Простейшее реле времени своими руками: Реле времени 12в. Виды реле. Как сделать самому? | ENARGYS.RU

Содержание

Реле времени 12в. Виды реле. Как сделать самому? | ENARGYS.RU

При выполнении задач по автоматизации производственных процессов, для обеспечения точного выдерживания временных промежутков, выполнения различных действий и операций, а также для осуществления функций по своевременному управлению запуском и остановкой необходимых машин и оборудования применяется реле времени 12в.

Точность и надежность действия приборов выдержки времени служит основой для выработки высококачественной продукции.

Примером могут служить, в производстве: операции по точечной сварке, пайке материалов, закалка металлов высокочастотными токами, электрохимические и термические процессы. В быту это: микроволновые печи, стиральная машина и многое другое.

Электрическое реле времени 12в состоит из трех основных частей, это:

  1. Воспринимающая часть, служит для обеспечения реагирования при приеме сигнала управления.
  2. Замедляющая часть, служит для обеспечения определенного временного промежутка начиная с времени прихода сигнала управления к воспринимающей части.
  3. Исполнительная часть, служит для скачкообразного регулирования параметров электрической схемы, находящейся под управлением.

Рис. №1. Внешний вид реле времени РЭВ-811.

Классификация реле времени

Реле времени различается:

  1. По способу работы воспринимающей части.
  2. Конструкции и типу исполнительного механизма.
  3. По работе замедляющей части.

К основным типам данного устройства относятся, следующие реле времени:

  1. Электронные устройства, отличаются малыми размерами и повышенным энергосбережением.
  2. Приборы с использованием электромагнитного замедлителя, применяемые только в цепях постоянного тока, конструкция содержит главную и короткозамкнутую обмотки.
  3. Устройство с использованием пневматического замедления, в конструкции прибора предусмотрен специальный пневматический демпфер. Он служит для регулирования временного промежутка выдержки, производимого путем изменения диаметра отверстий, предназначенных осуществлять забор воздуха.
  4. Реле времени с использованием часового или анкерного механизма, действует за счет использования пружинного механизма и электромагнита, период отсчитывается анкером.
  5. Реле моторного типа рассчитано на длительный временной промежуток срабатывания, в конструкции предусмотрен синхронный электромотор, редукторная передача и электромагнит.

Простейшие реле времени 12в

Рис. №2. Простое реле времени, схема включения и внешний вид.

Простое реле времени 12в является прибором нейтрального электромагнитного типа в основе его работы лежит использование постоянного тока. Чтобы задать выдержку времени, бывает достаточно замедлить действие срабатывания устройства и изменить момент отпускания.

Время срабатывания состоит из двух рабочих моментов это:

  1. Время трогания после срабатывания, в него входит временной промежуток с начала подачи питания на катушку до начала вращения якоря.
  2. Время вращения якоря после срабатывания, это отсчет времени с момента отключения устройства до момента вращения якоря.

Для нормальных реле, характерен временной промежуток 10 – 30% от времени трогания.

Простейшие методы замедления срабатывания и отпускания релейных устройств времени, при использовании схем заключаются в регулировании увеличения скорости и плавного падения токового значения в катушке прибора.

Современные многофункциональные релейные устройства

В наше время повсеместно используются многофункциональные устройства. Они применяются в промышленных и бытовых автоматических устройствах в системах жизнеобеспечения и отвечают за своевременную работу осветительных, отопительных и вентиляционных систем. Устройства работают со значительным определенным заданным временным промежутком.

Современные устройства могут иметь самые широкие границы выдержки времени, они включают 0,1 сек. и могут достигать до 24 суток, и рассчитаны на напряжение от 12 до 264в АС/DC (переменный/постоянный ток питания).

Основные функции работы реле

  1. Задержка выключения, происходит после подачи питающего напряжения, осуществляется за счет переключения контактов.
  2. Задержка срабатывания устройства.
  3. Циклический рабочий цикл с задержкой отключения, в этом случае действие прибора происходит с включения и выключения в различные временные промежутки и т. д. до времени прекращения подачи питания.
  4. Циклическое действие с задержкой срабатывания, отчет действия реле начинается с задержки включения прибора на время с последующим циклическим периодом срабатывания и до прекращения подачи питания.

Рис. № 3. Многофункциональное цифровое реле времени FINDER

Контакты современного электронного реле рассчитаны на ток 8 – 10 А и могут выдержать мощность от 250 Вт, на которую рассчитано энергосберегающее освещение и до 2 кВт активной нагрузки обогревателя. Электронное реле времени может выдержать работу 0,5 кВт двигателя, включает в действие катушки контакторов на 325 ВА, может поддерживать работу безиндуктивной нагрузки постоянного тока от 0,35 А при 24 В и 0,18 А при напряжении 230 В.

Рис №4. Многофункциональное реле АН3-NB, внешний вид.

Для обеспечения стабильной работы реле и увеличения ресурса многие устройства комплектуются трансформаторным блоком питания.

Рис. №5. Трансформаторный блок питания многофункционального реле АН3-N.

Самодельное реле времени 12в

Рис. №6. Простейшее реле времени 12 В схема подключения.

Подобное реле времени 12 В можно сделать своими руками. Реализация подобной схемы этого прибора не требует использования дорогостоящих деталей. Действие реле строится на принципе определения времени заряда и находится, как произведение величины сопротивления электрической цепи, на емкость конденсатора, который, в свою очередь, должен быть полностью заряжен.

В первую очередь на схему подается питание от источника, следующий шаг подключение с использованием резисторов и транзисторов – конденсатора. После открытия заряда наблюдается падение величины напряжения на 1 резисторе, это происходит вследствие эмиттерного тока, который проходит через него в результате падения напряжения откроется второй транзистор, реле начнет работать, замыкание контактов подает питание на светодиод. Резистор, закрепленный за светодиодом, служит для ограничения ток нагрузки.

С увеличением заряда происходит повышение значения напряжения конденсатора, а также снижение зарядного и эмиттерного тока, одновременно с этим действием наблюдается падение величины напряжения в резисторе. Величина зарядного тока конденсатора уменьшится до величины, приводящей к закрытию конденсатора, а впоследствии и транзистора, происходит опускание реле и прекращается работа светодиода. Для следующего запуска реле требуется повторно нажать пусковую кнопку на приборе, чтобы осуществить полную разрядку конденсатора.

Подбор емкости конденсатора и выбор величины сопротивления резистора способствуют выбору необходимого временного промежутка.

Благодаря небольшой стоимости простейшего набора деталей достаточно просто решить вопрос как сделать реле времени 12в своими руками.

Рис. №7. Самодельное реле задержки времени включения 12в, внешний вид.

Как сделать простое реле времени, пайка схемы временной задержки включения нагрузки.

Порой возникает необходимость в отсроченном включении или выключении тех или иных электроприборов. Существуют специальные электронные схемы задержки времени срабатывания, которые называются реле времени. Их задача сводится к тому, что после своего включения (подачи питающего напряжения на саму схему) они ждут определенное время, по истечению которого происходит их срабатывание и замыкание управляющих контактов обычного реле, что стоит внутри их схемы. Эти контакты являются ключами, что уже могут управлять включением или выключением различных сторонних электрических устройств, нуждающиеся в подобной задержки времени. Время задержки можно выставить изначально специальным переменным резистором, который находится на самом корпусе реле времени.

В этой статье я хочу предложить вашему вниманию достаточно простую схему электронного реле времени, что питается от напряжения 12 вольт. И в общих чертах поясню принцип работы данной схемы задержки времени. Вот сама принципиальная схема.

Итак, время задающими элементами в этой схеме являются переменный резистор R1 и конденсатор  C1. После подачи на схему электропитания величиной 12 вольт оно начинает постепенно перераспределяться между этими элементами. То есть, изначально конденсатор C1 находится в разряженном состоянии, на нем напряжение равно нулю, и все, поданное на схему, напряжение оседает на резисторе R1. С течением времени C1 начинает накапливать электрический заряд, напряжение на нем начинает постепенно увеличиваться, в то время как на R1 оно уменьшается (идет перераспределение). Напряжение на конденсаторе C1 достигнув определенной величины способствует открыванию транзистора VT1.

Как известно, чтобы биполярный кремниевый транзистор перешел из закрытого состояния (не пропускал ток через переход коллектор-эмиттер) в открытое (начал пропускать ток через переход коллектор-эмиттер) нужно чтобы на переходе база-эмиттер появилось некое напряжение насыщения транзистора, равное где-то в среднем 0,6 вольт. Так вот, получается следующее, время задающий конденсатор постепенно накапливает на себе электрический заряд (скорость заряда зависит от величины сопротивления R1, чем он больше, тем дольше будет заряжаться C1). Напряжение на C1 постепенно увеличивается, а поскольку параллельно конденсатору стоит цепь, состоящая из транзисторного перехода база-эмиттер, резистора R2 и R3, то это напряжение увеличивается и на этих элементах.

И как только на база-эмиттерном переходе VT1 напряжение достигло величины 0,6 вольт, транзистор перешел в открытое состояние, через его переход коллектор-эмиттер пошел ток, после чего произошло открытие и транзистора VT2. И у второго транзистора, после его открытия, пошел ток через его коллектор-эмиттерный переход, что способствовало включению реле K1. Данное реле после своего срабатывания замкнуло (или разомкнуло) свои контакты и привело в действие ту электрическую цепь, что нужно было включить или выключить с определенной задержкой времени.

Стоит обратить внимание, что на схеме параллельно катушки реле K1 стоит диод VD1. Включение у него обратное (плюс диода подключен к минусу питания, а минус диода на плюс питания). Зачем нужен этот диод? Дело в том, что у любых катушек существует такое свойство как самоиндукция. То есть, если мы подадим напряжение на катушку, а потом резко его снимем, то на концах данной катушки образуется ЭДС самоиндукции (сгенерируется некоторая величина напряжения, которое в значительной степени может превышать напряжение, что было подано изначально). Этот возникший всплеск напряжения легко может негативно повлиять на чувствительные элементы электрической схемы. В нашем случае могут выйти из строя транзисторы VT1 и VT2. Роль диода VD1 заключается как раз в закорачивании этого всплеска ЭДС самоиндукции. Он как бы гасит ЭДС на себе, защищая схему.

Итак, схема отработала цикл, контакты реле включили или выключили ту электрическую цепь, которая нуждалась в задержке времени срабатывания. Для того, чтобы схему сбросить, нужно, либо отключить от нее питание, либо же нажать кнопку S1, которая замкнет конденсатор C1 и обнулит его электрический заряд (напряжение сведя к нулю). После отпускания кнопки S1 реле времени начнет новый отсчет времени, после чего опять сработает. Кнопка S1 должна быть без фиксации, иначе реле времени после своего включения так и не начнет отсчет времени.

В принципе данная схема простого реле времени особо не капризна к величине напряжения своего питания. Она будет нормально работать и при 9 вольтах, и при 15. Тогда нужно будет поставить реле, у которого катушка будет рассчитана на величину подаваемого напряжения питания. Кроме этого нужно еще учесть, что в данной схеме я поставил маломощное реле, его катушка потребляет всего 50 миллиампер. Эта катушка стоит последовательно с транзистором VT2 (его переходом коллектор-эмиттер). Максимальный ток данного транзистора 100 миллиампер. То есть, у транзистора есть достаточный запас по коллекторному току. Если же в схему поставить более мощное реле, у которого катушка будет потреблять более 100 миллиампер (да и на пределе, чтобы было, не желательно), то скорее всего транзистор VT2 не выдержит и сгорит. В таком случае в место него нужно поставить более мощный, например КТ815 (у которого максимальный ток 1,5 ампер) или КТ817 (ток 3 ампера).

Видео по этой теме:

P.S. Например, когда я ставил C1 с емкостью в 100 мкф и R1 с сопротивлением в 100 Ом, то время задержки включения данного реле времени было около 3 секунд. Следовательно, чем больше емкость конденсатора и чем больше сопротивление резистора, тем длительнее задержку можно получить. Экспериментируйте, подбирайте нужные времязадающие элементы, наслаждайтесь работой схемы. Эта схема после своей сборки сразу же начинает нормально работать, если конечно все детали годные и находятся в рабочем состоянии!

Реле времени своими руками 2 (на 555).

Реле времени на транзисторе рассматриваемое в статье реле времени своими руками просто в изготовлении но обладает многими недостатками например: небольшие задержки, необходимость сброса энергии конденсатора для следующего запуска, сложность расчёта длительности задержки. Хорошее реле времени можно сделать на микросхеме NE555 (или LM555 (вместо LM или NE могут быть другие буквы)).

Рисунок 1 — Реле времени

 Или в таком виде:

Рисунок 2 — Реле времени

Но собирать реле времени нужно используя схему:

Рисунок 3 — Реле времени с защитой (R4) от «выкручивания» переменного резистора в крайнее положение


Элементы R2 (и R4 если он есть) и C1 задают время задержки. Нажатие кнопки SB1 приводит к замыканию контактов K1.1 и после некоторого времени (задержки) они размыкаются, далее можно снова нажать на кнопку SB1. Длительность задержки рассчитывается по формуле:
В этой формуле нужно добавить умножение на R4 если этот резистор есть.
Такое реле годится для множества видов нагрузок и источников питания.
Кнопка м.б. например такой:
Транзисторы любые которые могут включать реле.
Резистор R2 выбирается в зависимости от требуемых задержек.
R2 может быть таким:
Для удобства, к резистору можно приделать шкалу задержек. Также последовательно этому резистору желательно поставить постоянный резистор (R4 на схеме на рисунке 3) для защиты от «выкручивания» переменного резистора в крайние положения.
Или таким:
Конденсатор C2:
Схема может работать от источника питания с сетевым трансформатором, диодным мостом, конденсаторами и без параметрического стабилизатора напряжения.
Элементы можно припаять на плату.
Проверка работы реле времени:

Для расчёта задержки можно воспользоваться программой:

Усовершенствованная помехоустойчивая схема без транзистора:

Подробнее про усовершенствованную схему можно прочитать на странице http://electe.blogspot.ru/2016/03/555.html».

5 штук таймеров 555 http://ali.pub/4xhmj
50штук таймеров 555 http://ali.pub/v5x9t

КАРТА БЛОГА (содержание)

Самодельное реле времени с задержкой от 1 минуты до 24 часов

Предыстория такова: Летом как известно появляются мухи комары, которые спать мешают. Комары залетают в комнату не всегда, так что смысла включать репеллент ежедневно нет. Но когда ложишься спать и они начинают жужжать, приходится включать отпугиватель. Засыпаешь под него, а на утро дикая вонища и весь ресурс пластинки израсходован на одну ночь. Вот по этому мне стало по зарез необходимо устройство(хотя руки дошли до этого только зимой), которое отключает нагрузку через заданное время. Возможности купить микросхему-таймер у меня не было, а реле на транзисторах имели очень маленькую задержку. И в голову пришла идея сделать своими руками реле времени с использованием часов в качестве таймера.

И начнём создание реле с … ножек. Я сделал их пробойником из баллончика:

Ножки приклеиваем на фанеру — будущее основание прибора:

Ставим трансформатор:

И стандартный обвес (диодный мост и конденсатор) — в итоге получаем нестабилизированный блок питания:

Источник питания устройства мы получили, теперь осталось разобраться со схемой.

Эта схема для часов, у которых будильник при срабатывании сигналит непродолжительное время:

При кратковременном нажатии кнопки «Пуск» реле 2 замыкает и удерживает цепь питания. Загорается светодиод, сигнализирующий о работе и реле 3 включает нагрузку. При срабатывании будильника реле 1 размыкает цепь питания и контакты реле 2 возвращаются в исходное положение. Нагрузка отключается. Вместо реле 2 и 3 можно использовать одно двухполярное реле.

Для часов, у которых будильник при срабатывании отключается только вручную (т.е. сигналит постоянно), схема гораздо проще:

Когда сигнал будильника подаётся на диод и эмиттер транзистора, контакты реле будут разомкнуты — нагрузка отключена. Не будет сигнала — включена.

Реле 3 в первой схеме и реле 1 во второй должны выдерживать сетевое напряжение и рассчитаны на ток, потребляемый нагрузкой. Реле, не подходящие по параметрам выйдут из строя.

Я добыл релюхи из сломаного бесперебойника, 250в 5а — всё с большим запасом.

Со схемками разобрались, идём дальше…

Приклеиваем релюшки:

Пол дела сделано, теперь нужно разобраться с часами.

Для питания часов нужно 3 вольта, но как их получить?

Вариант 1 — Стабилизатор на 3 вольта.

Вариант 2 — Оставить питание от батареек.

Батарейки явно не бро, могут подсесть в нужный момент, по этому предпочтительнее стабилизатор. Если нет стабилизатора, то тогда используем батарейки.

У меня был стабилизатор на 5 вольт и я подключил его через 4 диода. В итоге при срабатывании будильника идёт просадка напряжения, а это не хорошо.

Хоть на стабилизатор идёт мизерная нагрузка, я на всякий случай закрепил его на радиаторе. И заодно его стало удобней закрепить в корпусе часов:

Навесом спаял схемку, инициирующую запуск релюшки:

И разместил всё это в корпусе часов:

Часы будут крепится к корпусу, прикрывающему релюхи:

 

Последний штрих — приделываем розетку:

Прибор готов. Область применения такого реле ограничена вашей фантазией. Например можно сделать автоматический полив растений или дозатор корма для домашних животных. Ну я и расфантазировался…

Если кто плохо понял принцип действия, посмотрите это видео. Оно и натолкнуло меня на создание реле.

Демонстрация работы:

Как сделать реле времени своими руками

Реле времени нашло достаточно широкое распространение в бытовой технике, промышленной автоматизации и различных электронных системах. Простейшим вариантом применения реле времени можно считать стиральные машины с механическим реле времени. Для задания времени стирки поворачивалась ручка реле времени. Современные же стиральные машины имеют микропроцессорные системы управления с программной реализацией временных задержек. При этом количество таких задержек практически не ограничено. Еще одним примером применения реле времени в современной бытовой технике являются микроволновые печи. Выдержка времени в микроволновке определяет соотношение времени включения и выключения ВЧ, т.е. мощность нагрева.

Принцип действия всех систем на базе реле времени практически идентичен:
1 Запуск реле времени (механический или программный).
2 Включение исполнительного механизма (чаще всего электрической машины) на величину временной выдержки.
3 Отключение исполнительного механизма по завершению временной выдержки.

Реализация временной выдержки в микроконтроллерах

Простейшим вариантом реализации временной выдержки в микроконтроллере является зацикливание какой либо операции. При этом количество повторений данной операции зависит от частоты процессора и требуемого временного интервала. При такой реализации микроконтроллер не сможет выполнять другие операции по обработке данных, т.к. все время будет занят обеспечением требуемой временной выдержки.

Для подсчета времени в микроконтроллеры встраиваются таймеры. Таймер представляет собой двоичный счетчик, подсчитывающий тактовые импульсы и выдающий информацию на центральный процессор. Первоначальная установка таймера (задание интервала времени) выполняется программно. Таким способом можно реализовать временную выдержку в пределах тысячных долей секунды. Для бОльшей временной выдержки необходимо программно реализовывать циклы счета при переполнении таймера (подпрограммы прерываний от таймера).

Реле времени

Все реле времени можно разделить на механические, электронные, электромеханические (часовой механизм с электромагнитом для взвода пружины) и реле с демпфирующими устройствами. Примером реле с демпфирующим устройством может служить пневматическое реле времени, состоящее из электромагнитного привода и пневматической приставки.

Электронные реле времени строятся на базе специализированных микросхем (например КР512ПС10).

Питание такого реле осуществляется от сети переменного тока. Выпрямленное постоянное напряжение подается через стабилизатор подается на микросхему DD1. Внутренний генератор вырабатывает импульсы, частота которых регулируется времязадающей цепочкой (переменный резистор и конденсатор). Выдержка времени в таком реле может достигать 9 месяцев при частоте тактового сигнала 1Гц.

Реле времени своими руками

Рассмотрим схему таймера на базе микросхемы КР512ПС10.

Частота внутреннего генератора микросхемы определяется времязадающей цепочкой R2C2. При подаче напряжения происходит сброс микросхемы, после чего начинается счет тактовых импульсов внутреннего генератора частоты. Количество счетных импульсов задается логическими сигналами на входах М01…М05. Вывод 10 (END) – выход счетчика, вывод 3 (ST) – старт/стоп.

При высоком уровне сигнала на выходе END счет останавливается. При этом на выводе 9 (Q1) формируется сигнал высокого уровня, открывающий транзистор VT1/ Открытый транзистор VT1 способствует протеканию тока через катушку К1, управляющей нагрузкой. Повторный запуск реле осуществляется сбросом микросхемы D1. Ниже приведены временные диаграммы работы таймеры и таблица для установки временной выдержки.

Более сложная схема реле времени на микросхеме КР512ПС10 приведена ниже.

Приведенная схема позволяет создать генератор прямоугольных импульсов благодаря соединению вывода ST с общим проводом. Частота импульсов регулируется переменным резистором R2. Импульсы с выхода Q1 поступают на вход дешифратора DD2, на выходе которого формируются счетные импульсы. При выходном сигнале дешифратора 111111111 (в двоичном коде) счетчик переполняется и счет начинается заново. Выдержка времени определяется сигналами на входах М01…М05 и цепочки R2C2.



Всего комментариев: 0


Реле времени с большой выдержкой своими руками. Как сделать своими руками таймер из электронных часов

Содержание:

Реле времени в механическом исполнении используются уже давно, простейшим примером можно считать песочные часы, когда определенный объем песка с верхней части пересыпается в нижнюю через отмеренные промежутки времени. После этого под весом песка в движение приводится механическое устройство. Часы с кукушкой — тоже простое механическое реле времени, где груз на цепочке приводит шестереночный механизм в движение, а через определенные промежутки времени выдвигается кукушка.

В старых стиральных машинах заводился механический таймер, через установленное время он замыкал контакты, включая электродвигатель. С появлением электричества механические устройства вытеснило электронное реле времени, современные часы с режимом таймера полностью изготавливаются на электронных элементах. Но задачи остаются прежними: включение и выключение определенных электронных приборов, электродвигателей, которые приводят в движение механические устройства. Иногда на сложных конвеерных технологических процессах это устройство называют реле задержки. Сегодня при доступности электронных деталей вопрос «Как сделать реле времени?» трудностей не вызывает.

Классификация таймеров и конструктивные особенности

Все таймеры можно разделить по конструктивному исполнению:

  • простой таймер механического устройства, примером может служить таймер стиральной машины старого образца РВЦ-6-50;

  • таймеры с электронными элементами включения нагрузки в сеть — таким элементом может быть тиристор, само реле времени на транзисторах или микросхемах. Роль элемента задержки включения выполняет электролитический конденсатор;

  • с пневматическими приводами включения и отключения устройств.

По способу установки:

  • производители бытовой техники и специальной аппаратуры устанавливают таймеры в корпус, кнопки управления выводятся на переднюю панель;
  • самодельное реле времени можно поставить где угодно в зависимости от потребностей и фантазий производителя. Раньше автолюбители устанавливали реле времени 12 В питания на включение подогрева масла в поддоне. 12 В в данном случае — очень удобное бортовое питание автомобиля от аккумулятора: не требуется дополнительного источника питания, низкое потребление энергии, аккумулятор не разрядится.

Поэтому размеры и крепления соответствуют этим стандартам.

По способу подключения:

  • расположение элементов подключения может быть спереди, сзади или боковое;
  • провода питания и управления выведены из корпуса и подключаются пайкой или болтовыми соединениями в распределительных устройствах;
  • на корпусе установлены разъемы для подключения.

По элементам управления и программирования:

  • пакетным переключателем;
  • потенциометром;
  • кнопками.

Все эти конструктивные особенности реле времени производителями используются с учетом условий расположения таймеров и их функционального назначения, самоделки могут сочетать в одном изделии совокупность всех вариантов.

Достоинства и недостатки различных видов таймеров

Статистика показывает, что наиболее востребованы реле времени с электронными элементами включения и отключения нагрузки. Это объясняется целым рядом преимуществ:

  • компактные габариты;
  • незначительные затраты электроэнергии;
  • широкий диапазон выбора источников питания, есть модели 12 В постоянного тока или 220 В переменного;
  • отсутствие механических приводов;
  • большой выбор опций программирования;
  • длительный срок эксплуатации, электронный таймер не ограничивает количества срабатываний, как механические устройства;
  • легко демонтируется и подключается к другому оборудованию.

Схемы этих устройств не сложные, кто владеет начальными знаниями в области электроники и практическими навыками монтажной пайки, может сделать реле времени своими руками.

Реле времени своими руками

Рассмотрим один из простых способов, как сделать реле времени дома своими руками, модели транзисторного исполнения самые доступные. Для этого не понадобится много деталей:

Наименование элемента

Номиналы

Транзистор

КТ937А(Б) или ВD 876

Любое с питанием 9–12 В.

Резистор R1

Резистор R2

Переменный резистор R3

Конденсатор C1

25 В 3300 мкФ

Переключатель

При включении тумблера S1 конденсатор С1 заряжается до уровня питающего напряжения 9–12 В через переменный резистор R1 и R3, ключ транзистора VT1 открывается. После зарядки конденсатора транзистор закрывается и обесточивает реле, в зависимости от конструкции группы контактов нагрузка выключается или подключается.

Регулировка времени зарядки осуществляется резистором R1, опытным путем, на корпусе таймера, сделанного своими руками, можно нанести градуировку по минутам до момента срабатывания. Выключение тумблера S1 приводит к полной разрядке конденсатора через резистор R2, процесс работы циклический, после разрядки таймер приводится в исходное состояние.

Самодельный таймер имеет простую схему, очень неприхотливую, номиналы элементов не критичны, после правильной сборки не требует отладки, работает сразу, поэтому для собрать его своими руками несложно. В качестве источника питания можно использовать батарейки на 9 В, аккумуляторы на 12 В или сетевое питание на 220 В, через преобразователь напряжения в 12 В постоянного тока.

Часто реле времени делают на реле с питанием электромагнита 12 В, как у производителя FUJITSU-TAKAMISAWA (Япония). Это очень удобно, контакты на нагрузку выдерживают 220 В / 2 А.

Реле времени сегодня является электронным устройством, которое устанавливается на любые бытовые приборы, для которых имеет значение отсчет времени. Поэтому большой интерес для любителей электроники является самостоятельная сборка реле времени.

При этом, выдержки времени нужны не только для включения и выключения приборов, но также и для мощности нагрева, как это предусматривают микроволновые печи. В зависимости от времени включения происходит ее нагрев.

Устройство

Для того, чтобы понять, как устроено электронное реле, полезно вспомнить старые механические регуляторы времени. Скажем, у прежних стиральных машин поворот вынесенной на корпус ручки включал исполнительный механизм. Одновременно запускалась выдержка. По прошествии заданного времени исполнительный механизм отключался. По такому алгоритму работают любые включатели времени либо таймеры, даже находящиеся в микроконтроллере (МК).

Хотя сегодня, в век электроники, существуют очень много электронных часовых механизмов и реле, то возникает вопрос о необходимости изготовления механизма, регулирующего время своими руками. Ответить на него очень просто. Часто дома приходится делать что-то, где потребуются дозированные временные границы. Поэтому простые механизмы регулирования временивозможно собрать и самому, своими руками.

Простая радиосхема

Приведем одну из наиболее простых схем. Для наглядности приводится схема и изображение печатной платы реле на 12 в.

Представим, что кнопка sb1 выключена. На обкладке конденсатора с1 сейчас напряжения нет. В результате этого, транзисторы закрыты и в обмотках реле ток отсутствует. После включения кнопки происходит заряд емкости с1, открывающий транзистор vt1, к базе которого прикладывается отрицательное напряжение. В итоге будет открыт второй транзистор и сработает реле k1.

Если отпустить кнопку, то произойдет разряд конденсатора по цепи: r2-r3 эмиттер vt1-r4.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Реле остается включенным, до того момента, когда напряжение на контактах емкости не снизится до 2-3 вольт. На протяжении этого времени соединения реле будут пребывать в одном из положений: либо включенном, либо отключенном.

Временная выдержка регулируется в пределах, которые зависят от емкости с1 и суммы сопротивлений подключенных к ней цепей. Задержка по длительности может регулироваться с помощью сопротивления r3. Получение более увеличенных пределов выдержек возможно с помощь увеличения номиналов с1 и r3. Схема простая, микросхемы отсутствуют.

Если нужно изготовить реле времени на 220 в, то можно воспользоваться следующей схемой. Здесь представлена очень простая схема подключения.

С включением соединенияs1 емкость с1 будет заряжаться, на управляющую ножку тиристора подается плюс, тиристор откроется и при этом загорится последовательно соединенная в цепь лампа L1. Пока конденсатор заряжается, по нему перестает проходить ток. Соответственно тиристор закрывается и происходит выключение лампы.

При выключении контакта s1 емкость разряжается посредством резистора r1 и реле времени возвращается в первоначальное положение. Продолжительность горения лампы будет около 4 -7 секунд. Для того, чтобы увеличить задержку, нужно изменить емкость конденсатора. Такое реле можно поставить для включения освещения на лестничной площадке или подключить к АВР.

В данной схеме основной упор сделан на микросхему D1. Подобная микросхема может работать с различными устройствами на 12 в.Вся же схема, собранная своими руками, тоже имеет различное применение. Например, если ее подключить к контактору, то можно дистанционно управлять электроприборами, как пускателем. Подобные контакторы, управляемые слабыми токами, могут использоваться в различных автоматических системах, например, открывать ворота гаража или включать в нем освещение.

На одном контакторе возможно своими руками собрать схему АВР. Такие схемы АВР устанавливаются для включения и *выключения устройств телемеханики и уличного освещения. Автоматическое включение резерва (АВР) необходимо для быстродействия при отключении питания. Система АВР содержит в себе часовой механизм, который через минимальную задержку времени отключает цепь силового трансформатора. Обычно такие АВР, использующие именно часовые механизмы работают на электрических подстанциях.

Многофункциональные релейные устройства

Своими руками можно собрать и многофункциональные релейные устройства, которые могут быть применены в домашнем хозяйстве. Ими можно организовать включение и выключение отопления, вентиляции, освещения. Многофункциональные устройства могут работать с любыми заданными промежутками времени. Задержку можно настроить в интервале от 0,1 сек и до 24 суток, при этом напряжение питание может быть от 12 до 220в переменного или постоянного тока.

Главными функциями работы реле в таких случаях считаются:

  • Задержка выключения, происходящую за счет переключающихся контактов,
  • Задержка срабатывания устройства.

Одним из важныхэлементов автоматических устройств являются различные электронные реле времени, предназначенные для получения заданной выдержки времени при включении и выключении различных электрических устройств и, в частности, для автоматического прекращения времени экспонирования фотобумаги через заданный промежуток времени.

Реле времени на транзисторе

На рис. 1 приведена схема электронного реле времени, собранного на транзисторе Т1. Работает реле следующим образом. В коллекторную цепь транзистора включено поляризованное реле РІ, а в цепь базы — конденсатор большой емкости С1, постоянный резистор R1 и переменный резистор R2.

В исходном состоянии контакты 1— 2 секции ВІа переключателя В1 разомкнуты и токи в цепях базы и коллектора отсутствуют В этом положении контактами 3— 4 указанного переключателя конденсатор С1 закорочен.

При включении реле времени контакты 3—4 переключателя В1 будут разомкнуты, а 1— 2 замкнуты, и в цепи базы начнет протекать ток, который зарядит конденсатор СІ до напряжения источника питания Б. После того, как конденсатор С1 зарядится, ток в цепи базы прекращается.

В момент замыкания контактов 1—2 в цепи коллектора будет проходить ток, который больше тока базы в Р раз (b — коэффициент усиления по току транзистора, включенного по схеме с общим эмиттером). Если этот ток больше тока срабатывания реле Р1, то оно сработает, замкнет свои контакты 1— 2 и включит исполнительную цепь (например, лампу Л фотоувеличителя для фотопечати). Так как по мере заряда конденсатора С1 ток в цепи базы будет уменьшаться, это вызовет соответствующее уменьшение тока в цепи коллектора. При токе коллектора, равном току отпускания реле Р1, последнее отпустит свой якорь, разомкнет контакты 1— 2 и выключит лампу Л фотоувеличителя.

Для повторного включения реле следует выключить и снова включить переключатель В1, в качестве которого используют обычный сдвоенный перекидной тумблер.

Время заряда конденсатора С1 зависит от его емкости и сопротивлений резисторов R1, R2. Поэтому регулируя величину переменного резистора R2, можно изменять интервал выдержки времени.

При указанных на схеме данных и использовании поляризованного реле типа РП-4, отрегулированного на ток срабатывания 0,8 ма и ток отпускания 0,4 ма, такое электронное реле обеспечивает выдержку времени до 15 сек.

Несколько рекомендаций по налаживанию описанного выше устройства. Прежде чем поляризованное реле РП-4 (паспорт У. 172.22.37) включить в коллекторную цепь транзистора, его необходимо установить в режим однопозиционной работы (с преобладанием).

Затем нужно определить полярность включения обмотки (в схеме используется только высокоомная секция). При правильном включении обмотки реле, коллекторный ток, превышающий ток срабатывания реле, должен вызывать переброску якоря (подвижного контакта) из одного крайнего положения в другое. В процессе регулировки реле РП-4 необходимо добиться, чтобы ток отпускания был минимальным. Это позволит увеличить время выдержки.

В схеме можно использовать конденсаторы только с малой утечкой. Для более точной установки времени выдержки, которое наносится на шкалу переменного резистора R2, рекомендуется разбить его на несколько поддиапазонов (шкал). С этой целью в схеме следует предусмотреть дополнительный переключатель для скачкообразного изменения емкости конденсатора С1.

Реле времени на составном транзисторе

Реле времени, собранное по схеме рис. 2, отличается применением составного транзистора (T1, Т2), благодаря чему оно обладает более высокой чувствительностью. Составной транзистор имеет коэффициент усиления по току, равный произведению коэффициентов усиления по току отдельных транзисторов, и поэтому при одном и том же управляющем токе коллекторный ток получается гораздо большим, чем в предыдущей схеме. Это позволило отказаться от применения дорогостоящего реле и заменить его обычным электромагнитным.

Изменение выдержки времени осуществляется плавно — резистором R2 и скачками — переключателем В2. При испытании данной схемы с использованием реле типа РСМ-2 (паспорт 10.171.81.21), у которого из-за разгрузки якоря удалось получить токи срабатывания н отпускания 10 и 4 ма, время выдержки оказалось равным: на первом пределе 1— 6 сек, на втором— 6— 24 и на третьем пределе 24—125 сек.

Каждый из конденсаторов С2, С3 набран из нескольких конденсаторов с минимальным током утечки и рабочим напряжением не менее 10 в. Следует отметить, что пределы выдержки времени зависят от фактической емкости конденсаторов С1— С3 и величины утечки, поэтому они уточняются в процессе налаживания.

Реле времени на транзисторе (вариант 2)

Еще один вариант схемы реле времени на одном транзисторе приведен на рис. 3. В этом реле время выдержки определяется временем разряда конденсатора С1 через резисторы R1. R4 и входную цепь транзистора Т1. Изменяя величину переменного резистора R4, можно плавно изменять время выдержки.

В исходном состоянии напряжение на конденсаторе С1 равно нулю, а следовательно, на базе транзистора 77 напряжение отсутствует. Ток в цепи коллектора настолько мал, что реле Р1 не срабатывает. При нажатии на кнопку Кн конденсатор С1 почти мгновенно заряжается до напряжения на выходе выпрямителя. Стоит только отпустить кнопку, как напряжение на конденсаторе С1 будет приложено минусом на базу транзистора, и коллекторный ток резко увеличится.

При этом реле Р1 сработает, замкнет свои нормально разомкнутые контакты 1— 2, и в исполнительную цепь будет подано питание. Якорь реле будет притянут до тех пор, пока конденсатор С1 не разрядится. По мере разряда конденсатора ток коллектора будет уменьшаться, Когда он станет меньше тока отпускания реле, последнее разомкнет контакты 1— 2 и подача напряжения на исполнительную цепь прекратится.

Время разряда конденсатора С1 в основном определяется переменным резистором R4, шкала которого проградуирована в секундах. Электромагнитное реле Р1 имеет те же параметры, что и в предыдущей схеме.

Трансформатор Тр1 выполнен на сердечнике Ш16, толщина набора 20 мм. Обмотка 1а содержит 1900 витков, а обмотка 16—1400 витков провода ПЭВ-1 0,12. Обмотка II содержит 925 витков провода ПЭВ-0,15. Для получения различных выпрямленных напряжений от 700, 775 и 850-го витка делаются отводы.

Электронное реле времени на лампе

На рис. 4 приведена схема лампового электронного реле времени, предназначенного для получения выдержки времени длительностью 0,5— 60 сек с точностью ±2%. Управление работой реле осуществляется ручкой установки выдержки времени (R1) и кнопкой Кн.

Работает реле времени следующим образом: в исходном положении бумажный конденсатор С2 заряжен до напряжения на выходе выпрямителя и анодный ток имеет величину, достаточную для срабатывания поляризованного реле Р1. При срабатывании реле РІ замыкаются его контакты 1— 2 и размыкаются контакты 2— 3, тем самым разрывая цепь питания промежуточного реле Р2 и индикаторной лампочки Л2.

Для того чтобы начался отсчет времени выдержки, необходимо нажать кнопку Кн. При этом конденсатор С2 практически мгновенно разряжается и на управляющей сетке левого триода лампы Л1 окажется большое отрицательное смещение, лампа запрется, ее анодный ток станет равным нулю, и реле Р1 отключится.

Отключение реле Р1 вызовет размыкание контактов 1—2 (Р1) и начало заряда конденсатора С2. Одновременно при замыкании контактов 2— 3 (реле Р1) включается индикаторная лампочка Л2 и реле Р2. Реле Р2 сработает и контактами 1— 2 (Р2) включит питание на исполнительную цепь — гнезда «Выход». Таким образом, отсчет выдержки времени начинается с момента отключения реле Р1.

По мере заряда конденсатора С2 напряжение на нем возрастает, а следовательно, отрицательное напряжение на управляющей сетке уменьшается. Уменьшение отрицательного напряжения на сетке лампы вызывает увеличение анодного тока. При значении анодного тока, равным току срабатывания реле Р1, последнее срабатывает и выключает питание промежуточного реле Р2 и сигнальной лампочки Л2.

Для повторного включения реле времени необходимо снова нажать на кнопку Кн. Для того, чтобы реле работало в импульсном режиме, необходимо замкнуть «на постоянно» контакты кнопки Кн. В этом случае будет иметь место беспрерывное повторение циклов через промежутки времени порядка 125 мсек. Указанную величину пауз между циклами можно изменять в достаточно широких пределах, изменяя емкость конденсатора С3. Длительность цикла в широких пределах регулируется переменным резистором R1.

Поляризованное реле Р1 типа РП-4 (паспорт У. 172.20.48). Можно применить реле РП-5 с сопротивлением обмоток 3000— 5000 ом. Реле Р2 электромагнитного тип г. с сопротивлением обмоток 5 ом для работы от напряжения переменного тока 6,3 в.

Трансформатор Тр1 имеет сердечник из пластин Ш16, толщина набора 20 мм. Обмотка 1 содержит 2400 витков провода ПЭЛ 0,15, обмотка II — 4800 витков провода ПЭЛ 0,07, обмотка III— 125 витков провода ПЭЛ 0,62. Практически в конструкции можно использовать любой трансформатор питания от приемников третьего класса, выпускаемых нашей промышленностью.

С помощью электронных реле можно неплохо экономить деньги, к примеру, возьмем свет в коридоре, кладовке или подъезде. Нажимая кнопку, мы включаем свет и через определенное время он автоматически отключается. Этого времени должно хватить на поиски предмета в коридоре, кладовке или попадание в квартиру. К тому же освещение без надобности не горит, если вы забыли его выключить. Это устройство не только полезно, но и очень удобно. В этой статье мы расскажем, как сделать реле времени своими руками, предоставив все необходимые схемы и инструкции.

Простейший вариант

Пример конструктора для самодельной сборки таймера задержки отключения:

При желании возможно самостоятельно собрать реле времени по следующей схеме:

Времязадающим элементом является С1, в стандартной комплектации КИТ-набора он имеет следующие характеристики: 1000 мкФ/16 В, время задержки в этом случае составляет приблизительно 10 минут. Регулировка времени осуществляется переменным R1. Питание платы 12 Вольт. Управление нагрузкой производится через контакты реле. Плату можно не делать, а собрать на макетной плате или навесным монтажом.

Для того, чтобы сделать реле времени, нам понадобятся следующие детали:

Правильно собранное устройство не нуждается в настройке и готово к работе. Данное самодельное реле задержки времени было описано в журнале «Радиодело» 2005.07.

Самоделка на базе таймера NE 555

Другая схема электронного таймера для сборки своими руками также легка и доступна для повторения. Сердцем данной схемы является микросхема интегрального таймера «NE 555». Данный прибор предназначен как для отключения, так и включения устройств, ниже представлена схема устройства:

NE555 – это специализированная микросхема, используемая в построении всевозможных электронных устройств, таймеров, генераторов сигнала и т.д. Она достаточно распространена, поэтому ее можно найти в любом радиомагазине. Данная микросхема управляет нагрузкой через электромеханическое реле, которое можно задействовать как на включение, так и на выключение полезной нагрузки.

Управление таймером осуществляется двумя кнопками: «старт» и «стоп». Для начала отсчета времени необходимо нажать на кнопку «старт». Отключение и возврат устройства в первоначальное состояние осуществляется кнопкой «стоп». Узлом, задающем интервал времени, является цепочка из переменного резистора R1 и электролитического конденсатора C1. От их номинала зависит величина задержки включения .

При данных номиналах элементов R1 и C1, диапазон времени может быть от 2 секунд до 3 минут. В качестве индикатора состояния работоспособности конструкции используется включенный параллельно катушке реле светодиод. Как и в предыдущей схеме, для ее функционирования требуется дополнительный источник внешнего питания на 12 Вольт.

Для того чтобы реле само включалось сразу при подаче на плату питания, необходимо немного изменить схему: вывод 4 микросхемы соединить с плюсовым проводом, вывод 7 отключить, а выводы 2 и 6 соединить вместе. Более наглядно о данной схеме можно узнать из видео, где подробно описан процесс сборки и работы с устройством:

Реле на одном транзисторе

Самый простой вариант — использовать схему реле времени всего на одном транзисторе, КТ 973 А, его импортный аналог BD 876. Данное решение также основано на заряде конденсатора до напряжения питания, через потенциометр (переменный резистор). Изюминка схемы заключается в принудительном переключении и разряде емкости через резистор R2 и возвращении исходного начального положения тумблером S1.

При подаче питания на устройство емкость С1 начинается заряжаться через резистор R1 и через R3, открывая тем самым транзистор VT1. Когда емкость зарядится до состояния отключения VT1, обесточивается реле, тем самым отключая или включая нагрузку, в зависимости от назначения схемы и используемого типа реле.

Выбранные вами элементы могут иметь незначительный разброс в номиналах, это не повлияет на работоспособность схемы. Задержка может немного отличаться и зависеть от температуры окружающей среды, а также от величины сетевого напряжения. На фото ниже предоставлен пример готовой самоделки:

Теперь вы знаете, как сделать реле времени своими руками. Надеемся, предоставленные инструкции пригодились вам и вы смогли собрать данную самоделку в домашних условиях!

В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными реле и большой скоростью переключений. С возможностью подключения нагрузки в момент перехода напряжения через ноль, тем самым избегая тяжёлых пусковых токов. В некоторых случаях их герметичность тоже играет свою положительную роль, но одновременно лишая владельца такого реле преимущества в возможности ремонта с заменой некоторых деталей. Твёрдотельное реле, в случае выхода из строя, не ремонтируется и подлежит замене целиком, это его отрицательное качество. Цены на такие реле несколько кусаются, и получается расточительно.
Попробуем вместе сделать твёрдотельное реле своими руками с сохранением всех положительных качеств, но, не заливая схему смолой или герметиком, чтобы иметь возможность ремонта, в случае выхода из строя.

Схема

Посмотрим схему этого очень полезного и нужного устройства.


Основу схемы составляют силовой симистор Т1 — BT138-800 на 16 Ампер и управляющий им оптрон МОС3063. На схеме выделены чёрным цветом проводники, которые нужно проложить медным проводом повышенного сечения, в зависимости от планируемой нагрузки.
Управление светодиодом оптрона мне удобнее запитать от 220 Вольт, а можно от 12 или 5 Вольт, кому как нужно.


Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.

Детали и корпус


Нам потребуется:
  • F1 — предохранитель на 100 мА.
  • S1 — любой маломощный переключатель.
  • C1 – конденсатор 0.063 мкФ 630 Вольт.
  • C2 – 10 — 100 мкФ 25 Вольт.
  • C3 – 2.7 нФ 50 Вольт.
  • C4 – 0.047 мкФ 630 Вольт.
  • R1 – 470 кОм 0.25 Ватт.
  • R2 – 100 Ом 0.25 Ватт.
  • R3 – 330 Ом 0.5 Ватт.
  • R4 – 470 Ом 2 Ватта.
  • R5 – 47 Ом 5 Ватт.
  • R6 – 470 кОм 0.25 Ватт.
  • R7 – варистор TVR12471, или подобный.
  • D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например — 1N4007.
  • D2 – стабилитрон на 6.2 Вольта.
  • D3 – диод 1N4007.
  • T1 – симистор ВТ138-800.
  • LED1 – любой сигнальный светодиод.

Изготовление твердотельного реле

Сначала намечаем размещение радиатора, макетной платы и прочих деталей в корпусе и закрепляем их на места.


Симистор нужно изолировать от радиатора охлаждения специальной теплопроводной пластиной с применением теплопроводной пасты. Паста должна слегка вылезти из-под симистора при закручивании крепёжного винта.


Далее размещаем следующие детали в соответствии со схемой и припаиваем их.

Главная » Мансардная » Реле времени с большой выдержкой своими руками. Как сделать своими руками таймер из электронных часов

Недельный программируемый таймер своими руками. Как сделать своими руками таймер из электронных часов

Достаточно прост, но иногда способен вызвать восхищение. Если вспомнить старые стиральные машины, которые ласково называли «ведро с моторчиком», то тут действие реле времени было очень наглядно: повернули ручку на несколько делений, внутри что-то начало тикать, и мотор завелся.

Как только указатель ручки доходил до нулевого деления шкалы, стирка заканчивалась. Позднее появились машины с двумя реле времени, — стирка и отжим. В таких машинах реле времени были выполнены в виде металлического цилиндра, в котором был спрятан часовой механизм, а снаружи находились лишь электрические контакты и ручка управления.

Современные стиральные машины — автоматы (с электронным управлением) тоже имеют реле времени, причем как отдельный элемент или деталь разглядеть его на плате управления стало невозможно. Все выдержки времени получаются программно с помощью управляющего микроконтроллера. Если внимательно присмотреться к циклу работы автоматической стиральной машины, то количество выдержек времени просто не поддается учету. Если бы все эти выдержки времени выполнить в виде часового механизма упомянутого выше, то в корпусе стиральной машины просто не хватило бы места.

От часового механизма к электронике

Как получить выдержку времени с помощью МК

Быстродействие современных МК очень велико, до нескольких десятков mips (миллионов операций в секунду). Кажется, не столь давно шла борьба за 1 mips у персональных компьютеров. Теперь даже устаревшие МК, например, семейства 8051 легко выполняют этот 1 mips. Таким образом, на выполнение 1 000 000 операций придется затратить ровно одну секунду.

Вот, казалось бы и готовое решение, как получить задержку времени. Просто одну и ту же операцию выполнить миллион раз. Такое сделать достаточно просто, если эту операцию в программе зациклить. Но вся беда в том, что кроме этой операции, целую секунду МК, делать ничего больше не сможет. Вот тебе и достижение инженерной мысли, вот тебе и mips — ы! А если нужна выдержка в несколько десятков секунд или минут?

Таймер — устройство для подсчета времени

Чтобы такого конфуза не случилось, не грелся просто так процессор, выполняя ненужную команду, которая ничего полезного делать не будет, в МК были встроены таймеры, как правило, по нескольку штук. Если не вдаваться в подробности, то таймер представляет собой двоичный счетчик, который считает импульсы, вырабатываемые специальной схемой внутри МК.

Например, в МК семейства 8051 счетный импульс вырабатывается при выполнении каждой команды, т.е. таймер просто считает количество выполненных машинных команд. А в это время центральный процессор (CPU) спокойно занимается выполнением основной программы.

Предположим, что таймер начал считать (для этого есть команда запуска счетчика) с нулевого значения. Каждый импульс увеличивает содержимое счетчика на единицу и, в конце концов, доходит до максимального значения. После чего содержимое счетчика обнуляется. Вот этот момент носит название «переполнение счетчика». Это как раз и есть окончание выдержки времени (вспомним стиральную машину).

Предположим, что таймер 8 — ми разрядный, тогда с его помощью можно подсчитать значение в пределах 0…255, или переполнение счетчика будет происходить через каждые 256 импульсов. Чтобы выдержку сделать короче достаточно начать счет не с нуля, а с другого значения. Чтобы его получить, достаточно предварительно загрузить в счетчик это значение, а потом запустить счетчик (еще раз вспомним стиральную машину). Вот это предварительно загруженное число и есть угол поворота реле времени.

Такой таймер при частоте выполнения операций 1 mips позволит получить выдержку максимум 255 микросекунд, а ведь надо несколько секунд или даже минут, как же быть?

Оказывается, все достаточно просто. Каждое переполнение таймера это событие, которое вызывает прерывание основной программы. В результате CPU переходит на соответствующую подпрограмму, которая из таких вот крошечных выдержек может сложить любую, хоть до нескольких часов и даже суток.

Подпрограмма обслуживания прерывания, как правило короткая, не более нескольких десятков команд, после чего снова происходит возврат в основную программу, которая продолжает выполняться с того же места. Попробуйте такую выдержку осуществить простым повторением команд, про которое было сказано выше! Хотя, в некоторых случаях приходится поступать именно таким образом.

Для этого в системах команд процессоров существует команда NOP, которая как раз ничего не делает, лишь занимает машинное время. Может использоваться для резервирования памяти, и при создании выдержек времени, только очень коротких, порядка единиц микросекунд.

Да, скажет читатель, как его понесло! От стиральных машин сразу к микроконтроллерам. А что же было между этими крайними точками?

Какие бывают реле времени

Как уже было сказано, основная задача реле времени — получить задержку между входным сигналом и сигналом на выходе. Эту задержку можно сформировать несколькими способами. Реле времени были механические (уже описанное в начале статьи), электромеханические (тоже на основе часового механизма, только пружина заводится электромагнитом), а также с различными демпфирующими устройствами. Примером такого реле может служить пневматическое реле времени, показанное на рисунке 1.

Реле состоит из электромагнитного привода и пневматической приставки. Катушка реле выпускается на рабочие напряжения 12…660В переменного тока (всего 16 номиналов) частотой 50…60Гц. В зависимости от исполнения реле выдержка может начинаться либо при срабатывании, либо при отпускании электромагнитного привода.

Установка времени осуществляется винтом, регулирующим сечение отверстия для выхода воздуха из камеры. Описанные реле времени отличаются не слишком стабильными параметрами, поэтому, там, где это возможно всегда применяются электронные реле времени. В настоящее время такие реле, как механические, так и пневматические можно, пожалуй, встретить лишь в древнем оборудовании, которое до сих пор не заменено современным, да еще в музее.

Электронные реле времени

Пожалуй, одной из самых распространенных была серия реле ВЛ — 60…64 и некоторые другие, например ВЛ — 100…140. Все эти реле времени были построены на специализированной микросхеме КР512ПС10. Внешний вид реле серии ВЛ показан на рисунке 2.

Рисунок 2. Реле времени серии ВЛ.

Схема реле времени ВЛ — 64 показана на рисунке 3.

Рисунок 3.

При подаче на вход напряжения питания через выпрямительный мост VD1…VD4 напряжение через стабилизатор на транзисторе КТ315А подается на микросхему DD1, внутренний генератор которой начинает вырабатывать импульсы. Частота импульсов регулируется переменным резистором ППБ-3Б (именно он выведен на лицевую панель реле), включенным последовательно с времязадающим конденсатором 5100 пФ, который имеет допуск 1% и очень малый ТКЕ.

Полученные импульсы подсчитываются счетчиком с переменным коэффициентом деления, который устанавливается коммутацией выводов микросхемы M01…M05. В реле серии ВЛ эта коммутация выполнялась на заводе — изготовителе. Максимальный коэффициент деления всего счетчика достигает 235 929 600. Как утверждают в документации на микросхему, при частоте задающего генератора 1Гц выдержка может достигать свыше 9 месяцев! По мнению разработчиков этого вполне достаточно для любых приложений.

Вывод 10 микросхемы END — окончание выдержки, соединен с входом 3 — ST старт — стоп. Как только на выходе END появляется напряжение высокого уровня, счет импульсов останавливается, и на 9 выводе Q1 появляется напряжение высокого уровня, которое откроет транзистор КТ605 и сработает реле, подключенное к коллектору КТ605.

Современные реле времени

Как правило, изготавливаются на МК. Ведь проще запрограммировать готовую фирменную микросхему, добавить несколько кнопок, цифровой индикатор, чем изобретать что-то новое, да потом еще и заниматься точной настройкой времени. Такое реле показано на рисунке 4.

Рисунок 4.

Зачем делать реле времени своими руками?

И хотя существует такое огромное количество реле времени, практически на любой вкус, в иногда домашних условиях приходится делать что-то свое, часто очень простое. Но подобные конструкции чаще всего оправдывают себя целиком и полностью. Вот некоторые из них.

Коль скоро мы только что рассмотрели работу микросхемы КР512ПС10 в составе реле ВЛ, то рассмотрение любительских схем придется начать именно с нее. На рисунке 5 показана схема таймера.

Рисунок 5. Таймер на микросхеме КР524ПС10.

Питание микросхемы осуществляется от параметрического стабилизатора R4, VD1 с напряжением стабилизации около 5 В. В момент включения питания цепочка R1C1 формирует импульс сброса микросхемы. При этом запускается внутренний генератор, частота которого задается цепочкой R2C2 и внутренний счетчик микросхемы начинает счет импульсов.

Количество этих импульсов (коэффициент деления счетчика) задается коммутацией выводов микросхемы M01…M05. При указанном на схеме положении этот коэффициент составит 78643200. Такое количество импульсов составляет полный период сигнала на выходе END (выв. 10). Вывод 10 соединен с выводом 3 ST (старт / стоп).

Как только на выходе END устанавливается высокий уровень (отсчитали полпериода) счетчик останавливается. В этот же момент на выходе Q1 (выв. 9) также устанавливается высокий уровень, который открывает транзистор VT1. Через открытый транзистор включается реле K1, которое своими контактами управляет нагрузкой.

Для того, чтобы запустить выдержку времени еще раз достаточно кратковременно выключить и снова включить реле. Временная диаграмма сигналов END и Q1 показана на рисунке 6.

Рисунок 6. Временная диаграмма сигналов END и Q1.

При указанных на схеме номиналах времязадающей цепи R2C2 частота генератора около 1000 Гц. Поэтому выдержка времени при указанном подключении выводов M01…M05 составит около десяти часов.

Для точной настройки такой выдержки следует сделать следующее. Подключить выводы M01…M05 в позицию «Секунды_10», как показано в таблице на рисунке7.

Рисунок 7. Таблица установки времени таймера (для увеличения нажмите на рисунок) .

При таком подключении вращением переменного резистора R2 произвести настройку выдержки 10 сек. по секундомеру. После чего подключить выводы M01…M05, как показано на схеме.

Еще одна схема на КР512ПС10 показана на рисунке 8.

Рисунок 8. Реле времени на микросхеме КР512ПС10

Ещё таймер на микросхеме КР512ПС10.

Для начала обратим внимание на КР512ПС10, точнее на сигналы END, который не показан совсем, и сигнал ST, который просто соединен с общим проводом, что соответствует уровню логического нуля.

При таком включении не произойдет остановки счетчика, как показано на рисунке 6. Сигналы END и Q1 будут циклически, не останавливаясь продолжаться. При этом форма этих сигналов будет классическим меандром. Таким образом, получился просто генератор прямоугольных импульсов, частота которых может регулироваться переменным резистором R2, а коэффициент деления счетчика можно устанавливать согласно таблицы, показанной на рисунке 7.

Непрерывные импульсы с выхода Q1 поступают на счетный вход десятичного счетчика — дешифратора DD2 К561ИЕ8. Цепочка R4C5 при включении питания сбрасывает счетчик в ноль. В результате на выходе дешифратора «0» (выв. 3) появляется высокий уровень. На выходах 1…9 низкие уровни. С приходом первого счетного импульса высокий уровень перемещается на выход «1», второй импульс устанавливает высокий уровень на выходе «2» и так далее, вплоть до выхода «9». После чего счетчик переполняется и цикл счета начинается заново.

Полученный управляющий сигнал через переключатель SA1 можно подать на генератор звукового сигнала на элементах DD3.1…4, либо на усилитель реле VT2. Величина выдержки времени зависит от положения переключателя SA1. При указанных на схеме соединениях выводов M01…M05 и параметрах времязадающей цепочки R2C2 можно получить выдержки времени в пределах от 30 секунд до 9 часов.

И снова выключаться. Примерно как холодильник, только периодичность у холодильника зависит от температуры, а нам нужно самим задавать необходимые временные интервалы.

Рассмотрим схему электронного таймера, в котором цикличность работы и «отдыха», можно задавать раздельно. Время задается переменными резисторами, в диапазоне от 90 секунд до 3 часов, раздельно, для каждого режима. Величины задаваемых интервалов полностью зависят от параметров RC-цепей, с переменными резисторами в «R»-составляющих. В связи с этим, данный электронный таймер не обладает сверх большой точностью.

Схема состоит из таймерного узла на двоичном счетчике К561ИЕ16 (аналог 4020), отличающегося от «типового» тем, что у него имеется два регулируемых мультивибратора. Настройкой частоты одного, задают продолжительность включенного состояния, а настройкой частоты другого, продолжительность выключенного состояния. Мультивибраторы переключаются транзисторно-диодной схемой в зависимости от логического уровня на старшем выходе счетчика. Этот же выход счетчика служит для управления нагрузкой.

В исходном состоянии (после включения питания выключателем SB1) счетчик DD2 устанавливается в нулевое положение скачком зарядного тока конденсатора C2. На его выходе (вывод 3) будет логический ноль. Транзистор VT2 открывается, транзистор VT3 тоже открывается и реле K1 замыкает свои контакты, выход схемы подключается в разрыв цепи питания того электроприбора, которым нужно управлять. То есть, практически, параллельно выключателю этого электроприбора.

В то же время, ноль с вывода 3 DD2 проходит на вывод 9 DD1.4 и на базу VT1. При этом VT1 закрыт, на его коллекторе высокий уровень напряжения, который приходит на вывод 6 DD1.2. Отсюда получается что, мультивибратор, собранный на элементах DD1.3-DD1.4 работает, импульсы с его выхода проходят через диод VD1 на счетный вход DD2. А мультивибратор на элементах DD1.1-DD1.2 не работает, на его выходе ноль. Но это не влияет на проход импульсов на счетчик от второго мультивибратора, так как диод VD2 оказывается закрытым и на вход счетчика не влияет.

Таким образом, начинается период включенного состояния электроприбора. Продолжаться это будет до тех пор, пока счетчик DD2 не доберется до 8192-го импульса. То есть, пока не появится единица на его выводе 3. Сколько на это уйдет времени, — зависит от сопротивления R7.

При появлении единицы на выводе 3 DD2 интервал включенного состояния электроприбора завершается, и начинается пауза. Транзисторы VT2-VT3 закрываются и реле K1 выключает электроприбор. А транзистор VT1 открывается. На вывод 9 DD1.4 проходит единица с выхода DD2, поэтому мультивибратор DD1.3- DD1.4 выключается. На коллекторе VT1 напряжение падает до нулевого уровня. Это соответствует напряжению на выводе 6 DD1.2. Поэтому мультивибратор DD1.1-DD1.2 включается. Импульсы с его выхода через диод VD2 поступают на вход «C» счетчика DD2. С этого момента и начинается отсчет интервала паузы. Светодиод HL1 индицирует включенное состояние реле K1.

В качестве источника питания годится любой сетевой адаптер с выходным номинальным напряжением 9-15В и током не ниже 150 мА.

Используя реле SC1240 можно коммутировать нагрузку при сетевом переменном напряжении 220В мощностью не более 2 кВт. Если же подобного не оказалось в наличии, можно использовать и отечественное реле, однако стоит отдавать предпочтение тем реле, которые в пластмассовом корпусе, так как аналогичное реле в металлическом корпусе не сможет безопасно работать на переменном напряжении 220В. Кроме того, желательно использовать специализированные реле, контакты которых и конструкция первично рассчитаны на коммутацию сетевого переменного напряжения.

Вместо реле можно использовать какую-нибудь оптотиристорную или отпосимисторную схему. В этом случае транзистор VT3 и, соответственно, реле K1 из схемы исключаются. А светодиод оптопары подключают вместо резистора R13. Сопротивление R10 в этом случае нужно подобрать соответственно тому, какой ток должен протекать через светодиод оптопары.

Преимущество реле в том, что это фактически, обычный механический выключатель, то есть, прибор линейный как кусок проволоки, и не вносящий никаких искажений и дополнений (вроде выбросов на каждом полупериоде) в синусоиду переменного напряжения от сети. Поэтому электроприборы с электронными блоками все же лучше питать через реле. А недостаток реле очевиден, — механические контакты, искрение, подгорание, в общем, механика, которая сама по себе не так надежна как тиристор или симистор. Поэтому, если управлять нужно мощным ТЭНом, или каким-то другим электроприбором без встроенной электроники, то лучше использовать все же оптосимистор.


Схема таймера на счетчике К561ИЕ16

Конструкция выполнена только на одной микросхеме К561ИЕ16 . Так как, для его правильной работы нужен внешний генератор тактовых импульсов, то в нашем случае мы его заменим простым мигающим светодиодом.

Как только подадим напряжение питание на схему таймера, емкость С1 начнет заряжаться через резистор R2 поэтому на выводе 11 кратковременно появится логическая единица, сбрасывающая счетчик. Транзистор, подсоединенный к выходу счетчика, откроется и включит реле, которое через свои контакты подключит нагрузку.


С мигающего светодиода с частотой 1,4 Гц поступают импульсы на тактовый вход счетчика. C каждым импульсным перепадом идет счет счетчика. Через 256 импульсов или около трех минут, на выводе 12 счетчика появится уровень логической единицы, а транзистор закроется, отключив реле и коммутируемую через его контакты нагрузку. К тому же эта логическая единица проходит на тактовый вход DD, останавливая работу таймера. Время работы таймера можно подобрать путем подключения точки «А» схемы к различным выходам счетчика.

Схема таймера выполнена на микросхеме КР512ПС10 , которая имеет в своем внутреннем составе двоичный счетчик-делитель и мультивибратор. Как и у обычного счетчика эта микросхема имеет коэффициент деления от 2048 до 235929600. Выбор требуемого коэффициента задается путем подачи логических сигналов на входы управления M1, M2, M3, M4, M5.

Для нашей схемы таймера коэффициент деления выбран 1310720. В таймере имеется шесть фиксированных временных интервалов: пол часа, полтора часа, три часа, шесть часов, двенадцать часов и сутки часа. Частота работы встроенного мультивибратора определяется номиналами резистора R2 и конденсатора C2 . При переключении переключателя SA2 изменяется частота мультивибратора, а проходя через счетчик-делитель и временной интервал.

Схема таймера запускается сразу после включения питания или для сброса таймера можно нажать на тумблер SA1. В исходном состоянии на девятом выходе будет уровень логической единицы а на десятом инверсном выходе соответственно нуля. В результате этого транзистор VT1 подсоединит светодиодную часть оптотиристоров DA1, DA2 . Тиристорная часть имеет встречно-параллельное включение, это позволяет регулировать переменное напряжение.

По завершению отсчета времени на девятом выходе установится ноль и отключит нагрузку. А на выходе 10 появится единица, которая остановит счетчик.

Запуск схемы таймера осуществляется при нажатии одной из трех кнопок с фиксацией временного интервала, при этом он начинает обратный отсчет. Параллельно с нажатием кнопки загорается светодиод соответствующий кнопки.


По истечению временного интервала таймер издает звуковой сигнал. Последующее нажатие отключит схему. Временные промежутки изменяются номиналами радиокомпонентов R2, R3, R4 и C1 .

Схема таймера , который обеспечивает задержку выключения, показана на первом рисунке Здесь транзистор с каналом р- типа (2) включён в цепь питания нагрузки, а транзистор с каналом п-типа (1) им управляет.

Схема таймера работает следующим образом. В исходном состоянии конденсатор С1 разряжен, оба транзистора закрыты и нагрузка обесточена. При кратковременном нажатии на кнопку Пуск затвор второго транзистора соединяется с общим проводом, напряжение между его истоком и затвором становится равным напряжению питания, он мгновенно открывается, подключая нагрузку. Возникший на ней скачок напряжения через конденсатор С1 поступает на затвор первого транзистора, который также открывается, поэтому затвор второго транзистора останется соединённым с общим проводом и после отпускания кнопки.

По мере зарядки конденсатора С1 через резистор R1 напряжение на нём повышается, а на затворе первого транзистора (относительно общего провода) понижается. Через некоторое время, зависящее в основном от ёмкости конденсатора С1 и сопротивления резистора R1, оно снижается настолько, что транзистор начинает закрываться и напряжение на его стоке повышается. Это приводит к уменьшению напряжения на затворе второго транзистора, поэтому последний также начинает закрываться и напряжение на нагрузке понижается. В результате напряжение на затворе первого транзистора начинает уменьшаться ещё быстрее.

Процесс протекает лавинообразно, и вскоре оба транзистора закрываются, обесточивая нагрузку, конденсатор С1 быстро разряжается через диод VD1 и нагрузку. Устройство снова готово к запуску. Так как полевые транзисторы сборки начинают открываться при напряжении затвор-исток 2,5…3 В, а максимально допустимое напряжение между затвором и истоком — 20 В, то устройство может работать при питающем напряжении от 5 до 20 В (номинальное напряжение конденсатора С1 должно быть на несколько вольт больше питающего). Время задержки выключения зависит не только от параметров элементов С1, R1, но и от напряжения питания. Например, повышение напряжения питания с 5 до 10 В приводит к его увеличению примерно в 1,5 раза (при номиналах элементов, указанных на схеме, оно составило 50 и 75 с соответственно).

Если при закрытых транзисторах напряжение на резисторе R2 окажется более 0,5 В, то его сопротивление необходимо уменьшить. Устройство, обеспечивающее задержку включения, можно собрать по схеме, показанной на рис. 2. Здесь транзисторы сборки включены примерно так же, но напряжение на затвор первого транзистора и конденсатор С1 поступает через резистор R2. В исходном состоянии (после подключения источника питания или после нажатия на кнопку SB1) конденсатор С1 разряжен и оба транзистора закрыты, поэтому нагрузка обесточена. По мере зарядки через резисторы R1 и R2 напряжение на конденсаторе повышается, и когда оно достигает значения примерно 2,5 В, первый транзистор начинает открываться, падение напряжения на резисторе R3 увеличивается и второй транзистор также начинает открываться. Когда напряжение на нагрузке возрастает настолько, что диод VD1 открывается, напряжение на резисторе R1 повышается. Это приводит к тому, что первый транзистор, а за ним и второй открываться быстрее и устройство скачком переключается в открытое состояние, замыкая цепь питания нагрузки

Схема таймера — повторный запуск, для этого необходимо нажать на кнопку и удерживать её в таком состоянии 2…3 с (этого времени достаточно для полной разрядки конденсатора С1). Таймеры монтируют на печатных платах из фольгированного с одной стороны стеклотекстолита, чертежи которых изображены соответственно на рис. 3 и 4. Платы рассчитаны на применение диода серий КД521, КД522 и деталей для поверхностного монтажа (резисторов Р1-12 типоразмера 1206 и танталового оксидного конденсатора). Налаживание устройств сводится в основном к подбору резисторов для получения требуемой выдержки времени.

Описанные устройства предназначены для включения в плюсовой провод питания нагрузки. Однако, поскольку сборка IRF7309 содержит транзисторы с каналом обоих типов, таймеры нетрудно приспособить для включения и в минусовый провод. Для этого транзисторы следует поменять местами и изменить на обратную полярность включения диода и конденсатора (естественно, это потребует и соответствующих изменений в чертежах печатных плат). Следует учесть, что при длинных соединительных проводах или отсутствии в нагрузке конденсаторов возможны наводки на эти провода и неуправляемое включение таймера Чтобы повысить помехоустойчивость, к его выходу надо подключить конденсатор ёмкостью несколько микрофарад с номинальным напряжением не менее напряжения питания.

Схема таймера на пять минут

Если временной интервал больше5 минут, устройство можно перезапустить и продолжать отсчет заново.

После кратковременного замыкания SВ1 начинает заряжаться емкость С1, включенный в коллекторную цепь транзистора VТ1. Напряжение с С1 поступает на усилитель с большим входным сопротивлением на транзисторах VТ2- VТ4 . Его нагрузкой является светодиодный индикатор, включающихся поочередно через минуту.

Конструкция позволяет выбрать один из пяти возможных временных интервалов: 1.5, 3, 6, 12 и 24 часа . Нагрузка подсоединяется к сети переменного тока в момент начала отсчета времени и отключается по завершению отсчета. Временные промежутки задаются с помощью частотного делителя сигналов прямоугольной формы, генерируемых RC- мультивибратором.

Задающий генератор выполнен на логических компонентах DD1.1 и DD1.2 микросхемы К561ЛЕ5 . Частота генерации формируется RC-цепочкой на R1,C1 . Точность хода настраивается по наименьшему временному интервалу, с помощью подбора сопротивления R1 (временно при регулировке его желательно заменить переменным сопротивлением). Для создания необходимых временных диапазонов, импульсы с выхода мультивибратора идут на два счетчика DD2 и DD3, в результате осуществляется деление частоты.

Эти два счетчика — К561ИЕ16 подсоединены последовательно, но для одновременного сброса, выводы обнуления подключены вместе. Сброс происходит при помощи переключателя SA1. Другим тумблером SA2 осуществляется выбор необходимого временного диапазона.


Когда на выходе DD3 возникнет логическая единица, она поступает на вывод 6 DD1.2 в результате чего генерация импульсов мультивибратором заканчивается. Одновременно сигнал логической единицы следует на вход инвертора DD1.3 к выходу которого подсоединен VT1. Когда на выходе DD1.3 появится логический ноль транзистор закрывается и отключает светодиоды оптопар U1 и U2, а это выключает симистора VS1 и подключенную к нему нагрузку.

При сбросе счетчиков, на их выходах устанавливаются нули, в том числе и на выходе, на который установлен переключатель SA2. На входе DD1.3 также подается нуль и соответственно на его выходе единица, что подключает нагрузку к сети . Так же параллельно и на входе 6 DD1.2 установится нулевой уровень, что запустит мультивибратор, и таймер начнет отсчет времени. Питание таймера осуществляется по бестрансформаторной схеме, состоящей из компонентов С2, VD1, VD2 и С3.

Когда тумблер SW1 замкнут конденсатор С1 начинает медленно заряжаться через сопротивление R1, а когда уровень напряжения на нем составит 2/3 от питающего, на это отреагирует триггер IC1. При этом напряжение на третьем выводе снизится до нуля, и цепь с лампочкой разомкнется.

При сопротивление резистора R1 в 10М (0,25 Вт) и емкости C1 47 мкФ x 25 В время работы устройства около 9 с половиной минут, при желание его можно изменить путем регулировки номиналов R1 и C1. Пунктирной линией на рисунке обозначеноо включение дополнительного выключателя, с помощью которого можно включать цепь с лампочкой даже при замкнутом тумблере. Ток покоя конструкции всего 150 мкА. Транзистор BD681 — составной (Дарлингтона) средней мощности. Можно заменить на BD675A/677A/679A.

Это схема таймера на микроконтроллере PIC16F628A позаимствована с хорошего португальского сайта по радиоэлектронике. Микроконтроллер тактируется от внутреннего генератора, который можно считать достаточно точным для данного момента, так как выводы 15 и 16 остаются свободными, то можно использовать внешний кварцевый резонатор для еще большей точности в работе.

Этот простой самодельный таймер позволяет задержать на определенное время выключение осветительного или нагревательного прибора с сетевым питанием. Схема таймера проста и доступна для повторения даже начинающими радиолюбителями. В основе лежит компаратор напряжения на микросхеме DA1, нагруз-кой которой служит обмотка реле. Время выдержки зависит от емкости конденсатора СЗ и сопротивления резисторов R1 и R2. Источник питания —- бестрансформаторный с балластным конденсатором С1, напряжение питания поддерживается неизменным с помощью стабилитрона VD3.

Работа таймера. В исходном состоянии таймер и подключенная к розетке Х2 нагрузка обесточены. При нажатии на кнопку SB1 напряжение сети 220 В через ее контакты SB 1 1 подается на таймер и нагрузку, а контакты SB 1 2 подключают конденсатор СЗ времязадающей цепи к источнику питания. Конденсатор мгновенно заряжается, напряжение на входе управления микросхемы (вывод 1) становится больше порогового (около 2.5 В), и она открывается. При этом срабатывает реле К1 и своими контактами К 1.1 блокирует контакты SB1 1 кнопки, после чего ее можно отпустить — нагрузка останется подключенной к сети. После размыкания контактов SB 1.2 конденсатор СЗ начинает разряжаться через резисторы R1, R2 и напряжение на нем постепенно понижается. В момент, когда оно становится меньше порогового, микросхема закрывается, реле отпускает и его контакты отключают нагрузку от сети. При полностью введенном в разрядную цепь резисторе R2 и указанной на схеме емкости конденсатора СЗ это про-изойдет примерно через 3 мин после отпускания кнопки. Сокращение времени выдержки достигается уменьшением сопротивления введенной части резистора R2 Максимальное время выдержки можно увеличить, заменив конденсатор СЗ другим, большей емкости.

Детали таймера. Их монтируют на печатной плате из фольгированного стеклотекстолита. Реле — электромагнитное с напряжением и током срабатывания соответственно не более 12 В и 50 мА, с контактами, рассчитанными на коммутацию напряжения 220 В при токе, потребляемом нагрузкой.

Плату таймера помещают в корпус из изоляционного материала, кнопку SB1, розетку и переменный резистор регулировки времени устанавливают на его стенках в удобных местах. На валике резистора закрепляют ручку управления с указателем. Налаживание таймера сводится к калибровке шкалы переменного резистора в единицах времени. Устройство было неоднократно успешно собрано и испытано.

Этот таймер проект может быть использован для включения-выключения любого устройства через заданное время, схема может быть использована во многих случаях, например, включить/выключить радио, телевизор, вентилятор, насос, освещение, электронагреватель.

Проект был разработан на базе двух КМОП микросхем CD4001 и CD4020 . Два элемента CD4001 образуют генератор, транзистор BC547 нужен чтоб управлять реле, которое, в свою очередь, включает и выключает нагрузку. Схема довольно проста, имеет перемычки для установки требуемого промежутка времени, Preset — регулятор установки частоты генератора в 1 Гц. SW1 — кнопка , SW2 — вкл/выкл схемы. Контакты переключателя реле могут обрабатывать нагрузку с 220 В 5 A. Рисунок печатной платы .

Параметры и детали таймера

  • Питание: 12 В постоянного напряжения
  • Потребление тока: 60 мА
  • D3: индикатор питания
  • D2: индикатор работы таймера
  • CN2: вход питания
  • J1-J7: Установка времени длительности вкл/выкл
  • CN1: выход реле
  • SW1: Кнопка запуска
  • SW2: Кнопка питания On/Off
  • PR1: Установка точности

Список деталей

Выше в таблице показано, какое положение джампера соответствует каким временным интервалам цикла. Можно сделать переключатель и вывести его наружу, а можно сразу припаять нужное положение, в зависимости от сферы применения. Максимальный период — 2 ч. Это значит что подключенный, допустим, электрический нагреватель, будет 2 часа работать и 2 отдыхать. Если необходимо ещё более увеличить цикл — потребуется понизить частоту генератора до 0,5 Гц. Тогда период пропорционально удлинится и станет 4 часа.

Объяснение простых схем таймера задержки

В этом посте мы обсуждаем создание простых таймеров задержки с использованием очень обычных компонентов, таких как транзисторы, конденсаторы и диоды. Все эти схемы будут производить задержку включения или задержку выключения с интервалами времени на выходе на заранее определенный период, от нескольких секунд до многих минут. Все конструкции полностью регулируются.

Важность таймеров задержки

Во многих приложениях электронных схем задержка в несколько секунд или минут становится решающим требованием для обеспечения правильной работы схемы.Без указанной задержки схема может выйти из строя или даже выйти из строя.

Давайте подробно проанализируем различные конфигурации.


Вы также можете прочитать о таймерах задержки на основе IC 555. Рекомендуется для вас!


Использование одиночного транзистора и кнопки

Первая принципиальная схема показывает, как транзисторы и несколько других пассивных компонентов могут быть подключены для получения заданных выходов времени задержки.

Транзистор снабжен обычным базовым резистором для функций ограничения тока.

Светодиод, который используется здесь только для индикации, ведет себя как нагрузка коллектора схемы.

Конденсатор, который является важной частью схемы, занимает определенное положение в схеме, мы видим, что он размещен на другом конце базового резистора, а не непосредственно на базе транзистора.

Кнопка используется для включения цепи.

При кратковременном нажатии кнопки положительное напряжение от линии питания поступает на базовый резистор и включает транзистор, а затем светодиод.

Однако в ходе вышеуказанного действия конденсатор также полностью заряжается.

При отпускании кнопки, хотя питание базы отключается, транзистор продолжает работать с помощью накопленной энергии в конденсаторе, который теперь начинает разряжать накопленный заряд через транзистор.

Светодиод также остается включенным, пока конденсатор полностью не разрядится.

Те значение конденсатора определяет время задержки или время, в течение которого транзистор остается в проводящем режиме.

Наряду с конденсатором, номинал базового резистора также играет важную роль в определении времени, в течение которого транзистор остается включенным после отпускания кнопки.

Однако схема, использующая только один транзистор, сможет создавать задержки, которые могут составлять всего несколько секунд.

При добавлении еще одного транзисторного каскада (следующий рисунок) указанный выше диапазон времени задержки может быть значительно увеличен.

Добавление еще одного транзисторного каскада увеличивает чувствительность схемы, что позволяет использовать более высокие значения резистора синхронизации, тем самым увеличивая диапазон временной задержки схемы.

Дизайн печатной платы

Видео демонстрация

Использование симистора:

На следующем изображении показано, как указанная выше схема таймера задержки может быть интегрирована с симистором и использоваться для переключения сетевой нагрузки переменного тока

Вышеупомянутое можно дополнительно модифицировать с помощью автономного силового бестрансформаторного источника питания, как показано ниже:

Без кнопки

Если вышеуказанная конструкция предназначена для использования без кнопки, то же самое может быть реализовано, как показано на следующей диаграмме:

Вышеупомянутый эффект задержки выключения без нажатия кнопки может быть дополнительно улучшен путем использования двух транзисторов NPN и использования конденсатора между базой / землей левого NPN

Следующая схема показывает, как соответствующая кнопка может стать неактивной, как только она будет нажата, и пока таймер задержки находится в активированном состоянии.

В это время любое дальнейшее нажатие кнопки не влияет на таймер, пока выход активен или пока таймер не завершит свою операцию задержки.

Задержка от внешнего триггера

Проблема, заданная г-ном Гленом (одним из преданных читателей этого блога):

У меня есть ситуация, когда у меня импульс 12 В, который длится около 4 секунд (от поворотного переключателя, находящегося в вращается медленным двигателем), но мне нужно всего лишь полсекунды (чтобы вызвать механический звонок / перезвон).

Есть ли способ взять длинный импульс в цепь и послать намного более короткий импульс?

Решение вышеуказанной проблемы представлено на следующей схеме:

Двухшаговый последовательный таймер

Вышеупомянутая схема может быть изменена для создания двухступенчатого последовательного генератора задержки. Эта схема была запрошена одним из заядлых читателей этого блога, г-ном Марко.

Простая цепь аварийной сигнализации отключения с задержкой показана на следующей диаграмме.

Схема запрошена Dmats.

Следующая схема была запрошена Fastshack3

Таймер задержки с реле

«Я ищу схему, которая будет управлять выходным реле. Это будет сделано при напряжении 12 В, а последовательность будет инициирована ручным переключателем.

Мне понадобится регулируемая задержка времени (возможно, отображаемое время) после отпускания переключателя, тогда выход будет включаться в течение настраиваемого времени (также возможно отображается) перед выключением.

Последовательность не будет перезапущена, пока не будет нажата кнопка и снова выпустили.

Время после отпускания кнопки составляет от 250 миллисекунд до 5 секунд. Время включения выхода для включения реле составляет от 500 миллисекунд до 30 секунд. Дайте мне знать, если вы можете что-то поделать. Спасибо! »

До сих пор мы научились делать простые таймеры задержки выключения, теперь давайте посмотрим, как мы можем построить простую схему таймера задержки включения, которая позволяет подключенной нагрузке на выходе включаться с некоторой заданной задержкой после выключения питания. ВКЛ.

Объясненная схема может использоваться для всех приложений, в которых требуется функция начальной задержки включения для подключенной нагрузки после включения сетевого питания.

Схема работы схемы таймера задержки включения

Показанная диаграмма довольно проста, но очень впечатляюще предоставляет необходимые действия, кроме того, период задержки является переменным, что делает установку чрезвычайно полезной для предлагаемых приложений.

Функционирование можно понять по следующим пунктам:

Предполагая, что нагрузка, которая требует задержки включения, подключена к контактам реле, при включении питания 12 В постоянного тока проходит через R2, но не может достичь базы T1, потому что изначально C2 действует как короткое замыкание на землю.

Таким образом, напряжение проходит через R2, падает до соответствующих пределов и начинает заряжать C2.

Как только C2 заряжается до уровня, который развивает потенциал от 0,3 до 0,6 В (+ стабилитрон) на базе T1, T1 мгновенно включается, переключая T2, а затем реле … наконец, нагрузка получает тоже включен.

Вышеупомянутый процесс вызывает необходимую задержку для включения нагрузки.

Период задержки может быть установлен соответствующим выбором значений R2 и C2.

R1 гарантирует, что C2 быстро разряжается через него, так что схема достигает положения ожидания как можно скорее.

D3 блокирует заряд от достижения базы T1.

Перечень деталей

R1 = 1o0K (резистор для разряда C2, когда цепь выключена))
R2 = 330K (синхронизирующий резистор)
R3 = 10K
R4 = 10K
D1 = стабилитрон 3 В (опционально, может быть заменен на провод)
D2 = 1N4007
D3 = 1N4148
T1 = BC547
T2 = BC557
C2 = 33 мкФ / 25 В (синхронизирующий конденсатор)
Реле = SPDT, 12 В / 400 Ом

Дизайн печатной платы

Замечание по применению

узнайте, как приведенная выше схема таймера задержки включения становится применимой для решения следующей проблемы, представленной одним из ярых последователей этого блога, г-ном.Нишант.

Проблема цепи:

Здравствуйте, сэр,

У меня есть автоматический стабилизатор напряжения 1 кВА. У него есть один недостаток: при включении очень высокое напряжение выдается в течение 1,5 с (поэтому лампы и лампочка часто перегорают) после что напряжение становится нормальным.

Я открыл стабилизатор, он состоит из автотрансформатора, 4 реле 24 В, каждое реле подключено к отдельной цепи (каждое из

10K предустановок, BC547, стабилитрон, BDX53BFP npn, пара транзисторов Дарлингтона IC, конденсатор 220 мкФ / 63 В. , Конденсатор 100uF / 40V, 4 диода и несколько резисторов).

Эти схемы питаются от понижающего трансформатора, и выходной сигнал этих схем берется через соответствующий конденсатор 100 мкФ / 40 В. и подается на соответствующее реле. Что делать для решения проблемы. Пожалуйста, помогите мне. Нарисованная вручную принципиальная схема прилагается .

Решение проблемы цепи

Проблема в приведенной выше схеме может быть вызвана двумя причинами: одно из реле на мгновение включается, соединяя неправильные контакты с выходом, или одно из ответственных реле стабилизируется с правильным напряжением. через некоторое время после включения питания.

Поскольку имеется более одного реле, выявление неисправности и ее устранение может быть немного утомительным … Схема таймера задержки включения, описанная в вышеупомянутой статье, может быть действительно очень эффективной для обсуждаемой цели.

Подключения довольно простые.

Используя 7812 IC, таймер задержки может питаться от существующего источника питания 24 В стабилизатора.
Затем замыкающие контакты реле задержки могут быть подключены последовательно с проводкой выходного разъема стабилизатора.

Вышеупомянутая проводка мгновенно решила бы проблемы, так как теперь выход будет переключаться через некоторое время во время включения питания, давая достаточно времени для внутренних реле, чтобы установить правильные напряжения на их выходных контактах.

Отзыв от г-на Билла

Привет, Свагатам,

Я наткнулся на вашу страницу, проводя исследование в Интернете, чтобы сделать мою задержку более последовательной. Сначала немного справочной информации.

Я занимаюсь драг-рейсингом и запускаю машину при первом взгляде на третью янтарную лампочку, когда рождественская елка спускается.

Я использую выключатель трансмиссии, который нажат, чтобы заблокировать автоматическую коробку передач одновременно вперед и назад.

Это позволяет увеличить обороты двигателя для увеличения мощности для запуска. Когда кнопка отпущена, трансмиссия выключается с заднего хода и движется вперед на высоких оборотах.

Это все равно, что выскакивать сцепление на автомобиле с механической коробкой передач, в любом случае моя машина реагирует на это быстро, и в результате появляется красный свет, выезжающий на ранний срок, и вы проигрываете гонку.

Уменьшение времени реакции на запуск — это все, и это игра на сотни тысяч с большими мальчиками, поэтому я поставил переключатель транс-тормоза на реле и наложил комбо на 1100 мкФ на реле, чтобы задержать его запуск.

Из-за автомобильной электроники я не верю, что есть точное напряжение, заряжающее эту крышку каждый раз, когда я активирую эту схему, и точность является ключевым моментом, поэтому я купил стабилизатор мощности на Ebay, который потребляет 8-15 вольт и дает постоянный 12вольт на выходе.

Это перевернуло мой сезон, но я считаю, что эту схему можно было бы сделать более точной и более легким способом варьировать время задержки, а не заменять комбо.

Также я должен установить диод перед реле, а не сейчас, потому что все, что есть, это выключатель — куда пойдет ток? Я ни в коем случае не инженер-электрик, но у меня есть некоторые знания по устранению неисправностей в аудио высокого класса в течение многих лет.

Хотел бы получить ваши мысли — спасибо

Билл Кореки

Анализ и решение схемы

Привет, Билл,

Я приложил схему регулируемой цепи задержки, пожалуйста, проверьте ее. Вы можете использовать его для указанной цели.

Пресет 100K можно использовать и настраивать для получения точных коротких периодов задержки в соответствии с вашими требованиями.

Тем не менее, обратите внимание, что для правильной работы реле на 12 В напряжение питания должно быть минимум 11 В, если это не выполняется, цепь может работать неправильно.

С уважением.

Простой таймер задержки от 5 до 20 минут

В следующем разделе обсуждается простая схема таймера задержки от 5 до 20 минут для конкретного промышленного применения.

Идею предложил мистер Джонатан.

Технические требования

Пытаясь найти решение моей проблемы в Google, я наткнулся на вашу публикацию выше.

Я пытаюсь понять, как создать лучший контроллер Sous Vide.Основная проблема заключается в том, что моя водяная баня имеет очень высокий гистерезис, и при нагреве от более низких температур будет выходить примерно на 7 градусов выше температуры, при которой прекращается питание.

Он также очень хорошо изолирован, с зазором между внутренним и внешним резервуаром, который заставляет его действовать как термос, из-за чего требуется очень много времени, чтобы спуститься от любого превышения температуры. Мой ПИД-регулятор имеет контрольный выход SSR и релейный выход аварийной сигнализации.

Аварийный сигнал можно запрограммировать как аварийный сигнал ниже предела со смещением от заданного значения.Я могу использовать источник питания на пять вольт, который у меня уже есть, для моего циркуляционного двигателя, чтобы он работал через реле аварийной сигнализации и управлял тем же SSR, что и управляющий выход.

Чтобы обезопасить себя и защитить ПИД-регулятор, я добавлю диод как к сигнальному напряжению, так и к управляющему напряжению, чтобы предотвратить обратную подачу одного выхода на другой.

Затем я установлю будильник, чтобы он оставался включенным, пока температура не поднимется выше заданного значения минус 7 градусов. Это позволит отрегулировать настройку ПИД-регулятора без учета начального повышения температуры.

Поскольку я знаю, что последние несколько градусов будут достигнуты без какого-либо питания, мне бы очень хотелось отложить любое распознавание управляющего сигнала примерно на пять минут после отключения будильника, так как он все равно будет звонить для тепла.

Это та часть, для которой мне еще предстоит разобраться в схеме. Я имею в виду нормально замкнутое реле, включенное последовательно с управляющим выходом, которое удерживается разомкнутым сигналом тревоги.

Когда сигнал тревоги прекращается, мне нужна задержка порядка пяти минут, прежде чем реле вернется в свое нормально замкнутое состояние «выключено».

Я был бы признателен за помощь с задержкой отключения части схемы реле. Мне нравится простота начального дизайна на странице, но у меня такое впечатление, что с ними не справиться и около пяти минут.

Спасибо,

Джонатан Лундквист

Схема схемы

Следующая схема простой схемы таймера задержки от 5 до 20 минут может быть подходящим образом применена для указанного выше приложения.

Схема использует IC4049 для требуемых вентилей НЕ, которые сконфигурированы как компараторы напряжения.

5 ворот, включенных параллельно, образуют чувствительную секцию и обеспечивают триггер с требуемой временной задержкой для последующих каскадов буфера и драйвера реле.

Управляющий вход поступает от выхода тревоги, как указано в приведенном выше описании. Этот вход становится коммутационным напряжением для предлагаемой схемы таймера.

При получении этого триггера вход 5 вентилей НЕ изначально удерживается на логическом нуле, потому что конденсатор заземляет начальный триггер через потенциометр 2 м2.

В зависимости от настройки 2м2 конденсатор начинает заряжаться, и в момент, когда напряжение на конденсаторе достигает распознаваемого значения, вентили НЕ возвращают свой выход на низкий логический уровень, который преобразуется как высокий логический уровень на выходе правого сингла. НЕ ворота.

Это мгновенно запускает подключенный транзистор и реле для требуемой задержки выхода через контакты реле.

Потолок 2M2 можно отрегулировать для определения требуемых задержек.

Принципиальная схема

Основы реле с выдержкой времени: схема реле и приложения

Введение

Реле времени относится к типу реле, выходная цепь которого должна произвести очевидное изменение (или контактное действие) после добавления (или удаления) входного сигнала действия в заданное и точное время.Это электрический компонент, используемый в цепи с более низким напряжением или меньшим током для включения или выключения цепи с более высоким напряжением и большим током.

С развитием электронной техники электронные реле времени стали основным продуктом в реле времени. Электронные интеллектуальные реле времени с цифровым дисплеем, использующие технологию крупномасштабных интегральных схем, имеют множество рабочих режимов, которые могут не только обеспечивать длительное время задержки, но также иметь высокую точность задержки времени, небольшой размер, удобную настройку и длительный срок службы, что упрощает систему управления и надежнее.Реле времени также имеет функцию автоматического контроля. Реле времени и другое оборудование вместе могут сформировать программный космический маршрут для реализации автоматической работы оборудования.

Основные сведения о реле времени

Каталог


Ⅰ Основы работы с реле времени

1.1 Что такое реле времени?

Реле времени — очень важный компонент в системе электрического управления. Во многих системах управления используйте реле времени для управления задержкой.Реле времени — это электрическое устройство с автоматическим управлением, которое использует принцип электромагнитного или механического действия для задержки замыкания или размыкания контактов. Его особенностью является задержка от момента получения сигнала катушкой притяжения до действия контакта. Реле времени обычно используется для управления процессом запуска двигателя с функцией времени.

Как упоминалось выше, основная функция временной задержки — это исполнительное устройство в простом программном управлении.Когда он получает сигнал запуска, он начинает отсчет времени. По окончании отсчета времени его рабочий контакт размыкается или замыкается, что способствует последующей работе схемы. Вообще говоря, характеристики задержки реле времени можно регулировать в пределах диапазона конструкции, чтобы облегчить регулировку времени задержки. Кроме того, реле времени само по себе может не выполнить замыкание. После закрытия на какое-то время он снова откроется. Это цикл закрытия и открытия с задержкой времени. Однако настройка определенного количества реле времени и промежуточных реле может сделать это.

1.2 Принцип работы реле задержки времени

Реле времени широко используется в дистанционном управлении, телекоммуникациях, автоматическом управлении и другом электронном оборудовании и является одним из наиболее важных компонентов управления. Когда катушка находится под напряжением, якорь и поддон притягиваются сердечником и мгновенно перемещаются вниз, замыкая или размыкая рабочий контакт. Однако шток поршня и рычаг не могут упасть с якорем одновременно, потому что верхний конец штока поршня соединен с резиновой пленкой в ​​воздушной камере.

Когда шток поршня начинает двигаться вниз под действием отпущенной пружины, резиновая пленка вогнута вниз. Воздух в воздушной камере становится тоньше, в результате чего шток поршня амортизируется и медленно опускается. По прошествии определенного периода времени шток поршня опускается в определенное положение, а затем действие задерживающего контакта проталкивается через рычаг, заставляя подвижные контакты открываться и закрываться. Время от момента подачи питания на катушку до момента, когда контакт задержки завершает действие, является временем задержки реле.Продолжительность времени задержки можно изменить, регулируя размер отверстия для впуска воздуха в воздушную камеру с помощью винта. После обесточивания всасывающей катушки реле использует пружину для восстановления. И воздух быстро вытесняется через воздуховыпускное отверстие.

1.3 Структура реле времени

Рисунок 1. Реле времени демпфирования воздуха

1 Катушка

5 Прижимная пластина

9 Слабая пружина

13 Регулировочный винт

2 железных сердечника

6 Шток поршня

10 Резиновая пленка

14 Воздухозаборник

3 Арматура

7 Рычаг

11 Стенка воздушной камеры

15 Микропереключатель

4 Реакционная пружина

8 Пружина

12 Поршень

16 Микропереключатель

1.4 Параметры реле времени

Технические параметры включают номинальное напряжение, рабочий ток контакта, тип и количество контактов, время задержки, точность, температуру окружающей среды, механический и электрический срок службы и т. Д. Теперь возьмем воздушное реле времени серии SJ23 в качестве примера. , его технические параметры следующие:

1) Номинальная управляющая способность: AC300VA, DC60W (блок контактов с задержкой 30 Вт).

2) Номинальный уровень напряжения: AC380V, 220V; DC220V, 110V.

3) Номинальное напряжение катушки: 110 В переменного тока, 220 В и 380 В.

4) Максимальный рабочий ток контакта: 0,79 А при 380 В переменного тока, 0,27 А (мгновенно) и 0,14 А (задержка) при 220 В постоянного тока.

5) Ошибка повторения задержки: ≤9%.

6) Напряжение втягивания в горячем состоянии: не более 85% от номинального напряжения реле. Когда напряжение падает с номинального значения до 10% номинального значения в холодном состоянии, его можно надежно снять. И он может надежно сработать после достижения 110% номинального напряжения.

7) Механический срок службы составляет не менее 1 миллиона раз, а электрический ресурс — 1 миллион раз (срок службы по постоянному току узла контактов задержки составляет 500 000 раз).

1,5 Контакты реле времени четырех типов

Рис. 2. Обозначения реле времени

NOTC (нормально открытый, закрытый по времени): когда катушка не находится под напряжением, контакт NOTC нормально разомкнут. Он замыкается при подаче питания на катушку реле, но только в течение определенного времени после того, как катушка находится под постоянным напряжением. Направление движения контакта (закрытый или открытый) такое же, как у стандартного нормально открытого контакта. Поскольку задержка происходит в том направлении, в котором катушка находится под напряжением, этот тип контакта обычно разомкнут и с задержкой включения. NOTO (нормально разомкнутый, разомкнутый по времени): в отличие от контакта NOTC , синхронизированное действие происходит, когда катушка обесточена. Поскольку задержка происходит, когда катушка обесточена, этот тип контакта нормально разомкнут и с задержкой отключения.

NCTO (нормально замкнутый, разомкнутый по времени): когда на катушку не подается питание, контакт NCTO нормально замкнут. При подаче питания на катушку реле контакт размыкается, но только в течение определенного времени после того, как катушка находится под постоянным напряжением.Направление движения контакта (замкнутый или разомкнутый) такое же, как у стандартного нормально замкнутого контакта, но есть задержка в направлении открытия. NCTC (нормально замкнутый, замкнутый по времени): контакт NCTC аналогичен контакту NCTO , потому что, когда катушка нормально замкнута в обесточенном состоянии и разомкнута подачей питания на катушку.

Ⅱ Значение задержки в цепи реле

Установите время задержки реле. Вообще говоря, характеристики задержки реле времени можно регулировать в пределах диапазона конструкции, чтобы облегчить регулировку времени задержки в цепи.

Цепь реле задержки времени (отключение питания)

Если вы используете реле задержки включения, задержка начнется сразу после получения входного сигнала. По окончании задержки исполнительная часть выдаст сигнал в схему управления. Когда входной сигнал исчезнет, ​​реле немедленно вернется в состояние предварительного действия. Это противоположно реле задержки выключения. Когда входной сигнал получен, исполнительная часть немедленно получает выходной сигнал. После исчезновения входного сигнала реле требуется определенное время, чтобы вернуться в состояние до действия.

Рисунок 3. Структура реле времени

Ⅲ Классификация реле времени

3.1 В соответствии с принципом работы

В соответствии с различными принципами работы, реле времени можно разделить на реле времени с воздушным демпфированием, электрические реле времени, электромагнитные реле времени, электронные реле времени пр.

(1) Реле времени демпфирования воздуха

Тип получен за счет использования принципа демпфирования при прохождении воздуха через небольшое отверстие.Его конструкция состоит из трех частей: электромагнитной системы, механизма задержки и контакта. Электромагнитный механизм представляет собой двухпортовый механизм прямого действия, система контактов представляет собой микровыключатель, а в механизме задержки используется амортизатор подушки безопасности.

(2) Электронное реле времени

Используйте принцип, согласно которому напряжение конденсатора в RC-цепи не может прыгать и может изменяться только постепенно по экспоненциальному закону, то есть задержка достигается за счет характеристик электрического демпфирования.

Характеристики: Широкий диапазон задержки, высокая точность (обычно около 5%), небольшой размер, ударопрочность и простая регулировка.

(3) Электрическое реле времени

Используйте миниатюрный синхронный двигатель для привода редуктора, чтобы получить временную задержку.

Особенности: Диапазон задержки широкий, до 72 часов, а точность задержки может достигать 1%. В то же время на значение задержки не влияют колебания напряжения и температура окружающей среды.

Его диапазон задержки и точность не имеют себе равных среди других реле времени.Его недостатки — сложная конструкция, большие размеры, короткий срок службы, высокая цена, а точность зависит от частоты сети.

(4) Реле времени электромагнитное

Используйте принцип медленного ослабления магнитного потока после отключения электромагнитной катушки, чтобы задержать отпускание якоря магнитной системы, чтобы получить задерживающее действие контактов. Он отличается большой контактной емкостью, поэтому регулирующая способность велика. Однако диапазон времени задержки невелик, а точность немного хуже.Таким образом, он в основном используется для управления цепями постоянного тока.

3.2 По режимам задержки

На основании этого реле времени можно разделить на два типа: с задержкой включения и с задержкой выключения.

(1) Реле времени с задержкой включения начинает задерживать сразу после получения входного сигнала. После того, как задержка завершена, ее исполнительная часть выдает сигнал для манипулирования схемой управления. Когда входной сигнал пропадает, реле сразу возвращается в состояние до действия.

(2) Реле времени с задержкой выключения работает как раз наоборот. Когда входной сигнал получен, исполнительная часть немедленно получает выходной сигнал. После исчезновения входного сигнала реле требуется определенная задержка для восстановления состояния до действия.

Ⅳ Как подключить реле времени?

Реле времени — очень важный компонент в системе электрического управления. Существуют типы задержки включения и типы задержки отключения питания.В зависимости от типа действия различают электронный тип, электрический тип и т. Д. Между ними электронный тип использует принцип заряда и разряда конденсаторов в сочетании с электронными компонентами для достижения действия задержки. Есть много электрических стилей с использованием подушек безопасности и пружин.

Рисунок 4. Схема электрических соединений реле времени

Подключение реле времени:

1) Управляющая проводка: считайте это реле постоянного тока.

2) Управление работой: Хотя напряжение управления подключено, то, играет ли оно роль управления, определяется таймером на панели.

3) Понимание функций: это однополюсный двухпозиционный переключатель с активной точкой, как и активный рычаг обычного рубильника.

4) Подключение нагрузки: Подключите нейтральный провод источника питания или отрицательную клемму.

5) Принцип работы: Когда таймер недействителен, он эквивалентен нормальному свету в выключенном состоянии. Во время отсчета сработает реле, и электрические приборы будут активированы для работы, что эквивалентно нормальному свету во включенном состоянии.

В качестве примера возьмем реле времени задержки включения:

Рисунок 5. Подключение контактов реле задержки

Ⅴ Приложения реле времени

In Flash Control

  • Двухкратные реле взаимодействуют друг с другом, чтобы обеспечить постоянную частоту импульсов включения / выключения контактов, посылая прерывистое питание на свет.

в блоке управления безопасной продувкой печи

  • Прежде чем печь для сжигания можно будет безопасно зажечь, вентилятор должен работать в течение определенного периода времени, чтобы очистить весь горючий или взрывоопасный пар в камере печи.Реле времени обеспечивает необходимые временные части для работы управления печью.

В электрическом управлении задержкой плавного пуска

  • Нет необходимости запускать большой электродвигатель, переключая полную мощность из полностью остановленного состояния, и можно плавно снизить напряжение при запуске с меньшим пусковым током.

Задержка последовательности движения конвейерной ленты

  • Когда для транспортировки материалов установлено несколько конвейерных лент, конвейерные ленты должны запускаться в обратном порядке (последняя — первая, первая — последняя), чтобы предотвратить накопление материалов на движущемся конвейере, который может останавливаться или двигаться. медленно.

Ⅵ Выбор реле времени

Выбор реле времени в основном обусловлен режимом задержки и согласованием параметров. При выборе следует учитывать следующие аспекты.

(1) Выбор режима задержки

Следует выбирать в соответствии с требованиями схемы управления. Время сброса после действия больше, чем собственное время действия, чтобы избежать неправильной работы или даже отсутствия задержки. Это особенно важно в случаях повторяющихся цепей задержки и частых операций.

(2) Выбор типа

В случаях, когда точность задержки невысока, всегда используются более дешевые электромагнитные реле времени или реле времени с воздушным демпфированием. Напротив, в случаях, когда точность задержки высока, можно использовать электронные реле времени.

(3) Выбор напряжения катушки

В зависимости от напряжения цепи управления выбирается напряжение, при котором реле притягивает катушку.

(4) Выбор параметров источника питания

В случаях, когда напряжение источника питания сильно колеблется, лучше использовать воздушное демпфирование или электрические реле времени, чем реле транзисторного типа.А в тех случаях, когда частота сети колеблется, не следует использовать электрические реле времени. Кроме того, при сильных перепадах температуры нельзя использовать воздушно-демпфирующий тип.

При выборе реле времени обратите внимание на тип тока и уровень напряжения его катушки (или источника питания), а также другие факторы, такие как режим задержки, форма контакта, точность задержки и метод установки в соответствии с требованиями управления.

Ⅶ Инструкции по эксплуатации реле таймера

7.1 Общие идеи

1) Держите реле времени в чистоте, иначе погрешность увеличится.

2) Перед использованием проверьте, соответствуют ли напряжение и частота источника питания напряжению и частоте реле времени.

3) Выберите время управления реле времени в соответствии с требованиями пользователя. Независимо от типа реле времени, пока время отсчета времени равно установленному времени, его выходные контакты будут действовать для достижения цели схемы управления временем.

4) Для продуктов постоянного тока обратите внимание на подключение согласно принципиальной схеме и обратите внимание на полярность источника питания.

5) После того, как реле времени выйдет из рабочего состояния, его следует немедленно сбросить для следующего использования. Если интервал повторного использования меньше установленного времени, цепь управления будет ненормальной. Более того, тип задержки включения автоматически сбрасывается после выключения; и тип задержки выключения автоматически сбрасывается после включения.

6) Старайтесь не использовать его в местах с явной вибрацией, прямым солнечным светом, влажностью и контактом с почвой.

7.2 Две точки внимания при использовании реле времени

1) Начальная точка отсчета времени

С одной стороны, при выборе точки синхронизации реле времени задержки включения, вы должны выбрать подачу питания на реле времени, когда сигнал синхронизации отправляется схемой управления, которая должна выполнять синхронизацию. С другой стороны, при выборе точки синхронизации реле времени с задержкой отключения питания, вы должны выбрать отключение питания реле времени, когда схема управления, которая должна отправить сигнал синхронизации, чтобы время может быть выполнено.

2) Конечная точка отсчета времени

Конечная точка отсчета времени имеет два значения: первое относится к точке, в которой установленное время равно времени отсчета времени; другой относится к моменту действия контракта.

3) Точка сброса отсчета времени

Сброс реле времени предназначен для очистки последнего временного содержания для следующего использования. Если его не сбросить, при следующем использовании произойдет сбой. Особое внимание следует обратить на следующее: интервал между двумя использованиями должен быть больше, чем время сброса, что особенно важно для электрических реле времени.

  • Взаимосвязь между начальной точкой, конечной точкой и точкой сброса отсчета времени

1) После использования реле времени возникает проблема сброса. Таким образом, большинство цепей управления находятся в цепи следующего уровня по выходу реле времени. После того, как сигнал завершения отсчета времени получен точно, он используется для отключения питания реле времени (тип задержки включения) или питания реле времени (тип задержки отключения питания).

2) В верхней и нижней цепях управления реле времени есть компоненты, которые не могут работать одновременно.Если реле времени не может точно управлять верхними и нижними цепями управления в этих точках, это приведет к ненормальной работе устройства.

Ⅷ Пример: реле времени в цепи освещения

Требования к управлению: свет 1 и свет 2 включены одновременно, а свет 2 гаснет через 30 секунд после того, как загорится свет 1 выключенный. Когда свет 1 горит, свет 2 может быть выключен в любой момент.

В соответствии с требованиями к системе управления поясните на следующей принципиальной схеме.

Рисунок 6. Выключатель реле времени в световой цепи

1) Нажмите SB2 , контактор KM находится под напряжением и самоблокируется, и в то же время KT также находится под напряжением, а KT замыкается.

2) После включения KT промежуточное реле KA также запитывается для работы.

3) При этом одновременно замыкаются контакт KM и контакт KA , горят свет 1 и свет 2 .

4) При нажатии кнопки остановки SB1 контактор KM отключается, контакт KM размыкается, и одновременно гаснет свет 1 . Из-за наличия реле задержки отключения питания, KT все еще включен, а также свет 2 . Он гаснет по истечении времени, установленного реле времени.

5) Когда горит лампочка 1 , а контакт KA1 включен в любой момент, реле времени сбрасывается. KT отключается и свет выключается.

Это типичное применение реле задержки выключения. Однако в реальной схеме логика управления может быть более сложной, чем эта, поэтому мы должны глубоко понимать принцип работы и применение реле времени.

Ⅸ Часто задаваемые вопросы по основам работы с реле задержки времени

1. Что такое реле задержки времени?

Реле с задержкой по времени или реле с выдержкой времени позволяют необходимым действиям происходить в определенное время в электрическом аппарате, потому что они, по сути, действуют как таймер.

2. Как работает реле с выдержкой времени?

Реле

с выдержкой времени управляют потоком электроэнергии и могут использоваться для управления питанием многих различных типов электрических нагрузок. Сочетая в себе возможности электромеханического выходного реле со схемой управления, эти реле спроектированы таким образом, чтобы выполнять до одиннадцати функций временной задержки.

3. Что такое схема реле задержки времени?

Реле с выдержкой времени. Реле с выдержкой времени.Реле — это переключатели, которые управляются цепью. Реле, по сути, отправляют сообщения, которые говорят, что что-то нужно запустить. Когда автомобиль заводится, зажигание только косвенно взаимодействует с аккумулятором автомобиля, потому что реле посылает сигнал, который сообщает автомобилю о запуске.

4. Как работает реле с выдержкой времени?

После подачи входного напряжения реле с выдержкой времени готово к приему сигналов запуска. При подаче триггерного сигнала реле включается и начинается заданное время…. Непрерывное переключение триггерного сигнала со скоростью, превышающей заданное время, приведет к тому, что реле останется под напряжением.

5. Как сделать реле с выдержкой времени?

Эти реле обеспечивают «временную задержку» между включением или отключением питания катушки и перемещением якоря. Такие реле называются реле с выдержкой времени. Реле с временной задержкой состоит из обычного электромеханического реле вместе со схемой управления для управления работой реле и синхронизацией.

6. Что такое реле задержки выключения?

Сокращенно «NOTO», эти реле замыкаются сразу после подачи питания на катушку и размыкаются после того, как катушка была обесточена на определенный период времени. Также называется нормально разомкнутыми реле задержки выключения. 3: нормально закрытый, открытый по времени.

7. Как работает реле таймера задержки выключения?

Действие функции задержки выключения
После подачи входного напряжения реле с выдержкой времени готово к срабатыванию триггера.При срабатывании триггера на выход подается напряжение. После снятия спускового крючка начинается отсчет времени (t). По истечении времени задержки (t) выход обесточивается.

8. В чем разница между таймером задержки выключения и таймером задержки включения?

Что касается задержки включения таймера, таймер запускается включением бита триггера таймера, а выходной бит таймера включается по истечении времени настройки. Что касается задержки выключения таймера, выходной бит таймера выключается, когда время настройки прошло после того, как входной бит таймера был выключен.

9. Как проверить реле таймера?

Burden Test
Настройте таймер с большим временем задержки, например: 2 минуты.
Включите реле напряжением 125 В и измерьте постоянный ток.
Запишите ток до срабатывания таймера.
Через 2 минуты реле сработает. Запишите ток после операции.
Рассчитайте мощность реле (Вт) = 125 В x измеренный ток.

10. Какова функция реле с выдержкой времени?

Типичные функции временной задержки включают задержку включения, цикл повторения (запуск), интервал, задержку выключения, повторный запуск одного импульса, цикл повторения (запуск), генератор импульсов, один выстрел, задержку включения / выключения и защелку памяти.

Альтернативные модели

Деталь Сравнить Производителей Категория Описание
Производитель.Номер детали: BC32740TA Сравнить: Текущая часть Изготовители: Fairchild Категория: БЮЦ Описание: Trans GP BJT PNP 45V 0.8A 3Pin ТО-92 боеприпасы
Номер детали: BC32740BU Сравнить: BC32740TA VS BC32740BU Изготовители: Fairchild Категория: БЮЦ Описание: Эпитаксиальный кремниевый транзистор со сквозным отверстием PNP 625 мВт, 50 В, 800 мА — TO-92
Производитель.Номер детали: BC327-25ZL1G Сравнить: BC32740TA VS BC327-25ZL1G Производители: ON Semiconductor Категория: БЮЦ Описание: ТО-92 ПНП 45В 0.8A
Номер детали: BC327-40ZL1G Сравнить: BC32740TA VS BC327-40ZL1G Производители: ON Semiconductor Категория: БЮЦ Описание: ТО-92 ПНП 45В 0.8A

Создайте таймер задержки, который не поглощает (энергию)

Для таймера задержки недостатка никогда не бывает.На улице вы можете включить свет всего на одну минуту, пока добираетесь от дома до машины. На кухне вы ждете звукового сигнала, когда еда будет приготовлена. Возможно, вы захотите включить дверной звонок на значительный промежуток времени, чтобы обязательно его услышать, или выключите тепловую лампу в ванной, если забудете.

Проблема, с которой я сталкиваюсь с таймерами задержки, — это трудности с их питанием. Мне не обязательно ставить его рядом с розеткой, но я также не хочу беспокоиться о замене батарей.КМОП-устройства используют только крошечную струйку тока, пока они сидят и терпеливо ждут, пока вы их активируете, но все же меня беспокоит, что они потребляют электричество, ничего не делая.

Я решил разработать самый экологичный из возможных таймер задержки — такой, который не использует никакого тока между одним циклом и следующим. Нулевая мощность! Если бы он питался от батареи, новой 9-вольтовой батареи хватило бы на 4 или 5 лет.

Рисунок A: Самый экологичный таймер задержки в его простейшей конфигурации, позволяющий прикрепить устройство по вашему выбору к контактам реле, которые замыкаются при его активации.

Цепь нулевой мощности

Схема, которую я придумал, необычная, но простая. Когда вы нажимаете кнопку, он включает микросхему таймера 555, которая активирует реле на фиксированный интервал. В конце интервала реле выключает таймер, а таймер выключает реле. Звучит неправдоподобно? Взгляните на схему на рисунке A, которую я выложил так, чтобы ее можно было легко перенести на макетную плату.

Когда кнопка нажата, она подает питание на контакт 8 таймера.Поскольку кнопка только включает таймер, а не запускает его, мне пришлось добавить конденсатор 10 мкФ для передачи начального низкого состояния через резистор 1 кОм, чтобы запустить таймер на выводе 2, после чего резистор 10 кОм поддерживает вывод 2 на высоком уровне. штат.

Таймер подключен к моностабильному (однократному) режиму, чтобы испускать одиночный импульс задержки. Импульс идет с контакта 3 на реле, которое я нарисовал, чтобы показать его внутренние контакты. Когда правые контакты замыкаются, они возвращают питание на контакт 8 таймера.Итак, теперь реле питает таймер и продолжит это делать после того, как кнопка будет отпущена, потому что выходной импульс от таймера все еще управляет реле. Таймер и реле поддерживают друг друга — до тех пор, пока выходной импульс от таймера не закончится. Затем контакты реле размыкаются, что выключает таймер. В этот момент мы имеем нулевое энергопотребление, потому что цепь между положительной шиной и отрицательной шиной полностью разомкнута.

Естественно, вам нужно будет настроить выходной импульс таймера в соответствии с вашим приложением.В целях тестирования я выбрал значения компонентов для импульса длительностью чуть более двух секунд. Чтобы получить более длительный пульс, просто поищите в Интернете такой термин, как «рассчитать продолжительность 555», и вы найдете сайты, которые расскажут вам, какие значения компонентов выбрать. Я предлагаю вам оставить резистор 1 МОм и увеличить емкость конденсатора 2,2 мкФ. Конденсатор емкостью 56 мкФ должен создавать импульс длительностью около 1 минуты. Конденсатор емкостью 1000 мкФ должен проработать 18 минут.

С помощью левых контактов реле можно переключать все, что угодно, в пределах, установленных производителем (обычно пара ампер).Приемлемым будет светильник высокой мощности, работающий от 115 В переменного тока.

Рисунок B. Расширенный таймер задержки с наименьшей задержкой, включая звуковой сигнал, когда он достигает конца своего цикла.

Добавление звукового сигнала

Но что, если вы хотите, чтобы таймер работал в «кухонном режиме», чтобы он издавал звуковой сигнал по окончании временного интервала? Можно ли это сделать, сохранив при этом нулевое энергопотребление в спящем состоянии?

Да, вам просто нужен второй таймер, на короткое время запитанный от большого конденсатора. На рисунке B я расширил предыдущую схему вниз.Верхний контакт на левой стороне реле теперь получает питание от верхнего контакта на правой стороне реле, а конденсатор емкостью 1000 мкФ заряжается от левых контактов. Затем, когда импульс таймера заканчивается, контакты расслабляются, и конденсатор емкостью 1000 мкФ разряжается на вывод 8 второго таймера 555, который подключен для создания музыкального сигнала. Звонок длится около 1 секунды, пока конденсатор не разрядится. После этого схема снова потребляет нулевую мощность.

На рисунке C показана макетная схема всей схемы, которая является максимально компактной.Если вы сомневаетесь в каких-либо значениях компонентов, вернитесь к схеме на рисунке B.

Вы можете отрегулировать продолжительность звонка, увеличивая или уменьшая емкость конденсатора 1000 мкФ, и вы можете изменить высоту звонка, отрегулировав значения резистора и конденсатора, связанные со вторым таймером 555. И снова вы можете поискать подходящие значения в Интернете.

Рисунок C. Макетная плата для расширенного таймера задержки с наименьшими затратами. Если вы сомневаетесь в каких-либо значениях компонентов, вернитесь к схеме на рисунке B.

Регулировка задержки

Конечно, в кухонном таймере вы захотите иметь возможность выбирать различные возможные значения задержки, от одной минуты до получаса. Сможем ли мы сделать это и при этом сохранить статус нулевого энергопотребления? Разве нам не нужно добавлять счетчик и числовой дисплей?

Нет, конечно, если вы хотите быть ретро и думать об аналогах. Просто снимите резистор 1M, подключенный к первому таймеру, и замените его последовательно включенными потенциометром 1M и резистором 10K.(Вам понадобится резистор 10 кОм, чтобы избежать риска того, что потенциометр полностью снизит сопротивление до нуля.) Теперь вы можете настроить задержку, просто повернув потенциометр.

Вам придется откалибровать его методом проб и ошибок, но это не займет много времени. И подумайте о том, какую выгоду вы получите, если гость утверждает, что ведет зеленый образ жизни. Вы самодовольно указываете на свое устройство отсчета времени и говорите: «Этот гаджет абсолютно не потребляет энергии». Как что-то может быть зеленее этого?

Ну, может быть, если ваше устройство измерения времени использует отрицательную мощность.То есть он будет генерировать избыточную мощность и подавать ее в сеть. Может быть, вы могли бы заставить хомяка бегать в маленьком колесе, прикрепленном к миниатюрному генератору? Но нет, хомяка придется кормить, а выращивание пищи потребует ресурсов. Я считаю, что нулевое энергопотребление — это хорошо.

Самый экологичный корпус

Как лучше всего изготовить корпус для самого экологичного таймера? Обычно я использую АБС-пластик для проектных коробок, но для этого проекта это было бы еретическим.Во дворе я нашел ответ: старую сосну размером 2 × 4, приправленную годами суровой погоды в Аризоне (рисунки D и E). Я пропустил его через настольную пилу, чтобы уменьшить его ширину и толщину (Рисунок F).

Рисунок D. Выветрившийся кусок 2 × 4 — это отправная точка для зеленого вольера. Рисунок E. Экологически опасный внешний вид этого скромного куска сосны не требует восстановления. Рисунок F. Нижняя сторона, разрезанная и скошенная с помощью моей настольной пилы. .

А как насчет кнопки? Хотелось чего-то впечатляющего.В местном магазине Family Dollar я нашел шприц с грушей из мягкой резины, предназначенный для аспирации слизи из носа ребенка (рис. G). Он был белым, но я мог сделать его зеленым. Я надеялся, что латексная краска будет достаточно гибкой (рис. H).

Рисунок G. Шприц с грушей из мягкой резины, предназначенный для ноздрей младенцев. Рисунок H. Шприц зеленого цвета. Оставшаяся белая часть будет отрезана и выброшена (сожалею, что она не подлежала переработке).

Фактический выключатель должен быть установлен под резиновым шариком.Я выкопал переключатель мгновенного действия, который я давно спас из какого-то древнего оборудования. Еще я нашел старинный потенциометр. Для этих повторно используемых предметов не потребуется компенсация выбросов углерода (Рисунки I, J и K).

Рисунок I. Переключатель мгновенного действия закреплен на куске квадратного тополя ½ дюйма с помощью винтов №2. Рисунок J. Переключатель протыкает отверстие, вырезанное с помощью биты Форстнера, чтобы оно соответствовало резиновой лампе. Рисунок K. Этот крошечный динамик будет работать. быть достаточно для звукового сигнала, когда время истекло.

Последний вольер (рис. L) выглядит так, как если бы он мог удовлетворить самое устойчивое сообщество.

Рисунок L. Готовый корпус, склеенный эпоксидной смолой. Кнопки отмечают интервалы примерно в 1 минуту вокруг ручки в стиле ретро. Пока что зеленая краска не отслаивалась и не отслаивалась, но когда это произойдет, это может лишь усилить привлекательность повторно используемой и переработанной краски.

НЕОБХОДИМОЕ ВРЕМЯ: 1-2 часа

СТОИМОСТЬ: 10–20 долларов

DIY — Релейный модуль | Hackaday.io

Релейные модули

, доступные на рынке, поставляются в комплекте с неограниченным количеством бесполезных компонентов.
Бьюсь об заклад, если вы действительно не используете их, вы всегда можете подумать о том, чтобы выбить их все, прежде чем использовать их в своем проекте. Что ж, если вы чувствуете потребность в простом релейном модуле, состоящем только из основных компонентов, вы находитесь в нужном месте.
В этом уроке я покажу вам, как сделать простой модуль реле, который можно использовать в любом проекте.

Примечание: Если вы выполняете какие-либо работы с «сетевым питанием», например, с электропроводкой переменного тока 120 В или 240 В, вы всегда должны использовать соответствующее оборудование и защитные приспособления и определить, достаточно ли у вас навыков и опыта, или проконсультироваться с лицензированным электриком.Этот проект не предназначен для использования детьми.

Компоненты
—————-

Для этого проекта нам понадобятся:
1 реле на 5 В
1 резистор 1 кОм
1 x 1N4007 Высоковольтный диод с высоким номинальным током для защиты микроконтроллера от индуктивной отдачи от катушки
1 x 2N2222 NPN-транзистор общего назначения

Рабочий
————

Когда ток течет через катушку реле, создается магнитное поле, которое заставляет железный якорь перемещаться, замыкая или разрывая электрическое соединение.Когда электромагнит находится под напряжением, контакт NO — это тот, который включен, а контакт NC — тот, который выключен. Когда катушка обесточивается, электромагнитная сила исчезает, и якорь возвращается в исходное положение, включая замыкающий контакт. Замыкание и размыкание контактов приводит к включению и выключению цепей.

Знакомство с реле
———————————
Путем подключения мультиметра в режиме измерения сопротивления со шкалой 1000 Ом (поскольку сопротивление катушки обычно находится в диапазоне от 50 Ом до 1000 Ом), мы можем определить контакты катушки реле.Поскольку внутренний ограничивающий диод отсутствует внутри реле, на реле не указана полярность «нет». Следовательно, положительный выход источника питания постоянного тока может быть подключен к любому из выводов катушки.
При подключении аккумулятора к правому контакту может возникать звук «щелчка» при включении и выключении переключателя.
Если вы когда-нибудь запутались между контактами NO и NC, выполните следующие действия, чтобы легко определить, что:
— Установите мультиметр в режим измерения сопротивления.
— Переверните реле вверх дном, чтобы увидеть контакты, расположенные в его нижней части.
— Теперь подключите один на щупе мультиметра к контакту между катушками (общий контакт)
— Затем подключите другой щуп по одному к оставшимся 2 контактам.
Только один из контактов замкнет цепь и покажет активность на мультиметре.
Чтобы узнать больше о реле, пожалуйста, ознакомьтесь с моим руководством № 4: «УПРАВЛЕНИЕ РЕЛЕ С ARDUINO». Ссылка в описании ниже:

Схема
———-
Подключите один конец катушки к положительной клемме батареи.Затем подключите коллектор транзистора NPN к другому выводу катушки. Увеличивая базовый ток транзистора, мы можем намагнитить катушку, которая будет двигать якорь.
Затем нам нужно подключить диод к электромагнитной катушке. Когда транзистор выключен, диод защищает схему от скачков напряжения или обратного тока (индуктивный откат от катушки). Этот скачок напряжения может повредить чувствительные электронные компоненты, управляющие цепью.
Вот и все, подключите вторую цепь к контактам Common и NO реле.

Теперь вы также можете сделать эту простую схему сложной, добавив два светодиода: один для индикатора питания и один для индикации активации. Вы также можете добавить клеммные колодки и разъемы контактов и превратить эту простую схему в очень сложную.

Дизайн печатной платы
—————-

Итак, вот как выглядит моя печатная плата 10×10.Он имеет массив из 12 релейных модулей и несколько отверстий для печатных плат общего назначения, которые можно разделить на отдельные платы.



Сборка
————-
Сначала я припаиваю резистор 1K и диод к плате. Затем я припаиваю транзистор NPN.
И, наконец, припаиваю реле 5В к плате.
Теперь для этого демонстрационного видео я паяю витой …

Подробнее »

DIY Relay Module — Arduino Project Hub

Привет, ребята, как дела? Надеюсь, с тобой все в порядке! Если вы хотите самостоятельно изготовить релейную плату, то вы попали в нужное место.Сегодня я покажу вам, как сделать модуль реле своими руками, который можно использовать для любых целей. Вы даже можете подключить свой Arduino или Raspberry Pi или использовать его для любого проекта, в котором вам нужен релейный модуль. Я стоил около 1 доллара, чтобы сделать его. Причина, по которой я придумал этот урок, заключается в том, что на прошлой неделе мне нужно было срочно создать проект (это был срочный проект для колледжа).

Мне понадобился релейный модуль для завершения последнего этапа проекта, к сожалению, я облажался. В моем гараже не осталось релейного модуля.Поэтому я пошел в местный магазин, чтобы купить один, но там не было модуля реле на 5 или 6 вольт. Но, к счастью, у них были реле; Я купил так много (надеюсь, что смогу использовать их в такой ситуации в будущем), а затем сделал один сам. Это дешево и просто; Вы можете сэкономить немного денег, сделав этот релейный модуль своими руками. В то же время вы можете использовать этот релейный модуль как обычный релейный модуль. Я сделал один канал, но на той же плате можно сделать больше. Для нескольких каналов, например 2 или более, сделайте копии одной и той же схемы на одной печатной плате.Итак, приступим к созданию парней!

Шаг 1: Соберите детали

Теперь нам нужно собрать некоторые детали, которые необходимы для изготовления модуля реле своими руками.

ПРИМЕЧАНИЕ : Большинство деталей лежало у меня дома, и я использовал их, чтобы сэкономить немного больше. Вот список всех частей, необходимых для этого проекта.

Аппаратное обеспечение

  • Реле на 5 В (я использовал 6 В, потому что мне нужно реле на 6 В)
  • Винтовые клеммы (3 контакта, 2 шт.)
  • Светодиод (красный или зеленый, здесь я использовал зеленый )
  • «5×3» см с медным покрытием (дополнительно при использовании печатной платы общего назначения)
  • Печатная плата общего назначения (дополнительно при использовании медного покрытия)

Программное обеспечение

General Tools

  • Паяльная паста (необязательно, но рекомендуется)

Если вы не уверены в каких-либо деталях, посмотрите изображения выше, чтобы развеять сомнения или оставить комментарий.

Шаг 2: Тестирование на макетной плате

Теперь у нас есть все детали для изготовления релейного модуля своими руками. Далее нам нужно протестировать принципиальную схему релейного модуля на макетной плате.

Не пропускайте этот шаг, это необходимо, чтобы избежать ошибок при пайке в печатную плату и проверить, что она работает.

Взгляните на принципиальную схему и схемы печатных плат. Затем подключите схему на макетной плате. Дважды проверьте принципиальные схемы и монтажную плату на предмет неправильного подключения.У меня есть изображение схемы выводов транзистора BC548. Осторожно, чтобы избежать неуместных соединений.

Теперь нам нужно проверить, работает ли он:

  • Сначала загрузите файл relay.ino , затем откройте его с помощью Arduino.
  • Подключите контакты Vcc и GND модуля реле к контакту 5 В и контакту GND Arduino.
  • Затем подключите входной контакт реле (контакт идет от базового контакта транзистора) к цифровому контакту 13 Arduino.
  • Убедитесь, что реле включается и выключается с интервалом в 1 секунду (также светодиод модуля реле будет включаться и выключаться)
Если оно не работает, внезапно выключите Arduino. Затем проверьте наличие неуместных соединений. После решения повторно включите Arduino.

Вау! Оно работает. Теперь нам нужно сделать схему на печатной плате общего назначения или специальной печатной плате.

Шаг 3: Сделай сам релейный модуль на печатной плате общего назначения (опционально)

Теперь пришло время сделать схему на общей печатной плате или на специальной печатной плате.Этот шаг не является обязательным, если вы решили сделать модуль на специальной печатной плате. Я действительно рекомендую использовать нестандартную печатную плату, потому что она более профессиональная и идеальная.

Впрочем, какой путь вам нужно исполнить — это ваше желание.

Здесь я объясню, как сделать модуль на плате общего назначения!

  • Сначала возьмите печатную плату общего назначения и тщательно ее очистите.
  • После очистки нанесите немного флюса (необязательно, но рекомендуется).
  • Затем установите компоненты на печатную плату и припаяйте ее.
  • После того, как все спаяли, завершите все дорожки (соединения) с помощью монтажного провода.

ДА! Релейный модуль своими руками мы сделали на печатной плате общего назначения. Теперь проверьте, что реле работает. Я объяснил это перед этим шагом (в ШАГЕ 2)!

Итак, если вы решите создать собственную печатную плату, мы можем перейти к следующему шагу.

Шаг 4: Самостоятельный релейный модуль на специальной печатной плате (опция)

Этот шаг не является обязательным, если вы делаете модуль с использованием печатной платы общего назначения!

Я действительно рекомендую Custom PCB, потому что пользовательская PCB чище и профессиональнее, с меньшей вероятностью короткого замыкания.Я не использовал нестандартную печатную плату, потому что у меня не было времени на изготовление печатной платы, как я уже говорил о ситуации ранее.

Однако сначала сделаем печатную плату! Посмотрите видео ниже, чтобы узнать, как протравить печатную плату самостоятельно, используя метод переноса тонера.

После завершения видеоурока:

  • Загрузите файл проекта Fritzing внизу (дизайн печатной платы)
  • Затем откройте программное обеспечение Fritzing (если оно не загружено и не установлено, нажмите здесь)

Если вы не знать, как использовать Fritzing, щелкните здесь (завершите руководство, оно состоит примерно из трех частей).

Затем проделайте то же самое, что вы узнали из руководства PCB ETCHING. После протравливания печатной платы просверлите отверстия в печатной плате сверлом 0,8 мм или 1,0 мм. Затем установите все компоненты и припаяйте.

СДЕЛАНО! Мы изготовили индивидуальную печатную плату для релейного модуля своими руками. Теперь протестируйте модуль.

Я объяснил ранее в шаге 2!

Шаг 5: ГОТОВО!

Мы успешно изготовили релейный модуль своими руками.

На его изготовление у меня ушло бы до 20 минут.Это просто, недорого и экономит время (при заказе через Интернет это может занять как минимум день). Если вы его сделаете, нажмите кнопку «Я СДЕЛАНО», а также разместите фотографию готового модуля реле своими руками в разделе комментариев.

Маленький Миниатюрный таймер на реле задержки выключения от 0,1 сек до 9999 часов. 3В 12В 18В постоянного тока 5А. Power On Off delay, Cycling. Промышленный контроль и хобби —

5.0 из 5 звезд Работает нормально после выполнения полного сброса / перепрограммирования.Больше никаких белок под капотом 🙂
Автор cfcubed, июнь 25, 2018

Пока работает хорошо. Первоначально использовала видеоинструкцию, чтобы попытаться запрограммировать, и точно следовала инструкциям несколько раз, но программа не выполнялась — она ​​просто быстро мигала вместо запрограммированного времени включения / выключения.После нахождения и выполнения действий по полному сбросу в руководстве было выполнено программирование.

Использовал это для самодельного репеллента от вредителей под капотом, например, Rid-A-Rat на стероидах, который наверняка сработает. Перепробовав все (звук, запахи и т. Д.), Чтобы белки не строили гнезда под капотом малоиспользуемого грузовика, решил попробовать LIGHT. Не держите розетки рядом с грузовиком, иначе под капот может быть только что уронили светодиодный рабочий фонарь. Требовалось что-то с батарейным питанием.

Как бы то ни было, этот маленький самодельный проект помогает им держаться подальше.Используется для установки около 33% рабочего цикла, 30 секунд на 1 минуту выключения. Крепится к аккумуляторной батарее через встроенный предохранитель вместе с:
* двумя 6641 White 30 мм (1,23 дюйма) 5050 3-SMD 12 В светодиодными лампами для купола гирлянды (Amazon)
* двумя РЕГУЛИРУЕМЫМИ ОСНОВАНИЯМИ КУПОЛЬНОГО ГНЕЗДА ЛАМПА УНИВЕРСАЛЬНЫЕ ДЕРЖАТЕЛИ ПУСТО 31-42ММ (e отсек)
* две никелевые (но использующие четверть) кристально чистые круглые трубки для монет от Whitman — закручивающаяся крышка (отсек). Четверть размера для облегчения установки.
* ALLPOWERS Solar Battery Maintaner 12V 18W Солнечное автомобильное зарядное устройство для лодки Сопровождающий (Amazon) для компенсации / поддержания заряда аккумулятора.
Немного проволоки, припой + стяжки и тонкая пена для обертывания провода, чтобы он не шумел на скорости (сделано после фотографий).

Может показаться немного крутым, но если вы когда-либо пытались уберечь мышей, белок и вредителей от гнезд под капотами редко используемых транспортных средств, вы знаете, с чем я столкнулся 🙂 Это работает очень хорошо и без присмотра, чтобы сохранить их прочь.

ОБНОВЛЕНИЕ (добавлено фото с пережеванной проволокой): Таймер все еще отличный. Я попытался снизить рабочий цикл до 3 минут выключения / 20 секунд включения, чтобы улучшить соотношение солнечного зарядного устройства и дренажа зимой… Плохой ход. Белки хитрые и достаточно сообразительные, чтобы пережевывать провод к обоим фонарям. Был ненадолго расстроен, но затем впечатлен и поражен 🙂 Думаю, они умнее некоторых моих коллег 🙂
Итак, еще одна чистка, ремонт одиночного провода грузовика, который они пережевывали, перемонтаж светодиодов и программирование более короткого рабочего цикла.

Идея для игр на свежем воздухе — детские реле + детская эстафетная дубинка своими руками — Nifty Mom

Поделиться:

Это учебное пособие по детской эстафетной дубинке было написано в рамках моей работы послом Let’s Play.Let’s Play — это инициатива Dr Pepper Snapple Group, которая предоставляет детям и семьям инструменты, места и вдохновение, чтобы сделать активную игру ежедневным приоритетом, создавая и улучшая детские площадки и жертвуя спортивное снаряжение нуждающимся группам. Несмотря на то, что мне выплачивают компенсацию, я полностью верю в инициативу. Все мнения мои собственные.

Игра на свежем воздухе очень важна для детей. Активная игра позволяет детям высвободить всю эту бесконечную энергию, а также отвлекает их от телевизора и планшетов.Вы можете легко создавать простые занятия и игры на улице, практически не требуя игрушек. Простая игра может быть лучшей игрой.

В последнее время каждый раз, когда включается телевизор, экранное время берут на себя самые спортивные люди в мире. Все это заинтриговало детей. После просмотра некоторых соревнований дети начали бегать по дому, притворяясь, что соревнуются с лучшими из них.

Я попытался найти что-нибудь, что они могут использовать в качестве эстафетной дубинки, но подошел с пустыми руками.Я быстро решил обойтись пустым рулоном бумажных полотенец.

Нужны идеи для решения проблем с реле? Зайдите в Let’s Play, чтобы получить множество идей!

Как сделать детскую эстафетную дубинку

Расходные материалы:

  • Крепированная бумага
  • Лента или клей
  • Ножницы
  • Пустое бумажное полотенце или рулон (-ы) от туалетной бумаги

При использовании бумажного полотенца рулет, разрезанный пополам на две палочки.

Так как мои дети еще моложе, я решил сложить трубку, как показано выше.Это позволяет им удерживать его легче и делает его более прочным.

Закрепите, обернув лентой всю сложенную трубку (упаковочная лента отлично подойдет).

Далее покрыть клеем или обмотать скотчем липкой стороной с внешней стороны.

Накрыть крепированной бумагой, заправив концы внутрь трубки. Добавьте немного клея или скотча с внутренней стороны, чтобы закрепить каждый конец.

Через несколько минут у вас будет простая и легкая эстафетная дубинка для детей!

Так как у меня трое детей, наши эстафеты — это не столько гонки, а просто развлечение, чтобы они продолжали двигаться.

Я отмечаю две линии на расстоянии 30–100 футов друг от друга. Ребенок 1 и 2 находятся на одной стороне, а ребенок 3 — на противоположной стороне. Затем ребенок 1 может подбежать к ребенку 3 и передать эстафету ребенку 3.

Затем он ждет, пока ребенок 3 переходит к ребенку 2, который переходит к ребенку 1 и повторяет.

Когда у нас будет больше детей, у нас будет более длинная эстафета с финишной чертой. Это здорово, когда все соседские дети отсутствуют.

Когда детям «надоедает» просто бегать взад и вперед, добавляйте различные действия / задачи между каждым переключателем дубинки.

Добавить комментарий

Ваш адрес email не будет опубликован.