Проверка сопротивления контура заземления – Проверка контура заземления: замер сопротивления контура

Содержание

Проверка контура заземления: замер сопротивления контура

Содержание:
  1. Для чего измеряется сопротивление
  2. Как измерить сопротивление контура заземления
  3. Замер сопротивление изоляции

Заземление представляет собой соединение электрических приборов с землей. С его помощью обеспечивается защита от поражающего действия тока при неисправностях или повреждениях электрооборудования. Для заземлителя используются обыкновенные металлические стержни или специальные комплексы, включающие в свой состав сложные элементы. Перед вводом в эксплуатацию всей системы, происходит проверка контура заземления, где в первую очередь замеряется его сопротивление. Таким образом, удается выяснить способность заземляющего контура выполнять свою основную защитную функцию.

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора. Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения. Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие  удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты. Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами. Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

electric-220.ru

Как проверить заземление: наличие, измерение сопротивления

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Видео по теме

profazu.ru

Как замерить сопротивление заземления мультиметром

То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

Перед использованием необходимо проверить контур на заземляющее сопротивление.

О том, что такое заземление – на следующем видео:

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Проверка заземления розеток

Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

  • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
  • На приборе установите режим измерения напряжения.

  • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
  • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

  • патрон;
  • лампочка;
  • провода;
  • концевики.

Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее. Слабое свечение станет свидетельством плохого состояния контура.

Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.

Наглядно этот способ показан на видео:

О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:

  • бьётся током стиральная машина или водонагревательный бойлер;
  • слышится шум в колонках, когда работает музыкальный центр.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжениемДля источников с трёхфазным напряжениемВеличина сопротивления заземления
127 В220 В8 Ом
220 В380 В4 Ом
380 В660 В2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

yaelectrik.ru

Как проверить заземление самостоятельно

Содержание:

  1. Общие сведения о заземлении
  2. Для чего проверяется заземление
  3. Приборы для проверки заземления
  4. Методика проверки заземления
  5. Проверка заземления в розетках

Практически все современные бытовые приборы подключаются через вилки, на которых присутствует маркировка заземления. Это означает, что домашние розетки должны быть оборудованы заземляющими контактами, в противном случае существует реальная опасность выхода из строя подключаемых устройств. При устройстве новой или полной замене старой электропроводки хозяин жилья может проследить за прокладкой заземляющего проводника.

Проблемы возникают с готовыми линиями, особенно с теми, которые проложены в старых зданиях. Чтобы полностью обезопасить себя и всю электронную технику, приходится решать задачу, как проверить заземление. Прежде всего, проверяется его наличие или отсутствие, техническое состояние и готовность осуществлять свое целевое назначение.

Общие сведения о заземлении

При оборудовании системы заземления нетоковедущие металлические части электроустановок соединяются с грунтом. В обычном состоянии они не попадают под действие напряжения, но вследствие разных причин могут превратиться в проводники электротока. В большинстве случаев основной причиной такого состояния является нарушенная изоляция.

Когда фаза будет замкнута на корпусе, в нем появится определенный потенциал, соотносящийся с землей. В случае касания металлических деталей человеком, опирающимся на землю или бетонный пол, наступит мгновенное поражение электротоком.

Защитное устройство заземления оборудования перераспределяет ток, возникающий между человеком и заземляющим контуром в обратной пропорции с их собственными сопротивлениями. Как правило, этот показатель у человеческого тела во много раз выше, чем у защитного устройства. Таким образом, через тело пойдет ток не выше 10 мА. Эта величина на превышает предельно допустимого значения и не опасна для жизни и здоровья. Одновременно большая часть потенциала через контур с минимальным сопротивлением пройдет в грунт.

Заземлительное устройство состоит из двух основных частей. В первую очередь, это заземлитель, состоящий из проводящих элементов, соединенных друг с другом и контактирующих с землей. Другой деталью является заземляющий проводник, необходимый для соединения контура с точкой заземления в доме.

Заземлители могут быть естественными и искусственными. К первой категории относятся уже имеющиеся конструкции, проводящие ток и надежно связанные с землей. Детали для второго варианта изготавливаются из металлических труб, уголков, стержней и других профильных материалов. Соединение заземлителей между собой осуществляется с помощью стальных полос или проволоки, закрепляемых болтами или сваркой. В качестве заземляющих проводников служат специальные кабели с определенным сечением, а также медные или стальные шины.

Для чего проверяется заземление

Проверка состояния заземления является важным мероприятием, направленным на защиту людей от действия электрического тока. Для решения задачи, как проверить заземление в частном доме используется специальное оборудование. Полученные результаты дают возможность установить, в каком состоянии находится заземление, соответствует ли установленным нормам и способно ли выполнять свои функции. Обычно такие измерения проводятся квалифицированными специалистами из организации, обслуживающей домашнюю сеть.

Периодические проверки заземления должны обязательно проводиться, несмотря на то что вся электрика в доме монтировалась профессиональными электротехниками. Нередки случаи, когда неправильное соединение контура вызывает его преждевременный износ. В связи с этим рекомендуется в установленные сроки делать измерение и проверять, в каком состоянии находится грунт и размещенные в нем электроды, а также заземляющие проводники, шины и элементы металлосвязей.

Данная процедура, определяющая, есть ли заземление, проводится в жилых домах не реже 1 раза в 3 года, а на объектах промышленного производства – ежегодно.

В процессе замеров тестером определяется сопротивление контура, значение которого должно соответствовать установленным нормам. Если показатели получились выше нормативных, их можно снизить. Для этого нужно просто увеличить площадь взаимодействия путем добавления электродов или поднимается величина общей проводимости грунта, с помощью увеличения концентрации солей, содержащихся в почве.

Следует учитывать, что устройство обычного заземления может лишь понизить напряжение, поступающее на корпус оборудования. Сделать защиту более надежной поможет устройство защитного отключения – УЗО, устанавливаемое в одной связке с заземлением. Любые защитные средства проектируются и выбираются индивидуально, в соответствии с условиями эксплуатации. Выбор осуществляется с учетом влажности, структуры грунта и других факторов.

Необходимо помнить и о том, что многие виды современных электрических устройств оборудованы встроенным УЗО, срабатывающим лишь при включении в розетку, имеющую заземление. Поэтому их нормальная работа полностью зависит от правильного подключения защиты и дальнейших проверок ее работоспособности.

Приборы для проверки заземления

Современный рынок измерительных приборов представлен самыми разнообразными моделями, в том числе и для замеров сопротивления в системах заземления.

Существует несколько видов таких устройств, широко используемых профессиональными электриками:

  • Стрелочные приборы с малогабаритными генераторами, применяемыми в качестве автономных источников питания. Для получения тока их приходится вращать вручную.
  • Такие же стрелочные приборы, питающиеся автономно от гальванических батарей.
  • Цифровые устройства. Каждое измерение выводится на жидкокристаллический дисплей, для питания используются батарейки. В комплект входят бесконтактные измерительные клещи.

Каждый вид представлен разнообразными модификациями, каждая из которых может использована для конкретных условий. В качестве примера рекомендуется рассмотреть измерительный прибор М-416, широко применяемый профессиональными электриками.

Это устройство стрелочного типа старого образца, надежное и простое в работе. С его помощью удается определить и получить довольно точные результаты измерений, позволяющие достоверно оценивать состояние заземления. Основой конструкции является стрелочный омметр, в котором установлено несколько пределов измерений.

Схема подключения для проведения измерений нанесена на внутреннюю сторону под крышкой прибора. С помощью этого устройства можно получить точные данные не только о сопротивлении контура, но и почвы, в которой он размещен. Поверка прибора М-416 выполняется ежегодно.

Методика проверки заземления

Если визуальным осмотром не выявлено каких-либо видимых нарушений, следующим этапом проверки становятся замеры сопротивления, чтобы проверить контур заземления. Порядок выполнения замеров будет рассмотрен на распространенном устройстве М-416:

  • Проверка наличия источников питания. При необходимости устанавливаются три батарейки по 1,5В.
  • Оборудование устанавливается на плоскую поверхность точно в горизонтальное положение.
  • Выполнение калибровки. Диапазонный переключатель устанавливается на позицию «Контроль 5Ω». После нажатия кнопки красного цвета, вращением ручки реохорда стрелка устанавливается в нулевое положение. Шкала прибора должна показывать 5±0,3 Ом. Это указывает на исправность устройства и его готовность к работе.
  • Измеритель нужно разместить максимально близко к заземлителю. За счет этого соединительные провода становятся короче, и их сопротивление уже не так сильно влияет на общие показатели.
  • Далее проводятся непосредственные замеры по схемам подключения, указанным под крышкой. Основной и дополнительный электроды забиваются в плотный грунт. Минимальная глубина составляет 50 см. Точка, в которой провода соединяются с заземлителем, очищается от краски. Если знаете, что сопротивление заземлителя меньше 10 Ом, результат умножается на 1, а переключатель находится в положении х1. Если же результаты замеров превышают 10 Ом, переключатель нужно установить на х5, х20 или х100.

Проверка заземления в розетках

Проверка наличия или отсутствия заземления особенно актуальна для розеток, установленных в старых квартирах. Да и в новом жилье работоспособность заземляющих систем нередко вызывает сомнения.

Перед тем как проверить заземление, требуется определить положение фазного и нулевого проводов. Если традиционные цвета изоляции не совпадают с фактическими, тогда узнать провода можно при помощи индикаторной отвертки. Необходимо вначале коснуться ее концом одной клеммы, а затем – другой. Когда индикатор загорается – значит в этой клемме фаза, если он не горит – это ноль. Провод заземления не подключается к основным клеммам и окрашивается в желто-зеленый цвет.

Проверка мультиметром

В первом варианте проверка заземления осуществляется с использованием мультиметра. Это необходимо, даже если все цвета совпадают по нормативам. Мультиметр должен быть включен в режим проверки напряжения. Вначале оба щупа устанавливаются на фазу и ноль и замеряется напряжение. Далее нулевой щуп переставляется на заземляющий проводник РЕ.

Если при измерении заземления мультиметром он покажет величину равную или немного меньшую предыдущего значения, следовательно заземление находится в рабочем состоянии. Если на экране высвечивается ноль или нет никаких цифр, значит в системе есть обрыв и она не работает.

Проверка контрольной лампочкой

Проверка контура заземления с использованием контрольной лампочки, успешно заменяет тестер. Для изготовления простейшей контрольки потребуется сама лампочка, патрон к ней, медный провод в изоляции, разделенный на две части и два щупа.

Все элементы соединяются между собой. Все контакты должны быть заизолированы. После этого лампочка вкручивается в патрон.

Схема испытания такая же, как и у мультиметра. Оба щупа устанавливаются в розетку на фазу и ноль. Если все нормально – лампочка загорается. Далее щуп от нуля переставляется на заземляющий контакт. Если лампочка вновь загорелась, значит контур заземления находится в исправном состоянии. Если же она не горит, следовательно где-то обрыв или в щитке неправильно выполнено подключение заземляющего провода.

electric-220.ru

Как измерить сопротивление заземления

Содержание:

  1. Как работают заземляющие системы
  2. Для чего нужны проверки заземления
  3. Правила проведения замеров сопротивления
  4. Измерения амперметром и вольтметром
  5. Как проверить заземление в домашних розетках

Защитное заземление существенно повышает безопасность людей, проживающих в квартире или частном доме, а также работников предприятий, связанных с электроустановками и оборудованием. Данные системы разрабатываются и создаются квалифицированными специалистами, а в определенных условиях могут быть устроены и собственными силами. Каждая конструкция должна соответствовать определенным требованиям, в зависимости от предназначения и условий эксплуатации.

Чаще всего приходится решать задачу, как измерить сопротивление заземления, поскольку от этого параметра во многом зависит работоспособность всей системы. Его величина не должна превышать установленного максимального предела, определяемого Правилами устройства электроустановок, в противном случае защита не сможет в полной мере выполнять свои функции.

Как работают заземляющие системы

Действие защитных заземляющих систем основано на свойстве электрического тока, в соответствии с которым он стремится течь по проводникам, обладающим минимальным сопротивлением. Человеческое тело относится к категории хороших проводников, его сопротивление условно считается 1000 Ом. Следовательно, для того чтобы ток уходил в сторону заземления, его сопротивление должно быть намного меньше, чем у человека. В соответствии с ПУЭ данное значение не превышает 4 Ом.

В случае неисправности какого-либо электрического прибора, например, из-за пробоя изоляции, на его корпус попадает ток, то есть, в этом месте появляется потенциал. В случае касания рукой этой части, ток пойдет в землю по направлению от руки-через тело-в сторону ноги. В таких случаях человек подвергается смертельной опасности, поскольку даже 100 мА могут привести к необратимым процессам. Установка защитного заземления, измеряемого в дальнейшем, дает возможность максимально снизить вероятность негативных последствий.

Каждый современный электрический прибор оборудуется внутренним заземлением, когда отдельный контакт вилки соединяется с корпусом. При включении такого прибора в розетку, получается соединение с общей системой заземления. В случае какого-то нарушения или повреждения, ток утечки буде уходить в землю через заземляющий провод с небольшим сопротивлением. Поэтому замеры сопротивления имеют большое значение, позволяя контролировать его величину и не допускать выхода за пределы установленных значений.

Для чего нужны проверки заземления

Для того чтобы заземление в полной мере выполняло свои функции, необходимо поддерживать исправность заземляющего контура. С этой целью выполняются периодические замеры сопротивления мультиметром, по результатам которых определяется состояние всей системы.

Если контур находится в исправном состоянии, то при возникновении аварийной ситуации ток по заземляющему проводнику будет уходить к токоотводящим электродам. Поскольку они контактируют с грунтом всей своей поверхностью, все проходящие токи быстро и равномерно уйдут в землю.

Однако, продолжительное нахождение в грунте и постоянный контакт с землей приводит к образованию на металлических поверхностях окисной пленки, постепенно переходящей в коррозию. В результате, создаются препятствия нормальному прохождению тока, сопротивление элементов конструкции возрастает. На некоторых участках ржавчина становится более ярко выраженной, в связи с наличием в этих местах химически активных веществ, постоянно контактирующих с металлом. Поэтому начинать проверку следует с определения технического состояния элементов системы.

Постепенно коррозия превращается в отдельные чешуйки, которые начинают отслаиваться от металла и препятствовать в этом месте электрическому контакту. В дальнейшем количество таких мест возрастает, вызывая увеличение сопротивления всего контура. В заземляющем устройстве наступает потеря электрической проводимости, и оно уже не в полной мере отводит в землю опасные токи. Таким образом, снижаются общие защитные свойства системы.

Установить реальное состояние контура возможно только с помощью замера сопротивления. Техническая сторона этого процесса основывается на законе Ома для участка цепи. Данная процедура проводится с помощью источника напряжения с заранее известным точным значением. После того как будет измерена сила тока, можно легко определить сопротивление. На практике все не так просто, как в теории, поскольку существуют определенные методики и правила замеров, которые требуют точного соблюдения.

Общие правила проведения замеров сопротивления

Стандартная проверка заземления включает в себя следующие методы:

  • Визуально проверяются болтовые и сварные соединения.
  • Проводятся замеры сопротивления контура заземления мультиметром.
  • Проверяется удельное сопротивление грунта.

Все измерения выполняются с помощью специальных приборов. Рекомендуется пользоваться мегомметрами, которые больше всего подходят для этих целей. Существует специальный прибор М-416 переносного типа, работающий на основе компенсационного метода с использованием потенциального электрода и вспомогательного заземлителя. Нижний и верхний пределы измерений составляют 0,1-1000 Ом, температурный диапазон – от минус 25 до плюс 600С. Питание прибора осуществляется тремя батарейками по 1,5В.

Измерение сопротивления заземления осуществляется в следующем порядке:

  • Прибор нужно установить на ровную горизонтальную поверхность и откалибровать. С этой целью в режиме контроля нажимается красная кнопка, затем она удерживается, а стрелка устанавливается в нулевое положение. Измерительное устройство нужно расположить максимально близко к заземлителю, поскольку соединительные провода сами обладают некоторым сопротивлением.
  • Перед тем как проверить сопротивление, выбирается требуемая схема подключения. Она может быть трех- или четырехзажимной, обозначенной на крышке прибора.
  • В землю забивается стержень зонда и вспомогательный электрод на глубину не ниже 50 см. Грунт должен иметь естественную плотность и не быть насыпным, а удары наносятся кувалдой точными прямыми ударами.
  • Место подключения заземляющего проводника к электроду зачищается от старой краски. Сечение медных проводов составляет 1,5 мм2.
  • Непосредственное измерение защитных устройств начинается с выбора диапазона х1. После нажатия на красную кнопку нужно вращать ручку, чтобы установить стрелку на нулевое значение. Большие значения сопротивлений измеряются в соответствующих диапазонах х5 или х20. Для замеров заземления вполне достаточно диапазона х1, который и выдаст требуемое сопротивление на шкале прибора. Измерения должны выполняться при определенной погоде с максимальной плотностью грунта.

Аналогичные замеры проводятся и в зимнее время при сильных морозах при сильно замороженном грунте. Не рекомендуется измерять сопротивление при влажной погоде, поскольку полученные данные будут сильно искажаться.

Измерения амперметром и вольтметром

Во время проведения замеров оценивается контактная поверхность контура, поскольку именно она плотно соприкасается с землей. Для того что бы измерить заземление, на расстоянии примерно 20 м от защитного устройства в грунт забиваются основной и дополнительный электроды. Затем к ним подается переменный ток со стабильными показателями. В результате, образуется электрическая цепь, состоящая из источника напряжения, проводов и электродов, по которой будет протекать ток. Его величина измеряется амперметром, а не мультиметром.

Поверхность заземляющего контура и контакт основного электрода перед тем, как их померить тщательно очищаются от металла, после чего к ним подключается вольтметр и на этом участке измеряется падение напряжения. Полученное значение следует разделить на силу тока, измеренную амперметром, в результате получится сопротивление на данном участке цепи. Если требуются неточные грубые замеры заземлителей, можно вполне ограничиться этими полученными данными.

Более точные результаты получаются путем корректировки, когда из полученного значения отнимается сопротивление соединительных проводов. Одновременно учитываются диэлектрические свойства грунта и их воздействие на токи растекания внутри почвенной структуры.

Более качественно замерить сопротивление заземления могут только квалифицированные специалисты, использующие современную усовершенствованную технологию. При их выполнении применяются промышленные высокоточные метрологические приборы, а также основной и вспомогательный электроды, помещаемые в почву, как и при замерах предыдущим способом.

Они устанавливаются на одной линии, с интервалом от 10 до 20 метров, охватывая измеряемый заземляющий контур. Шина контура соединяется с измерительным зондом максимально короткими проводниками. Сам прибор для измерения через клеммы соединяется с основным и дополнительным электродами, находящимися в земле.

Подача переменной ЭДС осуществляется через вспомогательный электрод, находящийся в грунте. В эту же цепочку входит сама земля, соединительные проводники и первичная обмотка трансформатора тока, обозначенного на рисунке символами ТТ. В результате, на вторичной обмотке трансформатора возникает ток I1. С помощью специального реостата – реохорда выставляются равные напряжения, то есть, U1 = U2. Подобное равенство достигается за счет установки нулевого значения показаний измерительного устройства V, соединенного с реохордом через измерительный трансформатор ИТ.

Для расчетов сопротивления заземления RЗ применяется система уравнений, состоящая из следующих компонентов: U1 = I1 х Rз; U2 = I2 х Rаб; U1 = U2; I1 = I2. Если решить эту систему, то получится, что сопротивление заземления будет равно заземлению участка аб: Rз = Rаб. Величина Rаб определяется стрелкой, которая подвижной частью ручки устанавливается на неподвижной шкале. После этого можно легко найти сопротивление заземления.

Как проверить заземление в домашних розетках

После покупки жилья нередко оказывается, что все электромонтажные работы уже выполнены, и возникает проблема проверки заземления в розетках. Начинать проверку до измерения сопротивления заземления рекомендуется с визуального осмотра. Нужно обесточить квартиру и разобрать любую из розеток. Она должна быть оборудована необходимой клеммой с подключением заземлительного проводника желто-зеленого цвета. Если же в наличии только два провода коричневого и синего цвета (фаза и ноль), это значит, что заземление отсутствует.

Однако присутствие третьего проводника еще не означает, что заземление исправно и может полностью выполнять свои функции. Поэтому следует выполнить специальную проверку мультиметром. Все действия производятся в следующем порядке:

  • Вводный автомат нужно включить, чтобы в розетках было напряжение.
  • Тестер устанавливается в режим напряжения.
  • Касаетесь щупами фазного и нулевого замеренных контактов и измеряете напряжение между ними. Если все в порядке, на табло высвечивается 220В.
  • Точно такие же действия выполняются мультиметром относительно фазного и заземляющего контактов. Показатель напряжения будет немного отличаться, но его наличие уже свидетельствует о том, что заземление есть. Когда на экране прибора цифры отсутствуют, это значит, что контура заземления нет вообще или он неисправен.

При отсутствии измерительных приборов, проверку можно выполнить подручными средствами. Самодельный тестер состоит из патрона с лампочкой, проводов и концевиков со щупами. По сути, это обычная контролька, которую используют многие электрики.

Одним щупом нужно коснуться фазного, а другим – нулевого провода. При этом лампочка загорается. Далее щуп, прикасавшийся к нулю, нужно переместить на выступающий контакт заземления. Если лампочка вновь загорится, следовательно, защитная система находится в рабочем состоянии. Слабый свет указывает на плохое состояние контура, а отсутствие свечения – на его неисправность.

electric-220.ru

Измерение сопротивления заземления: методики и периодичность

Измерение сопротивления заземления нужно выполнять, чтобы удостовериться, что оно совпадает с требованием ПУЭ (правила устройства электроустановок) гл. 1.8., а также ПТЭЭП пр. 3,3.1. Замеры, которые проводятся в электроустановке с глухо заземленной нейтралью (напряжение которых составляет ниже 1000В) должны соответствовать следующим нормам. Неважно, зимой или летом, значение не должно превышать отметку 8, 4 и 2 Ом при напряжении 220, 380, 660 В (для источников с трехфазным током) соответственно, или 127, 220 и 380 В для источников с однофазным током. Для электроустановок, где используется изолированная нейтраль (напряжение ниже 1000В) сопротивление заземляющего контура должно соответствовать п 1.7.104 ПУЭ и рассчитывается по формуле Rз * Iз < 50 В. Ниже мы рассмотрим основные методики замеров контура, а также приборы, которые можно для этого использовать.

Обзор методик

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным). Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю. Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления. Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором. Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.

Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

  • МС-08;
  • М-416;
  • ИСЗ-2016;
  • Ф4103-М1.

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность. Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.


Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

Какая периодичность измерений?

Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет. Получается, что, когда производить замеры заземления – решать вам. Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления. Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию. По окончании работы вам будет выдан протокол измерения сопротивления заземления. В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

Также рекомендуем прочитать:

samelectrik.ru

Измерение сопротивления заземления: методы измерения сопротивления заземления — ООО «ПрофЭнергия»

Контур заземления – важный элемент защитного электрооборудования. Он соединяется с системой выравнивания потенциалов строительного объекта и всеми корпусами электроприборов, оберегая людей от получения электротравмы при соприкосновении с токопроводящей цепью. Для соблюдения требований безопасности нужно периодически проверять состояние и эффективность заземляющих устройств.

Как работает заземление

Заземление обеспечивает уменьшение напряжения между электроустановкой и землей до безопасного уровня. При нормальной работе электрооборудования и цепей через контур проходят только малые фоновые токи. При пробое изоляционного слоя проводки на корпусе оборудования возникает высокое напряжение. Оно отводится через контур по РЕ-проводнику на потенциал земли. В итоге напряжение на нетоковедущих поверхностях оборудования уменьшается до безопасного значения.


При повреждении заземляющих устройств напряжение не отводится. Если при этом человек окажется между потенциалами неисправного электроприбора и землей, через его тело будет проходить ток. Поэтому во избежание электротравм при эксплуатации электрического оборудования важно поддерживать эффективность заземления и периодически проверять его состояние.

Причины проблем с заземлением

В нормально работающем контуре ток в аварийной ситуации по РЕ-проводнику идет на контактирующие с грунтом токоотводящие электроды. Общий поток равномерно делится на составляющие и следует на потенциал земли. Но продолжительное пребывание тоководов в агрессивной среде грунта приводит к окислению металла и появлению на его поверхности окисной пленки.


Из-за коррозийных явлений ухудшается протекание тока, и увеличивается электрическое сопротивление контактов. Коррозия в виде отстающих от металлической поверхности чешуек нарушает локальный электрический контакт. При дальнейшем коррозийном повреждении тоководов сопротивление контура возрастает, заземляющее устройство становится менее проводимым и не справляется со своими задачами. Для выяснения состояния контура заземления выполняются замеры сопротивления заземляющих устройств.

Цель замеров сопротивления ЗУ

Качество заземления характеризуется величиной сопротивления протеканию тока. Чем ниже это значение, тем лучше справляются со своими задачами заземляющие устройства. Основные способы уменьшения сопротивления – увеличение площади заземляющих электродов и уменьшение удельного электрического сопротивления почвы.
Чтобы снизить сопротивление, можно увеличить число или глубину заземляющих электродов. Измерение сопротивления заземляющих устройств помогает минимизировать риск аварий, поломки электроустановок и нанесения урона здоровью или жизни людей.

Типы заземляющих устройств

Есть 3 вида заземления:
— Рабочее – определенные точки электрической цепи соединены с землей. Этот тип заземления осуществляется при помощи прибивных предохранителей, резисторов и других элементов. Оно необходимо для безопасного функционирования в нормальных и аварийных рабочих условиях.
— Заземление молниезащиты – молниеприемники и разрядники соединяются с землей, чтобы токи молнии отводились в землю без ущерба для электроустановки и находящихся рядом людей.
— Защитное заземление – металлические части, по которым не проходит ток, но есть риск оказаться под напряжением в случае замыкания на корпус. Для обеспечения безопасности соединяются с землей.

Нормальные величины для сопротивления заземляющих устройств

Согласно Правилам устройства электроустановок, оптимальная периодичность измерений сопротивления заземления – не реже, чем единожды в год. При этом первая проверка осуществляется сразу после монтажных работ, чтобы удостовериться, что схема заземлена правильно.

Норматив величины сопротивления заземления зависит от напряжения источника в цепи.

Трехфазный ток в источнике с напряжением:

Однофазный ток в источнике с напряжением:

Норма сопротивления заземления

660 В

380 В

Не превышает 2 Ом

380 В

220 В

Не превышает 4 Ом

220 В

127 В

Не превышает 6 Ом

 

Как измеряют сопротивление заземления

Методика измерения сопротивления заземляющих устройств основывается на разных теоретических базах:

  • по формуле Дуайта (вычисляет сопротивление заземления в зависимости от радиуса электрода, глубины его погружения в землю и среднего удельного сопротивления грунта)
  • по принципу падения потенциала
  • по стандартному 3-проводному методу (другое название — метод 62%)
  • по двухточечному методу (с последовательно включенными двумя устройствами заземления — методика, отлично подходящая для городских условий)
  • по методу двух клещей (когда передающие клещи провоцируют ток в контуре, а дополнительные — снимают его величину)
  • по методу Веннера (выявляет зависимость между расстоянием от электрода до электрода и глубиной, где течет ток).

Замер сопротивления контура заземления проходит с применением измерительных приборов М416 или Ф4103-М1. Ход работ таков:

  • Элементы питания устанавливаются в измеритель заземления.
  • Устанавливается переключатель в положение «Контроль», при этом стрелку индикатора нужно привести в отметку «0» после нажатия кнопки и вращения рукоятки «реохорд». Соединительные провода подключаются к прибору-измерителю, как указано в инструкции.
  • Зонд и заземлитель (которые выступают в качестве вспомагательных электродов) углубляют до 0,5 м, затем подключают к ним соединительные провода.
  • Переключатель устанавливают в «Х1», нажимают кнопку и двигают стрелку индикатора вращением ручки реохорда в нулевое положение. Результат умножается на необходимый множитель.

 

Методы замеров сопротивления заземляющих устройств

По 3-проводной схеме (3П) сопротивление заземляющего устройства измеряется при значениях выше 5 Ом. В остальных случаях прибор подключается по 4-проводной схеме (4П). Нужный метод измерения выбирается кнопкой «Режим». При использовании метода 4П выполняются следующие действия:

    • Определяется максимальная диагональ (Д) заземляющего устройства (ЗУ).
    • ЗУ соединяется измерительными кабелями с гнездами Т1 и П1.
    • В грунт на дистанции 1,5 Д, но не менее 20 м от ЗУ, устанавливается потенциальный штырь П2.
    • В грунт на расстоянии больше 3Д, но не меньше 40 м от ЗУ, устанавливается токовый штырь Т2.
    • К разъему Т2 прибора подключается соединительный кабель.
    • Проводится серия замеров. При этом потенциальный штырь П2 последовательно устанавливается в грунт на расстоянии 10, 20, …, 90% от дистанции до токового штыря Т2. При этом ЗУ и измерительные штыри обычно размещаются на одной линии. Амплитудное значение напряжения помехи (при его наличии) измеряется в вольтах и отображается на индикаторе. В таком случае нужно отыскать подходящее направление размещения штырей, чтобы минимизировать значение напряжения помехи.

  • Строится график зависимости сопротивления от дистанции между ЗУ и П2. При равномерном возрастании сопротивления в средней части графика истинным считается значение между точками с наименьшей разницей величины сопротивления (не более 5%). Иначе все расстояния от ЗУ до П2 и Т2 нужно увеличить в 1,5–2 раза или сменить направление расположения штырей.

При использовании 3-проводного метода нужно выбрать его кнопкой «Режим», подсоединить измерительный кабель наименьшей длины к гнезду Т1. Замеры выполняются аналогично, но важно учесть, что измеренная величина сопротивления ЗУ включает сопротивление измерительного кабеля, подсоединенного к гнезду Т1.

 

Используемые приборы и средства

Сопротивление ЗУ замеряется специальными приборами – измерителями сопротивления заземления типа ИС-10, EurotestXE 2,5 кВ MI 3102H, М416, Ф4103-М1, MRU различных конфигураций и др. Дополнительно используются диэлектрические боты и перчатки, защитная каска и инструмент с изолирующими рукоятками.

В процессе проведения работ используется инструмент для забивания электродов в грунт на глубину не менее 0,5 м. Прибор подключается к корпусу электроустановки с помощью щупа, в роли которого применяется квадратный напильник с глухоприсоединенным медным проводом сечением 2,5 мм2.

 

Периодичность проведения замеров

Периодичность необходимых замеров сопротивления ЗУ основывается на правилах эксплуатации технических устройств. Для зданий действуют индивидуальные правила, включающие общие рекомендации по осмотру контура заземления. Периодичность замеров значится в специальных справочных материалах, используемых при реализации профилактических мероприятий. В большинстве случаев для поддержания работоспособности электросети достаточно осматривать участки заземления раз в полгода.

Замеры сопротивления переносного электрооборудования и дымовых труб должны проводиться ежегодно и включать обследование грунта возле заземленного электрооборудования. Сопротивление ЗУ в виде опор воздушных ЛЭП с напряжением до 1 кВт необходимо измерять с периодичностью раз в 6 лет, а с напряжением более 1 кВт – раз в 12 лет. Замеры сопротивления ЗУ нужно проводить во время максимальной засухи или замерзания грунта.

Инженерный центр «ПрофЭнергия» имеет огромный опыт и высокоточное оборудование, позволяющее оперативно измерять сопротивление заземляющих устройств и проводить другие электротехнические работы.

Инженерный центр «ПрофЭнергия» имеет все необходимые лицензии для измерения сопротивления заземляющих устройств, слаженный коллектив профессионалов и сертификаты, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если Вы хотите заказать замер сопротивления заземления, а также по другим вопросам, звоните по телефону: +7 (495) 181-50-34.

energiatrend.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *