Проверка контура заземления периодичность: Измерение сопротивления контура заземления — цены лаборатории на замер сопротивления заземления

Содержание

Периодичность проверки защитного заземления • Energy-Systems

Как часто следует проводить измерения сопротивления

Периодичность проверки защитного заземления регулируется правилами технической эксплуатации и устройства электроустановок, а также индивидуальной технической документацией зданий и сооружений. Периодичность измерений указывается в соответствующих графиках и таблицах необходимых профилактических работ, которые нужны для поддержания электрической системы в работоспособном и безопасном для пользователей состоянии.

Для многих объектов действующие правила требуют проведение визуального осмотра открытых частей заземления 1 раз в полгода и полное исследование и измерение параметров сопротивления 1 раз в год. Полное обследование предполагает выборочное вскрытие грунта.

Уровень сопротивления заземления на разных объектах следует проверять с разной периодичностью. Для заземления на опорах центральной линии электроснабжения проверка заземления осуществляется раз в полгода или раз в год для линий с напряжением до 1кВ и выше 1кВ соответственно.

В правилах устройства и эксплуатации электроустановок говорится о том, что общее техническое состояние системы заземления в электроснабжении ресторанов, магазинов и других зданий должно определяться на основе визуальных осмотров, проводимых профессиональными электриками. Такие осмотры позволяют определить наличие неисправностей и дефектов на видимых частях установок, а также на местах соединения системы заземления с элементами электрической системы.

Периодичность проверок сопротивления заземления визуальных определяется специальными плановыми графиками и обычно составляет 1 раз в каждые несколько месяцев. При этом ответственным лицом за проведение проверок в установленные сроки является собственник или уполномоченные собственником работники. Помимо прочего, в процессе визуальных осмотров профессионалы должны оценивать состояние соединения между электрическим оборудованием и проводником, проверять наличие изоляции и антикоррозийного покрытие, их состояние, следить за отсутствием обрывов на соединениях и т.

д. Все обнаруженные неисправности, дефекты и повреждения обязательно должны быть занесены в акты осмотра и паспорт заземления объекта.

Что касается более тщательных осмотров состояния системы заземления, включающих в себя вскрытие грунта в определенных местах, в частности на территориях, подверженных коррозии, рядом с расположением нейтралей трансформаторных подстанций, в местах соединения ограничителей и разрядников, то такие проверки проводятся значительно реже. Периодичность проведения подобных работ также указывается в графиках на профилактическое обслуживание объектов и регламентируется действующими нормативными документами, но в любом случае подобные проверки должны проводиться не реже, чем 1 раз в течение каждых 12-ти лет.

Пример технического отчета

Назад

1из27

Вперед

Проведение проверок состояния заземления в различных условиях

Периодичность замера сопротивления контура заземления на территории, отличающейся повышенной агрессивностью почвы также регламентируется действующими нормами, однако собственник вправе принять решение о более частом проведении подобных исследований, чтобы не подвергать опасности людей и свою собственность. При проверках на территориях с агрессивными грунтами обязательно следует проводить выборочное вскрытие почвы, чтобы можно было максимально точно определить уровень коррозии на наиболее подверженных такому влиянию элементах заземления. В случаях, когда часть заземления разрушено под воздействием коррозии на 50% или более, обязательно следует замена данного элемента. Любые результаты исследования и принятые решения по устранению неисправностей должны заноситься в специальные акты.

Чтобы определить общее техническое состояние системы заземления, специалисты должны провести ряд работ и исследований, включающих в себя определение уровня сопротивления заземления, проверка уровня напряжения прикосновения, проверка токов на электрической установке, проверка состояния и работоспособности предохранителей и защитных устройств, определение точных параметров сопротивления почвы.

Любые измерения по уровню сопротивления заземления должны осуществляться в периоды, когда грунт обладает наивысшими характеристиками заземления. В большинстве случаев – в зимнее или летнее время. Зимой сопротивление почвы значительно возрастает из-за промерзания грунта, а летом из-за высыхания жидкостей в земле.

Помимо плановых проверок уровня сопротивления на заземляющем устройстве, подобные измерения следует также выполнять при реконструкции или модернизации электрической системы, при внесении любых изменений в конструкцию заземления. Кроме того, проведение подобных работ требуется при обнаружении в ходе визуальных осмотров серьезных неисправностей или повреждений системы.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Онлайн расчет стоимости проектирования

Ростехнадзор разъясняет: Проведение электроизмерительных, электромонтажных на подъемных сооружениях

Вопрос от 17.07.2019:

В управление поступило обращение по вопросу эксплуатации электрооборудования потребителя, переданного на обслуживание специализированной организации по договору, и о работах с настила мостового крана?

Ответ: В соответствии с Положением о Федеральной службе по экологическому, технологическому и атомному надзору, утвержденным постановлением Правительства Российской Федерации от 30. 07.2004 № 401, Федеральная служба по экологическому, технологическому и атомному надзору является органом федерального государственного энергетического надзора и осуществляет контроль и надзор в сфере безопасности электрических и тепловых установок и сетей (кроме бытовых установок и сетей).

В соответствии с пунктом 46.1. Правил по охране труда при эксплуатации электроустановок, утвержденных Приказом Минтруда Российской Федерации от 24.07.2013 № 328н [»] (далее — ПОТЭЭ) – к командированному персоналу относятся работники организаций, направляемые для выполнения работ в действующих, строящихся, технически перевооружаемых, реконструируемых электроустановках, не состоящие в штате организаций — владельцев электроустановки. То есть работники специализированной организации, эксплуатирующие электроустановки потребителя являются командированным персоналом.

Согласно пункта 46.7. ПОТЭЭ — командирующая организация несет ответственность за соответствие присвоенных командированному персоналу групп и прав, предоставляемых ему в соответствии с пунктом 46. 3 Правил, а также за соблюдение им Правил. К работам допускается подготовленный персонал, прошедший стажировку. Для этого в соответствии с пунктом 46.3. ПОТЭЭ — командирующая организация в сопроводительном письме должна указать цель командировки, а также работников, которым будет предоставлено право выдачи наряда, право быть ответственными руководителями, производителями работ, членами бригады, а также подтвердить группы этих работников.

В соответствии с пунктом 2.12.14. Правил технической эксплуатации электроустановок потребителей (ПТЭЭП) — при высоте подвеса светильников до 5 м допускается их обслуживание с приставных лестниц и стремянок. В случае расположения светильников на большей высоте разрешается их обслуживание с мостовых кранов, стационарных мостиков и передвижных устройств при соблюдении мер безопасности, установленных правилами безопасности при эксплуатации электроустановок и местными инструкциями.

Согласно пункта 2.6. ПОТЭЭ — работы, выполняемые на высоте более 5 м от поверхности земли, перекрытия или рабочего настила, над которыми производятся работы непосредственно с конструкций или оборудования при их монтаже или ремонте с обязательным применением средств защиты от падения с высоты, относятся к специальным работам.

Работники, обладающие правом проведения специальных работ, должны иметь об этом запись в удостоверении о проверке знаний правил работы в электроустановках, форма которого предусмотрена приложением № 2 ПОТЭЭ.

Так же в соответствии с пунктом 3.1. Правил по охране труда при работе на высоте, утверждённых приказом Минтруда России от 28.03.2014 № 155н, зарегистрированным в Минюсте России 05.09.2014 № 33990 [»] — в зависимости от условий производства все работы на высоте делятся на:

  • а) работы на высоте с применением средств подмащивания (например, леса, подмости, вышки, люльки, лестницы и другие средства подмащивания), а также работы, выполняемые на площадках с защитными ограждениями высотой 1,1 м и более;
  • б) работы без применения средств подмащивания, выполняемые на высоте 5 м и более, а также работы, выполняемые на расстоянии менее 2 м от не ограждённых перепадов по высоте более 5 м на площадках при отсутствии защитных ограждений либо при высоте защитных ограждений, составляющей менее 1,1 м.

На основании вышеизложенного, работы по замене электроламп в светильниках с настила мостового крана относятся к специальным работам.


Вопрос от 25.09.2018:

В управление поступило обращение о разъяснении периодичности проверки заземления электрических кранов, с определением его сопротивления, понятие заземления электрических кранов, целесообразность ежегодной проверки, что входит в проверку, а также периодичность измерения сопротивления заземления рельсовых путей ПС?

Ответ: Согласно ч.1 ст.9 Федерального закона № 116-ФЗ «О промышленной безопасности опасных производственных объектов»:

Организация, эксплуатирующая опасный производственный объект, обязана: соблюдать положения настоящего Федерального закона, других федеральных законов, принимаемых в соответствии с ними нормативных правовых актов Президента Российской Федерации, нормативных правовых актов Правительства Российской Федерации, а также федеральных норм и правил в области промышленной безопасности.

Федеральными нормами и правилами «Правила безопасности опасных производственных объектов, на которых используются подъемные сооружения», утвержденные приказом Федеральной службы по экологическому, технологическому и атомному надзору от 12.11.2013 № 533, зарегистрированные в Министерстве Юстиции Российской Федерации от 31.12.2013 за per. № 30992 [»] (далее — ФНП по ПС), установлены требования к периодичности проверок заземления электрических кранов (подъемных сооружений) и измерения сопротивления заземления рельсовых путей подъемных сооружений (далее — ПС).

В соответствии с п.п.216, 217, 218 ФПН по ПС:

Периодическое комплексное обследование рельсовых путей проводится специализированными организациями и включает выполнение комплекса работ, в том числе подготовку результатов комплексного обследования: оформление инструментальных замеров, включая измерения сопротивления его заземления, и составление ведомости дефектов. Комплексное обследование рельсовых путей (наземных и надземных) должно проводиться не реже одного раза в три года, а также после подтоплений, наводнений, землетрясений, селей, произошедших на территории нахождения ПС.

В соответствии с п. 174 «г» ФНП по ПС:

состояние изоляции проводов и заземления электрического крана с определением их сопротивления проверяется при техническом освидетельствовании.

Согласно п. 169 ФНП по ПС: ПС в течение срока службы должны подвергаться периодическому техническому освидетельствованию:

а) частичному — не реже одного раза в 12 месяцев;

б) полному — не реже одного раза в 3 года, за исключением редко используемых ПС (ПС для обслуживания машинных залов, электрических и насосных станций, компрессорных установок, а также других ПС, используемых только при ремонте оборудования, для которых полное техническое освидетельствование проводят 1 раз в 5 лет).

Пунктом 170 ФНП по ПС установлены случаи, после которых проводится внеочередное полное техническое освидетельствование ПС, а также п.62 ФНП по ПС предусмотрено, что после монтажа и наладки ПС к акту о монтаже прилагаются протоколы замера сопротивления изоляции проводов и системы заземления.

В соответствии с п. 172 ФНП по ПС:

Результатом технического освидетельствования является следующее:
а) ПС и его установка на месте эксплуатации соответствуют требованиям эксплуатационной документации и настоящих ФНП;
б) ПС находится в состоянии, обеспечивающем его безопасную работу.

Согласно п. 194 ФНП по ПС: записью в паспорте действующего ПС, подвергнутого периодическому техническому освидетельствованию, должно подтверждаться, что ПС отвечает требованиям настоящих ФНП, находится в работоспособном состоянии и выдержало испытания.

В соответствии с п.255 ФНП по ПС:

Эксплуатирующая организация не должна допускать ПС в работу, если при проверке установлено, что:
д) на ПС выявлены технические неисправности, в том числе: неработоспособность заземления, гидро-, пневмо- или электрооборудования, указателей, ограничителей (ограничители рабочих параметров и ограничители рабочих движений), регистраторов, средств автоматической остановки, блокировок и защит (приведены в паспорте или руководстве по эксплуатации ПС).

Таким образом, проверка заземления электрических кранов (ПС) при периодических технических освидетельствованиях целесообразна и необходима для обеспечения безопасной эксплуатации подъемных сооружений.

Согласно п. 1.7.28. Правил устройства электроустановок: «Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством».

Заземление электроустановок, в том числе кранов, выполняется в соответствии с утвержденной проектной документацией, выполненной согласно требованиям Правил устройства электроустановок.

В соответствии с п. 3.6.2 Правил технической эксплуатации электроустановок потребителей (далее — ПТЭЭП), утвержденных приказом Минэнерго РФ № 6 от 13.01.2003г. (зарегистрированных в Минюсте РФ 22.01.2003, регистрационный № 4145) сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее — К), при текущем ремонте (далее — Т) и при межремонтных испытаниях и измерениях, т. е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее — М), определяет руководитель Потребителя на основе приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий. Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1 — 28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.

Согласно п. 3.6.3. ПТЭЭП для видов электрооборудования, не включенных в настоящие нормы, нормы и сроки испытаний и измерений параметров должен устанавливать технический руководитель Потребителя с учетом инструкций (рекомендаций) заводов-изготовителей.

В разделе 26 приложения 3 ПТЭЭП указаны требования к проверке заземляющих устройств, в том числе кранов. При этом установлено, что проверка наличия цепи заземления проводится не реже 1 раза в год.

При возникновении несогласованности требований правил применяются те требования, которые не ведут к снижению надежности и безопасности эксплуатации электроустановок.


Вопрос от 10.07.2015 — Журнал «Безопасность труда в промышленности»:

B соответствии с п. 174 Федеральных норм и правил в области промышленной безопасности «Правила безопасности опасных производственных объектов, на которых используются подъемные сооружения» [»] (далее — ФНП по ПС) при техническом освидетельствовании подъемных сооружений (ПС) должны проверять изоляцию проводов и заземление электрических кранов с определением их сопротивления. Прошу разъяснить, разрешается ли при техническом освидетельствовании ПС, поднадзорных Ростехнадзору, проводить испытания изоляции проводов и заземления электрических кранов с определением их сопротивления обученным работникам из числа электротехнического персонала эксплуатирующей организации или эти испытания следует выполнять с применением установок (электролабораторий), которые должны быть зарегистрированы в федеральном органе исполнительной власти, осуществляющем федеральный государственный энергетический надзор? Какие требования распространяются на данные испытания для электрических кранов (кран-балок), неподнадзорных Ростехнадзору? Е. Г. Илюхин

На вопросы читателя отвечает начальник Управления государственного строительного надзора Ростехнадзора М.А. Климова.

Согласно Инструкции о порядке допуска в эксплуатацию электроустановок для производства испытаний (измерений) — электролабораторий, введенной в действие письмом Минэнерго России от 13 марта 2001 г. № 32-01-04/55, регистрация электролабораторий не нужна, если испытания и измерения в процессе монтажа, наладки и эксплуатации электрооборудования не требуют оформления протоколов или других официальных документов. При этом в организации должны быть в наличии необходимые поверенные приборы, методики измерений, электротехнический персонал, прошедший проверку знаний и имеющий соответствующую группу по электробезопасности согласно требованиям, которые определены в главе XXXIX Правил по охране труда при эксплуатации электроустановок, утвержденных приказом Минтруда России от 24 июля 2013 г. № 328н [»].

Таким образом, организация может проводить испытания (измерения) изоляции проводов, сопротивления заземления электрических кранов (кран-балок) в соответствии с нормами, указанными в приложении № 3 Правил технической эксплуатации электроустановок потребителей (далее — ПТЭЭП), утвержденных приказом Минэнерго России от 13 января 2003 г. № 6, с составлением документов для собственных нужд в целях проверки электробезопасности.

Проверка заземления

Проверку заземления реализует компания «ИНТЕХ» (Москва). Чтобы получить КП на проверку заземления, позвоните по телефону: +7(495) 146-67-66. Отправить письменную заявку Вы можете на email [email protected] или через форму заказа.

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

Наши преимущества:

10

10 лет стабильной и успешной работы

500

Выполнено более 500 000 м2

Почему у нас лучшая цена?

24

Минимальные сроки

100

100% контроль качества

5

5 лет гарантии на выполненные работы

1500

1500 м2 площадь собственных складских помещений

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Общий порядок технического обследования

В основу главных подходов к проверке качества заземления заложены известные методики измерения его сопротивления растеканию тока на землю. При оценке этой величины контролю подлежат как отдельные элементы, так и контактные зоны контура заземления, который начинается от защищаемого участка и кончается точкой соприкосновения заземлителя с грунтом. В процессе проведения работ особое внимание уделяют частям конструкции заземления, имеющим непосредственный контакт с грунтом и подвергающихся повышенному коррозийному воздействию.

Дело в том, что в результате разрушения металла в зоне контакта снижается его электропроводность и повышается сопротивление растеканию тока. В результате этого показатели надёжности ЗУ, а также эффективность его действия заметно ухудшаются. Для проверки и оценки состояния металлических переходов отдельных элементов заземлителя используются специальные измерительные приборы (омметры). Они обеспечивают снятие показаний с допустимой погрешностью.

Обратите внимание, что указанная процедура проверки проводится, как правило, в рамках рабочих операций, предполагающих комплексное испытание заземляющих устройств на их соответствие требования ПУЭ.

Проведение проверки тесно связано с измерением протекающего в контуре тока, в соответствии с которым и рассчитывается величина нормируемого ПТЭЭП сопротивления. При необходимости это значение может снижаться путём увеличения площади контакта с землёй или изменения электрической проводимости грунта. С этой целью в конструкцию контура заземления добавляются дополнительные металлические стержни, либо повышается концентрация соли в районе его непосредственного соприкосновения с почвой.

Обследуемая заземляющая цепь считается соответствующей требованиям ПУЭ и нормам безопасности лишь в тех случаях, когда величина суммарного сопротивления всех её элементов не превышает определённого значения. На основании полученных в процессе проверки результатов представителями специальных измерительных лабораторий составляется акт о состоянии обследуемой системы и выдаётся разрешение на её дальнейшую эксплуатацию.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем. 

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

Периодичность проверки

Действующими нормативами (ПТЭЭП, в частности) устанавливается периодичность проведения обследований заземления на предмет его соответствия заданным параметрам. Указанная цикличность отражается в специально подготовленном графике планово-предупредительных работ (ППР), который утверждает ответственный за объект.

Помимо этого, согласно п. 2.7.9. уже рассмотренных Правил обязательны визуальные осмотры открытых частей заземления, организуемые с периодичностью не реже 1 раза в полгода. Этим же документом предусматривается и обследование устройства с выборочным вскрытием почвы в районе размещения элементов заземлителя (в этом случае испытания проводятся не реже раза за 12 лет).

Периодические измерения сопротивления устройств заземления организуются согласно приложению №3, п. 26 ПТЭЭП и различаются по типам питающих линий.

При этом возможны следующие варианты:

  • в линиях с питающим напряжением до 1000 Вольт проверка заземления проводится не реже чем 1 раз за 6 лет;
  • для ВЛ питания с рабочим напряжением выше 1000 Вольт такая проверка должна проводиться не реже 1 раза за 12 лет.

Важно! Оговоренные в нормативной документации сроки проверки учитываются при составлении графиков и согласуются со всеми службами, имеющими непосредственное отношение к проводимым работам.

Оформление результатов

По результатам всего комплекса проведённых испытаний составляется протокол проверки заземляющего устройства, в котором обязательно указываются измеренные параметры заземления и даются рекомендации по дальнейшей эксплуатации системы.

Необходимость в организации и проведении полного комплекса измерительных мероприятий чаще всего возникает по окончании реконструкции или ремонта всей системы заземления. В отдельных случаях проверочные испытания проводятся после обнаружения серьёзных нарушений правил эксплуатации.

Значения нормируемых показателей работоспособности таких систем (удельная проводимость грунта и сопротивление установки току растекания) при различных типах заземления нейтрали приведены в табл.36 ПТЭЭП (Приложение 3.1).

Систематические проверки работоспособности заземления гарантируют эффективную защиту потребителя от поражения током и обеспечивают полную безопасность эксплуатации любых видов электрооборудования.

«ИНТЕХ» — инжиниринговая компания. На нашем ресурсе air-ventilation.ru Вы можете узнать необходимую информацию и получить коммерческое предложение.

Проверку заземления реализует компания «ИНТЕХ» (Москва). Чтобы получить КП на проверку заземления, позвоните по телефону: +7(495) 146-67-66. Отправить письменную заявку Вы можете на email [email protected] или через форму заказа.

Получите коммерческое предложение на email:

Нужна консультация? Звоните:

Отзывы о компании ООО «ИНТЕХ»:

Информация, размещенная на сайте, носит ознакомительный характер и ни при каких условиях не является публичной офертой.

Измерение сопротивления заземляющих устройств — МАКС-ЭНЕРГО в Самаре и Тольятти

Измерение сопротивления контура заземления специалистами электротехнической лабораторией проводится для того, чтобы установить соответствие имеющихся сопротивлений в цепи заземления предусмотренным стандартами значениям. Периодичность электротехнических измерений контура заземления определяет владелец. Она устанавливается в зависимости от уровня нагрузок при эксплуатации контура заземления. Рекомендуется проводить данную проверку минимум раз в год (см. п.п. 2.7.9, 2.7.13, 2.7.14, табл. 36 ПТЭЭП,  п. 1.7.101 ПУЭ).

Проведение измерения сопротивления контура заземления позволяет своевременно обнаружить и устранить риск поражения электрическим током.

 Чтобы обеспечить максимально точные результаты замеров, работы должны производиться при сухой погоде, когда высокое удельное сопротивление грунта. При измерении сопротивления заземления учитывается форма заземляющего устройства, состояние и вид почвы, погодные условия.

Измеренные показатели сопротивления контура заземления зависят от геометрических параметров устройства заземления и его расположения в земле, а также от свойств грунта, характеризующихся его удельным сопротивлением. Определение значения удельного сопротивления почвы затруднено в связи с неоднородностью строения и состава почвы, влиянием показателей температуры, влажности и других факторов.

Измерение сопротивления заземляющих устройств.

Наряду с изоляцией, заземление является важнейшим средством защиты от поражения током, определяющим электробезопасность. На первый взгляд может показаться странным в буквальном смысле этого слова «закапывать деньги в землю». Но когда речь идет о здоровье и жизни человека, то любые затраты, позволяющие предотвратить несчастный случай или смягчить его последствия, будут оправданы! Для этого применяется рабочее заземление, заземление молниезащиты и защитное заземление.

Рабочее заземление — это преднамеренное соединение с землей определенных точек электрической цепи (например, нейтральных точек обмоток генераторов, силовых и измерительных трансформаторов, а также при использовании земли в качестве обратного провода). Рабочее заземление предназначено для обеспечения надлежащей работы электроустановок в нормальных и аварийных условиях и осуществляется непосредственно или через специальные устройства (пробивные предохранители, разрядники, резисторы).

 Заземление молниезащиты — это преднамеренное соединение с землей разрядников и молниеприемников в целях отвода от них токов молнии в землю.

Защитное заземление — это заземление, выполняемое в целях электробезопасности (согласно п. 1.7.29 Правил устройства электроустановок издания 7, далее — ПУЭ) т.е. намеренное соединение с землей металлических нетоковедущих частей, которые могут оказаться под напряжением и предназначенное для защиты людей от поражения током при случайном прикосновении. Кроме того заземляющие устройства выполняют другие функции, связанные с безопасностью: снимают заряд статического электричества на взрыво- и пожароопасных объектах (например, на АЗС). Опасное напряжение на любой проводящей ток поверхности может оказаться по различным причинам: заряды статического электричества, вынос потенциала, разряд молнии, наведенное напряжение и пр.

Измерение сопротивления заземляющих устройств. Условия проведения работ?

1. Измерение сопротивления заземляющего устройства проводят в сухой период года.
2. Растворенные в воде соли и минералы придают почве свойства электролита, поэтому для измерения сопротивления заземления необходимо использовать переменный ток.
3. Чтобы избежать влияния токов промышленной частоты и их высших гармоник, применяют не кратную 50 Гц (60 Гц) частоту измерительного напряжения.
4. Наилучшую точность измерения заземления обеспечивает схема 4p по методу 62%.
5. Измерение сопротивления с помощью двух клещей имеет методическую погрешность, поэтому его рекомендуется применять только в многоэлементных системах заземления.
6. Метод Веннера позволяет быстро и просто измерить удельное сопротивление грунта.

Измерение сопротивления контура заземления | Вольт Энерго

Электролаборатория ВОЛЬТ ЭНЕРГО предоставляет услугу по измерению сопротивления контура защитного заземления на объектах заказчика по всей Украине.

Данный вид электроизмерений позволяет определить качество соединений узлов устройств, правильность выбора материала и варианта конструкции.

Измерение сопротивления контура защитного заземления — одно из испытаний, проведение которого является обязательным.

Увеличение количества и мощности электропотребителей приводит к повышению рисков поражения электрическим током людей. Поэтому, меры электробезопасности, применяемые на объекте, должны служить безотказно. Контур заземления —
непосредственная часть этих мер.

Данное электроизмерение состоит из нескольких этапов :
  • проверка на целостность и надежность заземляющего устройства путем визуального осмотра
  • проверка наличия цепи и качества контактных соединений заземляющих устройств и защитных проводников
  • непосредственное измерение сопротивления контура защитного заземления

Все результаты проведенных испытаний оформляются протоколами электроизмерений, которые в свою очередь объединяются в Техническом отчете, содержащем всю информацию о реальном положении дел на объекте заказчика.

Измерение заземления

Замер контура заземления позволит определить качество соединений узлов того или иного устройства, а также правильность варианта конструкции и выбора материала. В начале проверки необходимо осуществить поверхностный осмотр заземляющего контура. Как правило, осмотр осуществляется методом постукивания молотком в местах сварки. Это необходимое мероприятие для того, чтобы проверить прочность затяжки болтов и отсутствие трещин на сварочных соединениях. Только после этого можно начинать измерение сопротивления заземления.

Особенности проведения замеров

Согласно ПУЭ для обеспечения безопасности, замер контура заземления должен проводиться минимум раз в год. Сопротивление заземляющего устройства с напряжением до 1000 В не должно составлять больше 4-х Ом, при напряжении в сети менее 500-т В – 3 Ом.

После замера сопротивления заземления, электроподключение проводится через пяти- или трехпроводное подсоединение. То есть, если необходима 1 фаза, то используется фазный проводник, нейтраль и защитное зануление (проводник, не имеющий заряда).

Наша электротехническая лаборатория осуществляет замер сопротивления заземления в удобное для заказчика время. Перед началом проведения замеров необходимо согласовать с Подрядчиком предполагаемое время проведения работ. В результате оказанной услуги заказчику выдаются: акты выполненных работ, протоколы измерений, дефектный акт, технический отчет, карта нагрузок.

Периодичность проведения электроизмерений контура заземления

Измерения сопротивления контура заземления проводятся согласно нормативным документам – ПУЕ, ПТЕЕС, и должно осуществляться не реже 1 раза в год для электроустановок особо опасных условий эксплуатации – лифты, прачечные, бани, кухни/столовые, грузоподъемные машины и механизмы и т.д., согласно ПТЕЕС, Приложение 1, табл. 25, п.3 в.
Для силовых подстанций – после монтажных работ и ремонта — 1 раз в 6 лет ПТЕЕС глава 7, п.7.7, — а также после монтажных работ, переоборудования, ремонта электроустановок — ПТЕЕС Приложение 1, табл. 25, не реже чем 1 раз в 12 лет., и в соответствии, с установленной на предприятии системою ТОР (технического обслуживания и ремонта) см. Примечания К, М. к данной таблице.
Как правило, проводится вместе с остальными основными электроизмерениями (сопротивление изоляции, фаза-ноль, металлосвязи)

Измерение сопротивления заземления: проверка, периодичность, порядок проведения

Контроль состояния изоляции важен, прежде всего, для обеспечения безопасности обслуживающего персонала электроустановок. Но для того, чтобы предотвратить поражение человека электрическим током в случае возникновения нештатной ситуации, выполняется заземление открытых частей оборудования, которые могут попасть под напряжение свыше 1 кВ. Измерение сопротивление заземления производится для того, чтобы определить состояние заземляющих устройств. Задача ЗУ состоит в отведении электрического тока от оборудования через заземляющие электроды в почву.

Периодичность проведения измерений

Замер сопротивления контура заземления осуществляется непосредственно после окончания монтажных работ, после ремонта ЗУ или переоборудования подстанций, электростанций или ЛЭП. Это необходимо также в случае обнаружения следов перекрытия на тросовых опорах ВЛЭП напряжением 110-150 Кв, а также в случае повреждения изоляторов.

Измерение сопротивления заземляющих устройств проводится для определения соответствия этого оборудования требованиям ПУЭ и ПТЭЭП. Этими документами установлена следующая периодичность выполнения работ:

  • для подстанций — каждые 12 месяцев, кроме того проверке подлежит 2% опор ЛЭП, установленных на участках с кислыми почвами;
  • для опор с разъединителями, разрядниками и защитными промежутками – каждые 6 месяцев;
  • для опор с повторным заземляющим контуром – каждые 6 месяцев.

Работы следует выполнять в летнее время при сухой почве: в этом случае сопротивление заземления будет иметь наибольшее значение. Таким способом можно определить его истинное состояние. Следует учитывать, что вероятность поражения электрическим током снижается при уменьшении значения сопротивления заземления.

Порядок проведения измерений

Измерительные работы выполняют комплексно. Вместе с определением состояния ЗУ проводятся следующие мероприятия:

  • проверка работоспособности аппаратуры защиты от токов КЗ: измеряется ток однофазного замыкания и сопротивление контура «фаза-нуль»;
  • проверка защитных аппаратов при помощи петли «фаза-ноль»;
  • проверка защитных автоматов от токов КЗ и перенапряжений (выполняется методом прогрузки автоматов с использованием устройства, моделирующего скачки напряжения). Во время этой проверки напряжение на установку подается скачкообразно.

После окончания проведения комплекса измерений составляется протокол и технический отчет с выводами о работоспособности проверяемых устройств.

О возможных последствиях отсутствия контроля сопротивления заземления

Заземление увеличивает срок службы бытовых электроприборов и оберегает обслуживающий персонал электроустановок на производстве. При нарушении изоляции любого бытового устройства вероятно короткое замыкание, последствиями которого может быть выход прибора из строя и пожар. В том случае, если повреждение изоляции фазного провода приведет к возникновению его контакта с токопроводящими частями корпуса устройства, возникнет опасность для жизни человека.

Отсутствие или неисправность в системе заземления может привести к выходу из строя всех устройств, подключенных к электропроводке и возникновению опасности для жизни человека при попадании в здание молнии.

Как измерить сопротивление заземления

Для того, чтобы измерить сопротивление заземления, нужно измерить падение напряжения при прохождении тока по цепи, состоящей из проводников и испытуемого защитного заземлителя.

Сопротивление ЗУ с присоединенной нейтралью генераторов или нулевой клеммой трансформаторов в промышленных электроустановках вне зависимости от температуры и влажности почвы должно быть не более: 8 Ом для напряжения 220 В, 4 Ом – для 380 В, 2 Ом – для 127 В (для однофазного тока). Для выполнения работы используются измерители различных типов, в том числе отечественного производства – М416 и Ф4103-М1.

Измеритель М416 отличается надежностью и простотой, работает в диапазоне 0,1 – 1000 Ом в четырех диапазонах: 0,1 – 10; 0,5 – 50; 2,0 – 200 и 100 – 1000 Ом. Прибор питается от встроенных элементов, обеспечивающих суммарное напряжение 4,5 В. Для того, чтобы выполнить измерения с помощью М416, необходимо выполнить следующее.

  1. Убедиться в наличии элементов питания в измерителе.
  2. Переключатель установить на «Контроль 5 Ом» и после нажатия кнопки установить стрелку на нулевую отметку индикатора, вращая ручку реохорда.
  3. По схеме, указанной на внутренней стороне крышки, собрать схему, подключив провода к указанным клеммам.
  4. Вспомогательные заземлитель и зонд углубить на глубину 0,5 м в грунт и подключить их к проводам.
  5. Переключатель перевести в положение «Х1».
  6. Нажать кнопку, после чего с помощью реохорда установить стрелку на отметку «ноль».
  7. Полученный результат умножить на установленный множитель.

Еще по теме:

Периодичность электроизмерений электрооборудования

 

Существует несколько типов электроизмерений, проводимых электролабораторией. Все они имеют различные требования и периодичность.

Проверка состояния элементов заземляющих устройств электроустановок проводится путем контроля монтажа и определения соответствия состояния элементов электроустановки требованиям ГОСТ, ПУЭ или ПТЭЭП. Один из основных критериев проверки – коррозионное состояние. В случае если уровень коррозий элемента достигает 50%, требуется его немедленная замена. Периодичность измерений определяется пользователем, согласно нормам проверка со вскрытием грунта, должна осуществляться не менее, чем раз в двенадцать лет.

Виды электроизмерений электролаборатории и их периодичность

Замеры переходных сопротивлений между заземляющими проводниками и заземлителями, заземляющими проводниками и заземляемыми элементами, а также проверка наличия металлической цепи. Устанавливается соответствие имеющихся в цепи сопротивлений требованиям ПУЭ и ПТЭЭП, согласно которым сопротивление контактного соединения не должно превышать 0,05 Ом. Максимально допустимый период между измерениями – 3 года, как правило во время эксплуатационных испытаний.

Измерение удельного сопротивления земли. Проводится путем определения точного уровня сопротивления между плоскостями куба земли с ребром один метр. Замеры берутся не на всей территории объекта, а только на участке, где установлены заземляющие элементы. Для разных типов поверхностей предусмотрены различные нормативы. Измерения проводятся при установке оборудования и каждые три года с момента начала эксплуатации.

Измерение сопротивления заземляющих устройств различных  типов. Заключается в установлении соответствия сопротивления растеканию тока контура заземления нормативным документам. Периодичность измерений определяется владельцем электроустановки и зависит от уровня эксплуатационных нагрузок, рекомендовано проводить проверки не менее одного раза в год.

Измерение сопротивления растеканию тока заземляющего устройства. Проводится путем создания искусственной цепи осуществляется проверка комплекса заземлителей на соответствие нормативам ПУЭ и ПТЭЭП. Так, в установках с напряжением в 600 В сопротивление не должно превышать 2 Ом, с напряжением 380 В – 4 Ом, с напряжением 220 В – 8 Ом. Измерения проводятся с периодичностью раз в 3 года с момента ввода в эксплуатацию, а также после капитальных ремонтов и во время эксплуатационных испытаний.

Проверка систем молниезащиты. Проводится установление соответствия ПУЭ и ПТЭЭП. Процедура измерений включает в себя проверку проектной документации, визуальный осмотр, создание искусственного напряжения для определения уровня защиты. В зависимости от типов зданий осуществляется раз в 3 года или чаще.

Измерение сопротивления изоляции кабелей, обмоток электродвигателей, аппаратов, дополнительных цепей и электрических проводок, а также электрического оборудования напряжением до тысячи вольт. Измерения осуществляются перед вводом в эксплуатацию, не менее одного раза в год для уличных сооружений или особо опасных и не менее одного раза в три года для других электроустановок.

Испытание повышенным напряжением электрооборудования и кабельных линий. Проводится путем создания условий искусственного напряжения. Устанавливается соответствие ПТЭЭП, ГОСТ Р и ПУЭ. Периодичность измерений зависит от технического регламента объекта: проверка проводится перед началом использования оборудования, после каждого технического ремонта, в случае возникновения неполадок. Профилактические измерения должны осуществляться не менее чем 1 раз в 3 года.

Измерение сопротивления петли «фаза-нуль» (тока однофазного короткого замыкания) в установках напряжением до тысячи вольт с глухо заземлённой нейтралью. Проводится перед вводом в эксплуатацию, а так-же не реже одного раза в три года для определения чувствительности системы к однофазным замыканиям.

Проверка срабатывания защиты при системе питания с заземленной нейтралью. Проводится путем создания условий искусственного замыкания. Периодичность измерений: один раз в год для сооружений 1 и 2 категории, не менее одного раза в три года для сооружений 3 категории.

Проверка автоматических выключателей в электрических сетях напряжением до тысячи вольт на срабатывание по току короткого замыкания и перегрузки. Установление соответствия данным завода изготовителя и ГОСТ Р. Проводится перед началом эксплуатации, во время приёмо-сдаточных испытаний, а так-же один раз в три года во время эксплуатационных испытаний.

Проверка устройств защитного отключения. Проводится путем установления исправности аппарата, соответствия подключения эксплуатационным требованиям, имитации условий утечки тока в цепи. Рекомендуемая периодичность проверок УЗО заводом изготовителем – один раз в квартал путём нажатия кнопки «тест». Для целей эксплуатационных испытаний, проводится проверка времени и тока утечки УЗО, проводится один раз в три года.

Проверка устройств АВР. Тестирование автоматического ввода резерва путем создания искусственных аварийных условий. Проводится перед вводом в эксплуатацию, после капитального ремонта, а также в сроки, установленные техническим регламентом конструкции.

Похожие статьи

Поддержите наш проект, поделитесь ссылкой!

Общие сведения о контурах заземления — Рекомендации по применению


Контуры заземления могут быть настоящей помехой в системах сбора данных HVAC, поскольку их трудно обнаружить. В большинстве случаев они не причиняют вреда, но могут вызвать непредсказуемые проблемы спустя годы после установки!

Что такое контур заземления?

Контур заземления образуется, когда между клеммами «заземления» двух или более единиц оборудования имеется более одного токопроводящего пути. Проводящая петля образует большую рамочную антенну, которая легко улавливает токи помех.Чем больше петля, тем больше помех; если вы используете стальной каркас здания в качестве основания, то петля может быть такой же большой, как и все здание. Сопротивление заземляющих проводов превращает токи помех в колебания напряжения в системе заземления. Земля больше не стабильна; поэтому сигналы, которые вы пытаетесь измерить, относящиеся к этой земле, также нестабильны и неточны.

Наземные символы
Наземная мифология

Универсальная концепция, которой преподают в технических школах и инженерных колледжах, заключается в том, что «земля» всегда имеет нулевое напряжение, может бесконечно поглощать электрический ток и мгновенно безвредно рассеивать ток.Однако идеальная почва — это лабораторная абстракция, которой не существует в реальном мире.

Настоящее заземление — это проводник, поэтому между всеми точками заземления существует определенное сопротивление электрическому току. Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Сопротивление всегда может позволить электрическому напряжению существовать на нем. Большие токи, проходящие через землю, вызовут падение напряжения в проводниках заземления, и потребуется время, чтобы рассеяться.

Департамент сельскохозяйственной инженерии Университета штата Мичиган измерил сопротивление заземления на входах в электрические сети и обнаружил, что на территории здания может изменяться напряжение до 2 В. Фактически, Национальный электротехнический кодекс (NEC) допускает изменение заземления на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока (дополнительную информацию об исследовании штата Мичиган и NEC см. Ниже в разделе «Ссылки». код).

Понимание того, что идеального заземления не существует в реальном мире, является первым шагом к устранению помех контура заземления, когда они возникают.Если вы помните, что каждое заземление в здании имеет разный и произвольный «нулевой» потенциал, то вы можете спроектировать надлежащие системы заземления.

Если основания такие порочные, зачем вообще заземление?

Земля необходима по двум причинам: безопасность и безопасность.

Статья 250 NEC устанавливает, что изолированные вторичные обмотки понижающих распределительных трансформаторов должны быть заземлены на входе в здание. Земля представляет собой медный стержень, вбитый как минимум на 8 футов в землю.NEC требует, чтобы конструкционная стальная рама, водопроводные трубы и другие крупные металлические предметы были соединены с землей входа в здание. Если изоляция провода выходит из строя или провод непреднамеренно отсоединяется и соприкасается с металлическим предметом, большие токи короткого замыкания протекают от распределительного трансформатора к земле. Эти чрезмерные токи размыкают предохранители и автоматические выключатели, предотвращая нахождение оборудования под более высоким потенциалом, чем у ближайшей раковины или строительной конструкции. Если заземление в распределительном щитке по какой-либо причине отключается, то заземление входа питания здания на трансформаторе обеспечивает протекание чрезмерного тока короткого замыкания, размыкая предохранители и автоматические выключатели.Защита здания от огня и находящихся в нем людей от поражения электрическим током является основной функцией системы заземления распределения электроэнергии.

Вторая проблема безопасности заключается в том, чтобы поддерживать оборудование в пределах его нормального рабочего диапазона напряжения. Большинство современных прямых цифровых контроллеров (DDC) будут работать правильно без заземления где-либо. Единственная загвоздка в том, что незаземленное оборудование может накапливать большие статические заряды из-за утечки изоляции. Первый человек, который подходит и касается оборудования, испытывает ужасный шок.Если статический заряд становится достаточно высоким, он разряжается до ближайшего проводника с более низким потенциалом. Мгновенные токи разряда могут достигать нескольких тысяч ампер и разрушать электронные компоненты системы. Заземление системы позволяет зарядам рассеиваться без повреждений.

Помехи сигналам от контуров заземления

Контуры заземления позволяют электрическим и магнитным помехам создавать источники напряжения шума. Эти источники напряжения добавляют к измеряемому сигналу и неотличимы от правильного сигнала.Контроллер, не зная, что он считывает неправильное значение, выполняет неправильное управляющее действие. Это может создать неудобные условия для пассажиров. Он также может приводить в движение механическое оборудование, вызывая преждевременный износ оборудования.

Помехи сигналам от магнитной индукции

Основными источниками этих шумовых проблем являются магнитная индукция и дисбаланс грунта.

Любая петля из проводящего материала образует однооборотный трансформатор, если присутствует магнитное поле, и магнитные поля возможны везде, где используется напряжение переменного тока.Магнитные поля создаются переменным напряжением, текущим по проводу, двигателями или люминесцентными лампами. В цепях очень низкого уровня оборванные провода, движущиеся в магнитном поле земли, могут даже вызвать проблемы. Магнитное поле заставляет ток течь в петле из проводящего материала, а сопротивление петли создает напряжение из этого тока.

Чем сильнее магнитное поле или чем выше частота магнитного поля, тем сильнее протекает ток. Закон Ома гласит, что ток, умноженный на сопротивление, равен напряжению.Таким образом, чем больше ток, тем больше источник шума напряжения.

На левом рисунке ниже показан контур заземления под действием магнитного поля. Магнитное поле заставляет электрический ток течь в контуре заземления. Сопротивление контура преобразует ток в источник напряжения между входом заземления контроллера и клеммой заземления датчика, как показано на правом рисунке ниже.

Контур заземления в магнитном поле (вверху слева) и напряжение датчика и напряжение контура заземления (вверху справа)

Помехи сигналам из-за дисбаланса грунта

Электрические нагрузки могут варьироваться в зависимости от здания, создавая различные токи в системе заземления.Если в системе заземления протекает большой ток и датчик помещен в цепь с заземлением, которая также имеет контур заземления, то к сигналу добавляется разница напряжений между двумя точками заземления.
На рисунке ниже слева показан источник тока повреждения, подающий ток в систему заземления. Если, как в исследовании штата Мичиган, напряжение в системе заземления составляет два вольта, то к сигналу датчика добавляется напряжение повреждения в два вольта, как показано на рисунке ниже справа.

Дисбаланс заземления (слева), напряжение датчика и напряжение контура заземления
Закрытие

Контуры заземления могут сделать лучшую систему управления неэффективной. Если вы считаете, что контуры заземления могут вызывать проблемы с вашей системой HVAC / R, позвоните своему представителю BAPI или загрузите примечание по применению BAPI: Избегайте контуров заземления с нашего веб-сайта по адресу www.bapihvac.com

Список литературы

ANSI / NFPA 70, Национальный электротехнический кодекс 2002 — Национальная ассоциация противопожарной защиты
Стратегии строительства для минимизации паразитного напряжения на молочных фермах, Университет штата Мичиган
Генри Отт, Методы снижения шума в электронных системах, 2-е издание, Wiley and Sons, Нью-Йорк, Нью-Йорк , 1988

Michigan State Univ.Исследование и код NEC

Департамент сельскохозяйственной инженерии Мичиганского государственного университета измерил сопротивление заземления на входах в электрические сети и обнаружил:
«Если заземляющий стержень сервисной панели вбить на 8 футов во влажную землю, которая не является настоящим песком, сопротивление между заземляющим стержнем и землей может быть всего 20 Ом. Предположим, что когда в здании используется электроэнергия, одна десятая ампера нейтрального тока течет на землю через заземляющий стержень. Основной электрический закон, называемый законом Ома, гласит, что ток, умноженный на сопротивление, равен напряжению.Умножение тока заземляющего стержня (0,1 ампера) на сопротивление заземляющего стержня (20 Ом) дает 2 вольта. Если один щуп вольтметра касается заземляющего стержня, а другой щуп вольтметра вдавливается в землю так далеко от заземляющего стержня, насколько это возможно для проводов, измеритель будет показывать примерно 2 вольта ».

Код NEC

Национальный электротехнический кодекс (NEC) также не помогает решить эту проблему. Статья 250 NEC требует, чтобы параллельные цепи заземлялись до ближайшего местного заземления здания, где бы в здании ни находились панели ответвительных цепей.Цифры в статье 250 показывают заземление на строительную сталь. Как указано в статье штата Мичиган, «территория» здания может варьироваться в зависимости от их измерений на величину до 2 вольт. Статья 647.4 (D) NEC (статья 647 называется «Чувствительное электронное оборудование») позволяет заземлению изменяться на 2,5% от напряжения параллельной цепи или на 3 вольта RMS для цепи 120 В переменного тока.


Версия этого документа в формате pdf для печати

Системный шум и контуры заземления

Контроллеры вибрации очень чувствительны к электрическому шуму, и этот шум часто виден на графиках тестовых сигналов.Он исходит от двух разных источников шума в системах вибрационных испытаний, шума контура заземления и электромагнитных помех (EMI). Оба они могут вызвать множество проблем.

EMI

EMI также называют радиочастотными помехами (RFI) и радиочастотным шумом. Это может быть вызвано системой связи, такой как радио CB, но чаще всего из-за работы электронных устройств, практически что угодно, от электродрели до открывателя гаражных ворот до балластов люминесцентных ламп; EMI могут быть вызваны даже линиями электропередач.

EMI может оказать значительное влияние на систему испытаний на вибрацию, когда окружающая среда является электрически зашумленной. Длинные кабели, плохо экранированные кабели, компоненты и определенные усилители иногда могут действовать как антенны, улавливать электромагнитные помехи и вносить их в систему.

Шум контура заземления

В электрических и электронных системах слово «земля» имеет два разных значения в зависимости от контекста.

    1. В силовом электричестве земля — ​​это реальная физическая связь с землей.Его обычно называют землей.
    2. В электронике заземление не обязательно является соединением с реальной землей, а скорее является точкой отсчета для 0 вольт.

Контур заземления возникает, когда несколько устройств, каждое из которых имеет собственное заземление для системы электроснабжения, подключаются друг к другу через какой-либо тип сигнального или коммуникационного кабеля, который также имеет опорное заземление. Эта ситуация обеспечивает несколько путей к земле через несколько устройств, которые могут образовывать петлю или петли.Петли улавливают токи помех, создавая электрические помехи.

Простой контур заземления

Когда заземление является опорным нулевым напряжением электроники, оно служит базой для измерения любых других напряжений, которые могут генерироваться в системе. Когда на это опорное напряжение 0 Вольт влияют контуры заземления, оно больше не равно 0 Вольт; некоторый дополнительный уровень напряжения теперь присутствует в качестве эталона и может вызвать ошибки в измерениях, используемых системой.

Системы контроля вибрации

имеют полное заземление через набор соединительных кабелей, идущих от: (1) выхода контроллера к усилителю, (2) усилителя к встряхивателю, (3) встряхивателя к датчику управления и (4) датчик управления на вход контроллера.В дополнение к этому полному контуру одноточечных источников заземления, контроллер, усилитель и шейкер имеют ссылки на защитное заземление на землю. Эти многочисленные ссылки на землю и соединенные кабели имеют чрезвычайно высокий потенциал для создания контуров заземления.

Соединения и потенциальные контуры заземления в системе контроля вибрации

Узнать больше

Наш курс VRU «Системный шум и контуры заземления» дает более подробную информацию о шуме и контурах заземления, а также подробные инструкции по устранению проблем с шумом в вашей системе испытаний на вибрацию.

Шум и контуры заземления

Основы контура заземления

Что такое контур заземления?

Контур заземления возникает, когда есть более одного пути заземления между двумя единицами оборудования. В дублированные наземные пути образуют эквивалент рамочной антенны, которая очень эффективно улавливает помехи токи. Преобразование сопротивления свинца эти токи превращаются в колебания напряжения. Как следствие замыкания на землю индуцированные напряжения, заземление в система больше не стабильная потенциал, поэтому сигналы движутся на шуме.Шум становится частью программы сигнал.

Контур заземления — это обычное состояние проводки, при котором ток заземления может проходить по нескольким путям, чтобы вернуться к заземляющему электроду на СЕРВИСНОЙ ПАНЕЛИ. Все компьютеры с питанием от переменного тока подключены друг к другу через заземляющий провод в общей проводке здания. Компьютеры также могут быть соединены кабелями передачи данных. Поэтому компьютеры часто соединяются друг с другом более чем одним путем. Когда существует многолучевое соединение между компьютерными цепями, результирующее устройство известно как «контур заземления».Всякий раз, когда существует контур заземления, существует вероятность повреждения из-за ВНУТРЕННИХ СИСТЕМНЫХ ЗЕМНЫХ ШУМОВ.

Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в одна и та же система получает питание от другого заземления, чем другие компонентов, или потенциал земли между двумя частями оборудования не идентичный.

Обычно разность потенциалов в заземлении вызывает протекание тока. в межкомпонентных соединениях. Это, в свою очередь, модулирует вход схемы и обрабатывается как любой другой сигнал, подаваемый через нормальный входы.Вот пример ситуации, когда два заземляющего оборудования соединены между собой через заземление сигнального провода и заземляющий провод сети. В этой ситуации в проводе течет ток 1А. что вызывает разницу в напряжении 0,1 В между этими двумя устройствами. точки заземления.

Из-за разницы напряжений между электронными приборами сигнал в соединительном проводе видит эту разницу, добавленную к сигналу. Это можно услышать как гудение на проводе, потому что переменный ток привести к тому, что разность напряжений этих потенциалов земли также будет Напряжение переменного тока.Это одна из причин шума 50 или 60 Гц, который вы слышите. в аудиосигнале (или увидеть в видеосигнале раздражающие горизонтальные полосы).

Еще одна проблема — ток, протекающий в заземляющем проводе сигнального кабеля. Этот ток проходит по кабелю и через оборудование. Принадлежащий способ, которым curren parsses не разработан, это может вызвать много шума к оборудованию или другим проблемам (например, зависанию компьютера). Многие дизайнеры рассчитывают на то, что земля заземлена, и не оптимизируют их конструкция исключает их чувствительность к шумам от земли. Если вы дизайнер продукта, не забудьте позаботиться о том, чтобы контур заземления ток не вызывает проблем в вашем оборудовании, проектируя правильная схема заземления внутри оборудования.

Почему контур заземления является проблемой?

Контур заземления — распространенная проблема при подключении нескольких аудиовизуальных компоненты системы вместе, есть хорошее изменение, чтобы сделать неприятный контуры заземления. Проблемы контура заземления — одна из самых распространенных проблем с шумом в аудиосистемах. Типичным признаком проблемы с контуром заземления является слышно 50 Гц или 60 Гц (в зависимости от частоты сетевого напряжения, используемой в ваша страна) шум в звуке.Наиболее частая ситуация, когда вы сталкиваетесь с проблемами контура заземления, — это когда ваш система включает оборудование, подключенное к заземленной розетке, и антенная сеть или оборудование, подключенное к разным заземленным розеткам по комнате.

Все подключено к единой электросети, которая обычно подключается к все контакты заземления во всех розетках в одной комнате. Тогда антенная сеть также заземлен к той же точке заземления. Обычно это нормально, поскольку заземления соединены друг с другом только звездообразным образом от центрального заземляющего провода (ведущего к реальной Земле через заземление кабель или металлическая труба) кабели заземления проходят через силовые кабели в оборудование.

Как только вы примете во внимание, что часть вашего оборудования связана с экранированный кабель вы, скорее всего, столкнетесь с некоторыми проблемами. Вполне возможно, что токи могут течь от одной части оборудования в кабель заземления, в другую часть оборудования, а затем обратно в первую часть через экранированный аудиокабель. Эта проволочная петля также может улавливать помехи от близлежащих магнитных полей и радиопередатчиков.

В результате нежелательный сигнал будет усиливаться до тех пор, пока не будет слышно и явно нежелательно.Даже разница в напряжении ниже чем 1 мВ может вызвать раздражающий жужжащий звук в вашей аудиосистеме.

Проблема со слышимым шумом от вашей аудиосистемы, когда другой электронные компоненты (холодильник, кулер для воды и т. д.) могут быть результатом загрязненного заземляющего / нейтрального проводника в вашей проводке кондиционера и контур заземления в нашей аудиосистеме. Этот может произойти при включении определенного типа устройств. Обычно их мощность поставки нелинейны и выбрасывают мусор обратно на нейтраль и / или заземляющие проводники.Обычно линейные кондиционеры или устройства ИБП не подходят. все, что поможет решить эту проблему.

Распространенные причины проблем с компьютерной системой

Много раз, когда пользователь думает, что его система «плохая» или «испортилась» неисправность имеет электрическую или магнитную природу. Проблемы с монитором очень часто вызваны близлежащими магнитными полями, гармоники нейтрального провода или наведенные / передаваемые электрические помехи. Периодические зависания компьютеров очень часто вызваны: контур заземления, электрическое явление, которое иногда проявляется сам, когда система и ее периферийные устройства неправильно подключены к различных электрических цепей.Многие даже не знают, что их стена розетка правильно подключена и заземлена, что абсолютно необходимо для компьютера и периферийное оборудование для надежной и безопасной работы.

Вы исключили заземление в своей компьютерной системе? Контуры заземления могут вызвать проблемы с подключениями к локальной сети, если не правильно подключен. Контур заземления, вызванный подключением RS-232 к другому компьютеру может вызвать зависание компьютера.

Когда контур заземления не является проблемой

Контур заземления не вызывает проблем при соблюдении всех перечисленных ниже условий. вещь верна:

  • Ни один из проводов контура не пропускает ток
  • Петля не подвергается воздействию внешних изменяющихся магнитных полей.
  • Рядом отсутствуют радиопомехи

Если в каких-либо проводах есть ток, значит, есть потенциальная разница, которая заставляет ток течь и по другим проводам что вызывает проблемы.Петля также будет действовать как катушка и забирать ток из изменяющегося магнитного поля. поля вокруг него. Проволочная петля также действует как антенна, принимающая радио. сигналы.

О каком размере проблемы разности потенциалов земли идет речь?

В литературе говорится о синфазном шуме от 1 до 2 вольт в «хорошо заземленных» установках и более 20 Вольт в «слабо заземленных» установках. В литературе также говорится о токе, измеряемом в сети. служебное заземление (в большом здании) в амперах.

Откуда эта разница тока и напряжения?

Утечка тока конденсаторов между горячим и заземленным и между нейтралью и землей в течение Например, основные фильтры, вызовите ток в проводах заземления (и контурах заземления). Ток утечки обычно измеряется в миллиамперах (обычно меньше чем 1 мА в компьютерном оборудовании) на одно оборудование. Когда вы подводите итог, может быть, сотни такого оборудования вы легко можете получить в амперах.

Емкость между линией и землей больших нагревателей и двигателей, для Например, может быть намного больше, чем емкость конденсаторов фильтра.Токи от этого источника обычно порядка 1 ампер (а не 0,1 А или 10 А)

Даже очень небольшое индуцированное напряжение может вызвать очень большой ток в контур заземления, потому что сопротивление (и индуктивность) очень низкий. Эти токи действительно могут составлять десятки ампер. Индукция тока может быть вызвана, например, кабелями, по которым проходят большие токи. и от трансформаторов.

Что могут сделать эти заземляющие токи и разность напряжений?

Небольшая разница в напряжении просто приводит к добавлению шума к сигналам.Это может вызвать жужжание звука и помехи для видеосигнала. и ошибки передачи в компьютерные сети.

Более высокие токи могут вызвать более серьезные проблемы, такие как искрение в соединениях, повреждает оборудование и сгорает проводка. Мой собственный опыт в этой области ограничен к искрообразующим разъемам, нагревательным кабелям и поврежденным платам последовательного порта компьютера. Я читал о сгоревших сигнальных кабелях и дымящих компьютерах из-за перепад заземления и вызванные ими большие токи.Так что будьте осторожны об этой потенциальной проблеме и не выполняйте глупых установок.


Томи Энгдал <[email protected]>

Проблемы контура заземления и способы их устранения

Написано Томи Энгдалом, авторские права принадлежат Томи Энгдал 1997-2013 гг.

ПРИМЕЧАНИЕ: Информация, представленная здесь, считается правильной и доступна здесь автором. Автор этого документа не несет ответственности за какой-либо эффект, который может иметь эта информация или любое ее использование.

Документы использовались и рекомендовались многими людьми и считаются точными. Настолько точны, что их также называли GB AUDIO Ground loops DATA SHEET на своих веб-страницах (с моего разрешения).

Основы

Дилемма состоит в том, что решение «шумовых» проблем — это само по себе искусство. Поскольку это не возникает каждый день, у всех нас ограниченный практический опыт. Это породило индустрию для тех, кто теперь специализируется на решении проблем с шумом.

Для правильной работы необходима хорошая система распределения электроэнергии. аудиосистемы. Профессиональные аудиосистемы просто не работают хорошо с обычными удлинителями, идущими на сотни футов до сцены. Помимо питания, необходимо хорошее заземление всей системы. существенный.

Контур заземления — это состояние, при котором происходит непреднамеренное соединение с землей. через мешающий электрический проводник. Обычно подключение контура заземления существует, когда электрическая система подключена более чем через один путь к электрическому заземлению.

Когда два или более устройства подключены к общему заземление по разным путям, возникает контур заземления. Токи текут по этим многочисленным путям и развиваются. напряжения, которые могут вызвать повреждение, шум или 50 Гц / 60 Гц гул в аудио- или видеоаппаратуре. Чтобы предотвратить землю петли, все сигнальные земли должны идти в одну общую точку и когда невозможно избежать двух точек заземления, одна сторона должна изолировать сигнал и заземление от другой.

Суть в том, что идеальной «тихой» земли не существует.Основы всех проблем с шумом в системе заземления сводятся к тому, что такое нежелательный ток. За исключением больничных систем, определение в лучшем случае расплывчато. Стандартная система электрического заземления во всем здании не предназначена для постоянного протекания через нее тока — и, тем не менее, это так, вы не можете остановить это. Причина, по которой заземление не будет и никогда не будет абсолютно бесшумным, заключается в том, что провод заземляющего электрода представляет собой не что иное, как длинный провод от точки A до точки B.И чем длиннее провод, тем больше шума он улавливает.

Звуковые и видео люди имеют в виду тип шумной земли с термином, подобным контурам заземления: ток, протекающий по заземляющему проводнику оборудования, металл в здании и провод заземляющего электрода. Использование любой из сегодняшних стандартных однофазных систем переменного тока на 120 или 230 вольт создает потенциальные проблемы для аудиооборудования. У компьютерщиков такая же проблема в работе и так далее.

Обычно контуры заземления возникают постфактум, когда конечный пользователь винит установщика, установщик винит производителя и на самом деле никто не виноват.Ни производитель, ни установщик обычно не могут предсказать, где возникнет петля. Только после того, как система будет установлена, можно определить если проблема будет.

Проблемы контура заземления можно исправить и избежать. Это важно, чтобы продавец, заказчик и конечный пользователь знали что эта проблема может возникнуть. Спроектировать систему — хорошая идея. чтобы избежать наиболее очевидного источника такого рода проблем, а затем готов все же столкнуться с некоторыми проблемами при запуске системы.Проблема с контуром заземления может возникнуть в нескольких точках системы, и каждое возникновение проблемы необходимо устранять индивидуально.

Почему заземление так важно?

Заземление электрических систем требуется по ряду причин, главным образом для обеспечения безопасности людей, находящихся рядом с системой, и для предотвращения повреждения самой системы в случае неисправности. Функция защитного проводника или заземления состоит в том, чтобы обеспечить путь с низким сопротивлением для тока короткого замыкания, чтобы устройства защиты цепи сработали быстро и отключили питание.

Национальный электротехнический кодекс NEC определяет заземление как «проводящее соединение, независимо от того, намеренно или случайно между электрической цепью или оборудованием и землей, или с некоторыми проводящее тело, которое служит вместо земли ». Когда мы говорим о заземлении, на самом деле это два разные предметы, заземление и заземление оборудования. Заземление заземления — преднамеренное соединение проводника цепи, как правило, нейтрали с заземляющим электродом, помещенным в землю. Заземление оборудования предназначено для обеспечения правильной работы оборудования внутри конструкции. заземлен.Эти две системы заземления необходимо держать отдельно, за исключением соединения. между двумя системами, чтобы предотвратить разницу в потенциале из-за возможного пробоя из-за удар молнии. Назначение заземления помимо защиты людей, растений и оборудования — чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, EMI и RFI сигналы и помехи.

Неправильное заземление может создать смертельную опасность. Правильное заземление необходимо для правильной работы и безопасности. электрооборудования.Заземление может решить многие проблемы, но это также может вызвать новые. Одна из наиболее частых проблем — это называется «контур заземления».

Что вызывает гудение в аудиосистемах?

Аудио- и видеосистемы нуждаются в ориентире для их напряжений. Обычно называется общим или заземленным, хотя может и не быть фактически связанный с землей, эта ссылка остается на «нуле» вольт », в то время как другие сигнальные напряжения« качаются »положительным (вверху) и отрицательным (под этим. Физически общим может быть провод, след на печатная плата, металлическое шасси, практически все, что проводит электричество.В идеале это должен быть идеальный дирижер, но в любой практической системе это не так. По мере увеличения сложности и размера системы несовершенные проводимость общего (заземляющего) проводника неизбежно вызывает проблемы.

Гул и гудение (50 Гц / 60 Гц и его гармоники) возникают в несбалансированных системах, когда токи протекают в соединениях экрана кабеля между различными частями оборудования. Гул и гудение также могут возникать в сбалансированных системах, даже если они, как правило, более

Токи экрана кабеля и разность напряжений заземления вызываются несколькими механизмами.Второй наиболее распространенный источник шума и гудения — это разница напряжений между двумя защитными заземлениями, разделенными большим расстоянием, или разность напряжений между защитным заземлением и заземлением. (например, заземленная спутниковая антенна или источник кабельного телевидения). Эта проблема обычно называется «контур заземления». Это наиболее часто встречающийся при тяжелых проблемы с гудением.

Гул и гудение могут также индуцироваться магнитным или емкостным образом непосредственно в сигнальных кабелях. Или ток шума может просачиваться из сети через емкость между A.C. первичная и вторичная обмотка силового трансформатора обмотки, что приводит к тому, что часть линейного напряжения переменного тока будет ВСЕГДА иметь емкостную связь непосредственно с землей аудиосхемы. Этот сигнал линии электропередачи с емкостной связью обычно содержит значимые гармоники до 1 МГц и более. Эти сигналы вызывают протекание токов в экранах кабелей, таким образом добавляя этот шум непосредственно к звуковому сигналу.

Почему заземление без проблем сделать сложно?

Практически все проекты строительства передачи данных и трансляции выполняются. в проблемы заземления.Эти проблемы возникают в первую очередь потому что существует конфликт между вопросами безопасности (земля- ing для предотвращения поражения электрическим током) и электронного шумоподавления (используя «землю» в качестве электронной «свалки» для шумов и помех. ference.) Эти два использования часто несовместимы и могут иногда находятся в прямом конфликте друг с другом. Конечная цель хорошей схемы заземления — сохранение и соблюдение аспектов безопасности при получении возможно максимальное снижение шума. Обычно это нелегкая задача.

Почему контур заземления является проблемой?

Контуры заземления являются загадкой для многих людей. Даже инженеры-электронщики, получившие образование в колледже, могут не знать, что такое контуры заземления на самом деле. Инженеры сконцентрировались либо на распределении энергии (для электроэнергетической компании), либо на оборудовании, которое подключается к системе распределения электроэнергии. Не так много внимания уделялось распределению энергии и оборудованию как единому объекту, в котором возникают контуры заземления.

Контуры заземления являются наиболее частой причиной гудения частоты сети переменного тока в звуковых системах.Контуры заземления обычно можно определить по низкому гудению (60 Гц в США, 50 Гц в Европе) через звуковую систему. Контур заземления в силовом или видеосигнале возникает, когда некоторые компоненты в одна и та же система получает питание от другого заземления, чем другие компонентов, или потенциал земли между двумя частями оборудования не идентичный.

Контур заземления — распространенная проблема при подключении нескольких аудиовизуальных компоненты системы вместе, есть хорошее изменение, чтобы сделать неприятный контуры заземления.Контуры заземления обычно вызывают жужжание аудиосигналов и интерференционные полосы к изображению. Контур заземления делает систему чувствительной улавливать помехи от сетевой проводки, которые могут привести к неустойчивой эксплуатация оборудования или даже его повреждение. В некоторых статьях утверждается, что проблемы с проводкой и заземлением являются причиной до 80 процентов всех проблем, связанных с качеством электроэнергии, связанных с чувствительное электронное оборудование, такое как аудио / видео системы.

Аудио / видео и электроэнергетика разработали свои системы. и оборудование самостоятельно.В результате есть степень несовместимость. Обычно достаточно мощности. чувство безопасности распространения и эксплуатации недостаточно хорошее для AV-систем. Следствием этого является проблема помех контура заземления.

Всегда при работе с проблемами заземления помните, что не существует абсолютного основания . Есть определенное количество сопротивление электрическому току между всеми точками заземления. Этот сопротивление может меняться в зависимости от влажности, температуры, подключенного оборудования и многие другие переменные.Каким бы маленьким ни был сопротивление всегда может позволить электрическому напряжению существовать на нем когда между этими точками заземления течет ток (и почти всегда есть ток).

Проблемы с заземлением звуковой частоты обычно находятся в диапазоне низких милливольт, поэтому не должно быть большого вмешательства в систему заземления, чтобы вызвать проблемы в аудиосистемах.

Помните, что абсолютных оснований нет. Между всеми точками заземления существует определенное сопротивление электрическому току.Это сопротивление может изменяться в зависимости от влажности, температуры, подключенного оборудования и многих других переменных. Независимо от того, насколько мало, сопротивление всегда может позволить электрическому напряжению существовать на нем. Заземляющие провода между розетками и трансформаторами энергокомпании не являются идеальными проводниками, как и экран вашего коаксиального видеокабеля. Если бы это было так, контуры заземления не были бы проблемой. Эффекты контура заземления на видеоизображениях представлены в виде черной теневой полосы. по экрану или как разрыв в верхнем углу картинки.Это вызвано разными потенциалами земли в системе.

Общие темы

Бытовые аудио- и видеосистемы

Профессиональные аудиосистемы

Профессиональные видеосистемы

Сети передачи данных

Лабораторная среда

Советы по дизайну

Другая сопутствующая информация

НОВАЯ ФУНКЦИЯ: Обсуждение контура заземления

Дискуссионный форум проблем контура заземления на ePanorama.net Система дискуссионных форумов создана для обсуждения всех тем, связанных с контурами заземления, и проблем, которые, по вашему мнению, могут быть вызваны контуром заземления.

Полезные ссылки на другие сайты и статьи

    Общие учебные пособия
    Проблемы с заземлением электропроводки
    Установки аудио и видео систем
    Решение проблем
    Конструкция оборудования
    Полезные сайты

Откуда взялась вся эта информация?

Большая часть информации получена из моих личных знаний в этой области. У меня был опыт проектирования, создания, использования, обслуживания и поиск неисправностей во многих аудио-, видео- и компьютерных сетевых системах.Я также разработал электронные устройства для аудио, видео и телекоммуникационные приложения.

Когда я обнаружил проблемы со стойкостью на те системы, которые я попытался провести хорошее расследование, в чем причина проблемы и каковы разумные способы ее решения. Различные книги, журнальные статьи и техническая документация со многих веб-сайтов также был очень полезен, когда я собрал этот веб-документ.


Если у вас есть комментарии на этой странице, пришлите их мне по адресу [адрес электронной почты защищен] или оставьте комментарии по адресу Форум обсуждения проблем контура заземления.


Томи Энгдал <[email protected]>

Контуры заземления — обзор

1.10 Контуры заземления и излучаемые помехи

Ранее было сказано, что контуры заземления могут вносить значительный вклад в излучаемые электромагнитные помехи. Это важно, потому что такой излучаемый шум может влиять на другие чувствительные схемы аналогового или цифрового характера. Рассмотрим, например, сценарий, изображенный на рисунке 1.33.

Рисунок 1.33. Иллюстрация контуров заземления между разъемами карты.

На этом рисунке два разъема (разъем 1 и разъем 2) используются для реализации двух конфигураций платы драйвера / приемника. В разъеме 1 обратный ток от драйвера 1 может возвращаться через ближайший контакт заземления; некоторые из них, особенно на высоких частотах, могут вернуться через гораздо более удаленный заземленный контакт, ближайший к драйверу n. Площадь контура 1 (0) (драйвер 1 и контакт заземления 0), образованная обратным током драйвера 1 через его ближайший заземляющий контакт, намного меньше, чем площадь контура 1 ( n, ) (драйвер 1 и контакт заземления n ), вызванный некоторым обратным током, использующим контакт n разъема 1 в качестве его возврата.Также возможны другие сценарии использования обратным током других заземляющих контактов в разъеме 1. Поскольку область петли 1 ( n )>> область петли 1 (0), излучаемое излучение от разъема 1 может значительно увеличиться, особенно на высоких частотах, где значительная часть обратного тока может выбрать контакт n в качестве обратного. дорожка. Величина электрического поля от тока контура прямо пропорциональна не только самому току, но и площади контура, через которую проходит этот ток.

На рисунке мы также наблюдаем другой сценарий, очень распространенный на высоких частотах: емкостная связь между заземляющим контактом n в разъеме 1 и металлическим корпусом разъема ( C C3 , C C4 ). Дальнейшая связь приведет к емкостному соединению обоих разъемов 1 и 2. Часть тока заземления от разъема 1 будет течь в разъем 2 и его заземляющие штыри через емкостную связь. Общая площадь петли теперь становится суммой площадей петли, площадь петли 1 ( n ) + площадь петли 2 ( n ), что может создать еще большую проблему излучаемых выбросов.Количество излучаемых излучений, создаваемых областями контуров сигнальных / обратных токов, равно

(1,74) EV / м = 263 × 10−16F2HzAm2IampsRm,

, где F (Гц) — интересующая частота, A (м 2 ) — это площадь контура, образованная управляющим сигналом и обратным током, I (амперы) — величина тока, а R (м) — расстояние в метрах, на котором должно быть вычислено электрическое поле.

Предположим, например, сценарий на Рисунке 1.33, полное излучаемое электрическое поле можно приблизительно рассчитать для наихудшего сценария как

(1,75) | EtotalV / m | = | E10 | + | E1n | + | E2n |,

, где E 1 ( 0) , E 1 ( n ) и E 2 ( n ) — это электрические поля, создаваемые областями контура заземления через контакт 0, контакт n разъема 1 и штырь n разъема 2:

(1.76) E10V / m≅263 × 10−16f2Hzlooparea10Ig1ampsRm

(1.77) E1нВ / м≅263 × 10−16f2Hzlooparea1nIg2ampsRm

(1.78) E2nV / m≅263 × 10−16f2Hzlooparea2nIg4ampsRm.

При расчете I gl , I g 2 , I g3 и I g 4 , мы знаем, что

(1.79) I1 = Ig1 + Ig2 = Ig1 + Ig3 + Ig4,

и максимальное значение I 1 можно приблизительно рассчитать, используя выражение

(1,80) I1 = 5VZ0ohms.

Ток в I gl равен

(1.81) Ig1 = 5.0VZ0ohmsLg10Lg1n,

, где L g1 (0) и L g1 ( n ) — это индуктивность контура заземления через контакт (0) в разъеме 1 (область контура 1 (0)) и L g1 ( n ) — индуктивность контура заземления через контакт n в разъеме 1 (площадь контура l ( n )) соответственно. Таким же образом

(1.82) Ig2 = Ig3 + Ig4 = 5.0VZ0ohmsLg1nLg0n.

Обозначения L g1 ( n ) и L g0 ( n ) получены из индуктивности штыря, заданной как

(1.83) LpinnH = 10,16d⁢ln⁡Lr + L⁢ln⁡dr,

, где d — расстояние между сигналом и землей в дюймах. Член d будет либо d 1 , либо d 2 , как показано на рисунке 1.33 для L g0 ( n ) и L g1 ( n ) расчеты соответственно. L — длина пальца в дюймах, а r — радиус пальца. Таким же образом, как только мы вычислили I g2 , мы можем вычислить I g3 и I g4 следующим образом:

(1.84) Ig3 = Ig2Lg3Lg4Ig4 = Ig2Lg4Lg3,

, где L g3 , L g4 можно рассчитать по уравнению (1.84) с использованием d 3 , d на рисунке 4 .

Один из самых тривиальных выводов предыдущего анализа состоит в том, что добавление большего количества контактов заземления к разъему приблизит заземление к каждому сигналу и снизит индуктивность всего обратного пути. Другие вещи, которые можно сделать, — это переместить разъемы ввода-вывода как можно ближе друг к другу, никогда не направлять сигналы заземления от одного и того же источника на отдельные разъемы и обеспечивать более медленное время нарастания для драйверов.

Проблема паразитной емкости не только влияет на обратный путь тока земли, но ее совокупное воздействие от многих разъемов может искажать передаваемые сигналы. Поэтому очень желательны проводники с минимальной паразитной емкостью. Влияние паразитной емкости на разъемы показано на рисунке 1.34.

Рисунок 1.34. Влияние паразитной емкости на разъемы.

При передаче сигнала общая паразитная емкость земли на каждом ответвлении шины будет обеспечивать некоторые паразитные искажения.Эта кумулятивная емкость, представленная на рисунке 1.34, может быть результатом (1) межконтактной емкости разъема на печатной плате, (2) емкости трассировки от разъема к локальным драйверам и приемникам или ( 3) входная емкость местного приемника плюс выходная емкость драйверов.

Емкость трассы определяется как

(1,85) CpF / дюйм = tdZ0,

, где t d — это распространение трассы в пс / дюйм, а Z 0 — полное сопротивление трассы в Ом.Один из примеров правильного расположения выводов сигнала и заземления в разъеме показан на рисунке 1.35.

Рисунок 1.35. Правильное расположение выводов сигнала и заземления (темные) в разъеме.

WTF Есть контуры заземления? | Hackaday

Эти волшебные существа появляются из ниоткуда и поджаривают вашу электронику или раздражают ваши ушные раковины. Понимание их, несомненно, сэкономит вам деньги и нервы. В двух словах, контур заземления — это то, что происходит, когда два отдельных устройства (A и B) отдельно соединяются с землей, а затем также подключаются друг к другу через какой-то кабель связи с землей, создавая петлю.Это обеспечивает два отдельных пути к земле (B может проходить через собственное соединение с землей или может проходить через землю кабеля к A, а затем к земле A), и означает, что ток может начать течь непредвиденным образом. Это особенно заметно в аналоговых аудиовизуальных установках, где результатом является гудение звука или видимые полосы на изображении, но также иногда является причиной необъяснимых отказов оборудования.

Вы можете найти петлю?

Один из примеров — кабельное телевидение. Это аналоговый сигнал, который поступает в ваш дом и заземляется в одном месте, обычно за пределами вашего дома.Кабель извивается к вашему развлекательному центру, где он подключается к ресиверу, который заземлен в другом месте. Это создает петлю и, благодаря электромагнитной индукции, связанной со всеми видами сигналов переменного тока вокруг, паразитный ток, который затем течет через различные цепи. Другой способ думать об этом — как о половине трансформатора; это одиночный контур, и значительная часть этого контура — это сразу после от живого провода электросети здания с постоянно изменяющимся током.В звуковом оборудовании нередко бывает гул с частотой 50 или 60 Гц из-за влияния контуров заземления.

Решение

Теперь, когда вы эксперт, решить проблему (или полностью ее избежать) довольно просто. Самый надежный способ — разрезать петлю, то есть удалить кабель или заменить его чем-то, кроме провода. Вы можете переключиться на беспроводную связь, такую ​​как Bluetooth или WiFi. Некоторые проводные протоколы используют дифференциальные сигналы вместо несимметричной передачи сигналов, поэтому нет необходимости в общей земле для справки.Переместите вилки так, чтобы они вставлялись в одну розетку, сделав петлю как можно меньше. Другой вариант — использовать изолятор, который вы можете приобрести для выбранного кабеля или спроектировать в своем проекте с оптоизолятором или изолирующим трансформатором. Не используйте штепсельную вилку и не удаляйте заземляющий контакт, так как это просто устраняет функцию безопасности и может создать опасную ситуацию с шасси под напряжением.

Когда дело доходит до вашего осциллографа, вполне вероятно, что в какой-то момент вы захотите проверить что-то, что питается от сети, и тогда вы получите совершенно другой тип контура заземления.Если ваша вещь питается от батареи, здесь нет никакой опасности; сходить с ума, потому что нет возможности создать контур заземления. Если он подключен к стене, но через изолированный источник питания (что-то только с двумя контактами и изолирующим трансформатором), все в порядке, потому что по-прежнему нет пути для контура заземления, но вы можете увидеть некоторый шум от грязного питания .

Но если он подключен к сети и имеет контакт заземления (даже косвенно, как устройство, питающееся от USB через блок питания компьютера), существует возможность создания контура заземления, потому что вы подключаете заземленный прицел к другому заземленному устройство через зонд.Зажим заземления на пробнике подключается прямо к контакту заземления, а заземления на всех пробниках соединяются друг с другом, а эти контакты заземления подключаются к заземлению на вашем устройстве. Если это было неясно, лучше сформулировать это так: «все ваши заземления уже подключены друг к другу и связаны с одним и тем же проводом — контактом заземления». Когда вы подключаете заземляющий зажим к тестируемому устройству, вы создаете контур заземления, который добавит шума к вашим измерениям и, возможно, повредит осциллограф.

Заземления зонда осциллографа подключены. Технически вам нужно прикрепить к тестируемому устройству только один зажим заземления. Заземление зонда подключается непосредственно к земле. Они не плавают.

Если вы сделаете ошибку и прикрепите заземляющий зажим к чему-то, что на самом деле не заземлено, у вас будут всевозможные проблемы, так как устройство теперь замкнуто на землю через ваш зонд, который быстро самоуничтожится. Для тестирования устройств с заземляющим контактом требуется особая осторожность, чтобы не допустить подключения устройств с разными потенциалами.Разорвать контур заземления можно, просто не подключив зажим заземления, хотя это имеет и другие последствия. Здесь лучше всего использовать дифференциальные пробники или подключить тестируемое устройство к изолирующему трансформатору. Не снимайте с прицела , а не заземление, потому что вы будете часто прикасаться к нему и лучше не подвергаться электрошоку.

Итак, подведем итоги: земля — ​​это не просто земля. Для измерения шума лучше всего, чтобы у каждого устройства был один и только один путь к одной точке заземления.Когда есть два или более пути к земле, они могут образовывать петлю, которая улавливает всевозможные электрические и магнитные помехи окружающей среды. Исправить контур заземления так же просто, как его разомкнуть, но для этого у вас должно быть хорошее мысленное представление обо всех наземных путях в игре. Какой самый сложный контур заземления вы когда-либо видели? Не хватает хороших решений?

Найдите и устраните контуры заземления

В моем домашнем развлекательном центре все было хорошо — включая телевизор, усилитель объемного звука, AM / FM-тюнер, ROKU и проигрыватель CD / DVD / BlueRay — пока я не подключил свой рабочий стол ПК, на одном из жестких дисков которого хранятся многие мои музыкальные и видеофайлы.При подключенном ПК динамики издают раздражающий низкий гул с частотой 60 Гц — явное указание на контур заземления. Все мои аудио- и видеоустройства являются относительно новыми, качественными, фирменными продуктами, оснащенными двухконтактными шнурами питания, поэтому, даже если у ПК есть трехконтактная вилка, не должно быть многократных возвратов сигнала, вызывающих замыкание на землю. . В этой статье описывается подход к устранению контуров заземления в аналоговых AV-системах.

КОНТУРЫ ЗАЗЕМЛЕНИЯ

По определению, контуры заземления вызывают нежелательные токи, протекающие через два или более обратных пути сигнала.Таким образом формируются индукционные катушки, обычно только с одним витком. Эти петли улавливают сигналы помех из окружающей среды. Поскольку каждый проводник имеет конечный импеданс, между двумя подключенными точками возврата сигнала возникает потенциал напряжения — Vi = Ig (R1 + R2). Это напряжение является источником помех: гудение, шипение, шум, воспринимаемый высокочастотными сигналами (например, местная AM-станция) и т. Д. Упрощенный пример показан на рисунке 1.

РИСУНОК 1: Причина помех контура заземления.

Источник аудиосигнала VS на Рисунке 1 — например, звуковая карта внутри ПК — подключается к усилителю через экранированный кабель. Экран заземлен с обоих концов на шасси обоих устройств. Трехконтактные вилки питания подключают шасси обоих AV-компонентов к заземляющему проводу распределения питания в доме. Будем считать заземление усилителя точкой отсчета. (Неважно, какую точку в петле мы выберем.) Петля, состоящая из экрана кабеля и заземляющего провода распределения питания, принимает все виды сигналов, вызывая протекание петлевого тока Ig и, как следствие, напряжение помех Vi сгенерировано.

К сигналу звуковой карты добавляется

Vi. Индуцированный в петлю ток Ig поступает из многих потенциальных источников. Это может быть вызвано в заземляющем проводе током, протекающим в горячем и обратном нейтральном проводе переменного тока, действующем как трансформатор. Могут быть утечки, индукция магнитными полями, емкостная связь или индукция электромагнитных помех (EMI) в контуре. Как только Vi добавляется к сигналу, его, как правило, невозможно отфильтровать.

Для большей части электрического оборудования требуется третий контакт питания для безопасности.Он подключается к шасси, а электрическая распределительная панель — к нейтрали (белый провод) и местной земле — обычно это металлический стержень, закопанный в землю. Заземление предназначено для рассеивания ударов молнии, но не влияет на контуры заземления, которые мы обсуждаем.
Основное назначение заземляющего провода — обеспечение безопасности, а также отвод переходных процессов и молнии на землю. В нормальных условиях по этому проводу не должен протекать ток. Если внутренняя неисправность в устройстве подключает нейтральный (белый) или горячий (черный или красный) провод к шасси, зеленый провод шунтирует шасси на землю.Прерыватели замыкания на землю (GFI) сравнивают ток через горячий провод с обратным током через нейтраль. Если не идентичны, GFI отключается.

Производители звукового оборудования знают, что заземление чувствительного оборудования в разных местах вдоль провода заземления приводит к множественным возвратным сигналам, вызывающим контуры заземления. Это способствует проникновению помехового шума в систему. С точки зрения электробезопасности малыми токами, индуцированными в контуре заземления, можно пренебречь. К сожалению, они достаточно велики, чтобы нанести ущерб чувствительной электронике.Самое простое решение этой дилеммы — избежать создания контуров заземления, не заземляя AV-оборудование. Таким образом, в таком оборудовании использовались двухконтактные вилки. Для удовлетворения требований безопасности оборудование спроектировано с двойной изоляцией, а это означает, что даже в случае внутренней неисправности человек не может прикоснуться к металлической части под напряжением, коснувшись любого места на поверхности оборудования.

Мой компьютер, как и большинство настольных компьютеров, оснащен трехконтактной вилкой. На рисунке 2 показано расположение.ПК заземлен через шнур питания. К сожалению, кабельное телевидение (CATV) вводит второе заземление через коаксиальный разъем. Я измерил сопротивление между коаксиальным экраном, когда он входит в дом, и проводом заземления распределения питания дома. Сопротивление составляло 340 мОм, что указывало на жесткое соединение между экраном коаксиального кабеля и землей дома, что является причиной образования контура заземления. Мне не удалось установить, где была эта связь, но она не через землю.

РИСУНОК 2: Контур заземления в моей развлекательной системе

В компьютерной системе может быть несколько контуров заземления, если у вас есть жестко подключенные периферийные устройства с трехконтактными вилками, такие как некоторые принтеры, сканеры и т. Д.Цифровые схемы гораздо менее чувствительны к контурам заземления, чем аналоговые, но рекомендуется минимизировать потенциальные петли, подключив все периферийные устройства, кроме беспроводных, к одной панели питания.

Контуры заземления также могут образовываться при использовании длинных экранированных кабелей для сопряжения ПК и блока домашнего кинотеатра. Два экранированных кабеля, необходимые для стерео, представляют собой два возвратных сигнала, создающих собственный контур заземления. А еще есть видеокабели. Еще один шлейф. К счастью, разъемы на задней панели ПК и AV-оборудования расположены очень близко друг к другу, что означает минимальную разницу потенциалов между ними на низких частотах.Стереокабели сохраняют небольшой размер петли. Чтобы свести к минимуму все области контуров для захвата помех, я связал интерфейсные кабели очень близко друг к другу пластиковыми стяжками. В тяжелых ситуациях может потребоваться изменение маршрута кабелей, использование металлического кабелепровода или беспроводных интерфейсов, чтобы устранить помехи.

ИСПРАВЛЕНИЯ

После отключения кабеля кабельного телевидения от телевизора гул пропал. Кроме того, временная замена ПК на ноутбук, который не имеет заземления, также устранила проблему.Так как еще мы можем исправить те, которые нарушают многократные возвраты?

Очевидный ответ — разорвать цикл. Я настоятельно рекомендую вам не отсоединять ПК от земли, используя переходник с двумя штырями или просто отрезая заземляющий штырь. Это сделает вашу систему небезопасной. Вам понадобится изолятор заземления. Например, Jensen Transformers продают изоляторы, такие как VRD-IFF или PC-2XR, для разрыва заземления, но вы можете построить их за небольшую часть покупной цены. На рисунках 3 и 4 показано, как это сделать.

РИСУНОК 3: Изолятор заземления для коаксиального кабеля CATV

Чтобы разорвать контур заземления, вызванный CATV, вы можете сделать небольшую штуковину, показанную на рисунке 3. J1 и J2 — широко распространенные розеточные разъемы кабельного телевидения. Конденсаторы C1 и C2, помещенные между ними, должны быть примерно по 0,01 мкФ каждый. Для сборки не требуется печатная плата. Вы можете поместить его в крошечную коробку или просто спаять все вместе, обернуть изолентой и положить куда-нибудь в сторону. Помните, что рабочее напряжение конденсаторов должно как минимум вдвое превышать напряжение распределения питания.Это 250 В в Северной Америке и более 500 В в других странах мира.

РИСУНОК 4: Изолятор заземления для устройств с трехконтактным питанием

На рисунке 4 показано, как отключать заземление таких устройств, как ПК, с помощью трехконтактных вилок. Вы можете встроить эту схему в компьютер или другое устройство, но я считаю, что лучше построить ее как независимую коммутационную коробку. Диоды обеспечивают разомкнутый контур для сигналов примерно до 1,3 Впик. Гул обычно имеет существенно меньшую амплитуду. C1, 0,01 мкФ, обеспечивает обход для высокочастотных электромагнитных помех на землю.Петля будет замкнута для напряжений выше 1,3 VPP, например, из-за нарушения изоляции горячего провода к шасси. Для распределения 120 В переменного тока D1, D2 и C1 должны быть рассчитаны как минимум на 250 В. В ответвлении цепи с автоматическим выключателем или предохранителем на 15 А диоды должны быть рассчитаны минимум на 20 А, чтобы выключатель сработал до того, как диоды перегорят. Если прибор потребляет только часть номинального тока предохранителя, скажем 2 А, вы можете использовать диоды на 5 А и включить дополнительный предохранитель на 2 А.Для стран с питанием 230 В переменного тока компоненты должны иметь соответствующие характеристики.

Вы также можете разорвать контур заземления, используя силовой изолирующий трансформатор между силовой линией и ПК или качественные сигнальные трансформаторы на сигнальных линиях. Обратной стороной этого является то, что хорошая изоляция и сигнальные трансформаторы дороги и широко не доступны. Оборудование, питаемое от настенных бородавок, особенно с оптически связанными входами и выходами, распространенными сегодня, по своей природе непроницаемо для контура заземления.

ИСПЫТАНИЕ И ОШИБКА

В этой статье описывается подход к устранению контуров заземления в аналоговых AV-системах. Хотя вам необходимо понять, как возникают контуры заземления, их обнаружение и устранение их последствий может оказаться делом разочаровывающих проб и ошибок.

Джордж Новачек — профессиональный инженер со степенью в области кибернетики и замкнутого управления. Выйдя на пенсию, он совсем недавно был президентом международного производителя встроенных систем управления для аэрокосмических приложений.Джордж написал 26 тематических статей для Circuit Cellar с 1999 по 2004 год. Свяжитесь с ним по [email protected], указав в теме письма «Circuit Cellar».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *