником питания, который не вырабатывает электричество, а накапливает его. Речь, конечно же, идет об аккумуляторных батареях. Причем, не о традиционных стартерных, а о тяговых гелевых (AGM и GEL VRLA). В зависимости от емкости и количества батарей, электрооборудование может «протянуть» достаточное до возобновления электроснабжения время, либо обеспечить Ваши нужды на удалении от питающей сети.

Однако вот незадача: в быту практически ничего не будет работать от аккумуляторной батареи, с клемм которых снимается постоянный ток с напряжением 12В, 24В и т. д., в зависимости от сборки АКБ. Как поступить в данной ситуации? Очевидно, что постоянный ток аккумулятора надо преобразовать в переменный, который будет пригоден для обычных потребителей, сертифицированных в Украине. Вот для чего нужен преобразователь напряжения. Для этой задачи интернет-магазин «Вольтмаркет» предлагает широкий ассортимент преобразователей напряжения, которые можно купить по отличной цене с доставкой в Киев, Харьков, Днепр, Одессу и другие города нашей страны.

Понятие о преобразователе напряжения

Мы уже знаем, для чего нужен преобразователь напряжения. Давайте теперь рассмотрим данное устройство более детально, разберем его разновидности и приведем пару примеров того, где оно применяется.

Преобразователи напряжения бывают разные, но тот, который осуществляет преобразование постоянного тока в переменный (DC-AC), называется инвертором. Он как бы инвертирует один тип электрического сигнала в другой. С точки зрения электронной реализации и, соответственно, качества выходного сигнала инверторы могут значительно отличаться. Нас сама реализация электрической схемы не очень интересует, поэтому лучше просто пройдемся по основным типам и характеристикам преобразователей напряжения.

Исходя из назначения преобразователя напряжения, его основные характеристики можно разделить на три группы: мощность прибора, вход и выход.

Мощность. Мощность преобразователя напряжения, как и всегда, характеризует возможное количество нагрузки, которое потянет прибор. Обязательно следует учитывать, что электроэнергия не вырабатывается каким-либо двигателем, а Вы потребляете то, что было накоплено аккумулятором, в связи с чем выбор инвертора высокой мощности должен сопровождаться установкой емких тяговых гелевых аккумуляторов, которые также можно купить в нашем интернет-магазине по доступной цене.

Вход. После выбора мощности следует позаботиться об обеспечении преобразователя напряжения требуемым сигналом на входе для его последующего инвертирования. Выше мы уже упомянули, что с ростом мощности желательно позаботиться о более высокой емкости АКБ или аккумуляторного блока. Также одной из важнейших характеристик инвертора является требуемое напряжение цепи постоянного тока. Преобразователь не может инвертировать любой сигнал в искомые 220В 50гц, ему требуется подать на вход четко определенный номинал. Для преобразователей напряжения малой и средней мощности обычно требуется АКБ на 12В, когда как инверторы на несколько киловатт и выше нуждаются в подаче 24В и выше. Обеспечить требуемое напряжение проще простого – достаточно соединить батареи последовательно. Обязательно учитывайте, что при использовании нескольких АКБ их характеристики и уровень заряда должны быть равны. Для выравнивания заряда, к слову, есть специальные выравнивающие устройства.

Выход. Если преобразователи напряжения предназначены для инвертирования постоянного тока в переменный 220В 50 гц, то в чем между ними может быть разница? А заключается она в том, что выдаваемый преобразователем сигнал может иметь различную форму. В идеале форма соответствует правильной синусоиде, когда как во многих случаях получается ступенчатый аппроксимированный сигнал. Почему не стоит сразу покупать преобразователь, выдающий чистый синусоидальный сигнал? Дело в том, что во многих случаях форма сигнала не играет роли, в связи с чем Вы можете купить более доступный инвертор, выдающий выходное напряжение аппроксимированной формы. Однако есть перечень оборудования, которое нуждается в правильной синусоиде (котлы отопления, насосы). Для таких потребителей в обязательном порядке следует использовать преобразователь напряжения, способный вырабатывать правильную синусоиду.

Вот мы и рассмотрели основные характеристики преобразователей напряжения с точки зрения того, что они требуют на входе, что выдают на выходе, и каких потребителей они могут потянуть. Однако сфера применения преобразователя определяется в первую очередь его типом, и только потом характеристиками. Мы кратко рассмотрим два основных типа инверторов, а Вы любой из них можете испытать прямо в наших магазинах, работающих в Киеве, Харькове, Днепре и Одессе.

Разновидности преобразователей напряжения

И так, давайте рассмотрим, какие преобразователи напряжения бывают и для чего нужен тот или иной вид.

