Пробитый конденсатор: Как найти пробитый конденсатор на плате

Содержание

Как проверить исправность конденсатора, его емкость и сопротивление



Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.
По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости — причина которая со временем постигает почти все электролитические конденсаторы.

Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию.

Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.

Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.

Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.

Проверка конденсаторов

Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.
Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку — лучше конденсатор выпаять полностью.


Проверка конденсатора мультиметром

С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.

25 микрофарад.

Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус — это минусовой вывод конденсатора.

И так выставляем тестер в режим или прозвонки или сопротивления. Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение.
Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет — конденсатор заряжается.
Скорость заряда будет напрямую зависеть от емкости конденсатора. Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение «1» или по другому говоря «бесконечность» это уже говорит о том что конденсатор не пробит и не замкнут.

Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение «1» то это говорит об внутреннем обрыве — конденсатор не исправен.

Бывает и другое, значение «000» или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.

Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора  — сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.


Проверка конденсаторов стрелочным тестером
Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.

Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора.
Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.

Но если емкость конденсатора очень мала, «зарядки» можно и не заметить — практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад — такая картина практически сразу же будет говорить о внутреннем обрыве.
Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым. Такой способ даст возможность более уверено ответить на вопрос — рабочий ли конденсатор?

Проверка переменным напряжением

Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.
Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора.
Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.
Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора

Проверяем емкость конденсатора


Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.

Все электролитические конденсаторы со временем (в процессе работы) «подсыхают» и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения.

Проверяют емкость мультиметром в режиме «Cx» выбирают примерную емкость с максимальным пределом.
Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов.
Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая «крона».

Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.

Но если у вас под рукой нет ни мультиметра ни «микрофарадметра» можно достаточно приблизительно замерить емкость стрелочным омметром.
Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам — «засекаем» время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.

Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.
С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора. В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся «заряд» и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.

«Зарядка напряжением».
Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.
И так суть способа заключается в том что конденсатор заряжают  от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды. После чего «зарядку» отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.

Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).

Как проверить конденсатор без приборов?
В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой.
У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.

Как проверить конденсатор мультиметром на работоспособность

По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.

Типичные неисправности конденсаторов:

  • КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
  • внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
  • частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
  • слишком низкое сопротивление утечки (конденсатор «не держит» заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
  • слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается «электролитов» и проявляется только при работе с высокочастотными или импульсными токами.

Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.

Содержание статьи:

Внешний осмотр

Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:

  • даже незначительного вздутия, следов подтеков;
  • механических повреждений, вмятин;
  • трещин, сколов (актуально для керамики).

Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.

Измерение емкости конденсатора мультиметром и специальными приборами

Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.

С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.

Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.

К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.

Проверка на короткое замыкание

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.

В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).

Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Если нет мультиметра (и даже старой советской «цешки» нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.

Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).

Если же светодиод горит постоянно, конденсатор 100% неисправен.

Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость. Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т. п.).

Все что нужно сделать — просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:

Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).

При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость — тем тусклее будет гореть лампочка.

Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор «пробит» и подлежит замене. Если лампочка совсем не светится — внутри конденсатора обрыв.

Способ №3 очень наглядно продемонстрирован в этом видео:

Проверка на отсутствие внутреннего обрыва

Обрыв — распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.

Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса 🙂

Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Как это сделать? Есть три способа.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.

Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом — от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.

Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:

Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.

Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.

Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм — для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты.

С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0. 001 мкФ (или 1000 пФ).

Вот видео для наглядности:

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.

Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.

Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.

Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости — от малюсеньких до самых больших, а также любого типа — полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.

Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Определение рабочего напряжения конденсатора

Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.

Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть «на глазок» рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.

Способ №1: определение рабочего напряжения через напряжения пробоя

Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.

Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.

Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).

За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое… Вы можете иметь свое мнение на этот счет.

Внимание! Обязательно соблюдайте все меры предосторожности! При проверке конденсатора на пробой необходимо использовать защищенный стенд, а также индивидуальные средства защиты зрения.

Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:

А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).

Способ №2: нахождение рабочего напряжения конденсатора через ток утечки

Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.

Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:

и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.

У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):

Напряжение на
конденсаторе, В
Ток утечки,
мкА
Прирост тока,
мкА
10 1.1 1.1
20 2.2 1.1
30 3.3 1.1
40 4.5 1.2
50 5.8 1.3
60 7.2 1.4
70 8.9 1.7
80 11.0 2.1
90 13.4 2.4
100 16.0 2.6

Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.

Если из полученных значений построить график, то он будет иметь следующий вид:

Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:

Стандартный ряд номинальных рабочих напряжений конденсаторов, В
6.3 10 16 20 25 32 40 50 63 80 100 125 160 200 250 315 350 400 450 500

то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.

Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.

Как измерить ток утечки конденсатора?

Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.

Также можно вычислить ток утечки конденсатора косвенным методом — через падение напряжения на заранее известном сопротивлении:

При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.

При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.

Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:

Определение емкости неизвестного конденсатора

Способ №1: измерение емкости специальными приборами

Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).

Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!

Способ №2: измерение емкости двух последовательно включенных конденсаторов

Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?

На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.

Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.

Подставляем эти цифры в формулу и получаем:

Способ №3: измерение емкости через постоянную времени цепи

Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).

Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).

Вот какой-то чел очень хорошо все рассказал на видео:

Другие способы измерения емкости

Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.

Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.

Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.

Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.

Можно ли проверить конденсатор мультиметром не выпаивая его с платы?

Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.

Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.

Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.

Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.

Вот пример, когда все пять конденсаторов покажут ложное КЗ:

Таким образом, проверка конденсаторов мультиметром без выпаивания вообще невозможна.

В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая «прозвонка» конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен. Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.

Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.

Вот очень правильный и понятный видос на эту тему:

Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы — это фантастика.

Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.

Как проверить конденсатор, неисправности конденсаторов и их устранение

Рассмотрены возможные неисправности конденсаторов, способы проверки при помощи подручных средств и приборов. Как показывает практика ремонта за последние годы, наибольшее число отказов аппаратуры происходит по вине электролитических конденсаторов. При этом наблюдается снижение числа отказов по вине других компонентов.

Здесь будут перечислены основные виды неисправностей конденсаторов, и способы их выявления. Считается, что основными видами неисправностей конденсаторов являются пробой и обрыв, на самом деле их больше.

Обрыв электролитического конденсатора, снижение емкости

Обрыв характеризуется отсутствием емкости. Если номинальная емкость конденсатора (та, которая должна быть) ниже 20 мкФ, то единственным способом проверки будет измерение емкости. На этот случай желательно иметь мультиметр с функцией измерения емкости. Обычно такие мультиметры способны измерять емкость до 20 мкФ.

Пример мультиметра с измерением емкости из разряда «бюджетной цены» — DT9206A, но есть и масса других. Здесь все ясно, -измеряем емкость, прибором и делаем выводы:

Если емкости нет — конденсатор неисправен, — только выбросить. Если емкость понижена — конденсатор неисправен, и использовать его можно, но не желательно, потому что емкость может и еще снизиться.

Проверить наличие емкости электролитического конденсатора с номинальной емкостью более 20 мкФ в принципе можно с помощью любого мультиметра, на режиме измерения сопротивления. Выбираем предел измерения «200 кОм», сначала замыкаем выводы конденсатора чтобы снять возможно имеющийся в нем заряд, затем размыкаем выводы и подключаем к ним щупы мультиметра. На дисплее появится некоторая величина сопротивления, которая будет расти тем быстрее, чем меньше емкость

конденсатора, и через некоторое время достигнет «бесконечности». Это происходит потому что, в процессе зарядки емкости конденсатора ток через конденсатор снижается, а сопротивление, которое мультиметр определяет по функции обратной току, соответственно, растет. У полностью заряженного конденсатора сопротивление будет стремиться к бесконечности.

Если все именно так и происходит, значит, емкость у конденсатора имеется. Если же сразу «бесконечность» — увы, у конденсатора обрыв, и его можно только выкинуть. Измерить емкость электролитического конденсатора при помощи омметра в принципе то же можно.

Но весьма необычным способом. Кроме мультиметра для этого потребуется секундомер, лист бумаги, карандаш и большая кучка заведомо исправных конденсаторов разных емкостей.

Нужно расположить эти конденсаторы в порядке возрастания емкости и измеряя их сопротивление омметром, как написано выше, замерять секундомером сколько времени у каждого из них уходит от начала измерения до «бесконечности» сопротивления. Затем, эти данные записать в виде таблицы. При этом, не забыв указать на каком пределе измерения сопротивления данные были получены.

Теперь, чтобы определить емкость электролитического конденсатора, нужно измеряя его сопротивление мультиметром, определить секундомером сколько уйдет времени на достижение «бесконечности». А затем по этой таблице определить примерно емкость. Не забывайте перед каждым измерением разряжать конденсатор, временно замыкая его выводы.

Данный способ годится только для электролитических конденсаторов номинальной емкостью более 20 мкФ. У конденсаторов меньшей емкости процесс нарастания сопротивления до «бесконечности» будет происходить слишком быстро, — вы его просто не заметите.

Пробой электролитического конденсатора

Практически, пробой это замыкание внутри конденсатора. Классический пробой легко определяется омметром, потому что прибор либо показывает ноль сопротивления, либо некоторое небольшое сопротивление, которое не увеличивается или немного увеличивается, но не достигает «бесконечности».

Пробой можно определить и без приборов по внешнему виду конденсатора. Дело в том, что при пробое электролитического конденсатора внутри него электролит вскипает и выделяется газ. На верхушке корпуса современных электролитических конденсаторов есть крестообразные насечки, которые при избытке давления внутри конденсатора раскрываются, выбухают.

Внешне это очень заметно, особенно на фоне рядом находящихся исправных конденсаторов.

Впрочем, бывает, что пробой происходит как-то мягко, и «голову» конденсатору не разрывает. В любом случае — разрыв или выбухание насечек говорит о непригодности конденсатора, и его необходимо заменить.

Снижение максимального допустимого напряжения

Есть интересная неисправность конденсатора, при которой с ним происходит обратимый пробой, наступающий при превышении определенного напряжения на его обкладках. Обычно, максимально допустимое напряжение на обкладках конденсатора указано в его маркировке.

Но есть такая неисправность, при которой величина максимально допустимого напряжения снижается. При этом, конденсатор может казаться вполне исправным, -измеритель емкости покажет правильный результат, а сопротивление в заряженном состоянии будет «бесконечным». Но в схеме конденсатор ведет себя так, как будто он пробит.

Здесь дело именно в том, что понизилось максимально допустимое напряжение на обкладках конденсатора. И теперь конденсатор пробивает при значительно более низком напряжении. Но пробой этот обратимый, и при проверке омметром на напряжении ниже напряжения, вызывающего пробой, конденсатор кажется исправным.

Для проверки конденсатора на максимальное напряжение нужен лабораторный источник постоянного тока. Установите на его клеммах минимальное напряжение, подключите к ним испытуемый конденсатор (соблюдая полярность), и плавно увеличивайте напряжение до величины, немного ниже указанной на корпусе конденсатора.

Например, есть конденсатор, у которого на корпусе написано «40V», это значит, что пробоя при напряжении от нуля до 40V быть не должно. И вот выясняется, что уже при напряжении 25V у этого конденсатора начался пробой со всеми признаками, — увеличение тока, нагрев, вскипание… даже возможен переход лабораторного блока питания в режим защиты от короткого замыкания.

Все это говорит о том, что конденсатор не пригоден, потому что даже если вы планируете его использовать в цепи, где напряжение не более 25V, нет никакой гарантии, что его напряжение пробоя не опустится в любой момент еще ниже. Такой конденсатор будет вести себя нестабильно, — лучше его не паять в схему.

Увеличение внутреннего сопротивления конденсатора

Физически это выглядит так, как будто последовательно конденсатору подключили резистор. При увеличении данного параметра снижается пиковый ток через конденсатор при его заряде или разряде, вносится задержка в цепи, где этот конденсатор работает.

Данный параметр называется ЭПС (эквивалентное последовательное сопротивление) или в английской аббревиатуре — ESR. Для определения эквивалентного последовательного сопротивления нужен специальный прибор — измеритель ESR.

Андреев С.

Как проверить конденсатор | soundbass

При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов. О том, как с достоверной точностью проверить исправность конденсаторов перед их использованием и пойдёт речь.

Самым доступным и распространённым прибором, с помощью которого можно проверить практически любой конденсатор, является цифровой мультиметр, включенный в режим омметра.

Наиболее важным является проверка конденсатора на пробой.

Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора.

При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки неисправности элемента.

Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальных конденсаторах диэлектрик, несмотря на то, что он является, по сути, изолятором, пропускает незначительный ток. Этот ток для исправного конденсатора очень мал и не учитывается. Он называется током утечки.

Проверка конденсаторов с помощью омметра

Данный способ подходит для проверки неполярных конденсаторов. В неполярных конденсаторах, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух, сопротивление утечки бесконечно большое и если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое сопротивление.

Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.

На практике проверить на пробой любой неполярный конденсатор можно так:

Переключаем цифровой мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов измерения сопротивления. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x это будет предел 2M (2000k), то бишь, 2 Мегаома.

Далее подключаем измерительные щупы к выводам проверяемого конденсатора. При исправном конденсаторе прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки конденсатора более 2 Мегаом. Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, меньшее 2 Мегаом, то, скорее всего, конденсатор неисправен.

Следует учесть, что держаться обеими руками выводов и щупов мультиметра при измерении нельзя. Так как в таком случае прибор зафиксирует сопротивление Вашего тела, а не сопротивление утечки конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Поэтому не стоит забывать о правилах при проведении измерения сопротивления.

Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.

Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных полярных конденсаторов это значение не менее 1 Мегаом. При проверке таких конденсаторов омметром следует сначала разрядить конденсатор, замкнув выводы накоротко.

Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200.000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки конденсатора. Так как электролитические конденсаторы имеют довольно высокую емкость, то при проверке конденсатор начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти, и будет расти до тех пор, пока конденсатор не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности конденсатора.

Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась аналогичным образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелочным прибором росло, в конечном итоге достигая значения сопротивления утечки.

По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем соответственно, была больше ёмкость конденсатора. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости конденсатора, а вот при проверке конденсаторов с большой ёмкостью (1000 мкф и более), стрелка отклонялась значительно медленнее.

Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения ёмкости конденсатора.

При проверке электролитических конденсаторов необходимо перед проведением измерения ёмкости полностью разрядить проверяемый конденсатор. Особенно этого правила стоит придерживаться при проверке полярных конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор.

Например, часто приходиться проверять исправность конденсаторов, которые выполняют роль фильтрующих, и применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче измерительного прибора.

Поэтому такие конденсаторы перед проверкой следует разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью), либо подсоединив к выводам резистор, сопротивлением 5-10 килоОм (для высоковольтных конденсаторов).

При проведении данной операции не стоит касаться руками выводов конденсатора, иначе можно получить неприятный удар током при разряде обкладок. При закорачивании выводов заряженного электролитического конденсатора проскакивает искра. Чтобы исключить появление искры, выводы высоковольтных конденсаторов и закорачивают через резистор.

Одной из существенных неисправностей электролитических конденсаторов является частичная потеря ёмкости, вызванная повышенной утечкой. В таких случаях ёмкость конденсатора заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра довольно сложно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.

Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости.

Для полярных электролитических конденсатором косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления. Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор также имеет очень высокое сопротивление.

Обнаружить обрыв в конденсаторе возможно лишь с помощью приборов для измерения ёмкости конденсатора.

На практике обрыв в конденсаторах встречается довольно редко, в основном при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.
Например, люминесцентные компактные лампы частенько выходят из строя по причине электрического пробоя конденсаторов в электронной схеме преобразователя.

Причиной неисправности телевизора может служить потеря ёмкости электролитического конденсатора в схеме источника питания.

Потеря ёмкости электролитическими конденсаторами легко обнаруживается при замере ёмкости таких конденсаторов с помощью мультиметров с функцией измерения ёмкости. К таким мультиметрам относиться мультиметр Victor VC9805A+, который имеет 5 пределов измерения ёмкости:

20 нФ (20nF)
200 нФ (200nF)
2 мкФ (2uF)
20 мкФ (20uF)
200 мкФ (200uF)

Данный прибор способен измерять ёмкость в диапазоне от 20 нанофарад (20 нФ) до 200 микрофарад (мкФ). Как видно, с помощью этого прибора есть возможность замерить ёмкость, как обычных неполярных конденсаторов, так и полярных электролитических. Правда, максимальный предел измерения ограничен значением в 200 микрофарад (мкФ).

Измерительные щупы прибора подключаются к гнёздам измерения ёмкости (обозначается как Cx). При этом нужно соблюдать полярность подключения щупов. Как уже упоминалось, перед измерением ёмкости следует в обязательном порядке полностью разрядить проверяемый конденсатор. Несоблюдение этого правила может привести к порче прибора.

Неисправность конденсатора можно определить при внешнем осмотре, например, корпус электролитических конденсаторов имеет разрыв насечки в верхней части корпуса. Это свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый «взрыв” конденсатора. Корпуса неполярных конденсаторов при значительном превышении рабочего напряжения имеют свойство раскалываться, на поверхности образуются расколы и трещины.

Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозовых разрядов и сильных скачков напряжения электроосветительной сети.

Источник: go-radio.ru

Как проверить конденсатор самым простым, дешевым мультиметром

Как проверить обычным мультиметром исправность конденсатора?

Итак, у вас есть проблема — нужно проверить исправность конденсатора, но подходящего измерительного прибора с функцией измерения емкости под рукой нет. Что же делать? Бежать в магазин и купить нужный мультиметр? Если вы будете постоянно иметь дело с измерением емкости и проверкой конденсаторов, такой шаг будет более чем оправдан, но для разовой, простой проверки подойдет и обычный, самый простой прибор.

Так что давайте узнаем, как можно проверить работоспособность конденсатора с помощью данного измерительного прибора, который вообще не имеет функции измерения емкости конденсаторов. Единственный недостаток этого способа — измерение емкости конденсатора таким способом просто невозможно.

Так что же нужно делать?

Начнем проверку. Представим, что вы уже разобрали прибор или устройство на котором нужно проверить конденсаторы, или же они и вовсе отпаяны. С последними работать будет даже проще. Но если конденсаторы нужно только проверить, лучше не выпаивать их с устройства. Особенно если сомневаетесь, что получится их выпаять и припаять на место.

  • Итак, включаем мультиметр в режим измерения сопротивления. При этом выставляем самый высокий предел.

  • Неважно, выпаян конденсатор или находится на плате — главное подключить щупы к выводам конденсатора. Но некоторые радиолюбители советуют отпаять хотя бы одну ножку конденсатора, чтобы устранить «паразитные помехи» прочих компонентов сети.

  • Теперь наблюдаем за показаниями. На экране устройства вы увидите, что сопротивление конденсатора постепенно возрастает. Если это так — конденсатор исправен.

 

Как это работает?

Когда конденсатор набирает заряд его сопротивление, соответственно, растет. Если вы наблюдаете рост сопротивления, значит, конденсатор заряжается. При измерении сопротивления мультиметры подают через щупы определенное, фиксированное напряжение. Именно оно и заряжает конденсатор. Если сопротивление остается постоянным — конденсатор пробит и не набирает заряд.

Для такой вот проверки конденсатора годиться любая модель, которая может измерять сопротивление. Это может быть как универсальный цифровой прибор, так и простой, аналоговый измеритель. Но вот снимать данные простым, аналоговым инструментом интереснее.

  • Аналоговый мультиметр должен быть включен в режим измерения сопротивления. Можно выбрать средний диапазон.
  • Как и в случае с цифровым, дотроньтесь щупами к контактам конденсатора.
  • Наблюдайте за стрелкой. Она будет до определенного момента ползти вверх, а потом падать назад. Если это происходит, значит, конденсатор заряжается и разряжается.
Как видите, все достаточно просто!

Стоит заметить, что мультиметры не смогут измерить емкость конденсатора. Хотя в большинстве случаев достаточно просто проверить работоспособность компонента.

Поделиться в соцсетях

Как проверить конденсатор на исправность мультиметром

В прошлых статьях были рассмотрены вопросы: принципов работы, характеристик и схем соединения конденсаторов. Сейчас Я подробно расскажу как его проверить при помощи недорого и распространенного измерительного прибора- мультиметра, а так же как, его используя при наличии соответствующий функции, узнать величину емкости.

Перед проверкой конденсатор необходимо выпаять из схемы, потому что не выпаивая это сделать практически невозможно из-за влияния на измерения других компонентов схемы. В большинстве случаев, не выпаивая из схемы можно лишь проверить мультиметром только на пробой, при котором на выводах конденсатора будет короткое замыкание.

Некоторые радиолюбители используют метод для проверки на плате при помощи зарядки — разрядки конденсатора, меняя полярность перестановкой концов мультиметра или тестера. Сомнительный метод, Я один раз попробовал данным методом воспользоваться и у меня ничего не получилось проверить, потому что в схеме было много других конденсаторов. Рекомендую, если внешним осмотром ничего выявить не удалось, для правильной проверки выпаивать конденсатор.

Помните, что приступая к любым работам с конденсаторами— необходимо перед этим разрядить его выводы. Я для этого использую отвертку с изолированными ручкой, за которую держась необходимо  замкнуть контакты конденсатора.  Мощные модели во избежания повреждения искровым разрядом металлической части отвертки, лучше разрядить при помощи лампочки накаливания. Необходимо держась за изолированную часть проводов коснуться выводов конденсатора. Лампочка вспыхнет и погаснет, после этого произойдет полный разряд. Но одной лампочкой необходимо только разряжать при рабочем напряжении 220 Вольт, для 380 Вольт- используйте 2 последовательно соединенные между собой лампочки.

Как проверить конденсаторы внешним осмотром

Прежде чем выпаивать со схемы конденсатор сделайте внешний его осмотр. Очень часто визуально неисправность определяется при осмотре электролитических конденсаторов.
Если Вы обнаружили подтеки электролита в нижней части и следы коррозии (левая картинка) или вздутие в области перекрестия сверху (правая картинка), то такие конденсаторы необходимо заменить.

Довольно просто в большинстве случаев удается проверить конденсаторы на 220 Вольт следующим методом:

  1. Проверяем пробником или тестером на отсутствие короткого замыкания внутри конденсатора.
  2. Заряжаем конденсатор от электросети рабочим напряжением с соблюдением мер предосторожности.
  3. Отключаем его от электропитания.
  4. Закорачиваем или подключаем лампочку, как было описано выше- увидели искровой разряд или вспышку в лампочке, значит конденсатор в порядке.

Как проверить конденсатор мультиметром

Конденсаторы бывают полярные и неполярные. К полярным относятся только электролитические. Они впаиваются в схемы только с соблюдением полярности к плюсу плюсовой контакт, к минусу- минусовой контакт. Минус напротив контакта указывается галочкой на золотистой или светлой продольной линии на корпуса конденсатора.

Неполярные- без разницы какими контактами подключать или впаивать в схему.

Перед началом проверки не забываем закоротить выводы. После этого берем мультиметр и переключаем его в режим прозвонки или измерения сопротивления. У исправного конденсатора сразу после подключения начнется зарядка постоянным током и сопротивление на табло будет минимальным (рисунок 1). Далее сопротивление будет плавно расти пока не достигнет  максимально большого значения или  бесконечности (рисунок 2).

При неисправности конденсатора:

  • При проверке мультиметром сразу высвечивается бесконечность. Это говорит о том, что внутри конденсатора произошел обрыв.
  • Мультиметр пищит и показывает нулевое сопротивление- в конденсаторе произошел пробой изолятора и возникло короткое замыкание.

В обоих случаях конденсаторы подлежат замене.

Неполярные конденсаторы проверяются гораздо проще. Устанавливаем предел измерения сопротивления на мультиметре Мега Омы и касаемся измерительными щупами контактов конденсатора. У неисправного конденсатора сопротивление будет меньше 2 Мега Ом.

Вы должны учитывать, что большинство моделей тестеров позволяют проверить лишь на короткое замыкание неполярные и полярные конденсаторы номиналом менее 0.25 мкФ.

Как определить емкость конденсатора

Все параметры наносятся на корпусе конденсаторов, для проверки соответствия емкости или если эту величину невозможно прочесть- необходимо воспользоваться мультиметром с функцией измерения емкости «Сх».

Для измерения величины емкости переключите мультиметр в режим Cx с предполагаемым максимальным пределом измерения для данного конденсатора. В некоторых моделях есть специальные гнезда для проверки небольших конденсаторов, в которые вставляются контактные ножки согласно пределам измерения. В других- для этого используются измерительные щупы.

На рисунке показан пример измерения конденсатора на 9.5 Микрофарад, поэтому предел выставлен на 20 Микрофарад.

Не забывайте только перед проверкой всегда разряжать конденсаторы.

Проверка конденсаторов | HamLab

В принципе конденсаторы могут иметь следующие дефекты: обрыв, пробой и повышенная утечка. Пробой конденсатора характеризуется наличием между его выводами короткого замыкания, то есть нулевого сопротивления. Поэтому пробитый конденсатор любого типа легко обнаруживается омметром путем проверки сопротивления между его выводами. Конденсатор не пропускает постоянного тока, его сопротивление постоянному току, которое измеряется омметром, должно быть бесконечно велико. Однако это оказывается справедливо лишь для идеального конденсатора. В действительности между обкладками конденсатора всегда имеется какой-то диэлектрик, обладающий конечным значением сопротивления, которое называется сопротивлением утечки. Его-то и измеряют омметром. В зависимости от используемого в конденсаторе диэлектрика устанавливаются критерии исправности по величине сопротивления утечки. Слюдяные, керамические, пленочные, бумажные, стеклянные и воздушные конденсаторы имеют очень большое сопротивление утечки, и при их проверке омметр должен показывать бесконечно большое сопротивление. Однако имеется большая группа конденсаторов, сопротивление утечки которых сравнительно невелико. К ней относятся все полярные конденсаторы, которые рассчитаны на определенную полярность приложенного к ним напряжения, и эта полярность указывается на их корпусах. При измерении сопротивления утечки этой группы конденсаторов необходимо соблюдать полярность подключения омметра, в противном случае результат измерения будет неверным. К этой группе конденсаторов в первую очередь относятся все электролитические конденсаторы КЭ, КЭГ, ЭГЦ, ЭМ, ЭМИ, К50, ЭТ, ЭТО, К51, К52 и оксидно-полупроводниковые конденсаторы К53. Сопротивление утечки исправных конденсаторов этой группы должно быть не менее 100 кОм, а конденсаторов ЭТ, ЭТО, К51, К52 и К53 – не менее 1 МОм. При проверке конденсаторов большой емкости нужно учесть, что при подключении омметра к конденсатору, если он не был заряжен, начинается его зарядка, и стрелка омметра делает бросок в сторону нулевого значения шкалы. По мере разрядки стрелка движется в сторону увеличения сопротивлений. Чем больше емкость конденсатора, тем медленнее движется стрелка. Отсчет сопротивления утечки следует производить только после того, как она практически остановится. При проверке конденсаторов емкостью порядка 1000 мкФ на это может потребоваться несколько минут. Внутренний обрыв или частичная потеря емкости конденсатором не могут быть обнаружены омметром, для этого необходим прибор, позволяющий измерять емкость конденсатора. Однако обрыв конденсатора емкостью более 0,2 мкФ может быть обнаружен омметром по отсутствию начального скачка стрелки во время зарядки. Следует заметить, что повторная проверка конденсатора на обрыв по отсутствию начального скачка стрелки может производиться только после снятия заряда, для чего выводы конденсатора нужно замкнуть на короткое время. Конденсаторы переменной емкости проверяются омметром на отсутствие замыканий. Для этого омметр подключается к каждой секции агрегата и медленно поворачивается ось из одного крайнего положения в другое. Омметр должен показывать бесконечно большое сопротивление в любом положении оси.

«В помощь радиолюбителю»(выпуск 102).

Обнаружение неисправных конденсаторов — Комната роботов

ЖК-монитор Samsung Syncmaster 226BW моей жены начал давать сбой, мерцая, мигая и мигая при включении питания. Точно так же монитор моего друга Samsung 206BW больше не включался. Основная причина — отказ источника питания из-за плохих крышек.

Существует множество отличных веб-страниц, на которых есть инструкции по замене алюминиевых электролитических конденсаторов для ремонта монитора.Я скептически относился к тому, что это будет так же просто, как демонтаж перегоревших конденсаторов с новыми деталями, но за один вечер я починил два ЖК-дисплея! Так что не упустите возможность попробовать это самостоятельно.

Я сделал несколько снимков, которые, как я думал, могут быть полезны другим при определении сомнительных конденсаторов, установленных на печатной плате, независимо от типа устройства. Иногда это действительно очевидно, когда конденсатор вышел из строя, но иногда это более тонко.Вот настоящие конденсаторы в сломанных ЖК-мониторах.

Плохие электролитические конденсаторы с вздутием остатка и подъемом

Заметили коричневый твердый разряд в верхней части конденсатора? Это электролит, который должен способствовать передаче заряда по пластинам для хранения. Конденсатор C110 вздувается вверху, что означает, что электролит пытается вырваться из вентиляционного отверстия.

Перегретый, высохший и кристаллизованный электролит также попытается вырваться наружу.Он упирается в резиновое уплотнение внизу и поднимает корпус конденсатора с платы. Вот это лучшее представление.

Неисправные конденсаторы, покрытые коркой и приподнятые

Сравните поврежденные конденсаторы с исправными на той же плате. Обратите внимание, что верхнее вентиляционное отверстие на конденсаторе плоское и чистое. Хороший конденсатор плотно прилегает к печатной плате.

Исправный конденсатор с плоским чистым верхом и заподлицо с платой

Но что насчет желтовато-белого мусора на стороне конденсатора? Это клей.Это предотвращает повреждение или отсоединение конденсатора из-за вибрации, например, во время транспортировки. Если вы видите липкую пленку на деталях, которая выглядит как горячий клей промышленного назначения, ничего страшного!

Время викторины — определите неисправные конденсаторы.

Найдите неисправные конденсаторы

Если вы сказали «все трое», то вы правы! Вершины слегка выпуклые, и две из них явно оторваны от доски. Клей, кажется, несколько удерживает их, но один из конденсаторов явно наклонен снизу.

Несмотря на то, что ни один из этих конденсаторов не разряжается, все они неисправны и нуждаются в замене. У хороших электролитических конденсаторов верхняя часть плоская.

Кстати, знаете ли вы, что линии в виде знака плюса на верхней части емкости конденсатора сделаны намеренно? Этот шов спроектирован для безопасного разделения и стравливания давления, а не взрыва.

Сменные конденсаторы

Для моих мониторов все неисправные конденсаторы были от CapXon.Я не знаю, была ли эта неисправность вызвана плохой конструкцией Samsung или неисправными конденсаторами CapXon.

Я решил заменить конденсаторы на лучшую известную мне марку электролитов — Nichicon. Но потом я перестарался, заказав вариант с наименьшим сопротивлением и наибольшим номинальным сроком службы. Это означало, что новые конденсаторы были больше, чем неисправные, и не подходили для монитора.

Итак, я их взломал.Вместо того, чтобы стоять вертикально, я наклонил их вниз и наложил на провода термоусадочные трубки. Это не идеально, но сработало. Пожалуйста, не говори моему другу, что это то, как он выглядит внутри его отремонтированного монитора.

Запасные конденсаторы для

Измеренные емкость и сопротивление

Удалив с платы неисправные конденсаторы, я измерил их измерителем LCR DE-5000. Эти типы измерителей похожи на мультиметр, за исключением того, что они специализируются на точном измерении других характеристик конденсатора, таких как его сопротивление.

Вообще говоря, идеальный конденсатор не имел бы сопротивления. Он мог заряжаться и разряжаться, не тратя энергию в виде тепла. И он будет заряжаться и разряжаться мгновенно. Но на самом деле каждая часть имеет некоторое сопротивление, а сопротивление конденсатора обычно достаточно низкое, чтобы не быть критическим фактором в обычных цепях.

В любом случае, вот измеренные значения плохих конденсаторов CapXon от плохих мониторов Samsung по сравнению с хорошими запасными частями.

Номинальная емкость в мкФ Измеренная емкость в мкФ Сопротивление при 120 Гц в Ом
Samsung 206BW
C261 1000 65 15.5
C263 1000 100 6.0
C265 470 50,0
Samsung 226BW
C110 820 82 15.5
C111 820 82 17,2
C112 330 24 58,0
Новые детали
C110 / C111 820 757 0,1
C112 330 307 0,1
C261 / C263 1000 985 0.0
C265 470 464 0,0

Пара замечаний:

  • Плохие конденсаторы имеют чрезвычайно высокое сопротивление. 58 Ом? Это ограничит ток и потребляет мощность. Для сравнения, новые конденсаторы имеют такое низкое сопротивление, что их практически невозможно измерить этим измерителем.

Как вы понимаете, неисправный конденсатор будет иметь неоптимальные измеримые характеристики.Тем не менее, я был удивлен, увидев какую-либо емкость. Думаю, именно поэтому электронное устройство может медленно выходить из строя или все еще «вроде» работать.


Признаки неисправности конденсатора переменного тока (удобный список!)

Признаки неисправности конденсатора переменного тока (удобный список!)

Вы когда-либо сталкивались с тем, что кондиционер дует теплым воздухом или показывает проблемы с электричеством — в таком случае вы могли видеть симптомы неисправности конденсатора переменного тока.Системы кондиционирования воздуха состоят из множества компонентов, обеспечивающих работу системы. Отказ компонента сигнализирует домовладельцам о необходимости ремонта с такими симптомами, как нестабильная работа.

Одним из таких компонентов является конденсатор. В этом блоге мы расскажем о симптомах неисправного конденсатора переменного тока, которые вам необходимо знать. Мы также рассмотрим, что делает конденсатор переменного тока, как тестировать конденсаторы переменного тока и как конденсаторы выходят из строя в кондиционере.

Обзор: что такое конденсатор переменного тока? Как работает конденсатор переменного тока?

Конденсатор переменного тока — это компонент наружного конденсаторного блока кондиционера или теплового насоса.Он передает мощность на двигатель, приводящий в действие систему кондиционирования воздуха. Конденсатор обеспечивает начальный всплеск энергии для включения системы, когда наступает время цикла охлаждения. Затем он поддерживает его непрерывную работу с электричеством до завершения цикла.

Начальный всплеск мощности составляет от 300 до 500 процентов от нормального количества электроэнергии, требуемого системой. Как только двигатель кондиционера достигает надлежащей рабочей скорости, конденсатор ограничивает избыточную мощность и подает постоянное количество в течение всего цикла охлаждения.В некотором смысле это похоже на батарею, которая накапливает энергию и распределяет ее во время использования.

Что вызывает плохие симптомы конденсатора переменного тока?

Проблемы с конденсатором переменного тока не позволяют вашей системе кондиционирования воздуха работать должным образом. Признаки неисправности конденсатора переменного тока обычно вызываются следующими причинами:

  • Перегрев схемы системы
  • Короткое замыкание в системе охлаждения
  • Скачки напряжения
  • Удары молнии
  • Чрезвычайно высокие наружные температуры
  • Износ оборудования

Как долго прослужат конденсаторы переменного тока?

Большинство прослужит 20 лет.Опять же, если ваш переменный ток перегружен, испытывает резкие перепады температуры или скачки, или если конденсатор имеет дефектную часть, он не прослужит так долго.

Проблемы, вызванные неисправными конденсаторами переменного тока

Во-первых, неисправность конденсатора переменного тока вызывает проблемы с работой вашей системы кондиционирования воздуха. Плохой конденсатор мешает нормальному функционированию внешнего блока, что мешает процессу охлаждения в целом.

Во-вторых, неправильная подача напряжения на компоненты внешнего блока заставляет систему работать усерднее, поскольку она пытается выполнить свою работу.

Дополнительные компоненты часто выходят из строя из-за неисправного конденсатора. Наконец, ваши счета за электроэнергию могут стать выше из-за увеличения спроса на электроэнергию для охлаждения вашего дома.

Контрольный список симптомов неисправности конденсатора переменного тока

По мере развития проблемы система охлаждения продолжает работать, хотя и плохо, и домовладельцы могут этого не заметить сразу. В других случаях основным признаком неисправного конденсатора переменного тока, который замечает человек, является то, что кондиционер полностью отключается.

Эти признаки неисправности конденсатора переменного тока предупреждают о проблеме с системой охлаждения.Свяжитесь с нами для ремонта кондиционера, если заметите:

  • Дым или запах гари от внешних компонентов кондиционера
  • Гудящий шум кондиционера
  • Вашему кондиционеру требуется некоторое время, чтобы начать цикл охлаждения после его включения
  • Система кондиционирования воздуха отключается случайным образом
  • Во время работы кондиционера холодный воздух не поступает в ваш дом
  • Кондиционер вообще не включается
  • Ваши счета за электроэнергию без объяснения причин выше

Как проверить конденсатор переменного тока Подрядчики

HVAC используют инструмент, называемый мультиметром, для проверки конденсаторов переменного тока.Также известный как мультитестер или VOM, он объединяет несколько функций измерения в одном устройстве. Большинство мультиметров измеряют ток, напряжение и сопротивление. Аналоговые мультиметры используют микроамперметр с вращающейся стрелкой для отметки показаний.

Вот видео, показывающее два типа:

Когда наши технические специалисты обращаются к внутренней части вашего конденсаторного агрегата для поиска источника проблемы, эти признаки неисправности конденсатора переменного тока помогают специалистам изучить этот компонент дальше:

  • Трещины
  • Выпуклость
  • Вытекающая жидкость из конденсатора и печатной платы
  • Недостаточно заряда при проверке мультиметром

Устраните симптомы неисправности конденсатора переменного тока с помощью службы кондиционирования воздуха Sanborn

Если у вас возникнут какие-либо из этих симптомов неисправности конденсатора переменного тока, немедленно позвоните в компанию Sanborn для ремонта кондиционера.Мы приступим к работе, чтобы диагностировать проблему и быстро произвести необходимый ремонт, чтобы уменьшить дискомфорт для вашей семьи.

Если вашему кондиционеру десять лет или больше, возможно, пришло время подумать о новой установке переменного тока. Мы будем рады отправить кого-нибудь для проведения необходимых измерений, чтобы ваша система охлаждения подходила по размеру для вашего дома.

Мы предлагаем бесплатные оценки и варианты финансирования, чтобы вы сразу же ощутили больший комфорт и эффективность.

Свяжитесь с нами сегодня, чтобы запланировать обслуживание или запросить бесплатную смету для вашего дома Inland Empire.

Могу ли я использовать кондиционер с неисправным конденсатором?

Распространенная проблема с кондиционерами в долине Сакраменто

Каждую весну и лето мы получаем много телефонных звонков от клиентов, которые говорят, что их кондиционер не работает. Значительная часть этих обращений связана с обычным ремонтом. Их конденсатор вышел из строя. Если ваш техник сказал вам, что ваш конденсатор переменного тока неисправен, это определенно один из тех элементов, которые вы захотите заменить. И я расскажу вам почему в этом посте.

Честное предупреждение

Я хочу честно предупредить всех, кто это читает. Если вы читаете это с намерением заменить свой собственный конденсатор, они несут намного большее напряжение, чем типичные 240 вольт, которыми питается кондиционер. Конденсаторы могут и будут шокировать вас даже при отключении питания.

Могут произойти серьезные травмы или смерть, поскольку высокое напряжение плохо сочетается с человеческим телом. Таким образом, это сообщение в блоге не предназначено для того, чтобы научить кого-либо устанавливать или заменять конденсатор.Есть другие создатели YouTube, которые вам это объяснят. Я рекомендую, чтобы этим ремонтом занимался настоящий специалист по HVAC, так как этот человек знает, как правильно разрядить конденсатор, чтобы никто не пострадал.

Что такое конденсатор?

Конденсатор — это накопитель электронов, который постоянно отдаёт себя двигателю, который он поддерживает. И они не делают их такими, как раньше! Конденсаторы 60-х, 70-х и 80-х годов были рассчитаны на длительный срок службы. Как технический специалист, я все еще сталкиваюсь с этими кондиционерами последних моделей, и я удивлен, что их конденсаторы все еще работают нормально.

В наши дни это неслыханно. Конденсаторы, производимые сегодня, обычно рассчитаны на срок службы от пяти до десяти лет. Определенно есть конденсаторы одних марок, которые сделаны лучше других, и ваш специалист по ОВКВ должен найти эти хорошие марки и использовать их в интересах вас, потребителя.

Разочарование

Я видел кепки, которые длились всего два года! Я знаю некоторые марки кондиционеров, которые устанавливаются совершенно новыми, и два или три года спустя мы заменяем конденсатор.Затем выходит компания HVAC и заменяет свою на более дешевую или менее проверенную марку, и она выходит в кратчайшие сроки без каких-либо гарантий на изделие. Таким образом, покупатель должен купить еще один. Это неприятно для клиента, но не для компании, занимающейся климатом. Они должны продолжать заряжать 200+ долларов, чтобы ваш кондиционер работал раз в два года.

Мы используем конденсаторы марки MARS, потому что они производятся в Америке, и я лично считаю, что они служат дольше, чем другие. Есть несколько других брендов, которые можно использовать, но мы не переключаемся на другие бренды только потому, что находимся рядом с магазином оборудования для систем отопления, вентиляции и кондиционирования, где продаются более дешевые конденсаторы.

Мертвая распродажа

Большинство двигателей вашего кондиционера не могут работать без исправного конденсатора. Как я уже сказал, они поддерживают эти моторы. Они помогают двигателю запускаться и эффективно работать. Некоторые люди подошли к своему кондиционеру и заметили, что вентилятор на их кондиционере не вращается, как должно быть. Поэтому они берут палку или что-то в этом роде, чтобы добраться до кожуха вентилятора и пытаются вручную заставить лопасть вентилятора начать вращаться. И теперь это работает! Это классический признак того, что конденсатор для этого двигателя вентилятора плохой, и хороший пример для вас, демонстрирующий, почему эти двигатели не могут запускаться и работать эффективно без хорошего конденсатора.

И мы не можем просто вставить туда какой-либо старый конденсатор, потому что он должен быть точно такого размера, который рекомендован производителем. В противном случае двигатель может запуститься, но будет работать не в равновесии. Это вызывает неравномерное магнитное поле вокруг двигателя, что может сделать двигатель шумным, усложнить его работу (увеличивая затраты на его работу) или просто привести к полному сгоранию двигателя.

Другие усложняющие факторы

Существуют различия в типичном двойном рабочем конденсаторе, который обычно входит в ваш переменный ток, и пусковом конденсаторе, который может быть добавлен в вашу систему либо производителем, либо техническим специалистом у вас дома.Я объясню это в другом сообщении блога и видео, когда сделаю их позже.

Но для целей этого блога я хотел ответить на вопрос, недавно заданный моим лучшим другом Мэттом. На самом деле это отличный вопрос для других людей.

Если конденсатор вышел из строя, не пытайтесь запустить эту часть системы. Это только нанесет больший ущерб системе, что может вынудить вас заменить более дорогую и более крупную деталь или всю систему. Так что будьте терпеливы.Надеюсь, у вашего техника уже есть такой на грузовике. Обычно они это делают.

Будьте осторожны

Некоторые из вас, ребята, меняют их самостоятельно, лучше будьте осторожны. Конденсаторы несут большую мощность и сработают раньше, чем вы об этом заметите. Итак, это лишь последнее предупреждение для тех, кто занимается самоделкой, если вы попытаетесь самостоятельно справиться с этим ремонтом.

Если вы покупаете эти детали в Интернете из-за цены, они могут быть дешевле, но это ничто по сравнению с травмой или возможным повреждением более дорогой детали из-за того, что вы неправильно ее подключили.Если вы платите среднюю цену от 100 до 300 долларов за конденсатор от своего технического специалиста (в зависимости от того, в какой части страны вы находитесь), это потому, что вы платите за то, чтобы у этой компании был подходящий конденсатор. грузовик и установите его прямо сейчас.

Спасибо, что зашли, увидимся в следующем посте.

Ремонт ЖК-дисплея с вышедшими из строя конденсаторами

  • Эти шаги являются максимально общими, поскольку большинство ЖК-дисплеев имеют похожую конструкцию.Однако вам нужно будет тщательно подумать о том, как разобрать дисплей, чтобы вы могли собрать его обратно, и он все еще работал!

  • Изображения получены при ремонте ЖК-монитора ViewSonic VX924, мигает зеленая кнопка питания (youtube). Вы должны просмотреть его один раз, чтобы понять, на что это похоже.

  • Сначала снимите пластиковую заднюю часть монитора. Подставка / подставка могут быть прикреплены винтами, или задняя часть и подставка могут быть единым целым.

  • Сохраните выкрученные винты пластиковой задней крышкой. Таким образом, они не перепутаются с винтами, которые вы вынимаете из внутренних частей.

  • Также, вероятно, есть какое-то защелкивающееся приспособление, встроенное в пластиковую заднюю часть.

  • В видео используется кусок стали. Отвертка или кусок прочного плоского пластика тоже подойдут.

  • Чтобы отломать спину, нужно немного сил; однако слишком большое усилие приведет к необратимому повреждению пластика.

  • Начните с очень небольшим усилием и проткните края спины. Если один угол перемещается легко, а другой кажется твердым, возможно, вы пропустили винт. Постепенно увеличивайте силу, которую вы используете, пока защелки не оторвутся.

  • Конденсаторы 101 — iFixit

    Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает.Конденсатор — это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный перетекает к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь.Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы направляют постоянное напряжение на другие компоненты и, таким образом, обеспечивают стабильное электропитание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Пока напряжение питания падает до нуля, конденсатор начинает вытекать из своего содержимого, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается на одной линии с компонентом, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

    Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглой жестяной банки обычно представляют собой электролитические конденсаторы.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектрик может быть воздухом (простейший конденсатор) или другими непроводящими материалами. Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

    Вот конденсатор, который некоторые, возможно, еще помнят со времен старых радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный (4) конденсатор.Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

    Керамические дисковые конденсаторы идеально подходят для более высоких частот, но не подходят для объемной фильтрации, поскольку керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В схемах, где жизненно важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор, подключенный параллельно керамическому дисковому конденсатору. Электролитик будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

    Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

    Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги — продлить срок службы бумажного конденсатора.

    Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 — 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

    Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

    Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%.Это означает, что оно может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Также полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

    Теперь главный вопрос — как проверить конденсатор на предмет необходимости его замены.

    Для проверки конденсатора, когда он все еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста «все или ничего» . Этот тест покажет только, полностью ли разряжен конденсатор. , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора.Конечно, это также верно для определения номинала неизвестного конденсатора.

    Счетчик, используемый для этой Wiki, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, отображающий только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

    Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

    Чтобы проверить конденсатор с помощью мультиметра, установите показание измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

    Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

    Еще одно испытание конденсатора — это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное — на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

    По окончании заряда отключите аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

    Проще всего конечно будет проверить конденсатор емкостным измерителем. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подключите положительный (красный) провод от мультиметра к нему, а отрицательный (черный) — к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

    Для проверки конденсатора SMD может быть сложно сделать с громоздкими пробниками. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

    Некоторые конденсаторы не требуют проверки для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте конденсатор меньшей стоимости.

    Если конденсатор, который собираются заменить или проверить, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

    В этом отрывке из схемы iPhone указаны символы конденсаторов, а также их значения.

    Эта Wiki — это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

    Eaton Electronics

    Максвелл

    Digikey

    Mouser

    Как определить и заменить вышедший из строя конденсатор переменного тока

    Сейчас лето — и это лучшее время для подрядчика по ОВК. Поскольку кондиционеры работают на полную мощность, звонки накапливаются, чтобы исправить те, которые вышли из строя или не работают должным образом.Одна из наиболее частых причин неисправности системы переменного тока — выход из строя конденсатора. Конденсаторы являются неотъемлемым компонентом системы переменного тока, передавая энергию компрессору, нагнетателю и внешнему вентилятору. Как подрядчик, вы можете искать по множеству признаков, чтобы определить причину проблемы с переменным током и при необходимости отключить конденсатор, прежде чем это станет более серьезной проблемой.

    В то время как неисправный конденсатор довольно легко идентифицировать визуально, кондиционер будет проявлять определенные симптомы по мере разрушения конденсатора.Если в системе переменного тока клиента наблюдаются следующие симптомы, важно, чтобы конденсатор был отключен сразу же, прежде чем компрессор или вентилятор выйдет из строя или перестанет работать.

    Симптомы применения

    Первым признаком выхода из строя конденсатора часто является то, что кондиционер не подает холодный воздух. Также может потребоваться некоторое время для запуска кондиционера после включения, и компрессор будет издавать гудящий шум. Конденсатор также может издавать слышимый щелчок. Рост счетов за электроэнергию является еще одним показателем, поскольку системе переменного тока придется использовать больше энергии для работы в случае выхода из строя конденсатора.В конце концов, кондиционер перестанет работать или вообще не включится.

    Если у клиента возникают какие-либо из перечисленных выше проблем с переменным током, визуальная проверка конденсатора может многое выявить. Независимо от типа конденсатора, все они будут иметь одинаковые визуальные признаки.

    Визуальные признаки

    По мере разрушения конденсатора он будет иметь выпуклый вид, а обычно плоский верх становится куполообразным. Это верный признак того, что конденсатор необходимо заменить. Если маслянистое вещество также просочилось через верхнюю часть, оставив липкий остаток, конденсатор достиг или почти подошел к концу своего срока службы.

    Выпуклый конденсатор

    Хороший конденсатор

    Необходимые меры безопасности

    Многие конденсаторы HVAC рассчитаны на высокое напряжение при полной зарядке, поэтому неправильное обращение может вызвать поражение электрическим током. При замене конденсатора необходимо соблюдать несколько правил безопасности:

    • Никогда не прикасайтесь к клеммам конденсатора.
    • Никогда не закорачивайте клеммы металлическими предметами. (Это может вызвать сильную искру, которая может вызвать возгорание при правильных условиях)
    • Разряд должен осуществляться специалистом через резистивную нагрузку.
    Шаги по замене конденсатора

    Замена неисправного конденсатора до того, как он повредит двигатель, который он питает, очень важен. Вот краткий обзор того, как заменить конденсатор.

    1. Отключите питание или отключите питание AC .
    2. Снимите съемную панель .
      После удаления найдите и осмотрите старый конденсатор, чтобы выяснить, не является ли он причиной проблемы.
    3. Обратите внимание на емкость и номинальное напряжение старого конденсатора .
      Запишите марку и модель оборудования переменного тока, чтобы выбрать подходящую замену. Если вы замените конденсатор на конденсатор с более низким номинальным напряжением, на конденсатор будет оказана чрезмерная нагрузка, что значительно сократит срок его службы.
    4. Разрядите и снимите старый конденсатор .
      Перед тем, как демонтировать, обязательно пометьте провода, чтобы убедиться, что вы подключаете новый конденсатор к правильным клеммам.
    5. Установите новый конденсатор .
      Установите новый конденсатор вместо старого и снова подсоедините провода к правильным клеммам.
    6. Включите питание и проверьте .
      Если он не работает, снова выключите питание, разрядите конденсатор и проверьте провода, чтобы убедиться, что они правильно подключены.

    Установка качественного конденсатора на замену для вашего клиента будет иметь решающее значение.

    Как определить, что у вас плохой конденсатор переменного тока: симптомы плохого конденсатора

    Когда кондиционер не работает должным образом, на ум приходят всевозможные вопросы: Что теперь? Это легко исправить? Сколько это будет стоить?

    Если вы относитесь к тому типу людей, которые любят пытаться решать проблемы самостоятельно, вы попадаете в хорошую компанию.Вот почему так много сайтов DIY и видео на YouTube. Хотя хорошо научиться делать основной ремонт в доме, имейте в виду, что для решения более сложных проблем гораздо безопаснее (для вас и для вашего кондиционера) обращаться к специалисту по HVAC.

    Теперь, когда это решено, давайте определим, вызвана ли ваша проблема с переменным током неисправным конденсатором.

    Что такое конденсатор переменного тока?

    Конденсатор переменного тока, также называемый рабочим конденсатором, представляет собой небольшой цилиндрический объект, который передает энергию двигателю, который питает систему кондиционирования воздуха.Конденсатор переменного тока дает вашей системе переменного тока начальное усиление, необходимое для включения, а также обеспечивает непрерывное питание для продолжения работы.

    Конденсатор — это всего лишь один из компонентов системы кондиционирования воздуха. Эта небольшая, но мощная деталь — настоящая рабочая лошадка и, как и все части системы кондиционирования воздуха, не подвержена сбоям. Без исправного конденсатора ваша система не сможет работать должным образом.

    Если вы подозреваете, что конденсатор вашей системы кондиционирования неисправен, вот все, что вам нужно знать об этой детали, а также о том, как устранить неисправность и заменить неисправный.

    Признаки неисправности конденсатора переменного тока

    Если ваш кондиционер не дует холодным воздухом, причиной может быть неисправный конденсатор.

    Однако сначала ищите простые решения: возможно, вам нужно заменить воздушные фильтры, или это может быть одной из нескольких других причин.

    Как только вы их исключите, если ваше устройство все еще дует теплый воздух, проблема может заключаться в конденсаторе.

    Наиболее распространенные признаки и симптомы неисправного конденсатора переменного тока включают:

    Как проверить конденсатор переменного тока

    Если указанные выше признаки относятся к вашей ситуации, выйдите на улицу к конденсатору кондиционера.

    Посмотрите через вентиляционные отверстия для вентилятора в верхней части устройства. Если ваш вентилятор переменного тока не вращается, найдите длинный тонкий предмет (палку, отвертку, плоскогубцы). Вставьте его в вентиляционные отверстия и осторожно нажмите на одну из лопастей вентилятора. Если вентилятор начинает вращаться сам по себе и продолжает вращаться, у вас неисправный конденсатор.

    Если кондиционер издает гудение, но не работает, вероятно, неисправен конденсатор.

    Как заменить конденсатор переменного тока

    Вы можете купить замену в хозяйственном магазине.Затем пора установить:

    Шаг 1. Отключите питание вашей системы кондиционирования с помощью панели выключателя

    Шаг 2. Отвинтите боковую панель вашего конденсаторного блока, чтобы получить доступ к конденсатору.

    Шаг 3. Найдите конденсатор и разрядите питание

    Шаг 4. Снимите старый конденсатор и обратите внимание, как подключены провода

    Шаг 5. Осторожно отсоедините провода от трех разъемов конденсатора, обозначенных ХЕРМ, Фан и К.Сделайте заметку или сфотографируйте, какие цветные провода подключаются к какому разъему, для дальнейшего использования.

    Шаг 6. Установите новый конденсатор в соответствии с руководством.

    Шаг 7. Привинтите боковую панель обратно к конденсаторному блоку.

    Как выбрать конденсатор для замены

    Если вы заменяете конденсатор переменного тока самостоятельно, вам нужно будет выбрать подходящую замену. Размер и форма конденсатора не имеют большого значения, когда дело доходит до замены, но вам нужно знать две вещи: номинальное напряжение и микрофарады (мкФ).

    Номинальное напряжение не обязательно должно совпадать с вашим текущим конденсатором, но микрофарады должны совпадать. Напряжение и микрофарады указаны на конденсаторе и могут выглядеть примерно так: «35/5 мкФ и 370 В». Обязательно запишите это, а также марку и модель вашей системы кондиционирования воздуха при посещении местного магазина товаров для дома.

    В конечном счете, конденсаторы являются универсальными деталями, поэтому форма, размер, марка и другие основные факторы не имеют особого значения — просто не забудьте указать соответствующее напряжение и микрофарады, и все будет готово.

    Услуги по ремонту переменного тока в Южной Флориде

    Если вам нужна замена конденсатора переменного тока, обратитесь к профессионалам Sansone. Мы работаем более четырех десятилетий и гордимся тем, что предоставляем жителям Южной Флориды лучшие услуги в области отопления, вентиляции и кондиционирования воздуха и обслуживание клиентов.

    Свяжитесь с нами сегодня, чтобы узнать больше о наших быстрых, эффективных и экономичных услугах по ремонту кондиционеров или назначить встречу онлайн ниже.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *