Простейший генератор: Простейшие генератор и электродвигатель

Содержание

Простейшие генератор и электродвигатель

Категория:

   Техническое обслуживание автомобилей

Публикация:

   Простейшие генератор и электродвигатель

Читать далее:



Простейшие генератор и электродвигатель

Простейший генератор. Конструкция простейшего генератора постоянного тока представляет собой рамку, вращаемую посторонней силой между полюсами электромагнита. При вращении рамки по часовой стрелке в верхнем проводе рамки возникает ток, направленный от нас, а в нижнем — ток, направленный к нам. Появившийся ток через пластины (полукольца) коллектора и щетки отводится во внешнюю цепь. После того как рамка пройдет горизонтальное положение, полукольца коллектора поменяются местами, и ток во внешней цепи сохранит свое значение, несмотря на изменение направления тока в рамке. Однако ток во внешней цепи будет пульсировать, т. е. периодически изменяться от максимального значения до нуля. Это объясняется тем, что рамка, находясь в вертикальном положении, пересекает наибольшее количество магнитных силовых линий, а будучи в горизонтальном положении, вовсе не пересекает их.

Чтобы пульсация тока была незаметной, в генераторах вращают не рамку из одного витка проводов, а якорь с обмоткой из многих десятков витков. Магнитное поле, в котором вращается якорь, усиливается применением электромагнитов с большим числом витков обмотки. При этом в обмотки катушек возбуждения электромагнитов направляется ток от самого генератора. Такие генераторы называются генераторами с самовозбуждением.

Рекламные предложения на основе ваших интересов:

Рис. 9.3. Схема простейшего генератора однофазного переменного тока

Простейший генератор (рис. 9.3) однофазного переменного тока в отличие от генератора постоянного тока вместо коллектора имеет контактные кольца, ток с которых снимается щетками. Каждое из этих колец при любом положении рамки постоянно соединено с одним и тем же проводом внешней цепи.

Поэтому при вращении рамки ток в цепи меняется не только по величине (от максимума до 0), но и по направлению.

В обмотки возбуждения полюсов подается постоянный ток от постороннего источника.

На практике получили распространение трехфазные генераторы переменного тока, которые гораздо проще по конструкции и надежнее в эксплуатации, чем однофазные.

Простейший электродвигатель. Если проводник с током поместить в магнитное поле, то в результате взаимодействия поля проводника и поля магнита проводник будет перемещаться в направлении, перпендикулярном к магнитным силовым линиям магнита.

С одной стороны проводника силовые линии его магнитного поля направлены в ту же сторону, что и силовые линии поля магнита, т. е. силовые линии сгущаются. С другой стороны проводника его силовые линии направлены навстречу силовым линиям поля магнита, т. е. силовые линии разрежаются. При этом проводник с током выталкивается в ту сторону, где магнитные силовые линии расположены реже.

Направление движения проводника зависит от расположения полюсов, а также направления тока в проводнике.

Механическая сила, действующая на проводник с током, пропорциональна магнитному полю полюсов магнита, току в проводнике и его длине.

Взаимодействие проводника с током в магнитном поле положено в основу действия элетродвигателей, в которых электрическая энергия преобразуется в механическую.

Рис. 9.4. Схема простейшего электродвигателя постоянного тока: а—взаимодействие магнитного поля рамки с полем магнита; б — схема электродвигателя

Конструкция простейшего электродвигателя (рис. 9.4) постоянного тока представляет собой виток провода в виде рамки, помещенной между полюсами постоянного магнита (рис. 9.4, а) или полюсами электромагнита (рис. 9.4, б) с катушками обмотки возбуждения.

При пропускании через рамку постоянного тока ее верхний провод в силу взаимодействия магнитных полей тока и магнита будет выталкиваться вправо, а нижний — влево (см. рис. 9.4, а). В результате рамка повернется по часовой стрелке.

Когда рамка достигнет горизонтального положения, направление тока в ней при помощи коллектора, состоящего из двух полуколец (см. рис. 9.4, б) и скользящих по ним щеток, изменится на обратное, и рамка продолжит свое вращение по часовой стрелке.

В реальных конструкциях электродвигателей, в том числе и в автомобильных стартерах, для повышения равномерности вращения и получения необходимого крутящего момента вместо рамки из одного витка между полосами помещают обмотку из нескольких десятков витков. Такая обмотка помещается на сердечнике якоря. Наличие сердечника позволяет уменьшить воздушный промежуток между полюсами и избежать нежелательного ослабления магнитного поля.

Если две обмотки расположить на сердечнике недалеко друг от друга и по обмотке (рис. 9.5, а) пропустить постоянный электрический ток, прерывая его прерывателем Пр, то вокруг сердечника будет то возникать, то исчезать магнитное поле. Магнитные силовые линии этого поля, персекая витки вторичной обмотки будут индуктировать в них э. д.с. взаимоиндукции, так как э.д.с. индуктируется не только при перемещении проводника в магнитном поле, но и при всяком изменении этого поля.

Э.д.с. взаимоиндукции возрастает при увеличении числа витков вторичной обмотки, при более сильном магнитном поле первичной обмотки и более быстром исчезновении магнитного поля. На принципе взаимоиндукции работают катушки зажигания автомобилей.

При замыкании и размыкании контактов прерывателя Пр витки обмотки также пересекаются магнитными силовыми линиями и в обмотке индуктируется э.д.с. самоиндукции.

Э.д.с. самоиндукции действует против тока при замыкании контактов прерывателя Пр (рис. 9.5, б), замедляя нарастание силы тока в обмотке. При размыкании контактов прерывателя Пр э.д.с. самоиндукции действует в направлении движения тока (рис. 9.5, в) и создает искру между контактами.

Таким образом, возникновение э.д.с. самоиндукции в первичной обмотке влечет за собой снижение э.д.с. во вторичной обмотке. Для ликвидации вредного действия э.

д.с. самоиндукции параллельно контактам прерывателя включают конденсатор, который способствует увеличению э.д.с. во вторичной обмотке и уменьшению окисления контактов прерывателя.

Рекламные предложения:


Читать далее: Общие сведения о полупроводниковых приборах

Категория: — Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум


Генератор переменного тока — Генератор переменного тока состоит он из неподвижной части, которая называется статор или якорь и вращающейся части — ротор или индуктор

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление.

Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию.

К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.


Простейший генератор текста на цепях Маркова

В прошлый раз мы разбирались с теорией про цепи Маркова. Вот основные тезисы:

  • Цепь Маркова — это последовательность событий, где каждое новое событие зависит только от предыдущего. Например, после одного слова может стоять другое слово. 
  • Существуют алгоритмы, которые способны генерировать текст на основании цепей Маркова. Они изучают, какие связи могут быть между словами, и потом проходят по этим связям и составляют новый текст.  
  • Для нашей работы алгоритму всегда нужен исходный текст (он же корпус) — глядя на этот текст, алгоритм поймёт, какие слова обычно идут друг за другом.
  • Чем больше размер исходного текста, тем больше связей между цепями и тем разнообразнее получается текст на выходе.

Сегодня попробуем это в деле и напишем самый простой генератор текста на цепях Маркова. Это будет похоже на работу нейросети, но на самом деле никаких «нейро» там нет — просто сети, которые сделаны на алгоритме цепей Маркова. А сеть — это просто таблица со связями между элементами. 

Короче: никакого искусственного интеллекта, просто озверевшие алгоритмы вслепую дёргают слова. 

Логика проекта

Код будем писать на Python, потому что от отлично подходит под задачи такого плана — обработка текста и построение моделей со сложными связями.

Логика будет такой:

  1. Берём файл с исходным текстом и разбиваем его на слова.
  2. Все слова, которые стоят рядом, соединяем в пары.
  3. Используя эти пары, составляем словарь цепочек, где указано первое слово и все, которые могут идти после него.
  4. Выбираем случайное слово для старта.
  5. Задаём длину текста на выходе и получаем результат.

Сделаем всё по шагам, как обычно.

Проверяем, что у нас есть Python

Python не так-то просто запустить, поэтому, если вы ещё ничего не делали на Python, прочитайте нашу статью в тему. Там всё описано по шагам. 

Разбиваем исходный текст

Для тренировки мы взяли восьмой том полного собрания сочинений Чехова — повести и рассказы. В нём примерно 150 тысяч слов, поэтому должно получиться разнообразно. Этот файл нужно сохранить как che.txt и положить в ту же папку, что и код программы.

👉 Чтобы быстро работать с большими массивами данных, будем использовать библиотеку numpy — она написана специально для биг-даты, работы с нейросетями и обработки больших матриц. Для установки можно использовать команду pip3 install numpy:

# подключаем библиотеку numpy
import numpy as np

# отправляем в переменную всё содержимое текстового файла
text = open('che. txt', encoding='utf8').read()

# разбиваем текст на отдельные слова (знаки препинания останутся рядом со своими словами)
corpus = text.split()

Генерируем пары

Для этого используем специальную команду-генератор: yield. В функциях она работает как return — возвращает какое-то значение, а нам она нужна из-за особенностей своей работы. Дело в том, что yield не хранит и не запоминает никакие значения — она просто генерирует что-то, тут же про это забывает и переходит к следующему. Именно так и работают цепи Маркова — они не запоминают все предыдущие состояния, а работают только с конкретными парами в данный момент.

👉 Мы разберём генераторы более подробно в отдельной статье, а пока просто используем их в нашем коде.

# делаем новую функцию-генератор, которая определит пары слов
def make_pairs(corpus):
    # перебираем все слова в корпусе, кроме последнего
    for i in range(len(corpus)-1):
        # генерируем новую пару и возвращаем её как результат работы функции
        yield (corpus[i], corpus[i+1])
        
# вызываем генератор и получаем все пары слов
pairs = make_pairs(corpus)

В результате мы получаем все пары слов, которые идут друг за другом — с повторениями и в том порядке, как они расположены в исходном тексте. Теперь можно составлять словарь для цепочек.

Составляем словарь

Пойдём по самому простому пути: не будем высчитывать вероятности продолжения для каждого слова, а просто укажем вторым элементом в паре все слова, которые могут быть продолжением. Например, у нас в переменной pairs  есть такие пары:

привет → это

привет → друг

привет → как

привет → друг

привет → друг

Видно, что «друг» встречается в 3 раза чаще остальных слов, поэтому вероятность его появления — ⅗. Но чтобы не считать вероятности, мы сделаем так:

  1. Составим пару привет → (это, друг, как, друг, друг).
  2. При выборе мы просто случайным образом выберем одно из значений для продолжения.

👉 Это, конечно, не так изящно, как в серьёзных алгоритмах с матрицами и вероятностями, зато работает точно так же и более просто в реализации.

Вот блок с этим кодом на Python:

# словарь, на старте пока пустой
word_dict = {}

# перебираем все слова попарно из нашего списка пар
for word_1, word_2 in pairs:
    # если первое слово уже есть в словаре
    if word_1 in word_dict.keys():
        # то добавляем второе слово как возможное продолжение первого
        word_dict[word_1].append(word_2)
    # если же первого слова у нас в словаре не было
    else:
        # создаём новую запись в словаре и указываем второе слово как продолжение первого
        word_dict[word_1] = [word_2]

Выбираем слово для старта

Чтобы было совсем непредсказуемо, начальное слово тоже будем выбирать случайным образом. Главное требование к начальному слову — первая заглавная буква. Выполним это условие так:

  1. Случайно выберем первое слово.
  2. Проверим, есть ли в нём большие буквы. Для простоты допустим, что если есть, то они стоят в начале и нам подходят.
  3. Если есть — отлично, если нет — выбираем слово заново и повторяем все шаги.
  4. Делаем так до тех пор, пока не найдём подходящее слово.
# случайно выбираем первое слово для старта
first_word = np.random.choice(corpus)

# если в нашем первом слове нет больших букв 
while first_word.islower():
    # то выбираем новое слово случайным образом
    # и так до тех пор, пока не найдём слово с большой буквой
    first_word = np.random.choice(corpus)

Запускаем алгоритм

У нас почти всё готово для запуска. Единственное, что нам осталось сделать — установить количество слов в готовом тексте. После этого наш алгоритм возьмёт первое слово, добавит в цепочку, потом выберет для этого слова случайное продолжение, потом выберет случайное продолжение уже для второго слова и так далее. Так он будет делать, пока не наберёт нужное количество слов, после чего остановится.

# делаем наше первое слово первым звеном
chain = [first_word]

# сколько слов будет в готовом тексте
n_words = 100

# делаем цикл с нашим количеством слов
for i in range(n_words):
    # на каждом шаге добавляем следующее слово из словаря, выбирая его случайным образом из доступных вариантов
    chain.append(np.random.choice(word_dict[chain[-1]]))

# выводим результат
print(' '.join(chain))

Результат

После обработки Чехова наш алгоритм выдал такое:

В октябре 1894 г. Текст статьи, написанные за вечерним чаем сидела за ивы. Они понятия о равнодушии к себе в целом — бич божий! Егор Семеныч и боялась. В повести пассивности, пессимизма, равнодушия («формализма») писали это она отвечала она не застав его лоб. Он пишет, что сам Песоцкий впервые явилась мысль о ненормальностях брака. Поймите мои руки; он, — а женщин небось поставил крест на о. Сахалине (см.: М. — Нет, вы тоже, согласитесь, сытость есть две ночи и белые, пухлые руки и мог не содержащем единой и не заслуживает «ни закрепления, ни мне не знаю, для меня с 50 рисунками

Здесь нет смысла, хотя все слова связаны друг с другом. Чтобы результат был более читабельным, нам нужно увеличить количество слов в парах и оптимизировать алгоритм. Это сделаем в другой раз, на сегодня пока всё.

Неправильно ты, Дядя Фёдор, на Питоне кодишь

Опытные питонисты абсолютно справедливо сделают нам замечание: нужно не писать новый алгоритм для обработки цепей Маркова, а использовать какую-нибудь готовую библиотеку типа Markovify. 

Всецело поддерживаем. В рабочих проектах, где вам нужно будет быстро получить правильный и предсказуемый результат, нужно не изобретать алгоритмы с нуля, а использовать опыт предыдущих поколений. 

Но нам было интересно сделать собственный алгоритм. А когда человеку интересно, ничто не должно стоять на его пути. 

Но в другой раз сделаем на библиотеке, окей.

# подключаем библиотеку numpy
import numpy as np

# отправляем в переменную всё содержимое текстового файла
text = open('che.txt', encoding='utf8').read()

# разбиваем текст на отдельные слова (знаки препинания останутся рядом со своими словами)
corpus = text.split()

# делаем новую функцию-генератор, которая определит пары слов
def make_pairs(corpus):
    # перебираем все слова в корпусе, кроме последнего
    for i in range(len(corpus)-1):
        # генерируем новую пару и возвращаем её как результат работы функции
        yield (corpus[i], corpus[i+1])
        
# вызываем генератор и получаем все пары слов
pairs = make_pairs(corpus)

# словарь, на старте пока пустой
word_dict = {}

# перебираем все слова попарно из нашего списка пар
for word_1, word_2 in pairs:
    # если первое слово уже есть в словаре
    if word_1 in word_dict.keys():
        # то добавляем второе слово как возможное продолжение первого
        word_dict[word_1].append(word_2)
    # если же первого слова у нас в словаре не было
    else:
        # создаём новую запись в словаре и указываем второе слово как продолжение первого
        word_dict[word_1] = [word_2]
 
# случайно выбираем первое слово для старта
first_word = np.random.choice(corpus)

# если в нашем первом слове нет больших букв 
while first_word.islower():
    # то выбираем новое слово случайным образом
    # и так до тех пор, пока не найдём слово с большой буквой
    first_word = np.random.choice(corpus)

# делаем наше первое слово первым звеном
chain = [first_word]

# сколько слов будет в готовом тексте
n_words = 100

# делаем цикл с нашим количеством слов
for i in range(n_words):
    # на каждом шаге добавляем следующее слово из словаря, выбирая его случайным образом из доступных вариантов
    chain.append(np.random.choice(word_dict[chain[-1]]))

# выводим результат
print(' '.join(chain))

Текст:

Михаил Полянин

Редактура:

Максим Ильяхов

Художник:

Даня Берковский

Корректор:

Ирина Михеева

Вёрстка:

Мария Дронова

Соцсети:

Олег Вешкурцев

Общее устройство генератора

Генератор переменного тока это элемент автомобиля, предназначенный для произведения электрической энергии путем преобразования механической энергии (вращение коленчатого вала) в электрическую энергию. Генераторы могут генерировать постоянный или переменный ток.

Генератор автомобиля используется, как источник питания для следующих электропотребителей: система зажигания, приборы освещения, бортовой компьютер, системы диагностики. Также генератор обеспечивает подзарядку аккумуляторной батареи (АКБ) во время движения автомобиля.

На сегодняшний день чаще всего используются генераторы переменного тока, которые хорошо себя зарекомендовали.

Как работает генератор?

Чтобы ответить на вопрос, — как работает генератор? — мы рассмотрим Принцип работы генератора.

Основа работы генератора заключается в использовании электродвижущей силы (ЭДС), которая образуется в прямоугольном контуре, вращающемся в однородном вращающемся магнитном поле.

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.


Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

От поворота ключа до выдачи напряжения…

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

Динамо-машина. Первые генераторы постоянного тока

Динамо-машина. Первые генераторы постоянного тока

Динамо-машина или динамо (иногда в просторечии «динамка»)— устаревшее название генератора постоянного тока.

Динамо-машинами в позапрошлом веке стали называть генераторы постоянного тока, — первые промышленные генераторы, которые позже были вытеснены генераторами переменного тока, пригодного для преобразования посредством трансформаторов, и крайне удобного для передачи на большие расстояния с незначительными потерями.

Сегодня под словом «динамо», как правило, подразумевают маленькие велосипедные генераторы (для фар) или ручные генераторы (для туристических фонариков). Что касается промышленных генераторов, то на сегодняшний день все это — генераторы переменного тока. Давайте, однако, вспомним, как развивались и совершенствовались первые «динамо».

Первый образец генератора постоянного тока, или униполярного динамо, был предложен в далеком 1832 году Майклом Фарадеем, когда он только открыл явление электромагнитной индукции. Это был так называемый «диск Фарадея» — простейший генератор постоянного тока. Статором в нем служил подковообразный магнит, а в качестве ротора выступал вращаемый вручную медный диск, ось и край которого пребывали в контакте с токосъемными щетками.

Когда диск вращали, то в той части диска, которая пересекала магнитный поток между полюсами магнита статора, наводилась ЭДС, приводящая, в случае если цепь между щетками была замкнута на нагрузку, к появлению радиального тока в диске. Подобные униполярные генераторы по сей день используются там, где требуются большие постоянные токи без выпрямления.

Генератор переменного тока впервые построил француз Ипполит Пикси, это произошло в том же 1832 году. Статор динамо-машины содержал включенные последовательно пару катушек, ротор представлял собой подковообразный постоянный магнит, кроме того в конструкции имелся щеточный коммутатор.

Магнит вращался, пересекал магнитным потоком сердечники катушек, наводил в них гармоническую ЭДС. А автоматический коммутатор служил для выпрямления и получения в нагрузке постоянного пульсирующего тока.

Позже, в 1842 году, Якоби предложит разместить магниты на статоре, а обмотку — на роторе, который также вращался бы через редуктор. Это сделает генератор более компактным.

В 1856 году, для питания серийных дуговых ламп Фредерика Холмса, (эти лампы использовали в прожекторах маяков), самим Фредериком Холмсом была предложена конструкция генератора, похожая на генератор Якоби, но дополненная центробежным регулятором Уатта для поддержания напряжения на лампе постоянным при разном токе нагрузки, что достигалось путем автоматического сдвига щеток.

Статор содержал 50 магнитов, а конструкция в общем весила 4 тонны, и развивала мощность чуть больше 7 кВт. Было выпущено примерно 100 таких генераторов под маркой «Альянс».

Между тем, машины с постоянными магнитами отличались одним существенным недостатком — магниты теряли со временем намагниченность и портились от вибрации, в итоге генерируемое машиной напряжение становилось со временем все ниже и ниже. При этом намагниченностью нельзя было управлять, чтобы стабилизировать напряжение.

В качестве решения пришла идея электромагнитного возбуждения. Идея пришла в голову английского изобретателя Генри Уайльда, который в 1864 году запатентовал генератор с возбудителем на постоянном магните, — магнит возбуждения просто монтировался на валу генератора.

Позже настоящую революцию в генераторах совершит немецкий инженер Вернер Сименс, который откроет подлинный динамоэлектрический принцип, и поставит производство новых генераторов постоянного тока на поток.

Принцип самовозбуждения заключается в том, чтобы использовать остаточную намагниченность сердечника ротора для пускового возбуждения, а затем, когда генератор возбудится, использовать в качестве намагничивающего тока ток нагрузки, или включить в работу специальную обмотку возбуждения, питаемую генерируемым током параллельно нагрузке. В результате, положительная обратная связь приведет к увеличению магнитного потока возбуждения генерируемым током.

В числе первых принцип самовозбуждения, или динамоэлектрический принцип, отметит инженер из Дании Сорен Хиорт. Он упомянет в своем патенте от 1854 года возможность использования остаточной намагниченности с целью реализации явления электромагнитной индукции для получения генерации, однако, опасаясь того, что остаточного магнитного потока будет недостаточно, Хиорт предложит дополнить конструкцию динамо постоянными магнитами. Этот генератор так и не будет воплощен.

Позже, в 1856 году, аналогичную идею выскажет Аньеш Йедлик — член Венгерской академии наук, но ничего так и не запатентует. Только спустя 10 лет Самюэль Варлей, ученик Фарадея, реализует на практике принцип самовозбуждающегося динамо. Его заявка на патент (в 1866 году) содержала описание устройства очень похожего на генератор Якоби, только постоянные магниты уже были заменены обмоткой возбуждения — электромагнитами возбуждения. Перед стартом сердечники намагничивались постоянным током.

В начале 1867 года в Берлинской Академии наук с докладам выступал изобретатель Вернер Сименс. Он представил публике генератор похожий на генератор Варлея, названный «динамо-машиной». Старт машины осуществлялся в режиме двигателя, для того чтобы обмотки возбуждения намагнитились. Затем машина превращалась в генератор.

Это была настоящая революция в понимании и проектировании электрических машин. В Германии начался широкий выпуск динамо-машин Сименса — генераторов постоянного тока с самовозбуждением — первых промышленных динамо-машин.

Конструкция динамо-машин с течением времени менялась: Теофил Грамм, в том же 1867 году, предложил кольцевой якорь, а в 1872 году главный конструктор компании Сименс-Гальске, Гефнер Альтенек, предложит барабанную намотку.

Так генераторы постоянного тока примут свой окончательный облик. В 19 веке, с переходом на переменный ток, гидроэлектростанции и тепловые электростанции станут вырабатывать уже переменный ток на генераторах переменного тока. Но это уже совсем другая история…

Ранее ЭлектроВести писали, что Натан Шарпс, инженер-механик армейского Центра C5ISR в Мэриленде, разработал стельку для обуви, которая может генерировать энергию при ходьбе, помогая питать электронные устройства. Армия США выделила более 16 миллионов долларов на производство этих стелек.

По материалам: electrik.info.

Простейший генератор CO2 для своего аквариума

Приветствую начинающих аквариумных деятелей! Тема сегодняшнего урока — генератор углекислого газа, или роль CO2 в жизни вашего аквариума. А кроме того, сегодня вы научитесь делать простейший генератор CO2.

Итак! Как вы уже знаете, CO2 играет очень важную роль в жизни любого аквариума и это неоспоримый факт! Недостаток или избыток углекислоты негативно сказывается либо на рыбках (они не переносят большую концентрацию CO2), либо на растениях (эти без углекислоты не могут: CO2 для растений — как воздух для нас).

Таким образом, приходим к единственному правильному выводу: всё хорошо в меру!

Абсолютно не важно, каков объем вашего аквариума, ибо углекислота играет ещё одну роль, которая сделает ваш аквариум неповторимым в том случае, если вы будете следить за состоянием CO2. Что это за роль? Да все ваши растения будут выглядеть просто идеально!

Вы видели фото или видео аквариумов, где трава имеет настолько потрясающий вид, что кажется будто она — искусственная?! Так вот: так выглядят растения, живущие в правильных условиях и в первую очередь в таких аквариумах всё в порядке именно с CO2. Так что делайте вывод, друзья!

Ну, а теперь плавно переходим к генератору CO2 и его изготовлению в домашних условиях.

Генератор CO2 — это такой прибор, который выделяет и нагнетает углекислоту в воду. Но прибор прибору — рознь, да ещё и какая! Есть настоящие станции, которые работают от тока и выглядят почти как трансформаторная будка. Правда, такие агрегаты используются для огромных аквариумов, которые дома не поставишь.

Для «аквасов», которые стоят в квартирах, используют приспособления поменьше, а нередко инженерная мысль «самоделкиных-кулибиных» достигает апогея и на свет появляются прекрасные заменители дорогостоящих приборов. Более того: «самопалы» почти не уступают в производительности заводским аналогам — факт!

А теперь прикиньте стоимость заводского агрегата по сравнению с «самоделкой» и вы поймете, что гораздо выгоднее и проще сделать генератор самому, нежели вбухать кучу денег в дорогой аппарат!

Как же можно изготовить самодельный генератор CO2? А главное: какие запчасти для этого нужны? Сейчас узнаете.

Сразу оговорюсь: данный генератор — очень простой и имеет малый размер. Так что подойдет для аквариумов, объем которых не превышает 50-70 литров.

Вам необходимы следующие компоненты: стеклянная баночка с крышечкой, пробка от винной бутылки, а ещё лучше — распылитель от компрессора (продается в зоомагазине и на «птичьем» рынке), обычная пищевая сода, лимонная кислота, пластиковый патрубок (его можно сделать из чего угодно, даже из шариковой ручки без пасты, разумеется). Всё это «барахло» есть в каждой хате, так что проблем не возникнет.

Берем пробку от винной бутылки или распылитель от компрессора — что есть. Делаем небольшое «глухое» (глухое — значит не сквозное) отверстие и вставляем в него пластиковый патрубок. В пластиковой крышке от баночки делаем сквозное отверстие такого диаметра, чтобы пластиковый патрубок (который уже соединен с распылителем) очень плотно в него вошел.

Внимание: нижнюю часть распылителя следует закрепить герметиком, чтобы в будущем углекислота проходила исключительно через распылитель! (Короче, в итоговом виде у вас получится такое приспособление: пластиковая крышка, из которой торчит распылитель.

Всю эту «кухню» вы наденете на стеклянную банку, в которую будет засыпан специальный состав). Состав, который засыпают в банку, выглядит так. Берем чайную ложечку пищевой соды (без верха) и чайную ложечку лимонной кислоты (с верхом). Смешиваем их в стакане. Полученную гремучую смесь высыпаем в баночку и закрываем крышкой с распылителем.

Всё: осталось опустить «генератор CO2» в воду и вы увидите, как он начнет работать. В идеале, если всё сделали правильно, то от распылителя вверх потянется тончайшая паутинка мельчайших пузырьков CO2!

Для удобства извлечения можно горловину баночки обвязать капроновой ниткой, либо леской.

Последнее. Когда закроете банку крышкой, то учтите, что из-за давления вода может проникнуть под крышку и залить сухую смесь. Это означает, что генератор перестанет выделять CO2. Поэтому щель возле крышки следует обязательно герметично закрыть, например с помощью пластилина.Удачи!

▶▷▶▷ схема магнитного генератора свободного энергий

▶▷▶▷ схема магнитного генератора свободного энергий
ИнтерфейсРусский/Английский
Тип лицензияFree
Кол-во просмотров257
Кол-во загрузок132 раз
Обновление:21-05-2019

схема магнитного генератора свободного энергий — Генератор свободной энергии: схемы, инструкции, описание, как wwwasutpprugenerator-svobodnoj-energiihtml Cached Инструкция по сборке магнитного генератора с фото Практическую модель этого генератора легко построить самостоятельно Все, что вам нужно, это подходящий набор неодимовых магнитов радиантная энергия схема — daitramunan1980s diary daitramunan1980hatenablogcomentry20170612060517 Cached Схема для получения радиантной энергии по схеме Джона Бедини и теории Свободная радиантная энергия, free radiant energy, Сайты фильмы, АртРадиоЛаб, САЙТЫ ПО РАДИАНТНОЙ ЭНЕРГИИ Схема генератора Простая схема высоковольтного генератора — YouTube wwwyoutubecom watch?vZpBthqig28Y Cached Автор — Станислав Марченко Free energy generator 2019 , How to make free energy from DC motor , wow amazing idea 2019 — Duration: 10:07 American Tech 1,631,635 views 1 АНАЛИЗ МАГНИТНЫХ ПРИМЕСЕЙ МЕТОДОМ ЭПР studfilesnetpreview2830135 Cached В отсутствие магнитного поля направление (ориентация) магнитного момента свободного электрона в пространстве может быть любым; энергия такого электрона не зависит от ориентации его Схема электрических подключений бензинового генератора Hyundai bestgeneratorspbruelectroscheme hyundai -electrjshemy Электрическая схем а Бензиновые генераторы hyndai hy2500c, hy2500l, hy3000c, hy3100l (С одним значением напряжения) Электрическая схема самодельного домашнего инкубатора!(scheme wwwyoutubecom watch?vntdgkt4Sd80 Cached Hello! The description of the electrical circuit of my home incubator, in this electric circuit the most affordable components are applied! I recommend to see: How to make an incubator ON 12V with Тема 10 Электромагнитные колебания и волны Физика, Архив wwwyaklassrumateriali?modelsnthemethemeid132 Cached Урок по теме Тема 10 Электромагнитные колебания и волны Теоретические материалы Средняя GRATIS FYSICA: ФИЗИКА 11КЛ — splazmablogspotcom splazmablogspotcomp11_17html Cached Магнитное поле, его свойства Магнитное поле постоянного электрического тока Действие магнитного поля на проводник с током Действие магнитного поля на движущийся в нем заряд Применение Копия 1с ВОПРОСЫ 23010062 ИВТ ВМКС и ИВТ ПО,090900 ИБ БКС studfilesnetpreview4553100 Cached РАЗДАТОЧНЫЙ МАТЕРИАЛ 1с 2013-2014 ВАН Копия 1с ВОПРОСЫ 23010062 ИВТ ВМКС и ИВТ ПО,090900 ИБ БКС Никитенко вопросы 1с ВВЕДЕНИЕ В НОВУЮ ЭЛЕКТРОДИНАМИКУ Канарёв ФМ E-mail: kanphilmail wwwmicro-worldsufiles1117pdf Рис 2 Схема движения электронов в проводе от плюса () к минусу (-) и формирования на его концах южного (s) и северного (n) магнитных полюсов и магнитного поляМ 0 вокруг провода Promotional Results For You Free Download Mozilla Firefox Web Browser wwwmozillaorg Download Firefox — the faster, smarter, easier way to browse the web and all of 1 2 3 4 5 Next 6,540

  • Генератор переменного тока (устаревшее альтернатор) электрическая машина , преобразующая механическ
  • ую энергию в электрическую энергию переменного тока . Электродвижущая сила генератора переменного тока пропорциональна величине магнитного потока и числу оборотов ротора генератора в минуту: МГД гене
  • ка пропорциональна величине магнитного потока и числу оборотов ротора генератора в минуту: МГД генератор, энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию. Название М. г. связано сamp;8230; Такие установки генерируют только переменный ток и требуют создания бегущего… Идеи Теслы в работе: заряжаем электрокары магнитным полем. Мировое сообщество энтузиастов свободной энергии (СЕ) уже десять лет эксплуатирует идею грузинского архитектора Ториэля Капанадзе по созданию устройства бестопливного генератор. Энергия магнитного поля катушки. Вращение рамки в магнитном поле простейший генератор переменного тока. Б. Схема потерь электроэнергии на пути от электростанции к потребителю. Все они работают на энергии эфира (магнитное поле, путем его вращения, наводит ЭДС (электродвижущую силу) в обмотках моторов при принудительном раскрутке их валов от любого привода (ветрогенератор,лопасти водяной турбины, бензиновый мотор) и т.д.На выходе мы имеем электрическую энергию. Генераторы энергии. Определите силу тока в соленоиде, при которой объемная плотность энергии магнитного поля внутри соленоида равна w 0,1 Джм3. Энергия магнитного поля катушки с током. Период свободных электромагнитных колебаний. Генератор незатухающих электромагнитных колебаний на транзисторе. Внешнего магнитного поля, g (quot;g-факторquot;), фактор спектроскопического расщепления, определяющий, по существу, величину эффективного магнитного момента частиц. E энергия электрона в магнитном поле с учетом сверхтонкого взаимодействия магнитного момента не-

при которой объемная плотность энергии магнитного поля внутри соленоида равна w 0

g (quot;g-факторquot;)

  • easier way to browse the web and all of 1 2 3 4 5 Next 6
  • wow amazing idea 2019 — Duration: 10:07 American Tech 1
  • Сайты фильмы

Request limit reached by ad vlaXML

Генератор переменного тока (устаревшее альтернатор) электрическая машина , преобразующая механическую энергию в электрическую энергию переменного тока . Электродвижущая сила генератора переменного тока пропорциональна величине магнитного потока и числу оборотов ротора генератора в минуту: МГД генератор, энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию. Название М. г. связано сamp;8230; Такие установки генерируют только переменный ток и требуют создания бегущего… Идеи Теслы в работе: заряжаем электрокары магнитным полем. Мировое сообщество энтузиастов свободной энергии (СЕ) уже десять лет эксплуатирует идею грузинского архитектора Ториэля Капанадзе по созданию устройства бестопливного генератор. Энергия магнитного поля катушки. Вращение рамки в магнитном поле простейший генератор переменного тока. Б. Схема потерь электроэнергии на пути от электростанции к потребителю. Все они работают на энергии эфира (магнитное поле, путем его вращения, наводит ЭДС (электродвижущую силу) в обмотках моторов при принудительном раскрутке их валов от любого привода (ветрогенератор,лопасти водяной турбины, бензиновый мотор) и т.д.На выходе мы имеем электрическую энергию. Генераторы энергии. Определите силу тока в соленоиде, при которой объемная плотность энергии магнитного поля внутри соленоида равна w 0,1 Джм3. Энергия магнитного поля катушки с током. Период свободных электромагнитных колебаний. Генератор незатухающих электромагнитных колебаний на транзисторе. Внешнего магнитного поля, g (quot;g-факторquot;), фактор спектроскопического расщепления, определяющий, по существу, величину эффективного магнитного момента частиц. E энергия электрона в магнитном поле с учетом сверхтонкого взаимодействия магнитного момента не-

Центр творческой науки — доктор Джонатан П. Хэйр

Центр творческой науки — доктор Джонатан П. Хэйр ссылка на 6 самодельный электрогенератор страница
Очень простой генератор, описанный ниже, является примитивным, но показывает основные операции. Он был намеренно оставлен как можно более простым, чтобы иметь максимальные возможности для использования в творческих проектах и ​​изобретениях. Поэтому он может лечь в основу более сложного устройства, как будет показано ниже.

Генератор состоит из катушки с проволокой (около 1000 витков), намотанной на последние 3 см или около того большого гвоздя. Когда вращающийся магнит помещается рядом с устройством, он индуцирует напряжение в катушке, которое затем может использоваться для зажигания лампочки (или, еще лучше, светодиода, см. Подробности на конце) — таким образом, можно просто продемонстрировать генерацию электричества.

Схема простого генератора

Шаг 1
Сделайте два картонных круга диаметром около 3 см (толщиной 1-2 мм).В середине кружков аккуратно проделайте дырочку. Найдите большой (10-15 см длиной, 6 мм шириной) чистый (неноржавый) гвоздь с большой шляпкой. Проденьте один из кружочков на гвоздь и продвиньте его прямо к голове.

Шаг 2
Закройте последние 3-4 см ногтя одним слоем изоляционной ленты (шляпку ногтя не закрывайте). Наденьте второй круг на гвоздь, но только до изоляционной ленты. Добавьте еще ленту на другую сторону круга, чтобы закрепить круг на месте.Теперь у вас должна быть готовая «катушка», на которую можно наматывать катушку.

Шаг 3
Возьмите немного тонкой изолированной медной проволоки (скажем, 25 м или около того 30SWG, примерно 0,3 мм в диаметре), оставьте около 20-30 см свободными и начните наматывать витки на изолированную часть гвоздя между двумя кругами. Сделайте 1000-1500 оборотов (точное количество не имеет большого значения и будет зависеть от того, насколько аккуратно вы сможете их надеть, прежде чем они выйдут за ограничивающие картонные круги).Оставьте на конце еще 20-30 см и перережьте проволоку. Заклейте всю сборку изолентой, чтобы проволока не развязывалась.

Шаг 4
Возьмите свободные концы проводов и соскоблите изоляцию. Подключите их к лампочке или к светодиоду. Поднесите магнит ближе к головке гвоздя и, удерживая его на расстоянии примерно 5 мм от головки, быстро перемещайте магнит из стороны в сторону. Лампочка или светодиод загорится, показывая выработку электричества !!

КАК РАБОТАЕТ ГЕНЕРАТОР

Генератор работает за счет магнитного поля, индуцирующего напряжение в катушке с проволокой.Важно отметить, что напряжение увеличивается по мере увеличения количества витков провода на катушке, размера катушки и силы магнитного поля. Магнитное поле (или катушка) должно находиться в постоянном движении, чтобы производить / индуцировать электричество в катушке. Это можно сделать, перемещая магнит или перемещая катушку — эффект тот же. Катушка (или магнит) должна двигаться таким образом, чтобы катушка постоянно проходила через магнитное поле.
Железный гвоздь также важен в нашем простом генераторе, поскольку он имеет тенденцию концентрировать магнитное поле.Когда катушка наматывается на гвоздь, она имеет тенденцию втягивать больше магнитного потока в область катушки, что повышает общую эффективность устройства и увеличивает создаваемое напряжение.
Тип провода в катушке также важен. Например, толстый провод означает меньшие потери мощности, но недостаток в том, что катушка станет очень большой, когда потребуется большое количество витков. Поэтому в практическом генераторе необходимо найти компромисс между размером магнита, катушки и провода.

переменного или постоянного тока
Этот простой генератор называется генератором переменного тока. Это означает, что напряжение, появляющееся на двух проводах, меняется между + и -, и — и + каждый раз, когда магнит совершает полный оборот. В результате генератор может зажечь лампочку или светодиод, не беспокоясь о том, в какую сторону должны идти соединения (поскольку они все равно эффективно реверсируют все время). Однако этот простой генератор не подходит для работы радиоприемников, калькуляторов или других устройств, которым требуется постоянный ток (DC), который вырабатывается, например, от батареи.Вы можете весело провести время, подключив динамики к выходу генератора, так как вы можете услышать переменное электричество, но, пожалуйста, не используйте лучшие Hi-Fi-динамики своих родителей! Попробуйте использовать наушники типа Walkman и т. Д.

ГЕНЕРАТОР ДОПОЛНИТЕЛЬНО

На фото ниже показан простой генератор с ручным коленчатым валом, который я построил, в котором использовались два из этих гвоздей-генераторов, соединенных вместе (чтобы дать вдвое большую мощность). Таким образом, одновременно используются как северная, так и южная сторона магнита. Необходимо правильно выполнить проводку между катушками, иначе напряжение исчезнет, ​​и вы не получите никакой энергии от генератора! Катушки подключаются одна за другой, а не одна через другую (т. Е.последовательная цепь, а не параллельная). Использовалась простая деревянная зубчатая передача, чтобы вы могли с комфортом вырабатывать электричество, не поворачивая ручку слишком быстро.

Простой генератор с двумя гвоздями и рукояткой

Крупный план генератора

ВОЗМОЖНО САМЫЙ ПРОСТОЙ ЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР В МИРЕ
Щелкните здесь, чтобы увидеть еще более простой генератор

КАКОЙ ТИП ЛАМПОЧКИ Я ДОЛЖЕН ИСПОЛЬЗОВАТЬ?
Может показаться здравым смыслом использовать лампочку с как можно более низким напряжением в этом типе генератора, но на самом деле лампа с более высоким напряжением часто работает лучше.Например, лампочка на 1,5 В (напряжение) часто требует 0,25 А (ампер — электрический ток), а лампочка на 6 В может потреблять всего 0,05 А. Этот простой генератор может подавать только относительно небольшой ток (скажем, 0,05-0,1 А), поэтому лампы с более высоким напряжением, как правило, работают лучше. Кстати, светодиод (светоизлучающий диод) очень хорошо работает в этой конструкции, потому что они потребляют очень небольшой ток (около 0,01 А). Светодиоды можно приобрести у Tandys или Maplins (подойдет почти любой вид) или выбросить из старого радио или игрушки, в которой они есть.

Щелкните здесь для получения информации о светодиодах

КАКОЙ ТИП МАГНИТА Я ДОЛЖЕН ИСПОЛЬЗОВАТЬ?
Как правило, чем сильнее магнит, тем лучше. Eclipse производят всевозможные магниты, и их можно купить в большинстве хозяйственных магазинов. В описанном выше генераторе «кривошипная рукоятка» использовался магнит E825 Eclipse. Стоит попробовать другие типы магнитов, но вам, возможно, придется разработать другие способы вращения магнитов, чтобы убедиться, что магнитное поле изменяется правильным образом по отношению к катушке.Хорошие генераторы можно сделать из кнопок, планок, часовых туфель и цилиндрических магнитов — это просто ваше воображение!

ПЕРЕЧЕНЬ ДЕТАЛЕЙ И ИНСТРУМЕНТЫ
Картон из крупяной коробки например
Железный гвоздь с головкой (диаметр 1/4 дюйма (6 мм), длина ~ 6 дюймов (15 см))
Катушка (прибл. 25 м) эмалированной медной проволоки (30 SWG или диаметр ~ 0,3 мм)
E825 Магнит кнопки Eclipse
Лампа фонаря (6 В, 0,06 А) и патрон, а еще лучше — светодиод
Ручная дрель (стандартный тип ящика для инструментов)
Большинство этих деталей можно приобрести в магазине DIY или в электронных магазинах, таких как Tandy или Maplins.

Книг и статей:
Продвинутая физика, Том Дункан, 4-е изд., Джон Мюррей, ISBN 0 7195 5199 4
хороший раздел по генераторам и электричеству.

Идеи для дальнейшей работы:
1) попробуйте варьировать количество оборотов. Всегда ли верно, что напряжение растет с количеством витков для этого простого генератора? Что произойдет, если катушка станет настолько большой, что ее пятна перестанут быть очень близкими к гвоздю?

2) Вы можете найти лучшую оправку для утюга, чем гвоздь?

3) как насчет того, чтобы попробовать другие формы энергии для питания вращающегося магнита, например?энергия ветра, энергия волн (например, см. раздел, посвященный созданию собственной ветряной мельницы)

goto ‘build your own windmill’

4) Можете ли вы встроить подвижный переключатель, чтобы напряжение было постоянным (DC) вместо переменного (AC) — это называется коммутатором

5) Можете ли вы использовать катушку для гвоздей (без магнита) в качестве «поисковая» катушка для обнаружения магнитных полей? Попробуйте поставить катушку с гвоздем рядом с динамиком, проигрывающим загруженную музыку, светодиод мигает вместе с музыкой?
ПРИМЕЧАНИЕ: никогда не приближайтесь к устройствам с питанием от сети с этим устройством

НЕ ИГРАЙТЕ С ЭЛЕКТРОПИТАНИЕМ — ОНО УБИВАЕТ

Информация о сайте:
Подробная информация о магните, использованном в этом проекте:
www.magnets2buy.com/acatalog/Buttons.html

ВОЗМОЖНО САМЫЙ ПРОСТОЙ ЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР В МИРЕ
Щелкните здесь, чтобы увидеть еще более простой генератор

ссылка на страницу 6 генов


ЦЕНТР ТВОРЧЕСКОЙ НАУКИ

Д-р Джонатан Хейр, Университет Сассекса
Брайтон, Восточный Суссекс. BN1 9QJ

домой | дневник | что на | Резюме CSC | последние новости


build Ультра-простой электрический генератор, вращающиеся магниты DIY

Все металлы содержат подвижное вещество, называемое «электрическим зарядом».Даже незаряженные провода полностью заряжены! Ведь атомы металла составляют половину положительных протонов и половину отрицательных электронов. Металлы особенные, потому что их электроны не остаются связанными с атомами металлов, вместо этого они летают внутри металла и образуют нечто вроде электрического «жидкость» внутри проводов. Все провода наполнены электрической жидкостью. Современное ученые называют это «электронным морем» или «электронным газом». Жидкость заряд подвижен, и это позволяет металлам быть электрическими проводниками.В подвижный заряд-вещи не невидимый, он придает металлам серебристый блеск. Электронный газ подобна серебристой жидкости. Вроде, как бы, что-то вроде.

Когда круг из проволоки окружает магнитное поле, и затем магнитное поле изменяется, появляется круговое «давление», называемое напряжением. появляется. Чем быстрее изменяется магнитное поле, тем больше напряжение становится. Это круговое напряжение пытается заставить подвижные заряды в проволоку вращать по кругу. Другими словами, движущиеся магниты вызывают изменение магнитных полей, которые пытаются создать электрические токи в замкнутых кругах провода.Движущийся магнит вызывает накачивающее действие вдоль проволоки. Если цепь не замкнута, если есть перерыв, тогда насосная сила не вызовет никакого потока заряда. Вместо этого на концах проводов появится перепад напряжения. Но если цепь «замкнута» или «замкнута», тогда накачивающее действие магнита может заставить электроны катушки начать течь. Движущийся магнит может создают электрический ток в замкнутой цепи. Эффект называется Электромагнитная индукция. Это основной закон физики, и он используется всеми электрогенераторами с катушкой / магнитом.

У генераторов нет только одного круга провода. Предположим, что вокруг много кругов. движущийся магнит. Предположим, что все окружности последовательно соединены с образуют катушку. Небольшие напряжения от всех кругов сложатся вместе. чтобы дать гораздо большее напряжение. Катушка на 100 витков будет иметь сто в разы больше напряжения, чем на однооборотной катушке.

Почему этот генератор переменного тока, а не постоянного тока? Когда магниты переворачиваются, они создают импульс напряжения и тока. Но когда они переворачиваются во второй раз, они создать противоположный импульс? да.Итак, вращающийся магнит делает электрические сигналы, которые идут плюс-минус-плюс-минус? Ага. Это происходит потому, что для создания напряжения и тока полюс магнита должен перемещаться вбок по проводу. Если он проведет вдоль провода, ничего не произойдет. В нашем маленький генератор, полюса магнита не качаются постоянно по изгиб провода. Вместо этого сначала северный магнитный полюс проходит через одну сторона катушки, и в то же время южный полюс магнита перемещается назад через другую сторону.Два эффекта складываются вместе. Но дальше магнит продолжает вращаться, и теперь противоположные полюса проведите по этим частям катушки. Магнит перевернулся, магнит Полюса поменяны местами, поэтому напряжение на катушке будет обратным. И если лампочка подключена, тогда любой ток тоже будет обратным. Каждый раз магнит делает один полный оборот, он создает прямой импульс, а затем обратный пульс. Быстро крутите магнит, и он издает переменную волну: AC.

Если вам нужен генератор постоянного тока, вам придется добавить специальный реверсивный переключатель. к валу магнита.Это переключатель, который называется «коммутатор». Если вы посмотрите некоторые проекты DIY генераторов постоянного тока, вы увидите, как построить коммутатор выключатель. Но эти генераторы не Ультра Простые!

Теперь о лампочке. Если соединить концы катушки вместе, то всякий раз, когда магнит движется, заряды металла будут двигаться и большой в катушке появится электрический ток. Змеевик слегка нагревается. Что, если вместо этого мы подключим лампочку между концами катушки? А лампочка на самом деле просто кусок тонкой проволоки.Заряды света нить лампы будет проталкиваться. Когда заряды внутри меди провода продеваем в тонкую нить накаливания лампочки, их скорость сильно увеличивается. Когда заряды покидают нить и движутся обратно в медный провод большего размера, они замедляются опять таки. Внутри узкой нити быстро движущиеся заряды нагревают металл. своего рода электрическим «трением». Металлическая нить накаливания становится настолько горячей, что он светится. Движущиеся заряды также нагревают провода генератора немного, но так как провода генератора намного толще, и поскольку тонкая нить накала лампы замедляет ток во всем змеевике, почти весь нагрев происходит в лампочка накаливания.

Итак, просто подключите лампочку к катушке провода, поместите короткую мощную магнит в катушке, затем быстро переверните магнит. Чем быстрее вы вращаете магнита, чем выше становится сила накачки напряжения, и тем ярче лампочка загорается. Чем мощнее ваш магнит, тем выше напряжение и ярче лампочка. И чем больше в твоих кругах проволоки катушки, тем выше напряжение и ярче лампочка. Теоретически вы должен иметь возможность зажечь обычную лампочку фонарика 3 В, но только если вы может вращать ваши магниты нечеловечески быстро.


Отсоедините один провод от лампочки. Вращайте магнит. Пока все еще вращая магнит, попросите друга соединить провода вместе так что лампочка снова загорится. Гвоздь по-прежнему крутится так же легко? Продолжайте крутить магнит, пока ваш друг подключается и отключается лампочка. Чувствуете ли вы разницу в том, как сильно нужно крутить гвоздь? Также попробуйте крутить магниты, пока ваш друг подключает генератор. провода вместе (без подключенной лампы).

ТАК ЧТО?

Когда вы запускаете генератор и зажигаете лампочку, вы работает против электрического трения, чтобы создать тепло и свет.Вы можете ЧУВСТВОВАТЬ работу, которую выполняете, потому что всякий раз, когда вы подключаете лампочку, вдруг становится труднее провернуть генератор. Когда вы отключаете лампочка, становится легче.

Подумайте об этом так. Если слегка потереть руки, кожа остается прохладным, но если вы сильно потрете руки, кожа станет горячей. Нужно приложить больше усилий, чтобы сильно натереть кожу, чтобы она нагрелась; это требует работы. И точно так же сложно греть лампочку нить накала, это требует работы. Вы крутите вал генератора, генератор проталкивает заряд провода через крошечную нить накала, и если вы не держите вращая магнит, он быстро замедлится.


ПОЧУВСТВУЙТЕ ЭЛЕКТРОНЫ

Когда ваша рука вращает магнит, вы можете почувствовать дополнительную работу, которая требуется зажечь лампочку. Это происходит потому, что ваша рука подключена к течет заряд в лампочке, и когда вы на нее нажимаете, вы можете это почувствовать оттолкнуть вас! Как ваша рука связана с текущими зарядами? Ваша рука крутит гвоздь, гвоздь крутит магнит, магнит толкает невидимые магнитные поля, поля толкайте подвижные заряды, заряды медленно текут через свет нить накала лампы, и крошечная нить вызывает трение о поток заряжается и нагревается.Но тогда происходит обратное! Заряд не может сильно двигаться из-за крошечной нити накала, поэтому она сопротивляется давление со стороны магнитных полей, которые, в свою очередь, противостоят давлению от магнита, который выдерживает скручивающее давление гвоздя, который сопротивляется скручивающему давлению ваших пальцев. Итак, в очень реальным способом, вы можете ПОЧУВСТВОВАТЬ электроны в нити накаливания лампочки. Когда вы толкаете их, вы можете ЧУВСТВОВАТЬ их нежелание двигаться дальше. узкая нить!

ВЫКЛЮЧИТЕ ПОЛЕ

Попробуйте изменить положение магнитов.Снимите магниты, затем скотчите их вокруг гвоздя так, чтобы две стопки цеплялись бок о бок, скорее чем сложены в линию. Крутите магниты. Лампочка все еще загораться? Нет. Это происходит потому, что полюс N одного блока магнитов очень близко к S полюсу другого, и наоборот. Магнитное поле теперь растягивается между двумя стопками магнитов и не распространяется наружу. Большая часть поля находится между соседними противоположными полюсов, поэтому поле не распространяется через катушку.Когда магниты бок о бок, вот так, они образуют один больший, но слабый магнит. На Другой рука, когда вы вместо этого сделаете одну стопку магнитов, поле расширится наружу на много дюймов. Сложенные друг на друга магниты образуют более крупный, но очень сильный магнит. Если вы вращаете стек с одним магнитом, поле прорезает провода и накачивает их электроны в движение.

ИЗМЕРИТЬ НАПРЯЖЕНИЕ И ТОК

Если вы можете получить дешевый Цифровой вольтметр или DVM от Harbour Freight Tools, вы можете измерения.(Как только вы увидите некоторые цифры, вы можете заняться какой-нибудь профессиональной наукой. эксперименты. Это отлично подходит для проектов научной ярмарки.) Вращайте магниты. чтобы зажечь лампочку, затем подсоедините провода счетчика к лампочке соединения. Установите измеритель напряжения переменного тока. Вращайте магниты и смотрите насколько высокое напряжение вырабатывает ваш генератор.

Насколько высоким вы можете сделать напряжение просто пальцами? Или с помощью ручной дрели? Попробуйте просто крутить магниты достаточно быстро, чтобы едва зажечь лампочку в темной комнате.Как мало напряжение нужно? Также попробуйте отключение лампочку, затем измерьте напряжение переменного тока на двух концах катушки. Можете ли вы сказать, осталось ли оно таким же, как когда была подключена лампочка? Намекать: чтобы вращать магниты с постоянной скоростью, используйте электродрель с полностью заряженный аккумулятор. Или, возможно, зацепите гвоздь за электродвигатель и Подключите двигатель к источнику постоянного тока с настраиваемым напряжением.

Примечание: электрическая лампочка имеет сопротивление около 50 Ом. Кроме того, 250 футов из №30 проволока вокруг Сопротивление 21 Ом.Из-за сопротивления провода Генератор может создавать ток не более 60 миллиампер (0,06 ампер.) Если вы намотаете на генератор дополнительный провод №30, он увеличится максимальное напряжение и максимальная мощность. Но поскольку это добавляет больше сопротивление это НЕ увеличивает максимально возможный ток. Увеличивать максимально возможный ток, либо раскрутите магниты намного быстрее, замените провод №30 с более толстой проволокой или используйте более прочный тип магнитного материала.


ДВИГАТЕЛЬ ВЫЗОВ!

Есть простой способ превратить ваш генератор в мотор.Это включает использование краски или ленты, чтобы изолировать место на одной стороне гвоздь затем, используя батарею 6 В и провода генератора, касаясь гвоздя, чтобы сформировать переключатель. Вращающиеся магниты поворачивают гвоздь, который включает катушку и выключаемся в нужное время. Сможете ли вы обнаружить уловку?

ПОДГОТОВКА ПОСТОЯННОГО ТОКА, ЗАРЯДКА АККУМУЛЯТОРА

Вы можете изменить этот генератор так, чтобы он создавал постоянный ток, а не переменный. Напряжение все еще очень низкий, поэтому он не очень полезен. Если вращаться очень быстро, вы можете уметь перезаряжать крошечный 1.Аккумулятор 2в. (Может быть, ты мог бы добавить больше витков к катушке, чтобы увеличить напряжение?)

Преобразовать в DC:

Трудный путь: добавить вращающийся переключатель «коммутатор» и скользящие металлические «щетки», так что каждый раз, когда магниты поворачиваются наполовину, переключатель меняет местами подключения генератора.

Простой способ: добавить односторонний клапан! Электроклапан называется диодом. или выпрямитель. Если вы подключите диод последовательно с одним из ваших двигателей провода, это будет только пусть заряды текут в одном направлении.Это изменит Переменный ток в односторонний поток (так называемый «пульсирующий постоянный ток»). Попробуйте диоды от Radio Shack, например 1N4000 или 1N4001. К сожалению диоду требуется около 3/4 вольт для протекания любых зарядов, и это напряжение вычитает из вывода вашего генератора. Если ваш генератор выдает только один вольт, диод снизит его до 1/4 вольт. Итак, если вы хотите добавить диод, попробуйте удвоить или утроить количество проводов на ваш генератор. Также попробуйте использовать специальный диод «Шоттки» с меньшим напряжение, чем 0.7V, например 1N5819 с сайта digikey.com


ИСТОРИЯ «УЛЬТРАПРОСТОГО» ГЕНЕРАТОРА

Работая в техническом магазине в Музее науки в Бостоне, я работал над новыми идеями для экспонатов Зала Электричества в 1988 году. знал, что Эксплораториум имеет выставку электрогенераторов, где Посетитель музея протаскивал пластиковую пластину с катушкой через ряд огромные магниты (магнетронные рупорные магниты от военного радара). загорится маленькая лампочка.Я просто знал, что ДОЛЖЕН был быть способ, который использует более распространенные магниты. Так что я сложил стопку из 3-дюймовых громкоговорителей. магниты (эти черные пончики) и размахивали им мимо различных катушек. Наконец, я намотал около пяти фунтов проволоки №26 на кольцо с гвоздями. толкнул в доску, подключил лампочку №49, затем переместил стопку магниты динамика внутрь и наружу. От этого легко загорелась лампочка.

Примерно в 1994 году я думал об сверхпростом электродвигателе, который позже стал известен в Интернете как «Beakman Motor».»Разве это не было бы Круто, если бы дети могли так просто сделать электрический генератор ? Но это должно быть возможно с деталями из магазина Radio Shack, поскольку Radio У Shack была специальная лампочка, а также магниты и катушки провод электромагнита. После нескольких часов экспериментов я понял, что едва мог зажечь лампочку на 20 миллиампер, используя одну катушку провода №30 от радиорубки. Но провод должен был быть ОЧЕНЬ близок к быстрому вращающийся магнит, причем магнит должен был состоять из четырех мощных керамические магниты в стопке.

Чтобы произвести впечатление на всех учителей физики, я постарался сделать детали легкими. в наличии, а стоимость минимально возможна. Чтобы сделать проект популярным, я удостоверился, что никаких инструментов, кроме ножниц, не требуется. Я отказался использовать мяч подшипники или пластмассовые детали. Поэтому я сделал свою картонную коробку для катушка и гвоздь для вращающегося вала. Чтобы избежать лишних деталей, гвоздь просто зажимается мощными магнитами. Если кто-то еще хочет попробовать чтобы сделать более дешевый или простой электрогенератор, они должны делать лучше чем я сделал!


ВНИМАНИЕ: держите магниты подальше от компьютеров, дисков, видеокассет, цветных Телевизоры, а также из бумажников и кошельков с кредитными картами.Попробуй это: Хранить генератор вдали от вашего цветного телевизора, включите телевизор, начните крутить гвоздь, чтобы магнит вращался быстро, затем поднесите генератор примерно на 2 фута подальше от экрана телевизора. НЕ ПРИНОСИТЕ БЛИЖЕ !!! Продолжайте крутить магниты, и вы увидите крутой эффект шатания на телевизионном изображении, с некоторыми изменениями цвета. Поле магнита искривляет электронный луч, который рисует картинку на экране. Будьте осторожны, если вы Отнесите магнит примерно на 15 см, железный лист внутри телевизионного изображения трубка намагнитится, и искаженные цвета останутся неизменными.

Хотите чрезвычайно мощный двигатель или генератор? Взрослый проект? Те нужно штамповать железные листы для ламината. Но есть другой способ. Посмотрите на Эдисона тактика: он взял 1873 Мотор с кольцом Грамма, модифицированный добавление отдельного тихоходного коммутатора, и продавал их как горячие пирожки.

В динамо-машине Gramme можно выполнять основные «пластинки» из длинной длины железная проволока, обернутая в виде обруча и пропитанная эпоксидной смолой, смолой и т. д. звенеть. Я не знаю если тонкую железную проволоку легко найти, а колючая проволока и проволока для тюков сена — общий.Или купить тороидальный трансформатор и отпилить весь провод от сердечника? Затем оберните все железное кольцо слоем толстой медной проволоки и установить это на маховик. Плоско отшлифуйте внешний обод, чтобы медная спираль стала его собственный коммутатор. Ваш неподвижный статор может быть постоянным магнитом или неламинированный твердые железные блоки, так как эта часть — постоянный ток.

В ранних версиях Эдисона использовались «кисти» из тонкой железной проволоки в качестве щеток, позже замененных блоками скользкий графит.

Но затем иди и делай, как Тесла, во время своей проектной работы для Edison corp. Преобразование конструкции статора Эдисона в компактную цилиндрическую форму, которая обнимает маховик и включает закрытые катушки, а не чрезвычайно длинные магниты-подковы, как у Эдисона Дизайн «длинноногая Мэри Энн».

Motor Triva: электродвигатели были всего лишь лабораторные диковинки до Зеноби Грамм разработал генератор, предназначенный для замены аккумуляторных батарей, поскольку он давал чрезвычайно плавное выходное напряжение постоянного тока.Во время выставки изобретателей помощник случайно подключил неиспользованный Gramme Dynamo до другого, который вращался под действием пара. Второй завелась и побежала как моторчик; как мотор * сотни лошадиных сил *. Тот Момент был началом электротехнической эры в промышленности. Но это не так много упоминается в американских учебниках, возможно, потому, что это сделало бы Томаса Эдисон выглядел менее гениальным.


НЕ ИСПОЛЬЗУЙТЕ ДРУГИЕ ЧАСТИ. Если лампочка не горит, обычно это потому что использовались разные части.Следовать инструкциям. Если вы поменяли магниты, ничего не получится. Так не используйте разные магниты. Если вы использовали другую лампочку, она не подойдет. Используйте детали из списка, не вносите изменений. Если вы не используете очень тонкий # 30 проволока покрытая лаком, то не пойдет. Так что не используйте другой провод. Не используйте разные части. Прежде чем тестировать что-либо еще, спросите себя, вы использовали детали из списка деталей? Если вы использовали разные детали, генератор выйдет из строя. Примечание: очень важно использовать детали перечисленные, и не используйте заменители.

ВРАЩАЙТЕ ЕГО БЫСТРО, В ТЕМНОМУ. Иногда ваш генератор работает нормально, но вы не вращаете его достаточно быстро. Или, возможно, тусклое свечение света в ярко освещенной комнате не хватает лампочки. Итак, идите в полумрак. Тогда крутите вещь ДЕЙСТВИТЕЛЬНО БЫСТРО. Попробуйте провернуть его старомодным дрель. (Электродрели не очень быстро вращаются.) Или попробуйте приклеить крошечный колесо к гвоздю, затем потрите колесо о вращающуюся шину с ног на голову велосипед (не езжайте слишком быстро, иначе лампочка перегорит.)

ДОБАВИТЬ БОЛЬШЕ ПРОВОДОВ. Если в вашей катушке больше 250 повороты, тогда лампочка загорится намного ярче. Тонкая катушка # 30 проволоки Radio Shack 200 футов в длину, что дает около 250 оборотов. Если бы вы могли намотать больше витков на катушке, тогда ваша лампочка загорится при более низкой скорости магнита. Купите два комплекта проволоки из Radio Shack, затем используйте обе катушки №30. Соскребите каждый кусочек красного пластикового покрытия со всех концов проводов. Затем крутить конец новой катушки до конца старой.Это создает единый более длинный провод. Обязательно намотайте лишнюю проволоку в такой же направление как раньше.

Лучший источник провода: купите большой «Соленоид». от компании, занимающейся доставкой по почте, затем используйте плоскогубцы, чтобы открыть металлический скобка. Отверстие в соленоиде проходит через квадратную стальную пластину, и если вы подденьте остальную часть стальной рамы наружу, вы можете удалить квадратную пластину и выньте катушку с проволокой. Снимите ленту и намотайте 600 оборотов на свой генератор. НЕ ИСПОЛЬЗУЙТЕ ДРУГИЕ МАГНИТЫ, используйте большой 2-дюймовый прямоугольный магниты, продаваемые Radio Shack, №64-1899, смотрите их сайт.Или попробуй Образовательные инновации Teachersource.com или попробуйте magnetsrc.com. Они стоят около 2 долларов за штуку и не имеют отверстий в центре. Не используйте магниты Radio Shack размером менее 1 дюйма. Большинство других магнитов слишком слабый и не будет работать, если вы не раскрутите магниты невероятно быстрые, при тысячах оборотов в минуту (оборотов на минут)

ИСПОЛЬЗОВАНИЕ МАЛЕНЬКИХ МАГНИТОВ
Если вы не можете дождаться почтового заказа нужного магнитов, вместо них вы можете использовать двадцать магнитов Radio Shack 1 «64-1879 Склейте их вместе, чтобы получились два больших магнита.

Вот как я это сделал. Сначала сформировал две стопки магнитов: приклеил десять магниты в двух отдельных стопках по пять магнитов в каждой. Я использовал 5-минутную эпоксидную смолу. Прежде чем клей застынет, отрегулируйте магниты так, чтобы стороны каждого маленького стопки плоские и сотрите излишки эпоксидной смолы. (Чтобы стороны стали плоскими, я положил каждую стопку на алюминиевую фольгу, прижал их, чтобы выровнять магниты, затем отклеил фольгу, когда клей затвердел.) Затем приклейте два из этих стопок по 5 магнитов вместе, так что стопки отталкиваются друг с другом.См. Схему ниже. Склейте узкую сторону вместе, чтобы блок будет шириной 2 дюйма. Затем держите их вместе, пока клей не затвердеет. Таким образом N полюс одного стека находится рядом с полюсом N другого, а S — около S.

Научный проект самодельного генератора

| Sciencing

Обновлено 13 ноября 2018 г.

Ма Вэнь Цзе

Изготовление самодельного генератора — простой проект, который будет хорошо работать на многих научных ярмарках. Простые генераторы постоянного тока (DC) производились более ста лет из общедоступных материалов.Самодельный генератор может быть хорошей основой для объяснения как магнитных, так и электрических принципов.

Материалы

Поскольку базовый генератор очень прост, его можно сделать из легко доступных компонентов. Для базового генератора вам понадобится магнит, немного проволоки и большой гвоздь. Лампа фонарика низкого напряжения может показать, что генератор действительно вырабатывает электричество. Картон станет каркасом для генератора, а недорогая розетка для лампочки позволит легче удерживать лампочку от источников питания от генератора.

Конструкция

Сделайте из картона прямоугольную опорную коробку. Коробка должна быть высотой 8 см, шириной 8 см и глубиной 3,5 см. Проделайте отверстие в коробке на узкой оси. Отверстие должно быть отцентрировано с обеих сторон, так как гвоздь станет осью для магнита. Проденьте гвоздь в коробку и приклейте к гвоздю четыре магнита. Лучше всего подходят сильные керамические магниты. Оберните проволоку вокруг коробки, чтобы гвоздь проткнул проволоку. Провод должен быть изолирован, чтобы не произошло короткого замыкания.Снимите изоляцию с концов провода, подсоедините его к лампочке или патрону и закрутите гвоздь с прикрепленными магнитами. Лампочка должна слабо светиться. В некоторых случаях вам может потребоваться выключить свет, чтобы увидеть слабое свечение. Чтобы луковица стала ярче, крутите ноготь быстрее. Если вы хотите крутить магниты быстрее, вставьте конец гвоздя в электродрель. Будьте осторожны, не вращайте генератор слишком быстро, иначе он может развалиться.

Как это работает

В проводе есть потенциал для электричества.Магнитные поля, окружающие магниты, изменяют полярность атомов в металле, вызывая высвобождение электронов. Чем быстрее магниты вращаются в металлической катушке, тем больше электронов высвобождается и тем выше напряжение, создаваемое генератором. Чем больше витков проволоки, тем больше напряжение. Если ваш генератор не производит электричество, попробуйте больше катушек провода и убедитесь, что провод не оборван и не закорочен из-за плохой изоляции.

Для более подробного объяснения посмотрите видео ниже:

Другие идеи и советы

Если вы хотите сделать генератор, который будет хорошо работать с дрелью, подумайте об использовании оргстекла для блока генератора.Он будет сильнее физически и лучше покажет вращающиеся магниты. Для более сложных научных проектов гвоздь можно заменить осью, которая соединяется с лопастями вентилятора, чтобы сделать ветрогенератор.

Изготовление генератора из электродвигателя

Старый электродвигатель можно использовать в качестве генератора. Электродвигатель состоит из витков проволоки вокруг вращающегося магнита. В электродвигателе электричество проходит через катушки, что заставляет магниты вращаться. Вращающиеся магниты и ось обеспечивали питание любого устройства, использовавшего двигатель.Если вынуть двигатель из устройства и раскрутить ось, он станет генератором. Если вы предпочитаете не делать свой собственный генераторный механизм, можно провести несколько интересных экспериментов с ветроэнергетикой, используя лопасти вентилятора и электродвигатель.

AERO — 787 Системы без выпуска воздуха

ГИДРАВЛИЧЕСКАЯ СИСТЕМА

Гидравлическая система модели 787 без дренажа аналогична гидравлической системе традиционной архитектуры. Есть три независимых системы — левая, центральная и правая — которые совместно поддерживают основные приводы управления полетом, приведение в действие шасси, рулевое управление передним шасси, реверсоры тяги и закрылки передней / задней кромки.

Основным источником энергии для левой и правой систем являются насосы с приводом от двигателя, установленные на коробке передач двигателя. Кроме того, левая и правая системы питаются от гидравлического насоса с приводом от электродвигателя для пиковых нагрузок и для наземных операций.

Ключевым отличием традиционной гидравлической системы от 787 является источник энергии для центральной системы. В традиционной архитектуре центральная система приводится в действие двумя большими гидравлическими насосами с приводом от воздушной турбины, которые работают со скоростью примерно 50 галлонов в минуту (галлонов в минуту) при 3000 фунтов на квадратный дюйм (psi), чтобы удовлетворить максимальные требования к гидравлике для приведения в действие шасси. , срабатывание большой подъемной силы и основное управление полетом при взлете и посадке.В течение оставшейся части полета центральную систему питают два небольших (приблизительно 6 галлонов в минуту) гидравлических насосов с электрическим приводом.

В архитектуре 787 без дренажа центральная гидравлическая система приводится в действие двумя большими (приблизительно 30 галлонов в минуту при 5000 фунт / кв. Дюйм) гидравлическими насосами с приводом от электродвигателя. Один из насосов работает на протяжении всего полета, а другой — только во время взлета и посадки. Более высокое давление гидравлической системы 787 позволяет самолету использовать гидравлические компоненты меньшего размера, экономя как пространство, так и вес.

ЭЛЕКТРИЧЕСКАЯ СИСТЕМА

В 787 используется электрическая система, которая представляет собой гибридную систему напряжения, состоящую из следующих типов напряжения: 235 В переменного тока (В переменного тока), 115 В переменного тока, 28 В постоянного тока (В постоянного тока) и ± 270 В постоянного тока. Типы напряжения 115 В переменного тока и 28 В постоянного тока являются традиционными, в то время как типы напряжения 235 В переменного тока и ± 270 В постоянного тока являются следствием электрической архитектуры без утечки, которая приводит к значительно расширенной электрической системе, вырабатывающей вдвое больше электроэнергии, чем предыдущие модели самолетов Boeing. .Система включает шесть генераторов — по два на двигатель и два на ВСУ, — работающих при 235 В переменного тока, для снижения веса питающего устройства генератора. Система также включает розетки питания на земле для обслуживания самолетов на земле без использования ВСУ.

Генераторы напрямую связаны с коробками передач двигателя и поэтому работают с переменной частотой (от 360 до 800 Гц), пропорциональной частоте вращения двигателя. Этот тип генератора является самым простым и наиболее эффективным методом генерации, поскольку он не включает в себя сложный привод с постоянной скоростью, который является ключевым компонентом интегрированного приводного генератора (IDG).В результате ожидается, что генераторы будут более надежными, потребуют меньше обслуживания и будут иметь меньшие запасные расходы, чем традиционные IDG.

Электрическая система включает два отсека для электрооборудования и электроники (E / E), один в носовой части и один в корме, а также несколько удаленных блоков распределения питания (RPDU) для поддержки электрического оборудования самолета. Система экономит вес за счет уменьшения размера питателей. Ограниченное количество электрооборудования 235 В переменного тока подается из кормового отсека E / E, в то время как большая часть электрооборудования самолета, имеющего напряжение 115 В переменного тока или 28 В постоянного тока, поддерживается передним отсеком E / E и блоками RPDU, как схематично показано на рисунке 3. .Блоки RPDU в значительной степени основаны на твердотельных контроллерах мощности (SSPC), а не на традиционных тепловых автоматических выключателях и реле. Система ± 270 В постоянного тока питается от четырех блоков автотрансформатора-выпрямителя, которые преобразуют мощность 235 В переменного тока в ± 270 В постоянного тока. Система ± 270 В постоянного тока поддерживает несколько двигателей с регулируемой скоростью с большим номиналом, необходимых для архитектуры без утечки. К ним относятся двигатели компрессора наддува кабины, двигатели нагнетательных вентиляторов, компрессор системы выработки азота, используемый для инертизации топливного бака, и двигатели больших гидравлических насосов.

Система, как показано на рисунке 3, имеет две передние розетки внешнего источника питания 115 В переменного тока для обслуживания самолета на земле без ВСУ и две задние розетки внешнего источника питания 115 В переменного тока для работ по техническому обслуживанию, которые требуют работы двигателей с регулируемой скоростью большой номинальной мощности.

Рисунок 3

В электрической системе 787 используется система удаленного распределения, которая снижает вес и, как ожидается, снизит затраты на техническое обслуживание.


[+] Увеличить

Простой генератор простых чисел в Python

Только что изучил тему, поищите примеры в ветке и попробуйте сделать мою версию:

  из коллекций import defaultdict
# из pprint import pprint

импорт ре


def gen_primes (limit = None):
    "" "Сито Эратосфена" ""
    not_prime = defaultdict (список)
    число = 2
    пока limit равен None или num <= limit:
        если число в not_prime:
            для простого числа в not_prime [число]:
                not_prime [простое число + число].добавить (премьер)
            дель not_prime [число]
        else: # Простое число
            количество урожая
            not_prime [число * число] = [число]
        # Замечательно отлаживать это таким образом:
        # pprint ([num, dict (not_prime)], width = 1)
        # Вход()
        число + = 1


def is_prime (число):
    "" "Проверить, является ли число простым на основе Решета Эратосфена" ""
    вернуть num> 1 и list (gen_primes (limit = num)). pop () == num


def oneliner_is_prime (число):
    "" "Простая проверка, является ли число простым" ""
    вернуть num> 1, а не любое ([num% x == 0 для x в диапазоне (2, num)])


def regex_is_prime (число):
    вернуть ре.(11 +) \ 1 + $ '). Match (' 1 '* num) равно None


def simple_is_prime (число):
    "" "Простая проверка, является ли число простым
    Более эффективен, чем oneliner_is_prime, поскольку разрывает цикл
    "" "
    для x в диапазоне (2, число):
        если число% x == 0:
            вернуть ложь
    return num> 1


def simple_gen_primes (limit = None):
    "" "Генератор простых чисел на основе простого генератора" ""
    число = 2
    пока limit равен None или num <= limit:
        если simple_is_prime (число):
            количество урожая
        число + = 1


если __name__ == "__main__":
    less1000primes = список (gen_primes (limit = 1000))
    assert less1000primes == list (simple_gen_primes (limit = 1000))
    для числа в диапазоне (1000):
        утверждать (
            (число меньше 1000 простых чисел)
            == is_prime (число)
            == oneliner_is_prime (число)
            == regex_is_prime (число)
            == simple_is_prime (число)
        )
    print ("Простые числа меньше 1000:")
    печать (менее 1000 простых чисел)

    from timeit импорт timeit

    print ("\ nTimeit:")
    Распечатать(
        "gen_primes:",
        timeit (
            "список (gen_primes (лимит = 1000))",
            setup = "from __main__ import gen_primes",
            число = 1000,
        ),
    )
    Распечатать(
        "simple_gen_primes:",
        timeit (
            "список (simple_gen_primes (лимит = 1000))",
            setup = "from __main__ import simple_gen_primes",
            число = 1000,
        ),
    )
    Распечатать(
        "is_prime:",
        timeit (
            "[is_prime (num) for num in range (2, 1000)]]",
            setup = "from __main__ import is_prime",
            число = 100,
        ),
    )
    Распечатать(
        "oneliner_is_prime:",
        timeit (
            "[oneliner_is_prime (число) для числа в диапазоне (2, 1000)]",
            setup = "from __main__ import oneliner_is_prime",
            число = 100,
        ),
    )
    Распечатать(
        "regex_is_prime:",
        timeit (
            "[regex_is_prime (num) для числа в диапазоне (2, 1000)]",
            setup = "from __main__ import regex_is_prime",
            число = 100,
        ),
    )
    Распечатать(
        "simple_is_prime:",
        timeit (
            "[simple_is_prime (num) для числа в диапазоне (2, 1000)]",
            setup = "from __main__ import simple_is_prime",
            число = 100,
        ),
    )
  

Результат выполнения этого кода показывает интересные результаты:

  $ python prime_time.ру
Простые числа меньше 1000:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 , 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229 , 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379 , 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541 , 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691 , 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863 , 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]

Timeit:
gen_primes: 0.6738066330144648
simple_gen_primes: 4.738092333020177
is_prime: 31.83770858097705
oneliner_is_prime: 3.3708438930043485
regex_is_prime: 8.692703998007346
simple_is_prime: 0.4686249239894096
  

Итак, я вижу, что здесь у нас есть правильные ответы на разные вопросы; для генератора простых чисел gen_primes выглядит правильным ответом; но для проверки простых чисел лучше подходит функция simple_is_prime .

Это работает, но я всегда открыт для лучших способов сделать is_prime функцией.

Генераторные автоматические переключатели

- типы и описание

Майкл Чотинер

Поскольку перебои в подаче электроэнергии, вызванные экстремальными погодными явлениями, становятся все более распространенными в США, все больше и больше домовладельцев изучают варианты резервного питания. Было бы неплохо, если бы каждый дом был оборудован встроенным резервным генератором, который мог бы обеспечивать электроэнергией все домохозяйство во время отключения электроэнергии, и был бы оснащен автоматическим переключателем для включения подачи электроэнергии от генератора через секунду после отключения. сбой электроснабжения.

В то время как в некоторых более новых и более дорогих домах есть такие системы резервного питания, лишь немногие из них оснащены таким оборудованием. В отчете «Стоимость против ценности» журнала Remodeling Magazine за 2016 год указывается, почему: в среднем, модернизация системы аварийного резервного питания в жилых домах стоит около 15 000 долларов США, и владельцы могут рассчитывать на возмещение менее половины этой стоимости при перепродаже своих домов.

Сколько мощности ВАМ нужно?

Один из первых шагов при планировании стратегии аварийного электроснабжения - решить, что вам нужно использовать во время отключения и сколько энергии потребуется, чтобы вы могли быть уверены, что ваш генератор имеет достаточную выходную мощность.Самый доступный вариант - обойтись портативным генератором. Портативный генератор мощностью 7500 ватт может выдавать около 60 ампер при 120 вольт или 30 ампер при 240 вольт - мощности, достаточной для поддержания работы нескольких источников света и критически важных приборов, таких как холодильник, колодец или водоотливной насос, при отключении электроэнергии. Вам понадобится более дорогой генератор на 15000 ватт, чтобы также питать электрическую плиту или центральный кондиционер.

Но сам по себе портативный генератор неудобно использовать в качестве аварийного источника питания.Переносные генераторы с бензиновыми двигателями во время работы должны находиться на открытом воздухе, вдали от открытых окон и дверей. Кто захочет держать окно или дверь открытыми даже на щель в плохую погоду, чтобы проложить удлинители, идущие от генератора до холодильника или нескольких ламп во время отключения электроэнергии? Как бы вы вообще использовали портативный генератор для питания печи или котла, центрального кондиционирования воздуха, отстойника или колодезного насоса, электрической плиты или любых других приборов, которые обычно подключаются напрямую к выделенным цепям?

Войдите в безобидный переключатель...

Ответ - подключить генератор к главному центру нагрузки вашего дома с помощью ручного переключателя . Есть как минимум три хороших варианта:

1) Установите прерыватель обратного тока с выключателем блокировки генератора на главной сервисной панели вашего дома.

2) Установите простую блокировочную панель с двумя двухполюсными выключателями рядом с главной сервисной панелью вашего дома.

3) Установите панель безобрывного переключателя для управления критическими цепями, которые вам нужны, когда подача коммунальных услуг отключена.

Обратите внимание: проводка безобрывного переключателя НЕ предназначена для электриков без лицензии!

Подключение панели безобрывного переключателя не является обязанностью электриков, не имеющих лицензии. Умелые люди с базовым пониманием домашних электрических систем, расчета нагрузки и техники безопасности захотят тщательно рассмотреть варианты панели переключателей и решить, проконсультировавшись с профессионалом, что лучше всего будет работать с уже установленной электрической системой для их потребностей в аварийном питании. .

Если вы действительно хотите принять участие, вы можете сэкономить деньги, купив необходимые комплекты и / или компоненты самостоятельно и выполнив некоторые неэлектрические работы, такие как установка панелей и розеток там, где они необходимы.Но если вы не являетесь дипломированным электриком, не снимайте крышку с главной сервисной панели и не выполняйте электрические соединения самостоятельно. Это было бы опасно и, возможно, незаконно.

Вариант 1: прерыватель обратного тока с блокировочным выключателем

Один из подходов к подключению домашней электропроводки к резервному источнику питания - установка прерывателя обратного питания на главной сервисной панели. Это не передаточный переключатель, а более простая и менее дорогая альтернатива.

При установке выключателя с обратным питанием дополнительный автоматический выключатель устанавливается на главной сервисной панели и подключается для приема энергии от источника питания генератора и распределения ее по ответвленным цепям, подключенным к панели.Поскольку обратная подача электроэнергии через домашнюю сервисную панель к линиям электроснабжения может представлять серьезную угрозу поражения электрическим током для технических специалистов, которые могут работать с ними, следует установить прерыватель обратного питания вместе с защитой выключателя блокировки, что делает невозможным работу главного переключателя сервисной панели. и выключатель генератора должны быть одновременно включены.


Автоматический выключатель на главной электрической панели
(Изображение любезно предоставлено Schneider Electric.)

Как вы можете видеть на изображении выше, блокировочный комплект представляет собой физический барьер, который предотвращает одновременное включение главного выключателя и выключателя обратного питания во включенное положение, что делает невозможным подачу энергии генератора на сеть, что может поставить под угрозу техников, работающих на ваших электрических линиях.

Чтобы решение с прерывателем обратного тока было осуществимо, на панели должно быть как минимум два неиспользуемых слота прерывателя. Вам понадобится автоматический выключатель, совместимый с маркой вашей сервисной панели и силой тока вашего генератора. Обычно используется 30-амперный прерыватель для генераторов мощностью до 8000 ватт и 50-амперный прерыватель для генераторов мощностью от 8 500 до 15 000 ватт.

Поскольку прерыватель обратного тока распределяет мощность по каждой цепи, подключенной к главной панели, а портативные генераторы не могут обеспечить достаточную мощность для одновременного запуска всего в вашем доме, вам необходимо управлять нагрузкой на генератор во время чрезвычайной ситуации.Это достаточно легко сделать, отключив автоматические выключатели, управляющие второстепенными приборами и цепями, и включив цепи, которые могут вам понадобиться в любой момент. Например, если вы большую часть дня эксплуатировали электрическую систему отопления, вам, вероятно, придется отключить эту цепь, когда вам нужно будет включить электрическую цепь для приготовления ужина. Перегрузка генератора может привести к его необратимому повреждению.

Чтобы подключить генератор к выключателю обратного питания, вам необходимо установить всепогодную входную розетку (от 50 до 80 долларов) через стену дома в пределах 30 футов от главной сервисной панели и проложить кабель от входа к выключателю.Вам также понадобится 4-проводный кабель генератора для подключения генератора к входной розетке.

Вариант 2: Панель простого ручного переключателя


Ручной переключатель с одной нагрузкой.

Самая простая и наименее дорогая панель имеет один двухполюсный переключатель на 60 А, предназначенный для использования с генераторами на 120/240 В и мощностью до 15 000 Вт. Этот тип переключателя передает мощность генератора на всю сервисную панель, к которой он подключен. Как и в случае с установкой выключателя обратного тока, описанной выше, необходимо отключить второстепенные цепи в главной панели во время аварийной ситуации, чтобы избежать перегрузки генератора.

Вариант 3: Панель ручного автоматического включения с органами управления распределением

Более сложные панели ручного переключателя для дома поставляются в наборах, подходящих для работы на 30, 60 или 100 ампер, и предлагают до 16 элементов управления для отдельных аварийных цепей. Эти комплекты обычно включают в себя большинство компонентов, необходимых для полной установки, в том числе кабели, которые предварительно подключены к отдельным переключателям, защищенную от атмосферных воздействий коробку входных розеток и четырехжильный кабель для подключения его к панели переключателя.Самые полезные панели переключателей имеют встроенные измерители, которые помогают пользователям сбалансировать нагрузку и избежать перегрузки генератора.

Важно отметить, что автоматические выключатели на панели автоматического выключателя должны совпадать с автоматическими выключателями на главной панели с точки зрения типа защиты, которую они предлагают. Если в главном центре нагрузки используются прерыватели дуги или замыкания на землю или прерыватели цепи защиты от перенапряжения, они также должны использоваться в ручном переключателе. Посоветуйтесь со своим электриком и поищите панель автоматического выключателя со сменными выключателями.


30-амперный, 10-контурный переключатель панели управления от Reliance Controls.

Панели ручного переключателя

обычно устанавливаются в пределах нескольких футов от главной сервисной панели дома. Панель автоматического переключателя предварительно подключена к общему нейтральному проводу (белый), общему заземляющему проводу (зеленый) и паре горячих проводов (один красный, один черный), идущих от каждого переключателя. Красная и черная пары обычно кодируются буквой или цифрой, которые соответствуют переключателю на панели передачи, которая ими управляет.

Как вы можете видеть на приведенном выше рисунке, каждая панель переключения имеет максимальное количество цепей, которыми она может управлять. Все остальные цепи НЕ будут иметь генераторной мощности.

Ваш электрик проложит весь пучок проводов от распределительной панели к главной панели, обычно заключенный в гибкий кабелепровод. Жгут вводится в основную панель через заглушку и фиксируется кабельным зажимом. Белый и зеленый провода подключены к нейтральной шине на главной панели.(Некоторые панели имеют шину заземления в дополнение к нейтрали, и в этом случае к ней будет подключен зеленый провод.)

После того, как вы и электрик договорились о том, какие цепи вам нужно будет снабжать энергией генератора во время чрезвычайных ситуаций, он подключит отдельные переключатели нагрузки к этим цепям на главной панели. Для каждой цепи он отключит существующий провод от выключателя и соединит его с черным проводом, идущим от безобрывного переключателя. Красный провод от пары зажат в клемме выключателя.Для каждой 120-вольтовой цепи он будет работать с одним выключателем и одной красно-черной парой; на каждую 240-вольтовую цепь будет два выключателя и две красные и черные пары. Эта установка позволяет запитать схему от сети во время нормальной работы или от генератора, когда передаточный переключатель включен. Передаточный переключатель изолирует мощность генератора, поэтому она не может быть подана обратно в сеть.

В общем, ручной переключатель с одной нагрузкой, установленный профессионалом, займет от двух до трех часов и будет стоить от 300 до 500 долларов плюс стоимость генератора.Оборудование и профессиональная установка более сложной панели переключения передач займет от четырех до шести часов и будет стоить около 1000 долларов. Не дешево, но намного доступнее, чем встроенная система резервного копирования. Кроме того, вы можете взять этот портативный генератор с собой в переезд.

Наличие электричества в чрезвычайной ситуации еще более важно сейчас, когда мы полагаемся на так много электрических устройств в нашей повседневной жизни. Чтобы увидеть историю использования электроэнергии в США, вы можете просмотреть эту инфографику о потреблении энергии из The Home Depot.

Об авторе: Майкл Чотинер - бывший генеральный подрядчик, который пишет на различные темы с практическими рекомендациями, от установки двери до выбора панели выключателя. Щелкните здесь, чтобы увидеть варианты переключения передачи Home Depot, в том числе те, которые Майкл обсуждает в этой статье.

Вернуться к списку электротехнических изделий

Хранение электроэнергии | Агентство по охране окружающей среды США

Посмотреть интерактивную версию этой схемы >>

О накоплении электроэнергии

Электросеть работает на основе тонкого баланса между предложением (генерацией) и спросом (потребителями).Один из способов помочь сбалансировать колебания предложения и спроса на электроэнергию - хранить электроэнергию в периоды относительно высокого производства и низкого спроса, а затем возвращать ее в электрическую сеть в периоды более низкого производства или повышенного спроса. В некоторых случаях хранение может обеспечить экономические выгоды, надежность и экологию. В зависимости от степени развертывания, хранение электроэнергии может помочь коммунальной сети работать более эффективно, снизить вероятность сбоев во время пикового спроса и позволить создавать и использовать больше возобновляемых ресурсов.

Энергия может храниться различными способами, в том числе:

  • Насосная гидроэлектростанция. Электричество используется для перекачки воды в резервуар. Когда вода выпускается из резервуара, она стекает через турбину для выработки электроэнергии.
  • Сжатый воздух. Электричество используется для сжатия воздуха до 1000 фунтов на квадратный дюйм и хранения его, часто в подземных пещерах. Когда потребность в электроэнергии высока, сжатый воздух выпускается для выработки электроэнергии через турбодетандер.
  • Маховики. Электричество используется для разгона маховика (типа ротора), благодаря которому энергия сохраняется в виде кинетической энергии вращения. Когда требуется энергия, вращающая сила маховика используется для вращения генератора. В некоторых маховиках используются магнитные подшипники, они работают в вакууме для уменьшения сопротивления и могут достигать скорости вращения до 60 000 оборотов в минуту.
  • Батареи. Подобно обычным аккумуляторным батареям, очень большие батареи могут накапливать электричество до тех пор, пока оно не понадобится.В этих системах могут использоваться литий-ионные, свинцово-кислотные, литиево-железные или другие аккумуляторные технологии.
  • Накопитель тепловой энергии. Электричество можно использовать для производства тепловой энергии, которую можно хранить до тех пор, пока она не понадобится. Например, электричество можно использовать для производства охлажденной воды или льда в периоды низкого спроса, а затем использовать для охлаждения в периоды пикового потребления электроэнергии.

В дополнение к этим технологиям в настоящее время разрабатываются новые технологии, такие как проточные батареи, суперконденсаторы и сверхпроводящие магнитные накопители энергии.

Хранение электроэнергии в США

По данным Министерства энергетики США, по состоянию на март 2018 года в Соединенных Штатах было более 25 гигаватт накопительной мощности электроэнергии. Из этого общего количества 94 процента приходилось на гидроаккумулирующие установки, а большая часть этой гидроаккумулируемой мощности приходилась на установлен в 1970-х гг. Шесть процентов остальной емкости аккумуляторов составляют аккумулятор, теплоаккумулятор, сжатый воздух и маховик, как показано на следующем графике:

Источник: У.S. База данных по хранению глобальной энергии Министерства энергетики США (по состоянию на 1 марта 2018 г.).

Воздействие накопления электроэнергии на окружающую среду

Хранение электроэнергии может дать косвенные экологические выгоды. Например, накопление электроэнергии можно использовать для интеграции большего количества возобновляемых источников энергии в электрическую сеть. Хранение электроэнергии также может помочь генерирующим объектам работать на оптимальном уровне и сократить использование менее эффективных генерирующих агрегатов, которые в противном случае работали бы только в часы пик.Кроме того, дополнительная мощность, обеспечиваемая накоплением электроэнергии, может отсрочить или избежать необходимости строительства дополнительных электростанций или инфраструктуры передачи и распределения.

Возможные негативные последствия накопления электроэнергии будут зависеть от типа и эффективности технологии хранения. Например, в батареях используется сырье, такое как литий и свинец, и они могут представлять опасность для окружающей среды, если не утилизируются или не перерабатываются должным образом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *