Проверка заземления оборудования: Периодичность осмотров заземляющего устройства — какие сроки проверки сопротивления заземления оборудования

Содержание

Проверка заземления медицинского оборудования | Элкомэлектро

Электролаборатория » Услуги электролаборатории » Виды измерений » Проверка заземления медицинского оборудования

Наша электролаборатория ООО «Элкомэлектро» поможет учреждениям здравоохранения обеспечить безопасность,  имеющегося на балансе,  электрооборудования медицинской техники, мест эксплуатации такой техники и самого здания. Согласно п. 1.1.3 ПУЭ, здания медучреждений также являются электроустановками.

Неисправности, возникающие в процессе эксплуатации электрооборудования, установок, аппаратов, кабинетов и зданий  представляют повышенную опасность, как персоналу учреждения, так и пациентам. Любое нарушение может стать причиной травматизма, нанесения вреда здоровью и даже гибели. Поэтому вопросу электробезопасности необходимо уделить самое пристальное внимание.

При введении в эксплуатацию новых медицинских учреждений, а также действующих и тех, которые пережили капитальный ремонт, особое внимание уделяется электробезопасности.

В своей работе наша лаборатория руководствуется  требованиями ПУЭ и ПТЭЭП. Однако, для таких специфических учреждений, к которым относятся медицинские,  разработаны еще и особые требования к установкам, аппаратам, кабинетам и зданиям более жесткие, чем требования к обычным бытовым электроприборам и зданиям промышленным и коммунально-бытовым.  

Необходимо знать эти требования и при осуществлении измерений и проверок использовать их.  Это успешно решается нашими высококвалифицированными специалистами, специально разработанными методиками по проведению таких испытаний и современным оборудованием, которым оснащена наша передвижная электролаборатория.

Персональную ответственность за правильную эксплуатацию электроаппаратуры в медицинском заведении несет руководитель медицинского учреждения и лицо, ответственное за электрохозяйство. Поэтому основным способом обеспечения качественной и безопасной работы медицинской аппаратуры и заведения в целом является организация и своевременное проведение испытаний и проверок.

Особенно важны периодические испытания, которые должны проводиться согласно требований ГОСТ Р 50571.28-2006. В нем устанавливаются виды испытаний и периодичность, с которой они должны выполняться. Кроме того, в паспортах на новое и уже установленное электрооборудование также оговорены сроки проведения различных испытаний и  их необходимо придерживаться. Периодичность проверки заземления медицинского оборудования важный фактор его работоспособности, качества и надежности.

Наша электролаборатория выполнит:

  • приёмо-сдаточные испытания,
  • диагностику электросетей,
  • периодические испытания,
  • освидетельствование электрооборудования.

Кроме того, она оценит условия электробезопасности, выявит факты, нарушающие надежность работы аппаратуры. Лаборатория выдаст необходимую документацию на существующие объекты, проведет паспортизацию

заземляющих устройств, выполнит техническое освидетельствование электроустановок.

Обеспечение электробезопасности в таких учреждениях достигается с  помощью:
  • измерения сопротивления контура заземления медицинского оборудования;
  • измерения сопротивления изоляции электропроводов и кабельных линий;
  • проверки цепи между заземляемыми элементами и заземлителями;
  • измерения параметров петли «Ф-0»;
  • проверки заземляющих устройств, в том числе и контура заземления здания;
  • проверки электробезопасности имеющегося электрооборудования, аппаратов, в том числе и проверка заземления медицинского оборудования;
  • испытания  индивидуальных средств защиты.

Особого внимания требуют специфическая аппаратура, установленная в рентген кабинетах,  и в кабинете томографического обследования.

Проверка заземления рентген аппарата и проверка заземления томографа требует особой тщательности, а это в свою очередь, компетентности проверяющего. Наши сотрудники, кроме того, что проверят эти установки, еще осуществят проверку и рентген кабинет и кабинета томографии на соответствие паспортным данным. При этом такие испытания и обследования будут выполнены качественно и в срок, а вы получите технический отчет, состоящий из необходимых протоколов.

С каждым годом электрическое оборудование учреждений здравоохранения совершенствуется, появляются новые виды оборудования для диагностики, проведения физиотерапевтических процедур. Особенно популярно электролечение — индуктотерапия,  УВЧ-терапия, гальванизация, дарсонвализация и многие другие виды такого лечения, где используются различные виды электрического тока. Понятно, что такое оборудование должно безупречно работать и не давать сбоев. Вовремя проведенные проверки и измерения, помогут выявить проблемы с их работой. Наша лаборатория с помощью современного оборудования и приборов поможет осуществить диагностику и такого оборудования.

Какова бы ни была аппаратура, но и у нее есть срок годности, который рано или поздно истекает. В таком случае такая аппаратура должны подвергаться обязательному освидетельствованию с целью увеличения установленного срока эксплуатации. Электрические испытания и измерения помогут оценить состояния такого оборудования. При положительном решении,  будут выданы необходимые разрешительные документы,  и оборудованием можно будет пользоваться до следующей плановой проверки.

Не останутся без внимания и средства индивидуальной защиты, от которых во многом зависит жизнь сотрудников.

Обратившись в нашу лабораторию, вы получите весь спектр услуг, который необходим медицинскому учреждению в плане электробезопасности. Наша электрическая лаборатория обеспечит вашему медицинскому заведению только работоспособное электрооборудование, кабинеты и здания за приемлемую цену.

Как проверить заземление: наличие, измерение сопротивления

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Видео по теме

Проверка заземления

Стремительное развитие электротехники отражается в таком же бурном и непрерывном совершенствовании электрооборудования, а также в разработке технических решений для создания электроустановок, отвечающих новым требованиям. При этом обеспечение электроустановки (с напряжением до 1кВ и выше) принудительным защитным заземлением обязательно.

Характеристика заземляющего устройства отбирается в виду сочетания величины удельного сопротивления земли и электрических параметров заземляющих и защитных проводников. Вариантов заземляющих устройств более чем достаточно, за счет разнообразия в материалах, конфигурации, поперечном сечении и в линейных размерах защитных и заземляющих проводников. Каждый тип устройства проходит проверку заземления на соответствие нормам.

Защитное заземление предназначено для предупреждения опасности удара током лиц находящихся в непосредственной близости от электроустановок или работающих на них. Оно соединяет нетоковедущие части оборудования с землей. Нетоковедущие — имеется в виду, не проводящие электрический ток в нормальных условиях. Принцип работы заземления состоит в уменьшении величины тока, который проходит через организм человека, за счет меньшего сопротивления заземлителя.

Регулярная проверка заземления электроустановок необходима для соблюдения нормальной работы электрооборудования и профилактики безопасности труда на производстве. На основе результатов проверки, нашими специалистами составляется протокол — Измерения сопротивления заземления.

В промышленных объектах для заземления электроустановок в первоочередном порядке используются естественные заземлители. В перечень естественных входят: ж/б фундаменты зданий предприятия, эстакады, кабельные тоннели, рельсовые пути электрифицированных и обычных железных дорог, находящиеся в земле трубы водопровода и прочее.

Искусственные заземлители подразделяются на стационарные и переносные:

1. Стационарные устройства для заземления состоят из таких элементов, как: заземляющие проводники, соединительные контуры и заземлители (электроды, вбиваются в грунт в пределах отметок от 3 до 10 метров). Верхнее окончание вбиваемого электрода должно быть ниже поверхности земли на 0,7 метра. Электроды при помощи сварки соединяют стальной полосой или круглой стальной проволокой (прутом). Элементы не должны быть окрашены или покрыты другими составами с диэлектрическими свойствами. В выборе места для устройства искусственного заземления важен состав грунта и его насыщенность водой. Изменение влажности грунта изменяет и его сопротивление, следовательно, и растекание тока.

Искусственные заземляющие устройства могут быть горизонтальными или вертикальными, однако строгого исполнения вертикали или горизонтали не требуют и могут располагаться под наклоном.

Подразделяются на выносные и контурные заземлители:

  • Выносные — электроды устанавливаются за пределами здания;
  • Контурные — электроды устанавливаются равномерно по контуру здания и внутри него. Электроды, находящиеся в пределах контура здания полностью погружены в землю, а те, что внутри контура, располагаются открыто на стенах, выступая от кромки пола на 25 см или в полу в специальных углублениях.

Проверка проводится в следующем порядке:

  • Визуальный осмотр соединений заземляющих устройств и заземлителей.
  • После места соединений простукиваются молотком для обнаружения пробоин, обрывов и прочих дефектов;
  • С помощью омметра производится замер переходного сопротивления (его величина не должна превышать 0,05 Ом). В измерениях допустима погрешность в 10% , при этом трудоемкость измерений должна быть малой, и в первую очередь предусматривается безопасность персонала и применение помехозащищенных приборов.

Здесь используется схема амперметра-вольтметра: происходит одновременное измерение напряжения устройства заземления и стекающего тока в грунт.

Данные проверки обязательные после проведения ремонтных или реконструкционных работ в устройстве заземления и не менее 1 раза в 12 лет. То же относится и к проверке элементов заземления ( что ниже уровня земли) на коррозию.

2. Переносные устройства заземления это дополнительная защита людей, работающих на отключенных токоведущих частях оборудования. Представляют собой зажимы, которые крепятся к заземляемым проводам проводника, и наконечник для прикрепления к заземляемым конструкциям.

Эти устройства должны быть выполнены в соответствии с техническими нормами, учитывающими материал, конструктивное решение зажимов, сечение проводов и тип соединения элементов (сварочный, опрессовочный, болтовой). Они должны быть отмечены биркой с отметками сечений заземляющих проводов и регистрационным номером. Переносной заземлитель необходимо осматривать не менее 1 раза в 3 месяца, а так же в случае воздействия на него тока.

По окончанию работ составляется протокол измерения сопротивления заземления.

Порядок проверки заземления • Energy-Systems

Какой базовый порядок проверки заземления?

При испытании электрических установок особое внимание уделяется системам безопасности – в частности заземлению, которое позволяет исключить поражение человека током в результате его утечки или формирования иных негативных обстоятельств. Стандартный порядок проверки заземления предполагает использование прибора, прошедшего государственную поверку, а также внесенного в реестр допустимого к применению в электролаборатории инструмента.

Два его контакта подключаются к специальным стержневым электродам, а еще два – к зондам, а те, в свою очередь к контуру заземления, который предусматривает проект электроснабжения объекта.

После осуществления всех приготовлений – калибровки агрегата, а также проверки соблюдения правил техники безопасности производится подача тока, который улавливается стержнями, вбитыми в грунт, и измеряется приборами – как амперметром, так и вольтметром. На основании этого делается вывод о наличии определенного уровня сопротивления.

Получение каких значений предусматривает порядок проверок заземления?

Для того чтобы сделать вывод о безопасности и надежности установки, необходимо, чтобы показатель сопротивления был равен нормативному или наблюдалось значение ниже его. В частности, если речь идет о бытовой установке с типичной для нее частотой и напряжением однофазной линии 220 Вольт, то уровень, который вносится в протокол измерения сопротивления заземления, не должен быть выше 4 Ом. Для системы, в которой используется трехфазная компоновка с напряжением 380 Вольт, он должен быть полностью аналогичен упомянутому выше. Кроме того, ПУЭ устанавливает нормы для всех прочих электротехнических характеристик.

Если говорить о соединениях контура, то для них важнейшей характеристикой является так называемое переходное сопротивление. Его уровень также регламентируется – стандартный порядок проверки заземления предусматривает получение показателя не выше 0,05 Ом с допустимой погрешностью в 10%. Важным элементом испытаний также является визуальный осмотр – его необходимо проводить каждые полгода – при этом контур не только просматривается, но и простукивается омедненным молотком на предмет разрывов металлосвязи.

Какую периодичность предусматривает порядок проверок заземления?

Для того, чтобы получить гарантию отсутствия проблем при эксплуатации системы, вам следует осуществлять работы с ней каждый год – именно такое значение предусмотрено ПУЭ. Кроме того, как уже упоминалось выше, типичный порядок проверки заземления предусматривает изучение металлосвязи два раза в год с равными интервалами.

Иные показатели наблюдаются только для промышленных резервуаров – раз в 3 года и генерирующих установок – один раз в 12 лет. Особым средством безопасности является также переносной контур заземления, состоящий из проводов и зажимов, подключающихся к прибору. Такие устройства должны изучаться один раз в три месяца или при подключении каждой новой единицы техники.

Пример технического отчета

Назад

1из27

Вперед

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Онлайн расчет стоимости проектирования

Периодичность и сроки проверки заземления • Energy-Systems

Периодичности проверки заземления

Когда у предприятия возникает потребность в проведении измерений сопротивления заземления, ему стоит обратиться в сертифицированную электролабораторию. Специалистами нашей компании нередко оказываются подобные услуги, ведь правилами электробезопасности предусмотрено заземление всех доступных прикосновению человека проводящих частей оборудования, а также металлических деталей электроустановок. Соответственно, требуется и проверка заземления оборудования.

Такие меры предпринимаются для четкого срабатывания аппарата защиты, если будет пробита изоляция и напряжение попадет на металлические детали, будь то части корпуса, труба или иные проводящие элементы.

Пример технического отчета

Назад

1из27

Вперед

Что такое заземление и как оно устроено?

Любая трансформаторная подстанция имеет собственное заземляющее устройство. Иногда контур такого заземляющего устройства является достаточно сложной конструкцией. Заземление – преднамеренно устроенное электрическое соединение отдельной точки сети с существующим заземляющим устройством. Заземляющее устройство – это заземлитель, находящийся в электрическом контакте с землей и заземляющий проводник. Через него организовано соединение заземляемой точки и заземлителя. Роль заземлителя способен выполнить просто стержень из металла (обычно из стали, но иногда и медный), но это может быть и сложный комплекс заземляющих элементов сложной формы. Эффективность заземления принято определять значением сопротивления заземляющего устройства.

Отдельный паспорт изготавливается для каждого заземляющего устройства. В нем собраны данные о результатах приемно-сдаточных испытаний, в дальнейшем сюда же добавляются и протоколы результатов проведения измерений сопротивления заземления.

Как часто нужно проводить проверку заземления?

Нормативные документы не требуют частой периодичности проверки заземления. Сроки здесь довольно «гуманны», ведь проверка сопротивления заземления проводится раз в шесть лет. При этом каждые двенадцать лет необходимо проверять действие коррозии на состояние заземляющих элементов.

Как происходит проверка защемляющего устройства, проводимая сотрудниками нашей электролаборатории? Первый этап – это визуальный контроль. Затем происходит проверка соответствия заземляющего устройства существующей проектной документации и нормативным документам. Проведя измерение переходных сопротивлений соединений, элементов заземляющего устройства, измерение комплексного сопротивления и замеры сопротивления заземляющего контура, можно вычислить приведенное сопротивление. Ряд обстоятельств делает показатели сопротивления заземления подверженными сезонным колебаниям, поэтому проверка контура заземления и все финальные расчеты проводят, учитывая перечень поправочных и сезонных коэффициентов. Сведения в обязательном порядке заносят в протокол проверки заземления.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Онлайн расчет стоимости проектирования

Измерение сопротивления заземляющих устройств и молниезащиты (проверка заземления)

ООО «СМП ЦЕНТР» — это Электролаборатория в Туле . Мы производим измерения сопротивления заземляющих устройств с составлением технического отчёта оформленного по ГОСТ Р 50571.16-2007, приложение H и  соответствующего требованиям  Пожнадзора МЧС и Ростехнадзора.

Наша электролаборатория производит работы в Туле и Тульской области (Новомосковск, Щекино, Узловая, Алексин, Ефремов и т.д.), а так же в Московской, Калужской и Рязанской областях.

Измерение сопротивления заземляющих устройств электроустановок — чаще всего имеют ввиду именно это, когда говорят о проверке сопротивления  заземления, о замере сопротивления заземления или о измерении сопротивления контура заземления.

Почему возникает такая путаница? Дело в том, что заземляющее устройство является неоотъемлемой частью мероприятия под названием ЗАЗЕМЛЕНИЕ, а контур заземления разновидностью заземлителя, поэтому часто эти  понятия подменяют друг друга.

Так что же такое заземление и почему нам важно знать его сопротивление.

Как гласит ПУЭ: заземление это преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Проводники соединяющие контур заземления с заземляемыми объектами называются заземляющими. А  заземляющее устройство это совокупность этих проводников и заземлителя.

Контуром заземления обычно называется заземлитель, т.е. проводящие электрический ток элементы связанные между собой и  находящиеся в непосредственном контакте с землёй.

Заземление бывает двух видов: защитное и рабочее (функциональное).

Защитное выполняется для обеспечения электробезопасности, а рабочее для обеспечения работы электроустановки.

Заземлители так же бывают двух видов: искусственные- выполненные специально для заземления и естественные — в качестве естественных заземлителей могут использоваться  сторонние элементы находящиеся в непосредственном контакте с землёй и указанные в ПУЭ п. 1.7.109.

В течении срока службы  заземляющее устройство электроустановки изнашивается и с целью обеспечения электробезопасности клиентов и обслуживающего персонала, а также нормальной, бесперебойной работы электрооборудования  проводят замеры сопротивления «заземления» с составлением технического отчёта. Значения сопротивления заземления нормируются в соответствии с ПУЭ п. 1.7.101 и п. 1.8.39, ПТЭЭП Приложение 3 и они должны быть не более 4 Ом и не более 30 Ом, для заземляющих устройств измерение сопротивления которых производилось с подключенным и отключенным PEN-проводником соответственно.

Контроль состояния заземляющего устройства должен быть визуальным-  подразделяется на осмотр видимой части заземления (осуществляется  не реже одного раза в 6 месяцев)  и с выборочным вскрытием грунта (производится не реже одного раза в 12 лет). Если при вскрытии грунта обнаруживается что коррозией разрушено более 50% заземлителя, то он подлежит замене.

По результатам измерения сопротивления заземления, проверки целостности заземляющих проводников и надёжности присоединений составляется технический отчёт (протокол), в котором указываются параметры окружающей среды во время измерений (температура окружающей среды, атмосферное давление и влажность), тип почвы и удельное сопротивление грунта, место расположения заземлителя и его сопротивление.

Так же данные полученные в ходе обследования заносятся в паспорт заземляющего устройства .

В случае выявления недостатков электроустановки, Электромонтажные работы по их устранению вы так же можете заказать у нас.

При измерении сопротивления заземляющих устройств и сопротивления цепи между заземляющим устройством и оборудованием подлежащем заземлени





Инструкция по охране труда при измерении сопротивления заземляющих устройств и сопротивления цепи между заземляющим устройством и оборудованием подлежащем заземлению.

1. Общие положения

1.1. Данная инструкция разработана на основании Правил безопасности с инструментом и приспособлениями (НПАОП 0.00-1.30-01), Правил безопасной эксплуатации электроустановок (НПАОП 40.1-1.01-97), Правил безопасной эксплуатации электроустановок потребителей (НПАОП 40.1-1.21-98) и действующих нормативных актов по охране труда.
1.2. Данная инструкция относится к нормативным актам об охране труда, действующим в ДФ ГП «Региональные электрические сети» и является обязательной для исполнения для всех работников, занимающихся ремонтом заземляющих устройств и проверкой их состояния, измерением заземляющих устройств опор оборудования ПС, ВЛ напряжением выше 1000 В и повторных заземлений нулевого провода ВЛ до 1000 В.
1.3. Инструкция по охране труда является нормативным документом, устанавливающим правила безопасного выполнения работ в производственных помещениях предприятия, на территории предприятия, строительных площадках.
1.4. К выполнению работ допускаются работники не моложе 18 лет, не имеющие противопоказаний по состоянию здоровья, прошедшие:
— предварительный медицинский осмотр и периодический медицинский осмотр;
— вводный инструктаж;
— первичный инструктаж на рабочем месте, повторный инструктаж работник проходит не реже одного раза в 3 месяца;
— целевой инструктаж;
— инструктаж по пожарной безопасности.
1.4. Заземляющие устройства должны удовлетворять требованиям, обеспечивающим электробезопасность людей и защиты электроустановок, а так же эксплуатационных режимов работы электроустановок.
1.5. Каждый элемент установки, подлежащий заземлению, должен быть присоединен к заземлителю или заземляющей магистрали посредством заземляющего проводника.
Последовательное соединение с заземляющим проводником нескольких частей установки запрещается.
1.6. Рабочим местом выездного характера при выполнении указанных работ является электроустановка или ее часть, заземляющее устройство которой необходимо проверить. Продолжительность пребывания работника на рабочем месте определяется объемом выполняемых работ и не должно превышать 8 часов. Измерения заземляющих устройств в основном производится на следующих объектах:
— заземлители ТП и РП распредсетей 0,4 – 10 кВ;
— заземляющие устройства подстанций 35 – 220 кВ;
— заземлители повторного заземления нулевого провода ВЛ до 1000 В;
— заземлители опор 6, 10, 35, 110 кВ;
1.7. К выполнению работ допускается персонал прошедший необходимую подготовку и проверку знаний по данному виду работ и иметь группу по электробезопасности не ниже III.
1.8. Во время следования к месту работы городским транспортом, транспортом заказчика или транспортом предприятия – соблюдать правила пользования транспортом:
— проезд осуществлять в кабине, салоне, оборудованными местами для сидения;
— во время проезда не курить, не спать;
— выходить из транспорта только после его полной остановки.
1.9. Вредный опасный фактор при выполнении данных работ отсутствует.
Опасный производственный фактор при выполнении данных работ – появление напряжения на металлических частях электрооборудования и электроустановок, в нормальном режиме не находящиеся под напряжением. Все металлические части электрооборудования и электроустановок, которые могут оказаться под напряжением вследствие нарушения изоляции, должны быть заземлены или занулены.
1.10. Для безопасного выполнения указанных работ персонал СДИЗП обеспечивается спецодеждой (х/б костюмом, курткой ватной, подшлемником), обувью и средствами индивидуальной защиты, согласно норм установленных на предприятии.
1.11. При выполнении работ работник должен соблюдать требования санитарных норм:
— работать в светлое время суток (должна быть достаточная освещенность рабочего места).
1.12. Во время производства данных работ соблюдать правила личной гигиены (пользоваться чистой спецодеждой, х/б рукавицами).

2. Требования безопасности перед началом работы

Выполнение работ по проверке заземляющих устройств, производится, как правило, на отключенном оборудовании или на действующем без прикосновения к токоведущим частям, приближения к ним на недопустимые расстояния и выполняется по устному распоряжению. В исключительных случаях, когда требуется подготовка рабочего места или возможно приближение к токоведущим частям электрооборудования на расстояния менее допустимых, работы должны выполняться по наряду.
2.1. Измерение сопротивления заземлителей ТП и РП.
2.1.1. Работа должна производиться, как правило, с полным снятием напряжения с ТП и РП.
2.1.2. Заземлитель на время проверки должен быть отключен от параллельных и естественных заземлителей (оболочки кабелей, нулевой провод и т.д.) при помощи болтовых зажимов, а в случае их отсутствия путем разрезания электросварочным аппаратом.
2.2. При измерении сопротивления заземления с разрезанием выводов заземлителей к оборудованию ТП или РП сварочным аппаратом, оборудование объекта остается под напряжением для подключения сварочного аппарата и для безопасного выполнения работ необходимо выполнить следующие требования:
2.2.1. Из журналов ВЛ и паспортов ТП и РП ЭУ выписать предыдущие значения сопротивления заземления объектов, на которых предстоит делать измерения, и дату их выполнения.
2.2.2. По прибытии на объект произвести осмотр оборудования на предмет наличия параллельных и естественных заземлителей, приблизительно подсчитав их число, строго соблюдая правила осмотра оборудования действующих электроустановок.
2.2.3. Произвести измерение сопротивления заземления без отделения естественных и параллельных заземлителей и сравнить с данными п. 2.2.1. Величина сопротивления 0,1 – 0,2 Ома свидетельствует о том, что после отделения заземлителей объекта оборудование будет заземлено естественными и параллельными заземлителями. Если измеренная величина сопротивления равна или больше величины сопротивления по п. 2.2.1, или более 4 Ом, то оборудование окажется не заземленным и при резке выводов необходимо пользоваться диэлектрическими перчатками и ботами. Любые работы и оперативные переключения на этот период в данной электроустановке запрещены.
2.3. Измерение сопротивления повторного заземления нулевого провода на ВЛ до 1000 В.
2.3.1. Заземлитель на время проверки должен быть отсоединен от нулевого провода ВЛ.
2.4. Измерение сопротивления заземления опор ВЛ выше 1000 В.
2.4.1. Измерение сопротивления заземляющих устройств на воздушных линиях и должны совмещаться с капитальными или текущими ремонтами ВЛ.
2.4.2. При измерении сопротивления заземлителей тросовых опор ВЛ, заземляющее устройство должно быть отсоединено от грозозащитного троса ВЛ.
2.5. Измерение сопротивления заземления ПС, промышленных предприятий и других сторонних организаций.
2.5.1. Работа должна производиться на отключенном электрооборудовании.
2.5.2. Заземлитель на время проверки должен быть отсоединен от естественных и параллельных заземлителей.
2.5.3. Владелец электроустановки должен предоставить схему сети заземления с указанием материала и сечения заземляющей проводки.

3. Требования безопасности во время работы

3.1. Приборы используемые для выполнения работ по проверке заземляющих устройств и сам процесс измерения опасности поражения электрическим током не представляют, так как напряжение питания и на выходных клеммах составляет 4,5В постоянного тока.
3.2. Сопротивление растеканию заземлителей измеряют, как правило, в периоды наибольшего высыхания грунта, когда грунт обладает наибольшим удельным сопротивлением. Не рекомендуется производить измерения в ненастную сырую погоду или вскоре после прохождения дождей.
3.3. Измерение сопротивления заземляющих устройств должно производится:
— после монтажа, переустройства и капитального ремонта этих устройств на электростанциях, подстанциях и линиях электропередачи;
— при обнаружении на тросовых опорах ВЛ напряжением 110 кВ и выше следов перекрытий или разрушений электрической дугой;
— на подстанциях воздушных распределительных сетей напряжением 35 кВ и ниже – не реже 1 раза в 12 лет;
— в сетях напряжением 35 кВ и ниже у опор с разъединителями, разрядниками.
3.4. Заземляющие проводники должны быть предохранены от коррозии.
Открыто проложенные заземляющие проводники, должны быть предохранены от коррозии. Открыто проложенные заземляющие проводники, должны иметь окраску черного цвета.
3.5. Работы по измерению сопротивления заземляющих устройств может выполнять работник с группой по электробезопасности III, а помогать ему работник с группой II. При выполнении работ необходимо соблюдать общие меры правил безопасной эксплуатации электроустановок.
3.6. Измерение сопротивления заземляющего устройства производится прибором М416 в соответствии с его заводской инструкцией. Прибор рассчитан для работы при напряжении источника питания от 3,8 В до 4,3 В и опасности не представляет.
3.7. Для проведения измерения необходимо подключить к прибору измеряемое сопротивление Rх, вспомогательный заземлитель Rв и зонд Rз. Стержни, образующие вспомогательный заземлитель и зонд, забить в грунт на расстояниях в зависимости от величины диагонали измеряемого заземлителя. Глубина погружения в грунт должна быть не менее 500 мм.
3.8. При забивании стержней необходимо выбирать такие места, чтобы избежать случайные попадания в кабель, проложенный в грунте на глубине, менее допустимой (700 мм). Ручка молотка должна быть из сухого чистого дерева.
Во избежание увеличения переходного сопротивления заземлителя и зонда стержни следует забивать в грунт прямыми ударами, стараясь не раскачивать их.
3.9. Разматывание проводов, соединяющих прибор с зондом и вспомогательным заземлителем необходимо производить аккуратно с катушки или бухты без резких рывков во избежание подхлестывания к токоведущим частям оборудования.
3.10. Проверка заземления заземленных точек может производится как на отключенном, так и на работающем оборудовании.
3.11. При проверке заземления на работающем объекте, перед производством измерения на каждой точке проверяется отсутствие напряжения.
3.12. В период грозы производить работы по проверке заземляющих устройств запрещается.

4. Требования безопасности по окончанию работы

4.1. После окончания работы необходимо выключить измерительный прибор, отсоединить соединительные провода и смотать.
4.2. Извлечь из земли вспомогательные электроды, очистить от земли и уложить в отведенные места вместе с соединительными проводами и приборами.
4.3. Проследить за восстановлением или восстановить все разрывы цепи заземления, которые были произведены для выполнения измерений.
4.4. Проверить наличие в отведенном месте приборов, соединительных проводов, вспомогательных электродов и инструмента, которыми пользовались во время производства работ.
4.5. Доложить об окончании работ и о том, что сделано, непосредственному руководителю.
4.6. О недостатках, выявленных в процессе выполнения работ, необходимо сообщить диспетчеру и начальнику энергоучастков для принятия надлежащих мер. Если обнаруживаются дефекты, угрожающие жизни людей или работе оборудования, то об этом немедленно сообщается ответственным лицам подстанции, ЭУ и руководству предприятия для организации их немедленного устранения.
4.7. Вымыть лицо, руки с мылом, при возможности, принять душ. Переодеться в чистую одежду.

5. Требования безопасности в аварийных ситуациях

5.1. Аварийная ситуация может возникнуть при однофазном замыкании в сети 6 – 10 кВ (появление «ЗЕМЛИ») в ТП, где производятся работы по п.2.2, когда разрезание вывода заземляющего устройства производится с применением защитных средств. В данном случае после отделения заземляющего устройства вывод заземления до оборудования может оказаться под фазным напряжением. Измерение сопротивления заземления в данном случае необходимо производить, считая второй вывод находящимся под напряжением. К сварке разрезанного вывода приступать, используя защитные средства по п.2.2.3, предварительно проверив УВН отсутствие напряжения на выводе заземляющего проводника со стороны оборудования. В случае обнаружения напряжения на указанном выводе, работы прекращаются до устранения замыкания.
5.2. Другой случай аварийной ситуации может возникнуть при попадании (при забивании) вспомогательного заземлителя или зонда в действующий кабель и нарушения его изоляции. В этом случае при повреждении КЛ 0,4 кВ возникает мощная электрическая дуга с появлением дыма, огня или искр. Повреждение КЛ 6 – 10 кВ будет сопровождаться взрывом при междуфазном повреждении и электрической дугой с появлением дыма, огня или искр, при повреждении оболочки кабеля и его изоляции (замыкание на «землю»). Во всех случаях работы немедленно прекращаются, о происшедшем сообщается диспетчеру ОДС, и под его руководством устраняется возникшая ситуация.
5.3. Оказание первой медицинской помощи.
5.3.1. Первая помощь при поражении электрическим током:
При поражении электрическим током необходимо немедленно освободить потерпевшего от действия электрического тока, отключив электроустановку от источника питания, а при невозможности отключения — оттянуть его от токопроводящих частей за одежду или применив подручный изоляционный материал.
При отсутствии у потерпевшего дыхания и пульса необходимо сделать ему искусственное дыхание и косвенный (внешний) массаж сердца, обращая внимание на зрачки. Расширенные зрачки свидетельствуют о резком ухудшении кровообращения мозга. При таком состоянии оживления начинать необходимо немедленно, после чего вызвать скорую медицинскую помощь.
5.3.2. Первая помощь при ранении:
Для предоставления первой помощи при ранении необходимо раскрыть индивидуальный пакет, наложить стерильный перевязочный материал, который помещается в нем, на рану и завязать ее бинтом.
5.3.3. Первая помощь при переломах, вывихах, ударах:
При переломах и вывихах конечностей необходимо поврежденную конечность укрепить шиной, фанерной пластинкой, палкой, картоном или другим подобным предметом. Поврежденную руку можно также подвесить с помощью перевязки или платка к шее и прибинтовать к туловищу.
При переломе черепа (несознательное состояние после удара по голове, кровотечение из ушей или изо рта) необходимо приложить к голове холодный предмет (грелку со льдом, снегом или холодной водой) или сделать холодную примочку.
При подозрении перелома позвоночника необходимо пострадавшего положить на доску, не поднимая его, повернуть потерпевшего на живот лицом вниз, наблюдая при этом, чтобы туловище не перегибалось, с целью избежания повреждения спинного мозга.
При переломе ребер, признаком которого является боль при дыхании, кашле, чихании, движениях, необходимо туго забинтовать грудь или стянуть их полотенцем во время выдоха.
5.3.4. Первая помощь при кровотечении:
Для того, чтобы остановить кровотечение, необходимо:
5.3.4.1. Поднять раненную конечность вверх.
5.3.4.2. Рану закрыть перевязочным материалом (из пакета), сложенным в клубок, придавить его сверху, не касаясь самой раны, подержать на протяжении 4-5 минут. Если кровотечение остановилось, не снимая наложенного материала, сверх него положить еще одну подушечку из другого пакета или кусок ваты и забинтовать раненное место (с некоторым нажимом).
5.3.4.3. В случае сильного кровотечения, которое нельзя остановить повязкой, применяется сдавливание кровеносных сосудов, которые питают раненную область, при помощи изгибания конечности в суставах, а также пальцами, жгутом или зажимом. В случае сильного кровотечения необходимо срочно вызвать врача.
5.4. Если произошел пожар, необходимо вызвать пожарную часть и приступить к его гашению имеющимися средствами пожаротушения.

6. Ответственность за нарушение инструкции.

6.1. Работники, допустившие нарушение инструкции по охране труда, или не принявшие меры к ее выполнению привлекаются к ответственности согласно действующему законодательству.
6.2. За нарушение инструкции лично или членами бригады на бригадиров и старших рабочих распространяется система ежемесячной оценки их работы.
Работникам, получившим неудовлетворительную оценку по итогам работы за месяц, уменьшается размер производственной премии .
6.3. Кроме того, на работников, нарушающих инструкции по охране труда, распространяется талонная система и внеочередная проверка знаний по охране труда.


Всего комментариев: 0


Наземные испытания при техническом обслуживании электрооборудования — что, почему и как

Электрические цепи имеют отдельную цепь заземления, или «землю», которая обеспечивает альтернативный путь с низким сопротивлением, по которому электричество безопасно достигает земли в случае случайного физического контакта. Наземные испытания используются для измерения производительности этой схемы и проверки ее соответствия требованиям.

Важность наземных испытаний

Наземные испытания подразделяются на два основных типа — испытания во время строительства объекта и плановые испытания, чтобы убедиться, что система заземления работает так, как задумано.

Оба типа важны по ряду причин:

    • Система с неисправным заземлением может вызвать катастрофические потери данных, оборудования и даже человеческую жизнь в случае электрических неисправностей.

    • Оборудование, работающее с ненадлежащим заземлением, может подвергаться скачкам напряжения и скачкам напряжения, которые могут его повредить.

    • Чувствительное оборудование склонно неправильно обрабатывать данные или вообще терять их в случае потери заземления.

    • Периодические сбои из-за плохого заземления могут создать ряд проблем, от случайных ударов до отказов, которые нелегко определить.

  • Накопление статического электричества на поверхности может привести к сотрясениям, которые легко ошибочно принять за внутренние неисправности. Это приводит к ненужному и дорогостоящему ремонту или замене деталей.

Как проводить наземные испытания

Прежде чем приступить к проверке цепи заземления, необходимо понять несколько основных элементов:

Методы наземных испытаний

Есть несколько агентств и организаций, которые издают руководящие принципы, рекомендации и стандарты для проверки безопасности заземления.Какой бы из них вы ни выбрали, ключевые компоненты такие же, как заземление и стойки. Их следует тщательно проверять не реже одного раза в год на предмет таких проблем, как коррозия, которая может увеличить сопротивление.

Существует четыре метода, которые обычно используются для проверки сопротивления заземления:

  1. Испытание на удельное сопротивление почвы

    Это наиболее часто используемый метод для проверки вновь установленных систем заземления. У почвы много слоев, поэтому сопротивление может сильно варьироваться.Удельное сопротивление почвы можно проверить с помощью тестера сопротивления заземления.

    • Устройство имеет 4 соединительных провода, каждая из которых подключается к заземляющему разъему.
    • Они располагаются на равном расстоянии друг от друга по прямой линии на расстоянии не менее трех их длины друг от друга.
    • Между крайними стойками генерируется известный ток, а между внутренними стойками рассчитывается падение потенциала.
    • Падение потенциала используется для расчета сопротивления почвы по закону Ома (V = IR).

    Помимо профиля почвы, есть много других факторов, которые могут повлиять на местное удельное сопротивление почвы. Чтобы убедиться, что конфигурация подходит, вам следует изучить местность и составить ее профиль. Для этого вам нужно будет многократно выполнить испытание на удельное сопротивление грунта, разложив стойки в разных направлениях, и проверить удельное сопротивление на разной глубине.

  2. Падение потенциала

    Метод падения потенциала обычно используется для проверки отдельных столбов заземления или системы заземления в целом.Он измеряет их способность рассеивать электричество:

    • Тестируемая ставка сначала отключается от системы.
    • Испытательный прибор подключается к отсоединенному стержню, который теперь называется заземляющим электродом.
    • Два других стержня вставлены на одной линии с первым электродом (внешний и внутренний стержень).
    • После подключения тестера заземления к двум стержням через внешний стержень и электрод заземления пропускается известный ток.

    Расстояние между внешним и внутренним кольями зависит от длины электродов. Вы можете обратиться к руководству или диаграмме, чтобы узнать, как следует устанавливать ставки.

  3. Бесстейк-хаус

    Используя метод бесстержневой проверки сопротивления заземления, вы можете исключить опасность отсоединения электродов, и вам не придется искать подходящие места для тестовых столбов:

    • Бесстейковое тестирование можно проводить практически где угодно, что делает его очень удобным.
    • Зажимы устанавливаются рядом с соединительным кабелем или заземляющим электродом.
    • Известный ток пропускается через один из зажимов и измеряется на другом.

    Тестер заземления рассчитывает сопротивление контура заземления. Однако, если существует только один путь для передачи электричества на землю, бесконтактное тестирование не будет работать.

  4. Селективный

    Этот метод во многом аналогичен наземным испытаниям с использованием теста падения потенциала.Однако это намного безопаснее, поскольку вам не нужно отключать заземляющий электрод от объекта:

    • Токоизмерительные клещи размещаются рядом с заземляющими электродами, что эффективно устраняет эффекты, создаваемые параллельными сопротивлениями.
    • Внешний и внутренний электроды подключаются так же, как при испытании на падение потенциала.
    • Тестер подключен к токоизмерительным клещам и обоим кольям.

Электрическое заземление защищает как оборудование, так и жизни людей, поэтому абсолютно необходимо убедиться, что оно выполнено правильно и регулярно проверяется.Самая лучшая в мире система заземления будет бесполезной, если она не достигнет заземляющего стержня с низким сопротивлением, что делает наземные испытания еще более важными.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. В нем хранится обширный перечень электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводных кабелей, предохранительных выключателей и т. Д.Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она занимает уникальное положение, предлагая конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Установите пользовательское содержимое вкладки HTML для автора на странице своего профиля
Поделитесь этой историей, выберите платформу!

Почему заземление, зачем тестировать? | Fluke

Плохое заземление способствует ненужному простою, но отсутствие хорошего заземления опасно и увеличивает риск отказа оборудования.

Без эффективной системы заземления вы можете подвергнуться риску поражения электрическим током, не говоря уже о приборных ошибках, гармонических искажениях, проблемах с коэффициентом мощности и множестве возможных периодически возникающих дилемм. Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей. Эти организации предоставляют рекомендации и / или разрабатывают стандарты заземления для обеспечения безопасности.

OSHA (Управление по охране труда) »
NFPA (Национальная ассоциация противопожарной защиты)»
ANSI / ISA (Американский национальный институт стандартов и приборное общество Америки) »
TIA (Ассоциация индустрии телекоммуникаций)»
IEC (Международная электротехническая комиссия) »
CENELEC (Европейский комитет по стандартизации в области электротехники)»
IEEE (Институт инженеров по электротехнике и электронике) »

Хорошее заземление — это больше, чем мера безопасности, оно также предотвращает повреждение промышленных установок и оборудования.Хорошая система заземления повысит надежность оборудования и снизит вероятность повреждения из-за разряда молнии или токов короткого замыкания. Ежегодно на рабочих местах теряются миллиарды долларов из-за электрических пожаров. Это не учитывает связанные с этим судебные издержки и потерю личной и корпоративной производительности.

Зачем тестировать наземные системы?

Со временем коррозионные почвы с высоким содержанием влаги, высоким содержанием соли и высокими температурами могут разрушить заземляющие стержни и их соединения.Несмотря на низкие значения сопротивления заземления при первоначальной установке, эти значения могут увеличиться, если заземляющие стержни разъедены.

Тестеры заземления, такие как измеритель сопротивления заземления Fluke 1623-2 GEO и тестер заземления Fluke 1625-2 GEO, являются незаменимыми инструментами для поиска и устранения неисправностей, помогающими поддерживать время безотказной работы. С неприятными, периодически возникающими электрическими проблемами проблема может быть связана с плохим заземлением или плохим качеством электроэнергии.

Все заземления и заземляющие соединения должны проверяться не реже одного раза в год в рамках вашего обычного плана профилактического обслуживания.Во время этих плановых проверок следует исследовать увеличение сопротивления на 20%. После обнаружения проблема должна быть исправлена ​​путем замены или добавления заземляющих стержней в систему заземления.

Что такое земля и для чего она нужна?

NEC, Национальный электротехнический кодекс, статья 100 определяет заземление как «соединенное (соединяющееся) с землей или с проводящим телом, которое расширяет заземление». Когда мы говорим о заземлении, это две разные темы.

  1. Заземление: намеренное соединение проводника цепи, обычно нейтрального, с заземляющим электродом, помещенным в землю.
  2. Заземление оборудования: обеспечивает правильное заземление рабочего оборудования внутри здания.

Эти две системы заземления необходимо держать отдельно, за исключением соединения между двумя системами. Это предотвращает разность потенциалов напряжения из-за возможного пробоя при ударах молнии. Цель заземления, помимо защиты людей, растений и оборудования, состоит в том, чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, сигналов EMI и RFI и помех.

Что такое хорошее значение сопротивления заземления?

Существует большая путаница относительно того, что является хорошим заземлением и каким должно быть значение сопротивления заземления. В идеале заземление должно иметь нулевое сопротивление.

Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами. Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше.

Согласно NEC, убедитесь, что полное сопротивление системы относительно земли меньше 25 Ом, указанного в NEC 250.56. В помещениях с чувствительным оборудованием оно должно быть 5,0 Ом или меньше.

В телекоммуникационной отрасли часто используется номинальное сопротивление 5,0 Ом или меньше для заземления и соединения. Целью сопротивления заземления является достижение минимально возможного значения сопротивления заземления, которое имеет смысл с экономической и физической точек зрения.

Поговорите со специалистом

Статьи по теме

Важность наземных испытаний при техническом обслуживании электрооборудования

Есть два типа наземных испытаний, которые следует проводить на вашем предприятии.Первое делается в процессе строительства, чтобы убедиться, что электрическая система установлена ​​правильно. Второй — плановые наземные испытания, которые необходимо завершить, чтобы убедиться, что система заземления продолжает функционировать так, как она была спроектирована. Это наземное испытание должно быть выполнено правильно, поскольку ошибки могут быть опасными и дорогостоящими.

Общие сведения о заземлении и соединении

Заземляющий путь обеспечивает прохождение электричества по пути с низким сопротивлением. Электроэнергия должна проходить от источника через нагрузку, а затем возвращаться к источнику через нейтральное соединение.Заземление предлагает дополнительный путь для безопасности. Этот обратный путь должен обеспечивать наименьшее сопротивление току. Общее требование Национального электротехнического кодекса (NEC) — сопротивление не более 25 Ом.

Соединение обеспечивает соединение со всеми заземляющими проводниками электрической системы. Системы защиты от замыканий на землю в первую очередь защищают оборудование, а защита цепи от замыканий на землю обеспечивает безопасность людей. Однако лучшая в мире система заземления не обеспечит никакой защиты, если электрические компоненты вашего предприятия не подключены к ней.Точно так же облигации не будут обеспечивать защиту без заземления.

Последствия аварий на земле

Отсутствие надежно заземленной системы может привести к потере дорогостоящего оборудования, важных данных и даже к человеческим жертвам. На оборудовании без надлежащего заземления могут возникать опасные скачки напряжения или скачки напряжения. Потеря заземления может привести к потере данных чувствительным оборудованием или их неправильной обработке.

Периодические сбои также могут создавать проблемы от случайных поражений электрическим током до отказов оборудования, которые трудно обнаружить.Часто в отказе винят оборудование, хотя на самом деле это отсутствие прочного заземления. Например, когда в зоне душа пожарного депо произошло случайное поражение электрическим током, после обширных испытаний было определено, что часть здания работает как конденсатор. Статическое электричество накапливалось, и без надлежащего заземления электричество разряжалось через человека, использующего оборудование. Проблема была прерывистой, потому что требовалось время, чтобы накопилось достаточно энергии и достигло разрядного потенциала.

Причины сбоев заземления или соединения

Со временем связи или узы могут ослабнуть. Неправильные материалы, использованные для создания начального соединения, могут выйти из строя даже после того, как ранее были подходящими. Коррозия может повредить разъемы и заземляющие стержни. В одном крайнем случае химические вещества содержались в растворенных в почве стержнях заземления, которые были полностью протестированы при установке. Хотя вершины заземляющих стержней присутствовали и были видны, оставалось всего несколько дюймов материала.

Профессиональные наземные испытания

Для получения правильных данных для вашей системы заземления необходимо использовать правильные методы и оборудование. Например, тест с фиксацией или без использования колышков позволяет проводить тестирование быстрее и проще. Однако его не следует использовать для измерения сопротивления почвы. Этот метод также не рекомендуется для сложных систем заземления с металлической петлей.

Все факторы системы заземления необходимо правильно рассчитать.Например, после сильных дождей тестируемая почва может иметь гораздо меньшее сопротивление, чем при нормальных условиях.

Тщательные наземные испытания должны быть частью полного плана обслуживания электрооборудования вашего предприятия. Издание 2015 года стандарта 70E Национальной ассоциации противопожарной защиты включает новые требования к электробезопасности. Убедитесь, что ваш объект соответствует требованиям.

Об авторе

Боб Шеппард — основатель, президент и генеральный менеджер Southwest Energy Systems, испытательной и инженерной фирмы, аккредитованной Международной ассоциацией электрических испытаний.

Заземление и соединение электрических систем Справка

Используйте поиск, чтобы быстро найти ответы на вопросы — откройте окно поиска (ctrl + f), затем введите ключевое слово из вопроса, чтобы перейти к этим терминам в материале курса

Цель.

Целью этого курса является ознакомление инженеров с проблемами заземления и соединения электрических систем, связанными с глухозаземленными системами под напряжением 600 В.Этот курс может служить введением в заземление и подключение для инженеров, не имеющих или почти не имеющих опыта профессионального проектирования электрооборудования. В курсе также представлена ​​практическая, но не совсем известная информация по применению заземления и соединения, которая пригодится даже самому опытному профессионалу в области проектирования электрических систем.

Зачем тратить время на изучение заземления и соединения?

 Многие специалисты в области электротехники придерживаются популярного и ошибочного убеждения, что заземление металлического объекта (путем прямого подключения к земле)
поможет снять опасное напряжение, вызванное замыканием линии на землю.Заземление объекта не способствует снятию опасного напряжения или снижению напряжения прикосновения или шагового напряжения, которые являются причиной нескольких смертельных случаев каждый год.

 Неправильное заземление и подключение — частая причина несчастных случаев, связанных с электрическим током.

 Эффективное заземление играет важную роль в правильной работе чувствительного электронного оборудования.

 «Более 80% всех отказов электронных систем, которые связаны с аномалиями питания, на самом деле являются результатом ошибок электропроводки или заземления или вызваны другими нагрузками на предприятии заказчика.«EPRI (Исследовательский институт электроэнергетики)

« Из всех проблем с питанием и заземлением, влияющих на электронное оборудование, почти 90% вызваны электропитанием и условиями заземления внутри объекта, в котором используется оборудование… Что еще более важно, почти 75% Проблемы с качеством электроэнергии внутри объекта связаны с заземлением, что делает его единственным наиболее важным фактором с точки зрения объекта, обеспечивающего надежную работу оборудования ». Уоррен Льюис, ECM Magazine

 Издание 2005 г. Национального электротехнического кодекса (NEC) включало полный пересмотр и переименование статьи 250 (ранее называвшейся «Заземление»), которая, по словам редакторов Справочника NEC, « одно из самых значительных изменений, произошедших в новейшей истории Кодекса ».

Основа и ресурсы.

Следующие ресурсы служат в качестве первичной основы информации, представленной в этом курсе
, и на них будут ссылаться в материалах курса:

 Статья 250 Национального электрического кодекса (NEC) — издание 2005 г.

 Стандарт IEEE 1100-1999 рекомендуется Практика питания и заземления чувствительного электронного оборудования

 Стандарт IEEE 142-1982 Заземление промышленных и коммерческих систем питания

 Общие сведения о тестировании сопротивления заземления AEMC (рабочая тетрадь, издание 6.0)

Для многих инженеров, подрядчиков и техников Национальный электротехнический кодекс и его статья 250 (Заземление и соединение) являются единственной основой при проектировании и установке системы заземления.

Перед началом курса жизненно важно, чтобы мы рассмотрели цель и ограничения Национального электрического кодекса (NEC) — чтобы понять, как следует применять NEC.

Статья 90.1 Национального электротехнического кодекса устанавливает его цель и намеренные ограничения:

90.1 Цель

(A) Практическая защита — Целью настоящего Кодекса является практическая защита людей и имущества от опасностей, возникающих в результате использования электричества.

(B) Соответствие — этот Кодекс содержит положения, которые считаются необходимыми для обеспечения безопасности. Их соблюдение и надлежащее техническое обслуживание приводят к установке, которая по существу не опасна, но не обязательно эффективна, удобна или адекватна для хорошего обслуживания или будущего расширения использования электричества.

(C) Намерение — Этот Кодекс не предназначен в качестве проектной спецификации или руководства по эксплуатации для неподготовленных людей!

Согласно NEC — Инженеры, проектирующие и определяющие заземление и соединение, не должны использовать Национальный электрический кодекс (NEC) в качестве поваренной книги.

NEC не заменяет понимание теории, лежащей в основе требований кодекса.

Чтобы понять заземление и соединение, важно знать значения слов, которые мы будем использовать. В статье 110 Национального электротехнического кодекса содержатся определения слов, которые мы будем использовать в этом курсе. Они перечислены в порядке важности, не обязательно в алфавитном порядке.

Приложение 1 Различные компоненты заземления и соединения.

Заземленный проводник. Умышленно заземленный провод системы или цепи. Его также обычно называют нейтральным проводом в заземленной звездообразной системе.

Заземляющий провод. Проводник, используемый для соединения оборудования или заземленной цепи системы электропроводки с заземляющим электродом или электродами.

Заземляющий провод, оборудование. Проводник, используемый для подключения нетоковедущих металлических частей оборудования, кабельных каналов и других кожухов к заземленному проводнику системы, проводнику заземляющего электрода или к тому и другому на сервисном оборудовании или в источнике отдельно созданной системы.Статья 250.118 NEC описывает различные типы заземляющих проводов оборудования. Правильный выбор заземляющих проводов оборудования приведен в 250.122 и таблице 250.122.

Электрод заземления. Устройство, обеспечивающее электрическое соединение с землей.

Провод заземляющего электрода. Проводник, используемый для подключения заземляющего электрода (ов) к заземляющему проводу оборудования, к заземленному проводу или к обоим при обслуживании, в каждом здании или сооружении, где питание подается от фидера (ов) или ответвительной цепи (ов) , или в источнике отдельно производной системы.

Склеивание (скрепленное). Постоянное соединение металлических частей для образования электропроводящего пути, обеспечивающего непрерывность электрической цепи и способность безопасно проводить любой ток, который может возникнуть.

Назначение соединения — установить эффективный путь для тока короткого замыкания, который, в свою очередь, облегчает работу устройства защиты от сверхтока. Это объясняется в статьях 250.4 (A) (3) и (4) и 250.4 (B) (3) и (4) Национального электротехнического кодекса. Конкретные требования к соединению содержатся в Части V Статьи 250 и в других разделах Кодекса, как указано в Статье 250 NEC.3.

Соединительная перемычка. Надежный проводник для обеспечения необходимой электропроводности между металлическими частями, которые необходимо электрически соединить.

Заглушки концентрического и эксцентрического типа могут ухудшить электрическую проводимость между металлическими частями и фактически вызвать ненужное сопротивление в цепи заземления. Установка перемычки (перемычек) — это один из часто используемых методов между металлическими дорожками качения и металлическими частями для обеспечения электропроводности. Связывающие перемычки можно найти в сервисном оборудовании [NEC 250.92 (B)], подключение более 250 В (NEC 250.97) и расширительные фитинги в металлических дорожках качения (NEC 250.98). На рис. 2 показана разница между выбивками концентрического и эксцентрического типов. На Таблице 2 также показан один из методов установки соединительных перемычек при этих типах заглушек.

Приложение 2 Соединительные перемычки устанавливаются вокруг концентрических или эксцентрических выбивных отверстий.

Перемычка для склеивания, оборудование. Соединение между двумя или более участками заземляющего провода оборудования.

Соединительная перемычка, основная. Соединение между заземленным проводом цепи и заземляющим проводом оборудования при обслуживании.

На рисунке 3 показана основная перемычка, используемая для обеспечения соединения между заземленным рабочим проводом и заземляющим проводом оборудования на рабочем месте. Связывающие перемычки могут быть расположены по всей электрической системе, но основная перемычка заземления находится только в служебных помещениях. Основные требования к перемычкам подключения приведены в NEC 250.28.

Приложение 3. Основная соединительная перемычка, устанавливаемая на рабочем месте между заземленным рабочим проводом и заземляющим проводом оборудования.

Соединительная перемычка, System. Соединение между проводником заземленной цепи и проводом заземления оборудования в отдельно выделенной системе.

На рисунке 4. показана перемычка заземления системы, используемая для обеспечения соединения между заземленным проводом и заземляющим проводом (проводниками) оборудования трансформатора, используемого как отдельно производная система.

Приложение 4. Перемычка заземления системы, устанавливаемая рядом с источником отдельно выделенной системы между заземленным проводом системы и заземляющим проводом (проводниками) оборудования.

Перемычки соединения системы расположены рядом с источником отдельно производной системы. В производной системе используется перемычка для соединения системы, если производная система содержит заземленный провод. Подобно основной перемычке заземления на сервисном оборудовании, перемычка заземления системы обеспечивает необходимое соединение между заземляющими проводниками оборудования и заземленным проводником системы, чтобы создать эффективный путь для тока замыкания на землю. Требования к перемычкам для подключения системы находятся в NEC 250.30 (А) (1).

Заземлен. Подключен к земле или к какому-либо проводящему телу, которое служит вместо земли.

с эффективным заземлением. Преднамеренно подключено к земле через заземление или соединения с достаточно низким импедансом и достаточной допустимой нагрузкой по току, чтобы предотвратить повышение напряжения, которое может привести к чрезмерной опасности для подключенного оборудования или людей.

Без заземления. Подключен к земле без установки резистора или устройства импеданса.

 Распространенное заблуждение состоит в том, что заземление и соединение — это одно и то же. Хотя они связаны, это не одно и то же. Цель этого курса — прояснить каждую тему.

 В редакции Национального электротехнического кодекса 2005 г. это признается и изменено название статьи 250 (которая раньше называлась «Заземление») на «Заземление и соединение», чтобы усилить, что заземление и соединение — это две отдельные концепции, но не исключающие друг друга, и фактически, напрямую связаны между собой требованиями статьи 250.

 Соединение — это соединение двух или более проводящих объектов друг с другом с помощью проводника, такого как провод.

 Заземление, также называемое «заземлением», представляет собой особую форму соединения, при которой один или несколько проводящих объектов соединяются с землей с помощью проводника, такого как провод или стержень.

 Правильное заземление объектов (проводников) в поле обычно включает как связи между объектами, так и особую связь с землей (землей).

Заземление для целей данного курса означает намеренное соединение с землей или другим проводящим телом относительно большой протяженности, которое служит вместо земли.Другое слово для обозначения заземления — «заземление». Если мы будем помнить об этом и использовать термин «заземление» всякий раз, когда мы используем термин «заземление», это поможет нам понять, что такое заземление (или заземление), а что нет.

Соединение — это соединение проводящих частей между собой с целью поддержания общего электрического потенциала и обеспечения электрического проводящего пути, который будет гарантировать непрерывность электрической цепи и способность безопасно проводить любой ток, который может возникнуть. IEEE Std. 1100–1999.

В соответствии со статьей 250.4 (A) Национального электротехнического кодекса следующие общие требования к заземлению и соединению заземленных систем. В системе с заземлением вторичные обмотки питающего трансформатора могут иметь конфигурацию «звезда» с заземленной общей ветвью или конфигурация «треугольник» с заземленным центральным отводом или заземленным углом.

Следующие общие требования определяют, какие заземления и соединения электрических систем необходимо выполнить. Для соответствия эксплуатационным требованиям этого раздела необходимо следовать предписывающим методам, содержащимся в Статье 250.

(1) Заземление электрической системы Заземленные электрические системы должны быть подключены к земле таким образом, чтобы ограничивать напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и стабилизировать напряжение относительно земли во время нормальной работы. операция.

(2) Заземление электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть заземлены, чтобы ограничить напряжение относительно земли на этих материалах.

(3) Соединение электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть соединены вместе и с источником электропитания таким образом, чтобы установить эффективный ток замыкания на землю. дорожка.

(4) Соединение электропроводящих материалов и другого оборудования Электропроводящие материалы, которые могут оказаться под напряжением, должны быть соединены
вместе и с источником электропитания таким образом, чтобы создать эффективный путь тока замыкания на землю.

(5) Эффективный путь тока замыкания на землю Электрооборудование, проводка и другие электропроводящие материалы, которые могут оказаться под напряжением, должны быть установлены таким образом, чтобы создать постоянную цепь с низким сопротивлением, облегчающую работу устройства максимального тока или детектора заземления для системы с высокоомным заземлением. Он должен быть способен безопасно пропускать максимальный ток замыкания на землю, который может быть наложен на него из любой точки системы электропроводки, где может произойти замыкание на землю источника электропитания.Заземление не должно рассматриваться как эффективный путь тока замыкания на землю.

Давайте рассмотрим с предыдущей страницы общие требования, представленные в Национальном электротехническом кодексе для заземления и соединения, чтобы лучше понять, какие требования выполняются посредством заземления (заземления), а какие — посредством методов соединения.

 Требования (1) и (2) относятся к заземлению — они конкретно относятся к «заземлению».

 Требование (1) — заземление системы или преднамеренное соединение системного проводника в заземленной системе с землей.Заявленная цель этого намеренного подключения к земле состоит в том, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и это стабилизирует напряжение относительно земли во время нормальной работы.

 Требование (2) выполняется путем присоединения нетоковедущих металлических предметов к заземляющему проводу оборудования, который присоединен к проводнику заземляющего электрода на служебном входе и на стороне нагрузки каждой отдельно выведенной системы.

 Требования (3), (4) и (5) являются связующими. Путем соединения всех металлических предметов, которые могут оказаться под напряжением в случае неисправности (и обеспечения заземляющего проводника оборудования, соединенного с этими элементами и с источником), обеспечивается эффективный путь заземления, облегчающий работу устройств защиты от перегрузки по току. Проще говоря, путь тока короткого замыкания должен иметь достаточно низкое сопротивление, чтобы пропускать ток короткого замыкания достаточно высокой величины, чтобы вызвать срабатывание защитного устройства на входе.Связывание также помогает обеспечить безопасность персонала, так что кто-то, прикоснувшись к двум частям оборудования одновременно, не получит шока, став путем выравнивания, если они окажутся под разными потенциалами. По той же причине, по которой соединение защищает людей, оно защищает оборудование, уменьшая ток по проводам питания и данных между частями оборудования с разными потенциалами.

Важно понимать разницу между соединением и заземлением (заземлением). Имейте в виду, что земля (грунт) является плохим проводником, и на нее нельзя полагаться как на часть пути возврата тока замыкания на землю — это путь, предназначенный для устранения замыкания.Причина, по которой никогда нельзя полагаться на землю / почву как часть обратного пути замыкания на землю, связана с ее высоким сопротивлением.

Сопротивление земли примерно в один миллиард раз больше, чем у меди (согласно стандарту IEEE 142, раздел 2.2.8), и обеспечивает возврат к источнику только нескольких ампер (1-10).

Стандарт 142 Института инженеров по электротехнике и радиоэлектронике гласит: «Самая сложная система заземления, которую можно спроектировать, может оказаться неадекватной, если соединение системы с землей не является адекватным и имеет низкое сопротивление.Отсюда следует, что заземление является одной из наиболее важных частей всей системы заземления. Это также самая сложная часть для проектирования и получения … Для небольших подстанций и промышленных предприятий в целом должно быть получено сопротивление менее 5 Ом, если это практически возможно ».

Однако с практической точки зрения на заземляющий электрод, независимо от его сопротивления, нельзя полагаться на устранение замыкания на землю. Если оборудование эффективно заземлено и соединено, то должен быть предусмотрен путь с низким импедансом (не через заземляющий электрод к земле и через землю обратно к источнику), чтобы облегчить работу устройств максимального тока в цепи.В то время как минимальное практическое сопротивление заземляющего электрода желательно и будет лучше ограничивать потенциал корпусов оборудования над землей, более важно обеспечить путь с низким импедансом для быстрого устранения повреждения в целях обеспечения безопасности. Чтобы получить наименьшее практическое сопротивление, цепь заземления оборудования должна быть подключена к заземленному проводу внутри вспомогательного оборудования.

Ни заземление (заземление), ни система заземляющих электродов не помогают устранять электрические неисправности. Это соединение металлических предметов с заземляющим проводом оборудования и источником, которое обеспечивает путь с достаточно низким импедансом, позволяющим срабатывать защитным устройствам от сверхтоков и устранять неисправности.Если путь замыкания на землю опирается на землю, то тока короткого замыкания будет недостаточно (из-за высокого импеданса) для срабатывания защитного устройства
.

Помните закон Ома, V = I x R? Рассмотрим следующий пример. Фазный провод на 120 В намеренно подключается непосредственно к земле (если оголенный провод под напряжением был соединен с заземляющим стержнем в грязи), а заземляющий стержень имеет сопротивление 25 Ом к заземленному источнику питания (трансформатору). В этом сценарии будет получено чуть менее 5 Ампер (4.8А) тока замыкания на землю. Это преднамеренное соединение с землей не дало бы достаточного тока короткого замыкания для отключения даже автоматического выключателя на 20 А, поскольку автоматический выключатель на 20 А может непрерывно выдерживать 16 Ампер.

Такой же высокий импеданс земли, который ограничивает ток короткого замыкания до уровней, меньших, чем требуется для размыкания защитных устройств, создаст опасные скачки напряжения или напряжения прикосновения в непосредственной близости от заземляющего стержня, которые могут быть смертельными. Несколько человек умерли в последние годы именно из-за этого состояния, когда столбы уличного освещения были заземлены заземляющими стержнями, но не имели заземляющих проводов оборудования, которые могли бы служить эффективным путем обратного тока короткого замыкания к источнику питания.

Давайте исследуем факторы, которые влияют на сопротивление систем заземляющих электродов (давайте использовать стержни для обсуждения).

 Сопротивление электрода (разница всего в несколько миллиОм между различными обычно используемыми материалами и размерами — IEEE Std 142-1982). Сопротивление электрода зависит от материала стержня и площади поверхности стержня. Площадь поверхности стержня зависит от диаметра стержня.

 От стержня к поверхности почвы (незначительный фактор — обычно составляет лишь долю ома — если стержень вбивается в уплотненную почву и не является рыхлым — IEEE Std 142-1982) Различия в размерах стержней заземления и материалах делают небольшая заметная разница в сопротивлении электрода (однако материал стержня играет роль в ожидаемом сроке службы стержня).

 Контактное сопротивление между стержнем и окружающей почвой. Если стержень вбивается в уплотненный грунт, тогда сопротивление между стержнем и окружающей почвой не является существенным фактором (это обсуждается более подробно в разделе, посвященном стержням с глубоким забиванием).

 Сопротивление почвы, окружающей электрод (самый большой фактор). В правильно установленной системе заземляющих электродов сопротивление почвы является ключевым фактором, определяющим, каким будет сопротивление заземляющего электрода и на какую глубину необходимо ввести стержень, чтобы получить низкое сопротивление заземления.
Удельное сопротивление почвы зависит от глубины от поверхности, типа концентрации растворимых химических веществ (минералов и растворенных солей) в почве, содержания влаги и температуры почвы. Другими словами, удельное сопротивление определяется электролитом в почве. Сопротивление заземляющего стержня 5/8 дюйма для типичных типов грунта из IEEE 142-1982 представлено ниже:

Вот несколько удивительных фактов:

Согласно этой таблице IEEE 142-1992, 10-футовый заземляющий стержень приводится в действие в двух из четырех категорий типов грунтов в среднем не обеспечивали сопротивления 25 Ом или менее! Это обычное дело во многих районах с песчаной почвой.

Наличие поверхностных вод не обязательно указывает на низкое удельное сопротивление (IEEE Std 142-1982).

Недавний проект наглядно иллюстрирует истинность этого утверждения. Почва водомелиоративного сооружения всегда была влажной. Инженеры-электрики, исследующие проблемы с заземлением на месте, наивно полагали, что постоянное присутствие воды (из-за высокого уровня грунтовых вод) гарантирует низкое удельное сопротивление почвы и что отдельных стержней заземления или, возможно, параллельных стержней заземления будет достаточно для создания заземления с низким сопротивлением. (заземление).Однако все было наоборот. Дальнейшие исследования показали, что высокий уровень грунтовых вод был связан с подземным водным потоком. Буквально через это место протекала река, которая была частью гидрологии района. Почва была очень песчаной.

Со временем все растворимые минералы, которые существовали, растворялись и уносились медленно текущей водой, оставляя песок и дистиллированную воду — оба отличные изоляторы!

Это открытие радикально изменило направленность исследования заземления площадки и соответствующих корректирующих действий, заставив инженеров задуматься о стратификации почвы.

Обычные методы заземления, которым в течение последних сорока лет обучали производителей заземления и тестирования заземления, основаны на предполагаемом однородном состоянии почвы. Традиционные методы породили практические правила, которые стали приняты многими инженерами
как стандартные практики. Одна из таких практик заключалась в том, что как удвоение глубины заземляющего стержня, так и установка двух параллельных заземляющих стержней были одинаково эффективными методами для снижения сопротивления стержня (ов) относительно земли.Эти практические правила предполагали, что почва однородна — что почва остается того же типа и сопротивления по мере того, как вы погружаетесь на большую глубину. На практике на многих территориях почва слоистая, а не однородная.

Как ответственные инженеры, мы должны помнить, что практика использования параллельных заземляющих стержней, иногда соединенных по схеме треугольника, которая была разработана с использованием методов, предполагающих однородность грунтовых условий, может быть не лучшей практикой для слоистых почвенных условий.

Мы рассмотрим это более подробно в следующем разделе.

Что может служить заземляющим электродом?

Помните: заземляющий электрод — это средство выполнения двух из пяти требований к заземлению и соединению, перечисленных в Национальном электротехническом кодексе.

(1) Заземление электрической системы Заземленные электрические системы должны быть подключены к земле таким образом, чтобы ограничить напряжение, вызываемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и стабилизировать напряжение относительно земли во время Нормальная операция.

(2) Заземление электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть заземлены, чтобы ограничить напряжение относительно земли на этих материалах.

В соответствии с Национальным электротехническим кодексом в качестве заземляющих электродов можно использовать следующие электроды, и если их более одного, они должны быть соединены вместе:

 Подземная металлическая водопроводная труба (NEC 250.52 (A) (1))

 Металлический каркас конструкции (NEC 250.52 (A) (2))

 Заземляющий электрод в бетонном корпусе (также известный как заземление UFER) (NEC 250,52 (A) (3))

 Кольцо заземления (NEC 250,52 (A) (4))

 Штанга заземления (NEC 250.52 (A) (5))

 Заземляющие пластины (NEC 250.52 (A) (6))

В Национальных электротехнических правилах указаны конкретные требования к установке для каждого типа электрода.

Два или более заземляющих электрода, которые эффективно соединены вместе, должны рассматриваться как единая система заземляющих электродов.

Давайте рассмотрим различные места, где требуется заземление (имеется в виду преднамеренное соединение или подключение к системе заземления). Национальный электротехнический кодекс требует следующего:

Служебный вход — Статья 250.24 (A) NEC требует, чтобы в системе электропроводки помещения, обеспечиваемой заземленной службой переменного тока, был провод заземляющего электрода, соединенный с заземленным служебным проводом (также называемый нейтралью). дирижер). Статья 250.24 (A) (1) требует, чтобы соединение выполнялось в любой доступной точке от конца нагрузки на линии ответвления или боковой линии обслуживания до терминала или шины, к которым подключен заземленный провод (нейтраль), на стороне обслуживания, включительно. отключающие средства.Это переводится в одно из трех мест, как показано ниже:

Отдельно производные системы — Обратитесь к разделу VI для обсуждения отдельно производного заземления системы.

Металлические водопроводные и другие металлические трубопроводы, которые могут оказаться под напряжением — 250.104 (A) и (B) требует, чтобы металлическая система водяных трубопроводов была соединена с системой заземления в любом из следующих мест: кожух служебного оборудования, заземленный провод на обслуживание, провод заземляющего электрода или заземляющие электроды.В то время как металлические водопроводные трубы должны быть заземлены, другие системы металлических трубопроводов должны быть соединены с землей (заземлены) только в том случае, если существует вероятность того, что на них будет подано напряжение — то есть там, где имеются механические трубопроводы и электрические соединения внутри оборудования (например, газовых приборов). .

Металлические конструкции — 250.104 (C) требует наличия открытого конструкционного металла, который соединен между собой для образования металлического каркаса здания и не заземлен намеренно и может оказаться под напряжением, должен быть соединен с землей либо в корпусе сервисного оборудования, либо в заземленном проводе в сервисе. , провод заземляющего электрода или к заземляющим электродам.

Если система переменного тока (AC) подключена к заземляющему электроду в здании или сооружении или на них, этот же электрод должен использоваться для заземления корпусов проводников и оборудования в этом здании или сооружении или на них. Если отдельные службы, фидеры или ответвления питают здание и должны быть подключены к заземляющему электроду (ам), следует использовать тот же заземляющий электрод (а). Это необходимо для того, чтобы все металлические объекты в конструкции имели одинаковый потенциал земли.

Какое требуется сопротивление земли? Допустимый?

Если вас спросят: «Сколько Ом сопротивления земли требуется Национальным электрическим кодексам (NEC) для заземления системы?» Что бы вы сказали? А) 25 Ом? Б) 10 Ом? В) 100 Ом? Или D) Вы бы сказали, что NEC не устанавливает минимальных требований?

Если бы вы ответили D), вы были бы правы! Как бы трудно в это поверить, но в Национальном электротехническом кодексе не указано минимальное сопротивление заземления для заземления системы.

Давайте посмотрим на статью 250-56 NEC

250.56 Сопротивление стержневых, трубных и пластинчатых электродов:

 Отдельный электрод, состоящий из стержня, трубы или пластины, не имеющий сопротивления заземления 25 Ом или менее, должен может быть дополнен одним дополнительным электродом любого из типов, указанных в пунктах от 250,52 (A) (2) до (A) (7). Если в соответствии с требованиями данного раздела установлено несколько стержневых, трубных или пластинчатых электродов, они должны находиться на расстоянии не менее 1,8 м (6 футов) друг от друга.

 FPN: эффективность параллельного включения стержней длиннее 2.5 м (8 футов) увеличивается за счет расстояния более 1,8 м (6 футов).

Обратите внимание, что NEC говорит, где «Один электрод…». Также обратите внимание, что это не требует повторных испытаний и приводов дополнительных стержней или стержней дополнительной длины до тех пор, пока не будет достигнуто сопротивление 25 Ом или меньше. Эта статья NEC позволяет подрядчику запускать две штанги, разнесенные на 6 футов друг от друга, не проводить наземных испытаний и прекращать работу!

Многие районы имеют слоистую (то есть слоистую) песчаную почву. Наиболее чистый песок — это кварц, диоксид кремния (SiO2).Диоксид кремния — это высококачественный электрический изолятор, который обычно используется в качестве барьерного материала при имплантации примесей или диффузии, для электрической изоляции полупроводниковых устройств, в качестве компонента металлооксидных полупроводниковых (MOS) транзисторов или в качестве межслойного диэлектрика при многоуровневой металлизации. структуры, такие как многочиповые модули
. Песок — хороший изолятор; это НЕ хороший заземляющий материал.

Чтобы выйти из слоистых песчаных почв, необходимо продвинуть заземляющие стержни глубже через слой песка (каким бы глубоким он ни был) в более проводящую почву.

Размещение нескольких параллельных стержней в песчаной почве не имеет большого значения, если требуется соединение с землей с низким сопротивлением — вы должны пройти под слоем песка.

Национальный электротехнический кодекс содержит две таблицы, в которых указаны размеры заземления и соединения.

 Таблица 250.66 Заземляющий провод для систем переменного тока

 Таблица 250.122 Минимальный размер заземляющих проводов оборудования для заземляющих каналов и оборудования.

Таблица 250.66 Провод заземляющего электрода для систем переменного тока

Примечания:
1.Если используются несколько наборов служебных вводных проводников, как это разрешено в 230.40, исключение № 2, эквивалентный размер самого большого служебного вводного проводника должен определяться по наибольшей сумме площадей соответствующих проводников каждого набора.
2. Если нет проводов для входа в сервисный центр, размер проводника заземляющего электрода должен определяться эквивалентным размером самого большого входного проводника, необходимого для обслуживаемой нагрузки.

Таблица 250.122 Минимальный размер заземляющих проводов оборудования для заземляющих каналов и оборудования

Примечание:
Если необходимо соблюдать 250.4 (A) (5) или (B) (4), заземляющий провод оборудования должен иметь сечение больше, чем указано в этой таблице.
* См. Ограничения на установку в 250.120.

Источником этих таблиц был отчет комитета IEEE «Руководство по безопасности при заземлении подстанций переменного тока». В отчете комитета обсуждалась обоснованность размеров заземляющих проводов, указанных в таблицах, исходя из типичной длины проводника 100 футов и падения напряжения на проводнике на основе этой длины 100 футов. [Руководство к Национальному электротехническому кодексу — Грегори Биералс — Институт проектирования электрооборудования].Для длин более 100 футов «минимальный размер», указанный в таблице, может оказаться недостаточным для устранения неисправности или проведения тока повреждения, которому она подвержена.

С практической точки зрения, проводники заземляющих электродов редко проектируются так, чтобы их длина превышала 100 футов, и на Таблицу 250.66 можно положиться почти без исключения.

Заземляющие проводники оборудования, с другой стороны, часто длиннее 100 футов, то есть когда длина ответвленной цепи или фидера заземляющего проводника оборудования, с которым они установлены, превышает 100 футов.В этих ситуациях минимальный провод заземления оборудования, указанный в таблице 250.122, не будет достаточным для пропускания и / или снятия ожидаемых токов повреждения.

Опытные инженеры-электротехники и специалисты по проектированию знакомы с необходимостью увеличения размеров проводников для длинных ответвлений цепи и проводов фидера для решения и смягчения проблем, связанных с падением напряжения. В статье 250.122 (B) указывается, что заземляющий провод оборудования также должен быть увеличен.

250.122 (B) Увеличенный размер — Если размер незаземленных проводов увеличен, заземляющие проводники оборудования, если они установлены, должны быть увеличены в размере пропорционально круговой миловой площади незаземленных проводников.

Заземляющие провода оборудования на стороне нагрузки средств отключения обслуживания и устройств максимального тока подбираются в зависимости от размера устройств максимального тока фидера или ответвленной цепи перед ними.

Если незаземленные проводники цепи (токоведущие, линейные) увеличены в размере для компенсации падения напряжения или по любой другой причине, связанной с правильной работой схемы, заземляющие проводники оборудования должны быть пропорционально увеличены.

Пример:

240-вольтная однофазная 250-амперная нагрузка питается от 300-амперного выключателя, расположенного в щитке на расстоянии 500 футов.«Нормальная» цепь (без увеличения размера для ограничения падения напряжения) будет состоять из медных проводников на 250 тыс. Куб. М с медным заземляющим проводом оборудования 4 AWG. Если количество проводников было увеличено до 350 тыс. Куб. М из соображений падения напряжения, каков минимальный размер заземляющего проводника оборудования с учетом требования пропорционального увеличения?

Решение

ШАГ 1.

Рассчитайте соотношение размеров проводов увеличенного диаметра и проводов нормального сечения:

ШАГ 2.

Рассчитайте площадь поперечного сечения заземляющего проводника оборудования увеличенного размера, умножив соотношение размеров на площадь поперечного сечения заземляющего проводника оборудования стандартного размера, взятую из Таблицы 250.122 для защитного устройства на 250 А (необходимо использовать следующий больший или 300 А). В таблице 250.122 указано, что подходит медный провод номер 4 AWG. В соответствии с таблицей 8 главы 9 Национального электротехнического кодекса — Свойства проводника
(см. Стр. 21) заземляющий провод 4 AWG имеет площадь поперечного сечения 41 740 круглых мил.

Соотношение размеров x круглых милов заземляющего проводника

1,4 x 41,740 круглых милов = 58 436 круглых милов

ШАГ 3.

Определите сечение заземляющего проводника нового оборудования.

Опять же, обращаясь к таблице 8 главы 9, мы обнаруживаем, что 58 436 круговых милов больше 3 AWG. Следующий больший размер — 66 360 круглых милов, который преобразуется в медный заземляющий провод для оборудования 2 AWG.

Для данного сценария нормальный заземляющий провод оборудования, указанный в Таблице 250.122 для цепи на 250 А будет медным заземляющим проводом № 4 AWG. В этом случае заземляющий провод оборудования необходимо увеличить до медного заземляющего проводника № 2 AWG, чтобы соответствовать требованиям статьи 250.122 (B) NEC. Целью этого требования по увеличению размера является обеспечение проводника, имеющего соответствующий размер, чтобы выдерживать и устранять ожидаемые токи короткого замыкания.

NEC Ch. 9 Таблица 8

Согласно требованиям Национального электрического кодекса (NEC), нейтраль и заземляющий провод оборудования должны быть подключены к главной сервисной панели и вторичной стороне отдельно выделенной системы (подробнее об этом ниже).NEC разрешает использовать только одно соединение нейтрали с землей в каждой отдельно производной системе. Неправильное дополнительное соединение нейтрали с землей — довольно распространенная проблема, которая не только создает опасность поражения электрическим током для обслуживающего персонала, но также может ухудшить характеристики электронного оборудования. Неправильное соединение нейтрали и заземления в розетках можно обнаружить с помощью тестера проводки и заземления, предназначенного для этой цели.

Вольтметр также можно использовать для определения наличия неправильных соединений в розетках.Измерение напряжения между нейтралью и землей на розетках может указывать на напряжение в диапазоне от милливольта до нескольких вольт при нормальных рабочих условиях и в зависимости от нагрузки, длины цепи и т. Д. Однако показание 0 В может указывать на наличие ближайшей нейтрали. — земляная связь. Чрезмерный ток заземления оборудования в распределительных щитах также указывает на возможность заземления нейтрали на стороне нагрузки. Визуальный осмотр нейтральной шины внутри щитков необходим, чтобы проверить расположение этих дополнительных и неправильных соединений.

Когда в отдельно созданной системе существует более одной связи нейтраль — земля, это приводит к намеренному соединению (или соединению) проводов нейтрали и заземления в двух местах. Это создает параллельное соединение, в котором ток нейтрали делится на часть, возвращающуюся на нейтраль, а остальная часть возвращается к источнику через путь заземления оборудования в соответствии с законом Ом (ток будет делиться пропорционально, чтобы пройти путь наименьшего сопротивления с напряжением падение по каждой параллельной траектории одинаково).На рисунке ниже представлены два варианта предотвращения протекания нежелательного тока в системе заземления (и соединения).

Отдельно производные системы — это системы, которые не имеют прямого соединения между выходными проводниками питания и входными проводниками питания. Это трансформаторы без прямого соединения между нейтралью первичной системы и вторичной нейтралью, только системы ИБП, которые включают в себя изолирующие трансформаторы, таким образом получая новый нейтральный системный проводник (примечание — все системы ИБП не являются отдельно производными системами), и комплекты двигателей-генераторов, которые подключаются. к системе электропроводки здания через 4-полюсный автоматический переключатель являются отдельно производными системами, потому что у них есть отдельная нейтраль, которая не имеет прямого соединения с нейтралью электросети (из-за 4-го полюса безобрывного переключателя).Двигатель — генераторные установки, в которых применяются 3-полюсные системы переключения, имеют прямое соединение с нейтралью энергосистемы общего пользования, не являются отдельно производными системами и не могут иметь заземления нейтрали на двигателе-генераторной установке. [IEEE Std 1100-1999]

Есть много дискуссий об отдельных или специальных основаниях, связанных с чувствительным электронным оборудованием. Статья 250.96 (B) Национального электротехнического кодекса разрешает изолировать электронное оборудование от кабельного канала таким же образом, как шнур и подключенное к вилке оборудование изолируются от кабельного канала.

250,96 (B) Изолированные цепи заземления. Если требуется для уменьшения электрического шума (электромагнитных помех) в цепи заземления, корпус оборудования, питаемый от ответвленной цепи, должен быть разрешен для изоляции от кабельного канала, содержащего цепи, питающие только это оборудование, с помощью одного или нескольких перечисленных неметаллических фитингов кабельного канала, расположенных в точку крепления кабельного канала к корпусу оборудования. Металлический кабельный канал должен соответствовать положениям настоящей статьи и должен быть дополнен внутренним изолированным заземляющим проводом оборудования, установленным в соответствии с 250.146 (D), чтобы заземлить корпус оборудования.

FPN (ПРИМЕЧАНИЕ ДЛЯ ПЕЧАТИ): Использование изолированного заземляющего провода оборудования не отменяет требования по заземлению системы кабельных каналов.

Ключом к этому методу заземления электронного оборудования является постоянное обеспечение того, чтобы изолированный заземляющий провод, независимо от того, где он заканчивается в системе распределения, был подключен таким образом, чтобы создать эффективный путь для тока замыкания на землю (через соединение), как требуется NEC 250.4 (А) (5).

Хотя использование изолированных заземляющих проводов оборудования может быть полезно для снижения электромагнитных помех, очень важно, чтобы требование изолированного заземления НЕ приводило к изолированному, изолированному или иным образом не подключенному к заземлению заземлению системы электродов здания. Такой изолированный стержень заземления (соединение с землей) нарушит NEC 250.50.

250,50 Система заземляющих электродов Все заземляющие электроды, как описано в пунктах 250.52 (A) (1) — (A) (6), которые имеются в каждом обслуживаемом здании или сооружении, должны быть соединены вместе, чтобы сформировать систему заземляющих электродов.

Причина, по которой изолированный заземляющий стержень (то есть тот, который не соединен с другими заземленными или заземленными электродами) запрещен, и что NEC требует, чтобы отдельные заземляющие электроды были соединены вместе, заключается в уменьшении разницы потенциалов между ними из-за молния или случайный контакт с линиями электропередач. Системы молниезащиты, связи, радио и телевидения, а также заземления системы кабельного телевидения ВСЕ должны быть соединены вместе, чтобы минимизировать потенциальные различия между системами.Отсутствие соединения (или соединения) всех компонентов заземления может привести к серьезному поражению электрическим током и пожару.

Например, для установки кабельного телевидения, показанной на Рисунке 250.39, предположим, что ток индуцируется в линии электропередачи импульсным перенапряжением или ближайшим ударом молнии, так что мгновенный ток силой 1000 ампер возникает по линии электропередачи к источнику питания. линия земли. Такая сила тока не является чем-то необычным при таких обстоятельствах — она ​​может быть и часто бывает значительно выше.Также предположим, что заземление питания имеет сопротивление 10 Ом, что в большинстве случаев является очень низким значением (одиночный заземляющий стержень в среднем грунте имеет сопротивление относительно земли около 40 Ом).

Приложение 250.39 Установка кабельного телевидения, не соответствующая Кодексу, демонстрирующая, почему необходимо соединение между различными системами. Согласно закону Ома, ток через оборудование, подключенное к электрической системе, будет на мгновение увеличиваться до потенциала 10 000 вольт (1000 вольт). амперы × 10 Ом).Этот потенциал в 10000 вольт будет существовать между системой CATV и электрической системой
, а также между заземленным проводником в кабеле CATV и заземленными поверхностями в стенах дома, такими как водопроводные трубы (которые подключены к заземлению). по которому проходит кабель. Этот потенциал также может появиться у человека, держащего одной рукой кабель кабельного телевидения, а другой рукой — металлическую поверхность, подключенную к заземлению (например, радиатор или холодильник).

Фактическое напряжение, вероятно, будет во много раз больше расчетных 10 000 вольт, поскольку для сопротивления заземления и тока были приняты чрезвычайно низкие (ниже нормального) значения.Однако большинство систем изоляции не рассчитано выдерживать даже 10 000 вольт. Даже если система изоляции выдержит скачок напряжения в 10 000 вольт, она может быть повреждена, и выход из строя системы изоляции приведет к искрообразованию.

Такая же ситуация могла бы существовать, если бы скачок тока был на кабеле CATV или телефонной линии. Единственная разница будет заключаться в напряжении, которое будет зависеть от индивидуального сопротивления заземляющих электродов относительно земли.

Решение состоит в том, чтобы соединить две системы заземляющих электродов вместе или соединить оболочку кабеля CATV с заземлением питания, что в точности и требуется Кодексом.Когда одна система поднимается выше потенциала земли, вторая система достигает того же потенциала, и между двумя системами заземления отсутствует напряжение.

Exhibit 250.40 Установка кабельного телевидения, соответствующая требованиям 250.94.

Ниже приведены примеры реальных случаев, когда отдельные заземления или предметы, которые должны быть заземлены (заземлены), были изолированы друг от друга (не соединены вместе):

 Женщина заметила «покалывание» электричеством, когда принимала душ. Расследование показало, что между сливом для душа и ручками для душа присутствовало электрическое напряжение.Тот факт, что женщина была босиком с мокрыми руками (как люди часто бывают в душе!), Способствовал тому, что она чувствовала разницу в напряжении. Причиной проблемы были паразитные напряжения, создаваемые воздушной распределительной линией. Разница в напряжении была между колодцем и септической системой. Решением было скрепить дренажную и водопроводную трубы вместе.

 Владелец бизнеса жаловался на постоянные сбои компьютерного модема и компьютера. Коммунальная компания обнаружила, что сбои произошли по совпадению с перебоями в электроснабжении (замыканием на землю) на одном из основных фидеров, обслуживающих объект.Проведенное расследование показало, что телефонная, водопроводная и силовая площадки были электрически изолированы (не соединены друг с другом). Правильное соединение (соединение) систем устранило дальнейшие проблемы с этим клиентом.

[Примеры приведены из статьи «Заземление энергетических систем: практическая точка зрения», номер статьи PCIC-2002-xx Джон П. Нельсон, сотрудник IEEE]

Термин «заземление Ufer» назван в честь консультанта, работающего в США. Армия во время Второй мировой войны. Техника Mr.Придуманный Уфер был необходим, потому что на участке, нуждающемся в заземлении, не было грунтовых вод и мало осадков. Это место в пустыне представляло собой серию хранилищ бомб в районе Флагстаффа, штат Аризона.

Принцип Уфер-земли прост. Его очень эффективно и недорого устанавливать при новом строительстве. Земля Уфер использует агораскопические свойства бетона. Бетон быстро впитывает влагу и очень медленно теряет влагу. Минеральные свойства бетона (известь и другие) и присущий им pH означает, что бетон имеет запас ионов для проведения тока.Почва вокруг бетона становится «легированной» бетоном. В результате pH почвы повышается и понижается, что обычно составляет 1000 Ом · метр в почвенных условиях (трудно получить хорошую почву). Присутствующая влага (бетон очень медленно отдает влагу) в сочетании с «легированной» почвой являются хорошим проводником для электрической энергии или тока молнии.

Эффект почти такой же, как и при химической обработке почвы вокруг электрода. Авторы статьи IEEE 1969 года пришли к выводу, что следующие обширные испытания такой электродной системы: «.. . Сети из арматурных стержней… бетонных опор обеспечивают приемлемо низкое сопротивление заземления, с возможностью защиты от коротких замыканий и импульсных токов, подходящих для всех типов заземления конструкций и цепей. . . . Не последним преимуществом системы арматуры является ее доступность и низкая стоимость ». [Фаган и Ли, «Использование бетонных арматурных стержней в качестве заземляющих электродов», Конференция по нефтяной и химической промышленности 1969 г.]

Методы Ufer используются при строительстве нижних колонтитулов, бетонных полов, радио- и телебашен, анкеров для опорных тросов, освещения столбы и др.Медная проволока не работает как «уферское» заземление из-за pH-фактора бетона (обычно + 7pH). Использование стальной арматуры в качестве «уферского» грунта работает хорошо, и бетон не трескается и не отслаивается, как это было с медью. Использование медной проволоки, привязанной к стержням арматуры, находящимся вне бетона, не вызывает ни одной из этих проблем.

Минимальный размер арматуры, необходимый для предотвращения проблем с бетоном, зависит от:

1. Тип бетона, его содержание, плотность, удельное сопротивление, коэффициент pH и т. Д.

2. Площадь поверхности бетона, контактирующей с почвой.

3. Удельное сопротивление почвы и содержание грунтовых вод.

4. Размер и длина арматурного стержня, проволоки или пластины.

5. Величина тока удара молнии.

На следующей диаграмме показана проводимость тока молнии на фут арматурного стержня (арматурного стержня). Учитывается только внешний арматурный стержень. Арматурный стержень в центре нижнего колонтитула или фундамента не учитывается в этом расчете. В нижнем колонтитуле траншеи можно учитывать только арматуру по бокам и внизу нижнего колонтитула.

Г-н Уфер не знал, что он нашел, пока не экспериментировал с проволокой различной длины в бетоне. Сегодняшний информированный инженер извлекает выгоду из открытия г-на Уфера и привяжет стержни стальной арматуры в здании или другом фундаменте к электрическому заземлению здания. При соединении с электрическим заземлением, строительной сталью и т. Д. Армированный пол и фундамент здания становятся частью системы заземления здания. Результатом является значительно улучшенная система заземления с очень низким общим сопротивлением относительно земли.

Если бы одного заземления Ufer было достаточно, производители заземляющих стержней прекратили бы свою деятельность. Но одной только земли Уфер этого недостаточно. Немногие здания, даже те, которые строятся сегодня, построены с учетом преимуществ земли Уфер. Часто можно увидеть использование «заземления Ufer» на военных объектах, в компьютерных залах и других сооружениях с очень специфическими характеристиками заземления. Это не распространено на большинстве промышленных предприятий, офисных зданий и жилых домов. Сегодня более распространенным является заземление в соответствии с минимальными национальными и местными электротехническими нормами.Это будет включать в себя один или несколько приводных заземляющих стержней, подключенных (связанных) к нейтральному проводу электрического служебного входа.

В 2005 году NEC был пересмотрен, чтобы четко требовать включения UFER или электрода в бетонном корпусе (теперь 250,52 (A) (3)) в систему заземляющих электродов для зданий или сооружений, имеющих бетонное основание или фундамент без площадь поверхности менее 20 футов в непосредственном контакте с землей. Это требование применяется ко всем зданиям и сооружениям с фундаментом и / или опорой размером 20 футов или более или более 1/2 дюйма.или армирующая сталь с большей электропроводностью, или 20 футов или более из чистой меди не менее 4 AWG.

Заземляющие стержни бывают разных видов, но чаще всего в заземлении электрических сетей используются заземляющие стержни из оцинкованной стали. Пожалуйста, помните, лучший день для заземляющего стержня (удельное сопротивление) — это день его установки. Коррозия, остекление и т. Д. — все это факторы, снижающие эффективность заземляющих стержней.

Заземляющие стержни обычно делятся на один из следующих размеров; 1/2 дюйма, 5/8 дюйма, 3/4 дюйма и 1 дюйм.Они бывают из стали с покрытием из нержавеющей, оцинкованной или медной стали и могут быть из твердой нержавеющей стали или из мягкой (без плакировки) стали. Их можно приобрести в безрезьбовых или резьбовых частях различной длины. Наиболее распространенная длина — 8 футов и 10 футов. Некоторые из них будут иметь заостренный конец, другие будут иметь резьбу и могут быть соединены вместе для образования более длинных стержней при движении.

Эффективность заземляющего стержня диаметром 1 дюйм над стержнем заземления 1/2 дюйма минимальна при снятии показаний сопротивления. Штанги большего размера выбираются для более сложных почвенных условий.Глиняные или каменистые условия часто требуют использования силовых приводов, похожих на ударные, используемые механиками при работе с вашим автомобилем. Обычно они бывают электрическими или пневматическими. Силовые приводы при использовании с тяжелыми заземляющими стержнями диаметром 1 дюйм будут работать на большинстве почв.

Пруток с медным покрытием диаметром 1 дюйм по сравнению с прутком с медным покрытием 1/2 дюйма в тех же почвенных условиях дает повышение производительности примерно на 23%. Площадь поверхности стержня 1/2 дюйма составляет 1,57 по сравнению со стержнем 1 дюйм при 3,14 (3,14 x.5 = 1,57 и 3,14 х 1 = 3,14). Таким образом, удвоение площади поверхности дает улучшение производительности примерно на 23%.

Покрытие заземляющих стержней предназначено для защиты стали от ржавчины. Большинство думает, что оболочка (медь на стальном стержне) предназначена для увеличения проводимости стержня. Это действительно способствует проводимости, но основная цель покрытия — предохранить стержень от ржавчины.

Не все плакированные заземляющие стержни одинаковы, и важно, чтобы плакированный стержень имел достаточно толстую оболочку.Высококачественные промышленные заземляющие стержни из стали, плакированной медью, могут стоить немного дороже, но они оправдывают небольшие дополнительные затраты.

Когда заземляющий стержень вбивается в каменистую почву, он может поцарапать покрытие, и стержень заржавеет. В сухом виде ржавчина не проводит электричество, это хороший изолятор. Когда он влажный, он все еще не такой проводящий, как медь на стержне. Можно проверить pH почвы, и это должно определить тип используемого стержня. В почвенных условиях с высоким pH следует использовать только высококачественные плакированные стержни.Если почва очень кислая, лучше всего подойдут нержавеющие стержни. Один из самых популярных стержней заземления — стержень заземления из оцинкованной (горячеоцинкованной) стали.

Этот стержень используется с медными и алюминиевыми проводниками для формирования заземления служебного входа в большинстве зданий и жилых домов. Это плохой выбор для определения удельного сопротивления грунта с течением времени. Стыки между заземляющим стержнем и проводом выполняются выше или ниже поверхности земли и в большинстве случаев подвержены постоянной влажности. В лучших условиях соединение двух разнородных материалов со временем приведет к коррозии и увеличению сопротивления.

При соединении разнородных материалов происходит электролиз. Если алюминий используется с медью, которая не покрыта оловом, алюминий будет разъедать медь, оставляя меньшую площадь поверхности для контакта, и соединение может расшататься и даже вызвать искрение. Любой резкий удар или удар могут привести к разрыву соединения. При установке в грунт не рекомендуется использовать луженую проволоку. Олово, свинец, цинк и алюминий более анодны, чем медь, и они пожертвуют (исчезнут) в почве.При подключении над поверхностью почвы в распределительном щите допускается использование луженой проволоки.

Имейте в виду, что статья 250.64 Национального электротехнического кодекса указывает, что алюминиевые заземляющие проводники, плакированные медью или алюминием, не должны соприкасаться с почвой или бетоном и должны заканчиваться не менее чем на 18 дюймов выше готовой конструкции при использовании на открытом воздухе.

Другой способ лечения коррозии стыков — это использование герметика для швов для предотвращения образования мостиков влаги между металлами.Наиболее популярные соединения — частицы меди или графита, погруженные в консистентную смазку. Использование аналогичного материала — лучшее решение, поскольку даже стыковые смеси могут потерять свою эффективность, если их не поддерживать в надлежащем состоянии, но их использование предпочтительнее, чем сухое соединение. Соединения работают путем погружения частиц в металлы, чтобы сформировать чистый стык с низким сопротивлением, лишенным воздуха, когда они находятся под давлением. Это давление обеспечивается за счет затягивания зажима на проводе и стержне.

Проблема разнородных материалов не встречается в стальных стержнях, плакированных медью.Из всех вариантов по разумной цене лучшим выбором будет стальной пруток, плакированный медью с медным проводником. Если бы деньги не были предметом, золотой проводник и заземляющий стержень были бы идеальными, но вряд ли экономически практичными.

Ведомый стержень намного лучше по сравнению со стержнем с обратным наполнением. Плотность ненарушенного грунта намного выше, чем даже уплотненного грунта. Связь грунта со стержнем — ключ к производительности удилища.

Одним из интересных аспектов проводников заземляющих электродов является их необходимость в физической защите.Если для защиты проводника заземляющего электрода используется стальной канал или гильза, то на каждом конце гильзы должны быть предусмотрены некоторые средства, чтобы сделать ее непрерывной электрически с проводником. Этого можно достичь, установив перемычку на каждом конце гильзы и подключив ее к гильзе, оборудованию и заземляющему электроду на каждом конце. Причина, по которой этот метод важен, заключается в том, что в условиях сильного повреждения стальная трубная муфта создает дроссельный эффект (индуктивность муфты создает магнитное поле, которое препятствует изменениям тока), а полное сопротивление системы заземления резко возрастает.Из-за этого — по возможности лучше использовать неметаллическое покрытие соответствующего номинала (таблица 80, где возможны повреждения) для обеспечения физической защиты.

Установить заземляющие стержни несложно, но необходимо соблюдать соответствующие процедуры, а полученные стержни должны быть проверены на работоспособность.

Установка заземляющих стержней глубиной более 10 футов представляет несколько проблем. Могут использоваться секционные стержни (обычно длиной 10-12 футов), соединенные вместе для достижения желаемой глубины.Муфта имеет больший диаметр, чем стержень, и поэтому образует отверстие больше, чем сам стержень. Это создает пустоту муфты, ограничивающую контакт почвы с поверхностью штанги дополнительных секций. Только первая секция будет поддерживать полный контакт стержня с почвой.

Ручное забивание штанг с помощью кувалд, трубных инструментов и других средств не может обеспечить достаточное усилие для проникновения в твердые почвы. Для стержней с глубоким забиванием необходимы механические или механические приводы.

Материал штанги и конструкция муфты должны выдерживать силу, необходимую для прохождения через твердый грунт.

Из-за чрезмерных усилий, необходимых для привода более длинных штанг, муфты винтового типа механически выходят из строя. Резьба обрывается, что приводит к плохому контакту стержня со стержнем. Коническая шлицевая / компрессионная муфта зарекомендовала себя как самая надежная муфта.

Чтобы поддерживать полный контакт стержня с почвой, суспензионная смесь бентонита натрия (встречающейся в природе глины) может быть введена в полость муфты при установке стержней. Это обеспечивает токопроводящий материал между поверхностью стержня и почвой по глубине стержня.Для обычного 60-футового заземляющего стержня требуется от 2 до 5 галлонов бентонита.

Недостатком более длинных и глубоких штанг является то, что соединенные штанги могут изгибаться при столкновении с более плотной почвой. В одном из проектов подрядчику требовалось соединить и установить заземляющий стержень длиной 100 футов для достижения сопротивления 5 Ом в слоистых песчаных почвах. Когда подрядчик соединил и проехал пятую 10-ю секцию штанги, было замечено, что «заостренный конец» заземляющей штанги проходил под автомобилем на ближайшей стоянке.[Глубокое заземление против заземления на мелководье, Computer Power Corporation, Мартин Д. Конрой и Пол Г. Ричард — http://www.cpccorp.com/deep.htm]

Эффективная производительность заземляющих стержней снижается из-за почвенных условий , токи молнии, физические повреждения, коррозия и т. д. и должны регулярно проверяться на сопротивление. То, что в прошлом году земля была хорошей, не значит, что так хорошо сегодня.

Проверили бы его методом испытания на падение потенциала или методом зажима при условии, что установка подходит для измерения сопротивления заземления с использованием метода зажима (см. Следующий раздел для обсуждения инструментов и методов тестирования).

Измерение сопротивления заземления может выполняться только с помощью специально разработанного оборудования. В большинстве приборов используется принцип падения потенциала переменного тока, циркулирующего между вспомогательным электродом и заземляющим электродом при тестировании. Показание выражено в омах и представляет собой сопротивление заземляющего электрода к окружающей земле. Некоторые производители испытательного оборудования недавно представили тестеры сопротивления заземления, которые также будут обсуждаться.

Принцип измерения сопротивления заземления (падение потенциала — трехточечное измерение)

Разность потенциалов между стержнями X и Y измеряется вольтметром, а ток между стержнями X и Z измеряется амперметром (см. Рисунок 13). )

По закону Ома E = IR или R + E / I, тогда мы можем получить сопротивление заземляющего стержня R. Если E = 20 В и I = 1 A, то:

R = E / I = 20/1 = 20

Нет необходимости проводить все измерения при использовании тестера заземления.Тестер заземления будет измерять непосредственно, генерируя собственный ток и отображая сопротивление заземляющего электрода.

Положение вспомогательных электродов при измерениях

Целью точного измерения сопротивления заземления является размещение вспомогательного токового электрода Z на достаточном удалении от тестируемого заземляющего электрода, чтобы вспомогательный потенциальный электрод Y находился за пределами эффективного площадь сопротивления как заземляющего электрода, так и вспомогательного токового электрода.Лучший способ узнать, находится ли вспомогательный потенциальный стержень Y за пределами эффективных областей сопротивления, — это переместить его между X и Z и снять показания в каждом месте. Если вспомогательный потенциальный стержень Y находится в зоне эффективного сопротивления (или оба, если они перекрываются, как на рисунке 14), при его перемещении полученные показания будут заметно отличаться по величине. В этих условиях невозможно определить точное значение сопротивления заземления.

С другой стороны, если вспомогательный потенциальный стержень Y расположен за пределами эффективных областей сопротивления (рис. X), когда Y перемещается вперед и назад, вариация показаний минимальна.Полученные показания должны быть относительно близки друг к другу и являются наилучшими значениями сопротивления заземления X. Показания должны быть нанесены на график, чтобы гарантировать, что они лежат в области «плато», как показано на рисунке 15. Эту область часто называют. как «62% площади».

Измерение сопротивления заземляющих электродов (метод 62%)

Метод 62% был принят после графического рассмотрения и после реальных испытаний. Это наиболее точный метод, но он ограничен тем фактом, что тестируемая земля представляет собой единое целое.

Этот метод применяется только тогда, когда все три электрода находятся на прямой линии, а земля представляет собой один электрод, трубу или пластину, как на рисунке 16.

Рассмотрите рисунок 17, на котором показаны эффективные площади сопротивления (концентрические оболочки) заземляющего электрода X и вспомогательного токового электрода Z. Области сопротивления перекрываются. Если бы показания были сняты путем перемещения вспомогательного потенциального электрода Y к X или Z, тогда разница показаний была бы большой, и нельзя было бы получить показания в разумном диапазоне допуска.Чувствительные области перекрываются и действуют постоянно, увеличивая сопротивление по мере удаления Y от X.

Теперь рассмотрим рисунок 18, на котором электроды X и Z достаточно разнесены, чтобы области эффективного сопротивления не перекрывались. Если мы построим график измеренного сопротивления, мы обнаружим, что уровень измерений сбился, когда Y расположен на 62% расстояния от X до Z, и что показания по обе стороны от начального значения Y (62%), скорее всего, будут в пределах установленный диапазон допуска.Этот диапазон допуска определяется пользователем и выражается как
процента от начального показания +/- 2%, +/- 5%, +/- 10% и т. Д.

Расстояние между вспомогательными электродами

Нет определенного расстояния между Могут быть заданы значения X и Z, поскольку это расстояние зависит от диаметра испытуемого стержня, его длины, однородности испытуемого грунта и, в частности, от эффективных площадей сопротивления. Однако приблизительное расстояние можно определить по следующей таблице, которая дается для однородной почвы и электрода диаметром 1 дюйм (для диаметра ½ дюйма уменьшите расстояние на 10%).

Измерение сопротивления заземления с помощью клещей

В отличие от метода падения потенциала (трехточечного), который требует, чтобы заземляющий стержень или тестируемая система были отключены от энергосистемы, этот метод измерения требует соединения между тестируемым стержнем для подключение электросети к земле. В результате метод предлагает возможность измерения сопротивления без отключения заземления. Он также предлагает преимущество включения заземления и общего сопротивления заземляющего соединения.

Принцип работы

Обычно заземленную систему общей распределительной линии можно смоделировать как простую базовую схему, как показано на рисунке 29, или как эквивалентную схему, показанную на рисунке 30. Если напряжение E приложено к любому измеренному заземляющему элементу Rx через специальный трансформатора, через цепь протекает ток I, который может быть представлен следующим уравнением:

Суть этого состоит в том, что заземляющий электрод для типичной заземленной электрической системы расположен параллельно заземляющим стержням и стыковым заземлением на каждом трансформаторе. и столб, который находится на стороне линии обслуживания, для которого вы тестируете землю.Все параллельные заземления выше по потоку становятся очень и очень малым параллельным сопротивлением по сравнению с сопротивлением стержня, на котором вы отдыхаете (R x ).

Если R x и R 1 , и R 2 …. все примерно одинаковой величины, а n — большое число (например, 200), тогда х будет намного меньше, чем

. Например, если х , 1 , 2 , R 3 и т. Д. Все равны 10 Ом и n = 200, тогда:

В этом примере мы видим, что до тех пор, пока количество заземляющих стержней в системе электроснабжения велико (и проверяемый стержень подключен к ним), то эквивалентное сопротивление боковых стержней линии (.05 Ом) незначительно по отношению к измеряемому сопротивлению заземления (10 Ом).

E / I = Rx установлен. Если I определяется при постоянном значении E, можно получить измеренное сопротивление заземляющего элемента. Снова обратитесь к рисункам 29 и 30. Ток подается на специальный трансформатор через усилитель мощности через генератор постоянного напряжения 1,7 кГц. Этот ток обнаруживается детекторным трансформатором тока. На частоте 1,7 кГц сигнал усиливается фильтрующим усилителем. Это происходит перед аналого-цифровым преобразованием и после синхронного выпрямления.Затем он отображается на жидкокристаллическом дисплее.

Фильтр-усилитель используется для отсечки как тока земли на промышленной частоте, так и высокочастотного шума. Напряжение обнаруживается катушками, намотанными на трансформатор тока впрыска, который затем усиливается, выпрямляется и сравнивается компаратором уровня. Если зажим на CT не закрыт должным образом, и на ЖК-дисплее появляется индикация OPEN или OPEN.

Хотя точность клещей для тестеров сопротивления заземления хороша для многих сценариев, но имеет свои ограничения.Например, если условия заземления на стороне линии неизвестны (на этом основана теория работы клещевого тестера) или если в системе электроснабжения не так много заземлений на стороне линии (заземления полюсов), тогда трехточечный падение потенциального испытания должно быть выполнено.

Прежде чем использовать и полагаться на данные любого измерительного оборудования, убедитесь, что оно откалибровано и сертифицировано. Если вы этого не сделаете, данные, которые он предоставляет, могут оказаться бесполезными.

Это обсуждение методов тестирования сопротивления заземления было взято из не защищенного авторским правом материала из рабочей книги AEMC Instruments «Общие сведения о тестировании сопротивления заземления», издание 6.0.

Какое значение следует искать при выполнении наземного испытания?

При проверке сопротивления системы заземления (стержня, сетки и т. Д.) Целью является низкое сопротивление. Ожидается, что заземляющий электрод будет способен переносить большие токи короткого замыкания на землю, безопасно отклоняя электрическую систему, оборудование и людей. Поэтому требование довольно простое: чем ниже, тем лучше.

Национальный электротехнический кодекс®

Однако единственным превалирующим стандартом является Национальный электротехнический кодекс® (NEC®), который составляет 25 Ом.В этом кодексе термин «эффективно заземленный» определяется как намеренное соединение с землей через заземление или соединения с достаточно низким импедансом и достаточной допустимой нагрузкой по току для предотвращения повышения напряжения, которое может привести к чрезмерной опасности для подключенного оборудования или людей.

Это довольно щадящий стандарт, основанный на практичности и производительности. Нельзя ожидать, что жилой дом будет построен на сетке в четверть акра, как подстанция. Если одиночный стержень не соответствует сопротивлению 25 Ом, тогда в соответствии с Кодексом требуется только параллельное соединение второго стержня.Два вместе даже не требуются для удовлетворения 25 Ом; что-то лучше, чем ничего, и, таким образом, объект имеет базовую защиту от пожара и поражения электрическим током.

Различные тестеры

Существует множество различных типов наземных тестеров на выбор в зависимости от области применения или других факторов. Модель с четырьмя выводами является обязательной для проверки проводимости самого грунта, тогда как модель с тремя выводами используется для испытаний при установке или техническом обслуживании.Может быть полезно иметь дополнительные цифры на дисплее для повышения точности и разрешения для обоих типов измерений. Четвертая клемма может пригодиться, если необходимо устранить небольшое сопротивление выводов, чтобы проводить измерения особенно низкого сопротивления.

Код не о производительности

Коммерческие объекты также должны быть заземлены для уменьшения шума и блуждающих токов, которые, хотя и не опасны с точки зрения возгорания и поражения электрическим током, могут нанести ущерб работе чувствительного высокотехнологичного оборудования.Согласно этому критерию, основное практическое правило для коммерческого и промышленного заземления — 5 Ом. Даже 10 Ом может быть допустимым, если требования к характеристикам не считаются слишком высокими. Но в правильном направлении даже 5 Ом может быть немного выше для оптимальной работы в самых чувствительных ситуациях.

Следовательно, заземление компьютерных залов, центральных телефонных станций, подстанций и т.п. часто требуется для заземления 2 Ом или даже менее 1 Ом. Некоторые отрасли установили свои собственные стандарты, в то время как отдельные компании, возможно, сделали то же самое.Однако высшей инстанцией является инженер-электрик, составивший планы.

Если у вас остались какие-либо вопросы, мы будем рады побеседовать или просмотреть нашу техническую библиотеку для получения дополнительной информации.

Заземление и проверка электрического оборудования на крыше

Ценное оборудование, устанавливаемое на крышах домов, требует тщательного и специального заземления для защиты и правильной работы. Надлежащее заземление типичных установок на крыше, таких как оборудование для кондиционирования воздуха, радиочастотные и микроволновые вышки, а также сотовые станции, диктует, что они должны быть: «Преднамеренно подключены к земле через заземление или соединения с достаточно низким импедансом и имеющие достаточную пропускную способность по току для предотвращения повышение напряжения, которое может привести к чрезмерной опасности для подключенного оборудования или людей.”[Национальный электротехнический кодекс (NEC), статья 100; выделено.] Простое проложение медного проводника к ближайшей удобной точке явно не гарантирует соответствия. Для обеспечения соответствия и адекватной защиты заземляющее соединение (я) должно быть оценено с точки зрения заземления и соединения, а также защиты от молнии. У каждого из этих соображений есть свои требования. Склеивание — наиболее заметный элемент защиты заземления и частый источник проблем. Заманчиво просто протянуть провод к удобной точке контакта, например, к оголенной строительной стали или заземлению системы, и считать оборудование «заземленным».Но NEC определяет «соединение» как: «Постоянное соединение металлических частей для образования электропроводящего пути, который обеспечит непрерывность электрической цепи и способность безопасно проводить любой ток, который может возникнуть». [Статья 100; выделено.] Это более строго, чем простая базовая преемственность. Помните, что простого считывания непрерывности с мультиметра обычного электрика недостаточно. Он устанавливает только наличие электрического пути. Поскольку мультиметр выполняет это измерение при испытательном токе, который обычно составляет всего несколько миллиампер, он мало что говорит о способности защитной системы выдерживать ток короткого замыкания.Корродированное или неплотное соединение или многожильный провод с несколькими неповрежденными жилами может пройти проверку мультиметром. Омметр с низким сопротивлением, который использует высокий испытательный ток, может установить наличие надежного соединения и, безусловно, обеспечить надежный тест через соединение. Но проверка заземляющего проводника по всей длине может потребовать чрезмерно длинных измерительных проводов, которые нагружают испытательную цепь. После проверки хорошей связи, возможно, со строительной сталью или системой водопровода, часто предполагается, что заземление установлено.Но это рассуждение привело к существованию многих «плавучих» объектов, не имеющих предполагаемой наземной защиты. При «сборной» или модульной конструкции балка не может быть соединена со сплошной строительной сталью. Идеальная сварка плавающей балки с точки зрения защиты заземления — это не что иное, как электрический тупик. Необходимо проверить целостность строительной стали, снова удлинив провода и выполнив измерения с низким сопротивлением, но затрудненный доступ может помешать этому. Полезный «ярлык», который применяется во многих ситуациях, но не во всех, — это проверить заземляющий провод с помощью чувствительного миллиамперметра.Большинство коммерческих объектов имеют некоторую «утечку» на землю. Может быть неприятным сюрпризом то, что эта утечка составляет несколько ампер! В таких случаях необходимо исправить значительный электрический дисбаланс. Но наличие утечки в миллиамперах, по крайней мере, указывает на то, что существует непрерывный путь заземления. Не упускайте из виду очевидное. Заземление должно заканчиваться низкоомным контактом с землей, а не просто соединением со строительной сталью или водопроводной трубой. Единственный строгий тест — это тест с использованием специального тестера заземления в соответствии с признанным методом падения потенциала.Вы должны реализовать это на уровне улицы. Установщики оборудования на крыше всегда ждут комплексного одноразового диагностического теста. Такого не существует. Однако популярный в Европе тип приборов, тестер импеданса контура переменного тока, может проверить за одну операцию, что заземление выполнено. Этот прибор использует сетевое питание для имитации замыкания на землю путем кратковременного подключения известного сопротивления между «горячим» и заземлением и измерения падения напряжения в контуре.Измерение импеданса проводится для всей цепи заземления, включая элементы, которые оператор мог упустить из виду, до сетевого трансформатора. Измерение сравнивается с обычно предоставляемыми стандартными значениями. Тестирование контура применимо к любому оборудованию на крыше, находящемуся под напряжением, и может быть выполнено за считанные минуты. Если все правильно подобрано и подключено, тест даст положительное подтверждение. Однако в противном случае проблема все равно должна быть решена путем индивидуального поиска неисправностей каждого элемента на пути дорожного просвета.NEC [статья 250] остается лучшим руководством по приемлемым методам и целям, в то время как Национальная ассоциация противопожарной защиты рассматривает особые аспекты защиты от молний в NFPA 780. Джефф Джоветт (Jeff Jowett) — старший инженер по приложениям в AVO International, производителе электрического испытательного и измерительного оборудования. Он много писал о наземных испытаниях и испытаниях контура переменного тока. С ним можно связаться по телефону (800) 723-2861.

Проверка заземления и соединения в жилых плавательных бассейнах

Ник Громико, CMI® и Кэти МакБрайд

По данным домашней инспекции InterNACHI Стандарты практики, инспектор не требуется для проверки бассейнов или спа.Однако изучение основных компонентов и функций жилых бассейнов с уделением особого внимания постоянным подземным бассейнам поможет инспекторам выявить дефекты в их состоянии и установке. Одним из важных аспектов электробезопасности является правильное заземление и соединение электрического и металлического оборудования бассейнов и спа.

Безопасность прежде всего

Важно помните, что вода и электричество несовместимы. Домашние инспекторы должны посоветовать домовладельцам проконсультироваться или нанять электрика вместо того, чтобы заниматься электричеством работают сами.Всегда соблюдайте осторожность и используйте средства индивидуальной защиты. оборудование. При осмотре будьте внимательны к своему окружению, особенно когда поблизости есть электрические компоненты и вода. близость друг к другу.

Никогда не беритесь за провода или компоненты, не отключая их от источника питания. Носить обувь на резиновой подошве и резиновые перчатки. Не стойте в воде при работе с или осмотр электрооборудования. Обязательно укажите все цепи, относящиеся к оборудование для бассейнов.При осмотре бассейна или спа-салона проверьте, нет ли незаконченного или плохого качество изготовления, особенно электрических компонентов, проводки и монтаж.

При проведении только визуальный осмотр, используйте только глаза, а не руки. Не открывать все, что не требуется открывать, особенно электрические комплектующие, коробки и панели.

Проверить провод заземления соединения, ослабленные провода и кабелепроводы, а также утечки воды. Помните, что вода эффективный проводник электричества.Если есть электрическая проблема с оборудование бассейна, может произойти неисправность и зарядить весь бассейн или спа, что делает его смертельно опасным.


Заземление

Электрический оборудование для бассейнов должно быть заземлено и подключено с помощью электропроводки. в соответствии с NFPA 70 National Electric Code® (NEC®).

Следующие должны быть заземленным:

  • все электрооборудование, связанное с циркуляционной системой;
  • все электрическое оборудование, расположенное в пределах 5 футов от внутренней стены бассейна;
  • все светильники сквозные и подводные светильники;
  • щитовые панели, обеспечивающие электроэнергией оборудование, связанное с бассейном;
  • GFCIs:
  • корпуса трансформаторов и блоков питания;
  • Коробки распределительные
  • ; и двигатели для бассейнов
  • .

Заземляющие и соединительные клеммы должны быть определены как используемые для влажных и агрессивных сред. Заземление и Клеящие соединения должны быть выполнены из меди, медного сплава или нержавеющей стали. Они также должны быть внесены в список для непосредственного захоронения.

Светильники и соответствующее оборудование также должно быть заземлено. Все узлы освещения и светильники должны быть подключены к изолированному медному заземлению провод не менее 12 AWG. Где неметаллический трубопровод установка изолированной медной перемычки 8 AWG может быть требуется в трубопроводе.Светильники для влажных ниш, снабженные гибким шнуром, должны все открытые нетоковедущие металлические части должны быть заземлены.

Заземляющий провод оборудования должен быть проложен с фидерными проводниками между клемма заземления щитка оборудования бассейна и клемма заземления применимого сервисного оборудования.

Соединение
Требуется соединение получить все металлические части электрооборудования и неэлектрический металл части конструкции бассейна / спа для достижения равного электрического потенциала.Склеивание металлических частей электрооборудования образует низкоомный путь для короткого замыкания ток обратно в цепь источника для отключения устройства защиты от перегрузки по току. Для заземления оборудования, следует провести отдельный изолированный медный заземлитель. к клемме заземления оборудования на главной сервисной панели. Листовой металл Винты нельзя использовать для подключения заземляющих проводов.

Следующие части бассейнов, спа и гидромассажных ванн должны быть соединены между собой проводниками не менее 8 AWG, или с использованием жесткого металлического кабелепровода, в том числе:

  • токопроводящих стенок бассейнов, включая заливной бетон, напыленный бетон и бетонные блоки с окрашенными или оштукатуренными покрытиями;
  • Сталь
  • конструкционная арматурная;
  • сетка медная жила;
  • поверхностей по периметру, выступающих на 3 фута по горизонтали за внутренние стены бассейна, спа или гидромассажной ванны.Поверхность по периметру, которая простирается менее чем на 3 фута и отделена от бассейна перегородкой, требует эквипотенциального соединения со стороны бассейна от перегородки. Должно быть обеспечено соединение с поверхностями по периметру, которое должно быть прикреплено к бассейну, спа и гидромассажной ванне, армируя стальную или медную проволочную сетку как минимум в четырех точках вокруг бассейна, спа или гидромассажной ванны. Есть некоторые исключения;
  • металлические детали;
  • подводное освещение;
  • металлическая фурнитура;
  • электрооборудование; и
  • все фиксированные металлические детали.

Склеивание присоединяется металлические части для образования токопроводящей дорожки, которая приведет к электрическая непрерывность между компонентами, чтобы гарантировать, что электрическая потенциал будет одинаковым во всем. Это называется эквипотенциальным склеивание. Сохранение электрического потенциала на одном уровне снижает опасность создается блуждающими токами в бассейне или в земле вокруг бассейна. Соединение (или склеивание) всего металлического в бассейне и вокруг него поможет устранять градиенты напряжения (или различия в электрическом потенциале) с одного часть бассейна в другую, а от металлического оборудования в бассейн вода.

Ниже приводится общий список элементов, требующих эквипотенциального соединения:

  • все металлические части бассейна и спа;
  • металлическая арматура бассейна, спа, бортика, раковины, каркаса и т.д .;
  • кожухи и кронштейны навесных светильников;
  • цельнометаллическая фурнитура;
  • металлические части оборудования;
  • электрические приборы и средства управления;
  • металлические кабели и кабельные каналы, металлические трубы и все металлические части; и
  • водонагревателей
  • номиналом более 50 ампер.

Соединительный провод должен быть не менее 8 AWG. или более крупная цельная медь.

Скрепленные детали

Все металлические части конструкции бассейна, включая арматурный металл, должны быть склеены между собой с использованием одножильных медных проводов (изолированных, покрытых или неизолированных) и не менее 8 AWG, или с жестким металлическим трубопроводом из латуни или другого коррозионно-стойкого металла. Соединения склеиваемых частей должны выполняться в соответствии с NEC® (см. к Разделу 250.8).

Все подводные металлические кожухи осветительных приборов должны быть склеены, а также вся металлическая арматура внутри или прикреплен к конструкции бассейна. Металлические части электрооборудования, относящиеся к система циркуляции воды — включая насосы, моторы, металлические части бассейна крышки и сопутствующее оборудование — должны быть приклеены. Все неподвижные металлические части должны быть склеены, включая кабели в металлической оболочке и кабельные каналы, металлические трубы, металлические навесы, металлические заборы, металлические двери и металлические оконные рамы.

Корпуса бассейнов

Приклеивание к требуется токопроводящая оболочка бассейна. Заливной бетон, напыленный бетон и бетонный блок с покрытиями следует считать проводящими материалами.

Неинкапсулированный конструкционная арматурная сталь должна быть скреплена стяжными проволоками. Инкапсулированный конструкционная арматурная сталь должна быть установлена ​​с медью 12×12 дюймов проводниковая сетка. Сеть должна быть изготовлена ​​из неизолированного твердого материала минимум 8 AWG. медные проводники, соединенные друг с другом во всех точках пересечения, и сетка должны соответствовать форме бассейна, а также быть закреплены внутри бассейна или под ним. более 6 дюймов от внешнего контура раковины бассейна.

Поверхности по периметру

По периметру поверхность, которая считается склеенной, — это площадь, простирающаяся на 3 фута горизонтально за внутренними стенами бассейна, включая грунтовые поверхности и другие виды мощения. Приклеивание к периметру Поверхности могут быть прикреплены к арматурной стальной или медной проводящей сетке бассейна минимум 4 точки по периметру бассейна.

Сводка

электрическое оборудование для бассейнов должно быть заземлено и подключено методы электромонтажа в соответствии с NFPA 70 National Electric Code®.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *