Проверка сопротивления изоляции проводов и кабелей периодичность: С какой периодичностью проводится замер сопротивления изоляции электропроводки в помещениях архива? | ЭлектроАС

Содержание

Замеры сопротивления изоляции стоимость, цена | Измерение сопротивления изоляции | Замер сопротивления изоляции мегаомметром

Замеры сопротивления изоляции Цены и услуги

Замер сопротивления изоляции в электролаборатории ТМ Энерго

Протокол проверки сопротивления изоляции

В протоколе измерения сопротивления изоляции фиксируются результаты замеров сопротивления изоляции (10 замеров сопротивления изоляции для трехфазной пятипроводной линии и 3 замера сопротивления изоляции — для однофазной трехпроводной линии). В конце протокола замера изоляции проверяется соответствие требованиям ПУЭ п. 1.8.37 (7-е изд.) для электропроводок и ПУЭ п. 1.8.40 (7-е изд.) для кабельных линий. Измерение сопротивления изоляции постоянному току является наиболее распространенным видом контроля состояния изоляции. Сущность метода измерения сопротивления изоляции кабельных линий состоит в измерении отношения приложенного к изоляции постоянного напряжения U протекающему через неё ток i Сопротивление изоляции электропроводок и кабельных линий напряжением до 0,4 кВ. включительно должно быть не менее 0,5 мОм (табл. 1.8.39. ПУЭ, табл. 37 прил. 3.1. ПТЭЭП). Измерения производятся при обесточенной линии и отключенных потребителей.

Измерения сопротивления изоляции мегаомметром

Схема измерения сопротивления изоляции.

 

Замеры сопротивления изоляции кабеля и обмоток электрических машин

Измерение сопротивления изоляции проводятся согласно Правилам Технической Эксплуатации Электроустановок Потребителей (ПТЭЭП), утвержденными Приказом Министерства Энергетики Российской Федерации от 13.01.2003г. №6, во всех зданиях и сооружениях должны регулярно проводиться замеры сопротивления изоляции с использованием компетентной организации — электролаборатории, специальных методик, ГОСТ Р 50571.16-2007 и оборудования.

Измерения сопротивления изоляции проводов

Проведение замеров сопротивления изоляции позволяет определить степень изношенности изоляции электрических проводов, кабелей и электрооборудования, от которой зависят потери электрического тока в линиях, безопасность работы энергосистемы и безопасность персонала. Кабели и провода теряют свои изоляционные свойства, потому что диэлектрики, применяемые при производстве кабельной продукции, различаются по своим физическим свойствам, составам и режимам работы. Если характеристики кабелей и проводов при монтаже выбраны неправильно, изоляционные свойства снижаются быстрее расчетного срока эксплуатации, даже если характеристики подобраны в соответствии с условиями эксплуатации, со временем любые изоляционные материалы постепенно теряют свои свойства. На потерю изоляционных свойств проводов и кабелей существенно влияют работа проводов и кабелей при различных режимах — которые определяются токовой нагрузкой линий и проводников, уровнем напряжения у подключенных к сети электроприемников, симметричностью многофазной системы напряжения, механические повреждения, а так же воздействие отрицательных условий внешней среды (таких как окружающая температура и относительная влажность воздуха). При снижении значений

сопротивления изоляции ниже минимального значения 0,5мОм возникает утечка тока в линии, что влечет за собой нагрев, замыкание и как следствие возгорание электропроводки. Чтобы этого не случилось специалисты электролаборатории ООО «ТМ Энерго» проведут комплекс электроизмерительных работ и мероприятий по проведению проверки целостности и замерам сопротивления изоляции,
именно на показатели значений сопротивления изоляции мы обращаем особое внимание.

На замеры сопротивления изоляции цену вы можете уточнить в электротехнической лаборатории.

Основные показатели сопротивления изоляции и Замеров сопротивления изоляции

А. Измерения сопротивления изоляции электрооборудования постоянному току Rиз. Наличие грубых внутренних и внешних дефектов (повреждение, увлажнение, поверхностное загрязнение) снижает сопротивление изоляции.

В. Коэффициент абсорбции. Лучше всего определяет увлажнение изоляции. Коэффициент абсорбции — это отношение измеренного сопротивления изоляции через 60 секунд после приложения напряжения мегаомметра (R60) к измеренному сопротивлению изоляции через 15 секунд (R15). Если изоляция сухая, то коэффициент абсорбции значительно превышает единицу, в то время как у влажной изоляции коэффициент абсорбции близок к единице. Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20%, а его значение должно быть не ниже 1.3 при температуре 10–30оС. При невыполнении этих условий изделие подлежит сушке.

С. Коэффициент поляризации. Указывает способность заряженных частиц и диполей в диэлектрике перемещаться под действием электрического поля, что определяет степень старения изоляции.

Чтобы провести измерения сопротивления изоляции обмоток электродвигателя необходимо обесточить линию, отсоединить проводники от автоматического выключателя и электроприемника. Измерение сопротивления изоляции постоянному току является наиболее распространенным видом контроля состояния изоляции. Сущность метода состоит в измерении отношения приложенного к изоляции постоянного напряжения  U к протекающему через неё ток i. Сопротивление изоляции  электропроводок и кабельных  линий напряжением  до 0,4 кВ. включительно должно быть не менее 0,5 мОм (табл. 1.8.39. ПУЭ, табл. 37  прил. 3.1.  ПТЭЭП ).  Измерение сопротивления изоляции проводов и кабелей производится согласно ГОСТ Р 50571.16-2007 а) между токоведущими проводниками, взятыми по очереди «два к двум» относительно друг друга, б) между каждым из токоведущих проводников и «землей». Все измеренные значения сводятся в

Протокол измерения сопротивления изоляции проводов, кабелей, аппаратов и обмоток электрических машин. В протоколе фиксируются результаты 10 значений замеров сопротивления изоляции для трехфазной пятипроводной линии и 3 замера — для однофазной трехпроводной линии. В конце протокола проверяется соответствие требованиям ПУЭ п. 1.8.37 (7-е изд.) для электропроводок и ПУЭ п. 1.8.40 (7-е изд.) для кабельных линий и дается заключение. В случае выявления кабеля или провода с нарушенной изоляцией он не допускается к дальнейшей эксплуатации и подлежит замене.

Измерения сопротивления изоляции периодичность. Замеры сопротивления проводов и кабелей указана в ПТЭЭП 2.12.17

Проверка сопротивления изоляции электроустановок, а также проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3).

На замеры сопротивления изоляции сроки

можно уточнить у наших менеджеров. Измерения сопротивления изоляции проводятся в Москве.

Измерения сопротивления изоляции обмоток электродвигателя также проводятся в лаборатории ТМ Энерго. Для проведения замера сопротивления Вам необходимо обратиться к нам по телефону или через страницу обратной связи.

В соответствии с ПТЭЭП (приложение 3), измерение сопротивления изоляции кабельных линий и проводов электрических сетей проводятся в сроки:

  • измерения сопротивления электропроводки, в том числе осветительные сети, в особо опасных помещениях и наружных установках — 1 раз в год, в остальных случаях — 1 раз в 3 года;
  • замеры сопротивления изоляции кранов и лифтов — 1 раз в год;
  • измерения сопротивления изоляции стационарных электроплит — 1 раз в год при нагретом состоянии плиты.

Замер сопротивления изоляции электропроводки

В остальных случаях, таких как замер сопротивления изоляции электропроводки, проверка сопротивления изоляции проводов, измерения и замеры сопротивления изоляции проводятся с периодичностью, определяемой в системе планово-предупредительного ремонта (ППР), утвержденной техническим руководителем Потребителя (п. 3.6.2. ПТЭЭП).

Сопротивление изоляции. Что такое измерение сопротивления изоляции и почему это важно


Сопротивление изоляции: методика измерения, используемые приборы

Как любое оборудование, техника, со временем из строя начинают выходить и электрические кабели различных видов. Одной из методик определение запаса прочности кабеля и выявления дефектов является измерение сопротивления изоляции. В этой статье рассказывается о том, что это, когда и как оно проводится.

Обследование электропроводки

В каждой организации, в ведении которой находится электроустановки, должен быть ответственный за электрохозяйство. В его обязанности входит составление планово-предупредительных работ по ремонту этого оборудования, а также проведения периодических испытаний и измерений, обследования электропроводки. Периодичность таких измерений, как правило, составляется на основе требований ПТЭЭП. Например, по поводу измерения сопротивления изоляции там сказано, что испытания стоит проводить 1 раз в 3 года.

Что такое измерение сопротивления изоляции

Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.

Допустимое сопротивление для различного оборудования

Основным руководящим документом является ПТЭЭП, в котором приводится периодичность испытаний, величина испытательного напряжения и норма значения сопротивления для каждого вида электрооборудования (ПТЭЭП приложение 3.1, таблица 37). Ниже приводится выдержка из документа.

 

Не стоит путать сопротивление электрических кабелей с сопротивлением коаксиального кабеля и волновым сопротивлением кабеля, т.к. это относится к радиотехнике и там действуют другие принципы подхода к допустимым значениям.

Вопрос электробезопасности

Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:

U – фазное напряжение электроустановки;

RИЗ – сопротивление изоляции электрооборудования;

RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.

Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.

При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Приборы для проведения измерений

Для проведения испытаний именно постоянным пульсирующим напряжением наилучшим выбором является мегаомметр. В приборах старых конструкций для получения напряжений использовался встроенный механический генератор, работающий по принципу динамо-машины. Чтобы выдать необходимое напряжение, надо было усиленно крутить ручку. В настоящее время мегаомметры выполняются в виде электронных устройств, работающих от батарей, они имеют компактный размер и удобное программное обеспечение. Современные мегаомметры имеют память, где хранятся несколько испытаний. При каждом измерении проводится автоматический подсчет коэффициента абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 (сопротивление изоляции через 60 сек после начала испытания) на 30-50 % больше, чем R15 (через 15 сек).

Итог

Измерение сопротивления изоляции кабеля – ответственная процедура, от правильности выполнения которой, зависит безопасность, как людей, так и оборудования. Поэтому не стоит пренебрегать этой несложной, но полезной операции. Это поможет сэкономить немало средств.

amperof.ru

Сопротивление изоляции кабеля — норма и таблица

Любое электротехническое изделие характеризуется целым рядом параметров. Для кабелей одним из основных является сопротивление изоляции. Существуют определенные нормы, которые обязательно учитываются при проектировании и монтаже, а также в процессе эксплуатации и проведения ТО трасс коммуникаций.

Каковы они нормы сопротивления изоляции кабеля? Дело в том, что по данному вопросу нередко встречаются разночтения. Это вызвано, по мнению автора, несколькими факторами.

Во-первых, кабель – понятие обобщенное. К этой группе изделий относятся образцы, используемые при прокладке линий силовых, сигнальных и телефонных. Кабеля могут быть коаксиальными (радиочастотными), контрольными, распределительными и общего назначения. То есть вариантов конструктивного исполнения защитных оболочек, отличающихся, в том числе, и толщиной, множество.

Во-вторых, на изготовление изоляции идут самые разные материалы – резина, пластики, даже пропитанная особым образом бумага. Хотя в более современных кабелях защита, как правило, комплексная, то есть сочетающая различные диэлектрические слои.

В-третьих, о сопротивлении какой изоляции идет речь – внешней оболочки или поверхностного покрытия жил?

В-четвертых, следует принимать во внимание и специфику монтажа и дальнейшей эксплуатации конкретного кабеля. Например, способ прокладки трассы – открытый или закрытый. Где она укладывается – в грунте, в лотках (вариантов достаточно). Чем характеризуется окружающая среда – предельная величина и перепады температуры, влажности, агрессивность и так далее.

Сопротивление изоляции – нормы для кабелей

Все значения – в МОм.

Кабеля силовые
  • Высоковольтные (более 1 000 В). Для них нормы не существует. То есть, чем сопротивление изоляции выше, тем лучше. Принято считать, что его значение не должно быть менее 10.
  • Низковольтные (до 1 000 В). По сути, речь идет об электропроводках и вторичных цепях различных установок. Минимальный предел значения сопротивления изоляции – 0,5. Более подробную информацию по данному вопросу можно найти в ПУЭ 7-ой редакции (табл. 1.8.34 и п. 1.8.37).

Кабеля контрольные, сигнальные, общего назначения

Это довольно большая группа изделий. К ней можно отнести кабеля, монтируемые для цепей управления, автоматики, питания эл/приводов, подключения защитных, распределительных устройств и так далее. Для них нормой считается, если сопротивление изоляции не ниже 1. Но это общепринятый показатель. Точное значение, в зависимости от разновидности кабеля, следует искать в его сопроводительной документации.

Для кабелей связи нормы сопротивления несколько иные, более «жесткие». Для линий городских н/ч – не менее 5, магистральных – 10 (МОм/км).

Если кабель имеет наружную оболочку из алюминия с покрытием из ПВХ, то норма сопротивления выше и равняется 20.

Примечание. ПУЭ оговаривает, что измерение сопротивления изоляции проводится мегаомметром с напряжением индуктора:

  • для кабелей в цепях не более 500 В – 500;
  • до 1 000 В – 1 000;
  • все остальные – 2 500.

Специалистам не нужно объяснять, что все требования к сопротивлению изоляции указываются в технических заданиях, ГОСТ и СНиП на определенный вид работы. Его величину несложно узнать по паспорту кабеля, а при необходимости контроля состояния изделия произвести соответствующее измерение. Специфика этой операции оговорена в п. 1.8.7. ПУЭ (7-я редакция).

В быту для оценки степени износа изоляции силового кабеля можно воспользоваться следующей таблицей, которая отражает ориентировочные усредненные нормы.

Так как непрофессионал не в состоянии учесть всех нюансов конструктивного исполнения изделия и его использования, этого, как правило, вполне достаточно, чтобы понять, стоит ли закладывать данный образец или он уже непригоден к эксплуатации. То есть отбраковать. Ну а если есть определенные сомнения, то нелишне проконсультироваться с профильным специалистом.

electroadvice.ru

Методика измерения сопротивления изоляции

Измерение сопротивления электрической изоляции – наиболее частое измерение при проведении электротехнических работ. Основная цель данного вида измерений – определение пригодности к эксплуатации электрических проводников, электрических машин, электрических аппаратов и электрооборудования в целом.  

Сопротивление изоляции зависит от различных факторов. Это и температура окружающей среды, и влажность воздуха, и материал изоляции и т.д. Единица измерения сопротивления – Ом. При замерах сопротивления изоляции величиной обычно является килоОм (1кОм) и мегаОм (1МОм).

Сопротивление изоляции чаще всего измеряют у электрических кабелей, электрической проводки, электродвигателей, автоматических выключателей, силовых трансформаторов, распределительных устройств. Основным прибором для замеров является мегаомметр (мегомметр). Мегаомметры бывают двух основных видов – стрелочные с ручным приводом и электронные с цифровым дисплеем.

В процессе измерений мегаомметр генерирует испытательное напряжение. Стандартные напряжения мегаомметров – 100В, 250В, 500В, 1000В, 2500В. Чаще всего используют мегаомметры на напряжение 1000В и 2500В, реже на 500В.

Проверка исправности мегаомметра

Перед выполнением замеров, необходимо проверить исправность используемого прибора. Для этого выполняется два контрольных замера. Первое измерение проводится при закороченных между собой проводах мегаомметра. В этом случае измеряемая величина должна быть равна нулю. Второе контрольное измерение выполняется при разомкнутых проводах. Измеряемая величина сопротивления должна стремиться к бесконечно большому значению.

Техника безопасности при проведении измерений

При замерах сопротивления изоляции необходимо соблюдать технику безопасности. Во-первых, пользоваться неисправным мегаомметром категорически запрещается. Во-вторых, перед измерением необходимо проверить индикатором или указателем отсутствие напряжения на электрическом кабеле, двигателе или электрооборудовании. При отсутствии напряжения снимается остаточный заряд путём кратковременного заземления тех частей кабеля, двигателя или электрооборудования, которые в рабочем режиме находились под напряжением. Действия по снятию электрического заряда следует также проводить и после каждого замера.

Измерение сопротивления изоляции силовых электрических кабелей и электропроводки

Изоляция электрических кабелей и электрических проводов проверяется сначала на заводе изготовителе, затем перед непосредственной прокладкой, ну и после окончания электромонтажных работ. Количество замеров зависит от количества жил кабеля или провода.

Силовые электрические кабели и провода бывают трёхжильными, четырёхжильными и пятижильными. Три жилы – это или фаза, ноль и провод заземления, или три фазы «A», «B», «C». Четыре жилы – это три фазы плюс ноль (провод заземления или комбинированная жила PEN). Пять жил – это три фазы, нулевой проводник и провод заземления.

Замеры сопротивления изоляции трёхжильного кабеля или провода выполняют следующим образом. Каждая из трёх жил проверяется по отношению к двум другим заземлённым жилам. В итоге получается три замера. Кроме того, можно проверять сопротивление сначала между каждыми двумя жилами, а затем между каждой жилой и «землёй». В этом случае получается шесть замеров.

В случае с четырёхжильным или пятижильным электрическим кабелем (проводом) методика замеров аналогична измерениям трёхжильного проводника, только количество замеров будет несколько больше.

Для того, чтобы измеряемое значение соответствовало действительности, замер выполняется в течение одной минуты. Величина сопротивления изоляции электрического проводника должна быть в пределах государственных норм. Обычно для низковольтных кабелей 220В или 380В она составляет 0,5МОм или 1МОм.

Измерение сопротивления изоляции электрических двигателей

Для электродвигателей проверяется изоляция обмоток статора. В настоящее время наибольшее распространение получили трёхфазные электродвигатели с короткозамкнутым ротором на рабочее напряжение 380В.

У таких двигателей имеется три обмотки статора, которые соединяются между собой либо по схеме треугольника, либо по схеме звезды. Соединение выполняется или внутри корпуса двигателя, или в соединительной коробке двигателя, которая называется «борно». Т.к. в первом случае отсоединить обмотки друг от друга не представляется возможным, то измерение сводится к замеру изоляции всех трёх соединённых обмоток по отношению к корпусу двигателя. Во втором варианте обмотки можно отсоединить друг от друга, после чего выполняется проверка изоляции между обмотками, а также проверка изоляции каждой обмотки по отношению к металлическому корпусу двигателя. Каждый замер выполняется в течение одной минуты. Конечное значение величины должно также соответствовать государственным нормам.

На производстве очень часто применяются достаточно мощные высоковольтные электродвигатели. Замер сопротивления изоляции обмоток таких двигателей часто сводится к определению коэффициента абсорбции, т.е. к определению увлажнённости обмоток. Для этого фиксируется значение после 15 секунд измерения и после 60 секунд. Значение коэффициента абсорбции — это отношение сопротивления R60 к сопротивлению R15. Величина не должна быть менее 1,3.

Измерение сопротивления изоляции силовых трансформаторов

В настоящее время единственным устройством, преобразующим электрическое напряжение из одной величины в другую, является трансформатор. Практически ни одно производство не обходится без силовых питающих трансформаторов. Перед пуском в эксплуатацию каждый такой трансформатор должен пройти высоковольтные испытания. Перед тем, как будут произведены высоковольтные испытания, необходимо выполнить замеры сопротивления изоляции обмоток.

Т.к. у трансформатора есть первичная и вторичная обмотка (обмотки), то проверяется изоляция каждой обмотки по отношению к другой, которая на момент замера должна быть заземлена. Также выполняется замер между первичной и вторичной обмоткой.

Достаточно часто необходимо определить увлажнённость обмоток трансформатора. В таком случае также как и с высоковольтным двигателем, определяется коэффициент абсорбции.

aquagroup.ru

Измерение сопротивления изоляции кабеля | Заметки электрика

Здравствуйте, читатели блога «Заметки электрика».

В прошлой статье про испытание кабельных линий я рассказывал Вам, что одним из пунктов испытания кабельных линий является измерение сопротивления изоляции кабеля.

Вот об этом мы подробно с Вами и поговорим. Рассмотрим как правильно произвести измерение сопротивления изоляции, как силовых, так и контрольных кабелей. А также познакомимся с методикой проведения этих замеров.

 

Подготовка к измерению сопротивления изоляции кабеля

Перед началом проведения работ по измерению сопротивления изоляции кабеля необходимо точно знать температуру окружающего воздуха.

С чем это связано?

А связано это с тем, что при отрицательных температурах, при наличии в кабельной массе частиц воды, эти частички будут находиться в замерзшем состоянии, т.е. в виде кусочков льда. Все Вы знаете, что лед является диэлектриком, т.е. не обладает проводимостью.

Поэтому при проведении измерения сопротивления изоляции при отрицательных температурах эти частички замерзшей воды  выявлены не будут.

 

Приборы и средства измерения

Второе, что нам необходимо для проведения измерения сопротивления изоляции кабельных линий, это наличие приборов и средств измерений.

Для измерения сопротивления изоляции кабелей различного назначения я и работники нашей электролаборатории используем прибор MIC-2500. Есть и другие приборы, но мы их используем несколько реже.

Этот прибор производства фирмы Sonel и с помощью него можно замерить сопротивление изоляции кабельных линий, проводов, шнуров, электрооборудования (двигатели, трансформаторы, выключатели и т.п.), а также произвести замер степени старения и увлажненности изоляции.

Хочу заметить, что прибор MIC-2500 входит в государственный реестр приборов, которые разрешены для измерения сопротивления изоляции. 

Прибор MIC-2500 должен ежегодно сдаваться в государственную поверку. После прохождения поверки на прибор ставят голограмму и штамп о прохождении поверки. В штампе указывается серийный номер прибора и дата следующей поверки.

Соответственно, что производить измерение сопротивления изоляции необходимо только исправным и прошедшим поверку прибором.

 

Нормы сопротивления изоляции для различных кабелей

Перед тем, как перейти к нормам сопротивления изоляции кабелей, необходимо как то их классифицировать.

Я Вам предлагаю свою упрощенную классификацию кабелей. 

Кабели по назначению делятся на:

  • высоковольтные силовые выше 1000 (В)
  • низковольтные силовые ниже 1000 (В)
  • контрольные и кабели управления, будем их называть просто контрольными (сюда входят вторичные цепи РУ, цепи питания электроприводов выключателей, отделителей, короткозамыкателей, цепи управления, цепи защиты и автоматики и т.п.)
  • др.

Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных силовых кабелей производится мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются мегаомметром на напряжение 500-2500 (В).

Соответственно, у каждого кабеля существуют свои нормы сопротивления изоляции. По ПТЭЭП (п.6.2. и таблица 37) и ПУЭ (п. 1.8.37 и таблица 1.8.34):

  • Высоковольтные силовые кабели выше 1000 (В) — не нормируется, но сопротивление изоляции должно быть не ниже 10 (МОм)
  • Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно быть ниже 0,5 (МОм)
  • Контрольные кабели — сопротивление изоляции не должно быть ниже 1 (МОм)

 

Методика измерения сопротивления изоляции высоковольтных силовых кабелей

Для более яркого представления выполнения работ по измерению сопротивления изоляции высоковольтных силовых кабелей, приведу Вам наглядную схему и порядок действия.

1. Проверяем отсутствие напряжения на кабеле указателем высокого напряжения

2. Устанавливаем испытательное заземление со специальными зажимами типа «крокодил» на жилы кабеля со стороны, где будем проводить измерение сопротивления изоляции.

3. С другой стороны кабеля, жилы оставляем свободными и разводим их на достаточное расстояние друг от друга.

4. Вывешиваем запрещающие и предупреждающие плакаты. Рекомендую с другой стороны оставить человека, который будет наблюдать, чтобы во время измерения сопротивления изоляции мегаомметром никто на попал под испытательное напряжение.

5. Измерение сопротивления изоляции высоковольтного силового кабеля проводим мегаомметром на 2500 (В) поочередно на каждой жиле в течение 1 минуты.

Например, проводим измерение сопротивления изоляции на жиле фазы «С». При этом устанавливаем испытательное заземление на жилы фаз «В» и «А». Один конец мегаомметра подключаем к заземляющему устройству, или проще сказать к «земле». Второй конец — на жилу фазы «С». 

На примере это выглядит вот так:

6. Показания, полученные во время измерения сопротивления изоляции высоковольтного кабеля записываем в блокнот.

 

Методика измерения сопротивления изоляции низковольтных силовых кабелей

Методика измерения сопротивления изоляции низковольтных силовых кабелей отличается от предыдущей (описанной выше), но незначительно.

Аналогично:

1. Проверяем отсутствие напряжения на кабеле с помощью средств защит, предназначенных для работ в электроустановках.

2. С другой стороны кабеля, жилы оставляем свободными и разводим их на достаточное расстояние друг от друга.

3. Вывешиваем запрещающие и предупреждающие плакаты. Рекомендую с другой стороны оставить человека, который будет наблюдать, чтобы во время измерения сопротивления изоляции мегаомметром никто на попал под испытательное напряжение.

4. Измерение сопротивления изоляции низковольтного силового кабеля проводим мегаомметром на 2500 (В) в течение 1 минуты:

  • между фазными жилами (А-В, В-С, А-С)
  • между фазными жилами и нулем (А-N, В-N, С-N)
  • между фазными жилами и землей (А-РЕ, В-РЕ, С-РЕ), если кабель пятижильный
  • между нулем и землей (N-PE), предварительно отключив ноль от нулевой шинки

5. Показания, полученные во время измерения сопротивления изоляции низковольтного кабеля записываем в блокнот.

Методика измерения сопротивления изоляции контрольных кабелей

Ну вот мы и добрались с Вами до измерения сопротивления изоляции контрольных кабелей.

Особенностью их измерения является то, что жилы кабеля можно не отсоединять от схемы и производить замер вместе с установленным электрооборудованием.

Измерение сопротивления изоляции контрольного кабеля выполняется аналогично.

1. Проверяем отсутствие напряжения на кабеле с помощью средств защит, предназначенных для работ в электроустановках.

2. Измерение сопротивления изоляции контрольного кабеля проводим мегаомметром на 500-2500 (В) следующим образом.

Подключаем один вывод мегаомметра на испытуемую жилу. Остальные жилы контрольного кабеля соединяем между собой и на землю. Второй вывод мегаомметра подключаем либо на землю, либо к любой другой не испытуемой жиле.

Для наглядности смотрите фото:

В течении 1 минуты производим замер испытуемой жилы. Далее измеренную жилу возвращаем к остальным жилам кабеля и приступаем к измерению следующей жилы.

Итак каждую жилу.

3. Все полученные показания сопротивления изоляции контрольного кабеля записываем в блокнот.

Протокол измерения сопротивления изоляции кабеля

Во всех вышеперечисленных электрических измерениях, после получения показаний сопротивления изоляции кабеля, необходимо сравнить их с требованиями и нормами ПУЭ и ПТЭЭП. На основании сравнения необходимо сделать вывод-заключение о пригодности кабеля к дальнейшей эксплуатации и составить протокол измерения сопротивления изоляции.

P.S. На этом статью я завершаю. Если возникли вопросы, то смело задавайте их. А также не забывайте подписываться на новые статьи с моего сайта. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ — это… Что такое СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ?

 СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ

СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ — характеристика, влияющая на степень безопасности эксплуатации электроустановок. Одним из основных средств, препятствующих возникновению опасных ситуаций, является электрическая изоляция элементов, находящихся под напряжением. С. и. в сетях с изолированной нейтралью определяет силу тока замыкания на землю, а следовательно, и силу тока, проходящего через человека. В сетях с заземленной нейтралью при плохом состоянии изоляции часто происходит ее повреждение, приводящее к замыканию на землю и к коротким замыканиям. При замыкании на корпус возникает опасность поражения людей электрическим током вследствие их контакта с нетоковедущими частями, оказавшимися под напряжением.

Для установления соответствия С. и. нормальным значениям, а также для своевременного выявления и устранения повреждений электроустановки проводят приемосдаточные испытания (по нормам ПУЭ) и испытания в процессе эксплуатации. Нормируются минимальные значения С. и. Rиз наиболее распространенных электроустановок при различных видах испытаний. Помимо соответствия С. и. нормам, установленным Правилами технической эксплуатации электроустановок потребителей, критерием состояния изоляции служит сравнение измеренных значений с данными, полученными при предыдущих испытаниях или при вводе в эксплуатацию. Резкое снижение С. и. по отношению к предыдущим измерениям на (30—40%) свидетельствует о неблагополучном состоянии изоляции.

Российская энциклопедия по охране труда. — М.: НЦ ЭНАС. Под ред. В. К. Варова, И. А. Воробьева, А. Ф. Зубкова, Н. Ф. Измерова. 2007.

  • СОПРОТИВЛЕНИЕ ЗАЗЕМЛЕНИЯ
  • СОЦИАЛЬНАЯ ЗАЩИТА РАБОТНИКА
Смотреть что такое «СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ» в других словарях:
  • сопротивление изоляции — 3.101 сопротивление изоляции (insulation resistance) RF: Сопротивление в системе, подвергаемой мониторингу, включая сопротивление всех подключенных устройств, относительно земли. Источник …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление изоляции — электрическое сопротивление изоляции; сопротивление изоляции; сопротивление Величина, обратная электрической проводимости изоляции …   Политехнический терминологический толковый словарь

  • сопротивление изоляции — izoliacijos varža statusas T sritis fizika atitikmenys: angl. insulance; insulation resistance vok. Isolationswiderstand, m rus. сопротивление изоляции, n pranc. résistance d’isolation, f; résistance d’isolement, f …   Fizikos terminų žodynas

  • сопротивление изоляции — rus сопротивление (с) изоляции eng insulation resistance fra résistance (f) d isolement deu Isolationswiderstand (m) spa resistencia (f) de aislamiento …   Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

  • Сопротивление изоляции — English: Insulation resistance Сопротивление, измеряемое в специальных условиях между двумя проводящими телами, изолированными друг от друга (по СТ МЭК 50(151) 78) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • Сопротивление изоляции оптоэлектронного коммутатора — 40 Источник: ГОСТ 27299 87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление изоляции оптоэлектронного переключателя — 40 Источник: ГОСТ 27299 87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление изоляции фазы (сети) — 3.3 сопротивление изоляции фазы (сети): Активное сосредоточенное (эквивалентное распределенному) сопротивление изоляции фазы (общее трех фаз) сети относительно земли. Источник: ГОСТ Р 52273 2004: Устройства защиты от токов утечки рудничные …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление изоляции и электрическая прочность изоляции — 7.5 Сопротивление изоляции и электрическая прочность изоляции Сопротивление изоляции и электрическая прочность изоляции УЗО Д должны соответствовать нормируемым значениям. УЗО Д должны выдерживать испытания по 8.8. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление изоляции обмотки управления высокочастотного выключателя (переключателя) — 36. Сопротивление изоляции обмотки управления высокочастотного выключателя (переключателя) Сопротивление изоляции Электрическое сопротивление постоянному току изоляции обмотки управления высокочастотного выключателя (переключателя) Источник: ГОСТ …   Словарь-справочник терминов нормативно-технической документации

labor_protection.academic.ru

Что представляет собой сопротивление изоляции кабеля, как определяется его норма

Любой вид проводов и кабелей обладает специфическими, первичными и вторичными электрическими параметрами, которые эту продукцию характеризуют. Одним из главных параметров кабеля является сопротивление изоляции. Нормой сопротивления изоляции считаются данные, на которые ориентируются при выполнении работ по строительству, эксплуатации и обслуживанию кабелей.

По двум металлическим жилам протекает электрический ток, и на них все время оказывает разнообразное воздействие окружающая среда, в некоторых случаях даже опасное. Кроме этого, эти жилы сами влияют друг на друга. В результате этого металлические провода, у которых нет защиты, несут колоссальные потери из-за разнообразных утечек, вплоть до образования аварийных ситуаций.

Что такое изоляция жил, проводящих ток

Чтобы подобного рода негативные ситуации свелись к минимуму или значительно уменьшились, токопроводящие жилы в кабелях следует защитить при помощи изолирующего покрытия из материала, не проводящего электрический ток.

Материалом для создания изоляционных оболочек считается:

  • пластические массы;
  • бумага;
  • резина.

Также эти материалы можно комбинировать. Изоляция, которая используется для разных видов кабелей, имеет довольно значительное отличие как по используемым материалам, так и по принципам применения изолирующих покровов. На сегодняшний день выпускают большое количество кабельной продукции, которую используют для разнообразных нужд.

Разнообразие кабельной продукции

Различают кабели:

  • связи;
  • силовые;
  • распределительные;
  • общего применения;
  • контрольные;
  • радиочастотные и другие марки.

Эта продукция может отличаться друг от друга не только своими функциями, но и конструктивными и физическими характеристиками, разработанные применительно для той среды, в которой она будет использоваться. Большая потребность в проводных материалах, необходимых для разнообразных нужд, привела к тому, что были созданы различные модификации существующих на данный момент типов кабелей. Например, если подземные распределительные телефонные сети прокладываются непосредственно в грунте, применяемую в телефонной канализации конструкцию кабелей дополнительно усиливают, облачая их сердечник в металлические ленты брони. А также чтобы защитить жилы кабеля от внешних токов, его сердечник облачают в алюминиевую оболочку.

Что такое сопротивление изоляции

От того, в какой среде и в каких условиях будет использоваться изготавливаемая проводниковая продукция, зависит вид изолирующего материала. Например, чтобы изолировать при высоких температурах токопроводящие жилы, лучше всего использовать резину, чем другие материалы. Резина устойчива к таким температурным воздействиям, чем, например, обычная пластмасса.

Таким образом, использование изолирующих материалов кабельной продукции необходимо для защиты его токопроводящих жил от внешних и взаимных электрических влияний. Величину такого параметра для отдельно взятой жилы и всего сердечника в целом определяет величина сопротивления постоянному току, возникающей в цепи между жилами и каким-либо источником, к примеру, землей. Чтобы определить работоспособность и защищенность кабельной продукции используется термин «сопротивление изоляции».

Материалы, которые используются в кабелях в качестве изоляции, со временем стареют и начинают терять свои свойства. Поэтому даже от любого физического воздействия они могут разрушиться. Чтобы уточнить, как и в каких пределах могли измениться параметры изоляционного материала, требуется для сравнения знать норму на параметр изделия, которая устанавливается изготовителем.

Норма сопротивления изоляции

Как конкретная величина изделия сопротивление изоляции для разных марок кабеля закладывается в ГОСТ или ТУ на изготовление определенной кабельной продукции. Такая продукция, поставляемая для реализации, должна иметь паспорт с электрическими параметрами. Например, норма сопротивления изоляции для кабеля связи приводится к 1 км длины, причем температура окружающей среды для этих данных должна составлять +20 градусов.

Для городских низкочастотных кабелей связи норма сопротивления должна составлять не меньше 5000 Мом/км, для коаксиальных и магистральных симметричных кабелей норма сопротивления может достигать 10000 Мом/км. Оценивая состояние проверяемого кабеля, паспортные данные сопротивления изоляции используют только тогда, когда необходим пересчет их к длине действительного куска кабеля. При участке кабеля больше километра норму следует делить на эту длину. Если она меньше километра, то, соответственно, умножать.

Полученные в результате этого расчетные цифры часто используются для оценки кабельной линии. Следует помнить, что паспортные данные учитываются для температуры +20 градусов, поэтому необходимо делать поправки, проводя контрольные измерения на влажность и температуру.

Существуют такие марки кабельной продукции, у которых алюминиевая оболочка и шланговое полиэтиленовое покрытие. Для них определяют норму сопротивления изоляции между землей и оболочкой. Она обычно составляет 20 Мом/км. Чтобы использовать в работе этот норматив его необходимо пересчитать под действительную длину участка.

Для силового кабеля предусмотрены следующие положения по сопротивлению изоляции постоянному току:

  • у применяемых в сетях с напряжением более 1000 В силовых кабелях величина такого параметра не нормируется, но не может быть меньше 10 ОМ;
  • у применяемых в сетях с напряжением менее 1000 В силовых кабелях величина параметра не должна быть выше 0,5 Ом.

Для контрольных кабелей норма не может быть меньше 1 Ом.

Заключение

Чтобы содержать в исправном состоянии электроустановки, необходимо держать под строгим контролем такой параметр, как сопротивление изоляции постоянному току. Используя такие нормы, необходимо помнить о соотношении длины участка и величины сопротивления изоляции. Таким образом, чем длиннее участок проводной линии, тем меньше будет для него изоляционная норма.

Оцените статью: Поделитесь с друзьями!

elektro.guru

сопротивление изоляции — это… Что такое сопротивление изоляции?

 сопротивление изоляции

3.101 сопротивление изоляции (insulation resistance) RF: Сопротивление в системе, подвергаемой мониторингу, включая сопротивление всех подключенных устройств, относительно земли.

3.8.2 сопротивление изоляции (insulation resistance) RF: Контролируемою сопротивление сети, включая сопротивление на землю всех подключенных устройств.

7.1 Сопротивление изоляции

Лампа должна быть выдержана в течение 48 ч в камере с относительной влажностью воздуха от 91 до 95 %. Температура окружающей среды должна быть от 20 до 30 °С и поддерживаться с погрешностью до 1 °С. Измерение сопротивления изоляции должно проводиться в камере влажности по истечении 1 мин после приложения напряжения постоянного тока 500 В. Сопротивление изоляции между токоведущими металлическими частями цоколя и доступными частями лампы должно быть не менее 4 МОм. Доступные части из изоляционного материала для испытания покрывают металлической фольгой.

Сопротивление изоляции цоколей В22 между корпусом и контактами — в стадии рассмотрения.

Смотри также родственные термины:

7.5 Сопротивление изоляции и электрическая прочность изоляции

Сопротивление изоляции и электрическая прочность изоляции УЗО — Д должны соответствовать нормируемым значениям.

УЗО — Д должны выдерживать испытания по 8.8.

36. Сопротивление изоляции обмотки управления высокочастотного выключателя (переключателя)

Сопротивление изоляции

Электрическое сопротивление постоянному току изоляции обмотки управления высокочастотного выключателя (переключателя)

3.3 сопротивление изоляции образованию токопроводящих мостиков и эрозий: По ГОСТ 27474.

40. Сопротивление изоляции оптопары (оптоэлектронного коммутатора, оптоэлектронного переключателя)

Сопротивление изоляции

Ндп. Сопротивление развязки

Isolation resistance between input and output

Rиз

Значение активного сопротивления между входом и выходом оптопары (оптоэлектронного коммутатора, оптоэлектронного переключателя)

Сопротивление изоляции оптоэлектронного коммутатора

40

Сопротивление изоляции оптоэлектронного переключателя

40

3.5 сопротивление изоляции пробою импульсным напряжением: Способность электрической изоляции сопротивляться электрическому пробою импульсным напряжением с определенными параметрами.

3.4 сопротивление изоляции пробою поверхностного разряда: По ГОСТ 27427.

1.10. Сопротивление изоляции ТЭН — электрическое сопротивление изоляционного материала, измеренное между токоведущими частями и металлической оболочкой.

3.3 сопротивление изоляции фазы (сети): Активное сосредоточенное (эквивалентное распределенному) сопротивление изоляции фазы (общее трех фаз) сети относительно земли.

3.3 сопротивление изоляции фазы (сети): Активное сосредоточенное (эквивалентное распределенному) сопротивление изоляции фазы (общее трех фаз) сети относительно земли.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • сопротивление изгибу
  • Сопротивление изоляции и электрическая прочность изоляции
Смотреть что такое «сопротивление изоляции» в других словарях:
  • СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ — характеристика, влияющая на степень безопасности эксплуатации электроустановок. Одним из основных средств, препятствующих возникновению опасных ситуаций, является электрическая изоляция элементов, находящихся под напряжением. С. и. в сетях с… …   Российская энциклопедия по охране труда

  • сопротивление изоляции — электрическое сопротивление изоляции; сопротивление изоляции; сопротивление Величина, обратная электрической проводимости изоляции …   Политехнический терминологический толковый словарь

  • сопротивление изоляции — izoliacijos varža statusas T sritis fizika atitikmenys: angl. insulance; insulation resistance vok. Isolationswiderstand, m rus. сопротивление изоляции, n pranc. résistance d’isolation, f; résistance d’isolement, f …   Fizikos terminų žodynas

  • сопротивление изоляции — rus сопротивление (с) изоляции eng insulation resistance fra résistance (f) d isolement deu Isolationswiderstand (m) spa resistencia (f) de aislamiento …   Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

  • Сопротивление изоляции — English: Insulation resistance Сопротивление, измеряемое в специальных условиях между двумя проводящими телами, изолированными друг от друга (по СТ МЭК 50(151) 78) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • Сопротивление изоляции оптоэлектронного коммутатора — 40 Источник: ГОСТ 27299 87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление изоляции оптоэлектронного переключателя — 40 Источник: ГОСТ 27299 87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление изоляции фазы (сети) — 3.3 сопротивление изоляции фазы (сети): Активное сосредоточенное (эквивалентное распределенному) сопротивление изоляции фазы (общее трех фаз) сети относительно земли. Источник: ГОСТ Р 52273 2004: Устройства защиты от токов утечки рудничные …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление изоляции и электрическая прочность изоляции — 7.5 Сопротивление изоляции и электрическая прочность изоляции Сопротивление изоляции и электрическая прочность изоляции УЗО Д должны соответствовать нормируемым значениям. УЗО Д должны выдерживать испытания по 8.8. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление изоляции обмотки управления высокочастотного выключателя (переключателя) — 36. Сопротивление изоляции обмотки управления высокочастотного выключателя (переключателя) Сопротивление изоляции Электрическое сопротивление постоянному току изоляции обмотки управления высокочастотного выключателя (переключателя) Источник: ГОСТ …   Словарь-справочник терминов нормативно-технической документации

normative_reference_dictionary.academic.ru

Замеры сопротивления изоляции электропроводки. Проведение замеров сопротивления изоляции в Москве.


Компания «Строй-ТК» предоставляет услугу собственной электролаборатории с новым и современным оборудованием в Москве — измерение сопротивления изоляции, электрических проводок, обмоток электродвигателей и другого электрооборудования в электроустановках до 1000 В.

Замеры сопротивления изоляции – это один из этапов комплекса электроизмерительных мероприятий, по результатам которых подготавливается Технический отчет электролаборатории. Актуальность услуги – и как части комплекса электроизмерительных работ, и отдельно – весьма высока. Её заказывают и энергетики крупных предприятий в рамках эксплуатационных испытаний, и подрядчики, выполняющие электромонтажные работы в рамках приемо-сдаточных испытаний, и сотрудники фирм, отвечающие за состояние электросети объектов, принадлежащих фирме или находящихся в аренде, и частные/юридические лица, по заказу которых были проведены электромонтажные работы – при необходимости проверить их качество. Цена на замеры невелика, поэтому заказывают их часто – как юридические, так и частные лица.

Услуга замера сопротивления

Услуга предполагает проведения испытаний кабелей и проводов, объединяющих всех потребителей электроэнергии в пределах объекта или его части. Замер сопротивления изоляции кабеля или проводки позволяет получить детальную информацию о наличии/отсутствии дефектов в проводке и кабелях, степени их износа и необходимости ремонта: иными словами, оценивается, в каком состоянии находятся участки электроустановки, соединяющие потребителей электроэнергии и распределительные щиты, щиты учета и т.д.

Цель проведения работ по замеру сопротивления изоляции

Проведение этого вида электроизмерительных работ необходимо для анализа состояния кабеля и электропроводки, оценки дефектов и выявления необходимости в ремонте и/или замене всей проводки или отдельных её участков. Протокол испытаний фиксирует все проведенные работы на всех участках кабеля и проводки, на основании чего заказчиком делаются соответствующие выводы.

В ряде случаев анализ состояния проводки необходим для предоставления органам МЧС, Ростехнадзора и муниципальным органам – то есть контролирующим и проверяющим организациям.

Сергей Борисов

(вед. инженер ЭТЛ)

Замеры сопротивления изоляции в первую очередь необходимы самому заказчику: дешевле выявить, локализовать и устранить неисправность в момент её зарождения и развития, нежели впоследствии разгребать последствия аварийной ситуации.

Периодичность проведения работ

Для разных типов электроустановок предусмотрена разная периодичность проведения замеров сопротивления изоляции. Для большинства электроустановок (под электроустановкой понимается совокупность кабелей, проводки, потребителей электроэнергии и прочих приборов) необходимо проводить замер сопротивления изоляции электропроводки раз в три года. Для отдельных типов электроустановок – чья эксплуатация проводится в помещениях, микроклимат и условия в которых опасны для электротехники – периодичность составляет раз в год, а для мобильных – раз в 6 месяцев.

Почему портится изоляция?

Причиной порчи изоляции могут стать:
  • механические повреждения;
  • износ;
  • неподходящие условия эксплуатации;
  • перегрузки в электросети.

Порядок проведения замеров

  • визуальный осмотр;
  • отключение от сети участков кабеля и проводов с потребителями;
  • замер сопротивления изоляции кабеля и проводов;
  • составление Протокола, который включает в себя информацию о том, какие участки были проверены, о дефектах и данных, показанных мегомметром.

Для получения подробной информации по услугам нашей электролаборатории обратитесь к нам в офис по телефону

Другие услуги

Электролаборатория и пусконаладочные работы

В этом направлении компания «Европейская Электротехника» предоставляет следующие виды услуг:

  • Ввод объектов в эксплуатацию и проведение пусконаладочных работ;
  • Выполнение работ, предусмотренных регламентом электротехнической лаборатории, с выдачей требуемых Актов и технических отчетов.

Наша электротехническая лаборатория в Москве имеет свидетельство о регистрации электролаборатории и аттестат компетентности на следующие виды испытаний и измерений: сопротивление изоляции, петля фаза-ноль, металлосвязь, контур заземления, проверка автоматов, проверка УЗО. Электроизмерения и испытания электрооборудования проводятся в электроустановках до 1000 V.

Все электрические измерения наша электротехническая лаборатория производит современными приборами, что позволяет с точностью провести диагностику электроустановки. Электроизмерения проводятся с целью проверки соответствия параметров электроустановки проекту, действующим нормативным документам, а также для своевременного выявления дефектов, которые могут привести к созданию аварийных и пожароопасных ситуаций. Результаты проведенных испытаний и измерений оформляются протоколами, которые входят в состав технического отчета.

Испытательная электролаборатория проводит электроизмерительные работы с целью проверки соответствия требованиям ПУЭ и ПТЭЭП электросетей и электрооборудования, а также с целью предотвращения пожаров и остановки производственного процесса или остановки работы офиса.

Какие испытания проводит электролаборатория

Приемо-сдаточные испытания выполняются после завершения всех работ по электромонтажу. Составленный согласно проведенным испытаниям технический отчет входит в комплект документации, необходимой для сдачи электроустановки в эксплуатацию.

Периодические (эксплуатационные) испытания проводятся в соответствии с требованиями нормативно-технической документации и инспектирующих органов. Периодичность испытаний и измерений определяется характеристиками установки, условиями ее эксплуатации, а также действующими правилами и нормами.

Профилактические (контрольные) испытания проводятся с целью обнаружения неисправного или несоответствующего нормам и правилам электроустановок (ПУЭ, ПТЭЭП, ПБ) электросетей и электрооборудования. Это делается с целью предотвращения несчастных случаев и аварийных ситуаций, случаев возгорания электропроводки.

Состав технического отчета:

  • Титульный лист с реквизитами электроизмерительной лаборатории, указанием наименования организации, полного адреса заказчика и датой выполнения измерений;
  • Копия свидетельства о регистрации лаборатории;
  • Копия аттестата компетентности;
  • Пояснительная записка, описывающая способ и ход измерений.

Протоколы электролаборатории компании «Европейская Электротехника»:

Протокол № 1 — Визуальный осмотр: проверка соответствия электроустановок нормативной и проектной документации.

Протокол № 2 — Протокол проверки наличия цепи между заземленными установками и элементами заземленной установки.

Протокол № 3 — Измерение сопротивление изоляции проводов и кабелей напряжением до 1000 В.

Протокол № 4 — Проверка согласования параметров цепи «фаза—ноль» с характеристиками аппаратов защиты и непрерывности защитных проводников.

Протокол № 5 — Проверка автоматического отключения питания путем непосредственного измерения тока однофазного К.З.

Протокол № 6 — Протокол проверки и испытания автоматических выключателей (УЗО).

Протокол № 7 — Измерение сопротивления заземляющих устройств.

Каждый протокол заверен печатью лаборатории. В конце отчета дается заключение.

ВИДЫ ИЗМЕРЕНИЙ:

1. Замеры сопротивления изоляции. Измеряется сопротивление изоляции проводников, жил кабельной линии между собой и относительно заземлённых проводников. Сопротивление изоляции должно быть не менее 0,5 Мом.

Измерение сопротивления заземляющих устройств (контур заземления) производятся по нормативным документам ПУЭ, ПТЭЭП пр. 3, 3.1 в электроустановках с глухозаземленной нейтралью напряжением до 1000 В. Сопротивление заземляющего устройства в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

2. Проверка наличия цепи между заземлённой электроустановкой и заземлёнными элементами. Такие измерения проводятся, чтобы определить целостность и непрерывность защитных проводников от измеряемого объекта до заземлителя или магистрали заземления и проводников выравнивания потенциалов, определить сопротивление измеряемого участка защитной цепи. Также таким способом диагностируется напряжение и его отсутствие на заземленных корпусах проверяемого оборудования в рабочем режиме.

Измерения сопротивления производятся между любой открытой проводящей частью и ближайшей точкой главного проводника системы управления потенциалов. Защитные проводники — это прежде всего металлические электротехнические трубы, металлические оболочки кабелей.

Сопротивление контакта заземляющих проводников не должно превышать 0,05 Ом. Измеренное сопротивление цепи защитных проводников не должно более чем в 1.2 раза превышать расчётное значение.

3. Замер петли «фаза-ноль». Для проверки согласования характеристик срабатывания аппаратов защиты при коротком замыкании проводят измерения сопротивления петли «фаза-ноль». Для проверки надёжности и быстроты отключения

поврежденного участка сети измеряется ток короткого замыкания на корпус Iкз (Ток короткого замыкания Iкз — это отношение номинального напряжения сети к полному сопротивлению петли «фаза-ноль»). Затем он сопоставляется с расчетным током срабатывания защиты испытуемого участка сети. Надежность отключения считается обеспеченной в том случае, когда возможный в данном участке сети ток аварийного режима превышает ток срабатывания защиты с достаточной кратностью. Iкз сравнивается с нормами ПТЭЭП.

4. Проверка срабатывания устройств защитного отключения (УЗО). Устройства защитного отключения (УЗО), реагирующие на дифференциальный ток, наряду с устройствами защиты от сверхтока, относятся к дополнительным видам защиты человека от поражения при косвенном контакте, которая обеспечивается автоматическим отключением питания. Требования ПУЭ и ряд стандартов и норм (ГОСТ Р 50669-94, комплекс стандартов ГОСТ Р 50571, НБП 243-97, МГСН 3.01-96 и др.) сегодня предписывают обязательное применение УЗО в электрических щитах строящихся и реконструируемых домов, мобильных зданий из металла или с металлическим каркасом, коттеджей и др.

При выполнении измерений выполняют следующие операции:

1). Определение порога срабатывания УЗО.
2). Измерение тока утечки в зоне защиты УЗО.
3). Для проверки общей работоспособности УЗО предусмотрена цепь тестирования, с помощью которой искусственно создается отключающий дифференциальный ток. срабатывание УЗО означает, что оно работает нормально.

5. Испытание автоматических выключателей. Автоматические выключатели служат для проведения, включения и автоматического размыкания электрических цепей при аномальных явлениях (например, при токах перегрузки, КЗ, недопустимых снижения напряжения), а также, для нечастого включения цепей вручную.

Испытания расцепителей автоматических выключателей проводятся с целью проверки соответствия пределов их срабатывания данным завода-изготовителя, требованиям ГОСТ Р 50345-99, ГОСТ Р 50030.2-99.

Параметры срабатывания автоматических выключателей должны соответствовать данным завода-изготовителя и обеспечивать: защиту от поражения электрическим током (в случае недостаточности других защитных мер) при коротких замыканиях; защиту сетей от перегрузок и пожаров, вызванных технологическими перегрузками или повреждениями изоляции.

При проверке защиты сетей от перегрузок для автоматических выключателей допустимое время срабатывания в зависимости от кратности номинального тока и температуры окружающей среды определяется по паспортным данным.

Автоматические выключатели выпускаются с расцепителями с обратнозависимой выдержкой времени (тепловые), с независимой выдержкой времени и мгновенного действия (электромагнитные и электронные).

Тепловые расцепители срабатывают с выдержкой времени, зависящей от величины тока: чем больше ток, тем меньше выдержка времени. Электромагнитные расцепители (отсечка) срабатывают без выдержки времени. Выключатели бытового и аналогичного назначения по ГОСТ Р 50345-99 классифицируются по диапазонам токов мгновенного расцепления и подразделяются на типы расцепления В, С, D.

Периодичность электролабораторных испытаний медицинских учреждений

Измерение токов утечки на корпус в условиях единичного нарушения средств защиты электромедицинской аппаратуры — в Операционных

не реже 1 раза в месяц и перед использованием новой электромедицинской аппаратуры

РТМ 42-2-4-80  п.2.6.2.

Исправность заземляющих проводников

— в Операционных —  визуально и с помощью омметра.

перед их первым применением и далее один раз в месяц

РТМ 42-2-4-80  п.4.4.

Измерение электропроводности антистатического пола

— в Операционных

не реже одного раза в три месяца

РТМ 42-2-4-80  п.4.3.

Измерение сопротивления неметаллических частей наркозных аппаратов (деталей из электропроводящей резины) — в Операционных

не реже одного раза в три месяца

РТМ 42-2-4-80  п.4.2. (методика в приложении 7).

Проверка работоспособности УЗО

не реже одного раза в три месяца

ПТЭЭП  Прил.3  п.28.7

Надежность соединения заземляющих контактов каждой штепсельной розетки для электромедицинской аппаратуры  в Операционных

не реже одного раза в шесть месяцев

РТМ 42-2-4-80  п.4.5.

Переносные и передвижные электроприемники, вспомогательное оборудование к ним:  

1) измерение сопротивления изоляции; 

2) проверка исправности цепи заземления электроприемников и вспомогательного оборудования классов 01 и 1.

не реже одного раза в шесть месяцев

ПТЭЭП  Прил.3 

п. 3.5.11-13.

Измерение сопротивления изоляции электросети в особо опасных помещениях (или с повышенной опасностью) и наружных электроустановках  – в пищеблоках

не реже одного раза в шесть месяцев

ПОТ РМ-011-2000 (в общественном питании)  п.5.6

Измерение сопротивления изоляции электросети в особо опасных помещениях (или с повышенной опасностью) и наружных электроустановках  – в прачечных

не реже одного раза в шесть месяцев

ПОТ РМ-013-2000 (при стирке)  п.п.3.7.6., 3.8.37

Испытания защитного заземления (зануления) — в пищеблоках

не реже одного раза в год

ПОТ РМ-011-2000 (в общественном питании)  п.5.6

Испытания защитного заземления (зануления) – в прачечных

не реже одного раза в год

ПОТ РМ-013-2000 (при стирке)  п.п.3.7.6., 3.8.37

Измерение сопротивления заземляющего устройства  Операционных

После ремонта ;

не реже одного раза в год

РТМ 42-2-4-80  п.4.6.

Измерение сопротивления изоляции стационарных электроплит

не реже одного раза в год

ПТЭЭП  Прил.3  Табл.37

Проверка отключения УЗО по дифференциальному току

– в электроустановках медицинских помещений

не реже одного раза в год

ГОСТ Р 50571.28-2006  п.710.62

Проверка устройств контроля сопротивления изоляции (в т.ч. разделительных трансформаторов) – в электроустановках медицинских помещений

не реже одного раза в год

ГОСТ Р 50571.28-2006 ч.7-710  п.710.62

Измерение сопротивления изоляции электропроводки  в особо опасных помещениях (общего назначения) и в наружных установках

не реже одного раза в год

ПТЭЭП  Прил.3  Табл.37

Измерение сопротивления изоляции электропроводки  в остальных помещениях 

не реже одного раза в три года

ПТЭЭП  Прил.3  Табл.37

Проверка наличия цепи между заземлителями и заземляемыми элементами

После ремонта/перестановки электрооборудования;

не реже одного раза в три года

ПТЭЭП  Прил.3  п.26.1

Проверка наличия цепи между заземленными установками и элементами заземленной установки

не реже одного раза в три года

ПТЭЭП  Прил.3  п. 28.5

Измерение сопротивления заземляющих устройств

После ремонта ;

 не реже одного раза в три года

ПТЭЭП  Прил.3  п.26.4

Измерение тока утечки трансформаторов медицинской системы IT (разделительных трансформаторов)

– в медицинских помещениях

не реже одного раза в три года

ГОСТ Р 50571.28-2006  п.710.62.

Проверка срабатывания защиты от короткого замыкания (измерение сопротивления петли «фаза – нуль»

После перестановки электро-оборудования и монтажа нового — перед включением; 

 не реже одного раза в три года

ПТЭЭП п.2.7.17;  Прил.3  п. 28.4

Испытание повышенным напряжением промышленной частоты  электротехнических изделий выше 12 В переменного тока и 120 В постоянного тока, в т.ч.: 1) изоляция обмоток  и токоведущего кабеля  переносного электроинструмента  относительно  корпуса  и наружных металлических деталей;  2) изоляции обмоток понижающих трансформаторов.

не реже одного раза в шесть лет

ПТЭЭП  Прил.3  п. 28.2

Проверка действия расцепителей автоматических выключателей

Периодичность определяют нормы заводов-изготовителей

ПТЭЭП  Прил.3  п. 28.6

Измерение токов утечки изоляции стационарных электроплит

Периодичность определяют нормы заводов-изготовителей

Инструкция по эксплуатации (от завода-изготовителя)

Измерение сопротивления изоляции | Заметки электрика

Здравствуйте, уважаемые гости сайта «Заметки электрика».

В предыдущей статье я Вам рассказал про электролабораторию, чем она занимается и для чего нужны электрические измерения и испытания.

Сегодня Я Вам подробно расскажу про измерение сопротивления изоляции.

Измерение сопротивления изоляции постоянному току электрооборудования и электрических цепей является неотъемлемой частью электрических измерений, т.к. является самым важным и основным показателем состояния изоляции. Если сопротивление изоляции меньше, чем установлено в нормативной документации, то это может привести к плачевным последствиям — пожару и электрическим травмам.

Периодичность проверки  и нормы сопротивления изоляции изложены в нормативных документах ПУЭ (Правила устройства электроустановок) и ПТЭЭП.

Измерение сопротивления изоляции

Измерение сопротивления изоляции постоянному току проводится специальным прибором под названием — мегомметр.

Мегомметры бывают:

  • с ручным приводом (внутри прибора встроен генератор)
  • электронные (от аккумулятора)

Обычно мегомметры изготавливают на следующие пределы напряжений:

  • 500 (В)
  • 1000 (В)
  • 2500 (В)
  • 5000 (В)

Замер сопротивления изоляции необходимо начинать с осмотра электропроводки: силовых кабельных линий и проводов, мест соединения проводов в распределительных и соединительных коробках. Также необходимо обследовать места соединения проводов к аппаратам защиты и другому электрооборудованию.

Если во время осмотра Вы заметили оплавленные участки, то значит что электропроводка во время эксплуатации подвергается нагреву. Нагрев возникает при слабом соединении проводов, неисправном или неправильном выборе номинального тока автоматического выключателя.

До начала работ необходимо отключить все электрооборудование от источника напряжения.

Замер сопротивления изоляции необходимо выполнять:

  • между фаз (A – B; В – С; С – А)
  • между фазой и нулем (А – N; B – N; C – N)
  • между фазой и землей (А – РЕ; В – РЕ; С – РЕ)
  • между нулем и землей (N – PE)

Более подробно о том, как произвести измерение сопротивления изоляции кабельных линий различного назначения с наглядными примерами и картинками, Вы можете узнать из статьи измерение сопротивления изоляции кабеля.

Допустимое значение сопротивления изоляции не должно быть меньше 0,5 (МОм).

По результатам измерения электролаборатория выдает протокол измерения сопротивления изоляции. Если показания ниже, чем предусмотрено технической литературой, то электрооборудование запрещается к дальнейшей эксплуатации.

P.S. В следующей статье я Вам расскажу про основные показатели сопротивления изоляции.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Методика измерения и испытания сопротивления изоляции кабелей, обмоток электродвигателей, аппаратов, вторичных цепей и электропроводок, и электрооборудования напряжением до 1кВ — Методики испытаний / Документы — Электротехническая лаборатория, г.Ханты-Мансийск

1. Цель проведения измерения.

Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.

2. Меры безопасности.

2.1 Технические мероприятия.

До начала и в процессе измерений необходимо выполнять технические мероприятия согласно “Правилам техники безопасности” (ПТБ). При работе с мегомметром необходимо руководствоваться пунктами Б 3.7.17-Б 3.7.22 ПТБ.

2.2 Организационные мероприятия.

Измерения мегаомметром разрешается выполнять в установках напряжением выше 1000В двум лицам, одно которых должно иметь группу по электробезопасности не ниже IV. Работы выполняются по наряду. В установках напряжением до 1000В измерения выполняют два лица, одно из которых должно иметь группу не ниже III. Работы выполняются, в порядке текущей эксплуатации с последующей записью в оперативный журнал.

3. Нормируемые величины.

Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов “Правил технической эксплуатации электроустановок потребителей”. Как правило, сопротивление изоляции систем БССН и ФССН измеренное мегаомметром на 250 В должно быть не менее 0,25 Мом, силовых цепей до 500 В (кроме систем БССН и ФССН) измеренное мегаомметром на 500 В должно быть не менее 0,5 МОм, а вторичных цепей — не менее 1МОм. Сопротивление изоляции силовых цепей выше 500 В измеренное мегаомметром на 1000 В должно быть не менее 1.0 МОм, (ГОСТ Р50571.16-99). Сопротивление изоляции электропроводок, в том числе и осветительных сетей измеренное мегаомметром на 1000 В должно быть не менее 0.5 МОм, (ПТЭЭП п. 28.1)

4.
Применяемые приборы.

Для измерения сопротивления изоляции применяются мегаомметры типов: MI 3102H (на напряжение 100 В, 250 В, 500 В 1000 В и 2500 В) и, Е6-24 (на напряжение 500 В 1000 В и 2500 В). Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах и гигаомах.

5. Измерение сопротивления изоляции электрооборудования.

5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

При измерении сопротивления изоляции необходимо учитывать следующее:

— измерение сопротивления изоляции кабелей (за ис­ключением кабелей бронированных) сечением до 16 мм2 производится мегаомметром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение со­противления изоляции проводов всех сечений производит­ся мегаометром на 1000 В.

При этом необходимо производить следующие замеры:

— на 2 — и 3-проводных линиях — три замера: L-N, N-РЕ, L-РЕ;

— на 4-проводных линиях — 4 замера: L1-L2L3РЕN, L2 — LЗL1РЕN, LЗ-L1L2РЕN, РЕN-L1L2L3, или 6 замеров: L1-L2, L2-L3,
L1-L3, L1-РЕN, L2-РЕN, LЗ-РЕN— на 5-проводных линиях — 5 замеров: L1—L2L3 NРЕ, L2-L1L3NРЕ, LЗ-L1L2РЕ, N-L1L2L3РЕ, РЕ-NL1L2L3, или

10 замеров: L1-L2, L2-L3, L1-L3, L1-N, L2-N, L3-N, L1-РЕ, L2-РЕ, LЗ-РЕ, N-РЕ.

Допускается не проводить измерения сопротивления изоляции в осветительных сетях, находящихся в эксплуа­тации, если это требует значительных работ по демонтажу схемы, в этом случае, не реже 1 раза в год, требуется вы­полнять визуальный контроль совместно с проверкой надежности срабатывания средств защиты от сверхтоков (оп­ределение токов однофазных замыканий в соответствии с п. 1.7.79 ПУЭ).

Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 0,5 МОм, то заклю­чение об их пригодности делается после испытания их пе­ременным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.

5.2. Измерение сопротивления изоляции силового элекрооборудования

Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от темпе­ратуры. Замеры следует производить при температуре изо­ляции не ниже +5°С кроме случаев, оговоренных специ­альными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния вла­ги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обус­ловленных разностью температур, при которых проводи­лись измерения, следует откорректировать эти результаты по указаниям изготовителя.

Степень увлажненности изоляции характеризуется ко­эффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложе­ния напряжение мегаомметра (R60) к измереннму сопро­тивлению изоляции через 15 секунд (R15),

Кабс = R60/R15

При измерении сопротивления изоляции силовых транс­форматоров используются мегаомметры с выходным на­пряжением 2500 В.

Измерения проводятся между каждой обмоткой и кор­пусом и между обмотками трансформатора.

При этом R60, должно быть приведено к результатам за­водских испытаний в зависимости от разности темпера­тур, при которых проводились испытания.

Значение коэффициента абсорбции должно отличать­ся (в сторону уменьшения) от заводских данных не более, чем на 20%, а его величина должна быть не ниже 1,3 при температуре 10—30°С. При невыполнении этих условий трансформатор подлежит сушке.

Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в при­ложении 3 ПТЭЭП, таблица 9 а для установок, вводимых в эксплуатацию, — в гл. 1.8. ПУЭ, таблица 8. Сопротивле­ние изоляции ручных электрических машин измеряется относительно корпуса и наружных металлических частей при включенном выключателе.

Корпус электроинструмента и соединенные с ним де­тали, выполненные из диэлектрического материала, на вре­мя испытания должны быть обернуты металлической фоль­гой, соединенной с контуром заземления.

Если сопротивление изоляции при этом будет не менее 10 МОм, то испытание изоляции повышенным напряже­нием может быть заменено измерением ее сопротивления мегаомметром с выходным напряжением 2500 В в течение 1 минуты.

У переносных трансформаторов измеряется сопротив­ление изоляции между всеми обмотками, а также между обмотками и корпусом. При измерениях сопротивления изоляции первичной обмотки, вторичная должна быть зам­кнута и соединена с корпусом.

Сопротивление изоляции автоматических выключате­лей и УЗО производятся:

1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.

2. Между каждым разноименным полюсом и соединен­ными между собой оставшимися полюсами при зам­кнутом состоянии выключателя или УЗО.

3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

При этом для автоматических выключателей бытового и аналогичного назначения (ГОСТ Р50345-99) и УЗО при измерениях по п.п. 1, 2 сопротивление изоляции должно быть не менее 2 Мом, по п. 3 — не менее 5 Мом.

Для остальных автоматических выключателей (ГОСТ Р50030.2-99) во всех случаях сопротивление изоляции дол­жно быть не менее 0,5 МОм.

6. Измерение сопротивления изоляции прибором Е6-24

6.1.
Внешний вид прибора показан на рисунке 1

Рисунок 1

1, 2, 3 — гнезда для подключения кабелей

4 — индикатор

5 — индикатор единиц измерения (сверху вниз соответственно:

— напряжение, В

— сопротивление Гом

— сопротивление Мом

6 — индикатор испытательных напряжений (слева направо соответственно: 500В, 1000В, 2500В)

7 — индикатор заряда батареи

8 — переключатель вкл и выкл состояния прибора

9 — кнопка установки испытательного напряжения

10 — кнопка вывода результатов из памяти

11 — кнопка измерения сопротивления

6.2.
Перед началом измерений необходимо убедится, что на испытываемом объекте нет напряжения, тщательно очистить изоляцию вблизи точки замера от пыли и грязи и на 2-3 мин. Заземлить объект для снятия с него возможных остаточных зарядов. После окончания измерений испытываемый объект необходимо разрядить кратковременным заземлением.

Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (обычно не меньше 100 МОм).

Перед пользованием мегаомметр следует подвергнуть контрольной проверке, которая заключается в проверке показания по шкале при разомкнутых и короткозамкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы “бесконечность”, во втором — у нуля.

Для того, чтобы на показания мегаомметра не оказывали влияния токи утечки по поверхности изоляции, особенно при проведении измерении в сырую погоду, мегомметр подключают к измеряемому объекту с использованием зажима Э (экран) мегаомметра. При таком подключении токи утечки по поверхности изоляции отводятся в землю, минуя обмотку прибора.

Значение сопротивления изоляции в большей степени зависит от температуры. Сопротивление изоляции следует измерять при температуре изоляции не ниже +5°С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции.

При измерении сопротивления изоляции относительно земли с помощью мегаомметра зажим “+” рекомендуется подключать к токоведущей части испытываемой установки, а зажим “-” (земля) к ее корпусу. При измерении сопротивления изоляции электрических цепей, не

соединенных с землей, подключение зажимов мегаомметра может быть любым.

Использование зажима “Э” (экран) значительно повышает точность измерения при больших сопротивлениях изоляции, исключает влияние поверхностных токов утечки и тем самым не искажает результаты измерения.

Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с изолированными рукоятками и ограничительными кольцами на концах. Длина проводов должна быть как можно меньшей.

Перед началом измерения необходимо измерить сопротивление изоляции соединительных проводов. Значение этого сопротивления должно быть не менее верхнего предела измерения мегаомметра.

За сопротивление изоляции принимают 60-секундное значение сопротивления R-60, зафиксированное на индикатору мегаомметра через 60 с, которое отсчитывается автоматически.

Перед началом измерений необходимо убедиться: в отсутствии напряжения на испытуемом объекте, в чистоте проверяемой аппаратуры, проводов, кабельных воронок и т.д., а также в том, что все детали с пониженной изоляцией или пониженным испытательным напряжением отключены и закорочены. При наличие на объекте переменного напряжения мегаомметр определит его автоматически. При отсутствии напряжения можно начинать проводить измерения.

6.3. Переключение значения испытательного напряжения 500 В, 1000 В и 2500 В производится кратковременным нажатием кнопки «UR».

6.4. Для проведения измерения необходимо нажать и удерживать кнопку «RX». После отпускания кнопки процесс измерения прекратится. Двойное нажатие кнопки «RX» приводит к её захвату, и процесс измерения будет происходить в течение заданного интервала времени без её удержания (от 1 до 10 минут), выставить который можно кнопками UR и МRх/К после включения мегаомметра при нажатой кнопке «RX». При необходимости досрочного отключения процесса измерения следует повторно нажать кнопку «RX».

6.5. Загорание на индикаторе символа «П» (переполнение) указывает что сопротивление объекта измерения превышает предел показания прибора 99,9 Гом. Так же индикация «П» может появляться при переходных процессах, поэтому в таком случае следует продолжать измерение в течении ещё 10 секунд.

6.6. Отстыковку кабелей от объекта следует проводить не ранее 10 секунд после окончания подачи испытательного напряжения.

7.1. Порядок проведения измерения сопротивления изоляции

Шаг 1 Посредством поворотного переключателя выберите функцию Изоляция.

С помощью кнопок и осуществляется выбор между функциями «R ISO» и «ДИАГНОСТИКА». Выберите опцию «R ISO». Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2 Установите значения следующих параметров и пределов измерения:

Номинальное измерительное напряжение,

Минимальное предельно допустимое значение сопротивления.

Шаг 3 Подключите измерительный кабель к испытываемому объекту. Для проведения измерения сопротивления изоляции следуйте схеме подключения, показанной на рисунке 2. При необходимости обратитесь к меню помощи. Для измерений сопротивления изоляции при напряжении UN= 2,5 кВ должны использоваться специальные измерительные провода, так как испытательный сигнал подается на другие измерительные клеммы, чем при измерениях при UN≤ 1 кВ! Стандартный трехпроводный измерительный кабель, кабель с евро — вилкой и щупы «commander» могут использоваться только при измерениях сопротивления при напряжении UN≤ 1 кВ!


Рисунок.2: Подключение 3-проводного измерительного кабеля и щупа с

наконечником (UN ≤1 кВ)

Для измерений сопротивления изоляции при напряжении UN= 2,5 кВ должен использоваться двухпроводный 2,5 кВ-й измерительный кабель. Подключение в соответствие со схемой подключения, показанной на рисунке 3


Рисунок 3: Подключение двухпроводного 2,5 кВ-го измерительного кабеля (UN =2,5 кВ)

Шаг 4 Перед началом измерений проверьте отображаемые предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите и удерживайте кнопку ТEST, пока результат не стабилизируется. Во время измерений на дисплее отображается фактическое значение сопротивления. После того, как кнопка TEST отпущена, отображается последнее измеренное значение, сопровождающееся оценкой результата в виде «соответствует / не соответствует» (если применяется).

Отображаемые результаты:

R… … … … Сопротивление изоляции,

Um… … … Измерительное напряжение.

Сохраните результаты измерений для дальнейшего документирования.

7.2. Классификация результатов измерения сопротивления изоляции при сохранении

При сохранении, после нажатия кнопки Память, доступны десять подфункций сопротивления изоляции:

ISO L1/PE,

ISO L2/PE,

ISO L3/PE,

ISO L1/N,

ISO L2/N,

ISO L3/N,

ISO N/PE,

ISO L1/L2,

ISO L1/L3,

ISO L2/L3.

Процедура измерения сопротивления изоляции протекает одинаково, в независимости от того, какая подфункция выбрана. Однако важно выбирать соответствующую подфункцию, чтобы в дальнейшем правильно классифицировать результаты измерений для их корректного занесения в протоколы измерений.

8. Оформление результатов измерений.

Результаты измерения сопротивления изоляции проводов, кабелей, обмоток машин и аппаратов записываются в протокол, заключительная часть которого характеризует качество изоляции. Оформленный протокол прилагается к отчету по наладке электрооборудования.

РАЗРАБОТАЛ:

Начальник электролаборатории

Узнайте, как проводится проверка сопротивления изоляции

Разработанный в начале 20 века тест сопротивления изоляции (IR) является старейшим и наиболее широко используемым тестом для оценки качества изоляции. Проверка сопротивления изоляции — это второй тест, требуемый стандартами испытаний на электробезопасность. Тест сопротивления изоляции заключается в измерении сопротивления изоляции тестируемого устройства, при котором фаза и нейтраль замыкаются накоротко.Измеренное сопротивление должно быть выше указанного в международных стандартах предела. Мегаомметр (также называемый тестером сопротивления изоляции, тераомметром) используется для измерения омического значения изолятора при постоянном напряжении с большой стабильностью.

Изоляция не может быть идеальной так же, как что-то не может быть без трения. Это означает, что всегда будет проходить небольшой ток. Это известно как «ток утечки». Это приемлемо с хорошей изоляцией, но если изоляция ухудшится, утечка может вызвать проблемы.Так что же делает изоляцию «хорошей»? Что ж, ему нужно высокое сопротивление току, и он должен быть в состоянии выдерживать высокое сопротивление в течение длительного времени

Почему проводится проверка сопротивления изоляции?

Изоляция начинает стареть сразу после ее изготовления. С возрастом его изоляционные свойства ухудшаются. Любые суровые условия установки, особенно с экстремальными температурами и / или химическим загрязнением, ускоряют этот процесс. Напряжения из-за различных факторов, таких как:

  • Электрические напряжения: В основном связаны с повышенным и пониженным напряжением.
  • Механические напряжения: Частые запуски и остановки могут вызвать механические нагрузки.
  • Проблемы с балансировкой вращающегося оборудования и любые прямые нагрузки на кабели и установки в целом.
  • Химическая нагрузка: Близость химикатов, масел, агрессивных паров и пыли в целом влияет на изоляционные характеристики материалов.
  • Напряжения, связанные с колебаниями температуры: В сочетании с механическими напряжениями, вызванными последовательностями пуска и останова, напряжения расширения и сжатия влияют на свойства изоляционных материалов.Эксплуатация при экстремальных температурах также приводит к старению материалов.
  • Загрязнение окружающей среды вызывает ускорение старения изоляции.

Этот износ может снизить удельное электрическое сопротивление изоляционных материалов, тем самым увеличивая токи утечки, которые приводят к инцидентам, которые могут быть серьезными как с точки зрения безопасности (людей и имущества), так и затрат, связанных с остановками производства. Таким образом, важно быстро определить это ухудшение, чтобы можно было предпринять корректирующие действия.В дополнение к измерениям, проводимым на новом и отремонтированном оборудовании во время ввода в эксплуатацию, регулярные испытания изоляции на установках и оборудовании помогают избежать таких инцидентов за счет профилактического обслуживания. Эти испытания обнаруживают старение и преждевременное ухудшение изоляционных свойств до того, как они достигнут уровня, который может вызвать описанные выше инциденты.

Это испытание часто используется в качестве приемочного испытания заказчиком с минимальным сопротивлением изоляции на единицу длины, часто указываемым заказчиком.Результаты, полученные при ИК-тесте, не предназначены для использования при обнаружении локализованных дефектов в изоляции, как при истинном тесте HIPOT, а скорее дают информацию о качестве материала, используемого в качестве изоляции.

Производители проводов и кабелей используют испытание сопротивления изоляции для отслеживания процессов производства изоляции и выявления возникающих проблем до того, как переменные процесса выйдут за допустимые пределы.

Что делается во время измерения сопротивления изоляции?

Измерение сопротивления изоляции — это стандартное стандартное испытание, выполняемое для всех типов электрических проводов и кабелей.Его цель — измерить сопротивление изоляции при постоянном напряжении с высокой стабильностью, обычно 50, 100, 250, 500 или 1000 В постоянного тока. Омическое значение сопротивления изоляции выражается в мегомах (МОм). В соответствии с конкретными стандартами испытание сопротивления изоляции может проводиться при напряжении до 1500 В постоянного тока. Благодаря стабильности источника напряжения можно регулировать испытательное напряжение с шагом в 1 вольт.

Стабильность напряжения критична; нерегулируемое напряжение резко упадет при плохой изоляции, что приведет к ошибочным измерениям.

После того, как все необходимые подключения выполнены, вы прикладываете испытательное напряжение в течение одной минуты. В течение этого интервала сопротивление должно падать или оставаться относительно стабильным. В более крупных изоляционных системах будет наблюдаться неуклонное снижение, в то время как меньшие системы останутся стабильными, поскольку емкостные токи и токи поглощения падают до нуля быстрее в меньших системах изоляции. Через одну минуту прочтите и запишите значение сопротивления

.

Выбор ИК-тестеров (Megger):

Напряжение Уровень ИК-тестер
650 В 500 В постоянного тока
1.1КВ 1 кВ постоянного тока
3,3 кВ 2,5 кВ постоянного тока
66кВ и выше 5 кВ постоянного тока

Как измеряется сопротивление изоляции?

Измерение сопротивления изоляции выполняется с помощью ИК-тестера. Это портативный инструмент, который представляет собой более или менее омметр со встроенным генератором, который используется для выработки высокого постоянного напряжения. Напряжение обычно составляет не менее 500 В и вызывает протекание тока по поверхности изоляции.Это дает показание ИК в омах.

Измерение сопротивления изоляции основано на законе Ома. (R = V / I). Подавая известное постоянное напряжение ниже, чем напряжение для испытания диэлектрика, а затем измеряя протекающий ток, очень просто определить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому, измеряя протекающий слабый ток, мегомметр показывает значение сопротивления изоляции, предоставляя результат в кВт, МВт, ГВт, а также TW (на некоторых моделях).Это сопротивление характеризует качество изоляции между двумя проводниками и дает хорошее представление о рисках протекания токов утечки.

Что ж, если вы смотрите на большое количество ИК-излучения, у вас хорошая изоляция. С другой стороны, если он относительно низкий, значит, изоляция плохая.

Однако это еще не все — на ИК может влиять множество факторов, в том числе температура и влажность. Со временем вам придется провести ряд тестов, чтобы убедиться, что значение IR остается более или менее неизменным.Значение сопротивления изоляции часто выражается в гигаомах [ГОм].

Хорошая изоляция — это когда показания мегомметра сначала увеличиваются, а затем остаются постоянными. Плохая изоляция — это когда показания мегомметра сначала увеличиваются, а затем уменьшаются.

Ожидаемое значение IR попадает в Temp. От 20 до 30 градусов по Цельсию. Если эта температура снизится на 10 градусов по Цельсию, значения ИК-излучения увеличатся в два раза. Если выше температура повышается на 70 градусов по Цельсию, значения ИК уменьшаются в 700 раз.

Для измерения большого электрического сопротивления измерительное напряжение должно быть намного выше, чем при стандартных измерениях сопротивления.Это напряжение часто находится в диапазоне от 100 до 1000 В постоянного тока, и его нельзя использовать для измерения сопротивления электронных компонентов, поскольку они могут быть повреждены.

Сопротивление высокого значения

Для измерения сопротивления высокого значения используются методы измерения тока низкого значения. Источник постоянного напряжения применяется к измеряемому сопротивлению, и результирующий ток считывается высокочувствительной схемой амперметра, которая может отображать значение сопротивления.

В нашем ассортименте тестеров сопротивления изоляции используются два типа цепей амперметра, каждая из которых выбирается в зависимости от измеряемых значений сопротивления.

Цепь шунтирующего амперметра

Вход вольтметра, связанный с сопротивлением, образует цепь шунтирующего амперметра. Эта настройка позволяет измерять любое значение I, множество комбинаций чувствительности и значений RI. Эта схема используется для измерения тока высоких значений, которые соответствуют измерению сопротивления низких значений.

Цепь амперметра обратной связи

Эта схема чаще всего используется в наших приборах. Он охватывает измерение сопротивления высоких значений.

Действительно, значение высокого сопротивления зависит от приложенного к нему напряжения. Другие факторы влияют на измерение сопротивления высокого значения. Температура и относительная влажность — два важных параметра, которые влияют на значение сопротивления изолятора.

Разница между испытанием на диэлектрическую прочность и испытанием на ИК-излучение

Испытание на электрическую прочность, также называемое «испытанием на пробой», измеряет способность изоляции выдерживать скачки напряжения средней продолжительности без искрового пробоя.В действительности, этот скачок напряжения может быть вызван молнией или индукцией, вызванной неисправностью в линии электропередачи. Основная цель этого испытания — убедиться, что соблюдаются правила строительства, касающиеся путей утечки и зазоров. Этот тест часто выполняется с применением переменного напряжения, но также может выполняться с постоянным напряжением. Для этого типа измерения требуется высокопроизводительный тестер. Полученный результат представляет собой значение напряжения, обычно выражаемое в киловольтах (кВ). Диэлектрические испытания могут иметь разрушительные последствия в случае неисправности в зависимости от уровней испытаний и доступной энергии в приборе.По этой причине он зарезервирован для типовых испытаний нового или отремонтированного оборудования.

Однако измерение сопротивления изоляции не является разрушающим при нормальных условиях испытаний. Выполняется путем подачи постоянного напряжения с меньшей амплитудой, чем при испытании на диэлектрические свойства, и дает результат, выраженный в кВт, МВт, ГВт или ТВт. Это сопротивление указывает на качество изоляции между двумя проводниками. Поскольку он является неразрушающим, он особенно полезен для контроля старения изоляции в течение срока службы электрического оборудования или установок.Это измерение выполняется с помощью измерителя сопротивления изоляции, также называемого мегомметром

.

Факторы, влияющие на значения сопротивления изоляции:
  • Емкостной зарядный ток: ток, который начинается с высокого уровня и падает после того, как изоляция была заряжена до полного напряжения (подобно потоку воды в садовом шланге, когда вы впервые открываете кран).
  • Ток поглощения: Также изначально высокий ток, который затем падает (по причинам, обсуждаемым в разделе «Метод сопротивления времени»).
  • Ток проводимости или утечки Небольшой, по существу, постоянный ток как через изоляцию, так и над ней.

Требования безопасности для Измерение сопротивления изоляции
  • Все тестируемое оборудование должно быть отключено и изолировано.
  • Оборудование должно быть разряжено (шунтировано или закорочено) по крайней мере до тех пор, пока подавалось испытательное напряжение, чтобы быть абсолютно безопасным для человека, проводящего испытание.
  • Никогда не используйте Megger во взрывоопасной атмосфере.
  • Убедитесь, что все переключатели заблокированы, а концы кабеля промаркированы должным образом для безопасности.
  • При проверке заземления убедитесь, что дальний конец проводника не соприкасается, в противном случае проверка покажет неисправную изоляцию, хотя на самом деле это не так.
  • Убедитесь, что все соединения в испытательной цепи затянуты.
  • Концы кабеля, которые необходимо изолировать, должны быть отключены от источника питания и защищены от контакта с источником питания, земли или случайного контакта.
  • Установка защитных ограждений с предупреждающими знаками и открытый канал связи между испытательным персоналом.

О Megger:

Мегаомметр обычно оснащен тремя выводами.

  1. Клемма «LINE» (или «L») является так называемой «горячей» клеммой и подключается к проводнику, сопротивление изоляции которого вы измеряете. Помните: эти тесты выполняются при обесточенной цепи.
  2. Клемма «EARTH» (или «E») подключается к другой стороне изоляции, заземляющему проводнику.
  3. Клемма «GUARD» (или «G») обеспечивает обратную цепь, которая обходит счетчик. Например, если вы измеряете цепь, имеющую ток, который вы не хотите включать, вы подключаете эту часть цепи к клемме «GUARD». Это самый простой из тестов.

Почему ультиметр M не используется для измерения сопротивления изоляции?

Мультиметр может измерять различные величины, в том числе электрическое сопротивление, которое измеряется в омах.Его работа, в частности, для измерения сопротивления, обеспечивается действием внутренней батареи (низкое напряжение), которая пропускает небольшой ток через измеряемое сопротивление или, в случае его отсутствия, через проводник или обмотку. Полученное значение в омах относится к электрическому сопротивлению, которое заставляет ток проходить через проводник, и увеличивается в зависимости от его долготы и сечения.

С другой стороны, мегомметр, также известный как Megger, часто используется для измерения сопротивления изоляции изолированного тела.Для своей работы он использует генератор постоянного тока или аккумулятор, способный генерировать значения выходного напряжения до 5000 В. Результаты, полученные при испытании на сопротивление, относятся к сопротивлению изоляции, которое имеет изолированный элемент, относящийся к активному элементу или проводнику.

Несмотря на некоторое сходство между обоими инструментами, сопротивление изоляции в обязательном порядке измеряется с помощью мегомметра (или аналогичного устройства), поскольку он может генерировать высокое напряжение, которое создает момент напряжения в изоляции.Сопротивление изоляции обычно рассчитывается в мега- или тераомах, включая

.

В заключение, мультиметр измеряет электрическое сопротивление проводника (катушки), в то время как мегомметр измеряет сопротивление изоляции изолированной группы (две катушки относительно массы), что не может сделать мультиметр.

Типы испытаний сопротивления изоляции

Кратковременный или точечный тест
В этом методе вы просто подключаете прибор Megger к проверяемой изоляции и используете его в течение короткого определенного периода времени, вы просто выбираете точку на кривой возрастающего сопротивления. ценности; довольно часто значение будет меньше для 30 секунд, больше для 60 секунд.Помните также, что температура и влажность, а также состояние изоляции влияют на ваши чтения.

Если тестируемое устройство имеет очень маленькую емкость, например, короткая проводка в доме, то все, что необходимо, — это точечный тест. В течение многих лет специалисты по техническому обслуживанию использовали правило одного МОм для установления допустимого нижнего предела сопротивления изоляции. Можно сформулировать правило: сопротивление изоляции должно составлять приблизительно один МОм на каждые 1000 вольт рабочего напряжения при минимальном значении в один МОм.

Метод сопротивления времени
Этот метод практически не зависит от температуры и часто может дать вам окончательную информацию без учета прошлых испытаний. Он основан на поглощающем эффекте хорошей изоляции по сравнению с влажной или загрязненной изоляцией. Испытания этим методом иногда называют испытаниями на абсорбцию.

Этот тест имеет ценность еще и потому, что он не зависит от размера оборудования. Увеличение сопротивления чистой и сухой изоляции происходит одинаково, независимо от того, большой или маленький двигатель.Таким образом, вы можете сравнить несколько двигателей и установить стандарты для новых, независимо от их номинальной мощности.

Сопротивление изоляции должно быть выполнено для предотвращения таких опасностей, как поражение электрическим током и короткое замыкание, вызванное тем, что изоляция в электрических устройствах, частях и оборудовании, используемом на промышленных предприятиях, в зданиях и других местах, ухудшается в течение длительного периода использования.

Тестирование кабеля 600-В — журнал IAEI

Время считывания: 13 минут

Существует множество технологий и методов, используемых для проверки изоляции проводов и кабелей, в том числе высоконагруженная заливка, очень низкая частота (VLF), коэффициент мощности, частичный разряд, рефлектометрия во временной области (TDR), и «грудь.«Как и при посещении кабинета врача, каждый тест исследует тестируемый элемент по-разному и ищет разную реакцию со стороны изоляционного материала. Какие тесты и сколько использовать — это разумное решение, которое принимает квалифицированный специалист. В этой статье мы сосредоточимся только на самом основном и фундаментальном тесте — сопротивлении изоляции. Среди профессионалов отрасли до сих пор ведутся споры о ценности тестирования, о том, когда и как часто, какие методы и напряжения использовать и так далее. В литературе можно найти разные мнения и советы.Эта статья основана на признании тестирования как имеющего фундаментальную ценность.

Безусловно, наиболее широко используемый и общий тест, тест сопротивления изоляции дает (сравнительно) высокое напряжение на изоляционном материале, измеряет величину протекающего тока и просто использует закон Ома для преобразования этих двух битов критических данных в сопротивление. По определению, изоляция должна препятствовать прохождению тока так, чтобы он продолжался через схему, как задумано, и нигде больше, например, через землю или через человека.Но никакая изоляция не идеальна и может остановить все тока. Удобный способ представить это — изобразить удар молнии. Воздух — хороший изолятор. Фактически существует электрическое оборудование с воздушной изоляцией. Но когда между облаками и землей возникает достаточный градиент напряжения, возникает ток, протекающий самым драматичным образом! Показание «бесконечность» (∞), знакомое операторам аналоговых тестеров, не означает, что сопротивление изоляции на самом деле «бесконечно».Это просто указывает на то, что это выходит за пределы диапазона измерений тестера, каким бы он ни был.

Мегомметр

Рис. 1. Испытательное напряжение в зависимости от характеристик оборудования

Калькулятор и закон Ома могут легко дать оценку задействованных величин. Когда ток утечки достигает уровня миллиампер, материал начинает больше походить на полупроводник, чем на изолятор. При системном напряжении около 5 мА обычно считается уровнем шока для человеческого тела.Таким образом, требования к изоляционному материалу весьма высоки, и тестеру необходимо обеспечить лишь небольшой ток, прежде чем изоляция перестанет быть действительно изоляцией. Однако, поскольку большинство испытаний проводится на более или менее хорошей изоляции, требуется высокое напряжение, чтобы эффективно использовать состояние материала и обеспечить надежную индикацию. Оставленные незамеченными и неконтролируемыми, эти небольшие пути утечки будут постоянно увеличиваться и, в конечном итоге, вызывать короткое замыкание оборудования.

Рисунок 2.Сравнение тенденций: Аппарат A — высокие показатели, но быстро падают; Аппарат B — нижние показания, удерживая неподвижно

Испытательное напряжение

После производства проводятся испытания постоянного тока для приемки, установки, текущего обслуживания, поиска и устранения неисправностей и ремонта. Выбор испытательного напряжения в значительной степени остается на усмотрение оператора, но отраслевым стандартом является выполнение испытаний «как номинальное» и «дважды номинальное». Для кабеля на 600 В было бы более практично рассматривать выбор «как номинальный» как «примерно номинальный».«Сложные и более дорогие модели могут иметь выбор на 600 В, но у большинства обычных тестеров есть тест на 500 В. Это подойдет. Для дважды оцененных, опять же, можно использовать некоторую практичность. Относительно недорогие портативные тестеры обычно имеют максимум 1 кВ. Опять же, этого должно хватить. Выбор теста 1200 В и выше требует качественного скачка к более дорогим приборам на 5 кВ.

Таблица 1. Состояние изоляции с указанием коэффициентов диэлектрической абсорбции

Испытания в соответствии с номинальными показателями хорошо подходят для текущего обслуживания и ведения записей.Сопротивление кабеля измеряется при напряжении, которое приблизительно соответствует тому, которое он будет испытывать во время работы, и число дает полезную индикацию общего состояния кабеля. Двойной рейтинг полезен для устранения неполадок. Изоляционный материал, который обычно портится из-за воды или старения, будет отражать это состояние практически при любом испытательном напряжении. Таким образом, оценочный тест будет отражать общее загрязнение как значительно более низкое значение, чем в предыдущих тестах или ожиданиях. Но в противном случае хорошая изоляция может иметь локальные участки повреждения, такие как разрыв, вызванный изгибом кабелепровода или точечное отверстие из-за скачка напряжения, идущего на землю.Это первопричины дьявольских перемежающихся неисправностей. Схема работает, а потом нет, а потом работает. Никакие приборы или процедуры не могут безошибочно идентифицировать прерывистые реакции на первом снимке. Их бывает сложно заметить. Но более высокое испытательное напряжение — это один из способов. Например, этого может быть достаточно, чтобы протянуть дугу к трубопроводу. Испытательные напряжения могут быть дополнительно увеличены сверх обычно вдвое номинальных значений, и это может выявить проблемы, которые до сих пор не учитывались. Но этот процесс должен быть сбалансирован с максимальным напряжением, которое может выдержать кабель.Помните, что тестер подает постоянное напряжение, а не всплеск.

Таблица 2. Температурный поправочный коэффициент

Тестовое соединение

Рисунок 3. Защитный кожух 1

Проверка цепи на землю — это быстрый способ измерить общее состояние кабеля. Чем больше нагрузка прикладывается к испытанию, тем ниже будут показания, поскольку будет больше изоляционного материала, пропускающего ток утечки. Если три фазы объединить и проверить на землю, показание будет ниже, чем при тестировании каждой по отдельности.Если показания удовлетворительны, такая проверка экономит время. Если это не удовлетворительно, то можно потратить больше времени на тестирование каждой фазы индивидуально и друг для друга. Чтобы приспособить зажимы испытательных зажимов, фазы могут быть соединены вместе неизолированным проводом, а различные косички и гибкие оболочки могут быть адаптированы для разных размеров. Тест «все-в-одном» — удобный способ получить результаты планового технического обслуживания; в то время как для устранения известной или предполагаемой проблемы предпочтительны более конкретные тесты.Также не забудьте указать длину кабеля. Сопротивление изменяется обратно пропорционально длине и прямо пропорционально. Чем больше материала, тем больше утечка и ниже показание. Можно ожидать, что две схемы из одного и того же провода с одинаковым использованием и возрастом будут достаточно сопоставимы. Если значение будет заметно ниже, это может быть признаком зарождающейся проблемы. Но если он вдвое больше, показания по сути эквивалентны.

Рисунок 4. Защитный кожух 2

Терминал охраны

Дополнительной возможностью многих мегомметров является использование защитного терминала.Это третий терминал, обычно отмеченный буквой «G». Не путайте это с «заземлением», как с защитным заземлением. Это не причинит вреда, но приведет к нарушению цели теста. Охранник действует как шунт. При наличии нескольких параллельных путей утечки он направляет ток по одному или нескольким путям вокруг измерительного модуля, так что измеряется только утечка через неохраняемый путь. Наиболее фундаментальное применение ограждения при испытании кабеля — устранение поверхностной утечки на заделках.Когда мегомметр подключен к оконечной нагрузке, скажем, от проводника к оболочке, ток будет проходить по поверхности от одного аллигатора к другому. Чем грязнее или влажнее поверхность, тем сильнее ток и ниже результат измерения. Однако это может быть не то измерение, которое хочет оператор. Это указывает на что-то о прекращении контакта, и если его очистить и / или высушить, показание может заметно возрасти. Но состояние изоляционного материала зависит от утечки через , а не на , изоляцию.Охранник позволяет считывать только этот параллельный путь. Обернув кабель между двумя испытательными зажимами оголенным проводом, ток, проходящий по поверхности, перехватывается и снимается с измерения. Показание будет расти, и степень повышения будет показателем состояния поверхности на окончании. Однако не следует игнорировать поверхностную утечку. Это также будет способствовать появлению следов прожига, и можно приложить усилия, чтобы минимизировать его. Этот метод можно расширить, чтобы исключить любую параллельную утечку при измерении.Поверхностная утечка может быть устранена с обоих концов кабеля и утечка на другие проводники при измерении сопротивления между любыми двумя проводниками. Сосредоточив испытание на конкретной паре проводов, защита добавляет возможность секционировать кабель простым переключением клемм. Однако не забудьте проверить точность защиты. Тестеры, спроектированные по низкой цене, имеют тенденцию сокращать использование защитного устройства и, как следствие, могут вносить значительные ошибки в показания.

Рисунок 5.Охранник 3

Ход испытаний

Для непосвященного оператора наиболее запутанной частью тестирования изоляции является перемещение аналогового указателя и нестабильность цифровых показаний. Тестеры обычно опираются на верхнюю границу шкалы, поэтому при запуске теста указатель будет резко указывать на нижнюю границу, и цифровые показания будут начинаться с низкого уровня. Затем указатель вернется в исходное положение, в то время как цифры будут продолжать расти. Это потому, что кабель заряжается.Текущий поток на самом деле состоит из трех отдельных элементов. Поскольку проводники соединены параллельно и разделены изоляцией, они действуют как конденсатор и потребляют зарядный ток. В то же время сам изоляционный материал поляризуется на молекулярном уровне под действием поля напряжения. Это составляет движение заряда, следовательно, ток, и называется током поглощения. Емкость заряжается быстро и учитывает начальный острие указателя. Поскольку поглощение происходит в изоляционном материале, плохом проводнике, оно занимает гораздо больше времени и объясняет неуклонный рост аналоговых указателей и цифровых чисел.Итак, когда чтение «правильное»?

Рис. 6. Кривые испытания методом ступенчатого напряжения, сравнение результатов с хорошей и плохой изоляцией

Все показания верны для данного времени испытания. Но оператор ищет состояние изоляции, которое является фактором третьего компонента — утечки. Это то, что остается в потоке после завершения всей зарядки. Почему бы просто не подождать до тех пор? Проблема двоякая: время и признание. Чем больше тестируемый объект, тем больше емкость, больше поглощение и тем больше времени потребуется для полной зарядки.Это может быть , недопустимо, часов, даже часов. Более того, рост сопротивления замедлится, так что он станет похож на часовую стрелку, движущуюся, но не видимую. Следовательно, количество раз, когда был проведен тест, всегда следует включать в отчеты и для повторных или последующих тестов. Тот же самый кабель, проверенный в течение тридцати секунд, может показывать явно меньше, чем шестьдесят секунд, и, если не принимать во внимание, может привести к неправильным выводам. Кроме того, ход стрелки должен быть плавным .Ветеранский персонал часто смотрит только на путешествия. Плавный ход означает равномерную зарядку. Неустойчивый указатель указывает на искрение, испарение влаги или другие проблемы. Цифры в этом отношении не так легко читать, но постоянно растущие числа — это то, что нужно видеть. На дисплее будут обновляться числа в соответствии с частотой дискретизации, и они должны отражать продолжающийся рост. С помощью высококачественных инструментов научитесь искать единицу измерения, а не просто число. Эти модели могут автоматически изменяться от мегомов до гигаомов или даже тераомов (символы МОм, ГОм, ТОм).

Устные переводы

После получения показаний работа сделана? Нет. Прочтение еще нужно интерпретировать, и это может быть самой сложной частью. Это не похоже, скажем, на измерение напряжения. Предположительно 120, но может быть 115 или 123; это НЕ будет 5 мВ или 20 кВ! Но тестирование изоляции охватывает огромный диапазон возможных измерений. Это требует некоторой адаптации в процессе оценки. Наиболее узнаваемым «правилом» является правило одного мегомма, согласно которому на каждый кВ номинального напряжения должен приходиться как минимум один мегом, но никогда не меньше одного (для 120, 240, 480 и т. Д.).). Однако это руководство очень снисходительно и не подразумевает ничего, кроме того, что цепь будет включаться без отключения выключателей, возникновения пожара или поражения электрическим током. Он может не работать в течение приемлемого времени.

Рис. 7. Типовая шкала

Безусловно, наиболее надежным показателем является тот, который выгодно отличается от предыдущего теста. Со временем изоляция ухудшится из-за проникновения коррозионных материалов и влаги, электрических напряжений из-за пусков и сбоев в линии, механических напряжений из-за вибрации и множества других повреждающих воздействий.В конце концов, произойдет поломка и отказ, но это может быть очень долго — или не так долго. Соответственно, показания изоляции действуют как одометр на автомобиле, но в обратном порядке. Они начинаются высоко при установке и со временем смещаются вниз. Или может произойти катастрофический отказ, например, от наводнения, пожара или скачков напряжения, например от ударов молнии. Тестовые показания приблизительно фиксируют, где находится кабель в жизненном цикле, а затем, сравнивая последовательные показания, можно установить продолжительность этого цикла.

Тем не менее, очень высокие показания могут быстро падать из-за воздействия какого-либо повреждающего фактора, например, воздействия чрезмерной влажности. Показание, которое составляет , а не , может быть связано с равномерно распределенной утечкой по всему телу материала, которая может не ухудшаться и может сохранять свое значение в течение многих лет. Но предыдущие результаты часто недоступны. Соответственно, были установлены стандартные процедуры тестирования, которые помогают решать как проблемы времени тестирования, так и интерпретации.Проведение единичного измерения, как описано выше, может называться тестом на точечное считывание. Этот тест имеет ограничение, заключающееся в предоставлении единственного числа, которое необходимо оценить, а также на него сильно влияет температура. Показания изоляции обычно снижаются вдвое при повышении температуры на 10 ° C, поэтому этот эффект весьма заметен. В разных материалах опубликованы поправочные коэффициенты, и показания следует приводить к общей температуре. Как упоминалось ранее, время теста также должно быть стандартизировано.Влажность также может играть роль, но ее нельзя измерить напрямую, и ее следует рассматривать только как возможный фактор аномальных показаний. После внесения этих исправлений остается число, которое является надежным, но все же требует оценки.

Методы испытаний

Автономный тест, который обеспечивает автоматическую оценку, — это давний тест на индекс поляризации (PI). При этом одноминутное чтение делится на последнее чтение десятиминутного теста. Эта процедура решает как проблемы времени, так и интерпретации.Это полезно для длительных пробегов, когда емкость велика и показания могут продолжать расти в течение значительного времени. Если показание за десять минут заметно выше, чем за одну, это указывает на то, что большая часть тока представляет собой зарядный ток, а не утечку, потому что утечка постоянна для данного напряжения (точно так же, как цепь будет пропускать тот же ток, пока напряжение стабильно) и сохранит окончательное значение. Оператор освобождается от цифр и просто смотрит на соотношение; чем выше, тем лучше.Эта концепция распространяется на тест коэффициента диэлектрической абсорбции, который представляет собой просто индекс поляризации, выполняемый в другие интервалы времени. Новые материалы дают более высокие начальные показания (теперь в диапазоне тераомов) и более короткое время поглощения, так что таких соотношений, как одна минута к трем и даже тридцать секунд к одной минуте, может быть достаточно для обеспечения оценки.

Другой стандартизированной процедурой со встроенной интерпретацией является Тест ступенчатого напряжения. Здесь вместо времени манипулируют приложенным напряжением.Промышленный стандарт — увеличивать напряжение с интервалом в одну минуту в течение пяти минут. Но изменение с учетом имеющихся напряжений на конкретном приборе все же может дать ценные результаты. Здоровая изоляция однородна и выдерживает повышение напряжения. Но при ухудшении качества каждое увеличение приведет к утечке через дополнительные дефекты, и показания каждый раз будут заметно падать. Этот тест особенно хорош для выявления локальных повреждений, поскольку при достижении соответствующего напряжения внезапно возникает дуга, похожая на точечное отверстие.В дополнение к этим стандартным тестам, которые обеспечивают собственную интерпретацию, результаты также могут быть оценены по спецификациям производителя (хотя часто их трудно получить), рекомендациям стандартов независимых агентств или по сравнению с аналогичными схемами (но не забудьте учесть длину).

Комната, полная инженеров, может спорить целый день, и тестирование кабеля может быть вредным при неправильном проведении. Но существует надежная информация для описания процедуры и интерпретации.Проведенное соответствующим образом тестирование кабеля является ценным инструментом технического обслуживания электрооборудования.


Безопасность

Несмотря на высокое напряжение, хорошо сконструированные мегомметры не являются смертоносными инструментами. Доступен только небольшой ток, обычно несколько миллиампер. Сила тока ограничена, потому что изоляция будет очень слабой, оставаясь при этом изоляцией. Выше нескольких миллиампер материал больше не изолирует. Ограниченный ток ограничивает «опасность», которую представляют испытатели, делая их предметом для розыгрышей.Эта практика не одобряется всеми уважаемыми производителями.

Но хотя тестер — безопасный инструмент, тест , деталь , может быть смертельным! Для оценки безопасности не забудьте различать тестер и тест. Тестер может быть спроектирован с максимальными функциями безопасности, но нет такого контроля на оборудовании, к которому он может быть подключен. Возможно, наибольшую опасность представляет накопленный на тестируемом объекте заряд. Поскольку мегомметры применяют постоянное напряжение, они будут заряжать емкость и абсорбционную способность испытуемого объекта.Это может вызвать значительный статический заряд, даже смертельный. Особенно опасны предметы с большой намоткой или длинными отрезками кабеля. Поэтому тестируемый элемент (IUT) должен быть эффективно разряжен, прежде чем к нему прикасаться по завершении теста. Много лет назад тестеры поставлялись с выключателем разряда, но современные устройства делают это автоматически. Необходимость задействовать переключатель приводит к человеческой ошибке. По завершении теста цепь резистивного разряда в тестере автоматически сбрасывает статический заряд, а функция вольтметра контролирует его, чтобы оператор знал, когда можно безопасно приближаться к IUT.

В старых моделях было больше человеческого участия. Общепринятое эмпирическое правило заключалось в том, что для завершения разряда требуется примерно в четыре раза больше времени теста. В целях экономии времени этот процесс можно ускорить, применив резистивный разрядный стержень или стержни. Эти устройства представляют собой изолированные полюса с высокой диэлектрической проницаемостью, содержащие цепь резисторов. Зажим заземления прикрепляется к соответствующему заземлению, а металлический крюк на другом конце контактирует с разряжаемым предметом.По истечении допустимого времени выгрузки прикладывается второй крючок, расположенный дальше вниз по рукоятке, для создания короткого замыкания. Его оставляют на месте, пока применяются постоянные заземляющие соединения, поскольку IUT может опасно перезарядиться из-за молекулярной перестройки изоляционного материала. Никогда не пытайтесь разрядить, применяя короткое замыкание. Может возникнуть опасное искрение, а высокочастотная обратная связь может повредить IUT.

Опасность также может возникнуть из-за случайного подключения к действующей системе или из-за подачи питания на IUT во время выполнения теста.У старых тестеров иногда был выбор вольтметра, но опять же, это может быть упущено из-за человеческой ошибки. Современные приборы имеют автоматическое предупреждение о напряжении. Если кто-то замыкает выключатель во время выполнения теста или в линии возникает неисправность, тестер должен немедленно выдать визуальные и звуковые предупреждения, а также может отображаться фактическое измерение напряжения. Испытания изоляции никогда не проводятся на оборудовании под напряжением. [Обязательно соблюдайте стандартные процедуры блокировки / маркировки.] Помимо угрозы оператору, внешнее напряжение под напряжением также может повредить мегомметр. Старые модели регулярно «готовили» нерадивые операторы, которые игнорировали внешнее напряжение и проводили испытания. Хорошо спроектированные устройства теперь имеют схемы блокировки, которые обеспечивают защиту устройства. Для максимальной безопасности эти средства защиты должны работать, несмотря на перегоревшие предохранители.

Наконец, операторы всегда должны знать рейтинги категории IEC61010-1 против вспышки дуги и дугового разряда. Эти характеристики устанавливают способность тестера выдерживать внутреннюю дугу в случае скачка напряжения из-за нарушения или неисправности в проверяемой линии.Тестер должен быть соответствующим образом рассчитан на электрическую среду, в которой он будет использоваться.

Не пропустите тест , область . Никто не должен касаться IUT во время выполнения теста. Должны быть установлены соответствующие барьеры и предупреждения. Остерегайтесь всего, что ведет от зоны, например, кабелепровода, который может каким-то образом стать живым и представлять для прохожих металлическую поверхность под напряжением. Удаленные части системы могут оказаться под напряжением; держите другой конец цепей изолированным и отключите оборудование.Также проверьте измерительные провода, чтобы убедиться, что они в хорошем состоянии. Выводы с высокой утечкой из-за низкого качества или износа могут исказить результаты и также могут представлять угрозу безопасности. Обязательно изучите функции безопасности прибора И установите безопасную процедуру, прежде чем приступить к тесту. Прибор не может защитить от всех возможностей неосторожного или неподготовленного оператора, в то время как наиболее квалифицированный персонал все еще подвергается риску из-за плохо спроектированного тестера.

Важность испытания мощности экранированного кабеля

Ваша система электрических кабелей обеспечивает важные линии связи на протяжении всей вашей работы, а неисправности кабеля могут стоить вашей операции затрат на ремонт и простоев.Правильная сборка экранированного кабеля и тестирование силового кабеля имеют решающее значение для безопасной и надежной системы электроснабжения. Новые экранированные кабели должны демонстрировать свою надежность и выдерживать нагрузку во время использования. Кабели, находящиеся в эксплуатации, необходимо тестировать, чтобы определить оставшийся срок их службы, а также обеспечить постоянную надежность. Сертифицированный специалист NETA применит соответствующие методы тестирования силового кабеля и будет иметь навыки, позволяющие быстро и эффективно определить корректирующие действия.

Методы тестирования силового кабеля

Доказательство того, что новые экранированные кабели готовы к эксплуатации, и измерение оставшегося срока службы старого кабеля, находящегося в эксплуатации, является важным шагом.Действующие стандарты ICEA, IEC и IEEE гласят, что тестирование можно проводить с использованием постоянного тока, переменного тока промышленной частоты или переменного тока очень низкой частоты. Стандарты тестирования силовых кабелей в настоящее время продвигаются к использованию тестирования очень низкой частоты (VLF), поскольку это снижает нагрузку на ваши кабели.

При использовании испытательного комплекта с высоким потенциалом постоянного тока добавленное напряжение и емкость кабеля сокращают срок его службы, поскольку испытание проводится при постоянном положительном напряжении.Однако испытательный комплект VLF работает с частотой 0,1 герц, то есть напряжением гораздо более низкой частоты. Это приводит к гораздо меньшим нагрузкам и уменьшению емкости кабеля, в то же время доказывая, что кабель может выдерживать постоянное напряжение.

Два испытания обычно рекомендуются для испытания силового кабеля для новых установок (приемочные испытания) и для отработанных кабелей (эксплуатационное испытание). Первый — это испытание сопротивления изоляции с использованием испытательного комплекта Megger IR, а второй — испытание на устойчивость с использованием испытательного комплекта Megger VLF. Вы можете найти стандарты тестирования силовых кабелей для всех тестов в IEEE 400.2.

Испытание сопротивления изоляции

Целью испытания сопротивления изоляции является проверка состояния изоляции и определение тенденций в силовых кабелях. Он также проверит, не загрязнена ли изоляция влагой, грязью или карбонизацией.

Тест выполняется с помощью тестового набора Megger IR и сразу же сообщит вам, подходит ли кабель, удерживая полное напряжение, подаваемое тестовым набором. Если кабель не выдерживает полного напряжения, он неисправен и требует дальнейшего исследования.Также рекомендуется проводить испытания с регулярными интервалами, чтобы можно было оценить тенденции ухудшения до того, как значения сопротивления упадут ниже минимально допустимого предела.

Испытание на устойчивость к СНЧ

Цель испытания СНЧ на устойчивость к высокому потенциалу — убедиться, что экранированный кабель может выдерживать переменное напряжение на уровне или выше его номинальной емкости. Испытание проводится с использованием испытательного комплекта Megger VLF и также демонстрирует наличие пробоев между изоляцией, полупроводником и проводником.

Во время процедуры тестирования силового кабеля, если есть хотя бы крошечный зазор в изоляции или если обрезка не соответствует длине, тест приведет к возникновению неисправности в этой области. Выдерживаемое напряжение, прикладываемое при этом испытании, обычно намного превышает рабочее напряжение, и кабель должен выдерживать это напряжение в течение определенного периода без пробоя, чтобы пройти испытание.

Тестирование частичного разряда и тангенса дельты

Испытания

Tan Delta используются для оценки общего состояния экранированного кабеля и его изоляции и часто выполняются вместе с испытаниями сопротивления изоляции и устойчивости во время приемочных испытаний и испытаний при техническом обслуживании.Его можно использовать как для новых, так и для находящихся в эксплуатации кабелей, но чаще всего он применяется для устаревших кабелей во время эксплуатационных испытаний. Поскольку сильно изношенные кабели могут быть обнаружены при напряжениях, равных или ниже нормального рабочего напряжения, сбоев при тестировании можно избежать.

Испытание частичного разряда используется для обнаружения места частичного разряда в изоляции, заделке или стыках экранированного кабеля, а также выполняется в сочетании с испытанием сопротивления изоляции и испытания на устойчивость.Этот тест имеет решающее значение для новых кабелей во время приемочных испытаний, так как он обнаруживает производственные или монтажные ошибки, поэтому их можно исправить до подачи питания. Это также может быть полезно во время технического обслуживания, чтобы дефекты можно было обнаруживать в контролируемой среде, а не во время сбоя в работе.

Правильная сборка кабеля

Правильная сборка экранированного кабеля имеет решающее значение для обеспечения запуска и продолжения работы вашей системы. Сборка завершается перед первым включением оборудования или при установке или сращивании нового кабеля на существующем оборудовании.Производители кабелей предоставят рекомендации по надлежащему сокращению длины оболочки, концентрической нейтрали, изоляции, полупроводников и проводников, и их обязательно следует соблюдать.

Сборка кабеля требует навыков и опыта и должна выполняться осторожно. Если какое-либо сокращение короче, чем рекомендовано производителем для подаваемого напряжения, или если вы слишком глубоко врежете какой-либо из слоев, кабель может выйти из строя, или дополнительное напряжение со временем может привести к внезапному простою.Перед наклеиванием изолентой или добавлением изолированной обмотки необходимо проводить проверку качества всех подготовленных кабелей, так как 42 процента отказов кабеля могут быть связаны с неправильной заделкой и сращиванием.

Обнаружение и отслеживание повреждений кабеля

Независимо от того, обнаружена ли неисправность во время тестирования или ваше оборудование начинает выходить из строя во время работы из-за проблем с кабелем, следующим шагом является обнаружение и отслеживание неисправности на экранированных кабелях. Обнаружение повреждений кабеля — утомительная, но информативная задача. Процесс начинается с определения неисправного кабеля с помощью испытательного комплекта Megger IR или тестирования высокого напряжения.Затем для предварительного обнаружения проблемы используется рефлектометрия во временной области (TDR) или метод отражения дуги (ARM).

ARM обычно используется в сочетании с тестированием на грохоте, при котором в кабель подаются высоковольтные импульсы с высокой энергией при работе с присоединенным радаром. Этот тип тестирования необходим, поскольку большинство кабелей проложено под землей. Радар позволяет технику увидеть полную картину кабеля и показать, где на кабеле находится неисправность. В большинстве случаев неисправность можно определить с помощью акустического устройства, но в более сложных случаях потребуются передовые методы определения местоположения.

Эксперт по тестированию силовых кабелей

Международная ассоциация электрических испытаний (NETA) разработала протоколы обучения и сертификации для технических специалистов, которые оценивают оборудование и системы, чтобы гарантировать, что они будут проводить испытания безопасно и эффективно. Сертифицированные NETA технические специалисты компании Quad Plus имеют подготовку и опыт, чтобы проводить правильные тесты с использованием надлежащего оборудования для тестирования силовых кабелей, интерпретировать собранные данные и давать действенные рекомендации. Мы можем локализовать, изолировать и отследить неисправность кабеля на экранированных кабелях, используя несколько типов испытаний во время приемочных испытаний и испытаний при техническом обслуживании, чтобы поддерживать работу вашего предприятия и избежать дорогостоящих простоев.

Обзор тестирования и диагностики силовых кабелей

В этой статье представлен обзор некоторых широко используемых методов технического обслуживания и диагностики, которые коммерчески доступны для проведения полевых испытаний силовых кабелей среднего и высокого напряжения. Фото: TestGuy.

Полевые испытания кабелей среднего и высокого напряжения могут проводиться по разным причинам, например, приемка после установки, определение постепенного ухудшения изоляции с течением времени, проверка стыков и стыков, а также специальный ремонт.Эта оценка относится как к самому кабелю, так и к связанным с ним аксессуарам (сращиваниям и заделкам), именуемым «кабельной системой».

В соответствии с ICEA, IEC, IEEE и другими согласованными стандартами испытания могут проводиться с использованием постоянного тока, переменного тока промышленной частоты или переменного тока очень низкой частоты. Эти источники могут использоваться для проведения испытаний на стойкость изоляции, базовых диагностических тестов, таких как анализ частичных разрядов, а также для определения коэффициента мощности или коэффициента рассеяния.

В этой статье представлен обзор некоторых широко используемых методов технического обслуживания и диагностики, которые коммерчески доступны для проведения полевых испытаний силовых кабелей среднего и высокого напряжения. Из-за различных доступных методов тестирования кабелей выбор метода тестирования должен производиться только после оценки каждого метода тестирования и тщательной проверки установленной кабельной системы сертифицированным агентством по тестированию и владельцем кабеля.

Соображения безопасности

При испытании кабелей безопасность персонала является наиболее важной.Все испытания кабелей и оборудования должны выполняться только квалифицированными специалистами в изолированных и обесточенных системах, если иное не требуется и не разрешено. Бывают случаи, когда переключатели могут быть подключены к концу кабеля и служить для изоляции кабеля от остальной системы. Соблюдайте особую осторожность после обесточивания силовых кабелей, так как они способны удерживать большие емкостные заряды, используйте соответствующие СИЗ и инструменты для обеспечения электробезопасности, чтобы правильно разрядить кабели до и после испытания.


Типы испытаний кабелей

Полевые диагностические испытания могут проводиться на кабельных системах на различных этапах их эксплуатации. В соответствии со стандартом IEEE 400 испытания кабеля определяются как:

  • Проверка установки: Выполняется после установки кабеля, но перед установкой любых принадлежностей (стыков / сращиваний и концевых заделок). Эти испытания предназначены для обнаружения любых повреждений кабеля при изготовлении, транспортировке и установке.
  • Приемочное испытание: Выполняется после установки всех кабелей и принадлежностей, но до подачи на кабель системного напряжения. Его цель — обнаружение повреждений при транспортировке и установке как в кабеле, так и в кабельных аксессуарах. Также называется «испытанием после укладки».
  • Тест на техническое обслуживание: Выполняется на протяжении всего срока службы кабельной системы. Его цель — оценить состояние и проверить работоспособность кабельной системы, чтобы можно было инициировать соответствующие процедуры обслуживания.

  • Методы испытаний кабелей

    Выбор метода тестирования во многом зависит от возраста и типа установленной кабельной системы. Многие из методов, описанных в этой статье, могут быть выполнены как приемочные или эксплуатационные испытания, в зависимости от таких условий, как приложенное испытательное напряжение или продолжительность испытания.

    Выбор метода тестирования во многом зависит от возраста и типа установленной кабельной системы.

    Целью любого диагностического теста является выявление проблем, которые могут существовать с кабелем — неразрушающим способом — чтобы можно было принять превентивные меры, чтобы избежать потенциального отказа этого кабеля во время эксплуатации.Диагностические оценки могут применяться к кабельным системам, состоящим из самого кабеля и связанных с ним аксессуаров, таких как сращивания и заделки.


    1. Испытание на диэлектрическую стойкость

    Испытание на диэлектрическую стойкость — это базовое испытание на электрическую нагрузку, проводимое для обеспечения достаточного срока службы системы изоляции. Для испытания на стойкость испытываемая изоляция должна выдерживать заданное приложенное напряжение, превышающее рабочее напряжение на изоляции, в течение заданного периода без пробоя изоляции.

    Величина выдерживаемого напряжения обычно намного больше, чем у рабочего напряжения, и время, в течение которого оно применяется, зависит от срока службы и других факторов.

    Испытание на устойчивость к диэлектрику — сравнительно простое испытание. Если к концу испытания не наблюдается никаких признаков повреждения или нарушения изоляции, образец считается пройденным. Однако, если приложенное напряжение приведет к внезапному разрушению изоляционного материала, будет протекать сильный ток утечки, и изоляция будет признана непригодной для эксплуатации, так как может представлять опасность поражения электрическим током.

    1а. Выдерживаемое напряжение диэлектрика постоянного тока (DC)

    При проведении испытания с высоким напряжением постоянного тока напряжение постепенно повышается до заданного значения с постоянной скоростью нарастания, что обеспечивает постоянный ток утечки до тех пор, пока не будет достигнуто окончательное испытательное напряжение. Время от минуты до 90 секунд обычно считается достаточным для достижения конечного испытательного напряжения.

    Последнее испытательное напряжение затем удерживается в течение 5-15 минут, и если ток утечки недостаточно высок для отключения испытательной установки, изоляция считается приемлемой.Этот тип проверки обычно выполняется после монтажа и ремонта кабеля.

    DC Hipot Test измеряет сопротивление изоляции кабелей путем подачи высокого напряжения и измерения тока утечки, а сопротивление рассчитывается по закону Ома. Значения испытательного напряжения для испытаний с высоким напряжением постоянного тока основаны на окончательном заводском испытательном напряжении, которое определяется типом и толщиной изоляции, размером проводов, конструкцией кабеля и применимыми отраслевыми стандартами.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение постоянного тока для силовых кабелей. Фотография: ANSI / NETA

    .

    ANSI / NETA-MTS 2019 Рекомендуемое испытательное напряжение постоянного тока для силовых кабелей. Фотография: ANSI / NETA

    .

    Важно знать, что тестирование высокого напряжения постоянного тока не обеспечивает тщательного анализа состояния кабеля, а вместо этого предоставляет достаточную информацию о том, соответствует ли кабель определенным требованиям по прочности на высоковольтный пробой. Одним из преимуществ высоковольтного испытания на постоянном токе является то, что точки срабатывания по току утечки могут быть установлены на гораздо более низкое значение, чем при испытании напряжением переменного тока.

    В прошлом испытание диэлектрика на стойкость к постоянному току было наиболее широко используемым испытанием при приемке и техническом обслуживании кабелей. Однако недавние исследования отказов кабелей показывают, что испытание на перенапряжение постоянного тока может вызвать большее повреждение изоляции некоторых кабелей, таких как сшитый полиэтилен (XLPE), чем польза, полученная при испытании.

    При проведении профилактических испытаний существующих кабелей в процессе эксплуатации с использованием высокого напряжения постоянного тока необходимо учитывать множество факторов, чтобы правильно выбрать правильное испытательное напряжение диэлектрической прочности.Как правило, самые высокие значения для технического обслуживания не должны превышать 60% окончательного заводского испытательного напряжения, а минимальное испытательное значение должно быть не менее эквивалента постоянного рабочего напряжения переменного тока.

    Примечание: Если кабель нельзя отсоединить от всего подключенного оборудования, испытательное напряжение следует снизить до уровня напряжения подключенного оборудования с наименьшими номиналами.

    1б. Частота сети (50/60 Гц) выдерживаемое напряжение диэлектрика

    Кабели и аксессуары могут также выдерживать испытания с использованием напряжения промышленной частоты, хотя обычно этого не делают, поскольку для этого требуется тяжелое, громоздкое и дорогое испытательное оборудование, которое может быть недоступно в полевых условиях.

    Используемое испытательное оборудование переменного тока должно иметь адекватную вольт-амперную (ВА) емкость для обеспечения требуемых требований к току зарядки проверяемого кабеля. Испытания переменного тока с высоким напряжением могут проводиться только в режиме «годен — не годен» и, следовательно, могут вызвать серьезные повреждения, если тестируемый кабель выйдет из строя.

    Если необходимо провести приемочные испытания и техническое обслуживание кабелей переменного тока, то следует признать, что это испытание не очень практично. Наиболее распространенными полевыми испытаниями, проводимыми на кабелях, являются испытания высокого напряжения постоянного тока или СНЧ вместо испытаний высокого напряжения переменного тока.

    Хотя это может быть не очень практично в полевых условиях, испытание с высоким напряжением переменного тока имеет явное преимущество, заключающееся в том, что изоляция кабеля подвергается нагрузке, сравнимой с нормальным рабочим напряжением. Этот тест повторяет заводское испытание, проведенное на новом кабеле.

    Высоковольтные испытания на переменном токе включают параллельное включение емкостного и резистивного тока, частота источника играет наибольшую роль в величине мощности, необходимой для зарядки емкости испытуемого образца. При выполнении теста переменного тока с высоким напряжением необходимо учитывать соответствие испытательного оборудования для успешной зарядки испытуемого образца.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение переменного тока для силовых кабелей. Фотография: ANSI / NETA

    .

    2. Выдерживаемое напряжение диэлектрика при очень низких частотах (СНЧ)

    Испытание

    VLF можно классифицировать как испытание на устойчивость или диагностическое испытание, то есть его можно проводить как контрольное испытание для приемки или как испытание при техническом обслуживании для оценки состояния кабеля. В отличие от испытания напряжением постоянного тока, очень низкая частота не разрушает хорошую изоляцию и не приводит к преждевременным отказам.

    VLF-тестирование выполняется с помощью высокого напряжения переменного тока с частотой от 0,01 до 1 Гц. Наиболее широко распространенная тестовая частота составляет 0,1 Гц, однако частоты в диапазоне 0,00011 Гц могут быть полезны для диагностики кабельных систем, которые превышают ограничения тестовой системы на 0,1 Гц.

    Процедура тестирования VLF почти идентична процедуре тестирования постоянного тока с высоким напряжением и также проводится как тест «годен — не годен». Если кабель выдерживает приложенное напряжение в течение всего испытания, это считается пройденным.

    Схема подключения для тестирования кабеля VLF. Фото: High Voltage, Inc.

    .

    Правильное испытательное напряжение и продолжительность имеют решающее значение для успеха испытания СНЧ. Если применяемое испытательное напряжение слишком низкое и / или слишком короткое по продолжительности, риск отказа в работе может возрасти после испытания.

    ANSI / NETA-ATS 2017 Рекомендуемое испытательное напряжение СНЧ. Фотография: ANSI / NETA

    .

    ANSI / NETA-MTS 2019 Рекомендуемое испытательное напряжение СНЧ.Фотография: ANSI / NETA

    .

    VLF-тестирование используется не только для тестирования кабелей с твердым диэлектриком, любое приложение, требующее тестирования переменного тока нагрузок с высокой емкостью, может быть протестировано с использованием очень низкой частоты. Основное применение — испытание кабеля с твердым диэлектриком (согласно IEEE 400.2) с последующим испытанием большого вращающегося оборудования (согласно IEEE 433-1974), а иногда и испытания больших изоляторов, разрядников и т. Д.


    3. Напряжение затухающего переменного тока (DAC)

    Тестирование напряжением ЦАП — один из альтернативных методов тестирования напряжения переменного тока, применимый для широкого диапазона кабелей среднего, высокого и сверхвысокого напряжения.Затухающие напряжения переменного тока генерируются путем зарядки тестируемого объекта до заданного уровня напряжения и затем разряда его емкости через подходящую индуктивность.

    На стадии разряда присутствует ЦАП с частотой, зависящей от емкости и индуктивности тестируемого объекта. Емкость тестируемого объекта подвергается воздействию постоянно увеличивающегося напряжения со скоростью, зависящей от емкости тестируемого объекта и номинального тока источника питания.

    Большинство приложений ЦАП основаны на сочетании выдерживаемого напряжения и расширенных диагностических измерений, таких как частичный разряд и коэффициент рассеяния. Тестирование ЦАП — это усовершенствованный инструмент обслуживания, предлагающий больше, чем простое решение «пойти или нет»


    4. Коэффициент мощности / коэффициент рассеяния (тангенциальный треугольник)

    Tan Delta, также называемый испытанием угла потерь или коэффициента рассеяния (DF), представляет собой диагностический метод испытания кабелей для определения качества изоляции.Если изоляция кабеля не имеет дефектов, таких как деревья, влага, воздушные карманы и т. Д., Кабель приближается к свойствам идеального конденсатора.

    В идеальном конденсаторе напряжение и ток сдвинуты по фазе на 90 градусов, а ток через изоляцию является емкостным. Если в изоляции есть загрязнения, сопротивление изоляции уменьшается, что приводит к увеличению резистивного тока через изоляцию.

    Tan Delta / Dissipation Factor Угол.Фото: High Voltage, Inc.

    .

    Кабель становится менее совершенным конденсатором, и фазовый сдвиг будет меньше 90 градусов. Степень, в которой фазовый сдвиг составляет менее 90 градусов, называется «углом потерь», который указывает уровень качества / надежности изоляции.

    Кабели с плохой изоляцией имеют более высокие значения DF, чем обычно, и будут демонстрировать более высокие изменения значений тангенса дельты при изменении уровней приложенного напряжения. Хорошие кабели имеют низкие индивидуальные значения TD и низкие изменения значений тангенса дельты при более высоких уровнях приложенного напряжения.

    На практике в качестве источника напряжения для подачи напряжения на кабель для испытаний по касательной-дельте чаще всего используется высокочастотный высокочастотный переменный ток. Очень низкая частота предпочтительнее 60 Гц по двум причинам:

  1. Повышенная нагрузочная способность в полевых условиях, в которых 60 Гц слишком громоздкие и дорогие, что делает практически невозможным испытание кабеля значительной длины. При типичной частоте СНЧ 0,1 Гц для тестирования того же кабеля требуется в 600 раз меньше энергии по сравнению с 60 Гц.
  2. Величина тангенциального дельта-числа увеличивается с уменьшением частоты, что упрощает измерения.

При выполнении тангенциального треугольника тестируемый кабель должен быть обесточен и каждый конец изолирован. На кабель подается испытательное напряжение, пока прибор для измерения тангенса дельта проводит измерения.

Приложенное испытательное напряжение повышается ступенчато, при этом сначала проводятся измерения до 1Uo или нормального рабочего напряжения между фазой и землей. Если желто-коричневые дельта-числа указывают на хорошую изоляцию кабеля, испытательное напряжение повышается до 1.5 2Uo.

Само испытание может занять менее двадцати минут, в зависимости от настроек прибора и количества используемых различных уровней испытательного напряжения. Для проведения анализа необходимо всего лишь зафиксировать несколько периодов формы волны напряжения и тока.


5. Сопротивление изоляции постоянного тока

Сопротивление изоляции кабеля измеряется мегомметром. Это простой неразрушающий метод определения состояния изоляции кабеля на предмет загрязнения из-за влаги, грязи или карбонизации.

Образец соединений для измерения сопротивления изоляции кабеля и трансформатора с помощью клеммы Guard. Фото: TestGuy.

Измерения сопротивления изоляции следует проводить через регулярные промежутки времени, а протоколы испытаний сохранять для целей сравнения. Продолжающаяся тенденция к снижению указывает на ухудшение изоляции, даже если измеренные значения сопротивления превышают минимально допустимый предел.

Для корректного сравнения показания должны быть скорректированы до базовой температуры (например, 20 ° C).Имейте в виду, что измерения сопротивления изоляции не позволяют определить общую диэлектрическую прочность изоляции кабеля или слабых мест в кабеле.

При испытании кабеля на перенапряжение обычно сначала проводят измерение сопротивления изоляции, а затем проводят испытание на перенапряжение постоянного тока, если достигаются приемлемые показания. После завершения испытания на перенапряжение постоянного тока снова проводится испытание сопротивления изоляции, чтобы убедиться, что кабель не был поврежден высоким потенциалом.

Типичные кривые, демонстрирующие эффект диэлектрической абсорбции при испытании «сопротивление времени», выполненном на емкостном оборудовании, таком как обмотка большого двигателя. Фото: Megger US.

Индекс поляризации — это еще один метод испытания сопротивления изоляции, который оценивает качество изоляции на основе изменения значения МОм с течением времени. После подачи напряжения значение IR считывается в два разных момента: обычно либо 30 и 60 секунд (DAR), либо 60 секунд и 10 минут (PI).

«Хорошая» изоляция со временем показывает постепенно увеличивающееся значение IR. Когда второе показание делится на первое показание, и полученное соотношение называется коэффициентом диэлектрического поглощения (DAR) или индексом поляризации (PI).


6. Частичная разрядка

Частичный разряд — это локальный электрический разряд, который может возникать в пустотах, зазорах и подобных дефектах в кабельных системах среднего и высокого напряжения. Если не устранить должным образом, частичный разряд разрушит изоляцию кабеля, обычно образуя древовидную структуру износа (электрическое дерево), и в конечном итоге приведет к полному выходу из строя и отказу кабеля или аксессуара.

Испытание включает приложение напряжения, способствующего частичному разряду, а затем прямое или косвенное измерение импульсов тока разряда с помощью калиброванных датчиков частичных разрядов. Характеристики частичного разряда зависят от типа, размера и расположения дефектов, типа изоляции, напряжения и температуры кабеля.

Известно, что испытание частичных разрядов обнаруживает небольшие дефекты изоляции, такие как пустоты или пропуски в изоляционном экранирующем слое, однако частичные разряды должны присутствовать для обнаружения любых частичных разрядов.Измерения могут проводиться на недавно установленных и устаревших кабелях, чтобы обнаружить любые повреждения, возникшие во время установки нового кабеля, или ухудшение изоляции кабеля в процессе эксплуатации из-за частичных разрядов.

6а. Online PD (50/60 Гц)

Выполняемое без прерывания обслуживания, онлайн-тестирование частичного разряда — это неразрушающий, неинвазивный инструмент для профилактического обслуживания, который измеряет состояние стареющих кабельных систем на основе измерения частичных разрядов при рабочем напряжении кабеля.

6б. Автономный PD

Offline Partial Discharge Testing предлагает значительное преимущество перед другими технологиями, поскольку позволяет измерять реакцию кабельной системы на определенный уровень нагрузки и прогнозировать ее будущие характеристики, не вызывая неисправностей. Автономное тестирование также известно своей способностью определять точное местоположение дефекта на устаревшем оборудовании, что позволяет управляющему активами точно планировать техническое обслуживание и ремонт.

Проблема автономного тестирования заключается в том, что оборудование необходимо вывести из эксплуатации.Измерения выполняются при более высоком напряжении, чем рабочее напряжение кабеля, чтобы повторно инициировать активность частичных разрядов в обесточенном кабеле, что увеличивает риск отказов во время испытания.

Продолжительность теста должна быть достаточно большой, чтобы позволить электронам инициировать частичные разряды, но после обнаружения частичных разрядов напряжение должно подаваться достаточно долго, чтобы собрать достаточно данных о частичных разрядах.

ANSI / NETA-ATS 2017 Требования к частичной разрядке. Фотография: ANSI / NETA

.

Список литературы

Комментарии

Всего комментариев: 1

Оставить комментарий Войдите или зарегистрируйтесь, чтобы оставить комментарий.

Что такое мультиметр изоляции?

Изоляционный мультиметр Fluke серии 15×7 — это новая категория измерительных приборов, сочетающая в себе полнофункциональный мультиметр True RMS и мегомметр. Это интегрированный инструмент для обслуживания и устранения неисправностей систем двигателей, распределения электроэнергии и производственного оборудования.

Ношение этого нового инструмента позволит вам чаще проверять изоляцию, делая ваши проверки технического обслуживания более тщательными, а устранение неисправностей более эффективным. Это также избавит вас от необходимости возвращаться «в магазин» за тестером изоляции.В этой заметке по применению рассматриваются функции измерения в этом новом классе приборов, включая два примера, которые иллюстрируют, как эти функции работают вместе.

Обзор функций измерения

Более высокая плотность схем и прогресс в проектировании безопасности позволили инженерам объединить несколько приборов без увеличения физических размеров и без ущерба для функций поиска и устранения неисправностей или функций безопасности.

Изоляционные мультиметры серии 15×7 имеют класс безопасности 600 В категории IV и 1000 В категории III.Они предназначены для использования на служебных входах до 600 В и на шинах постоянного тока инвертора ШИМ до 1000 В.

В таблице на следующей странице перечислены все измерения, доступные в мультиметре изоляции, а также некоторые приложения для поиска и устранения неисправностей. .

Устранение неисправностей при измерениях Приложения
Вольт переменного тока
  • Уровень линейного напряжения
  • Несимметрия фазного напряжения
Вольт переменного тока, с нижним проходом
  • «Огибающая» измерение напряжения на выходе привода двигателя ШИМ
Вольт постоянного тока
  • Напряжение батареи
  • Напряжение на источниках постоянного тока, используемых в электронном оборудовании
  • Шины постоянного тока на приводах двигателей и источниках бесперебойного питания
Ампер с токовыми клещами
  • Рабочий ток
  • Несимметрия тока
А, линейный
  • Слаботочные цепи управления, такие как 4-20 мА или системы сигнализации
Ом
  • Сопротивление катушек в контакторах, отн. ays
  • Сопротивление контактов в переключателях, автоматических выключателях
  • Используется для проверки датчиков температуры сопротивления (RTD) или термисторов
  • Проверить тензодатчики
Целостность цепи
  • Проверить целостность проводника
  • Проверить целостность соединения
  • Проверить предохранители
Испытание сопротивления изоляции
  • Проверка на ухудшение изоляции проводника до кабелепровода
  • Проверка на ухудшение изоляции между проводниками, имеющими общий кабелепровод или кабелепровод
  • Проверка на ухудшение изоляции обмотки двигателя на клеевой каркас
  • Проверка изоляции деградация трансформаторов
Температура *
  • Проверить температуру воздуха в системах отопления, вентиляции и кондиционирования воздуха
  • Проверить температуру поверхности корпуса двигателя
  • Проверить температуру поверхности распределительного устройства и кожухов трансформатора
  • 90 013 Подтвердите другие термометры, термостаты или датчики температуры
Частота
  • Проверьте выход генератора
  • Проверьте датчики потока импульсного выхода
  • Проверьте импульсный выход оптических энкодеров
  • Проверьте выходную частоту шестиступенчатого привода двигателя
Частота, с ФНЧ
  • Проверить выходную частоту привода двигателя ШИМ
Емкость

Проверить правильную емкость:

  • Фильтрующие конденсаторы на источниках питания постоянного тока
  • Запуск двигателя и рабочие конденсаторы
Диод
  • Проверить выпрямительные диоды на короткое замыкание и обрыв в источниках питания, приводах электродвигателей и ИБП / светодиодах
Мин. / макс. / средн. запись
  • Проверить переменный ток скачки и провалы сетевого напряжения
  • Использование по току настройка для отслеживания Макс. нагрузка
  • Отслеживание изменений температуры
Другое
  • Давление с соответствующими аксессуарами, такими как PV350

Пример: Машина выключается во время перегрузки

A 230 В поперек — линейный двигатель вращает вентилятор в системе пневмотранспорта.В двигателе используется электромеханический стартер. Ближе к концу квартала, когда завод пытается отгрузить как можно больше, мотор несколько минут ужасно звучит, а затем перегорает предохранитель. Вроде бы случается чаще.

Поскольку тесты без напряжения всегда безопаснее, вы решите провести их в первую очередь. Вы используете надлежащие процедуры блокировки / маркировки, чтобы убедиться, что цепь остается обесточенной во время тестирования.

Вы проверяете изоляцию между фазами и массой.Вы начинаете тестирование со стартера, поскольку это позволит вам проверить проводники, питающие двигатель, а также обмотки. На пускателе вы прикрепляете «-» провод от изоляционного мультиметра к металлическому кабелепроводу с помощью прилагаемого зажима типа «крокодил». Вы устанавливаете контрольный уровень на 500 В и проверяете одну из фаз с помощью щупа «+». Показание составляет 0,8 МОм, что ниже, чем можно было ожидать. Поскольку обмотки двигателя соединены внутри двигателя и представляют собой путь с низким сопротивлением для постоянного тока, все фазные проводники и обмотки подняты до испытательного напряжения.

Значит, у одного из фазных проводов или обмоток двигателя низкое сопротивление изоляции, но какой? Вы отсоединяете двигатель от его распределительной коробки. Вы проверяете сопротивление изоляции между обмотками двигателя и корпусом двигателя (массой). Обмотки имеют сопротивление изоляции в гигомах. Проблема не в моторе.

Вы внимательно смотрите на распределительную коробку двигателя и замечаете некоторое обесцвечивание. Когда двигатель был установлен, кто-то снял слишком много изоляции с провода фазы B.Когда оборудование использовалось интенсивно, проводник соединялся с соединенным кабелем по дуге. Накопление углерода облегчило возникновение короткого замыкания, но также облегчило изоляционному мультиметру поиск проблемы.

Пример: неисправный привод, неисправный двигатель или ни то, ни другое?

Моторный привод с ШИМ используется для привода конвейера материала. Он подключен к системе питания через предохранитель и до недавнего времени работал нормально. Иногда двигатель работает нормально, но часто после работы в течение 15–30 минут перегорает предохранитель, питающий привод в фазе B или C.Кажется случайным, открывается ли B или C. После замены предохранителя и повторного включения привода единственная неисправность, о которой он сообщает, — это потеря питания. В чем проблема и почему это только что появилось? Диск испортился?

Конечно, вы берете с собой мультиметр для измерения изоляции. Опять же, поскольку вы не знаете, почему срабатывает предохранитель, вы решаете сначала проверить обесточенную систему. Вы блокируете и помечаете разъединение.

Маловероятно, что это проблема двигателя, поскольку привод двигателя имеет сложную диагностику, которая постоянно контролирует выходы привода.Если бы проблема была в двигателе, привод, вероятно, вышел бы из строя до того, как сгорел предохранитель. Открытие предохранителя определенно указывает на какое-то состояние перегрузки по току, например, на прерывистое короткое замыкание. Итак, вы начинаете с линейной стороны привода.

Вы начинаете с проверки проводов от разъединителя к приводу. Подавать испытательное напряжение изоляции на вход привода — не лучшая идея, поэтому вы отключите привод от сети. Вы используете мультиметр изоляции, чтобы проверить сопротивление изоляции каждого проводника относительно земли и каждого проводника к двум другим.Показания сопротивления изоляции превышают 1 гигом, так что это не проблема с изоляцией.

Вы хотите исключить входную схему привода. Привод использует на входе диодный выпрямительный мост, и вы используете диодную функцию измерителя для его проверки. Но вы не найдете закороченных или открытых диодов.

Испытание без напряжения исключило короткое замыкание кабеля и короткое замыкание в приводе. Итак, вы повторно подключаете диск, нажимаете кнопки и включаете систему. Привод включается нормально.Убедитесь, что вы носите соответствующие средства индивидуальной защиты, прежде чем открывать любой из корпусов для измерения.

Двигатель запускается отлично, и вы решаете проверить мощность привода. Вы используете функцию напряжения нижних частот для измерения выходной мощности привода. Эта функция изоляционного мультиметра использует фильтр нижних частот для сигнала ШИМ и позволяет измерять напряжение огибающей ШИМ, а не отдельные импульсы. Это позволяет напрямую сравнивать показания привода с дисплеем счетчика.Вы обнаружите, что фазы сбалансированы и соответствуют отображению привода. Вы также можете использовать функцию нижних частот для проверки выходной частоты привода. Выходная частота имеет смысл по сравнению с отображением привода. Кажется, что привод работает нормально.

Далее вы переходите ко входу привода. Вы измеряете линейное напряжение на входе, и фаза A значительно ниже, чем две другие фазы. Затем вы подключаете токовые клещи к мультиметру изоляции и проверяете фазные токи.Вы обнаружите, что токи в фазах B и C слишком велики, а ток в фазе A слишком мал. Оказывается, привод и двигатель в порядке. Что-то нарушило баланс линейного напряжения.

Прослеживая линию, вы обнаруживаете, что кто-то подключил необычную однофазную промышленную печь к фазе А, никому об этом не сообщая. Это вызывало несимметрию напряжения. Привод потреблял больше тока от двух других фаз, чтобы компенсировать разницу, и нужно было следить за тем, какой предохранитель откроется первым.

Духовка была изменена, и с тех пор двигатель работает нормально. Используя мультиметр изоляции, вы смогли быстро диагностировать проблему и проверить целостность систем изоляции в процессе.

Важность сопротивления изоляции в морских электрических системах

Сопротивление изоляции является одним из важнейших показателей систем судового электрического оборудования и служит лучшим ориентиром для определения состояния электрического оборудования.

Как следует из названия, сопротивление изоляции — это способность изоляционного материала противостоять току.Со временем изоляция начинает стареть, что приводит к ухудшению ее характеристик. Суровые условия эксплуатации, в которых электрическая изоляция подвергается воздействию экстремальных рабочих температур, влажности и химического загрязнения, как на корабле, ускорят процесс разрушения. Крайне важно всегда знать это электрическое состояние (IR) изоляции в судовом электрооборудовании, чтобы избежать любых несчастных случаев, таких как поражение электрическим током, пожар, короткое замыкание и т. Д.

Сопротивление изоляции измеряется между изолированными проводниками и землей, а также между проводниками.

Сопротивление изоляции измеряется прибором, известным как мегомметр, который представляет собой измеритель высокого сопротивления с испытательным напряжением около 500 вольт постоянного тока. Megger может быть механического типа с ручным управлением или цифрового типа с батарейным питанием и электронным зарядным устройством.

Испытательный заряд на 500 В подходит для испытательного оборудования, рассчитанного на 440 В переменного тока.

Megger обычно используется для теста «точечного типа» для измерения диэлектрического состояния изоляции в данный момент времени. Испытание выполняется путем приложения испытательного напряжения постоянного тока с ограничением по току между проводниками (например, обмотками) и шасси оборудования (землей). Любую утечку тока следует измерять через диэлектрические материалы изоляции. Ток можно измерить в Миллиамперах или Микроамперах, а затем рассчитать в мегомах сопротивления. Чем ниже значение тока, тем больше сопротивление изоляции.

Оборудование, подлежащее проверке на сопротивление изоляции, должно быть отключено от источника питания под напряжением, а источник питания должен быть заблокирован во избежание несчастных случаев.

На судах сопротивление изоляции всех двигателей, генератора переменного тока и другого электрического оборудования время от времени проверяется, и значения регистрируются как часть системы планового технического обслуживания. Сопротивление изоляции оборудования снижается с повышением температуры. Причины повышения температуры могут быть из-за отложений пыли на обмотках или неправильной вентиляции.Сопротивление проверяется между обмотками U-V, V-W, W-U и между U и землей, V и землей, W и землей.

На судах машины, трансформаторы, приборы и другое оборудование должны иметь, как при температуре окружающей среды, так и при эксплуатации, сопротивление изоляции не менее:

3 x ∙ номинальное напряжение в В = МОм

Мощность в кВА + 1000

Минимальные значения испытательного напряжения и сопротивления изоляции:

Номинальное напряжение Мин.Испытательное напряжение (В) Мин. Сопротивление изоляции (МВт)
VR < 250 2 х VR 1
250 < VR < 1000 500 1
1000 < VR < 7200 1000 VR +1

1000

7200 < VR < 15000 5000 VR +1

1000

Каждая силовая и световая цепь должна иметь сопротивление изоляции между проводниками и между каждым проводом и землей не менее

.

Минимальное сопротивление изоляции

Нагрузка до 5 А 2 M Ом
Нагрузка 10 А 1 M Ом
Нагрузка 25 А 400000 Ом
Нагрузка 50 А 250,000 Ом
Нагрузка 100 А 100000 Ом
Нагрузка 200 А 50,000 Ом
Нагрузка более 200 А 25000 Ом

Цепи внутренней связи должны иметь сопротивление изоляции между проводниками, а также между каждым проводом и землей не менее значений, указанных ниже

.

Диапазон напряжения 115 В и выше — 1 МВт

Диапазон напряжения ниже 115 В — 1/3 МВт

Важные моменты, связанные с сопротивлением изоляции:

Цепи, для правильного функционирования которых требуется поддержание высокого сопротивления изоляции, не должны использоваться, если не приняты специальные меры для поддержания высокого сопротивления изоляции; в таких цепях должны быть предусмотрены средства для проверки сопротивления изоляции.

Главный силовой контур должен быть снабжен устройствами индикации утечки на землю, которые будут срабатывать при сопротивлении изоляции 100 000 Ом или менее.

Сопротивление изоляции всех генераторов должно измеряться как в холодном, так и в теплом состоянии непосредственно перед и после работы при нормальной полной нагрузке.

Когда кабель сращивается для замены поврежденного участка кабеля, перед заменой поврежденного участка измеряется сопротивление изоляции оставшейся части провода, и определяется, что состояние изоляции не нарушено.

Показания записываются, строится график и проверяется тренд сопротивления изоляции. Если показания уменьшаются до значения мегомметра, то обмотки необходимо проверить и очистить, а показания должны быть сняты заново.

Судну предоставляется отдельный журнал испытаний на сопротивление электрической изоляции. Проверки сопротивления изоляции могут быть задокументированы на нем и храниться на борту в качестве постоянного справочного материала для будущих испытаний сопротивления изоляции.

Измеритель изоляции 50/100/250/500/1000 В, мегомметр и мультиметр: сопротивление изоляции от 50 кОм до 2G, среднеквадратичное напряжение и ток постоянного / переменного тока, сопротивление, емкость, частота, температура —

EnnoLogic eM870M — это мегомметр (тестер сопротивления изоляции) и мультиметр, объединенные в один портативный прибор.Тестер изоляции используется для проверки изоляции электрических систем. Он прикладывает высокое напряжение к изоляции и измеряет протекающий ток. Чем лучше изоляция, тем меньше будет протекать ток и тем выше будет сопротивление изоляции. Изоляция со временем может ухудшиться, что может привести к поломке оборудования. Периодические испытания изоляции, выполняемые в рамках регулярного технического обслуживания, могут предотвратить это.

eM870M позволяет выбирать из пяти различных испытательных напряжений в диапазоне от 50 В до 1000 В.Используйте его для проверки изоляции и устранения неисправностей двигателей, обмоток трансформаторов, реле, переключателей, автоматических выключателей, электроустановок и приборов. Тестеры изоляции используются для проверки накопления влаги в кабелях и проводке, что может привести к отказу оборудования.

В комплект поставки входит один мультиметр для изоляции eM870M, две пары измерительных проводов (одна для крепления зажимов типа «крокодил»), два зажима типа «крокодил», один зонд для термопары, шесть батареек AAA, чехол для переноски и подробное руководство пользователя (на английском языке).

Технические характеристики

-DC Напряжение: 0,1 мВ ~ 1000 В, ± (0,1% + 2 цифры) -Напряжение переменного тока: 0,1 мВ ~ 1000 В, ± (0,8% + 4 разряда) -Ток постоянного тока: 0,1 мкА ~ 500 мА, ± ( 0,2% + 2 разряда) -Ток переменного тока: 0,1 мкА ~ 500 мА, ± (0,8% + 4 разряда) -Сопротивление: 0,1 Ом ~ 50 МОм, ± (0,3% + 5 разрядов) -Емкость: 0,1 нФ ~ 1000 мкФ, ± (2% + 4 разряда) ) — Линейная частота / рабочий цикл: 5 Гц ~ 200 кГц, ± (4 цифры) — Логическая частота (Vp 2..5 В): 5 Гц ~ 2 МГц, ± (4 цифры) — Изоляция: Диапазон: 50 кОм ~ 2 ГОм, испытательные напряжения: 50,100,250,500,1000 В , Точность: ± (1.5..3% + 5 цифр) -Тестирование диодов и целостность -Питание: 6x 1,5 В AAA (в комплекте). Авто-выключение. -Размер: 7,8 дюйма x 3,9 дюйма x 1,6 дюйма -Вес: 560 г / 19,7 унции, вкл. Аккумуляторы

.

Добавить комментарий

Ваш адрес email не будет опубликован.