Расчет многослойной катушки индуктивности онлайн: On-line калькуляторы, расчет многослойной катушки индуктивности

Содержание

Расчет многослойной катушки индуктивности онлайн

Онлайн помощник домашнего мастера

Катушки индуктивности являются неотъемлемым элементом различных радиоэлектронных схем. Основным её свойством является наличие большой индуктивности при малой емкости и низком активном сопротивлении. В этом обзоре описано, как выполнить самостоятельный расчет катушки индуктивности, какими внешними параметрами она должна обладать, что бы были достигнуты требуемые рабочие параметры.

Калькулятор расчета катушки индуктивности

Индуктивность можно рассчитать самостоятельно или выполнить онлайн расчет с помощью специального калькулятора. Для автоматического расчета наиболее часто используется программа Coil32. Её можно бесплатно скопировать с одноименного сайта либо воспользоваться онлайн калькулятором. Пользоваться этой программой достаточно просто.

При работе с ней сначала нужно выбрать тип изделия (однослойная или многослойная, с ферритовым сердечником или без него, возможны другие варианты).

Задав в калькуляторе расчет геометрических параметров, диаметр провода, число витков, свойства сердечника можно с помощью программы получить ожидаемую индуктивность изделия. Для получения необходимой величины можно в расчетах изменять число витков и диаметр провода.

Собранное изделие по рассчитанным параметрам можно проверить с помощью тестера на соответствие необходимым параметрам. Такой прибор называется LC тестер. Он измеряет индуктивность катушек и ёмкость конденсаторов. При отклонении полученных параметров от заданной величины можно увеличить либо уменьшить количество витков проволоки на изделии.

При желании можно выполнить самостоятельно расчет индуктивности катушки без сердечника или с ним. Единой формулы нет, они строго индивидуальны для каждого случая. В общем случае они прямо пропорциональны количеству витков и диаметру витков. Например, расчет однослойной цилиндрической обмотки выполняют по формуле:

L = (D/10)2*n2/(4.5*D+10*l)

Где L – индуктивность в микро Генри, D – её диаметр в мм, L – длина в мм, n – число витков. Эта эмпирическая формула очень проста, она не учитывает диаметр проволоки, рабочую частоту на которой планируется применять изделие.

Расчет индуктивности катушки с сердечником более сложен. С его добавлением значение индуктивность сильно возрастает. В расчетах в формулу добавляются параметры магнитных свойств сердечника. Ещё более сложными являются формулы расчёта многослойных катушек или катушек тороидальной формы. При редком или первичном использовании лучше всего воспользоваться специальными калькуляторами. Полученные расчеты можно проверить по формулам вручную. В любом случае после изготовления можно проверить параметры собранного изделия и при необходимости их изменить.

Конвертер величин

На рисунке выше показана однослойная катушка индуктивности: Dc — диаметр катушки, D — диаметр оправки или каркаса катушки, p — шаг намотки катушки, d — диаметр провода без изоляции и di — диаметр провода с изоляцией

Для расчета индуктивности LS применяется приведенная ниже формула из статьи Р.

Уивера (R. Weaver) Численные методы расчета индуктивности:

Здесь

D — диаметр оправки или каркаса катушки в см,

l — длина катушки в см,

N — число витков и

L — индуктивность в мкГн.

Эта формула справедлива только для соленоида, намотанного плоским проводом. Это означает, что катушка намотана очень тонкой лентой без зазора между соседними витками. Она является хорошим приближением для катушек с большим количеством витков, намотанных проводом круглого сечения с минимальным зазором между витками. Американский физик Эдвард Беннетт Роса (Edward Bennett Rosa, 1873–1921) работавший в Национального бюро стандартов США (NBS, сейчас называется Национальное бюро стандартов и технологий (NIST) разработал так называемые корректирующие коэффициенты для приведенной выше формулы в форме (см. формула 10.1 в статье Дэвида Найта, David W. Knight):

Здесь LS — индуктивность плоской спирали, описанная выше, и

где ks — безразмерный корректирующий коэффициент, учитывающий разницу между самоиндукцией витка из круглого провода и витка из плоской ленты; km — безразмерный корректирующий коэффициент, учитывающий разницу в полной взаимоиндукции витков из круглого провода по сравнению с витками из плоской ленты; Dc — диаметр катушки в см, измеренный между центрами проводов и N — число витков.

Величина коэффициента Роса km определяется по формуле 10.18 в упомянутой выше статье Дэвида Найта:

Коэффициент Роса ks, учитывающий различие в самоиндукции, определяется по формуле 10.4 в статье Д. Найта:

Здесь p — шаг намотки (расстояние между витками, измеренное по центрам проводов) и d — диаметр провода. Отметим, что отношение p/d всегда больше единицы, так как толщина изоляции провода конечна, а минимально возможное расстояние между двумя соседними витками с очень тонкой изоляцией, расположенными без зазора, равна диаметру провода d.

Факторы, влияющие на индуктивность катушки

На индуктивность катушки влияют несколько факторов.

  • Количество витков. Катушка с большим количеством витков имеет бóльшую индуктивность по сравнению с катушкой с меньшим количеством витков.
  • Длина намотки. Две катушки с одинаковым количеством витков, но разной длиной намотки имеют разную индуктивность. Более длинная катушка имеет меньшую индуктивность.
    Это связано с тем, что магнитное поле менее компактной катушки более слабое и оно не может хорошо концентрироваться в растянутой катушке.
  • Диаметр катушки. Две плотно намотанные катушки с одинаковым количеством витков и разными диаметрами имеют разную индуктивность. Катушка с бóльшим диаметром имеет бóльшую индуктивность.
  • Сердечник. Для увеличения индуктивности в катушку часто вставляется сердечник из материала с высокой магнитной проницаемостью. Сердечники с более высокой магнитной проницаемостью позволяют получить более высокую индуктивность. Сердечники, изготовленные из магнитной керамики — феррита, часто используются в катушках и трансформаторах различных электронных устройств, так как у них очень низкие потери на вихревые токи.

Упрощенная эквивалентная схема реальной катушки индуктивности: Rw — сопротивление обмотки и ее выводов; L — индуктивность идеальной катушки; Rl — сопротивление вследствие потерь в сердечнике; и Cw — паразитная емкость катушки и ее выводов.

Эквивалентная схема реальной катушки индуктивности

В этом калькуляторе мы рассматривали идеальную катушку индуктивности. В то же время, в реальной жизни таких катушке не бывает. Катушки обычно конструируются с минимальными размерами таким образом, чтобы они помещались в миниатюрное устройство. Любую реальную катушку индуктивности можно представить в виде идеальной индуктивности, к которой параллельно подключены емкость и сопротивление, а еще одно сопротивление подключено последовательно. Параллельное сопротивление учитывает потери на гистерезис и вихревые токи в магнитном сердечнике. Это параллельное сопротивление зависит от материала сердечника, рабочей частоты и магнитного потока в сердечнике.

Паразитная емкость появляется в связи с тем, что витки катушки находятся близко друг к другу. Любые два витка провода можно рассмотреть как две обкладки маленького конденсатора. Витки разделяются изолятором, таким как воздух, изоляционный лак, лента или иной изоляционный материал.

Относительная диэлектрическая проницаемость материалов, используемых для изоляции, увеличивает емкость обмотки. Чем выше эта проницаемость, тем выше емкость. В некоторых случаях дополнительная емкость может появиться также между катушкой и противовесом, если катушка расположена над ним. На высоких частотах реактивное сопротивление паразитной емкости может быть весьма высоким и игнорировать его нельзя. Для уменьшения паразитной емкости используются различные методы намотки катушек.

Для уменьшения паразитной емкости катушки с высокой добротностью для радиопередатчиков наматывают так, чтобы было достаточно большое расстояние между витками

Если индуктивность большая, то сопротивление обмотки (Rw на схеме) игнорировать уже нельзя. Тем не менее, оно мало по сравнению с реактивным сопротивлением больших катушке на высоких частотах. Однако, на низких частотах и на постоянном токе это сопротивление необходимо учитывать, так как в этих условиях через катушку могут протекать значительные токи.

Катушки индуктивности и обмотки в различных устройствах

Расчет индуктивности катушки

Coil32 – прекрасная программа для всевозможных расчетов, связанных с катушками индуктивности

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Сегодня я хочу познакомить вас с очередной радиолюбительской программой.

Программа называется Coil32 и предназначена для расчета индуктивности катушек. Перед тем как мы рассмотрим эту программу, хочу выразить благодарность ее автору и создателю. К сожалению я не нашел его имени-отчества, да и фамилии тоже (даже в разделе “Об авторе программы”). Сайт создателя программы – coil32.narod.ru. Если у вас будут какие-либо замечания по работе программы, предложения, или вы захотите поблагодарить автора (возможно и материально – пожертвовав один рубль на развитие проекта) вы всегда сможете сделать это на сайте создателя программы.

Вот что пишет автор о своей программе:
Довольно часто перед радиолюбителем встает вопрос: “Как рассчитать индуктивность катушки?“. Катушки используются и в высокочастотной связной аппаратуре, и при конструировании акустических систем, и даже взглянув на материнскую плату компьютера, Вы и там обнаружите индуктивные элементы. С помощью программы Coil32 можно быстро рассчитать индуктивность катушки. В программе учитываются наиболее распространенные варианты каркасов катушек. Можно рассчитать бескаркасную катушку в виде одиночного витка, на каркасах различной формы, на ферритовых кольцах и в броневых сердечниках, а также плоскую печатную катушку с круглой и квадратной формой витков. Для рассчитанной катушки можно “не отходя от кассы” рассчитать емкость конденсатора в колебательном контуре.
Программа предназначена для расчета индуктивности катушек на разных каркасах: одно и многослойных, на ферритовых кольцах, в броневом сердечнике, плоских катушек на печатной плате, а также колебательных контуров. Имеется набор плагинов к программе для расчета дополнительных видов индуктивности. Список плагинов имеется на странице загрузки (в конце этой страницы вы сможете скачать последнюю версию программы с уже установленными всеми доступными плагинами). Также можно воспользоваться онлайн расчетом индуктивности (на сайте автора).

Программа бесплатна и свободна для использования и распространения.

В последней версии Coil32 v7.3 доступны:
♦ Расчет числа витков катушки при заданной индуктивности
♦ Расчет индуктивности катушки для заданного числа витков
♦ Расчет добротности для однослойных катушек
♦ Расчет индуктивности многослойной катушки по ее омическому сопротивлению
♦ Расчет длины провода, необходимого для намотки многослойной катушки
♦ Расчет длины провода, необходимого для намотки катушки на ферритовом кольце

Программа позволяет производить расчет следующих типов катушек индуктивности:
♦ Одиночный круглый виток
♦ Однослойная виток к витку
В качестве начальных параметров при расчете катушки можно выбрать два варианта:
◊ Известны диаметр каркаса и диаметр провода, длина намотки вычисляется.
◊ Известны диаметр каркаса и длина намотки, диаметр провода вычисляется
♦ Однослойная катушка с шагом
♦ Катушка с не круглой формой витков
♦ Многослойная катушка
В качестве начальных параметров при расчете катушки можно выбрать два варианта:
◊ Известны диаметр каркаса, длина намотки и диаметр провода. Вычисляется число витков, попутно определяется толщина катушки, ее омическое сопротивление постоянному току и приблизительная длина провода для намотки (“сколько надо отрезать”).
◊ Известны диаметр каркаса, длина намотки и предельное омическое сопротивление катушки. Вычисляется число витков, попутно определяется толщина катушки, нужный минимальный диаметр провода и приблизительная длина провода для намотки.
♦ Тороидальная однослойная катушка
♦ Катушка на ферритовом кольце
♦ Катушка в броневом сердечнике
(Ферритовом и карбонильном)
♦ Тонкопленочная катушка
(Плоская катушка на печатной плате с круглой и квадратной формой витков и в виде одиночного прямого проводника)

В чем преимущества программы перед аналогами?
◊ Программа рассчитывает индуктивность многих типов катушек. Можно подобрать оптимальный вариант, либо пересчитать катушку под имеющийся каркас.
◊ Результаты всех расчетов выводятся в текстовое поле, откуда их можно сохранить в файл. В дальнейшем Вы можете их просмотреть, чтобы не пересчитывать заново. Можно открыть этот файл в “MS Word” и распечатать.
◊ Есть возможность рассчитать добротность для радиочастотных однослойных катушек индуктивности.
◊ Можно рассчитать длину провода для намотки многослойной катушки и на ферритовом кольце
◊ Для катушек в броневых сердечниках есть возможность выбрать один из нескольких стандартных, что позволяет рассчитать катушку несколькими щелчками мыши.
◊ Для плоских катушек на печатной плате программа подскажет оптимальные размеры для достижения наивысшей добротности.
◊ В Сети часто встречаются программы для расчета индуктивности, работающие под DOS, о преимуществах Windows-интерфейса, думаю, говорить не приходится.
◊ Программа имеет возможность расширения функционала с помощью дополнительных плагинов для расчета индуктивностей
◊ Программа имеет мультиязычный интерфейс и скины, дополнительные наборы скинов можно найти на странице загрузки.
◊ Программа распространяется в стиле “Portable” и не имеет установщика. Для установки программы распакуйте файл Coil32.zip в любой каталог и запустите на выполнение файл Coil32.exe. При постоянной работе с программой, желательно создать для нее специальную папку и вынести ярлык Coil32.exe на рабочий стол.

Программа очень проста в использовании и разобраться в ней совершенно несложно. Кроме того, все ее возможности подробно описаны в разделе “Help”, там-же указаны формулы, по которым производится каждый расчет.
В разделе “Plugins” вы можете воспользоваться дополнительными возможностями программы (плагинами):
meandr_PCBv0.3 – Расчет плоской печатной катушки в форме меандра.
square_loop – Расчет индуктивности прямоугольной рамки
screen – Учет влияния экрана на величину индуктивности
multiloop – Расчет индуктивности многовитковой круглой рамки круглого сечения (для металлоискателей)
Ferrite – Расчет индуктивности на ферритовом стержне.
Precise Helix – Точный расчет однослойной катушки с произвольным шагом намотки.
MLC Precise – Точный расчет многослойной катушки с любой геометрией намотки по эллиптическим интегралам Максвелла.

У нас на сайте вы сможете скачать последнюю версию программы, с уже установленными всеми плагинами (а на сегодняшний день – их всего восемь):

  Программа для расчета индуктивности катушки Coil32_v7.3.7 (5.1 MiB, 13,610 hits)



Собственная паразитная ёмкость катушки индуктивности. Онлайн расчёт.

Собственная ёмкость — это паразитный параметр катушки индуктивности. Паразитный, но не так, чтобы уж очень: не домашнее животное в виде таракана, не нежданный гость в виде татарина, а так… мелкий, но важный аспект, требующий учёта и внимания.
Возникновение собственной ёмкости обусловлено наличием ёмкостей между отдельными витками катушки, между витками и сердечником, витками и экраном, а также витками и близлежащими элементами конструкции. Все эти распределённые ёмкости суммируются и называются собственной ёмкостью катушки CL.
Паразитная собственная ёмкость всегда подключена параллельно катушке и образует с её собственной индуктивностью параллельный колебательный контур, резонансная частота которого является частотой собственного резонанса катушки.

Несмотря на кажущуюся простоту, точный расчёт этого параметра — это вовсе: не плёвое дело, не поиск халявы и не комариная плешь, по крайней мере, практически все отечественные авторы справочной литературы, дружно повернулись спиной к суровой правде бытия, выдавая за истину теорию, никак не подкреплённую экспериментом.
Для примера приведу выдержку из подобного умного справочника.

Совсем другое дело — буржуйские пытливые умы, преимущественно американской этнической национальности. Эти ребята копают и вглубь и вширь похлеще азиатских хунвейбинов, восполняя нехватку теоретических обоснований многочисленными практическими экспериментами.

Вот как, к примеру, у них выглядит незамысловатая измерительная приблуда для определения собственной резонансной частоты катушки.

В результате всех этих раскопок из глубины на поверхность была извлечена совсем уж до неприличия простая формула определения собственной ёмкости катушки:
CL(пф) ≈ 0,5×Dкат(см).

Казалось бы, вот оно — добро пожаловать «за грань добра и зла». Однако не всё так плохо — формула обеспечивает вполне приемлемую точность вычислений и может быть использована для оценки собственных ёмкостей однослойных конструкций катушек с соотношением длины намотки к диаметру:
0.5 нам/Dкат

А как посчитать нам величину собственной ёмкости при другом форм-факторе катушки?
Найти всеобъемлющую формулу, позволяющую рассчитать этот параметр для любых вариаций (включая частотную зависимость) оказалось делом нереальным — по крайней мере мне этого сделать не удалось. Поэтому самым простым и точным методом, позволяющим оценить собственную ёмкость катушки, я посчитал интерполяцию графика экспериментальной зависимости, полученной англичанином R.G.Medhurst-ом, в лаборатории компании General Electric.

По шкале X — отношение длины к диаметру катушки;
По шкале Y — коэффициент H, равный отношению собственной ёмкости к диаметру катушки;
Шкала зависимости — логарифмическая.

Формула значения собственной ёмкости катушки в данном случае выглядит следующим образом:
CL(пф) = H×Dкат(см).
Зависимость снята для однослойных бескаркасных катушек в диапазоне частот, находящихся ниже частоты собственного резонанса катушки.

В этом же источнике приведена и удобная таблица, отражающая изменение коэффициента H в зависимости от форм-фактора катушки.

И, как результат — формула, позволяющая с 2-3% точностью описать полученные экспериментальные зависимости:
H = 0,1126×L/D+0,08+0,27/√L/D.

Это то, что касается бескаркасных катушек. При наличии гладкого каркаса расчётная ёмкость изделия увеличится на величину ≈10×ε (%), где ε — относительная диэлектрическая проницаемость материала каркаса. Для катушек, намотанных на каркасах с нарезкой для фиксации витков, коэффициент увеличения ёмкости уже может составлять величину ≈20×ε (%).

И в завершении мероприятия просуммируем вышеизложенные идеи калькулятором.

ТАБЛИЦА РАСЧЁТА ЗНАЧЕНИЯ СОБСТВЕННОЙ ЁМКОСТИ БЕСКАРКАСНОЙ КАТУШКИ.

Будьте внимательны — в качестве значения межвиткового расстояния принято считать расстояние между центрами соседних витков, а не зазор между ними, поэтому данное расстояние никак не может быть меньше величины диаметра провода.

Значение собственной ёмкости многослойной катушки значительно больше и может достигать нескольких десятков пФ. Здесь, помимо всего прочего, вступают в сложное взаимодействие и ёмкости между соседними витками, и ёмкости между слоями, и разные другие факторы, значительно усложняющие структуру длинной линии, описывающей свойства моточного изделия.
Наверно по этой причине никто никому и не выносит мозг, все отдыхают на расслабоне. Формул — нет!
Или я чего-то пропустил в этой жизни…

 

как найти число витков в катушке, формула

Катушка индуктивности является спиральным или винтовым проводником, который преобразовывает энергию электрополя в магнитное поле. Каково более полное определение этого элемента электроцепи, как сделать расчёт катушки индуктивности и что влияет на ее индуктивность? Об этом далее.

Описание устройства

Катушка индуктивности бывает винтовой, спиральной или винтоспиральной, имеющей свернутый изолированный проводник, который обладает значительным показателем индукции при малой емкости с активным сопротивлением. Как следствие, ток протекает через источник тока со значительной инерционностью.

Главный компонент электроцепи

Обратите внимание! Применяется, чтобы подавлять помехи, сглаживать биения, накапливать энергию, ограничивать переменный ток или резонансный/частотно-избирательный контур цепи.

Стоит указать, что ее применение разнообразно. Называется она дросселем, вариометром, соленоидом и токоограничивающим реактором. При этом основные технические характеристики варьируются. Могут отличаться силой тока, сопротивлением потерь, добротностью, емкостью и температурным добротным коэффициентом.

Полное определение из физики

Факторы, влияющие на индукцию

Влияет на индукцию число проводниковых витков, площадь поперечного сечения, длина и материалы. Благодаря увеличению витков повышается индукция и наоборот. Что касается сечения, чем больше источник, тем больше показатель. Также чем больше магнитный вид проницаемости, тем больше индуктивный показатель.

Факторы, влияющие на преобразование энергии в магнитное поле

Расчет

Вычислить число витков, зная конструкцию, можно по формуле нахождения энергии и ее магнитного поля W = LI2/2, где L является индукцией, I — силой тока. Витки находятся из формулы L/d, где d является проводным диаметром. Стоит указать, что есть специальный калькулятор, в который нужно только подставить необходимые параметры. При этом можно определить, однослойный или многослойный проводник.

Схематическое расположение витков в катушке

С сердечником

Стоит отметить, что со стержнем, намоткой, обмоткой индукция вычисляется через замкнутый магнитный поток индуктивных элементов, в то время как без него  учитывается поток, который пронизывает только проводник с токовой энергией. Расчитывая индуктивность подобных элементов, необходимо учесть размеры и материал центральной части. Обобщенно можно представить формулу схематично. При этом требуется взять в расчет источник с сопротивлением магнитной цепи, абсолютной магнитной проницаемостью вещества, площадью поперечного сердечникового сечения и длиной средней силовой линии. Зная это, можно посчитать индукцию. Стоит учитывать погрешность. Она будет равна 25%.

Расчет индуктивности катушки с сердечником

Без сердечника

Стоит указать, что без ферритового, геометрического и цилиндрического сердечника с мощным каркасом источник имеет небольшую индукцию, а с ним она повышается. Это связано с тем, что имеется материальная магнитная проницаемость. Форма бывает разная. Есть броневой, стержневой и тороидальный материал.

Обратите внимание! Рассчитать можно, используя метод эллиптических максвелловских интегралов и специальную онлайн программу.

Расчет индуктивности без сердечника

Катушка — незаменимый компонент любой электросети, который имеет вид скрученного или обвивающего элемента с проводником. Влияет на ее индукцию число проводных витков, площадь сечения, длина и материал сердечника. Отыскать количество витков и посчитать индуктивность с сердечником и без него несложно, главное — руководствоваться приведенными выше рекомендациями.

Электромагнитный расчет и оптимизация планарных катушек на печатных платах

Планарные катушки используются в самых различных устройствах — от датчиков артериального давления до платежных карт. Они располагаются на печатных платах и хорошо подходят для создания взаимных индуктивных связей, особенно при ограниченном пространстве. При проектировании таких катушек важно точно рассчитать как индуктивность, так и активное сопротивление, так как эти факторы играют ключевую роль в производительности устройства. Для эффективного описания катушек на плоскости инженеры могут использовать технологию задания многослойных оболочек (layered shell), доступную в пакете COMSOL®.

Планарные катушки: преимущества и примеры использования

Планарные катушки названы так из-за того, что все их части (витки) находятся практически на одной плоскости (т. е. они почти плоские). Они занимают намного меньше места, чем другие индукторы, и поэтому подходят для любых практических приложений с ограничениями по размерам, что очень актуально, к примеру, в микроэлектромеханических системах (МЭМС) или в имплантированных медицинских устройствах, например, сердечных насосах. Такие катушки могут изготавливаться как на жестких, так и на упругих подложках, и следовательно могут быть интегрированы как на классические печатные платы, так и на элементы для т. н. гибкой электроники. Планарные катушки также могут изготавливаться серийно, что является экономически выгодным.

Благодаря этим качествам, планарные катушки находят применение в различных областях, в основном, в высокочастотных приложениях. Некоторые примеры использования:

  • Дистанционный мониторинг состояния здоровья (например, датчики кровяного давления)
  • Беспроводная передача энергии (например, носимые/имплантируемые медицинские устройства)
  • Радиочастотная идентификация (например, платежные карты)
  • Индукционный нагрев (например, индукционные варочные панели)


Планарные катушки могут использоваться на печатных платах в портативных устройствах типа фитнес-трекеров.

В контексте разработки и проектирования планарных катушек наиболее важные характеристики — это индуктивность и сопротивление. Последнее определенно должно быть очень низким (в идеальном случае нулевым), так как любое сопротивление уменьшает эффективность катушки. Индуктивность, напротив, для эффективной связи с другими системами должна быть высокой. Определение сопротивления и индуктивности может являться достаточно сложной задачей, так как необходимо учитывать материал катушки, количество витков, связь между электрическими и магнитными полями.

Инженеры могут получить данные о сопротивлении и индуктивности планарных катушек на печатных платах численно, используя возможности модуля AC/DC для электромагнитных расчетов, являющегося расширением пакета COMSOL Multiphysics. Это модуль содержит в числе прочих физический интерфейс Electric Currents, Layered Shell (Электрические токи в многослойных оболочках), который позволяет эффективно описывать и моделировать в т.ч. конструкции плоских катушек. В качестве примера давайте рассмотрим простую модель планарной катушки.

Представление планарной катушки как многослойной оболочки с помощью модуля AC/DC

Модель представляет собой медную катушку, размещенную на печатной плате. Катушка содержит три витка, два межслойных соединения (перемычки), два контакта-терминала, один из которых служит источником тока, а второй заземлён. Ток с терминала начинает течь по верхнему слою. Затем он переходит по соединительной перемычке (via) на нижний слой, далее – по нему под витками, обратно на верхний слой по второй перемычке (via), и, наконец, проходит по всем виткам к контакту заземления. Протекая по катушке, ток индуцирует магнитное поле, причем отношение тока к магнитному полю как раз определяет индуктивность.


Геометрия планарной катушки, цветом на изображении показано распределение электрического потенциала.

Так как медная катушка является очень тонкой (толщина 0.1 мм, длина и ширина 0.5 мм), её предпочтительней моделировать в качестве граничного, а не объёмного компонента. Для того, чтобы описать топологию катушки в плоскости можно воспользоваться функционалом физического интерфейса Electric Currents, Layered Shell, который доступен с версии 5. 4 программного обеспечения COMSOL®. К тому же, данный интерфейс можно использовать совместно с физическим интерфейсом Magnetic Fields (Магнитные поля), что позволит провести анализ растекания токов, генерации магнитных полей и, следовательно, вычислить не только сопротивление, но и индуктивность катушки. Процесс такого совместного расчета будет состоять из двух этапов:

  1. В рамках физического интерфейса Electric Currents, Layered Shell проводится расчёт как сосредоточенного сопротивления, так и поверхностной плотности тока в области катушки. Собственно данный интерфейс и предназначен для решения закона сохранения тока, протекающего по двумерному слою.
  2. Физический интерфейс Magnetic Fields затем использует рассчитанную в интерфейсе Electric Currents, Layered Shell поверхностную плотность тока для расчёта распределения магнитного поля вокруг катушки.

Не смотря на то, что конкретно этот пример довольно простой, вы можете использовать точно такой же подход для других более сложных геометрий и постановок. Чтобы узнать все детали и настройки выполненные при моделировании, ознакомьтесь с учебным примером Planar PCB Coil. По ссылке вы найдёте pdf-файл с пошаговыми инструкциями по сборке. А если у вас есть действующая лицензия, то сможете скачать и соответствующий MPH-файл модели.

Визуализация результатов электромагнитного расчета

После проведения расчета в результатах автоматически сгенерируются дефолтные графики с наиболее характерными визуализациями и величинами. В данной модели выведены графики распределения электрического потенциала (показан выше), а также магнитного поля, которое создаётся током, протекающим по катушке (показано ниже). В дополнение к графическим результатам, также можно рассчитать числовые выражения, в т.ч. на основе классических формул. В нашем случае, проведен расчет сопротивления и индуктивности. Для рассмотренной конструкции индуктивность равна 0.06 мкГн, а сопротивление — 21.6 мОм.


Распределение магнитной индукции вокруг катушки (цветом) и плотность тока (стрелки).

В данном примере мы продемонстрировали преимущества использования технологии по заданию многослойных оболочек в модуле AC/DC. С её помощью легко реализовать модель планарной катушки и определить сосредоточенные параметры — сопротивление и индуктивность. Используя расчетные данные, инженеры могут проводить оптимизацию топологий катушек для определенных сфер применения, например, добавляя больше витков для увеличения индуктивности. Результаты расчета предсказывают увеличение индуктивности с 0.06 мкГн до 0.11 мкГн при добавлении 4го витка.


Сравнение сопротивления и индуктивности для катушек с тремя и четырьмя витками. Визуализация распределения магнитной индукции приведена для случая четырёхвитковой катушки.

Дальнейшие шаги

Поработайте самостоятельно с рассмотренным примером расчета планарной катушки на печатной плате. По нажатию на кнопку вы перейдете в Библиотеку моделей и приложений (Application Gallery,), в которой сможете загрузить MPH-файл и документацию к рассмотренной модели.

Дополнительные материалы

Маркировка катушки индуктивности калькулятор | Домострой

Онлайн расчет многослойной катушки. Калькулятор считает по алгоритму с применением эллиптических интегралов Максвелла.
Катушка индуктивности — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Индуктивность катушки зависит от ее геометрических размеров, числа витков и способа намотки катушки. Чем больше диаметр, длина намотки и число витков катушки, тем больше ее индуктивность.

Сайт для радиолюбителей

Как правило кодовая маркировка дросселей содержит номинальное значение индуктивности и допуск. Номинальное значение индуктивности кодируется цифрами, а допуск буквами.

Первые две цифры указывают значение в мкГн, а последняя — количество нулей. Далее следует буква указывающая допуск.

Допуск обозначается следующими буквами:

D = ±0.

3 нГн; J = ±5%; К = ±10%; М = ±20%

Если последняя буква не указывается — допуск 20%

Для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R

Для индуктивностей меньше 1 мкГн — буква N

Например, код 101J обозначает 100 мкГн ±5%.

2N2D — 2,2 нГн ±0,3 нГн1R2K — 1,2 мкГн ±10%470K — 47 мкГн ±10%
22N — 22 нГн2R2K — 2,2 мкГн ±10%680K — 68 мкГн ±10%
R10M — 0,10 мкГн ±20%3R3K — 3,3 мкГн ±10%101K — 100 мкГн ±10%
R15M — 0,15 мкГн ±20%4R7K — 4,7 мкГн ±10%151K — 150 мкГн ±10%
R22M — 0,22 мкГн ±20%6R8K — 6,8 мкГн ±10%221K — 220 мкГн ±10%
R33M — 0,33 мкГн ±20%100K — 10 мкГн ±10%331K — 330 мкГн ±10%
R47M — 0,47 мкГн ±20%150K — 15 мкГн ±10%471J — 470 мкГн ±10%
R68M — 0,68 мкГн ±20%220K — 22 мкГн ±10%681J — 680 мкГн ±10%
1R2K — 1,2 мкГн ±20%330K — 33 мкГн ±10%102 — 1000 мкГн ±10%

Онлайн калькулятор кодового обозначения дросселей

Цветовая маркировка дросселей

Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри, третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные.

Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами.
Применяется два вида кодирования.

А . Первые две цифры указывают значение в микрогенри (мкГн, uН), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается — допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.

Допуск: D = ±0.3 нГн; J = ±5%; К = ±10%; М = ±20%

В . Индуктивности маркируются непосредственно в микрогенри (мкГн, uН). В таких случаях маркировка 680К будет означать не 68 мкГн ± 10 %, как в случае А, а 680 мкГн ± 10%.

Мои закладки. Фильтр LC. Расчет. Калькулятор. Катушка.

Мои закладки. Фильтр LC. Расчет. Калькулятор. Катушка.

Мои закладки. Фильтр LC. Расчет. Калькулятор. Катушка.

Расчет LC. Резонанс колебательного контура. Фильтр.

Расчет частоты резонанса колебательного контура … Калькулятор расчета резонанса в контуре … Расчет частоты резонанса колебательного контура. Колебательный контур LC. Свободные электрические колебания в параллельном контуре. Расчёт частоты резонанса LC-контура, простой онлайн-калькулятор …

Coil32 — On-line калькуляторы витков катушки, расчет однослойной индуктивности … Калькулятор расчета однослойной катушки индуктивности … Расчет Катушка Индуктивность Витки : On-line калькуляторы. Расчет однослойной катушки …

Свойства катушек индуктивности … Электричество и магнетизм. Общая электротехника и электроника. Расчет Индуктивность Свойства. Свойства катушек индуктивности. Электричество и магнетизм. Общая электротехника и электроника. Накопленная энергия в индуктивности. Гидравлическая модель. Индуктивность в электрических цепях. Схемы соединения катушек индуктивностей. Параллельное соединение индуктивностей. Последовательное соединение индуктивностей. Добротность катушки индуктивности. Катушка индуктивности. Формула индуктивности. Базовая формула индуктивности катушки. Индуктивность прямого проводника. Индуктивность катушки с воздушным сердечником. Индуктивность многослойной катушки с воздушным сердечником. Индуктивность плоской катушки. Конструкция катушки индуктивности. Применение катушек индуктивности. Расчет катушек индуктивности. Метод определения собственной емкости катушек. Расчет и изготовление плоских катушек индуктивности …

Емкость. Свойства. Расчет. Электростатика … Электричество и магнетизм. Общая электротехника и электроника. Электростатические машины и лейденская банка. Диэлектрики. Диэлектрическая проницаемость. Проводники. Коммутационные устройства. Удельное сопротивление. Резисторы. Разность потенциалов. Электрическая емкость, конденсаторы. Индуктивные элементы. Свойства катушек индуктивности. Постоянный ток. Источники постоянного тока и напряжения (ЭДС). О реальных явлениях электромагнетизма …

Индуктивные элементы … Электричество и магнетизм. Общая электротехника и электроника. Индуктивные элементы … Расчет Идуктивность Свойства. Индуктивные элементы. Катушки индуктивности и трансформаторы. Катушки контуров. Катушки связи. Дроссели высокой частоты. Дроссели низкой частоты …

Онлайн расчёт RC фильтров … RC-фильтры … Расчет Фильтр ФНЧ ФВЧ. Онлайн расчёт RC фильтров. Схема и частотная характеристика. Частота среза фильтра. RC-фильтры предстваляют собой цепочку, состоящую из резистора и конденсатора. В зависимости от их расположения фильтр пропускает или верхние или нижние частоты …

Расчёт LC — фильтров. Онлайн калькулятор ПФ, ФВЧ, ФНЧ . .. Онлайн калькулятор LC фильтров … Расчет LC — фильтров. Онлайн калькулятор ПФ, ФВЧ, ФНЧ. Калькуляторы ФНЧ, ФВЧ, резонансных, полосовых LC фильтров. Индуктивность катушки. Активное сопротивление катушки. Емкость конденсатора. Резонансная частота фильтра. Добротность фильтра Q. Характеристическое сопротивление. Полоса пропускания фильтра …

Многозвенные LC фильтры … Онлайн калькулятор многозвенных полосовых LC фильтров … Расчет ФНЧ ФВЧ 3 5 7 порядка — Т и П типа. Онлайн расчёт многозвенных LC — фильтров. Калькулятор ПФ, ФВЧ, ФНЧ 3-го, 5-го и 7-го порядков. Фильтр Чебышева. Фильтр Баттерворта. Одиночный LC фильтр не может обеспечить достаточного подавления сигналов вне заданного диапазона частот, поэтому для формирования более крутой переходной области обычно используют многозвенные LC фильтры …

Режекторные эллиптические фильтры образуют конденсаторы, установленные катушкам — параллельно в ФНЧ или последовательно в ФВЧ … Онлайн калькулятор многозвенных элиптических LC фильтров . .. Расчет фильтр эллиптический Кауэра. Онлайн расчёт многозвенных эллиптических LC — фильтров Кауэра ПФ, ФВЧ, ФНЧ 3-го, 5-го и 7-го порядков. Крутизна спада амплитудной характеристики линейных фильтров показала себя недостаточно. В отличии от классических линейных аналогов наличие дополнительных конденсаторов, включенных параллельно в ФНЧ (или последовательно в ФВЧ) катушкам индуктивности — образуют режекторные фильтры и формируют дополнительную крутизну спада АЧХ эллиптических фильтров …

Онлайн калькулятор полосовых LC фильтров … Онлайн калькулятор, расчет полосовых LC фильтров 3 / 5 / 7 порядка … Калькулятор полосовых LC фильтров Чебышева … Полосовой, он же полосно-пропускающий фильтр — это фильтр, пропускающий частоты в некоторой полосе, находящейся между нижней и верхней частотами среза … Он может быть легко представлен в виде последовательности, состоящей из ФНЧ / фильтра нижних и ФВЧ / фильтра верхних частот …

Калькулятор.

Калькулятор геодезических куполов, 3D дизайн со вращением мышью, расчет размеры . .. Расчет купольного дома из треугольников … Интересный купольный сферический дом предлагают самостоятельно изготовить из обычных треугольников … Для его расчета можно воспользоваться онлайн калькулятором … Чем больше треугольников — тем, получится, более округлая сфера …

Планета калькуляторов, онлайн калькуляторы … Онлайн калькулятор — Сегмент круга … Вычисление сегмента по хорде и высоте … Площадь сегмента круга по радиусу и высоте … Круговой сегмент — все варианты расчета …

Формулы — геометрия, алгебра, физика … Формулы круга … Все основные формулы для определения длины радиуса окружности. Окружность и круг. Радиус окружности. Длина хорды окружности. Высота сегмента круга. Площадь круга. Длина окружности. Онлайн калькуляторы для расчета …

Сервис бесплатных строительных калькуляторов … Адаптация расчетов под мобильные телефоны и Android … Строительные калькуляторы … Общестроительные работы, калькулятор нагрузки, металл, железобетон, дерево, инженерные коммуникации, отделка, расчет размеров, теплотехника, электрика. Перевод единиц измерения …

Некоторые полезные онлайн калькуляторы … Интерактивные утилиты преобразования … Калькулятор / конвертер … Конвертер цифровой базы. Конвертер текущая дата / время GMT. Координаты, современный вариант Lat / Lon в NMEA 0183 dddd.mmmm, HASH строки, Конвертер HEX / DEC / Строка …

Закон Ома. Онлайн калькулятор. Учеба и наука, Физика … Онлайн калькулятор — закон Ома … Закона Ома определяет связь между током, напряжением и сопротивлением в электрических цепях …

Конвертер.

Base64 Decode и Encode — Online … Base64 — декодирование и кодирование … Калькулятор / конвертер Base64 Decode / Encode …

Алфавит Base32 и Base64 … Гари Кесслер Ассошиэйтс … Обучение, образование и консалтинговые услуги … Алфавит Base32 (5-бит), Base64 (6-бит) из RFC4648 …

Integer Base конвертер для программистов на C# … Системы счисления на базе 2 10 16, перевод … Если вы программист, вы знаете разные системы счислений. В повседневной жизни нас обычно устраивает система счисления на базе 10. Но компьютерный мир совсем другой. Бинарный характер хранения данных на компьютере двоичная система на базе 2 и числа длинной двоичной строки — читать нелегко. Шестнадцатеричная система на базе 16 делает строки короче — но также непонятно для знакомых нам человеческих десятичных обозначений. Для работы с цифрами, написанными в разных системах позиционных цифр, нужны инструменты для перевода чисел с одной базы на другую …

Конвертер регистров текста — конвертировать онлайн верхний регистр в нижний, нижний регистр в верхний и другие варианты … Текстовые утилиты онлайн … Конвертер регистров текста … Конвертировать онлайн верхний регистр в нижний … Нижний регистр в верхний и другие варианты …

Популярное : …

… Найти … Как улучшить фото … Делфи на Андроид … Погода М-4, М-5, М-7, Р-22 … Список торрент трекеров … Калькулятор кода радио … Частота в длину волны . .. RTL SDR Radio …

TechStop-Ekb.ru : познавательные развлечения, техника, технологии … На сайте, для работы и соответствия спецификациям — используются … Протокол HTTPS шифрования для безопасного соединения с сервером и защиты пользовательских данных … Антивирус DrWeb для превентивной защиты пользователей от интернет угроз и вирусов … Ресурс входит в рейтинги Рамблер Топ 100 (познавательно-развлекательные сайты) и Mail Top 100 (авто мото информация) …

Тех Стоп Екб RU (РФ) официальный сайт, популярные темы, погода, новости, обзоры с картинками, бесплатно, актуально, без регистрации … Смотреть утром, днем, вечером и ночью — круглосуточно онлайн …

Меню раздела, новости и новые страницы.

… | … ТехСтоп Екб … | … Главное меню … | … Быстрый поиск … | …


© 2021 Тех Остановка Екатеринбург, создаваемый с 2016++ с вами вместе навсегда бесплатно …

Расчет и расчет многослойного змеевика

Подробнее о индукторах с воздушным сердечником
Что такое индуктор с воздушным сердечником?
«Индуктор с воздушным сердечником» — это индуктор, который не зависит от ферромагнитного материала для достижения его указанная индуктивность. Некоторые индукторы намотаны без шпулька и просто воздух в качестве сердечника. Некоторые другие ранены на шпульке из бакелита, пластика, керамики и др.

Преимущества катушки с воздушным сердечником:
На ее индуктивность не влияет ток, который она несет.
Это контрастирует с ситуацией с катушками, использующими ферромагнитные сердечники, индуктивность которых достигает пика при умеренных напряженности поля перед падением до нуля как насыщение подходы. Иногда нелинейность намагниченности кривой можно терпеть; например в коммутационной мощности источников питания и в некоторых топологиях коммутации это преимущество.
В схемах, таких как переходные звуковые фильтры в Hi-Fi акустические системы необходимо избегать искажений; затем воздух катушка — хороший выбор. Большинство радиопередатчиков полагаются на воздушных змеевиках, чтобы предотвратить образование гармоник.
Воздушные змеевики также не имеют «потерь в стали». что проблема с ферромагнитными сердечниками. Как частота увеличивается, это преимущество становится все больше важный.Вы получаете лучшую добротность, большую эффективность, большая мощность и меньше искажений.
Наконец, воздушные змеевики могут быть разработаны для работы на частотах до 1 ГГц. Большинство ферромагнитных сердечников имеют тенденцию выше 100 МГц с потерями.

И «обратная сторона»:
Без ядра с высокой проницаемостью нужно иметь больше и / или большее количество витков для достижения заданного значения индуктивности. Больше витков означает большие катушки, меньший резонанс из-за более высокой межобмоточной емкости и более высокой меди потеря. На более высоких частотах обычно не требуется высокая индуктивность, так что это не проблема.
Излучение и захват большего поля рассеяния:
С замкнутыми магнитными путями, используемыми в порошковых индукторах радиация гораздо менее серьезна. По мере увеличения диаметра к длине волны (лямбда = c / f), потери из-за электромагнитных радиация станет значительной.Вы можете уменьшить эту проблему, заключив катушку в экран, или установив его под прямым углом к ​​другим катушкам, может быть связан с.
Возможно, вы используете змеевик с воздушным сердечником не потому, что вам нужен элемент схемы с определенной индуктивностью как таковой но поскольку ваша катушка используется как датчик приближения, рамочная антенна, индукционный нагреватель, катушка Тесла, электромагнит, головка магнитометра или отклоняющая балка и т. Затем внешний излучаемое поле может быть каким угодно.

Катушка Брукса:
Интересная задача — найти максимальную индуктивность с заданной длиной провода. Брукс, написавший статью в 1931 г. вычислил, что идеальное значение для среднего радиус очень близок к 3A / 2. Как видно из рисунок ниже, катушка имеет квадратное сечение (A = B) а внутренний диаметр равен удвоенной высоте (или ширину) обмотки катушки.
Мы называем катушку этих размеров катушкой Брукса. Соотношение ручьев не критично. У вас может быть катушка, которая значительно отклоняется от него до того, как индуктивность отваливается слишком сильно. Кроме того, у вас могут быть другие соображения чем только индуктивность. 2

где A — высота и ширина обмотки катушки (в см), а N — количество витков.2

где r — средний радиус индуктора (в см). N — количество витков.
(r = средняя длина радиуса катушки, измеренная от центр катушки к центру высоты катушки, как показано на рисунке выше.)

Расчет и расчет многослойного змеевика

Подробнее о индукторах с воздушным сердечником
Что такое индуктор с воздушным сердечником?
«Индуктор с воздушным сердечником» — это индуктор, который не зависит от ферромагнитного материала для достижения его указанная индуктивность.Некоторые индукторы намотаны без шпулька и просто воздух в качестве сердечника. Некоторые другие ранены на катушке из бакелита, пластика, керамики и т. д.

Преимущества катушки с воздушным сердечником:
На ее индуктивность не влияет ток, который она несет.
Это контрастирует с ситуацией с катушками, использующими ферромагнитные сердечники, индуктивность которых достигает пика при умеренных напряженности поля перед падением до нуля как насыщение подходы.Иногда нелинейность намагниченности кривой можно терпеть; например в коммутационной мощности источников питания и в некоторых топологиях коммутации это преимущество.
В схемах, таких как переходные звуковые фильтры в Hi-Fi акустические системы необходимо избегать искажений; затем воздух катушка — хороший выбор. Большинство радиопередатчиков полагаются на воздушных змеевиках, чтобы предотвратить образование гармоник.
Воздушные змеевики также не имеют «потерь в стали». что проблема с ферромагнитными сердечниками. Как частота увеличивается, это преимущество становится все больше важный. Вы получаете лучшую добротность, большую эффективность, большая мощность и меньше искажений.
Наконец, воздушные змеевики могут быть разработаны для работы на частотах до 1 ГГц.Большинство ферромагнитных сердечников имеют тенденцию выше 100 МГц с потерями.

И «обратная сторона»:
Без ядра с высокой проницаемостью нужно иметь больше и / или большее количество витков для достижения заданного значения индуктивности. Больше витков означает большие катушки, меньший резонанс из-за более высокой межобмоточной емкости и более высокой меди потеря. На более высоких частотах обычно не требуется высокая индуктивность, так что это не проблема.
Излучение и захват большего поля рассеяния:
С замкнутыми магнитными путями, используемыми в порошковых индукторах радиация гораздо менее серьезна. По мере увеличения диаметра к длине волны (лямбда = c / f), потери из-за электромагнитных радиация станет значительной. Вы можете уменьшить эту проблему, заключив катушку в экран, или установив его под прямым углом к ​​другим катушкам, может быть связан с.
Возможно, вы используете змеевик с воздушным сердечником не потому, что вам нужен элемент схемы с определенной индуктивностью как таковой но поскольку ваша катушка используется как датчик приближения, рамочная антенна, индукционный нагреватель, катушка Тесла, электромагнит, головка магнитометра или отклоняющая балка и т. д. излучаемое поле может быть каким угодно.

Катушка Брукса:
Интересная задача — найти максимальную индуктивность с заданной длиной провода.Брукс, написавший статью в 1931 г. вычислил, что идеальное значение для среднего радиус очень близок к 3A / 2. Как видно из рисунок ниже, катушка имеет квадратное сечение (A = B) а внутренний диаметр равен удвоенной высоте (или ширину) обмотки катушки.
Мы называем катушку этих размеров катушкой Брукса. Соотношение ручьев не критично.2

где r — средний радиус индуктора (в см). N — количество витков.
(r = средняя длина радиуса катушки, измеренная от центр катушки к центру высоты катушки, как показано на рисунке выше. )

Ссылки для намотки рулонов Страница

Радио домашние пивовары легко справляются с работой с резисторами и конденсаторами; они поставляются в аккуратных маленьких упаковках, и их ценность легко решительно, но работать с индукторами не так просто.Чтобы получить индуктивность и другие желаемые характеристики, катушки часто не могут быть куплены и должны быть намотаны на заказ. Катушка дизайн / создание включает выбор правильной формы катушки, размера провода и материал сердечника (если не воздух), все составляющие процесс немного сложный. К счастью несколько авторы / веб-программисты взяли основные формулы для конструкции индуктора и создали онлайн-калькуляторы, которые помогают определить физический параметры, необходимые для катушки с желаемой электрической свойства.Ниже приведены ссылки на онлайн-калькуляторы. полезно при разработке катушек для радиоприложений. Смотреть на этих сайтах, так как некоторые из них перечисляют другие полезные калькуляторы.

Кому насколько мне известно во время создание этой страницы все ссылки к бесплатным калькуляторам без регистрации, необходимой для использования. Как и я использовал только некоторые из них я не давать рекомендаций, и в порядке листинга не указывается предпочтение. Информация о каждом может помочь вам выбрать лучшие удовлетворяя ваши потребности.Стоит отметить, что авторы некоторых критически относятся к точности используемых формул другими.

Большое спасибо авторам за их работу в создание этого браузерного дизайна вспомогательные средства доступны.

### Указывает на калькуляторы которые выходят за рамки простого решения уравнения для одного заявленного отсутствующее значение, найдя недостающее значение при условии другие значения введены.

Несколько Расчеты или конфигурации катушек:

Одноместный Катушки с воздушным сердечником слоя:

Калькулятор индуктивности с воздушным сердечником — Широкий выбор единиц размера катушки — Вычисляет индуктивность с выбором единицы
Воздух Конструктор индукторов сердечника — Калькулятор — Ввод в миллигенах и дюймах — расширенный вывод на новую страницу Калькулятор индуктора с воздушным сердечником
— включает Q — Размеры в мм — Вычисляет Индуктивность, добротность и длина провода
Калькулятор индуктивности AL ### — Введите два значения и получите третье — Единицы индуктивности: mHenrys, uHenrys, nHenrys Калькулятор индуктивности катушки
— Размеры в дюймах -Вычисляет индуктивность в uHenrys и длина провода в дюймах и футах
Калькулятор с двумя катушками — Входные размеры в миллиметрах или дюймах и количество оборотов — Вычисляет индуктивность и количество витков
Helical Coil Calculator — Input размер в мм или дюймах — вычисляет индуктивность и провод длина — включает собственная емкость
Многоступенчатая конструкция катушки -Входной размер в мм — Расчеты для несколько свойств катушки — с примерами
LF Калькулятор индуктивности — Размеры в мМетрах и МГц (для Q) — Результат в microHenrys и Q
Одноместный Слой, воздушный сердечник, калькулятор индуктивности — размеры указаны в мм МГц (для Q) — Вычисляет L в нескольких единицах измерения и длине провода Калькулятор индуктивности воздушного сердечника
— Размеры в дюймах — Выход в uHenrys
Индуктивность однослойных катушек на цилиндрические формы — введите радиус, длину, проницаемость и количество витков — вычисляет калькуляторы индуктивности LC UH
— Входные витки, диаметры катушек и проводов в дюймах — Вычисляет uHenrys и провод и катушку длина Калькулятор индуктивности катушки с воздушным сердечником
— Входные витки, диаметр и длина рулона в дюймах — Расчет L в uHenrys
однослойный Калькулятор воздушной катушки — Широкий выбор единиц — Входная длина, диаметры катушек и проводов — Вычисления Обороты и длина рулона
Одноместный Калькулятор слоев воздушного змеевика — ### — Поля ввода: обороты, диаметр, длина и L — введите 3, получите 4-е. — С примерами
Еще одна однослойная воздушная катушка Калькулятор — Выбор единиц — Ввод L, диаметры катушки и проволоки — Вычисление оборотов и длина рулона
Калькулятор цилиндрической катушки профессора Койла — Замыкает ли катушки с намоткой и с пространственной намоткой — Прочтите инструкцию первый
Два Калькуляторы катушек — выбор единиц — один рассчитывает L, другой витки и длину намотки

Одноместный Слой катушек поверх магнитного материала:

Тороид Катушки:

Спираль (Плоские) Катушки

Соленоид — Многослойные катушки:

Проницаемость — Найти Проходимость неизвестного ядра

Реактивное сопротивление:

Другой Калькуляторы:

Дополнительно Информация о катушке:

### калькуляторы которые выходят за рамки простого решения уравнения для одного заявленного отсутствующее значение, найдя недостающее значение при условии другие значения введены.

Пожалуйста контакт мне о других приложениях этого типа и о любые исправления информации на этой странице. {2} $$ = количество витков

$$ \ mu_ {0} $$ = проницаемость свободного пространства = 4π × 10 −7

$$ \ mu_ {r} $$ = относительная проницаемость

$$ D $$ = диаметр петли

$$ d $$ = диаметр проволоки

Приложения

Вспышка для камеры

Индуктор (или катушка) играет важную роль в схеме лампы вспышки камеры.Для камеры это важный компонент, который привел к высокому всплеску напряжения на катушке запуска, которое затем усилилось за счет действия автотрансформатора вторичной обмотки, чтобы генерировать 4000 В, необходимые для зажигания лампы-вспышки. Конденсатор, подключенный параллельно катушке триггера, заряжается до 300 В по низкоомному пути, обеспечиваемому тиристором. Однако, как только конденсатор был полностью заряжен, путь короткого замыкания на землю, обеспечиваемый тиристором, был удален, и конденсатор немедленно начал разряжаться через катушку запуска.Поскольку единственным сопротивлением в постоянной времени индуктивной сети является относительно низкое сопротивление самой катушки, ток через катушку нарастал очень быстро. Затем на катушке возникло значительное напряжение. Это напряжение, в свою очередь, увеличивалось под действием трансформатора на вторичную обмотку автотрансформатора, и лампа-вспышка зажигалась. Это высокое напряжение, генерируемое на катушке запуска, также появляется непосредственно на конденсаторе цепи запуска. В результате он снова начнет заряжаться, пока генерируемое напряжение на катушке не упадет до нуля вольт.Однако, когда он упадет, конденсатор снова разрядится через катушку, установит другой зарядный ток через катушку и снова создаст напряжение на катушке. Высокочастотный обмен энергией между катушкой и конденсатором называется обратным ходом из-за «обратного потока» энергии от одного накопительного элемента к другому.

Бытовой диммер
Катушки индуктивности

можно найти в самых разных обычных электронных схемах в доме. В типичном бытовом диммере используется индуктор для защиты других компонентов и приложенной нагрузки от «бросковых» токов — токов, которые нарастают с очень высокой скоростью и часто до чрезмерно высоких уровней. Эта функция особенно важна для диммеров, поскольку они чаще всего используются для управления интенсивностью света лампы накаливания. При «включении» сопротивление ламп накаливания обычно очень низкое, и относительно высокие токи могут протекать в течение коротких периодов времени, пока нить накаливания лампы не нагреется. Катушка индуктивности также эффективно блокирует высокочастотный шум (RFI), создаваемый переключающим действием симистора в диммере. Конденсатор также обычно включается от линии к нейтрали, чтобы любые скачки напряжения не влияли на работу диммера и приложенной нагрузки (лампы и т. Д.).) и помочь в подавлении помех от RFI.

Дополнительная литература

Катушки индуктивности, расчет индуктивности — Обмен электротехнического стека

Я пытаюсь разобраться в индукторах и индуктивности.

Я создаю многослойную круглую катушку с 35 витками из эмалированного медного провода ~ 21AWG (точно 0,75 мм) диаметром 8,5 см.

  Результаты по математике:
        МНОГОСЛОЙНАЯ ЦИРКУЛЯРНАЯ КАТУШКА
        -------------------------

    Индуктивность: 0.16 мГн / 160,45 мкГн
    Количество витков: 35
    Внутренний диаметр катушки: 8,5 см
    Длина провода: 934,62 см / 9,35 м
    Оборотов на слой: 20
    Количество слоев: 1,75
    Длина катушки: 1,5 см
    Толщина: 0,375 см
    Наружный диаметр катушки: 9,25 см
  

Затем я создаю измеритель индуктивности из этого руководства, используя свой Arduino и компаратор LM239N вместо LM339 и конденсатор 100 нФ вместо 2 мкФ .Эта встречная индуктивность возвращает мне 171,23 мкГн . Здесь я очень близок к 160,45 мкГн .

Но я создаю многослойную прямоугольную антенну из 105 витков из эмалированного медного провода ~ 21AWG (точно 0,75 мм).

  Результаты по математике:
    МНОГОСЛОЙНАЯ ПРЯМОУГОЛЬНАЯ КАТУШКА
    ---------------------------

Индуктивность: 0,923 мГн / 923,272 мкГн
Количество витков: 105
Ширина: 4,589 см
Длина: 5 см
Длина провода: 2013 г. 69 см / 20,14 м
Оборотов на слой: 16,67 *
Количество слоев: 6.3 *
Толщина: 1,4 см
Длина катушки: 1,25 см

  .--------------------.
  | ↕b | ⋱↘h
  | + -------------- + | '
  | | \ _____________ | | |
  | || X | |
  | || | | |
  | + ------- Y ------ + | |
  | | |
  .--------------------. |
   ⋱ ___________________ ⋱,

   X: 4,589 см
   Y: 5 см
   b: 1,4 см
   высота: 1,25 см

 * Я использую 10 витков на слой.
  

Счетчик индуктивности мне тоже возвращает 171.23 мкГн для этой катушки ( да точно такое же значение первой круглой катушки ). Я не понимаю, почему моя вторая катушка составляет ~ 1 мГн (мой математический расчет второй катушки) и совпадает с результатом моей первой круглой катушки.

LM239N имеет то же время отклика LM339, что и в учебном пособии по измерителю индуктивности.

Диапазон измерителей индуктивности приведен для: от 80 мкГн до 30 мГн .

Как правильно измерить индуктивность? Спасибо за помощь.

Конструкция катушки и вычислитель индуктивности

Эта страница проведет вас через создание собственной катушки DIY / самодельной катушки. Я сделал это для изготовления катушек для хрустальные радиоприемники и Катушки Тесла, но он работает с любой катушкой цилиндрической формы. Это также полезно, если вы собираетесь использовать свою катушку в Танк LC резонансный цепь.

Калькулятор индуктивности предоставляется ниже, чтобы упростить задачу.

Намотка катушки вручную.

Индуктивность — это часто то, чего вы пытаетесь достичь при разработке катушки. то есть вы знаете нужную индуктивность, и теперь вам нужно спроектировать катушку у которого будет такая индуктивность.

Индуктивность

Катушки имеют свойство, называемое индуктивностью. Что такое индуктивность? Когда электрический ток изменяется при прохождении через провод катушки, он создает изменяющееся магнитное поле, которое наводит (производит) напряжение или ЭДС (электродвижущая сила) в проводе, который противостоит течению. Это называется индукцией и индуктивностью. — величина, количественно определяющая способность катушки индуцировать это напряжение. Символ индуктивности — Генри, а единица — H. на самом деле говоря о катушке, создающей напряжение в себе, что является самоиндукцией, но мы просто скажем индукция.

Магнитное поле вокруг катушки.
Параметры для формулы индуктивности

Одна формула для индуктивности выглядит следующим образом:

Где:

  • L = индуктивность
  • u r = относительная проницаемость материала сердечника (воздух = 1)
  • витков = количество витков на катушке
  • площадь = площадь поперечного сечения жилы в квадратных метрах *, включая часть катушки, как показано на схеме
  • длина = длина бухты в метрах *

* Калькулятор индуктивности ниже также принимает дюймы, а также сантиметры и миллиметры, и переводит их в метры за вас.

Как сказано выше, μ r является относительной магнитной проницаемость для всего, что вы используете для сердечника катушки, цилиндр, на который вы наматываете провод. Это греческая буква мю, μ, хотя часто для удобства используется буква u, например u r . Если это полая картонная или пластиковая трубка, то картонная или пластиковая считается воздухом, и вы можете использовать 1. Такие материалы, как железо и феррит, имеют более высокие относительные проницаемости в сотни и тысячи.Для железного сердечника приблизительное число — 100, хотя оно действительно варьируется. в зависимости от сплава. То же самое и с ферритом, который может иметь ценность где-то от 20 до 5000, но если вы не знаете, что использовать, тогда 1000 — грубый компромисс. Поскольку он умножается на остальную часть формулы, это означает, что материалы дадут более высокое значение индуктивности. Ядра для кристаллического радио катушки иногда бывают пластиковыми или картонными и, следовательно, представляют собой катушки с воздушным сердечником, а иногда это ферритовый сердечник. Сердечники для вторичной обмотки Тесла катушки обычно пластиковые, а меньшие могут быть картонными, и поэтому считаются катушками с воздушным сердечником.

И если вы не знакомы с обозначениями 1.26×10 -6 , это просто другой способ записи 0.00000126.

Область включает часть катушки, как показано на схеме выше. Если площадь рассчитывается с использованием радиуса, включите радиус ядра. плюс радиус проволоки. При расчете площади по диаметру затем включите диаметр сердечника плюс диаметр проволоки.Обратите внимание, что при выполнении расчетов для катушки с очень тонкой проволокой, как в случае кристалл радио и катушка Тесла, показанная выше (например, 24 калибра / AWG) тогда размер провода, вероятно, будет незначительным по сравнению с область жилы, и обычно можно не обращать внимания на провод.

Калькулятор индуктивности

Вот калькулятор индуктивности, который использует приведенную выше формулу. Диаграмма Вышеуказанное можно использовать в качестве руководства для некоторых параметров.

Видео — Как разработать катушку с удельной индуктивностью

В этом видео я подробно объясняю формулу индукции. а также привести пример и поговорить о других факторах, таких как емкость катушки, частота и связь.

(PDF) Расчет индуктивности многослойных спиральных катушек с круговой печатью

SCSET 2018

IOP Conf. Серия: Физический журнал: конф. Series 1176 (2019) 062045

IOP Publishing

doi: 10.1088 / 1742-6596 / 1176/6/062045

8

Ссылки

[1] П. Си, А. П. Ху, С. Мальпас и Д. Budgett, Метод управления частотой для регулирования беспроводной мощности

имплантируемых устройств, IEEE Trans.Биомед. Circuits Syst., Vol. 2, вып. 1, март 2008 г., стр.

22–29.

[2] Гованлоо, Майсам, Наджафи, Халил, Беспроводная имплантируемая многоканальная микросимулирующая система

на кристалле с модульной архитектурой, транзакциями IEEE в нейронных системах и

Реабилитационная инженерия. Сентябрь 2007 г. 15. С. 449–457.

[3] Р. Ву, С. Раджу, М. Чан, Дж. К. О. Син и К. П. Юэ, Встроенная в кремний катушка для высокоэффективной

беспроводной передачи энергии на имплантируемые биомедицинские ИС, IEEE Electron.Device Lett., Vol. 34, нет. 1,

, январь 2013 г., стр. 09–11.

[4] Уэй-Минг Джоу, Майсам Гованлоо, Дизайн и оптимизация спиральных катушек с печатным рисунком для эффективной индуктивной передачи энергии

, Транзакции IEEE по биомедицинским схемам и системам,

vol. 1, 2007, стр. 70-73.

[5] Тавакколи, Хади, Аббаспур-Сани, Эбрагим, Халилзадеган, Амин, Аналитическое исследование взаимной индуктивности

гексагональной и восьмиугольной спиральных катушек строгального станка, Датчики и исполнительные механизмы A: Physical,

vol.247, август 2016 г., стр. 53-6.

[6] Юхуа Ченг и Ямин Шу, Новый аналитический расчет взаимной индуктивности коаксиальных спиральных прямоугольных катушек

, IEEE Transaction on Magnetics, vol.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *