Проверка полевого транзистора мультиметром: Страница не найдена

Содержание

Как проверить полевой транзистор мультиметром

При проведении ремонтных работ электронной техники, возникает вопрос проверки функционального состояния тех или иных полупроводниковых элементов. Решение этой проблемы сильно облегчает наличие специализированных приборов, однако, во многих случаях вполне можно обойтись и без них.

Есть ряд способов, как проверить транзистор мультиметром без использования сложных приборов и каких-либо дополнительных электрических схем. Рассматриваются алгоритмы проверки различных типов транзисторов.

 

 

Проверка trz (транзистора), равно как и любого другого элемента схемы, начинается с определения его типа. Эту информацию несложно найти в интернете. У опытного мастера всегда есть под рукой ссылки на проверенные ресурсы. Если таковых нет, то, обычно достаточно вбить маркировку компонента в поисковой системе и нужная информация найдется уже на первой странице поисковой выдачи. Наиболее распространенные типы транзисторов: биполярные, полевые, составные, однопереходные. Определив тип элемента, можно начинать его функциональную проверку.

Биполярный транзистор

Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.

Определение работоспособности p-n-p полупроводника:

  • Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
  • Красный (К) – в гнездо VΩmA (плюс).
  • Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
  • Для замера прямых сопротивлений Ч закрепляется на базе элемента.
  • Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
  • Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
  • Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
  • Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.

Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.

Остается найти эмиттер и коллектор. Для этого необходимо просто замерить сопротивление коллекторных и эмиттерных переходов. Ч помещается на базу. К поочередно замыкается на оставшиеся выводы. Полученные значения должны лежать в диапазоне от 500–1200 Ом. При этом большее значение будет относиться к коллекторному переходу, а меньшее, соответственно к эмиттерному.

Полевой транзистор

Обладает значительно меньшим энергопотреблением по сравнению с биполярным. Основная область применения – это приборы, работающие в ждущем или следящем режимах. Импортные элементы обычно имеют маркировку, упрощающую идентификацию выводов: G-затвор, S-исток, D-сток. Полевой транзистор или, как его еще называют, мосфет, бывает n-канальный и p-канальный. Алгоритмы проверки работоспособности полупроводников обоих типов похожи.

Определение функциональности n-канального полупроводника.

Поскольку у таких компонентов между стоком и истоком часто встраивается диод, то, для проверки функциональности, на измерительном устройстве устанавливается в режим проверки диодов. Ч идет на минус тестера, а К – на плюс.

  • К помещается на исток элемента, а Ч – на сток. Напряжение должно быть от 500 до 700 мВ.
  • К – на сток, а Ч – на исток. Значение в этом случае должны выходить за пределы измерений мультиметра. Об этом свидетельствует цифра «1» на экране прибора.
  • Ч – на истоке. Касание К затвора открывает транзистор. Ч остается на истоке, а К соединяется со стоком. Замеренное напряжение должно лежать в диапазоне от 0 до 800 мВ и не зависеть от смены полярности проводов тестера.
  • Замыкание К на исток, а Ч – на затвор проводит к закрытию прибора и переводу его в изначальное состояние.

Для определение работоспособности p-канального полупроводника Ч подключается к плюсу мультиметра, а К – к минусу. Дальнейшая последовательность действий аналогична методике проверки элемента n-канального типа.

Составной транзистор

Также известен как пара Дарлингтона. Является каскадом из двух и более биполярных транзисторов. Тестирование таких элементов одним лишь мультиметром, без сборки дополнительных схем, не представляется возможным. Вопрос монтажа подобных вспомогательных схем выходит за рамки данной статьи.

Однопереходный транзистор

В основном используются во всевозможных реле и пороговых устройствах. У элементов данного типа присутствует только один p-n переход. Для проверки его работоспособности мультиметром замеряется сопротивление между ножками «Б1» и «Б2». Если полученная величина незначительна, то компонент неисправен.

Проверка элемента без выпаивания его из схемы

Часто возникает вопрос, как проверить smd транзистор мультиметром. SMD – это аббревиатура от английского Surface Mounted Device (устройство, монтируемое на поверхность). Такие полупроводники не вставляются в отверстия плат. Их просто напаивают сверху на контактные дорожки. В современных платах плотность таких дорожек невероятно велика. Более того, часто они располагаются в несколько слоев. Поэтому если какая-то из дорожек располагается в середине такого «пирога», то ее может быть просто не видно.

Становится понятно, что поскольку демонтаж и обратный монтаж smd компонентов на контактные дорожки печатных плат зачастую сопряжен со значительными сложностями, то лучше всего было бы осуществить проверку функциональности элемента, не выпаивая его. К сожалению, такое подход возможен только для биполярных транзисторов. Однако даже при положительных итогах проверки нельзя быть полностью уверенным в результате. В большинстве же случаев только лишь демонтаж элемента с печатной планы позволяет гарантированно проверить его работоспособность.

Особенности проверки транзистора мультиметром без выпаивания

Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.

Типы транзисторов

Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.

Биполярные приборы

Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.

Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.

Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области. Внутренняя область — база.

Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.

Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.

На схемах вывод эмиттера обозначается стрелкой, которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.

Полевые транзисторы

Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).

Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности.

Эти приборы ещё называют униполярными.

Проверка мультиметром

Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.

Приборы биполярного типа

Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.

Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.

Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.

При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.

Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.

Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.

Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:

  • определение типа прибора и схемы его выводов;
  • проверка сопротивлений его «p — n» переходов в прямом направлении;
  • смена полярности щупов и определение сопротивлений переходов при таком подключении;
  • проверка сопротивления «коллектор — эмиттер» в обоих направлениях.

Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.

К признакам неисправности биполярных транзисторов можно отнести следующие:

  • «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
  • «p — n» переход не «прозванивается» в обе стороны.

В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.

Второй случай показывает внутренний обрыв в структуре прибора.

В обоих случаях данный экземпляр не может быть использован для работы в схеме.

Полевые транзисторы

Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.

Для проверки элемента первого типа необходимо выполнить следующие действия:

  • определить сопротивление участка «сток — исток» закрытого транзистора;
  • произвести открытие перехода;
  • определить сопротивление открытого полевика;
  • произвести закрытие перехода;
  • повторно сделать замер сопротивления закрытого полевого транзистора.

Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».

Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).

Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.

Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.

При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.

Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.

При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.

Проверка приборов в схеме

Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.

Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.

Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.

Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.

Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.

Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.

типы, режимы и инструкции, разбивка

Давайте займемся теорией, повремените убегать. Портал ВашТехник наряду с заумными сентенциями, рассчитанными быть понятыми профи, предоставит методику пяти пальцев. Не слышали? Просто, как пять пальцев. Сначала обсудим типы транзисторов, потом расскажем, что можно сделать при помощи мультиметра. Рассмотрим штатные гнезда hFE (объясним, что это такое), методику замещения схемы через соединение нескольких диодов. Расскажем, с чего начать. Поймете, как проверить транзистор мультиметром, или… Давайте, пожалуй, без «или». Приступим, чтобы твердо отличать МОП-транзистор от мопса, растолчем теорию.

Типы, классификация транзисторов

Избегаем исследовать дебри. Знайте простое правило: в биполярных транзисторах носители обоих знаков участвуют в создании выходного тока, в полевых – одного. Определение умников. Теперь работаем пальцами:

Устройство транзисторов

  1. Транзисторы полевого типа выступают началом. Когда Битлз выходили на сцену, на замену вакуумным триодам стали приходить полупроводники. Если говорить кратко, p-n-p транзистор – два богатых положительными носителями слоя кристалла (кремний, германий, примесной проводимости). Проводя уроки физики, учитель часто рассказывал, как V-валентный мышьяк легировал решетку кремния, образуя новый материала. Добавим, что положительные p-области, отгорожены узкой отрицательной (n-negative). Как ком в горле. Узкий перешеек, называемый базой, отказывается пускать электроны (в нашем случае скорее дырки) течь в нужном направлении. Небольшой отрицательный заряд появляется на управляющем электроде, дырки коллектора (верхняя p-область на традиционных электрических схемах) больше не могут сдерживаться, буквально рвутся в сторону приложенного напряжения. Поскольку база тонкая, используя набранную скорость носители пролетают перешеек, уносятся дальше — достигая эмиттера (нижняя p-область), здесь увлекаются разностью потенциалов, создаваемой напряжением питания. Типичное школьное объяснение. Относительно небольшое напряжение управляющего электрода способно регулировать скорость сильного потока дырок (положительных носителей), увлекаемого полем напряжения питания. На этом построена техника. Навстречу дыркам движутся электроны, транзисторы называют биполярными.
  2. Полевые транзисторы снабжены каналом любого типа проводимости, разделяющим области истока и стока (см. рисунок выше). Управляющий электрод называют затвором. Причем основной материал подложки, затвора противоположен каналу, истоку и стоку. Поэтому положительное напряжение (см. рисунок) запрет ход зарядам через транзистор. Плюс оттянет (в p-область) доступные электроны. Полевые транзисторы в электронике применяются намного чаще. На рисунке затвор электрически соединен с кристаллом, структура называется управляющим p-n переходом. Бывает, область изолирована от кристалла диэлектриком, в качестве которого часто выступает оксид. Чистой воды MOSFET транзистор, по-русски – МОП.

Схема проверки транзистора

При помощи мультиметра, в штатном режиме проверяются биполярные транзисторы. Если тестер поддерживает такую опцию, часто именуемую hFE, на лицевой панели смонтирован круглый разъем, поделенный вертикальной чертой на две части, где надписаны по 4 гнезда следующим образом:

  1. B – база (англ. Base).
  2. С – коллектор (англ. Collector).
  3. E – эмиттер (англ. Emitter).

Гнезд для эмиттера два, чтобы учесть раскладку выводов корпуса. База может быть с края, посередине. Для удобства сделано. Нет разницы, в какое гнездо вставить ножку эмиттера биполярного транзистора. Пара слов, как пользоваться.

Проверка биполярного транзистора мультиметром в штатном режиме

Чтобы гнездо проверки биполярных транзисторов начало работать (вести измерения), переведем тестер в режим hFE. Откуда взялись буквы? h – касается категории параметров, описывающих четырехполюсник любого типа. Не важно знать, что подразумевает понятие – просто уясним: существует целая группа h-параметров, среди которых имеется один важный занимающимся электроникой. Называется коэффициентом усиления по току с общим эмиттером. Обозначается, h31 (либо строчной греческой буквой бета).

Цифровая мнемоника плохо воспринимается человеческим глазом, поэтому было решено (за рубежом, понятное дело), что F будет обозначать прямое усиление по току (forward current amplification), тогда как E говорит, что измерение велось в схеме с общим эмиттером (которая применяется учебниками физики для иллюстрации принципов работы транзисторов биполярного типа). Схем включения много, каждая обладает достоинствами, параметры можно охарактеризовать через h31 (некоторые другие, упомянутые справочниками). Считается, если коэффициент усиления в норме, радиоэлемент 100% работоспособен. Теперь читатели знают, как проверяется p-n-p транзистор или n-p-n транзистор.

h31 зависит от некоторых параметров, указываемых инструкцией мультиметра. Напряжение питания 2,8 В, ток базы 10 мА. Дальше берутся графики технической документации (data sheet) транзистора, профессионал знает, как найти остальное. При включении режима hFE, подсоединении ножек биполярного транзистора в нужные гнезда на дисплее появляется значение коэффициента усиления прибора по току. Потрудитесь сопоставить справочным данным, сделав поправку на режим измерения (если понадобится). Только звучит сложно, достаточно пару раз сделать самостоятельно, добьетесь результатов.

Проверка транзисторов мультиметром: нештатный режим

Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.

  • Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
  • Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.

Подготовка к проверке транзистора

Временами схватишь руками составной транзистор. Внутри корпуса находиться несколько ключей. Используется для экономии места при одновременном увеличении коэффициента усиления (причем в десятки, тысячи раз, если речь шла о каскадной схеме). Устроен так транзистор Дарлингтона. В корпус зашит защитный стабилитрон, предохраняющий переход эмиттер-база от перегрузки по напряжению. Тестирование идет одним путем:

  • Нужно найти подробные технические характеристика транзистора (составного элемента). При нынешнем масштабе компьютеризации не составит проблемы. Даже если изделие импортное. Обозначения на схемах понятные, термины не сложные. Параметр hFE расписали.
  • Затем ведется изучение, выполняется анализ. Разбиение схемы на более простые составляющие. Если между переходами коллектора и эмиттера включен стабилитрон, логично начать проверку с него. В начальный момент транзистор заперт, ток мультиметра пойдет, минуя защитный каскад. В одном направлении стабилитрон даст сопротивление 500-700 Ом, в другом (если не пробьется) будет обрыв. Аналогично разобьем на части транзистор Дарлингтона, если имеете представление (обсуждали выше).

Режим прозвонки покажет цифры. Говорят, падение напряжения, по некоторым сведениям, номинал сопротивления. Потрудимся привести опыты, решая вопрос. Вызвонить известный по значению сопротивления, заведомо исправный резистор. Если на экране появится номинал в омах, думать нечего. В противном случае можно оценить заодно ток (разделив потенциал дисплея на номинал). Знать тоже нужно, пригодится в процессе тестирования. До начала работ рекомендуется хорошенько изучить мультиметр. Достаньте инструкцию из мусорной корзины, прочитайте.

Народ интересуется вопросом, можно ли проверить транзистор мультиметром, не выпаивая. Очевидно, многое определено схемой. Тестер просто прикладывает напряжения, оценивает возникающие токи. На основе показаний вычисляется коэффициент усиления, служа критерием годности/негодности. Попробуйте проверить полевой транзистор мультиметром из входящих в состав процессора! Отбрось надежду всяк сюда входящий. Не всегда можно прозвонить полевой транзистор мультиметром.

Разбить биполярный транзистор на диоды

Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).

Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.

Проверка диода

Проверка условных диодов, замещающих транзистор

Методик несколько. Можно попробовать измерить сопротивление стандартной шкалой Ω. Красный щуп нужно прикладывать к p-области. Тогда дисплей мультиметра покажет цифру, меньшую бесконечности. В противоположном направлении результат будет нулевым. Мультиметр покажет обрыв. Нормальные результаты прозвонки диода.

Если пользоваться специальным режимом, экран показывает размер сопротивления в прямом направлении, обрыв (стандартно единичка в левом углу ЖК-экрана) в другом. Обратите внимание – рисунок содержит поясняющие надписи, куда прислонять щуп, получая открытый p-n переход. В обратном направлении прибор показывает обрыв.

Проверка полевых транзисторов


Краткий курс: как проверить полевой транзистор мультиметром на исправность

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Особенности конструкции, хранения и монтажа

Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы (исток и сток). Под действием источника питания из истока в сток по транзистору может протекать ток. Величиной этого тока управляет изолированный затвор прибора.

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора.

Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.

При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.

  1. Снять статическое электричество с транзистора.
  2. Перевести мультиметр в режим проверки диодов.
  3. Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
  4. Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
  5. Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
  6. Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
  7. Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
  8. При смене полярности щупов мультиметра величина показаний не должна измениться.
  9. Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
  10. При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Полевой транзистор имеет большую входную емкость, которая разряжается довольно долго.

Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.

elektrik24.net

Как проверить полевой транзистор мультиметром. Часть 1. Транзистор с управляющим p-n переходом.

Продолжаем рубрику проверки электрорадиоэлементов, и сегодня я представляю первую статью по проверке полевых транзисторов тестером или как сейчас принято говорить — мультиметром.

Перед началом проверки полевых транзисторов рассмотрим, какие бывают виды полевых транзисторов.

На рисунке 1 вы видите классификацию полевых транзисторов.

Из этого рисунку видно, что полевые транзисторы подразделяются на транзисторы с управляющим p-n переходом и полевые транзисторы с изолированным затвором.

В зарубежной литературе полевой транзистор с управляющим p-n переходом обозначается как JFET(junction gate field-effect transistor), а транзистор с изолированным затвором — MOSFET (Metall-Oxid-Semiconductor FET).

Сегодня я вам расскажу, как проверить полевой транзистор с управляющим p-n переходом, а в следующем выпуске журнал перейдем к проверке MOSFET транзистора, так что не забываем подписываться на журнал. Форма подписки после статьи.

Для начала кратко рассмотрим структуру транзистора и принцип его работы.

Полевые транзисторы бывают n-канальные и p-канальные. В виду того, что широкое распространение получили n-канальные полевые транзисторы, на их примере и рассмотрим принцип работы полевого транзисторы с управляющим p-n переходом.

Итак, транзистор состоит из n-полупроводника с внедренными в него высоколегированными n-областями с большой концентрацией носителей заряда – электронов. Сам полупроводник находится на подложке p-типа, которая соединена с еще одной p-областью. Вместе эти области называются затвором (gate). Таким образом, каждая высоколегированная n-область создает с p-подложкой свой p-n переход.

Та часть n-полупроводника, которая находится между p-областями (затворами) называется каналом (в частности каналом n-типа).

Если к высоколегированным n-областям подключить источник напряжение, то в канале создастся электрическое поле, под воздействием этого поля электроны из n-области, к которой подключен «минус» источника будут перемещаться в n-область, к которой подключен «плюс» источника напряжения. Таким образом, через канал потечет электрический ток. Величина этого тока будет напрямую зависеть от электропроводности канала, которая в свою очередь зависит от площади поперечного сечения канала. Нетрудно догадаться, что площадь поперечного сечения канала зависит от ширины p-n переходов.

Та область, от которой движутся носители заряда, а в случае n-канала это электроны, называется истоком (source), а к которой движутся – стоком (drain).

Если на затвор относительно истока подать отрицательное напряжение, то p-n переход, образованный между затвором и истоком будет смещаться в обратном направлении, при этом ширина запирающего слоя будет увеличиваться, тем самым сужая размеры канала и уменьшая электропроводность.

Таким образом, изменяя напряжение между затвором и истоком, мы можем управлять током через канал полевого транзистора.

На этом об устройстве полевого транзистора все, далее в подробности углубляться я не буду, так как этого будет достаточно, что бы понять, как проверить полевой транзистор с управляющим p-n переходом.

Исходя из вышеизложенного можно составить эквивалентную схему полевого транзистора с управляющим p-n переходом, как мы делали при проверке биполярного транзистора.

При составлении схемы будем руководствоваться следующими принципами:

1. В транзисторе имеются два p-n перехода, первый между затвором и истоком, второй между затвором и стоком.

2. Канал между истоком и стоком при отсутствии отрицательного запирающего напряжения на затворе не закрыт и электропроводен, то есть имеет определенное значение сопротивления.

3. Теперь p-n переходы обозначим диодами, а электропроводность канала резистором.

Составляем эквивалентную схему полевого транзистора с управляющим p-n переходом.

Теперь зная эквивалентную схему полевого транзистора с управляющим p-n переходом можно построить алгоритм или схему проверки полевого транзистора.

Проверка полевого транзистора с управляющим p-n переходом и каналом n-типа.

1. Проверка сопротивления канала (на рис. R)

Для проверки сопротивления канала с помощью мультиметра необходимо на приборе установить режим измерения сопротивления, предел измерения 2000 Ом.

Измерить сопротивление между истоком и стоком транзистора при разной полярности подключения щупов мультиметра.

Значения сопротивления канала при разной полярности подключения щупов должны быть примерно одинаковыми.

2. Проверка p-n перехода исток-затвор (на рис. VD1).

Включаем мультиметр в режим проверки диодов. Красный (плюсовой ) щуп мультиметра подключаем на затвор (имеет p-проводимость), а черный на исток. Мультиметр должен показать падение напряжения на открытом p-n переходе, которое должно быть в пределах 600-700 мВ.

Меняем полярность подключения щупов (красный на исток, черный на затвор), мультиметр, в случае исправности транзистора показывает бесконечность (на дисплее «1»), то есть переход включен в обратном направлении и закрыт.

3. Проверка p-n перехода сток-затвор (на рис. VD2).

Так же проверяем исправность p-n перехода сток-затвор. То есть включаем мультиметр в режим проверки диодов. Красный (плюсовой ) щуп мультиметра подключаем на затвор (имеет p-проводимость), а черный на сток. Мультиметр должен показать падение напряжения на открытом p-n переходе затвор-сток, которое должно быть в пределах 600-700 мВ.

Меняем полярность подключения щупов (красный на сток, черный на затвор), мультиметр, в случае исправности транзистора показывает бесконечность (на дисплее «1»), то есть переход включен в обратном направлении и закрыт.

Если все три условия выполнились, то считается, что полевой транзистор исправен.

Проверка полевого транзистора с управляющим p-n переходом и каналом p-типа.

Проверка полевого транзистора с управляющим p-n переходом и каналом p-типа осуществляется по вышеизложенному алгоритму, за исключением того, что при проверке p-n переходов полярность подключения щупов мультиметра меняется на противоположную.

Для наглядности и простоты понимания процесса я записал для вас видео как проверить полевой транзистор с управляющим p-n переходом, где я проверяю транзистор с каналом p-типа.

www.sxemotehnika.ru

Как проверить полевой МОП (Mosfet)

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

www.sxemotehnika.ru

Как проверить полевой транзистор

В блоках питания или источниках бесперебойного напряжения полевые транзисторы часто выходят из строя. Проверка полевого транзистора важный, а в некоторых случаях один из первых шагов при ремонте подобной техники.

Как проверить полевой транзистор мультиметром?

Для простой проверки полевого транзистора необходимо производить действия согласно схеме.

Проверяемый полевик — IRFZ44N.

  1. Черный щуп (-) подключаем на сток (D), а красный подключаем на исток (S) – на экране будет значение перехода встроенного встречного диода. Это значение необходимо запомнить.
  2. Убираем красный щуп от истока и касаемся им затвора (G) – так мы частично открываем полевик.
  3. Возвращаем красный щуп обратно на исток (S). Видим, что значение перехода поменялось, стало немного меньше — это полевой транзистор частично открылся
  4. Переносим черный щуп со стока (D) на затвор (G) — закрываем полевой транзистор.
  5. Возвращаем черный щуп обратно и наблюдаем, что показания перехода возвратилось к исходному — полевик полностью закрылся.

Затвор рабочего полевика должен иметь сопротивление равное бесконечности.

Готово, полевик исправен.

Описанная схема предназначена для n—канального полевика, p— канальный проверяется аналогично, только необходимо изменить полярность щупов.

Для проверки полевого транзистора, также можно использовать небольшие схемы, к которым подключается полевик.  Такой метод даст быструю и точную диагностику. Но если нет необходимости в частых проверках полевика или лень возиться со схемой, то описанная методика проверки полевого транзистора мультиметром будет отличным решением поставленной задачи.

comments powered by HyperComments

diodnik.com

Как проверить транзистор | Электрик



Часто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.

Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности.

Проверка биполярных транзисторов


Способы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.

Биполярные транзисторы существуют двух типов проводимости: p-n-p и  n-p-n что необходимо помнить и учитывать при проверке.

А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.
Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор «пробит» но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть «нулевого» сопротивления — поэтому это и есть самый простой способ выявления поломки транзистора.
Ну а теперь рассмотрим более достоверные способы проверки и поподробней.

И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка «разряжен». На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке.

И так поочередно проверяем все переходы транзистора:

  • База — Эмиттер — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • База — Коллектор — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • Эмиттер — Коллектор — в исправном состояние сопротивление перехода должно быть «бесконечное», то есть переход не должен пропускать ток или прозваниватmся ни в одном из положений полярности.

В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление «прозвонки» переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное.

Как определяется «пробитый» переход?
Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет «нулевое» сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен.

Как определить обрыв p-n перехода?
Если один из переходов в обрыве — он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов.

Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица «1» что говорит о «бесконечном» сопротивление.

Проверка транзистора стрелочным тестером


Принцип проверки все тот же, мы проверяем переходы (как диоды)
Отличие лишь в том что такие «омметры» не имеют режима прозвонки диодов и «бесконечное» сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о «нулевом» сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке.
Измерения лучше всего производить в режиме «1Ом» (можно пробовать и до *1000Ом пределе).

Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не «нулевое» а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать «кз» и пищать (тоже конечно зависит от точности прибора).

Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?


У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще.
Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ:
Все что нам нужно — поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.

Нам нужно найти два перехода которые покажут бесконечность «1». Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным — база справа.
Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер.

Быстрая точная проверка транзистора


Если под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов — замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна).
У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.

Простой пробник


В данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.

Если транзистор рабочий — при нажатие кнопки светодиод светится, при отпускание гаснет.
Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора — просто менять полярность источника питания.

Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.
Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или «даташит» со всем описанием транзистора.


Как проверить составной транзистор Чтобы проверить такой транзистор его необходимо «запустить» то есть он должен как бы работать, для создания такого условия есть простой но интересный способ.
Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер — для n-p-n (для p-n-p наоборот) — стрелка тестера не двинется сместа оставаясь в начале шкалы «бесконечность» (для цифрового мультиметра «1»)
Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется.
Таким же способом можно проверить любой транзистор даже не выпаивая з схемы.
Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.

Проверка полевых транзисторов

Здесь есть один отличительный момент при проверке таких транзисторов — они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы.

Какие методы безопасности?
Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд — применяют антистатический браслет который надевают на запястье.
Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой.

Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального).

Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.
Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах.

Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода.

Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать «бесконечным» («1») — если это не так то транзистор скорее всего неисправен.

Особенностью современных мощных полевых транзисторов (MOSFET’ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).
Чтобы не посчитать такую «прозвонку» канала за неисправность просто следует помнить о диоде.

В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние — после закорачивания выводов) Если переход прозваниваеться в обе стороны с «нулевым» сопротивлением то такой транзистор «пробит» и неисправен

Наглядный способ (экспресс проверка)

  • Необходимо замкнуть выводы транзистора

  • Тестером в режиме прозвонки (диод) ставим плюсовой щуп к истоку, а минусовой к стоку (исправный покажет 0.5 — 0.7 вольта)

  • Теперь меняем щупы местами (исправный покажет «1» или по другому говоря бесконечное сопротивление)
  • Минусовой щуп ставим к истоку, а плюсовой на затвор (открываем транзистор)

  • Минусовой щуп оставляем на истоке, а плюсовой сразу ставим на сток, исправный транзистор будет открыт и покажет 0 — 800 милливольт

  • Теперь можем поменять плюсовой и минусовой щупы местами, в обратной полярности переход сток-исток должен иметь такое же сопротивление.

  • Плюсовой щуп ставим к истоку, а минусовой на затвор — транзистор закроется

  • Можем снова проверить переход сток-исток, он должен показывать снова «бесконечное» сопротивление так как транзистор уже закрыт (но помним про диод в обратной полярности)

Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора.


Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию.

Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением.

Простая схема пробника для проверки полевых транзисторов


Можно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.

Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора — просто поменять полярность источника питания.

Как проверить полевой транзистор — ООО «УК Энерготехсервис»

MOSFET: N-канальный полевой транзистор.

Обозначение выводов:

S — исток, D — сток, G — затвор

На мультиметре выставляем режим проверки диодов.

Транзистор закрыт: сопротивление — 502 ома

MOSFET — это Metal-Oxide-Semiconductor Field-Effect Transistor.

Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D — сток), красный на дальний от себя вывод справа (S — исток), тестер показывает 502 Ома — полевой транзистор закрыт (Рис.

4). Далее, не снимая черного щупа, касаемся (Рис.5) красным щупом ближнего вывода (G — затвор) и опять возвращаем его на дальний (S — исток), тестер показывает 0 Ом: полевой транзистор открылся прикосновением (Рис.6).

Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и снова будет показывать сопростивление около 500 Ом (Рис.8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.

Тестером можно подтвердить наличие этого диода.

0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».

А теперь можно проверить и затвор.

Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.

Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив

сток-исток.проверка MOSFET

Тестер покажет почти нулевое сопротивление.

Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!

Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.

Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.

P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.

В современной радиоэлектронной аппаратуре все чаще находят применение полевые транзисторы. Как доказала практика, конструктивная надежность данных компонентов обуславливает высокую практичность работоспособности всевозможной бытовой техники.

В процессе ремонтных работ, которые все же случаются, возникает необходимость тестирования того или иного компонента на предмет его исправности. Например, как проверить полевой транзистор, который выпаяли из неисправного блока, вышедшего из строя аппарата. Самый простой метод проверки с применением стрелочного тестера.

У исправного транзистора между всеми его выводами прибор показывает бесконечное сопротивление, кроме современных, имеющих диод между стоком и истоком, который и ведет себя, как обычный диод. Второй способ проверки с применение современного цифрового мультиметра. Черный щуп, являющийся отрицательным, прикладываем к выводу стока транзистора.

Красный щуп, являющийся положительным, прикладываем к выводу истока. Мультиметр показывает прямое падение напряжения на внутреннем диоде около 450мВ, в обратном – бесконечное сопротивление. В данный момент транзистор закрыт. Что мы делаем далее. Не снимая черного щупа, прикладываем красный к затвору, и вновь возвращаем на вывод истока.

Мультиметр показывает 280мВ, т.е. он открылся прикосновением. Теперь, если прикоснуться затвора черным щупом, не отпуская красного щупа и вернуть его на вывод стока, то полевой транзистор закроется, и прибор снова покажет падение напряжения на диоде. Диагностика произведена, в результате чего мы убедились в исправности тестируемого транзистора.

Для образца мы применили N-канальный полевой транзистор. Чтобы проверить исправность P-канального транзистора, необходимо, всего лишь, поменять местами щупы мультиметра.

ЗЫ: Взял где взял, обобщил и добавил немного. (не отвлекайтесь и откликайтесь кому это не по зубам) — Копипаста? Да! ….обобщённая и дополненная.

Простите за качество некоторых картинок (чем богаты).

Берегите себя и своих близких!

Мосфет Измерения Проверка Ремонт техники Видео Длиннопост

Прочитал пост про проверку спелости арбуза через отношение массы и длины окружности плода.

https://pikabu.ru/story/v_doegyevskuyu_yepokhu_6032324

«Талия» 63 см.

Согласно расчётам: Спелый арбуз массой 4 кг. должен иметь длину окружности 61,9 см и более.

Проверим: 

Показать полностью 1 [моё] Арбуз Спелый Проверка Измерения Окружность

Диод.

Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого.

Выводы диода называют анодом и катодом. Ток течет от анода к катоду. Запомнить где какой вывод очень просто: на условном обозначнеии стрелочка и палочка со стороны катода как бы рисуют букву К вот, смотри —К|—. К= Катод! А на детали катод обозначается полоской или точкой.

Есть еще один интересный тип диода – стабилитрон. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара.

Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала.

Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. Также есть такой зверь как супрессор. Тот же стабилитрон, только куда более мощный и часто двунаправленный.

Используется для защиты по питанию.

Так работает диод.

Транзистор.

Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.

В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной является коэффициент усиления.

Делятся эти девайсы на полевые и биполярные.

В биполярном транзисторе есть эмиттер, коллектор и база (смотри рисунок условного обозначения). Эмиттер он со стрелочкой, база обозначается как прямая площадка между эмиттером и коллектором.

Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере. А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером.

Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.

Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.

Обозначение транзисторов или камень преткновения всех студентов. Как запомнить тип биполярного транзистора по его условной схеме? Представь что стрелочка это направление твоего движения на машине… Если едем в стенку то дружный вопль «Писец Нам Писец

Короче, транзистор позволит тебе слабеньким сигналом, например с ноги микроконтроллера, управлять мощной нагрузкой типа реле, двигателя или лампочки.

Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора.

Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового MOSFET ключа.

ЗЫ: Взял где взял, обобщил и добавил немного.

ЗЫ2: LF! ,kzl rjgbgfcnf!

Простите за качество некоторых картинок (чем богаты).

Берегите себя и своих близких!

Показать полностью 2 3 Диоды Транзистор Проверка Ремонт техники Видео Длиннопост

В наше время уже тяжело представить себе какое-либо устройство без пульта дистанционного управления.

История изобретения пульта ДУ весьма противоречива и, судя по-всему, так уже и останется тайной…

По одной из версий первые эксперименты были предприняты немцами еще в конце 30-х годов прошлого века.

Первая система дистанционного управления состояла из громозкого устройства со сложной электронной начинкой, соединенным с самим устройством проводами.

В дальнейшем (в середине 70-х годов) для передачи сигнала на расстояние стал использоваться ультразвук, а в конце все тех-же 70-х было предложено использовать и СВЧ-радиосигнал.

В 1974 году фирмой GRUNDIG был выпущен первый телевизор, где впервые было использован принцип передачи сигнала при помощи ИК лучей, который с большим успехом применяется и по наше время…

Принцип работы пультов ДУ следующий:

В основу каждого пульта положен генератор импульсов, работающий в частотном диапозоне между 30 и 40 кГц, сигнал которого промодулирован кодом той или иной команды. Для наглядности рассмотрим график:

Показать полностью 13 4 Пду Пуль управления Проверка Измерения Видео Длиннопост

Словосочетание «катушка ниток» знакомо всем, но про катушку индуктивности слышали, думаю, не все. Вот что вы себе представляете под словом «катушка» ? Ну…

это, наверное, какая-нибудь фиговинка, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции. Изоляция может быть из бесцветного лака, из проводной изоляции, и даже из матерчатой.

Тут фишка такая, хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности сами, ни в коем случае не вздумайте брать обычный медный голый провод!

Любая катушка индуктивности, как ни странно, обладает индуктивностью 🙂 Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется LC — метром. Что такое индуктивность? Давайте разбираться. Если через проводок прогнать электрический ток, то он вокруг себя создаст магнитное поле:

Показать полностью 24 Катушка индуктивности Измерения Ремонт техники Длиннопост

Как проверить транзистор мультиметром?

Транзистор это очень распространенный активный радиокомпонент, который попадается почти во всех схемах, и очень часто, особенно во время эксперементальных курсов по изучению азов электроники, он выходит из строя. Поэтому без навыка проверки транзисторов, вам в электронику лучше не соваться. Вот и давайте разбираться, как проверить транзистор.

Биполярный транзистор состоит из двух P-N переходов. Его выводы называются, как эммитер, база и коллектор. Слой, который посередине, называется базой. Эммитер и коллектор находятся по краям. В P-N-P транзисторе в классической схеме включения ток втекает в эммитер и собирается в коллекторе. А ток базы регулирует ток в коллекторе.

Из измерительного оборудования для проверки транзистора нам потребуется только обычный мультиметр, который необходимо переключить в режим омметра или в режим проверки диодов.

Проверка биполярных транзисторов основана на том, что они имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами. Транзистор считается исправным, если исправны оба перехода.

Для проверки транзистора один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно дотрагиваются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение. Теперь чуть подробнее: Возьмем транзистор структуры N-P-N и проверим эмитерный переход для этого плюсовой щуп тестера подключаем к базе, а минусовой к эммитеру.

Показать полностью 2 Транзистор Проверка Ремонт техники Длиннопост Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам:

Как проверить полевой транзистор: мосфет или полевик, мультиметром не выпаивая, с изолированным затвором на неисправность

Использование полевых транзисторов очень распространено. Если происходит поломка необходимо найти неисправную деталь. Иногда требуется точно определить, работоспособен ли полевой транзистор. Это возможно выполнить с использованием мультиметра. Как проверить полевик — подробнее рассказывается далее.

Полевой транзистор — что это

Он включает три основных элемента — исток, затвор и сток. Для их создания используются полупроводники n-типа и p-типа. Они могут сочетаться одним из способов:

  1. Сток, исток соответствуют n-типу, а затвор — p-типу. Их называют транзисторы n-p-n типа.
  2. Такие, у которых используется полярность p-n-p. Тип проводимости у каждой части транзистора изменён на противоположный в сравнении с предыдущим вариантом.

Проверка мультиметром

Если эту деталь соединить с источником питания, то ток будет отсутствовать. Но всё будет иначе, если это сделать между истоком и затвором или стоком и затвором.

Нужно, чтобы к затвору было приложено напряжение, соответствующее по знаку его типу проводимости (положительное для p-типа, отрицательное для n-типа). Тогда через эту деталь потечёт ток.

Чем более высокое напряжение было подано на затвор, тем он будет сильнее.

Отличие полевого от биполярного транзистора

Транзистор станет открытым при условии, что на затвор подаётся разность потенциалов нужной полярности. В этом случае при помощи электрического поля создаётся канал между истоком и стоком, через который могут перемещаться электрические заряды. У других разновидностей транзисторов управление происходит на основе тока, а не напряжения.

Рассматриваемые электронные компоненты также называют мосфетами. Это слово происходит из аббревиатуры MOSFET — Metal Oxide Semiconductor Field Effect Transistor (в переводе это означает: металл-окисел-полупроводник полевой транзистор).

Разновидности полевиков

Как работает

Полевой транзистор отличается от других разновидностей особенностями своего устройства. Он может относиться к одному из двух типов:

  • с управляющим переходом;
  • с изолированным затвором.

Первые из них бывают n канальными и p канальными. Первые из них более распространены. Они используют следующий принцип действия.

В качестве основы используется полупроводник с n-проводимостью. К нему с противоположных сторон присоединены контакты истока и стока. В средней части с противоположных сторон имеются вкрапления проводника с p-проводимостью — они являются затвором. Та часть полупроводника, которая между ними — это канал.

Вам это будет интересно  Как работают датчики движения для включения светаТранзистор с управляющим переходом

Если к истоку и стоку n канального транзистора приложить разность потенциалов, то потечёт ток. Однако при подаче на затвор отрицательного напряжения по отношению к истоку, то ширина канала для перемещения электронов уменьшится. В результате сила тока станет меньше.

Таким образом, уменьшая или увеличивая ширину канала, можно регулировать силу тока между истоком и стоком или изолировать их друг от друга.

В p-канальных транзисторах принцип работы будет аналогичным.

Этот тип полевых транзисторов становится менее распространённым, а вместо него получают всё большее распространение те, в которых используется изолированный затвор. Они могут относиться к одному из двух типов: n-p-n или p-n-p. У них принцип действия является аналогичным. Здесь будет рассмотрен более подробно первый из них: n-p-n.

В этом случае в качестве основы для транзистора применяется полупроводник p-типа. В него встраиваются две параллельно расположенные полоски полупроводника с другим типом основных носителей заряда. Между ними по поверхности прокладывается изолятор, а сверху устанавливается слой проводника. Эта часть является затвором, а полоски — это исток и сток.

Устройство транзистора

Когда на затвор подаётся положительное напряжение по отношению к истоку, на пластину попадает положительный заряд, создающий электрическое поле. Оно притягивает к поверхности положительные заряды, создавая канал для протекания тока между истоком и стоком. Чем сильнее напряжение, поданное на затвор, тем более сильный ток проходит между истоком и стоком.

Для всех типов полевых транзисторов управление происходит при помощи подачи напряжения на затвор.

Транзистор открыт

Какие случаются неисправности

Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние.

Важно! Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь.

При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях.

Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.

Назначение выводов

Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):

  1. Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
  2. К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
  3. Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
  4. В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.

Вам это будет интересно  Особенности резонанса токовПроверка диода в прямом направлении

На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.

Проверка диода в обратном направлении

  1. Дальше осуществляется проверка работоспособности транзистора.

Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.

Открытие канала

Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же.

Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод. Если полевик закрыт не будет, то это указывает на его неисправность.

Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.

Работа полевого МДП транзистора

Способы устранения

Для того, чтобы при проверке не повредить деталь, нужно применять при проверке такие мультиметры, у которых используется рабочее напряжения не более 1,5 в.

Если в результате проверки на мультиметре было обнаружено, что полевой транзистор вышел из строя, то его необходимо заменить на новый.

Инструкция по прозвонке без выпаивания

Чтобы проверить, исправен ли полевой транзистор, нужно его выпаять и прозвонить с мультиметром. Однако могут возникать ситуации, когда нужно в схеме есть несколько таких деталей и неизвестно, какие из них исправны, а какие — нет. В этом случае полезно знать, как проверить полевой транзистор мультиметром не выпаивая.

Цифровой мультиметр

В этом случае применяют проверку без выпаивания. Она даёт примерный результат.

Важно! После того, как будет определён предположительно неисправный элемент, его отсоединяют и проверяют, получив точную информацию о его работоспособности. Если он функционирует нормально, его устанавливают на прежнее место.

Проверка без выпаивания выполняется следующим образом:

  1. Перед проведением прозвонки полевого транзистора цифровым мультиметром устройство отключают от электрической розетки или от аккумуляторов. Последние вынимают из устройства.
  2. Если красный щуп соединить с истоком, а чёрный — со стоком, то можно рассчитывать, что мультиметр покажет 500 мв. Если на индикаторе можно увидеть эту или превышающую её цифру, то это говорит о том, что транзистор полностью фунукционален. В том случае, если эта величина гораздо меньше — 50 или даже 5 мв, то в этом случае можно с высокой вероятностью предположить неисправность.

Вам это будет интересно  Как измерять напряжениеС управляющим p-n-переходом

  1. Если красный мультиметровый щуп переставить на затвор, а чёрный оставить на прежнем месте, то на индикаторе можно будет увидеть 1000 мв или больше, что говорит об исправности полевого транзистора. Когда разница составляет 50 мв, то это внушает опасение, что деталь испорчена.
  2. Если чёрный щуп тестера поставить на исток, а красный поместить на затвор, то для работоспособного транзистора можно ожидать на дисплее 100 мв или больше. В тех случаях, когда цифра будет меньше 50 мв, имеется высокая вероятность того, что проверяемая деталь неработоспособна.

Нужно учитывать, что выводы, получаемые без выпайки, носят вероятностный характер. Эти данные позволяют получить предварительные выводы об используемых в схеме полевых транзисторах.

Для проверки их нужно выпаять, произвести проверку и установить, если работоспособность подтверждена.

Подготовка к работе

Правила безопасной работы

Мосфеты очень уязвимы по отношению к статическому электричеству. В этом случае может произойти пробой. Для того, чтобы этого не случилось, нужно при помощи проведения тестирования его удалять.

При пайке возможна ситуация, когда тепло, попадающее на транзистор, приведёт к его порче. В этом случае нужно обеспечить теплоотвод. Для этого достаточно придерживать выводы транзистора плоскогубцами в процессе пайки.

Полевики имеют широкое распространение в современных электронных приборах. Когда происходит поломка, необходимо знать, как проверить мосфет. Выяснить, исправен ли он, возможно, если использовать для этого мультиметр.

Проверка полевого транзистора на работоспособность

Исключая теорию работы полевых транзисторов, все таки вспомним, что они бывают двух видов: с управляющим p-n-переходом; со структурой металл-диэлектрик-полупроводник (МДП) или MOSFET — Metal-Oxide-Semiconductor Field-Effect Transistor

Проверка полевых транзисторов MOSFET n канального типа

Для проверки полевых транзисторов N-канального типа структуры МДП необходимо переключить мультиметр в режим проверки диодов , черный минусовой щуп необходимо установить слева на подложку (D — сток), красный плюсовой на дальний от себя вывод справа (S — исток), мультиметр показывает падение напряжения на внутреннем диоде , полевой транзистор закрыт.

Затем, не отпуская черного щупа, касаемся красным щупом ближнего вывода (G — затвор) и опять соеденяем его с дальним (S — исток), мультиметр показывает 0 мВ (на некоторых цифровых мультиметрах будет показываться 150…170 мВ), полевой транзистор открылся прикосновением

Если же в этот момент черным щупом коснуться нижней (G — затвор) ножки, не отпуская плюсового щупа, и вернуть его на подложку (D — сток), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения около 500 мВ (последний рисунок). Это метод проверен на большинстве N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на современных материнских платах и видеокартах.

Проверка полевых транзисторов MOSFET p канального типа

Для проверки P-канальных полевых транзисторов требуется поменять полярность напряжений открытия-закрытия. Для этого щупы мультиметра поменяем местами.

Советы радиолюбителю. Простой способ проверки транзисторов, конденсаторов, диодов и тиристоров

Как проверить полевой транзистор

    Транзистор IRFZ44N

В современной электронной аппаратуре все чаще находят применение полевые транзисторы. Разработчики используют их в блоках питания телевизоров, мониторов, видеомагнитофонов и другой аппаратуре. При проведении ремонта мастер сталкивается с необходимостью проверки исправности мощных полевых транзисторов. В статье автор рассказывает, как произвести проверку полевого транзистора с помощью обычного омметра.

Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры.

При ремонте аппаратов, в которых применены полевые транзисторы, у ремонтников очень часто возникает задача проверки целостности и работоспособности этих транзисторов. Чаще всего приходится иметь дело с вышедшими из строя мощными полевыми транзисторами импульсных блоков питания.

Расположение выводов полевых транзисторов (Gate — Drain — Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S). Если такой маркировки нет, то желательно воспользоваться справочными данными.

    Транзистор RU6888R
    (для ремонта гироскутеров)

Чтобы предотвратить выход из строя транзистора во время проверки, очень важно при проверке полевых транзисторов соблюдать правила безопасности.

Дело в том, что полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление.

Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет. Также следует помнить, что при хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.

При проверке ПТ чаще всего пользуются обычным омметром. У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору (G) транзистора n-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов.

Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед “прозвонкой” канала “сток-исток” замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным.

В противном случае транзистор признается неисправным.

В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод, поэтому канал “сток-исток” при проверке ведет себя как обычный диод. Для того чтобы избежть досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Убедиться в наличии диода достаточно просто.

Нужно поменять местами щупы тестера, и он должен показать бесконечное сопротивление между стоком и истоком. Если этого не произошло, то, скорее всего, транзистор пробит. В остальном проверка транзистора не отличается от приведенной выше. Таким образом, имея под рукой обычный омметр, можно легко и быстро проверить мощный полевой транзистор.

Большой выбор полевых транзисторов в интернет магазине Dalincom, в разделе Полевые транзисторы.

Александр Столовых»Ремонт электронной техники» №7 2001

Краткий курс: как проверить полевой транзистор мультиметром на исправность

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Особенности конструкции, хранения и монтажа

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора. Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.
При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.

  1. Снять статическое электричество с транзистора.
  2. Перевести мультиметр в режим проверки диодов.
  3. Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
  4. Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
  5. Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
  6. Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
  7. Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
  8. При смене полярности щупов мультиметра величина показаний не должна измениться.
  9. Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
  10. При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.

Как мультиметром проверить MOSFET

  • Программатор Ch441A MinProgrammer описание, драйвера, инструкция
    Этот программатор почему-то все называют Mini Programmer, несмотря на то, что надпись на нем все таки иная. Этим грешат даже поисковики. Д…

  • Шаговый двигатель из CD/DVD привода
    Попались в мои руки несколько приводов оптических дисков, которые я разобрал. В итоге помимо плат и прочей механики стал обладателем несколь…

  • Реле SRD-05VDC-SL-C описание, характеристики
    Речь пойдет о низковольтном реле SRD-05VDC-SL-C китайского производства. Очень часто приходится коммутировать напряжение 220 v, в большинств…

  • Пришла мне в голову идея собрать на lm358 усилитель для наушников. Идея вызвана тем, что мне срочно понадобился прибор для проверки операцио…

  • Как выпаять микросхему в SOP или SOIC корпусе паяльником
    Выпайка SMD компонентов обычным паяльником возможна, я сейчас опишу демонтаж микросхемы в корпусе SOP8 при помощи обычного 30-ти ваттного па…

  • Не так давно мне нужно было подключить нагрузку к Arduino nano и я столкнулся проблемой силовых ключей. У меня было несколько IRF640N, по мо…

  • Прошивка Cisco AIR-lAP1131AG-E-K9
    Поговорим о том, как прошить точку доступа cisco AIR-lAP1131AG-E-K9 в режим Stand-alone. Итак, имеем WiFi точку с прошивкой для раб…

Как проверить полевой транзистор

Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, малому сопротивлению в открытом состоянии, находят широкое применение в блоках  питания компьютеров, мониторов, телевизоров,  видеомагнитофонов и другой радиоэлектронной аппаратуры, постепенно, но неуклонно вытесняя транзисторы биполярные.

1. Меры предосторожности при работе с полевыми транзисторами

Чтобы предотвратить выход из строя транзистора во время проверки, очень важно соблюдать правила безопасности. Полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет.

При отсутствии браслета достаточно коснуться рукой батареи отопления или любых заземленных предметов, так как электростатические заряды между телами при их разделении распределяются пропорционально массе тел. Поэтому для их «обезвреживания» бывает достаточно прикоснуться даже к любой большой незаземленной металлической поверхности.

При хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.

2. Определение цоколёвки полевых транзисторов

Полевые транзисторы, выполненные по технологии МОП (металл-оксид-полупроводник) или МДП (металл-диэлектрик-полупроводник) в англоязычной литературе носят наименование MOSFET(Metal-Oxide-SemiconductorField-EffectTransistor).

Расположение выводов (цоколёвка) полевых транзисторов Затвор (Gate) – Сток (Drain) – Исток (Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S).

Если такой маркировки нет, то желательно воспользоваться справочными данными (datasheet).

Основные типы корпусов полевых транзисторов импортного производства

Корпус типа D²PAK, так же известен как TO-263-3. Встречается в основном на пожилых платах, на современных используется редко.

Корпус типа DPAK, так же известен как TO-252-3. Наиболее часто используется, представляет собой уменьшенный D²PAK.

Корпус типа SO-8.Встречается на материнских платах и видеокартах, чаще на последних. Внутри может скрываться один или два полевых транзистора.

Корпус типа SuperSO-8, он же — TDSON-8отличается от SO-8 тем, что 4 вывода соединены с подложкой транзистора, что облегчает температурный режим. Характерен для продуктов фирмы Infineon. Легко заменяется на аналог в корпусе SO-8

Корпус типа IPAK так же известен как TO-251-3. По сути — полный аналог DPAK, но с полноценной второй ногой. Такой тип транзисторов очень любит использовать фирма Intel на ряде своих плат.

Для электронных компонентов иностранного производства справочные данные берутся из Даташит (Datasheet— в дословном переводе «бумажка с информацией) — официального документа от производителя электронных компонентов, в котором приводятся описание, параметры, характеристики изделия, типовые схемы и т.д. Datasheet обычно представляет собой файл в формате PDF.

3. Основные характеристики N-канального полевого транзистора

Различных параметров важных, и не очень, у полевых транзисторов много. Мы подойдем к вопросу с прикладной точки зрения и ограничимся рассмотрением необходимых нам практически параметров.

  • Vds — Drain to Source Voltage — максимальное напряжение сток-исток.
  • Vgs — Gate to Source Voltage — максимальное напряжение затвор-исток.
  • Id — Drain Current — максимальный ток стока.
  • Vgs(th) — Gate to Source Threshold Voltage — пороговое напряжение затвор-исток при котором начинает открываться переход сток-исток.
  • Rds(on) — Drain to Source On Resistance — сопротивление перехода сток-исток в открытом состоянии.
  • Q(tot) — Total Gate Charge — полныйзарядзатвора.

Параметр Rds(on) может указываться при разных напряжениях затвор-исток, как правило это 10 и 4.5 вольта, это важная особенность которую нужно обязательно учитывать.

4. Система маркировки полевых транзисторов

Рассмотрим на примере транзистора 20N03. Это означает, что он рассчитан на напряжение (Vds) ~30V и ток (Id) ~20A. Буква N означает, что это N-канальный транзистор. Но из любого правила есть исключения, так, например, фирма Infineon указывает в маркировке Rds, а не максимальный ток.

 Примеры:

  • IPP15N03L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ Id=42A TO220
  • IPB15N03L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ Id=42A TO263(D²PAK)
  • SPI80N03S2L-05 — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=5.2mΩ Id=80A TO262
  • NTD40N03R — On Semi Power MOSFET 45 Amps, 25 Volts Rds=12.6mΩ
  • STD10PF06 — ST STripFET™ II Power P-channel, MOSFET 60V 0.18Ω  10A IPAK/DPAK

  Итак, в случае маркировки XXYZZ мы можем утверждать, что XX — или Rds, или Id Y — тип канала ZZ – Vds.

 5. Алгоритм проверки исправности полевого транзистора

 Проверку можно проводить стрелочным омметром (предел х100), но более удобно это делать цифровым мультиметром в режиме тестирования P-N пере­ходов . Показываемое мультиметром зна­чение сопротивления на этом пределе численно равно напряжению на P-N переходе в милливольтах.

6. Пример проверки транзистора мультиметром:

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от полярности прикладываемого напряжения (щупов).

В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод.

Черным (отрицательным) щупом прикасаемся к подложке — СТОКУ (D), красным (положительным) — к выводу ИСТОКА (S). Мультиметр показывает прямое падение напряжения на внутреннем диоде (500 — 800 мВ). В обратном смещении мультиметр должен показывать бесконечно большое сопротивление, транзистор закрыт.

Далее, не снимая черного щупа, касаемся красным щупом вывода ЗАТВОРА (G) и опять возвращаем его на вывод ИСТОКА (S). Мультиметр показывает близкое к нулю значение, причём при любой полярности приложенного напряжения — полевой транзистор открылся прикосновением. На некоторых цифровых мультиметрах возможно значение будет не 0, а 150…170 мВ

Если теперь черным щупом коснуться вывода ЗАТВОРА (G), не отпуская красного щупа, и вернуть его на вывод подложки — СТОКА (D), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения на диоде. Это верно для большинства N-канальных полевых транзисторов в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

Транзистор выполнил всё, что от него требовалось. Диагноз — исправен.

Для проверки P-канальных полевых транзисторов нужно поменять полярность напряжений открытия-закрытия. Для этого просто меняем щупы мультиметра местами.

Методика проверки исправности полевых транзисторов с достаточной степенью правильности показана в видеоролике от магазина Чип и Дип

Источник: http://meandr.org/archives/9199

Как позвонить полевой транзистор. Как простым омметром проверить полевой транзистор. Как проверить полевой транзистор мультиметром

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Этикетки безопасности — весь набор деструктивных меток, способных выделять уничтожение печати стандартным или определенным клиентом текстом. Доступны в широком диапазоне размеров, таких как: толщина — 1 мм, 2 мм, 3 мм и ширина 6 мм, 9 мм, 12 мм, 25 мм. Этикетки с высокой термостойкостью — целый ряд высокотемпературных ярлыков, изготовленных из специальных материалов, используемых для идентификации компонентов в процессе производства. Стандартные и интеллектуальные этикетки — в качестве полного поставщика услуг мы можем предоставить этикетки любой формы, цвета, материала для любой технологии.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы . Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

У нас есть необходимые материалы, и технология, которую мы используем для маркировки этикеток, позволяет нам запускать как можно больше или несколько ярлыков, и, что наиболее важно, как бы сложно это ни было. Это то, что мы делаем лучше всего. Метка часто является частью, которая остается видимой и представляет собой интерфейс между их производителем и клиентом, который в них нуждается. Это кажется банальным, но это ярлык, который продает продукт и через который производитель находится в конечном продукте.

Но это не определяет качество этого ярлыка вообще. Метка должна использоваться практически для той цели, для которой она была изготовлена. Чтобы полностью удовлетворить эти требования, этикетки должны придерживаться различных поверхностей: алюминия, картона, стекла, стали, пластика и многих других. Выбор ярлыка, который вам нужен, очень важен.

Так называемый «прямой» (см. фото)


С обратным переходом, как изображено на фото


Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром — видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

С помощью мультиметра можно определить назначение выводов.

Важно! Это правило работает лишь в случае с исправным транзистором. Впрочем, если деталь неисправна, вам незачем определять названия контактов.

Мультиметр выставляем в режим измерения сопротивления, предел шкалы – 2000 Ом. Выводы прибора – красный плюс, черный минус. Транзистор располагаем любым удобным способом, выводу условно определяем как «левый», «средний», «правый».

Определение базы

Красный щуп на левый контакт , замеряем сопротивление на среднем и правом выводах. В нашем случае это значение «бесконечность» (на индикаторе «1»), и 816 Ом (типичное сопротивление исправного p-n перехода при прямом подключении). Фиксируем результат измерений.

Красный щуп на середину , производим замер левого и правого контактов. С «бесконечностью» все понятно, обращаем внимание на то, что вторая пара показала результат, отличный от первого измерения. Это нормально, эмиттерный и коллекторный переходы имеют разное сопротивление. Об этом позже.

Красный щуп на правый контакт , производим замеры оставшихся комбинаций. В обоих случаях получаем единичку, то есть «бесконечное» сопротивление.

При таком раскладе, база находится на правом выводе. Этих данных недостаточно для пользования деталью. У производителей нет единого стандарта по расположению эмиттера и коллектора, поэтому определяем выводы самостоятельно.

Определение остальных выводов

Черный щуп на «базу», меряем сопротивление переходов. Одна ножка показала 807 Ом (это коллекторный переход), вторая – 816 Ом (эмиттерный переход).

Важно! Эти значения сопротивления не являются константой, в зависимости от производителя и мощности транзистора величина может незначительно отклоняться. Главное правило – сопротивление коллектора относительно базы меньше, чем сопротивление эмиттера.

Точно таким же способом производится проверка исправности биполярного транзистора. В ходе определения контактов, мы заодно проверили исправность детали. Если вам известно расположение выводов – проверяете переходы «база-эмиттер» и «база коллектор», меняя полярность щупов.

При прямом подключении – вы увидите значения, аналогичные предыдущим замерам. При обратном – сопротивление должно быть бесконечным. Если это не так – переходы относительно базы неисправны.
Последняя проверка – переход «эмиттер-коллектор». В обоих направлениях исправная деталь покажет бесконечное сопротивление.


Если в ходе тестирования вы получили именно такие результаты – ваш биполярный транзистор исправен.

Как проверить транзистор мультиметром не выпаивая

Прежде всего, проверьте расположение на монтажной плате остальных радиодеталей, относительно выводов транзистора. Иногда переходы шунтируются резисторами с небольшим сопротивлением.

Если при замерах переходов, сопротивление будет измеряться десятками Ом – транзистор придется выпаивать. Если шунтов нет – см. методику, описанную выше, проверить транзистор на плате не получится.

Как проверить полевой транзистор мультиметром

Полупроводниковые транзисторы – MOSFET (на слэнге радиолюбителей – «мосфеты»), имеют несколько иное расположение p-n переходов. Название выводов также отличается: «сток», «исток», «затвор». Тем не менее, методика проверки прекрасно моделируется диодными аналогиями.


Принципиальное отличие – канал между «истоком» и «стоком» в состоянии покоя имеет небольшую проводимость с фиксированным сопротивлением. Когда «мосфет» получает запирающее напряжение на «затворе», этот переход закрывается. При проверке он принимается открытым (в случае, если транзистор исправен).

Проверить полевой транзистор с помощью тестера можно по такой же методике, что и биполярный. Прибор в положение «измерение сопротивления» с пределом 2000 Ом.

Сопротивление по линии «исток» «сток» проверяется в обе стороны. Значение должно быть в пределах 400-700 Ом, и немного отличаться при смене полярности.


Линия «исток» «затвор» должна иметь проводимость с аналогичным сопротивлением, но только в одном направлении. Такая же ситуация при проверке «сток» «затвор».

Проверить полевой транзистор мультиметром не выпаивая из схемы можно, если нет шунтирующих деталей. Определить их наличие можно визуально. Однако, «мосфеты» обычно окружены т.н. обвесом из управляющих элементов. Поэтому их проверку лучше проводить отдельно от схемы.
P.S.
Если ваш прибор стрелочный – проверка производится также точно.
Метод проверки полевого транзистора от Чип и Дип — видео

В современной электронной аппаратуре все чаще находят применение полевые транзисторы. Разработчики используют их в блоках питания телевизоров, мониторов, видеомагнитофонов и другой аппаратуре. При проведении ремонта мастер сталкивается с необходимостью проверки исправности мощных полевых транзисторов. В статье автор рассказывает, как произвести проверку полевого транзистора с помощью обычного омметра.

Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры.

При ремонте аппаратов, в которых применены полевые транзисторы, у ремонтников очень часто возникает задача проверки целостности и работоспособности этих транзисторов. Чаще всего приходится иметь дело с вышедшими из строя мощными полевыми транзисторами импульсных блоков питания.

Расположение выводов полевых транзисторов (Gate — Drain — Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S). Если такой маркировки нет, то желательно воспользоваться справочными данными.

Чтобы предотвратить выход из строя транзистора во время проверки, очень важно при проверке полевых транзисторов соблюдать правила безопасности. Дело в том, что полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет. Также следует помнить, что при хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.

При проверке ПТ чаще всего пользуются обычным омметром. У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения. Если при проверке приложить положительный щуп тестового прибора к затвору (G) транзистора n-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед “прозвонкой” канала “сток-исток” замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод, поэтому канал “сток-исток” при проверке ведет себя как обычный диод. Для того чтобы избежть досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Убедиться в наличии диода достаточно просто. Нужно поменять местами щупы тестера, и он должен показать бесконечное сопротивление между стоком и истоком. Если этого не произошло, то, скорее всего, транзистор пробит. В остальном проверка транзистора не отличается от приведенной выше. Таким образом, имея под рукой обычный омметр, можно легко и быстро проверить мощный полевой транзистор.

Полевые транзисторы (FET): TESTING FETs

T E ST I N G FET s

Проверка полевого транзистора сложнее, чем проверка обычного транзистора. Перед фактическим тестированием полевого транзистора необходимо учесть следующие моменты:

1. Является ли устройство полевым или полевым МОП-транзистором?

2. Является ли полевой транзистор N-канальным или P-канальным устройством?

3. Является ли устройство с полевыми МОП-транзисторами устройством режима улучшения или устройством режима истощения?

Перед удалением полевого транзистора из схемы или обращением с ним проверьте, является ли он полевым транзистором или полевым МОП-транзистором. МОП-транзисторы можно легко повредить, если не соблюдать определенные меры предосторожности при обращении.

1. Держите все выводы полевого МОП-транзистора закороченными, пока они не будут готовы к использованию.

2. Убедитесь, что рука, используемая для работы с полевым МОП-транзистором, заземлена.

3. Убедитесь, что питание схемы отключено, прежде чем вставлять или извлекать полевой МОП-транзистор.

И полевые транзисторы JFET, и полевые МОП-транзисторы могут быть проверены с помощью имеющегося в продаже оборудования для тестирования транзисторов или омметра. При использовании коммерческого оборудования для тестирования транзисторов см. Руководство по эксплуатации для правильной настройки переключателя.

Тестирование полевых транзисторов с помощью омметра

1. Используйте низковольтный омметр в диапазоне R X 100.

2. Определите полярность измерительных проводов.Красный — положительный, черный — отрицательный.

3. Определите прямое сопротивление следующим образом:

а. N-канальные полевые транзисторы: подключите положительный вывод к затвору, а отрицательный — к истоку или стоку. Поскольку канал соединяет исток и сток, необходимо проверить только одну сторону. Прямое сопротивление должно быть низким.

г. P-канальные полевые транзисторы: подключите минус

ведет к затвору, а положительный вывод к истоку или стоку.

4. Определите обратное сопротивление следующим образом:

а. N-канальные полевые транзисторы: подключите отрицательный измерительный провод омметра к затвору, а положительный измерительный провод — к истоку или стоку. JFET должен указывать на бесконечное сопротивление. Более низкое значение указывает на короткое замыкание или утечку.

г. P-канальные полевые транзисторы: подключите положительный тест

провод омметра к затвору, а отрицательный измерительный провод к истоку или стоку.

Тестирование полевых МОП-транзисторов с помощью омметра

Прямое и обратное сопротивление следует проверять с помощью низковольтного омметра по максимальной шкале. МОП-транзисторы имеют чрезвычайно высокое входное сопротивление из-за изолированного затвора. Измеритель должен регистрировать бесконечное сопротивление как в прямом, так и в обратном тестах сопротивления между затвором и истоком или стоком. Более низкое значение указывает на пробой изоляции между затвором и истоком или стоком.

Q U E S T ION S

1. На какие вопросы необходимо ответить перед фактическим тестированием полевого транзистора?

2. Почему важно знать, является ли устройство полевым транзистором или полевым МОП-транзистором, прежде чем удалять его из схемы?

3. Опишите, как проверить полевой транзистор с помощью омметра.

4. Опишите, как проверить полевой МОП-транзистор с помощью омметра.

5. Какая процедура используется для тестирования JFET или MOSFET с помощью коммерческого тестера транзисторов?

Входящие поисковые запросы:

Тестирование транзисторов с помощью вольтметра

Неисправный транзистор иногда можно определить по частично сгоревшему или искаженному внешнему виду, но чаще всего нет видимых признаков.Один из подходов к устранению неполадок — замена заведомо исправного компонента, но это дорогостоящий способ. Кроме того, это ненадежно, потому что внешний дефектный компонент может мгновенно уничтожить замену без видимых доказательств. Разумная альтернатива — проверить транзистор. Обычный мультиметр может быстро выполнять внутрисхемные тесты, которые не являются полностью окончательными, но, как правило, предоставляют приемлемую информацию о состоянии «годен / не годен», используя либо режим проверки диодов, либо режим измерения сопротивления.

Обычная процедура тестирования предназначена для использования с цифровым мультиметром в диапазоне проверки диодов минимум 3.3 В над д.у.т. (проверяемый диод). Сначала рассмотрим процедуру тестирования полевого МОП-транзистора в расширенном режиме (то есть, когда устройство не является проводящим при 0 В, приложенном к затвору, работающему как переключатель). Подключите источник полевого МОП-транзистора к отрицательному выводу измерителя. (Удерживайте полевой МОП-транзистор за корпус или за язычок, но не касайтесь металлических частей испытательных зондов какими-либо другими выводами полевого МОП-транзистора до тех пор, пока это не понадобится.) Коснитесь положительным выводом измерителя на затворе полевого МОП-транзистора. Теперь переместите положительный зонд в «Слив».У вас должно быть низкое чтение. Внутренняя емкость полевого МОП-транзистора на затворе теперь заряжена измерителем, и устройство «включено».

При подключении плюсового провода измерителя к стоку закоротите исток и затвор. Затвор разрядится, и показания счетчика должны стать высокими, указывая на непроводящее устройство.

МОП-транзисторы, которые выходят из строя, часто имеют короткое замыкание сток-затвор. Это может вернуть напряжение стока на затвор, где оно подается (через резисторы затвора) в схему управления, что может привести к тому, что уровни напряжения и тока превысят пределы компонентов в этой секции.Перегрузка также повлияет на любые другие параллельно включенные вентили MOSFET. Таким образом, лучше всего проверить схемы управления неработающими полевыми МОП-транзисторами. Чтобы избежать перегрузок, некоторые разработчики добавляют стабилитрон между истоком и затвором — стабилитроны выходят из строя, чтобы ограничить повреждение в случае отказа полевого МОП-транзистора. Другая тактика — добавить сверхминиатюрные резисторы затвора. Они имеют тенденцию открываться (как предохранитель) при перегрузке, отключая затвор MOSFET.

Другой частый режим отказа полевого транзистора — это короткое замыкание сток-исток.Проверить проблему можно с помощью омметра. Подключите затвор устройства к клемме источника. Если путь сток-исток исправен, при установке щупов омметра в одном направлении должно быть обнаружено короткое замыкание. Другое направление должно измерять бесконечное сопротивление — или, по крайней мере, несколько мегаом. Измеряемый диодный переход — это корпусный диод полевого транзистора. Основной диод покажет катод на стоке для N-канального устройства и на истоке для P-канального устройства.

К сожалению, современные мультиметры используют низкое возбуждение для измерения сопротивления (1-2 В), чтобы простое активное зондирование элементов схемы не повредило их.Проблема в том, что тестирование полевого транзистора одним только современным мультиметром становится проблематичным. Причина в том, что для включения большинству мощных полевых транзисторов требуется напряжение смещения затвор-исток не менее 4-5 В. Полевые транзисторы логического уровня можно включать при напряжении от 0,3 до 1,5 В.

Простая схема, показанная здесь для N-канального полевого транзистора, помогает определить, правильно ли устройство работает в качестве переключателя. Мультиметр должен показывать довольно низкое напряжение между точками 2 и 4. Измерение R dsON устройства начинается с удаления связи между точками 1 и 2, затем измерения между точками 2 и 4 для получения приблизительного значения сопротивления на мультиметре.

Замкнув вместе точки 1 и 2, измерьте напряжение между точкой 2 и точкой 4, затем замкните точку 3 и точку 4. Вы должны увидеть, что напряжение изменяется от низкого в первом тесте до фактического приложенного напряжения батареи (обычно 9 В).

Вы можете определить, есть ли остаточная утечка между стоком и источником, замкнув точку 3 и точку 4, а затем измерив напряжение на точке 1 питания сопротивления 100 кОм от батареи. Тогда ток утечки в миллиамперах приблизительно равен = (показания мультиметра в милливольтах) / (10 4 ).Чтобы измерить номинальное пороговое значение V gs (напряжение от начала до включения) полевого транзистора, замкните точку 2 и точку 3, а затем измерьте напряжение между точкой 2 и точкой 4, как и раньше.

При исследовании полевых МОП-транзисторов с p-каналом, просто поменяйте полярность батареи и используйте ту же схему. Полярность всех щупов мультиметра будет изменена на обратную, но процедура останется прежней.

Теперь рассмотрим JFET. Проверка полевого транзистора как диода (переход затвор-канал) с помощью омметра должна указывать на низкое сопротивление между затвором и истоком при одной полярности и высокое сопротивление между затвором и истоком при обратной полярности измерителя.Если измеритель показывает высокое сопротивление при обеих полярностях, соединение затвора разомкнуто. С другой стороны, если омметр показывает низкое сопротивление при обеих полярностях, затворный переход закорочен.

Теперь рассмотрим проверку непрерывности через канал сток-исток. Если вы знаете, какие клеммы на устройстве являются затвором, истоком и стоком, лучше всего подключить перемычку между затвором и истоком, чтобы устранить любой накопленный заряд на емкости PN перехода затворного канала, который может удерживать полевой транзистор в цепи. отключенное состояние без подачи внешнего напряжения.Без этого шага любое показание измерителя непрерывности через канал будет непредсказуемым, потому что заряд может или не может накапливаться в соединении затвор-канал.

Хорошая стратегия — вставить штыри JFET в антистатическую пену перед испытанием. Проводимость пены создает резистивное соединение между всеми выводами JFET. Это соединение гарантирует, что весь остаточный заряд, накопленный на PN-переходе затворного канала, рассеивается, тем самым открывая канал для точной проверки целостности цепи исток-сток.

Поскольку канал JFET представляет собой единый непрерывный кусок полупроводникового материала, обычно нет разницы между выводами истока и стока. Проверка сопротивления от истока к стоку должна дать то же значение, что и проверка от стока к истоку. Это сопротивление должно быть относительно низким (ниже нескольких сотен Ом), когда напряжение PN перехода затвор-исток равно нулю. Приложение напряжения обратного смещения между затвором и истоком должно перерезать канал и привести к более высокому показанию сопротивления на измерителе.

Это подводит нас к биполярным транзисторам. Полезно помнить, что биполярный транзистор можно смоделировать как два последовательно соединенных диода. Плавающие выводы обеспечивают две контрольные точки, а подключенные выводы являются третьей контрольной точкой с центральным отводом. Эти два диода не будут работать как настоящий транзистор, потому что соединение с центральным отводом не является полупроводниковым переходом, а модель с двумя диодами не имеет трех отдельных кремниевых слоев, как в транзисторе. Тем не менее, подключение демонстрирует базовую концепцию тестирования транзисторов и идентификации клемм.

Чтобы проверить транзистор с помощью мультиметра в режиме проверки диодов, вставьте черный щуп в общий, а красный щуп в Diode Test или Ohms. Большинство производителей подключают красный к положительной клемме внутренней батареи, но это может варьироваться, поэтому лучше всего проверить полярность с помощью второго мультиметра в режиме постоянного напряжения. Обычное испытательное напряжение 3 В.

Естественно предположить, что центральный вывод на корпусе транзистора подключается к базе, но это соглашение не является универсальным.Подключите черный зонд к базе. Кратковременно поднесите красный щуп к эмиттеру и отметьте напряжение. Затем переключите красный зонд на эмиттер. Если показания совпадают, пока все хорошо. Удалив черный щуп из базы и заменив его красным щупом, коротко прикоснитесь черным щупом к эмиттеру и коллектору.

Если предыдущие показания были высокими, а эти — низкими, транзистор проходит статический тест. Если предыдущие показания были низкими, а эти высокие, транзистор также проходит статический тест.Если показания двух красных щупов не совпадают или показания двух черных щупов не совпадают при реверсировании щупов, транзистор неисправен.

Если идентификационные данные базы, эмиттера и коллектора неизвестны, подключите черный щуп к одному из выводов транзистора. По очереди коротко прикоснитесь красным щупом к каждому из оставшихся отведений. Если оба провода показывают высокий уровень, черный зонд подключен к базе, транзистор NPN и в норме. Если на двух других отведениях есть разные показания, переместите черный щуп к другому отведению и прикоснитесь красным щупом к оставшимся отведениям.При повторении теста с черным щупом, касающимся по очереди каждого из трех выводов, вы должны иметь высокое сопротивление, а транзистор либо неисправен, либо PNP.
Снимите черную пластину и подсоедините красный зонд к одному из проводов. Затем прикоснитесь черным щупом по очереди к каждому из оставшихся проводов. Когда касаются каждого из выводов и сопротивление становится высоким, красный вывод подключается к базе, и транзистор является хорошим устройством PNP.

Если вы получаете два разных показания для двух отведений, переместите красный щуп к другому отведению и повторите тест.Подключите красный зонд по очереди к каждому из трех проводов. Если два других вывода не дают таких же показаний при прикосновении к черному щупу, это значит, что транзистор является PNP и неисправен.

Тесты мультиметра

определяют, перегорел ли транзистор (разомкнут или закорочены), и дают приблизительную оценку способности транзистора к усилению. Но они не сообщают о фактических рабочих параметрах. Чтобы получить больше информации, следующим шагом будет тестер транзисторов сервисного типа. Этот прибор выполняет три измерения для биполярных транзисторов: прямой ток (бета), ток утечки база-коллектор с открытым эмиттером и короткое замыкание от коллектора к эмиттеру и базе.Измеряется H fe , и транзистор считается исправным, если этот показатель превышает определенный уровень. Однако тест отклонит некоторые функциональные, но низкоуровневые транзисторы H fe .

Некоторые тестеры транзисторов служебного типа могут проверять компоненты как в цепи, так и вне ее, и они способны идентифицировать неизвестные клеммы транзисторов. Поскольку H fe различается в зависимости от устройства, тестеры транзисторов служебного типа могут давать ошибочные показания и не являются безошибочными.

В высоконадежном, интуитивно понятном и удобном тесте компонентов можно использовать осциллограф в сочетании со встроенным генератором сигналов осциллографа или с внешним автономным AFG.Конденсаторы, катушки индуктивности, биполярные транзисторы и кабели можно легко проверить и определить их значения. Сигнал от AFG подается на исследуемый компонент, и отклик отображается на осциллографе. Обычно выходной импеданс 50 Ом от AFG подается через Т-образное соединение на тестируемое устройство и на аналоговый вход осциллографа. Кроме того, выход AFG OUT подключается к Trigger IN осциллографа.

Лучшие тестеры транзисторов — это приборы лабораторного уровня.Сопутствующим инструментом является индикатор кривой полупроводника. Он содержит упрощенный осциллограф в дополнение к источникам напряжения и тока, которые пользователь применяет к ИУ. На вход тестируемого транзистора подается напряжение развертки, и его выходной ток измеряется и отображается в виде графика на экране прибора. Пользователь может регулировать подаваемое напряжение, его полярность и последовательный импеданс. Когда диод подвергается изменяющемуся напряжению, отображаются различные параметры, такие как прямое напряжение, обратный ток утечки и обратное напряжение пробоя.

Ступенчатое напряжение может подаваться на входную цепь полевого транзистора или ступенчатый ток может подаваться на биполярный транзистор. Результат позволяет определить коэффициент усиления транзистора или напряжение срабатывания тиристора. Чтобы оценить характеристики транзистора, представленное ему полное сопротивление («тяговое усилие») можно систематически изменять. Усилие нагрузки применяется, когда изменение импеданса нагрузки вызывает смещение центральной частоты от ее номинального значения.

Тестирование полевого транзистора

Проверка компонентов, у которых есть два вывода, такие как резистор, конденсатор, диод и т. д., намного проще чем проверка транзистора и фета, у которых есть три вывода.Частенько техников путают с устройствами на трех ножках. В сегодняшней статье я поделится с вами, как точно проверить полевой транзистор (фет) с помощью аналогового мультиметра. Сначала определите вывод затвора, стока и истока. книга данных по полупроводникам. Как только вы определите местонахождение каждого вывода
fet, используйте аналоговый измеритель, настроенный на диапазон 10 кОм. Если ты измеряя n-канальный поток, затем поместите черный зонд на сливной штифт. Затем коснитесь штифта затвора красным щупом, чтобы разрядить внутреннюю емкость в фет.Теперь переместите красный зонд к контакту источника, пока черный зонд все еще касаясь сливного штифта. Используйте свой палец и коснитесь затвора и сливного штифта вместе, и вы увидите, что стрелка аналогового измерителя двинется вперед, средний диапазон шкалы измерителя. Удаление красного зонда от источника игла и снова прикоснувшись ею к исходному штифту, игла все еще останется в центре шкалы счетчика. Для его разрядки необходимо удалить красный щуп и коснитесь одного
раз на штифте затвора.Это снова разрядит внутреннюю емкость. Теперь, используя красный зонд, чтобы снова коснуться штифта источника, игла будет не двигаться вообще, потому что вы уже разрядили его, коснувшись штифта затвора.
Я знаю, что это немного смущает, но после некоторой практики вы сможете протестировать все виды фет.


При измерении плода, и вы наблюдали, все показания сдвинулись к нулю. Диапазон Ом, тогда ФЕТ считается закороченной и требует замены.Проверка P-канала аналогична проверке F-канала N, просто переключите полярность зонда при измерении P-канала. Если у вас есть аналог мультиметр с диапазоном 100 кОм, тогда вы, возможно, не сможете Точно проверьте фет из-за отсутствия в счетчике 9-вольтовой батарейки. Отсутствие 9-вольтовой батареи будет недостаточно для срабатывания фетра. Убедитесь, что у вашего измерителя есть диапазон времени 10 кОм. Типичная N-канальная фет-часть номера: K792, K1118, IRF630, IRF 840.Номер детали P-канала FET J306, J512, IRF9610 и др.



Как проверить полевой МОП-транзистор с помощью цифрового мультиметра

В сообщении объясняется, как проверить МОП-транзистор с помощью мультиметра с помощью ряда шагов, которые помогут вам точно определить хорошее или неисправное состояние МОП-транзистора.

МОП-транзисторы эффективны, но Комплексные устройства

МОП-транзисторы — выдающиеся устройства, когда дело доходит до усиления или переключения различных видов нагрузок.Хотя транзисторы также широко используются для вышеуказанных целей, оба аналога сильно различаются по своим характеристикам.

Поразительная эффективность МОП-транзисторов в значительной степени нивелируется одним недостатком, связанным с этими устройствами: их сложность затрудняет понимание и настройку этих компонентов.

Даже простейшие операции, такие как проверка хорошего МОП-транзистора от плохого, никогда не являются легкой задачей, особенно для новичков в этой области.

Хотя МОП-транзисторы обычно требуют сложного оборудования для проверки их состояния, простой способ использования мультиметра также считается эффективным в большинстве случаев для их проверки.

Мы возьмем в качестве примера два типа N-канальных МОП-транзисторов, K1058 и IRFP240, и посмотрим, как эти МОП-транзисторы могут быть протестированы с помощью обычного цифрового мультиметра с немного разными процедурами.

Как проверить N-канальные МОП-транзисторы

1) Установите цифровой мультиметр на диодный диапазон.

2) Держите МОП-транзистор на сухом деревянном столе на металлическом выступе так, чтобы сторона с надписью была обращена к вам, а провода были направлены к вам.

3) С помощью отвертки или измерительного щупа закоротите штырьки затвора и слива МОП-транзистора. Изначально внутренняя емкость устройства будет полностью разряжена.

4) Теперь прикоснитесь черным щупом счетчика к источнику , а красным щупом к сливу устройства.

5) Вы должны увидеть индикацию «обрыва» цепи на счетчике.

6) Теперь, прикасаясь черным щупом к истоку , поднимите красный щуп со стока и на мгновение прикоснитесь к затвору mosfet и верните его обратно к стоку mosfet.

7) На этот раз измеритель покажет короткое замыкание (извините, не короткое замыкание, а «непрерывность»).

Результаты пунктов 5 и 7 подтверждают, что МОП-транзистор в порядке.

Повторите эту процедуру много раз для надлежащее подтверждение

Для повторения описанной выше процедуры каждый раз вам потребуется сбросить полевой МОП-транзистор , закоротив выводы затвора и стока с помощью измерительного щупа, как описано ранее. Для P-канала этапы тестирования будут такими же, как 1,2,3,4 и 5, но полярность измерителя изменится.Вот как это сделать.

1) Установите цифровой мультиметр на диодный диапазон.

2) Закрепите МОП-транзистор на сухом деревянном столе на металлическом выступе так, чтобы сторона с надписью была обращена к вам, а провода были направлены к вам.

3) С помощью любого проводника или измерительного щупа закоротите штырьки затвора и стока P-mosfet. Первоначально это позволит разрядить внутреннюю емкость устройства, что важно для процесса тестирования.

4) Теперь прикоснитесь КРАСНЫМ датчиком измерителя к источнику и ЧЕРНЫМ датчиком к сливу устройства.

5) Вы обнаружите «обрыв» цепи на счетчике.

6) Затем, не перемещая КРАСНЫЙ датчик из источника , удалите черный датчик из стока и прикоснитесь им к затвору mosfet на секунду, и верните его обратно на сток mosfet. .

7) На этот раз измеритель покажет непрерывность или низкое значение на измерителе.

Вот и все, это подтвердит, что ваш MOSFET в порядке и без каких-либо проблем. Любая другая форма чтения укажет на неисправный МОП-транзистор.

Если у вас возникнут какие-либо сомнения относительно процедур, пожалуйста, не стесняйтесь выражать свои мысли в разделе комментариев.

Как проверить МОП-транзистор IRF540

Процедуры в точности аналогичны описанным выше процедурам тестирования N-канального МОП-транзистора. Следующий видеоролик показывает и доказывает, как это можно реализовать с помощью обычного мультиметра.

Практическое видеоурок

Схема простого тестера Mosfet

Если вам не удобна вышеупомянутая процедура тестирования с использованием мультиметра, то вы можете быстро создать следующее приспособление для эффективной проверки любого N-канального mosfet .

После того, как вы сделаете это приспособление, вы можете вставить соответствующие штыри MOSFET в соответствующие гнезда G, D, S. После этого вам просто нужно нажать кнопку для подтверждения состояния MOSFET.

Если светодиод светится только при нажатии кнопки, то с вашим МОП-транзистором все в порядке, любые другие результаты будут указывать на неисправный или неисправный МОП-транзистор.

Катод светодиода перейдет на сторону стока или сливное гнездо.

Для МОП-транзистора с p-каналом вы можете просто изменить конструкцию, как показано на следующем изображении

Вернуться в блог

Написано Эли в четверг, 4 мая 2017 г.

Спросите любого полевого техника или специалиста по стендовым испытаниям, какое у них наиболее часто используемое испытательное оборудование, и они, вероятно, ответят, что это цифровой мультиметр. Эти универсальные устройства могут использоваться для тестирования и диагностики широкого спектра цепей и компонентов. В крайнем случае, цифровой мультиметр может даже заменить дорогое специализированное испытательное оборудование. Один особенно полезный навык — это знание того, как проверить транзистор с помощью цифрового мультиметра. Для решения этой задачи существуют специализированные анализаторы компонентов, но для среднего хобби может быть трудно оправдать расходы.

Распиновка транзисторов

К счастью, использование цифрового мультиметра для получения базовых показаний «годен / не годен» от подозреваемого неисправного двухполюсного транзистора NPN или PNP — это простая и быстрая задача. Некоторые мультиметры имеют встроенную функцию тестирования транзисторов, если она у вас есть, вы можете пропустить этот пост в блоге — просто вставьте свой транзистор в гнездо на мультиметре и установите измеритель в правильный режим. Вы, вероятно, получите такую ​​информацию, как коэффициент усиления (hFE), который можно будет проверить по таблице данных, а также результаты проверки пройден / не пройден.Если ваш измеритель не имеет функции тестирования транзисторов, не бойтесь — транзисторы можно легко проверить с помощью настройки тестирования «Диод». (Некоторые счетчики имеют функцию проверки диодов в сочетании с проверкой целостности цепи — это нормально).

Проверка транзистора

Удалите транзистор из схемы для получения точных результатов.

Шаг 1: (от базы к эмиттеру)

Подсоедините плюсовой провод мультиметра к BASE (B) транзистора. Подсоедините отрицательный вывод измерителя к ЭМИТЕРУ (E) транзистора.Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).

Шаг 2: (от базы к коллектору)

Держите положительный провод на ОСНОВАНИИ (B) и поместите отрицательный провод на КОЛЛЕКТОР (С).

Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).

Шаг 3: (от эмиттера к базе)

Подсоедините плюсовой провод мультиметра к ЭМИТТЕРУ (E) транзистора.Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.

Для исправного транзистора NPN вы должны увидеть «OL» (превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.

Шаг 4: (от коллектора к основанию)

Подсоедините плюсовой провод мультиметра к КОЛЛЕКТОРУ (С) транзистора. Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.

Для исправного транзистора NPN вы должны увидеть «OL» (Превышение предела).Если вы проверяете транзистор PNP, прибор должен показать падение напряжения от 0,45 до 0,9 В.

Шаг 5: (от коллектора к эмиттеру)

Подсоедините положительный провод измерителя к КОЛЛЕКТОРУ (C), а отрицательный провод измерителя к ЭМИТТЕРУ (E) — исправный транзистор NPN или PNP покажет на измерителе «OL» / превышение предела. Поменяйте местами провода (положительный на эмиттер и отрицательный на коллектор). Еще раз, хороший транзистор NPN или PNP должен показывать «OL».

Если размеры вашего биполярного транзистора противоречат этим шагам, считайте это плохим.

Вы также можете использовать падение напряжения, чтобы определить, какой вывод является эмиттером на немаркированном транзисторе, поскольку переход эмиттер-база обычно имеет немного большее падение напряжения, чем переход коллектор-база.

Помните: этот тест проверяет только то, что транзистор не закорочен или открыт, он не гарантирует, что транзистор работает в пределах своих расчетных параметров. Его следует использовать только для того, чтобы решить, нужно ли вам «заменить» или «перейти к следующему компоненту».Этот тест работает только с биполярными транзисторами — вам нужно использовать другой метод для тестирования полевых транзисторов.

В качестве особой благодарности нашим клиентам и читателям блогов мы хотели бы предложить 10% скидку на весь ваш заказ, используя КОД: «BLOG1000»

Чтобы получить месяц признательности нашим клиентам, все, что вам нужно сделать, это использовать код «BLOG1000» при оформлении заказа в вашей карточке покупок.

И когда появится окошко, введите соответствующий текущий активный промокод.В данном случае это: BLOG1000

И продолжайте проверять!

Спасибо, что являетесь клиентом Vetco!

Вернуться в блог

Как диагностировать печатную плату с неисправным транзистором

Обновлено 19 ноября 2018 г.

Дэвид Сандовал

Электронные схемы, будь то в компьютерах или более специализированном оборудовании, требуют, чтобы все их компоненты работали должным образом.Если какой-либо из компонентов, содержащихся в этой цепи, выходит из строя, это может иметь катастрофические последствия для любых устройств, подключенных к этой цепи. Неисправные активные компоненты, такие как транзисторы, диоды и микрочипы, часто труднее диагностировать, чем вышедшие из строя пассивные компоненты, такие как резисторы, что делает устранение неисправностей печатных плат трудоемким и часто неприятным процессом. Если вы подозреваете, что транзистор в цепи вышел из строя, транзистор необходимо проверить с помощью мультиметра, прежде чем снова подать питание на схему.

TL; DR (слишком долго; не читал)

Транзисторы в электронных схемах выходят из строя нечасто: в результате, когда они делают сбой , может быть трудно диагностировать проблему в цепи. Если вы подозреваете, что проблема связана с транзистором, вы можете использовать два разных подхода к тестированию транзисторов в цепи с помощью мультиметра, в зависимости от типа транзистора. Сначала вам нужно будет снять компонент с платы, для чего могут потребоваться плоскогубцы, если транзистор установлен в небольшом пространстве.

Признаки неисправности транзистора

В электронной схеме активные компоненты, такие как транзисторы, ведут себя иначе, чем пассивные компоненты, такие как резисторы. Это связано с тем, что активные компоненты спроектированы так, чтобы они могли подвергаться воздействию различных напряжений и выполнять множество функций. В случае транзистора компонент предназначен для работы либо как переключатель, либо как усилитель электрического тока — в результате отказ транзистора может привести к коротким замыканиям и всплескам напряжения, что в определенных условиях может быть катастрофически опасным.Однако это также может немного облегчить определение симптомов неисправного транзистора: если схема не работает должным образом из-за недостатка или превышения тока, возможно, что транзистор вышел из строя и его следует проверить.

••• Polka Dot Images / Polka Dot / Getty Images

Тестирование транзисторов с полевым эффектом перехода

Потенциально неисправные транзисторы можно проверить с помощью цифрового мультиметра, но тип транзистора будет определять тип используемого теста.При тестировании Junction Field Effect Transistor, или JFET, вам необходимо будет использовать два резистора на 1000 Ом в дополнение к мультиметру. Для начала убедитесь, что цепь отключена от источника питания, а затем с помощью плоскогубцев извлеките транзистор из цепи. Затем скрутите один вывод от первого резистора к выводу стока на транзисторе. Скрутите один провод от второго резистора к выводу истока на транзисторе. Скрутите свободные выводы обоих резисторов вместе с выводом затвора транзистора.Подождите 30 секунд, а затем снимите резисторы с клемм транзистора. Включите мультиметр и установите шкалу измерения на «Проверка диодов». Для n-канального JFET поместите красный щуп мультиметра на вывод затвора транзистора, а черный щуп мультиметра — на вывод стока. Для p-канального JFET поместите красный щуп мультиметра на вывод стока и поместите черный щуп на вывод затвора. Проверьте дисплей мультиметра. Если мультиметр показывает оценку «прошел», JFET работает правильно.Если мультиметр показывает оценку «Fail», замените JFET.

Тестирование биполярного переходного транзистора

Если вам нужно проверить биполярный переходной транзистор, вы можете выполнить аналогичные шаги, но вам не понадобятся резисторы. Включите мультиметр и отправьте шкалу измерений в «Проверка диодов». Для транзистора NPN поместите красный щуп мультиметра на вывод базы транзистора, а черный щуп — на вывод коллектора. Для транзистора PNP поместите черный щуп мультиметра на вывод базы, а красный щуп — на вывод коллектора.Проверьте дисплей мультиметра. Если мультиметр показывает оценку «прошел», снимите щуп мультиметра с коллектора, поместите его на вывод эмиттера и перейдите к следующему шагу. Если мультиметр показывает рейтинг «Fail», снимите щупы мультиметра с обеих клемм и замените транзистор.

Тестирование полевого транзистора — тест на утечку и отказ

Советы по тестированию полевого транзистора — тестовый полевой элемент с аналоговым мультиметром

Правильный способ проверки МОП-транзистора — использовать аналоговый мультиметр.Стенд Mosfet для области металлооксидных полупроводников транзистор с эффектом или мы просто назвали его фет. Импульсный источник питания и многие другие схемы используют в качестве части схемы транзисторы. Отказ МОП-транзистора и утечка в цепи довольно велики, и вам нужно знать, как точно проверить Это.

Измерительные компоненты с двумя выводами, например резисторы, конденсаторы и диоды намного проще, чем измерить транзистор и фет, у которых есть три ножки.Многие мастера по ремонту электроники испытывают трудности особенно проверяя компоненты трех отведений. Сначала найдите распиновку затвора, стока и истока из книги по замене полупроводников или поиск по его таблице данных из поисковой системы.

Если у вас есть перекрестная ссылка или диаграмма для каждого контакта mosfet, затем используйте аналоговый мультиметр, настроенный на диапазон 10 кОм, чтобы проверить его. Предполагая, что вы тестируете n-канальный MOSFET, установите черный щуп к сливному штифту.

Коснитесь штифта затвора красным щупом, чтобы разрядить внутреннюю емкость в MOSFET. Теперь переместите красный зонд к контакту истока, пока черный зонд все еще касается дренажного штифта. Используйте свой правый палец и коснитесь затвора и сливного штифта вместе, и вы заметите, что стрелка аналогового мультиметра переместится вперед к центральному диапазону измерителя. масштаб.

Коснитесь пальцем заслонки и сливного штифта.

Поднимая красный зонд со штыря источника и снова вставляя на выводе источника, указатель все еще останется в середине шкалы измерителя. Чтобы разрядить его, нужно поднять красный зонд и прикоснуться к нему. всего один раз на штифте ворот. Это в конечном итоге снова разрядит внутреннюю емкость.

В это время используйте красный щуп, чтобы снова коснуться вывода источника, указатель вообще не пинает, потому что вы уже разрядили его, коснувшись штифта затвора.Это хорошая характеристика МОП-транзистора. нужно потренироваться больше, взяв немного еды со скамьи или из отделения для компонентов. Как только вы узнаете секреты, протестируйте другой MOSFET так же просто, как и проверить диод.


Если вы заметили, что весь результат, который вы измерили, упал до нуля и не разрядится, тогда фет считается закороченным и требует замены. Тестирование полевого транзистора Fet с каналом P происходит так же, как и при проверке N канал фет.Что вы делаете, так это переключите полярность датчика при проверке P-канала. Некоторые аналоговые мультиметры имеют диапазон 100 кОм, Этот тип измерителя не может действительно тестировать фет из-за отсутствия батареи на 9 В внутри мультиметра. У этого типа измерителя не будет достаточно мощности для срабатывания МОП-транзистора. Убедитесь, что вы используете глюкометр с переключатель диапазона раз 10 кОм.

Типичные номера деталей MOSFET с N каналом: 2SK791, K1118, IRF634, IRF. Номер детали 740 и P-канального транзистора: J307, J516, IRF 9620 и т. Д.Вы также можете получить тестер mosfet на рынке и один из Известным брендом является портативный супер-крикетный транзистор sencore tf46 и тестер фет. Вы можете сделать ставку на Ebay.

Sencore TF46 Тестер транзисторов и полевых транзисторов


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *