Расчет электролитического конденсатора для выпрямителя – Полупроводниковые выпрямители блоков питания, схемы, онлайн расчёт

Содержание

Полупроводниковые выпрямители блоков питания, схемы, онлайн расчёт

Классификация, свойства, схемы, онлайн калькулятор.
Расчёт ёмкости сглаживающего конденсатора.

«- Почему пульт не работает?
  — Я, конечно, не электрик, но, по-моему, пульт не работает, потому что телевизора нет».

— А для чего нам ещё «нахрен не упал» профессиональный электрик?
— Для чего? Да много для чего! Например, для того, чтобы быть в курсе, что без источника питания, а точнее без преобразователя сетевого переменного напряжения в постоянное, не обходится ни одно электронное устройство.
— А электрик?
— Электрик, электрик… Что электрик?… «Электрик Сидоров упал со столба и вежливо выругался…»

Итак, приступим.
Выпрямитель — это электротехническое устройство, предназначенное для преобразования переменного напряжения в постоянное.
Выпрямитель содержит трансформатор,
необходимый для преобразования напряжения сети Uc до величины U2, определяемой требованиями нагрузки;
вентильную группу (в нашем случае диодную),

которая обеспечивает одностороннее протекание тока в цепи нагрузки;
фильтр, передающий на выход схемы постоянную составляющую напряжения и сглаживающий пульсации напряжения.

Расчёт трансформатора — штука громоздкая, в рамках этой статьи рассматриваться не будет, поэтому сразу перейдём к основным и наиболее распространённым схемам выпрямителей блоков питания радиоэлектронной аппаратуры.
В процессе повествования давайте сделаем допущение, что под величинами переменных напряжений и токов в цепях выпрямителей мы будем подразумевать их действующие (эффективные) значения:
Uдейств = Uампл/√2 и Iдейств = Iампл/√2.
Именно такие значения приводятся в паспортных характеристиках обмоток трансформаторов, да и большинство измерительных приборов отображают — не что иное, как аккурат эффективные значения сигналов переменного тока.

Однополупериодный выпрямитель.


Рис.1

На Рис.1 приведена однофазная однополупериодная схема выпрямления, а также осциллограммы напряжений в различных точках (чёрным цветом — напряжение на нагрузке при отсутствии сглаживающего конденсатора С1, красным — с конденсатором).
В данном типе выпрямителя напряжение с вторичной обмотки трансформатора поступает в нагрузку через диод только в положительные полупериоды переменного напряжения. В отрицательные полупериоды полупроводник закрыт, и напряжение в нагрузку подаётся только с заряженного в предыдущий полупериод конденсатора.

Однополупериодная схема выпрямителя применяется крайне редко и только для питания цепей с низким током потребления ввиду высокого уровня пульсаций выпрямленного напряжения, низкого КПД, и неэффективного использования габаритной мощности трансформатора.

Здесь обмотка трансформатора должна обеспечивать величину тока, равную удвоенному значению максимального тока в нагрузке Iобм = 2×Iнагр  и напряжение холостого хода ~U2 ≈ 0,75×Uн.
При выборе диода D1 для данного типа схем, следует придерживаться следующих его параметров:
Uобр > 3,14×Uн   и   Iмакс > 3,14×Iн

.

Едем дальше.
Двухполупериодный выпрямитель с нулевой точкой.


Рис.2

Схема, приведённая на Рис.2, является объединением двух противофазных однополупериодных выпрямителей, подключённых к общей нагрузке. В одном полупериоде переменного напряжения ток в нагрузку поступает с верхней половины вторичной обмотки через открытый диод D1, в другом полупериоде — с нижней, через второй открытый диод D2.
Как и любая двухполупериодная, эта схема выпрямителя имеет в 2 раза меньший уровень пульсации по сравнению с однополупериодной схемой. К недостаткам следует отнести более сложную конструкцию трансформатора и такое же, как в однополупериодной схеме — нерациональное использование трансформаторной меди и стали.

Каждая из обмоток трансформатора должна обеспечивать величину тока, равную значению максимального тока в нагрузке Iобм = Iнагр  и напряжение холостого хода ~U2 ≈ 0,75×Uн.
Полупроводниковые диоды D1 и D2 должны обладать следующими параметрами:
Uобр > 3,14×Uн   и   Iмакс > 1,57×Iн.

И наконец, классика жанра —
Мостовые схемы двухполупериодных выпрямителей.


Рис.3

На Рис.3 слева изображена схема однополярного двухполупериодного мостового выпрямителя с использованием одной обмотки трансформатора. Графики напряжений на входе и выходе выпрямителя аналогичны осциллограммам, изображённым на Рис.2.
Во время положительного полупериода переменного напряжения ток протекает через цепь, образованную D2 и D3, во время отрицательного — через цепь D1 и D4. В обоих случаях направление тока, протекающего через нагрузку, одинаково.

Если сравнивать данную схему с предыдущей схемой выпрямителя с нулевой точкой, то мостовая имеет более простую конструкцию трансформатора при таком же уровне пульсаций, менее жёсткие требования к обратному напряжению диодов, а главное — более рациональное использование трансформатора и возможность уменьшения его габаритной мощности.
К недостаткам следует отнести необходимость увеличения числа диодов, что приводит к повышенным тепловым потерям за счёт большего падения напряжения в выпрямителе.

Обмотка трансформатора должна обеспечивать величину тока, равную Iобм = 1,41×Iнагр  и напряжение холостого хода ~U2 ≈ 0,75×Uн.
Полупроводниковые диоды следует выбирать исходя из следующих соображений:
Uобр > 1,57×Uн   и   Iмакс > 1,57×Iн.

При наличии у трансформатора двух одинаковых вторичных обмоток, или одной с отводом от середины выводом, однополярная схема преобразуется в схему двуполярного выпрямителя со средней точкой (Рис.3 справа).
Естественным образом, диоды в двуполярном исполнении должны выбираться исходя из двойных значений

Uобр и Iмакс по отношению к однополярной схеме.

Значения Uобр и Iмакс приведены исходя из величин наибольшего (амплитудного) значения обратного напряжения, приложенного к одному диоду, и наибольшего (амплитудного) значения тока через один диод при отсутствии сглаживающих фильтров на выходе.

Конденсатор С1 во всех схемах — это простейший фильтр, выделяющий постоянную составляющую напряжения и сглаживающий пульсации напряжения в нагрузке.
Для выпрямителей, не содержащих стабилизатор, его ёмкость рассчитывается по формулам:
С1 = 6400×Iн/(Uн×Кп)

для однополупериодных выпрямителей и
С1 = 3200×Iн/(Uн×Кп) — для двухполупериодных,
где Кп — это коэффициент пульсаций, численно равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.
Для стабилизированных источников питания ёмкость С1 можно уменьшить в 5-10 раз.

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определённой «чистоты»:
10-3… 10-2   (0,1-1%) — малогабаритные транзисторные радиоприёмники и магнитофоны,
10-4… 10-3   (0,01-0,1%) — усилители радио и промежуточной частоты,
10-5… 10-4

  (0,001-0,01%) — предварительные каскады усилителей звуковой частоты и микрофонных усилителей.» — авторитетно учит нас печатное издание.

Ну и под занавес приведём незамысловатую онлайн таблицу.

КАЛЬКУЛЯТОР РАСЧЁТА ВЫПРЯМИТЕЛЯ ДЛЯ БЛОКА ПИТАНИЯ.

А на следующей странице рассмотрим сглаживающие фильтры силовых выпрямителей, не только ёмкостные, но и индуктивные, а также активные фильтры на биполярных транзисторах.

 

vpayaem.ru

Расчет электролитического конденсатора в сетевом выпрямителе



Расчет электролитического конденсатора в сетевом выпрямителе

Расчет сглаживающего конденсатора в сетевом выпрямителе.

Входной выпрямитель является неотъемлемым элементом большинства преобразователей, питающихся от переменного сетевого напряжения. После диодного моста напряжение на конденсаторе будет иметь вид пилы, верхняя точка которой равна амплитудному напряжению сети (минус падение напряжения на диодах моста, что несущественно для устройств, питающихся от 220В), а нижняя зависит от емкости конденсатора и тока потребления нагрузки выпрямителя. В этой статье приведен пример расчета емкости сглаживающего конденсатора выпрямителя. Более полная информация приведена в статье А.И. Колпакова.

 

В качестве примера приведен расчет конденсатора для реального преобразователя, разработка которого была доведена до практического воплощения,  Pвых=1200Вт (выходное напряжение 60В, ток 20А, КПД около 90%)

 

Исходные данные для расчета:

Uвх = 220В       (напряжение сети)

f = 50Гц             (частота сетевого напряжения)

Задаваемые параметры:

Umin =260В     (минимальное напряжение — задается минимальное значение пилообразного напряжения на конденсаторе)

Iнагр = 5.13А           (ток потребления нагрузки выпрямителя, если известна мощность нагрузки, то ток можно вычислить как I=Pвх/Uмин, в моем случае Pвх=Pвых/КПД, т.е I=(1200/0.9)/260=5.13А )

  1. Вычисляется время заряда конденсатора (в течение которого ток потребляется от сети). Так как напряжение изменяется по синусоидальному закону, используем для расчета формулу тригонометрии:

    t(зар) = (arccos(Umin/Umax))/(2*pi*f)

    Для синусоиды Umax = Uвх*1.41=220*1.41= 310 В (амплитудное сетевое напряжение), т.е.

    t(зар) = (arccos(260/310))/(2*3.141*50) = 0.00183 c

  2. Вычисляется время разряда конденсатора:

    t(раз) = T-t(зар)

    в двухполупериодном выпрямителе T = (1/f)/2 = 1/50/2=0.01с (частота сети в двухполупериодном выпрямителе удваивается)

    t(раз) = 0.01-0.00183 = 0.0082 с

  3. Находится емкость конденсатора, на которой за время t(раз) при токе нагрузки Iнагр напряжение с Umax уменьшится до Umin:

      C = Iнагр*dt/dU,

     в нашем случае dt это  t(раз), а dU является разница (Umax-Umin)

    C = 5.13*0.0082/(310-260) = 0.00084Ф = 840 мкФ

  4. Находим пиковый зарядный ток:

    Ipic = C*dU/dt,

    где dU = Umax-Umin, а dt — это время заряда конденсатора, т.е. t(зар)

    Ipic = 0.00084*(310-260)/0.00183 = 23А

  5. Находим среднеквадратичное значение импульсного тока через конденсатор по формуле:

    Irms = √(I(зар)²+I(разр)²),

    где  I(зар)-среднеквадратичный ток через конденсатор на цикле заряда, а I(разр) — среднеквадратичный ток через конденсатор на цикле разряда.

    Считаем, что ток заряда конденсатора имеет треугольную форму, тогда

    I(зар) = Ipic*√((t(зар)/T)/3) = 23*√((0.00183/0.01)/3) = 5.7A

    На интервале разряда через конденсатор течет ток нагрузки, поэтому

    I(разр) = Iнагр*t(раз)/T = 5.13*0.0082/0.01 = 4.2А

    Итак,  Irms = (5.7²+4.2²) = 7.1А

    Полученное  Irms используется при выборе конденсатора (для электролитических конденсаторов обычно указывается допустимое значение импульсного тока для частоты 100Гц). Если у выбранного конденсатора допустимое значение импульсного тока меньше, необходимо набирать конденсаторы с меньшей емкостью и соединять в параллель исходя из условия: суммарная емкость не меньше рассчитанной, а ток, приходящийся на каждый из конденсаторов (ток по конденсаторам с одинаковой емкостью разделится равномерно), не более допустимого.

     

Расхождение теоретического расчета с практикой.

В заключение скажу, насколько вышеизложенная теория разошлась с практикой, и решайте сами, стоит ли применять эту методику.

Суммарная реальная емкость конденсаторов в моем преобразователе составила 1020мкФ, при этом измеренные осциллографом параметры были следующие:

  • Umin   равнялось примерно 265-275В (близко к расчетному)

  • t(зар) составляло около 3мс (приличная погрешность — по расчету 1.8мс, а учитывая, что емкость выше расчетной, должно быть еще меньше)

  • Ipic составило 21А (близко к расчетному)

www.trzrus.ru

Сглаживающие фильтры питания

В данной статье расскажем про сглаживающие фильтры питания, покажем пример определения выходного напряжения, и подбора сглаживающего конденсатора для источника вторичного питания.

Сглаживающие фильтры питания предназначены для уменьшения пульсаций выпрямленного напряжения. Принцип работы простой – во время действия полуволны напряжения происходит заряд реактивных элементов (конденсатора, дросселя) от источника – диодного выпрямителя, и их разряд на нагрузку во время отсутствия, либо малого по амплитуде напряжения.


 

 

Основные схемы сглаживающих фильтров питания

 

1. Ёмкость2. Г-образный3. Т-образный4. П-образный

Простейшим методом сглаживания пульсаций является применение фильтра в виде конденсатора достаточно большой ёмкости, шунтирующего нагрузку (сопротивление нагрузки). Конденсатор хорошо сглаживает пульсации, если его емкость такова, что выполняется условие:

1 / (ωС) << Rн

Во время действия синусоидального сигнала, когда напряжение на диоде выпрямителя прямое, через диод проходит ток, заряжающий конденсатор до напряжения, близкого к максимальному. Когда напряжение на выходе диодного выпрямителя оказывается меньше напряжения заряда конденсатора, конденсатор разряжается через нагрузку Rн и создает на ней напряжение, которое постепенно снижается по мере разряда конденсатора через нагрузку. В каждый следующий полупериод конденсатор подзаряжается и его напряжение снова возрастает.

Чем больше емкость С и сопротивление нагрузки Rн, тем медленнее разряжается конденсатор, тем меньше пульсации и тем ближе среднее значение выходного напряжения Uср к максимальному значению синусоиды Umax. Если нагрузку вообще отключить, то в режиме холостого хода на конденсаторе получится постоянное напряжение равное Umax, без всяких пульсаций.

Работа простейшего сглаживающего фильтра на конденсаторе в цепи однополупериодного выпрямителя поясняется рисунком и эпюрами:

Красным цветом показано напряжение на выходе выпрямителя без сглаживающего конденсатора, а синим – при его наличии.

Если пульсации должны быть малыми, или сопротивление нагрузки Rн мало, то необходима чрезмерно большая емкость конденсатора, т.е. сглаживание пульсаций одним конденсатором практически осуществить нельзя. Приходится использовать более сложный сглаживающий фильтр.

Работа сглаживающего Г-образного фильтра на конденсаторе и дросселе в цепи двухполупериодного мостового выпрямителя поясняется рисунком и эпюрами:

Как и в примере с однополупериодным выпрямителем, красным цветом показано напряжение на выходе выпрямителя без сглаживающих элементов (конденсатора и дросселя), а синим – при их наличии.

Логично следует, что чем больше ёмкости и индуктивности фильтров, и чем больше в нём реактивных элементов (сложнее фильтр), тем меньше коэффициент пульсаций такого выпрямителя.

В качестве сглаживающих конденсаторов используются электролитические конденсаторы. Чем больше ёмкость, тем лучше. Кроме того, для надёжности, конденсаторы должны быть рассчитаны на напряжение в полтора-два раза превышающее выходное напряжение диодного моста.


 

 

Определение выходного напряжения выпрямителя и выбор сглаживающего фильтра для блока вторичного питания

 

К описанному в статье, следует добавить важную информацию, используемую для конструирования источников (блоков) питания постоянного тока:

1. Любой p-n переход, любого полупроводникового прибора, в том числе диода имеет характеристику – падение напряжения на переходе. Это напряжение обычно указывают в справочниках. Для германиевых диодов оно может быть от 0,3 вольт до 0,5 вольт, а для кремниевых диодов – от 0,6 вольт до 1,5 вольт.

Это значит, что если мы возьмём трансформатор с выходным напряжением 6,3 вольта, выпрямим его однофазным двухполярным мостовым выпрямителем (диодным мостом) у которого на каждом диоде по справочнику падает по 1 вольту (Uпр.= 1 В), то на выходе выпрямителя мы получим всего лишь 4,3 вольта. Напряжение в 2 вольта «потеряется» на 2-х диодах по пути прохождения тока. Начинающие радиолюбители обычно этого не учитывают, потому и недоумевают, почему на выходе маленькое напряжение.

2. Переменный электрический ток измеряется приборами, которые, как правило, показывают его среднее значение, а не максимальное. Максимальное значение переменного напряжения это – значение электрического напряжения соответствующее его максимальному значению синусоиды.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 * Umax

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

Uср = 2 Umax / π = 0,636 * Umax

Значение среднего напряжения — 0,636 за счёт особенностей конструкции измерительных приборов округляется и принимается равной 0,7.

3. Исходя из изложенного выше, можно сделать вывод, который справедлив в том случае, когда нагрузка на блок питания маленькая. Обратите внимание на рисунки ниже.

Выходное напряжение выпрямителей с фильтром питания:

а) с большой нагрузкой :

б) с маленькой нагрузкой :

Эти рисунки поясняют, что при малой нагрузке выходное напряжение выпрямителя с фильтром питания равно максимальной амплитуде синусоиды поступающей на выпрямитель, за вычетом падения напряжения на диодах.

 


 

 

Пример определения выходного напряжения, и подбора сглаживающего конденсатора для источника вторичного питания

 

Рассмотрим случай со средним переменным напряжением на выходе трансформатора, измеренным мультиметром равным 6,3 вольта, и нагрузкой (сопротивлением нагрузки) равной 200 Ом.

Выходное напряжение c мостового выпрямителя будет определено следующим образом:

— максимальное напряжение на выходе трансформатора:

Umax = Uизм / 0,7 = 6,3в / 0,7 = 9 вольт

— максимальное выходное напряжение на выходе выпрямителя:

Uвых. = Umax – UVD1 – UVD2 = 9 – 1 – 1 = 7 вольт

— емкость сглаживающего конденсатора выбираем из условия:

1 / (2*π*f*С) << Rн , откуда 1 / (2*π*f *Rн) << С

— подставим данные:

1/(2*3,14*50*200) = 1,59*10-5 (Фарад) = 15,9 мкФ

— учитывая условие, при котором емкость конденсатора должна быть намного больше полученному по приведенному условию, выбираем конденсатор ёмкостью более чем в пять раз больше расчётного значения — 100 мкФ*16 вольт.


Схема, состоящая из трансформатора, выпрямителя и сглаживающего фильтра является источником нестабилизированного питания. От таких источников можно питать любые устройства, потребляющие слабый ток, не критичные к наличию пульсаций и нестабильности питающего напряжения. Для максимального подавления пульсаций и стабилизации питающего напряжения применяют Стабилизаторы напряжения.

meanders.ru

РадиоКот :: Выпрямители. Как и почему.

РадиоКот >Обучалка >Аналоговая техника >Основы — слишком просто? Вам сюда. Продолжаем. >

Выпрямители. Как и почему.

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Расчет выпрямителя


Расчет выпрямителя


  Поскольку в преобладающем большинстве конструкций блоков питания используется двухполупериодный выпрямитель, диоды которого включены по мостовой схеме (рис. 1), о выборе его элементов здесь и пойдет разговор. Рассчитать выпрямитель — значит правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое для выпрямления с вторичной обмотки сетевого трансформатора. Исходными данными для расчета выпрямителя служат: требуемое напряжение на нагрузке (Uн) и потребляемый ею максимальный ток (Iн).

Расчет ведут в таком порядке:

1. Определяют переменное напряжение, которое должно быть на вторичной обмотке сетевого трансформатора:

U2 = B Uн,

где: Uн — постоянное напряжение на нагрузке, В;
В — коэффициент, зависящий от тока нагрузки, который определяют по табл. 1.

Коэффициент Ток нагрузки,А
0,1 0,2 0,4 0,6 0,8 1,0
В 0,8 1,0 1,9 1,4 1,5 1,7
С 2,4 2,2 2,0 1,9 1,8 1,8

2. По току нагрузки определяют максимальный ток, текущий через каждый диод выпрямительного моста:

Iд = 0,5 С Iн,

где: Iд — ток через диод, А;
Iн — максимальный ток нагрузки, А;
С — коэффициент, зависящий от тока нагрузки (определяют по табл. 1).

3. Подсчитывают обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

Uобр = 1,5 Uн,

где: Uобр — обратное напряжение, В;
Uн — напряжение на нагрузке, В.

4. Выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

5. Определяют емкость конденсатора фильтра:

Сф = 3200 Iн / Uн Kп,

где: Сф — емкость конденсатора фильтра, мкФ;
Iн — максимальный ток нагрузки. A;
Uн — напряжение на нагрузке, В;
Kп — коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения).

  Для различных нагрузок коэффициент пульсаций не должен превышать определенного значения, иначе в динамической головке или громкоговорителе будет прослушиваться фон переменного тока. Для питания портативных приемников и магнитофонов, например, допустим коэффициент пульсации выпрямленного напряжения в пределах 10-3…10-2, усилителей ВЧ и ПЧ — 10-4…10-3, предварительных каскадов усилителей НЧ и микрофонных усилителей — 10-5…10-4. Если выходное напряжение выпрямителя будет дополнительно стабилизироваться транзисторным стабилизатором напряжения, то расчетная емкость конденсатора фильтра может быть уменьшена в 5…10 раз.
Источник: shems.h2.ru

www.qrz.ru

Расчет конденсатора для выпрямителя

Предложенная методика расчета трансформаторного источника питания позволяет рассчитать его основные параметры, такие как емкость сглаживающего фильтра, основные параметры диодов и трансформатора. Для упрощения расчета можно воспользоваться онлайн калькулятором. Расчет ведется по следующей методике:. По полученным данным подбираем диоды у которых значения тока и обратного напряжения больше или равны расчетным. Выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные. A; U н — напряжение на нагрузке, В; K п — коэффициент пульсации выпрямленного напряжения отношение амплитудного значения переменной составляющей частотой Гц на выходе выпрямителя к среднему значению выпрямленного напряжения.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как выбрать диодный мост с нужными параметрами. Какие диоды нужны для диодного выпрямителя.

Как рассчитать емкость гасящего конденсатора простого блока питания


Цель расчета выпрямителей: определить токи и напряжения обмоток трансформатора, его мощность выбрать диоды и найти емкость конденсаторов фильтра. Надо отметить, что в большинстве случаев применяют простейшие фильтры в виде конденсатора большой емкости.

Электрическая принципиальная схема двухполупериудного полупроводникового источника питания. U ОБР. Определяем внутреннее сопротивление вентиля. Определяем внутреннее сопротивление обмоток трансформатора, приведенное ко вторичной обмотке:. Определяем основной расчетный коэффициент А.

Определяем вспомогательные коэффициенты B , F , D. Вспомогательные коэффициенты B, F, D определяются по графикам, приведенным в конце расчёта. С помощью коэффициентов B , F , D , по расчётным формулам, проводим расчет всех указанных параметров выпрямителя. Данным параметрам подходит диод КДА имеющий следующие характеристики:. Выбираем электролитический конденсатор удовлетворяющий параметрам расчёта:.

Хочу больше похожих работ Учебные материалы. Главная Опубликовать работу Правообладателям Написать нам О сайте. Полнотекстовый поиск: Где искать:. Распространение радиоволн в тропосфере. Тропосферой называется приземная область атмосферы, простирающаяся до высоты примерно 10—15 км.

Тропосфера неоднородна как в вертикальном направлении, Избирательный усилитель с 2-т мостом. Избирательные усилители предназначены для усиления сигналов в некоторой узкой полосе частот, то есть избирательно. Их частотная характеристика должна обе Влияние инженерной психологии и эргономики на организацию рабочего места программиста. Неуклонный рост сложности приборов обуславливает повышенный интерес к вопросам диагностирования их технического состояния.

Одной из разновидностей мет Технико-экономический проект развития ГТС 2. В условиях ускорения темпов научно — технического прогресса, увеличения объёмов производства, усложнения межпроизводственных связей, расширения сфер в Расчёт двухполупериодного источника питания. Сохрани ссылку в одной из сетей:. Загрузить файл. Электроника и микросхемотехника. Двухполупериодный управляемый выпрямитель 43 4. Однофазная двухполупериодная схема выпрямления 8. Основные электрические параметры Необходимо спроектировать стабилизированный источник питания , обеспечивающего поддержание Выбираем конденсатор К Рассмотрим варианты однополупериодного и двухполупериодного выпрямителей.

Простейшая однополупериодная Определить полную мощность, расходуемую источником питания по формуле 8. Напряжение от источников питания в машинное помещение Расчёт сечения может производится: по Рисунок 6. Выберем напряжение Uin1 и Uin2 — 17В


Пример расчета выпрямителя напряжения.

Регистрация Вход. Ответы Mail. Вопросы — лидеры Не взлетает квадрокоптер 1 ставка. Перестал работать Mi band 4 1 ставка. Роботы уничтожат ваши рабочие места?

Исходными данными для расчета выпрямителя, работающего на режим работы схемы, емкость конденсатора, нагружающего выпрямитель.

Простой расчет выпрямителя с сетевым трансформатором

Блог new. Технические обзоры. Опубликовано: , Эту страницу нашли, когда искали : ремонт блока питания с гасящим конденсатором в 12 , нагрузка через конденсатор , какой конденсаторн нужен на выходе 12в ,6а , 24 через конденсатор , конденсатор на вольт 0. Версия для печати. Плата-конструктор регулируемого блока питания, или правильный блок питания должен быть тяжелым часть 2. Я думаю что некоторые читатели еще помнят мой обзор конструктора для сборки линейного лабораторного DC-DC преобразователь, как это иногда бывает. Сегодня я напишу не только о товаре, который я тестировал, а и о том, как иногда бывает, когда

Расчет выпрямителя

Иногда возникает необходимость изготовления и расчета собственного блока питания по своим параметрам. И в большинстве случаев достаточно воспользоваться простыми практически пригодными расчетами. Основа выпрямительного устройства — это выпрямительные диоды и сглаживающий конденсатор фильтр. Исходными данными для расчета выпрямителя служат требуемое напряжение на нагрузке Uн и потребляемый ею максимальный ток Iн. Расчет ведут поэтапно.

Что вам в них?

Расчет мостового выпрямителя

Использование диодов в выпрямлении переменного тока. Виды, принцип работы, расчет выпрямителей 18 июля. Так уж сложилось, что переменный ток можно передавать на большие расстояния с меньшей потерей, чем постоянный. Однако, большинство современной электронной аппаратуры работает на постоянном токе. Поэтому, для их работоспособности, требуется преобразовать переменный ток в постоянный.

Расчет фильтра выпрямителя

Простая и популярная среди радиолюбителей программа для расчета мостового выпрямителя. Доброго дня уважаемые Радиолюбители! Наиболее часто радиолюбители в своей практике строят блоки питания на основе двухполупериодного выпрямителя по мостовой схеме с использованием в качестве сглаживающего фильтра конденсатор. Программа не только рассчитывает необходимые для конструирования выпрямителя характеристики, но также предлагает варианты выпрямительных диодов и сглаживающих конденсаторов. Пользоваться программой очень просто.

Исходными данными для расчета выпрямителя, работающего на режим работы схемы, емкость конденсатора, нагружающего выпрямитель.

Упрощенный расчет выпрямителя

Портал QRZ. RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе.

Полупроводниковые однофазные выпрямители блоков питания.

ВИДЕО ПО ТЕМЕ: кондер в мосте диодном

Входной выпрямитель является неотъемлемым элементом большинства преобразователей, питающихся от переменного сетевого напряжения. После диодного моста напряжение на конденсаторе будет иметь вид пилы, верхняя точка которой равна амплитудному напряжению сети минус падение напряжения на диодах моста, что несущественно для устройств, питающихся от В , а нижняя зависит от емкости конденсатора и тока потребления нагрузки выпрямителя. В этой статье приведен пример расчета емкости сглаживающего конденсатора выпрямителя. Более полная информация приведена в статье А.

Классификация, свойства, схемы, онлайн калькулятор. Расчёт ёмкости сглаживающего конденсатора.

Расчет электролитического конденсатора для выпрямителя – »

Цель расчета выпрямителей: определить токи и напряжения обмоток трансформатора, его мощность выбрать диоды и найти емкость конденсаторов фильтра. Надо отметить, что в большинстве случаев применяют простейшие фильтры в виде конденсатора большой емкости. Электрическая принципиальная схема двухполупериудного полупроводникового источника питания. U ОБР. Определяем внутреннее сопротивление вентиля. Определяем внутреннее сопротивление обмоток трансформатора, приведенное ко вторичной обмотке:. Определяем основной расчетный коэффициент А.

Полигон призраков

Анализ работы выпрямителя гармонического напряжения при нагрузке, начинающейся с емкостного элемента. Проведем анализ работы выпрямителя гармонического напряжения с нагрузкой, начинающейся с емкостного элемента, и рассмотрим процессы в многофазных схемах выпрямителей рис. Возьмем в качестве вентиля идеализированный диод с потерями, а в трансформаторе учтем только сопротивления обмоток. Примем за r сумму активных сопротивлений вентиля и обмоток трансформатора рис.


all-audio.pro

Расчет конденсатора выпрямителя

Способ получения постоянного тока из переменного синусоидального идеализированный вид при использовании одно или двух полупериодного выпрямителя имеет ряд недостатков, о которых мы и поговорим далее. Главным недостатком такого выпрямителя является пульсирующее напряжение. Избавление от пульсаций напряжения, их сглаживание — необходимое условие для корректной работы многих электрических приборов, особенно это касается радиоаппаратуры, где такой вид напряжения вносит хорошо заметные помехи. Так называемые, сглаживающие фильтры применяют для устранения пульсаций выходного тока и напряжения. Так же используют различные комбинации выше перечисленных фильтров для достижения необходимого качества напряжения. Принцип работы сглаживающих фильтров основывается на свойствах конденсатора и катушки индуктивности.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Расчёт простейшего ёмкостного балласта

Расчет сглаживающего конденсатора выпрямителя.


Структурная схема и классификация выпрямителей Выпрямитель можно представить в виде структурной схемы, в которую входят: силовой трансформатор СТ , вентильный блок ВБ , фильтрующее устройство ФУ , цепь нагрузки Н.

Основные схемы выпрямления Однофазную, однополупериодную схему обычно применяют при выпрямленных токах до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризуется низким коэффициентом использования трансформатора по мощности и большими пульсациями выпрямленного напряжения. Двухполупериодная схема со средней точкой схема Миткевича Однофазный двухполупериодный выпрямитель со средним нулевым выводом вторичной обмотки трансформатора рис.

Обратное напряжение на диодах выше в этой схеме, чем в мостовой. Мостовая схема схема Греца Однофазная мостовая схема характеризуется высоким коэффициентом использования трансформатора по мощности и поэтому может быть рекомендована для использования в устройствах повышенной мощности при выходных напряжениях от десятков до сотен вольт; пульсации такие же, как в предыдущей схеме.

Достоинства — меньшее обратное напряжение на диодах в 2 раза, меньшие габариты, выше коэффициент использования трансформатора, чем в схеме со средней точкой. Недостаток — на диодах падение напряжения в 2 раза больше. Трехфазная нулевая схема звезда-звезда В схему трехфазного выпрямителя со средней нулевой точкой входит трансформатор со вторичными обмотками, соединенными звездой.

Выводы вторичных обмоток связаны с анодами трех вентилей. Нагрузка подключается к общей точке соединения катодов вентилей и среднему выводу вторичных обмоток. Трехфазная мостовая схема схема Ларионова Трехфазная мостовая схема обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации шестипульсная выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра.

Коэффициент использования трансформатора для различных схем выпрямления при активной нагрузке Аналогично рассмотренной схеме со средней точкой могут быть определены габаритная мощность и коэффициент использования трансформатора по мощности для любых схем выпрямления при чисто активной нагрузке.

Выпрямительные диоды Выпрямительные свойства полупроводниковых диодов характеризуются рядом параметров, определяющих токи и напряжения в прямом и обратном направлениях. Эти параметры определяются вольт-амперной характеристикой ВАХ диода.

Выбор вентилей выпрямительного устройства. Классификация сглаживающих фильтров. Коэффициенты фильтрации и сглаживания фильтра Действие сглаживающего фильтра можно характеризовать коэффициентом фильтрации , который определяется, как отношение значений пульсации на входе и выходе фильтра:. Особенности применения электролитических конденсаторов в выпрямительных устройствах При проектировании устройств электропитания схема фильтра и его параметры определяются исходя из требования сглаживания пульсаций выходного напряжения выпрямителя.

На практике в фильтрах выпрямительных устройств наибольшее применение нашли электролитические конденсаторы ЭК. Модуль полного комплексного сопротивления реального конденсатора , исходя из схемы замещения без учета тока утечки , на частоте f переменного напряжения тока. Производители выпускают серии ЭК с различными сроками службы. Методики анализа и расчета выпрямителей Анализ работы выпрямителя гармонического напряжения при нагрузке, начинающейся с емкостного элемента.

Важно отметить заметную зависимость выходного напряжения выпрямителя от емкости выходного конденсатора. Трудность возникает при расчете коэффициента пульсаций выпрямителей , поскольку, положив , приняли пульсации выпрямителя равными нулю. Однако если пульсации выходного напряжения небольшие, то и отклонения формы тока вентиля от косинусоидальной также окажутся небольшими. В результате для расчета переменной составляющей тока всех вентилей, проходящей через выходной конденсатор выпрямителя и определяющий его пульсации, можно воспользоваться формулой 2.

Так как выходное напряжение выпрямителя фильтруется сглаживающим фильтром, который сильно ослабляет высшие гармоники выходного напряжения, то достаточным для практики явится расчет коэффициента пульсаций по первой гармонике. Примеры расчета выпрямителя с емкостным фильтром Исходными данными для расчета выпрямителя при нагрузке, начинающейся с емкостного элемента, являются: напряжение питающей сети ; число фаз питающей сети m ; частота питающей сети ; выпрямленное напряжение ; выпрямленный ток.

Находим коэффициент трансформации. Расчет выпрямителей при нагрузке, начинающейся с индуктивного элемента Выпрямитель гармонического напряжения при нагрузке, начинающейся с индуктивного элемента. Модель выпрямителя с учетом активных сопротивлений в фазах В модели выпрямителя, учитывающей влияние сопротивлений r в фазах выпрямителя, то есть внутреннее сопротивление вентилей идеализированный вентиль с потерями и сопротивления обмоток трансформатора, это влияние сводится в основном к снижению выпрямленного напряжения пропорционально току.

Методика расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента Исходные данные для расчета выпрямителя при нагрузке, начинающейся с индуктивного элемента, должны содержать: напряжение питающей сети ; число фаз питающей сети ; частоту питающей сети ; выпрямленное напряжение ; выпрямленный ток.

Схемы выпрямителей, фильтров. Расчет устройств. Нагрузка подключается к общей точке соединения катодов вентилей и среднему выводу вторичных обмоток Трехфазная мостовая схема схема Ларионова Трехфазная мостовая схема обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации шестипульсная выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра.

Коэффициент использования трансформатора для различных схем выпрямления при активной нагрузке Аналогично рассмотренной схеме со средней точкой могут быть определены габаритная мощность и коэффициент использования трансформатора по мощности для любых схем выпрямления при чисто активной нагрузке Выпрямительные диоды Выпрямительные свойства полупроводниковых диодов характеризуются рядом параметров, определяющих токи и напряжения в прямом и обратном направлениях.

Модуль полного комплексного сопротивления реального конденсатора , исходя из схемы замещения без учета тока утечки , на частоте f переменного напряжения тока Производители выпускают серии ЭК с различными сроками службы Методики анализа и расчета выпрямителей Анализ работы выпрямителя гармонического напряжения при нагрузке, начинающейся с емкостного элемента Важно отметить заметную зависимость выходного напряжения выпрямителя от емкости выходного конденсатора.

Находим коэффициент трансформации Расчет выпрямителей при нагрузке, начинающейся с индуктивного элемента Выпрямитель гармонического напряжения при нагрузке, начинающейся с индуктивного элемента Модель выпрямителя с учетом активных сопротивлений в фазах В модели выпрямителя, учитывающей влияние сопротивлений r в фазах выпрямителя, то есть внутреннее сопротивление вентилей идеализированный вентиль с потерями и сопротивления обмоток трансформатора, это влияние сводится в основном к снижению выпрямленного напряжения пропорционально току.

Ядерные реакторы. Сети Искусство.


Расчет мостового выпрямителя

Структурная схема и классификация выпрямителей Выпрямитель можно представить в виде структурной схемы, в которую входят: силовой трансформатор СТ , вентильный блок ВБ , фильтрующее устройство ФУ , цепь нагрузки Н. Основные схемы выпрямления Однофазную, однополупериодную схему обычно применяют при выпрямленных токах до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризуется низким коэффициентом использования трансформатора по мощности и большими пульсациями выпрямленного напряжения. Двухполупериодная схема со средней точкой схема Миткевича Однофазный двухполупериодный выпрямитель со средним нулевым выводом вторичной обмотки трансформатора рис. Обратное напряжение на диодах выше в этой схеме, чем в мостовой. Мостовая схема схема Греца Однофазная мостовая схема характеризуется высоким коэффициентом использования трансформатора по мощности и поэтому может быть рекомендована для использования в устройствах повышенной мощности при выходных напряжениях от десятков до сотен вольт; пульсации такие же, как в предыдущей схеме. Достоинства — меньшее обратное напряжение на диодах в 2 раза, меньшие габариты, выше коэффициент использования трансформатора, чем в схеме со средней точкой.

По формуле зависимости напряжения на конденсаторе от заряда и ёмкости. После выпрямителя будет step-down преобразователь.

Сглаживающие фильтры питания

Входной выпрямитель является неотъемлемым элементом большинства преобразователей, питающихся от переменного сетевого напряжения. После диодного моста напряжение на конденсаторе будет иметь вид пилы, верхняя точка которой равна амплитудному напряжению сети минус падение напряжения на диодах моста, что несущественно для устройств, питающихся от В , а нижняя зависит от емкости конденсатора и тока потребления нагрузки выпрямителя. В этой статье приведен пример расчета емкости сглаживающего конденсатора выпрямителя. Более полная информация приведена в статье А. Вычисляется время заряда конденсатора в течение которого ток потребляется от сети. Так как напряжение изменяется по синусоидальному закону, используем для расчета формулу тригонометрии:. Находится емкость конденсатора, на которой за время t раз при токе нагрузки Iнагр напряжение с Umax уменьшится до Umin:. Если у выбранного конденсатора допустимое значение импульсного тока меньше, необходимо набирать конденсаторы с меньшей емкостью и соединять в параллель исходя из условия: суммарная емкость не меньше рассчитанной, а ток, приходящийся на каждый из конденсаторов ток по конденсаторам с одинаковой емкостью разделится равномерно , не более допустимого.

Полигон призраков

В качестве исходной схемы возьмем мостовую схему, рис. Структурная схема вторичного источника питания приведена на рис. Рядом с ней приведено название и назначение всех составных частей схемы. Выбираем схему выпрямителя согласно номера варианта, приводим ее в отчет и поясняем назначение всех элементов схемы. Тр — трансформатор напряжения, служит для преобразования амплитуды переменного напряжения до необходимой величины;;.

Приведено описание упрощенного расчета источника питания на основе сетевого трансформатора и мостового выпрямителя. Простой блок питания состоит из силового трансформатора, выпрямителя и подавляющего пульсации конденсатора.

Простой расчет выпрямителя с сетевым трансформатором

Простая и популярная среди радиолюбителей программа для расчета мостового выпрямителя. Доброго дня уважаемые Радиолюбители! Наиболее часто радиолюбители в своей практике строят блоки питания на основе двухполупериодного выпрямителя по мостовой схеме с использованием в качестве сглаживающего фильтра конденсатор. Программа не только рассчитывает необходимые для конструирования выпрямителя характеристики, но также предлагает варианты выпрямительных диодов и сглаживающих конденсаторов. Пользоваться программой очень просто. В разделе входные данные надо ввести: — необходимое напряжение на выходе выпрямителя; — величину тока, потребляемого нагрузкой; — а также допустимую величину пульсаций выпрямленного напряжения.

Расчет мостового выпрямителя

Классификация, свойства, схемы, онлайн калькулятор. Расчёт ёмкости сглаживающего конденсатора. Это нужно знать Весь перечень знаний находится на этой странице. Весь перечень знаний находится на этой странице. Полупроводниковые однофазные выпрямители блоков питания. Да много для чего!

Точный расчет мостового выпрямителя довольно сложен, так как на выходе мостового выпрямителя со сглаживающим конденсатором лежит в.

Расчёт выпрямителя с емкостным фильтром

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео.

Как рассчитать емкость гасящего конденсатора простого блока питания

ВИДЕО ПО ТЕМЕ: Блок питания с регулировкой напряжения

Программа рассчитывает ёмкость сглаживающего конденсатора на выходе выпрямителя. Методика расчёта авторская. Программа рассчитывает параметры выпрямителя в установившемся режиме. Переходные процессы, например, при включении выпрямителя, не учитываются.

По формуле зависимости напряжения на конденсаторе от заряда и ёмкости.

Пример расчета выпрямителя напряжения.

Что вам в них? Схемы принципиальные Библиотечка литературы Радиолюбительская хрестоматия Новости электроники Карта сайта Магазинчик на сайте Загрузка Топ 10! На рис. Простая часовая станция для дачи У многих радиолюбителей наверняка сохранились широко распространенные ранее часы с шаговым механизмом.

Расчет электролитического конденсатора для выпрямителя – »

Простейшим выпрямителем является схема однофазного однополупериодного выпрямителя рис. Однофазный однополупериодный выпрямитель а и временные диаграммы, поясняющие его работу б. Таким образом, среднее значение напряжения на нагрузочном резисторе будет равно:. Спектральный состав выпрямленного напряжения имеет вид разложение в ряд Фурье :.


all-audio.pro

Отправить ответ

avatar
  Подписаться  
Уведомление о