Наиболее распространены компактные ручные преобразователи напряжения. На самом деле, нет такого вида, как «ручной инвертор», однако их удобно так называть за компактные размеры и ручной режим включения. Практически весь наш ассортимент таких преобразователей напряжения представлен продукцией ТМ Luxeon, которая отличается качественными решениями по доступной цене. Потребители в отзывах инверторам Luxeon отмечают эффективную систему охлаждения, роль которой играет ребристый алюминиевый корпус. Приведем пару примеров преобразователей напряжения Luxeon и для чего они нужны. Компактный Luxeon IPS-300M на 0.2 кВа является прекрасным спутником в дальних автомобильных поездках благодаря входу для подключения к прикуривателю. Если у Вас есть подобный инвертор, Вы можете зарядить любую портативную технику, в том числе и ноутбук, а также обеспечить работу каких-либо приборов на время отдыха на природе. Индекс М говорит о том, что выходной сигнал имеет модифицированную (ступенчатую) форму. А вот Luxeon IPS-600S – это прекрасный вариант для резервного питания котла отопления. Мощности в 300 кВа должно быть достаточно, иначе обратите внимание на более мощные модели, такие как Luxeon IPS-1200S на 600 кВа. Эти преобразователи напряжения отлично подходят для котлов благодаря правильной форме выходного сигнала, что в данном случае является критичным критерием выбора.

Теперь перейдем к более серьезным моделям преобразователей напряжения, а именно – к автоматическим. Так же как и с ручными, термин «автоматический» лишь характеризует режим работы инвертора, официального разделения на данные типы нет. Наш ассортимент автоматических преобразователей напряжения представлен отечественной ТМ Леотон. Данные инверторы могут работать без Вашего прямого участия — Вам нужно лишь подключить прибор. Автоматические преобразователи напряжения Леотон контролируют напряжение сети и самостоятельно включаются в работу при его отсутствии, ожидая возобновления электроснабжения. Если сетевое питание будет восстановлено, преобразователь напряжения самостоятельно переключает потребителя на сеть, подзаряжая, при этом, аккумуляторные батареи. Инверторы Леотон отличаются высокой точностью поддержания выходного напряжения, допуская отклонения не более 0.5%, то есть 1В. Форма напряжения, при этом, правильная, пригодная для питания наиболее чувствительных к качеству электроснабжения потребителей. Для чего нужны автоматические преобразователи Леотон? Для любых чувствительных и/или ответственных потребителей средней и высокой мощности, для которых требуется обеспечить бесперебойную работу в нестабильной сети. К примеру, преобразователь напряжения Леотон XT703 способен обеспечить автономную работу нагрузки мощностью до 6 кВт (перегрузочная способность до 7 кВт), осуществляя, в случае необходимости, переключение потребителя между АКБ и сетью в течение 12-20мс. Благодаря высокой скорости переключения потребитель продолжит непрерывно работать даже в момент обесточивания сети. Такой принцип работы называется OFF-LINE.

Вот мы и рассмотрели как основные типы преобразователей напряжения, так и их характеристики. Правильное сочетание типа преобразователя и его основных характеристик и определяют сферу его применения. Вы можете запросто отсеять все ненужные модели, воспользовавшись удобными фильтрами в нашем интернет-магазине, благодаря чему сделать правильный выбор проще простого.

Вопрос о том, для чего нужен преобразователь напряжения, надеемся, был решен. Если же у Вас остались вопросы – посетите торговые точки «Вольтмаркет» в Киеве, Харькове, Днепре и Одессе, либо проконсультируйтесь с нашими специалистами по телефону. Мы с радостью поможем подобрать тот преобразователь напряжения, который отвечает всем Вашим требованиям и, одновременно, вписывается в бюджет. Кроме того, если Вы еще не обзавелись подходящими аккумуляторными батареями, сделать это также можно в нашем интернет-магазине. У нас доступен широкий выбор как стартерных автомобильных АКБ, так и тяговых гелевых аккумуляторов для систем автономного электроснабжения, к которым относятся и рассмотренные нами инверторы. Любой товар можно купить не только самовывозом в перечисленных выше городах, но и онлайн с возможностью быстрой доставки курьерской службой в любой город Украины.

Принцип работы преобразователей | EEEGUIDE.COM

Принцип работы преобразователей:

Принцип работы преобразователей — Управляемая реактивная мощность может быть произведена переключающими преобразователями постоянного тока в переменный, которые переключаются синхронно с линейным напряжением, с которым реактивный

мощность обменена. Импульсный преобразователь мощности состоит из массива твердотельных переключателей, которые соединяют входные клеммы с выходными клеммами.У него нет внутренней памяти, поэтому мгновенная входная и выходная мощность равны. Кроме того, входные и выходные клеммы дополняют друг друга, то есть, если вход завершается источником напряжения (заряженным конденсатором или батареей), выход представляет собой источник тока (что означает источник напряжения, имеющий индуктивный импеданс), и наоборот. Таким образом, преобразователь может быть источником напряжения (шунтированного конденсатором или батареей) или источника тока (шунтированного катушкой индуктивности).

Однолинейная схема базовой схемы преобразователя напряжения для выработки реактивной мощности представлена ​​на рис.15.6. Напряжение на шине потока реактивной мощности V и напряжение на клеммах преобразователя V 0 совпадают по фазе.

Затем по фазам

Обмен реактивной мощности

Схема переключения может регулировать выходное напряжение преобразователя V 0 . Для V 0 Q , выведенный из шины, является индуктивным, в то время как для V 0 > V, I ведет V, а Q , выведенный из шины, является ведущим.Потребляемую реактивную мощность можно легко и плавно изменять, регулируя V 0 , изменяя время включения твердотельных переключателей. Следует отметить, что реактивное сопротивление утечки трансформатора довольно мало (0,1-0,15 о.е.), а это означает, что небольшая разница напряжений (V — V 0 ) вызывает требуемый поток I и Q . Таким образом, преобразователь действует как статический синхронный конденсатор (или генератор переменного тока).

Типовая схема преобразователя показана на рис. 15.7. Это трехфазный двухуровневый шестиимпульсный H-мост с диодом, установленным антипараллельно каждому из шести тиристоров (обычно используются GTO).Импульсы запуска синхронизируются с волнами напряжения на шине.

Поскольку преобразователь потребляет только реактивную мощность, реальная мощность, потребляемая конденсатором, равна нулю. Также при постоянном токе (нулевая частота) конденсатор не выдает никакой реактивной мощности. Следовательно, напряжение на конденсаторе не изменяется, и конденсатор устанавливает только уровень напряжения для преобразователя. Коммутация заставляет преобразователь соединять 3-фазные линии так, чтобы между ними мог протекать реактивный ток.

Преобразователь потребляет небольшое количество реальной мощности для компенсации внутренних потерь (при переключении). Если требуется подать на шину реальную мощность, конденсатор заменяют аккумуляторной батареей. Для этого необходимо изменить переключение цепи, чтобы создать разность фаз δ между V 0 и V с опережением V 0 V.

Преобразователь, описанный выше, соединен шунтом с линией. На аналогичных линиях может быть сконструирован преобразователь с выводами, включенными последовательно с линией.Он должен пропускать линейный ток и обеспечивать подходящую величину (может также быть фазным) напряжения последовательно с линией. В таком соединении он будет действовать как модификатор импеданса линии.

Преобразователь тока в напряжение

— Учебники по аналоговой электронике

Преобразователь тока в напряжение выдает напряжение, пропорциональное заданному току. Эта схема необходима, если ваш измерительный прибор может измерять только напряжения, а вам нужно измерять выходной ток.

Если ваш прибор или модуль сбора данных (DAQ) имеет входное сопротивление на несколько порядков больше, чем резистор преобразования, для преобразования можно использовать простую схему резистора. Однако, если входное сопротивление вашего прибора низкое по сравнению с резистором преобразования, тогда следует использовать следующую схему операционного усилителя.

Для анализа преобразователя тока в напряжение путем осмотра,

  • , если мы применим KCL к узлу в V- (инвертирующий вход) и позволим входному току на инвертирующий вход быть I-, тогда \ begin {уравнение} {{V_ {out} — V_-} \ over R_f} = I_p + I_- \ end {уравнение}
  • , поскольку выход подключен к V- через R f , операционный усилитель находится в конфигурации с отрицательной обратной связью.Таким образом \ begin {уравнение} V_- = V_ + = 0 \ end {уравнение}
  • и предполагая, что I- равно 0 и упрощает, \ begin {уравнение} V_ {out} = I_pR_f \ end {уравнение}

Одним из примеров такого применения является использование фотодиодного датчика для измерения интенсивности света. Выходной сигнал фотодиодного датчика — это ток, который изменяется пропорционально интенсивности света. Еще одно преимущество схемы операционного усилителя заключается в том, что напряжение на фотодиоде (источнике тока) поддерживается постоянным на уровне 0 В.

Поскольку доходы от рекламы падают, несмотря на рост числа посетителей, нам нужна ваша помощь в поддержании и улучшении этого сайта, что требует времени, денег и упорного труда.Благодаря щедрости наших посетителей, которые давали ранее, вы можете использовать этот сайт бесплатно.

Если вы получили пользу от этого сайта и можете, пожалуйста, отдать 10 долларов через Paypal . Это позволит нам продолжаем в будущее. Это займет всего минуту. Спасибо!

Я хочу дать!

Как работает трансформатор напряжения ~ Изучение электротехники

Функция трансформатора основана на том принципе, что электрическая энергия эффективно передается за счет магнитной индукции от одной цепи к другой.В основном трансформатор состоит из двух или более обмоток, расположенных на одном магнитном пути. Обмотка, на которую подается электрическая энергия, называется первичной обмоткой, а обмотка, к которой подключена нагрузка, называется вторичной обмоткой. Типичное действие двухобмоточного трансформатора показано ниже:
Действие трансформатора

Когда первичная обмотка трансформатора запитана от источника переменного тока (AC), в сердечнике трансформатора создается переменное магнитное поле.Через сердечник циркулируют переменные магнитные силовые линии, называемые «потоком». Во второй (вторичной) обмотке вокруг того же сердечника напряжение индуцируется переменными магнитными линиями. Нагрузка, подключенная к выводам вторичной обмотки, вызывает протекание тока.

Детали трансформатора

Трансформатор состоит из двух основных неподвижных частей:

(а) Сердцевина из многослойного железа

(b) Обмотки (первичная и вторичная)

Сердечник из слоистого железа

Железный сердечник трансформатора состоит из листов проката.Это железо обрабатывают таким образом, чтобы оно обладало высокой магнитной проводимостью (высокой проницаемостью) по всей длине сердечника. Проницаемость — это термин, используемый для описания случая, когда материал будет проводить магнитные силовые линии.

Железо также имеет высокое омическое сопротивление на пластинах (по всей толщине сердечника). Стальные листы необходимо ламинировать, чтобы уменьшить нагрев сердечника. Существует два распространенных типа сердечников трансформаторов:

(а) Тип сердечника

(б) Корпус типа


Трансформаторы с сердечником и оболочкой

В трансформаторе с сердечником (в форме сердечника) обмотки окружают сердечник.В трансформаторе оболочечного типа стальная магнитная цепь (сердечник) образует оболочку, окружающую обмотки. В форме сердечника обмотки находятся снаружи; в форме оболочки обмотки находятся внутри.

Обмотки

Трансформатор имеет две обмотки; первичная обмотка и вторичная обмотка.

Первичная обмотка — это катушка, которая получает энергию. Его формируют, наматывают и надевают на железный сердечник. Вторичная обмотка — это катушка, которая отводит энергию преобразованного или измененного напряжения.

Типы трансформаторов

Трансформаторы классифицируются по разным критериям. Однако вот список наиболее распространенных универсальных типов трансформаторов:

(а) Однофазные трансформаторы

(б) Трехфазные трансформаторы

(c) Трансформаторы потенциала или напряжения

d) Автотрансформаторы

(e) Трансформаторы тока

(е) Силовые трансформаторы

Коэффициент напряжения трансформатора

Напряжение на обмотках трансформатора прямо пропорционально количеству витков на катушках обмоток.Эта связь выражается формулой:

Коэффициент напряжения трансформатора

Где:

Vp = напряжение на первичных обмотках, В

Vs = напряжение на вторичных обмотках, В

Np = количество витков первичной обмотки

Ns = количество витков вторичных обмоток

Отношение Vp / Vs называется отношением напряжений (VR). Отношение Np / Ns называется отношением оборотов (TR).

Соотношение напряжений 1: 4 (читается как от 1 до 4) означает, что на каждый вольт на первичной обмотке трансформатора приходится 4 В на вторичной. Когда вторичное напряжение больше первичного, трансформатор называется повышающим трансформатором.

Соотношение напряжений 4: 1 означает, что на каждые 4 В первичной обмотки приходится только 1 В. Когда вторичное напряжение меньше первичного, трансформатор называется понижающим трансформатором.

Коэффициент текущей ликвидности

Ток в катушках трансформатора обратно пропорционален напряжению в катушках.Эта связь выражается уравнением:

Коэффициент тока трансформатора

Где:

Ip = ток в первичной обмотке, А

Is = ток вторичной обмотки, А

В приведенном выше уравнении мы можем заменить Vp / Vs Np / Ns, так что мы имеем:

КПД трансформатора

КПД трансформатора равен отношению выходной мощности вторичной обмотки к мощности, потребляемой первичной обмоткой.

Идеальный трансформатор имеет 100-процентный КПД, потому что он передает всю получаемую энергию.

Однако из-за потерь в сердечнике и меди КПД даже самого лучшего практичного трансформатора составляет менее 100 процентов. Выражается в виде уравнения:

КПД трансформатора

Где:

Eff = КПД

Ps = выходная мощность из вторичной обмотки = входная мощность — потери в сердечнике — потери в меди

Pp = потребляемая мощность первичной обмотки

КПД хорошо спроектированных трансформаторов очень высок, в среднем более 98 процентов (%) для силовых трансформаторов.Единственные потери в трансформаторе связаны с потерями в сердечнике, которые идут на поддержание переменного магнитного поля, потерями сопротивления в катушках и мощностью, используемой для охлаждения больших трансформаторов, требующих охлаждения.

Основная причина высокого КПД трансформаторов по сравнению с другим оборудованием — отсутствие движущихся частей. Трансформаторы называются статическими машинами переменного тока.

Как работает преобразователь постоянного тока в постоянный ток?

Что такое преобразователь постоянного тока в постоянный или описание принципа работы преобразователей постоянного тока в постоянный ток, используемых для создания источников питания

Преобразователи мощности

DC / DC широко используются в различных электронных устройствах, вычислительных инструментах, телекоммуникационных устройствах, промышленных системах управления, мобильных устройствах и т. Д.Преобразователи постоянного тока в постоянный ток
используются для увеличения или уменьшения выходного напряжения по отношению к входному напряжению.

Типы преобразователей постоянного / постоянного тока

 

DC-DC Module

Buck-Boost DC / DC преобразователь напряжения

Сегодня на рынке доступны различные типы DC / DC преобразователей.

  1. Неиндуктивные преобразователи постоянного тока в постоянный

Для питания маломощных нагрузок целесообразно использовать преобразователи на основе переключающих конденсаторов.Для использования этих преобразователей не требуются дорогостоящие комплектующие, что позволяет создавать доступные и компактные блоки питания. Такие преобразователи могут иметь как фиксированное, так и регулируемое напряжение.

  1. Индуктивные преобразователи постоянного тока в постоянный

Преобразователи без гальванической развязки между входом и выходом широко популярны. Этот преобразователь имеет единственный изолированный источник питания. В зависимости от положения ключа напряжение может быть увеличено, уменьшено или инвертировано для изменения полярности напряжения.Ключевыми компонентами часто являются биполярные транзисторы с изолированным затвором (IGBT) и полевые транзисторы (FET) различных типов.
Индуктивные преобразователи бывают следующих типов:

  • Понижающий импульсный преобразователь. Ключевым моментом здесь является транзистор, управляемый широтно-импульсным модулятором.
  • DC / DC преобразователь импульсов с повышением частоты. Его особенности описаны ниже.
  • Преобразователь с регулируемым выходным напряжением. Эти преобразователи позволяют иметь как более высокое, так и более низкое выходное напряжение. Зачем они нам нужны? Например, их можно использовать в изделиях с напряжением, устанавливаемым литий-ионным аккумулятором.Со временем батарея медленно разряжается и ее напряжение падает, но использование этого преобразователя позволяет постоянно поддерживать заданное значение выходной мощности.
  • Преобразователь
  • с любым выходным напряжением. Эти преобразователи могут генерировать как более высокое, так и более низкое выходное напряжение. Зачем они нам нужны? Например, их можно использовать в цепях с напряжением, задаваемым литий-ионным аккумулятором. Они имеют напряжение 3,3 В. В процессе работы его напряжение падает, что имеет смысл преобразовать его в 3.3В на выходе.Примером такого преобразователя является повышающий DC / DC преобразователь от Terratel.

Рис. Основные детали преобразователя постоянного тока в постоянный

  1. Преобразователи постоянного тока в постоянный с гальванической развязкой

В этих преобразователях используются импульсные трансформаторы с несколькими катушками, что позволяет исключить связь между входными и выходными цепями.
Эти преобразователи отличаются большой разницей между входным и выходным напряжениями. Например, они используются в блоках питания импульсных фотовспышек с выходным напряжением около 400 В.

Принцип работы преобразователя постоянного тока в постоянный

Итак, наше текущее напряжение составляет 5 вольт, и нам нужно преобразовать его в более высокое значение. Для этого есть несколько вариантов. Один из вариантов — зарядить конденсаторы параллельно, а затем переключать их по очереди. Делать это нужно очень быстро, несколько раз в секунду. На практике этого невозможно достичь, и поэтому для решения этой проблемы используются специальные преобразователи постоянного тока в постоянный.

Чтобы понять, как работает этот преобразователь, представим, что мы сантехники.

Фаза 1 — Ускорение турбины
Сначала нам нужно разогнать турбину. Для этого открывается дроссель, и вода выходит, быстро передавая часть своей энергии турбине, и в результате турбина начинает вращаться.

Этап 2 — Наполнение резервуара для хранения давления

Дроссельная заслонка закрывается. Часть воды, выталкиваемая вращающейся половиной маховика турбины, открывает клапан и заполняет резервуар. Другая часть воды направляется к потребителю под высоким давлением, создаваемым резервуаром для хранения.В то же время клапан предотвращает обратное движение воды.

Этап 3 — Выработка энергии из резервуара для хранения давления и ускорение турбины .

Скорость турбины начинает падать. Вода больше не может толкать клапан, а в накопительном баке все еще накоплено достаточно энергии. Затем дроссель снова открывается, и вода начинает быстро вращать турбину. Поток энергии, идущей к потребителю, не прекращается, поскольку потребитель получает ее из накопительного бака.

Затем цикл повторяется.
Теперь, когда принцип работы ясен, мы перейдем от сантехнического оборудования к электронике.
У нас есть индуктивный дроссель вместо турбины. Транзистор используется вместо дросселя, который регулирует поток воды. Диод действует как вентиль, а конденсатор используется вместо резервуара для хранения давления.
Так выглядит преобразователь DC / DC. Как это работает? Практически то же самое.

Фаза 1 — индуктивность накапливает заряд

Ключ закрыт.Индуктивность накапливает энергию, получая ток от источника.

Фаза 2 — Передача энергии конденсатору

Ключ открывается, и катушка удерживает накопленную энергию в магнитном поле. Ток пытается оставаться на том же уровне, но дополнительная энергия от индуктивности повышает напряжение, тем самым открывая путь через диод. Некоторая часть энергии направляется к потребителю, а оставшаяся энергия накапливается в конденсаторе.

Этап 3 — Накопление энергии в индуктивности и передача заряда потребителю

Затем ключ запирается, и катушка снова начинает накапливать энергию.При этом потребитель получает энергию от конденсатора.

измерений — Как работает преобразователь частоты в напряжение?

TL; DR

История ФЖЕЛ, в основном и хронологически, выглядит следующим образом:

  • дозатор, состоящий из ограничителя напряжения, конденсатора и диодов;
  • Два операционных усилителя и конденсатор
  • Два операционных усилителя и конденсатор плюс резистор утечки
  • LM131
  • Каскадирование двух или более быстрых фильтров Саллена-Ки
  • Контур фазовой автоподстройки частоты
  • Цифровой

Вы не говорите, какой преобразователь частоты в напряжение (FVC) вы используете или на чем он основан (LM331, LM131, AD650, ADVFC32, LM2907 / LM2917 и т. Д.Есть много способов выполнить преобразование частоты в напряжение — есть как аналоговые, так и цифровые методы, и в этих лагерях снова есть различные способы достижения того же самого.

Если вы хотите увидеть, как возник FVC, то вот интересное историческое объяснение , основанное на основах: Что это вообще за штука с преобразователем частоты в напряжение? Он написан Робертом А. Пизом, парнем, который разработал LM131 для National, так что эта информация, так сказать, прямо из уст лошади.PDF-файл также доступен оттуда.

Я попытаюсь резюмировать статью ниже:

Аналог

Первая версия

Тридцать лет назад один парень спросил его, может ли он показать ему, как сделать преобразователь частоты в напряжение (FVC), когда он работал в компании George A. Philbrick Researches. Он сконструировал дозатор из ограничителя напряжения, конденсатора и диодов. Видно, неплохо получилось.

Вторая версия

В 1964 году он поместил новую версию в старое Руководство по приложениям Philbrick.

Первый усилитель имеет ограниченное выходное напряжение. Напряжение p-p на конденсаторе довольно хорошо установлено:

В размах = 2Vz + 2Vd — 2Vd

Итак, заряд (Q = C × V p-p) протекает через резистор обратной связи второй усилитель. Выходное напряжение в среднем составит:

Vвых. = Rf × C × V p-p × f

Третья версия

Несколько лет спустя он занялся производством преобразователей напряжения в частоту (VFC) и в то же время разработал улучшенную схему для FVC (см. Рисунок 2).

Входной компаратор настроен на работу с TTL сигналов, но если поставить резистор со входа + на -15 В, можно размещать симметричные сигналы; резистор от входа + к земле уменьшит гистерезис и позволит вам обрабатывать небольшие сигналы.

Реальным усовершенствованием этого FVC был резистор утечки, добавленный 3,3 МОм к правому концу конденсатора.

LM131

После того, как он покинул Philbrick, он присоединился к National и разработал преобразователь напряжения в частоту LM131 3 , используя совершенно другие идеи, чем любая из схем Philbrick.

Он использовал Q = I × T, а не Q = C × V используется всеми Philbrick. Не нужно было ± 15 В; Это может работать при +15, или +30, или +12, или +5 В — применять гораздо проще. Но это все еще было такое же ограничение, когда вы использовали его как преобразователь F-to-V: Если вам нужна низкая пульсация, сложно получить быстрый отклик.

Каскадирование двух или более быстрых фильтров Саллена-Ки

В 1978 году он написал заметку по применению о том, как улучшить время отклика FVC — в «Справочнике по линейным приложениям».

Я показал, как каскадировать два или более быстрых фильтра Саллена-Ки, чтобы дать достаточно быстрый отклик, но отфильтровывать пульсации на уровне 24 дБ на октаву.

Контур фазовой автоподстройки частоты

В 1979 году он написал еще одну заметку к приложению, показывающую, как использовать контур фазовой автоподстройки частоты, чтобы сделать более быстрый преобразователь F-to-V, примерно за 2 мс.

Это около 10 циклы новой частоты — дальнейшее улучшение 20: 1.

Цифровой

Быстрые часы и цифровой счетчик

Недавно один парень спросил его, как сделать FVC 60 Гц с быстрым откликом. и незначительное отставание или задержка.

Я сказал ему, что стандартная процедура использовать быстрые часы и цифровой счетчик. Но количество отсчетов собранных за один период, линейно пропорционален периоду сигнал, и вам, возможно, придется выполнить некоторые цифровые вычисления, чтобы преобразовать это в сигнал, представляющий частоту. Тогда я понял что «умножающий» ЦАП может использоваться для деления в обратном режиме.

Он построил это, и это сработало. Этот преобразователь частоты в напряжение устанавливает частоту за один цикл и использует только небольшое количество деталей.

Цифровая логика генерирует пару импульсов в момент каждого нарастающий фронт входящей частоты (вы можете использовать какой-нибудь двойной одноразовый мультивибратор, но таких у меня не было). В первый импульс загружает данные с CD4040 в ЦАП (импульс также отключает путь от часов к счетчику, чтобы избежать путаница от ряби в счетчике). Затем второй импульс сбрасывается счетчик.

MDAC имеет встроенные регистры памяти, поэтому данные счетчика подается прямо в ЦАП при подаче импульса WRITE-2-bar.В MDAC не подключен штатным образом, с переменным сопротивлением во входном пути. Постоянный резистор находится на входе, а Импеданс, управляемый цифровым кодом, подключен как обратная связь резистор. Это позволяет умножающему ЦАП действовать как делитель, поэтому взаимная функция реализована аккуратно — не в цифровой сфере и не в аналоговом мире, но на пороге между ними. (Подробнее об этом в несколько месяцев). LM607BN был выбран для операционного усилителя, потому что вам нужно низкий смещение. Это дешево, Vos обычно составляет всего 25 мкВ (макс.), а также горшок-триммер не нужен.


Я серьезно рекомендую вам прочитать исходную статью, так как в моей сокращенной версии, к сожалению, пришлось опустить большинство важных технических фактов.

Fsect4.PDF

% PDF-1.6 % 3 0 obj > эндобдж 105 0 объект [/ CalGray>] эндобдж 106 0 объект [/ CalRGB>] эндобдж 107 0 объект > поток application / pdf

  • Неизвестно
  • Fsect4.PDF
  • Среда, 29 июля 1998 г. 1:01:09 PMAcrobat PDFWriter 3.0 для Windows Microsoft Word 2012-06-12T12: 48: 12-04: 002012-06-12T12: 48: 12-04: 00uuid: 57a21a6c-d787-4a74-b8c2 -8c4e46d02a7auuid: 4b87336f-6f39-4491-86ec-995b34114f63 конечный поток эндобдж 108 0 объект > эндобдж 104 0 объект > эндобдж 5 0 obj > эндобдж 44 0 объект > эндобдж 65 0 объект > эндобдж 84 0 объект > эндобдж 83 0 объект > / Тип / Страница >> эндобдж 88 0 объект > / ProcSet 2 0 R >> / Тип / Страница >> эндобдж 91 0 объект > / ProcSet 2 0 R >> / Тип / Страница >> эндобдж 92 0 объект > поток ѐ`.q] р + 9

    Принцип работы и его функции

    Преобразователь постоянного тока в постоянный

    Существуют различные типы силовых электронных преобразователей, которые часто используются в системах электроснабжения, такие как преобразователь мощности, регулируемый источник питания, источник питания постоянного тока и так далее. Преобразователи силовой электроники могут быть классифицированы как преобразователь или выпрямитель переменного тока в постоянный, преобразователь или инвертор постоянного тока в переменный, преобразователь переменного тока в переменный, преобразователь постоянного тока в постоянный и так далее. Эти преобразователи снова классифицируются на разные типы на основе разных критериев.Если мы рассматриваем преобразователи постоянного тока в постоянный, они классифицируются как понижающие преобразователи постоянного тока, повышающие преобразователи постоянного тока и повышающие-понижающие преобразователи постоянного тока. Здесь мы подробно обсудим преобразователи постоянного тока в постоянный, принцип работы и функции.

    Преобразователь постоянного тока в постоянный

    Преобразователь постоянного тока в постоянный — это устройство силовой электроники, которое принимает входное напряжение постоянного тока, а также обеспечивает выходное напряжение постоянного тока. Выходное напряжение преобразователя постоянного тока в постоянный может быть больше входного напряжения или наоборот.Выходные напряжения преобразователя используются для согласования источника питания, необходимого для нагрузки. Подключением и отключением источника питания к нагрузке можно управлять с помощью переключателя в простой схеме преобразователя постоянного тока в постоянный. Цепи преобразователя постоянного тока в постоянный состоят из транзисторного или диодного переключателя, устройств накопления энергии, таких как катушки индуктивности или конденсаторы, и эти преобразователи обычно используются в качестве линейных регуляторов напряжения или импульсных регуляторов напряжения. Преобразователи постоянного тока в постоянный используются для обеспечения регулируемого источника питания постоянного тока, постоянного источника питания постоянного тока для электрических и электронных схем проекта.

    Принцип работы и функции преобразователя постоянного тока в постоянный

    Чтобы понять принцип работы и функциональность преобразователя постоянного тока в постоянный, давайте рассмотрим принцип работы повышающего преобразователя постоянного тока.

    Повышающий преобразователь постоянного тока в постоянный

    Низкое входное постоянное напряжение преобразуется в высокое выходное постоянное напряжение с помощью повышающего преобразователя постоянного тока в постоянный. Поскольку входное напряжение повышается по сравнению с выходным напряжением, его также называют повышающим преобразователем. Как правило, преобразователи постоянного тока в постоянный ток могут быть разработаны с использованием силовых полупроводниковых переключающих устройств и дискретных электрических и электронных компонентов.

    В преобразователе постоянного тока в постоянный преобразователь работает в двух режимах:

    • Режим непрерывной проводимости
    • Режим прерывистой проводимости

    Цепь режима непрерывной проводимости повышающего преобразователя постоянного тока в постоянный

    На рисунке показана схема повышающего преобразователя постоянного тока в постоянный ток, которая состоит из катушки индуктивности, конденсатора, переключающего устройства, диода и источника входного напряжения. Этот переключатель схемы повышающего преобразователя управляется с помощью широтно-импульсного модулятора (ШИМ).Если этот переключатель находится в состоянии ВКЛ, то в индукторе будет вырабатываться энергия, и, таким образом, на выход будет подаваться больше энергии.

    Цепь режима прерывистой проводимости повышающего преобразователя постоянного тока в постоянный

    На рисунке показана схема с прерывистой проводимостью повышающего преобразователя постоянного тока в постоянный, которая состоит из таких элементов, как конденсатор, катушка индуктивности, источник напряжения, диод и переключающее устройство. В этом режиме прерывистой проводимости, если переключатель находится во включенном состоянии, энергия будет подаваться на элемент накопления энергии, индуктор.Если переключатель находится в выключенном состоянии в течение некоторого времени, то ток индуктора достигнет нуля до следующего цикла переключения. Таким образом, конденсатор заряжается и разряжается относительно входного напряжения. Но здесь выходное напряжение в режиме прерывистой проводимости меньше, чем выходное напряжение в режиме непрерывной проводимости.

    Аналогичным образом понижающие преобразователи используются для преобразования высокого входного постоянного напряжения в низкое выходное постоянное напряжение. Понижающие-повышающие преобразователи используются для поддержания высокого или низкого выходного напряжения постоянного тока в зависимости от входного источника постоянного напряжения.Если входное напряжение постоянного тока высокое, выходное напряжение будет низким, и наоборот. Таким образом, мы можем поддерживать стабилизированное постоянное напряжение с помощью повышающих преобразователей.

    Практический пример преобразователя постоянного тока в постоянный
    Преобразователь

    DC 12 В в 24 В можно рассматривать как практический пример преобразователя постоянного тока в постоянный (повышающий преобразователь), который используется в качестве источника постоянного тока.

    В некоторых случаях нам требуется 24 В постоянного тока от источника 12 В. Эта схема достаточно хорошо подходит для преобразования постоянного тока 12В в 24В. Эта схема способна выдавать устойчивый выходной сигнал 24C постоянного тока и выдавать выходной ток до 800 мА.Схема в основном представляет собой преобразователь постоянного тока в постоянный, разработанный с использованием микросхемы LM324, которая сконфигурирована как генератор. Этот LM324 используется для определения частоты переключения, а транзистор используется в качестве полупроводникового переключающего элемента.

    IC LM324 является основным компонентом этой схемы преобразователя постоянного тока в постоянный. LM324 — это четырехъядерный операционный усилитель, и из этих четырех операционных усилителей внутри ИС только два используются в этой схеме. Генератор формируется IC1a, R1, R2, R3 и C1, этот генератор работает около 500 Гц.Используя резистор R2 и конденсатор C1, мы можем установить частоту генератора. Компаратор образован микросхемой IC1b, которая используется для сравнения выходного напряжения с опорным напряжением, и для управления выходным напряжением это напряжение обратной связи подается на каскад генератора.

    Схема преобразователя

    постоянного тока 12В в 24В

    Предустановленный R5 подключен к неинвертирующему выводу IC1, чтобы сформировать схему делителя потенциала. Инвертирующий входной контакт подключен к выходу через резистор 100 кОм.Выход этого компаратора IC1b подается на неинвертирующий входной вывод IC1a через другой резистор 100 кОм. Выходной сигнал генератора IC1a подается на вывод базы транзистора Q1 через резистор R7 для ограничения тока базы транзистора Q1.

    Если на выходе генератора IC1a высокий уровень, то транзистор Q1 включается и ток, проходящий через катушку индуктивности L1, увеличивается. Если на выходе генератора IC1a низкий уровень, то транзистор Q1 отключается, и, таким образом, ток индуктивности проходит через D2, C3 и нагрузку, если таковая имеется в цепи.Обратный диод D2 смещается в прямом направлении, и, таким образом, во включенном состоянии энергия накапливается в катушке индуктивности. Эта накопленная энергия будет сброшена в конденсатор. Диод D1 действует как диод свободного хода.

    Мы знаем, что, согласно свойству индуктора, он всегда пытается противодействовать резкому изменению тока, проходящего через него. Благодаря этому свойству индуктора, когда индуктор заряжен, он накапливает энергию, а когда индуктор разряжается, он действует как источник энергии. Напряжение, которое он подает во время разряда, пропорционально скорости изменения тока через него.Если частота переключения увеличивается, то наведенная ЭДС от катушки индуктивности также увеличивается.

    Для получения дополнительной информации о силовых преобразователях и проектах силовой электроники, не стесняйтесь обращаться к нам, оставляя свои комментарии в разделе комментариев ниже.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *