Расчет операционного усилителя: 10 схем на (почти) все случаи жизни / Хабр

Содержание

10 схем на (почти) все случаи жизни / Хабр

Всем привет!

В последнее время я по большей части ушел в цифровую и, отчасти, в силовую электронику и схемы на операционных усилителях использую нечасто. В связи с этим, повинуясь неуклонному закону полураспада памяти, мои знания об операционных усилителях стали постепенно тускнеть, и каждый раз, когда все-таки надо было использовать ту или иную схему с их участием, мне приходилось гуглить ее расчет или искать его в книгах. Это оказалось не очень удобно, поэтому я решил написать своего рода шпаргалку, в которой отразил наиболее часто используемые схемы на операционных усилителях, приведя их расчет, а также результаты моделирования в LTSpice.



Введение


В рамках данной статьи будет рассмотрено десять широко используемых схем на операционных усилителя. При написании данной статьи я исходил из того, что читатель знает, что такое операционный усилитель и хотя бы в общих чертах представляет, как он работает. Также предполагается, что ему известны базовые вещи теории электрических цепей, такие как закон Ома или расчет делителя напряжения.

Не следует воспринимать эту статью как законченное руководство по применению операционных усилителей в любых ситуациях. Для большого количества задач, действительно, этих схем может быть достаточно, однако в сложных проектах всегда может потребоваться что-то нестандартное.

1. Неинвертирующий усилитель


Неинвертирующий усилитель – наверное, наиболее часто встречающаяся схема включения операционного усилителя, она приведена на рисунке ниже.
В этой схеме усиливаемый сигнал подается на неинвертирующий вход операционного усилителя, а сигнал с выхода через делитель напряжения попадает на инвертирующий вход.
Расчет этой схемы прост, он строится исходя из того, что операционный усилитель, охваченный петлей обратной связи, отрабатывает входное воздействие таким образом, чтобы напряжение на инвертирующем входе было равно напряжению на неинвертирующем:


Из этой формулы легко получается коэффициент усиления неинвертирующего усилителя:


Рассчитаем и промоделируем неинвертирующий усилитель со следующими параметрами:
  • Операционный усилитель LT1803
  • Коэффициент усиления
  • Частота входного сигнала
  • Амплитуда входного сигнала
  • Постоянная составляющая входного сигнала

Выберем из ряда Е96 и . Тогда коэффициент усиления будет равен


Результат моделирования данной схемы приведен на рисунке (картинка кликабельна):


Давайте теперь рассмотрим граничные случаи этого усилителя. Допустим, величина сопротивления резистора . При этом мы получим, что коэффициент усиления будет стремиться к бесконечности. На самом деле, конечно, это хоть и очень большая, но все-таки конечная величина, она обычно приводится в документации на микросхему конкретного операционного усилителя. С другой стороны, величина выходного напряжения реального операционного усилителя даже при бесконечно большом коэффициенте усиления не может быть бесконечно большой: она ограничена напряжением питания микросхемы. На практике она зачастую даже несколько меньше, за исключением некоторых типов усилителей, которые отмечены как rail-to-rail. Но в любом случае не рекомендуется загонять операционные усилители в предельные состояния: это приводит к насыщению их внутренних выходных каскадов, нелинейным искажениям и перегрузкам микросхемы.

Поэтому данный предельный случай не несет какой-то практической пользы.

Гораздо больший интерес представляет собой другой предельный случай, когда величина сопротивления . Его мы рассмотрим в следующем разделе.

2. Повторитель


Как уже говорилось ранее, включение операционного усилителя по схеме повторителя – это предельный случай неинвертирующего усилителя, когда один из резисторов имеет нулевое сопротивление. Схема повторителя приведена на рисунке ниже.
Как видно из формулы, приведенной в прошлом разделе, коэффициент передачи для повторителя равен единице, то есть выходной сигнал в точности повторяет входной. Зачем же вообще нужен операционный усилитель в таком случае? Он выступает в роли буфера, обладая высоким входным сопротивлением и маленьким выходным. Когда это бывает нужно? Допустим, мы имеем какой-то источник сигнала с большим выходным сопротивлением и хотим этот сигнал без искажения передать на относительно низкоомную разгрузку. Если мы это сделаем напрямую, без каких бы то ни было буферов, то неизбежно потеряем какую-то часть сигнала.

Убедимся в этом с помощью моделирования схемы со следующими основными параметрами:

  • Выходное сопротивление источника сигнала 10 кОм
  • Сопротивление нагрузки 1 кОм
  • Частота входного сигнала
  • Амплитуда входного сигнала
  • Постоянная составляющая входного сигнала

Моделирования будем проводить для двух случаев: в первом случае пусть источник сигнала работает на нагрузку через повторитель, а во втором случае — напрямую.
Результаты моделирования приведены на рисунке ниже (картинка кликабельна): на верхней осциллограмме выходной и входной сигналы в точности совпадают друг с другом, тогда как на нижней сигнал на выходе в несколько раз меньше по амплитуде относительно сигнала на входе.

Вместо повторителя на операционном усилителе можно также использовать и эмиттерный повторитель на транзисторе, не забывая, однако, про присущие ему ограничения.

3. Инвертирующий усилитель (классическая схема)


В схеме инвертирующего усилителя входной сигнал подается на инвертирующий вывод микросхемы, на него же заведена и обратная связь. Неинвертирующий вход при этом подключается к земле (иногда к источнику смещения). Типовая схема инвертирующего усилителя приведена на рисунке ниже.
Для входной цепи инвертирующего усилителя можно записать следующее выражение:


Где — напряжение на инвертирующем входе операционного усилителя.
Поскольку операционный усилитель, охваченный петлей обратной связи, стремится выровнять напряжения на своих входах, то , и при заземленном неинвертирующем входе получаем


Отсюда коэффициент усиления инвертирующего усилителя равен


По инвертирующему усилителю можно сделать следующие выводы:
  1. Инвертирующий усилитель инвертирует сигнал. Это значит, что необходимо применение двухполярного питания.
  2. Величина модуля коэффициента усиления инвертирующего усилителя равна отношению резисторов цепи обратной связи. При равенстве номиналов двух резисторов коэффициент усиления равен -1, т.е. инвертирующий усилитель работает просто как инвертор сигнала.
  3. Величина входного сопротивления инвертирующего усилителя равна величине резистора R1. Это важно, потому что при маленьких значениях R1 может сильно нагружаться предыдущий каскад.

Для примера рассчитаем инвертирующий усилитель со следующими параметрами:
  • Операционный усилитель LT1803
  • Коэффициент усиления
  • Частота входного сигнала
  • Амплитуда входного сигнала
  • Постоянная составляющая входного сигнала

В качестве резисторов в цепи обратной связи выберем резисторы номиналами и : их отношение как раз равно десяти.
Результаты моделирования усилителя приведены на рисунке (картинка кликабельна).


Как видим, выходной сигнал в 10 раз больше по амплитуде, чем входной, и при этом проинвертирован.

Входное сопротивление данной схемы равно . А что будет, если источник сигнала будет иметь значительное выходное сопротивление, допустим, эти же 10 кОм? Результат моделирования этого случая представлен на рисунке ниже (картинка кликабельна).


Амплитуда выходного сигнала просела в два раза по сравнению с предыдущим случаем! Очевидно, что это все из-за того, что выходное сопротивление генератора в этом случае равно входному сопротивлению инвертирующего усилителя. Таким образом, стоит всегда помнить про эту особенность инвертирующего усилителя. Как же быть, если все-таки требуется обеспечить работу источника сигнала с высоким выходным сопротивлением на инвертирующий усилитель? В теории надо увеличивать сопротивление R1. Однако одновременно с эти будет расти и сопротивление R2. Если мы хотим обеспечить входное сопротивление схемы в 500 кОм при коэффициенте усиления 10, резистор R2 должен иметь сопротивление в 5 МОм! Такие большие номиналы сопротивлений применять не рекомендуется: схема будет очень чувствительной к наводкам, пыли и флюсу на печатной плате. Есть ли какие-то выходы из этой ситуации? На самом деле да. Можно, например, использовать буфер-повторитель, который мы рассмотрели в прошлом разделе. А можно еще применить схему с Т-образным мостом в обратной связи, про нее поговорим в следующем разделе.

4. Инвертирующий усилитель с Т-образным мостом в цепи ОС


Схема инвертирующего усилителя с Т-образным мостом в цепи обратной связи приведена на рисунке ниже.
Коэффициент усиления этой схемы равен


Рассчитаем усилитель со следующими параметрами:
Расчет показывает, что следящие номиналы резисторов должны сформировать усилитель с Т-образным мостом, отвечающий заявленным требованиям:


Результаты моделирования схемы усилителя приведены на рисунке ниже (картинка кликабельна).


Попробуем теперь подключить источник с выходным сопротивлением 10 кОм, как мы это сделали в предыдущем разделе. Получим такую картинку (кликабельно):


Выходной сигнал практически не изменился по амплитуде по сравнению с предыдущим моделированием, и это ни в какое сравнение не идет с тем, насколько он проседал в схеме простого инвертирующего усилителя без Т-моста. Кроме того, как мы видим, эта схема позволяет обойтись без мегаомных резисторов даже при больших коэффициентах усиления и значительном входном сопротивлении.

5. Инвертирующий усилитель в схемах с однополярным питанием


Схемы с однополярным питанием распространены гораздо больше, чем схемы с двухполярным. Вместе с тем, как мы выяснили в прошлых двух разделах, при использовании схемы инвертирующего усилителя у нас меняется знак выходного напряжения, что влечет за собой обязательное применение двухполярного источника питания. Можно ли как-то обойти это ограничение и использовать инвертирующий усилитель в схемах с однополярным питанием? На самом деле можно, для этого надо на неинвертирующий вход усилителя подать напряжение смещения как показано на рисунке ниже
Примечание

Позиционные обозначения R1 и R2 показаны условно. Они одни и те же для разных резисторов на схеме, что, конечно, невозможно для реальной схемы, однако допускается на рисунке для подчеркивания того, что эти резисторы имеют одинаковые номиналы.


Расчет этой схемы строится все на том же принципе равенства напряжений на инвертирующем и неинвертирующем входах усилителя.
Ток через цепочку резисторов R1-R2 инвертирующего плеча равен.


Отсюда напряжения на инвертирующем входе равно


Напряжение на неинвертирующем входе равно


Исходя из принципа равенства напряжения на инвертирующем и неинвертирующем входах получаем


Таким образом, напряжение на выходе операционного усилителя равно


Отсюда делаем вывод, что для корректной работы напряжения смещения должно быть больше максимального входного напряжения с учетом подаваемого на вход напряжения смещения.
Промоделируем схему инвертирующего усилителя со следующими параметрами:
Результаты моделирования приведены на рисунке ниже (картинка кликабельна)


Как видим, мы получили усиленный в 10 раз инвертированный сигнал, при этом сигнал проинвертировался, однако, не залез в отрицательную область.

6. Инвертирующий сумматор


Операционный усилитель можно использовать для суммирования различных сигналов. С помощью резисторов можно задавать «вес» каждого из сигнала в общей сумме. Схема инвертирующего сумматора приведена на рисунке ниже.
Расчет инвертирующего сумматора очень прост и основывается на принципе суперпозиции: суммарный выходной сигнал равен сумме отдельных составляющих:


Рассчитаем и произведем моделирование инвертирующего сумматора со следующими параметрами:
Для обеспечения требуемых «весов» , и выберем следущие номиналы резисторов из ряда Е96:


Результат моделирования приведен на рисунке ниже (картинка кликабельна).


Видим, что выходной сигнал проинвертирован и усилен в соответствии с выражением, приведенным выше. Однако стоит всегда помнить, что приведенное выше выражение верно для постоянных напряжений (либо же мгновенных значений переменного сигнала). Если же сдвинуть сигналы по фазе или если они будут обладать разной частотой, то результат будет совершенно другим. Аналитически его можно рассчитать, воспользовавшись формулами преобразования тригонометрических выражений (в случае, если мы имеем дело с синусоидальными сигналами). В качестве примера на рисунке ниже приведен результат моделирования инвертирующего сумматора для случая сдвинутых по фазе входных сигналов (изображение кликабельно).


Как видим, итоговый сигнал не превышает по амплитуде сигнал , а также имеет в начальной части артефакты, вызванные постепенным появлениями сигналов на входах.
Необходимо также помнить, что инвертирующий сумматор – по сути все тот же инвертирующий усилитель, и его входное сопротивление определяется величиной резистора в цепи обратной связи, поэтому его надо аккуратно применять в случаях, если источник сигнала имеет большое выходное сопротивление.

7. Дифференциальный усилитель


Дифференциальный усилитель предназначен для усиления разности сигналов, поступающих на его входы. Такое включение усилителей широко используется, например, для усиления сигнала с резистора-шунта-датчика тока. Что немаловажно, операционный усилитель в таком включении помимо, собственно, усиления сигнала, давит синфазную помеху.

Схема дифференциального усилителя приведена на рисунке.


Для дифференциального усилителя можно записать следующие выражения:


Решая эту систему уравнений, получаем


Если мы примем, что


то данное выражение упрощается и преобразуется в


Таким образом, коэффициент усиления дифференциального сигнала определяется отношением R2 к R1.

Эта формула (да и сама схема включения дифференциального усилителя) очень похожа на рассмотренный ранее случай инвертирующего усилителя в схеме с однополярным питанием. Действительно, все так и есть: схема инвертирующего усилителя с однополярным питанием и напряжением смещения есть частный случай дифференциального усилителя, просто в ней на один из входов подается не какой-то переменный сигнал, а постоянное напряжение.

Произведем моделирование схемы со следующими параметрами:


Результаты моделирования приведены на рисунке ниже (изображение кликабельно).


Как видим, разница между сигналами и в 5 мВ оказалась усиленной в 50 раз и стала 250 мВ.

Посмотрим теперь, как дифференциальный усилитель давит синфазную помеху. Для этого подключим к сигналам и общий генератор белого шума и произведем моделирование, его результаты представлены на рисунке (картинка кликабельна).


На верхней осциллограмме приведены сигналы и с добавленной помехой: самого сигнала уже даже не видно за шумами. На нижней осциллограмме приведен результат работы дифференциального усилителя. Поскольку помеха одна и та же для инвертирующего и неинвертирующего входа, дифференциальный усилитель ее убирает, и в результате мы имеем чистый сигнал, не отличающийся от случая без помехи.

Однако стоит все же помнить, что способность операционного усилителя давить синфазную помеху не бесконечна, данный параметр обычно приводится в документации на операционный усилитель. Кроме того, нельзя забывать и про величину входного сопротивления дифференциального усилителя со стороны инвертирующего входа: оно по-прежнему может быть невелико.

8. Источник тока


Операционный усилитель при определенном включении может работать как источник тока. Источник тока поддерживает постоянный ток вне зависимости от величины сопротивления нагрузки (в идеальном источнике нагрузка может быть вообще любая, в реальном – не больше какой-либо величины, пропорциональной максимально возможному напряжению, которое может сформировать на ней источник тока). Возможно как минимум две схемы источника тока на операционном усилителе: с плавающей нагрузкой и с заземленной нагрузкой. Схема источника тока с плавающей нагрузкой предельно проста и приведена на рисунке ниже
Как видим, на неинвертирующий вход подается опорное напряжение, а в роли нагрузки выступает один из элементов обратной связи. Величина тока при этом определяется следующим выражением


Однако все-таки чаще требуется, чтобы нагрузка была заземлена. В этому случае схема немного усложняется: потребуется дополнительный транзистор. Для этих целей лучше брать полевой транзистор: у биполярного транзистора токи коллектора и эмиттера немного отличаются из-за тока базы, что приведет к менее стабильной работе источника тока. Схема источника тока на операционном усилителе с заземленной нагрузкой приведена на рисунке ниже
Величина тока рассчитывается так:


Произведем расчет и моделирование источника тока со следующими параметрами:
  • Операционный усилитель LT1803
  • Величина силы тока
  • Величина сопротивления нагрузки

Для обеспечения заданных характеристик подойдут следующие номиналы сопротивлений резисторов:


Результат моделирования источника тока с заданными параметрами представлен на рисунке ниже (изображение кликабельно).


На рисунке приведено два графика. Верхний график показывает величину тока через сопротивление нагрузки, и она равна 10 мА. Нижний график показывает напряжение на нагрузке, оно равно 100 мВ. Попробуем теперь изменить сопротивление нагрузки: вместо 10 Ом возьмем 100 Ом и промоделируем (изображение кликабельно):


Как мы видим, через нагрузку течет все тот же самый ток в 10 мА: операционный усилитель отработал изменение нагрузки, повысив на ней напряжение, оно теперь стало равным 1 В. Но в реальности операционный усилитель не сможет поднимать напряжение бесконечно: оно ограничено напряжением источника питания (а зачастую еще и несколько меньше него). Что же будет, если задать сопротивление нагрузки слишком высоким? По сути, источник тока перестает работать. На рисунке ниже пример моделирования источника с сопротивление нагрузки в 1 кОм (изображение кликабельно).


Согласно графику, ток через нагрузку теперь уже никакие не 10 мА, а всего лишь 4 мА. При дальнейшем повышении сопротивления нагрузки ток будет все меньше и меньше.

Дополнительно по приведенным схемам источников тока на операционных усилителях надо отметить, что стабильность выходного тока в них зависит от стабильности напряжения , в связи с этим оно должно быть хорошо стабилизированным. Существуют более сложные схемы, которые позволяют уйти от этой зависимости, но в рамках данной статьи мы их рассматривать не будем.

9. Интегратор на операционном усилителе


Думаю, что все читатели знакомы с классической схемой интегратора на RC-цепочке:
Эта схема чрезвычайно широко используется на практике, однако имеет в себе один серьезный недостаток: выходное сопротивление этой схемы велико и, как следствие, входной сигнал может существенно ослабляться. Для устранения этого недостатка возможно использование операционного усилителя.

Простейшая схема интегратора на операционном усилителе, встречающаяся во всех учебниках, приведена на рисунке ниже.


Как видно из рисунка — это инвертирующий интегратор, т.е. помимо интегрирования сигнала, он меняет также и его полярность. Следует отметить, что это требуется далеко не всегда. Еще один серьезный недостаток этой схемы — конденсатор интегратора накапливает в себе заряд, который надо как-то сбрасывать. Для этого можно либо применять резистор, включенный параллельно с конденсатором (однако необходимо учитывать также его влияние на итоговый сигнал), либо же сбрасывать заряд с помощью полевого транзистора, открывая его в нужные моменты времени. По этой причине я решил рассмотреть более подробно другую схему интегратора с использованием операционного усилителя, которая, на мой взгляд, заслуживает больший практический интерес:
Как видно из рисунка, эта схема представляет собой классический интегратор на RC-цепочке, к которому добавлен повторитель на операционном усилителе: с помощью него решается проблема выходного сопротивления.

Интегратор можно также рассматривать как фильтр нижних частот. Частота среза АЧХ фильтра высчитывается по формуле


Тут стоит обратить внимание на один очень важный момент. Надо всегда помнить, что частота среза, рассчитанная выше, верна только для RC-цепочки и не учитывает частотных свойств самого операционного усилителя. Частотными свойствами операционного усилителя можно пренебречь, если мы попадаем в его рабочий диапазон частот, но если мы вдруг выйдем за него, то итоговая частотная характеристика схемы будет совсем не такой, как мы ожидали. Грубо говоря, если у нас RC-цепочка настроена на 1 МГц, а операционный усилитель позволяет работать до 100 МГц – все хорошо. Но если у нас цепочка на 10 МГц, а операционный усилитель работает до 1 МГц – все плохо.

В качестве примера рассчитаем ФНЧ со следующими параметрами частотой среза АЧХ в 1 МГц. Для такой частоты можно выбрать

  • Частота среза АЧХ
  • Операционный усилитель LT1803 (Максимальная частота 85 МГц)

Для заданной частоты среза АЧХ подойдут следующие номиналы сопротивления и емкости RC-цепочки:


Результат моделирования приведен на рисунке ниже (изображение кликабельно). На этом рисунке показаны две частотные характеристики: отдельно для RC-цепочки (красная линия) и для всей схемы целиком (RC-цепочка+операционный усилитель, зеленая линия).


Как видно из рисунка, красная и зеленая линии сначала совпадают, а начиная с определенной частоты зеленая идет вниз гораздо круче. Это как раз и объясняется тем, что на частотные свойства схемы начинает оказывать влияние уже сам операционный усилитель.

Ну и поскольку все-таки мы рассматриваем интегратор, то на следующем рисунке (кликабельно) приведена классическая картинка из учебников: интегрирование прямоугольных импульсов. Параметры интегратора те же, какие были в предыдущем моделировании частотной характеристики.

10. Дифференциатор на операционном усилителе


Схема простейшего дифференциатора на RC-цепочке известна ничуть не меньше, чем схема интегратора:
Эта схема имеет все тот же недостаток, связанный с высоким выходным сопротивлением, и для его устранения можно аналогичным образом применить операционный усилитель. Схема инвертирующего дифференциатора получается из схемы инвертирующего интегратора путем замены конденсаторов на резисторы и резисторов на конденсаторы, она приведена на рисунке ниже.
Однако и в этом случае более подробно рассмотрим другую схему, состоящую из классического дифференциатора на RC-цепочке и повторителя на операционном усилителе:
Если интегратор мы рассматривали как простейший фильтр нижних частот, то дифференциатор наоборот – фильтр верхних частот. Частота среза АЧХ считается все по той же формуле


В случае дифференциатора также нельзя забывать про частотные свойства самого операционного усилителя: здесь они выражены даже более ярко, чем в случае с интегратором. Как мы уже убедились в прошлом разделе, начиная с определенной частоты операционный усилитель работает как фильтр нижних частот, тогда как дифференциатор – это фильтр верхних частот. Вместе они будут работать как полосовой фильтр.

В качестве примера рассчитаем ФВЧ с частотой среза АЧХ равной тем же 1 МГц. Для такой частоты можно выбрать все те же номиналы компонентов, которые были в случае ФНЧ:


Результат моделирования приведен на рисунке ниже (картинка кликабельна). На этом рисунке показаны две частотные характеристики: отдельно для RC-цепочки (красная линия) и для всей схемы целиком (RC-цепочка + операционный усилитель, зеленая линия).


Как видно из рисунка, красная и зеленая линии сначала совпадают, а начиная с определенной частоты, зеленая линия идет резко вниз, тогда как красная линия, отражающая работу непосредственно самой RC-цепочки, горизонтальна.

Работа дифференциатор при подаче на его вход прямоугольных импульсов приведена на рисунке ниже (изображение кликабельно).

Заключение


В данной статье мы рассмотрели десять наиболее часто встречающихся схем на операционных усилителях. Операционный усилитель – мощный инструмент в умелых руках, и количество схем, которые можно создать с его помощью, конечно, многократно превосходит то, что было рассмотрено, однако, надеюсь, данный материал будет кому-то полезен и поможет более уверенно использовать этот компонент в своих разработках. Полезные ссылки
  1. Хоровиц П., Хилл У. Искусство схемотехники: — Изд. 2-е. — М.: Издательство БИНОМ — 2014. — 704 с
  2. Картер Б., Манчини Р. Операционные усилители для всех — М.: Издательский дом «Додэка — XXI» — 2011. — 509 с
  3. LT1803

Расчет параметров инвертирующего и неинвертирующего усилителей

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа энергетики

Электроэнергетика и электротехника

«Расчет параметров инвертирующего и неинвертирующего усилителей»

Индивидуальное задание № 1

по дисциплине:

Электроника 2. 1

Исполнитель:

студент группы 5А6Г Агафонов Богдан Валерьевич

Руководитель:

кандидат технических наук Чернышев Александр Юрьевич

Томск — 2018

Задание №1

Рассчитать параметры инвертирующего усилителя (рис. 1), выполненного на операционном усилителе, который обеспечивает коэффициент усиления по напряжению при сопротивлении нагрузки . Для расчетов принимаем =2,2 и = 51 кОм.

Рис.1. Схема инвертирующего усилителя

Решение:

Промышленность выпускает различные типы операционных усилителей, каждый из которых разрабатывается под конкретные изделия. Наиболее простыми являются ОУ марки К140УД6, К140УД7, К1410УД20. Для выполнения инвертирующего усилителя выбираем ОУ марки К140УД6, который имеет следующие основные параметры:

=+151,5 В;

1 МОм;

=151,5 В;

= +11 В;

2,5 мА;

200 нА;

25 нА;

=10 В;

= 11 В;

30000;

= 1 МГц;

= 2 В/мкс;

Условные обозначения параметров операционного усилителя:

напряжение источника питания положительной полярности;

напряжение источника питания отрицательной полярности;

максимальный допустимый ток операционного усилителя;

входной ток операционного усилителя;

разность входных токов;

напряжение смещения;

входное сопротивление

максимальное выходное напряжение положительного уровня;

максимальное выходное напряжение отрицательного уровня;

коэффициент усиления напряжения;

частота единичного усиления;

скорость изменения выходного напряжения.

Значение сопротивления резистора при заданной нагрузке определяем из условия ограничения выходного тока операционного усилителя на допустимом уровне:

Решим уравнение относительно сопротивления :

Подставив в выражение численные значения параметров, получим

Для ограничения выходного тока операционного усилителя увеличиваем в 10 раз.

Сопротивления резистора выбираем из ряда номинальных значений Е24.

Принимаем кОм.

Определим мощность резистора . Для этого найдем максимальный ток, протекающий по резистору :

Подставив численные значения параметров в выражение, имеем

Тогда мощность резистора

или после подстановки численных значений параметров

С учетом стандартного ряда мощностей выбираем резистор типа МЛТ – 0,01 – 51кОм ±5 %.

Коэффициент усиления инвертирующего усилителя определяется в соответствии с выражением

Решая выражение относительно , получим

После подставки численных значений параметров:

Сопротивление резистора выбираем из ряда номинальных значений Е24:

Определим мощность резистора . Для этого из выражения найдем максимальное входное напряжение:

Тогда

и

С учетом численных значений параметров

Из ряда стандартных мощностей выбираем резистор типа МЛТ – 0,01 –24 кОм ± 5 %.

С целью уменьшения токов и напряжений сдвигов в схему включают резистор . Резистор выбирают из условия равенства входных сопротивлений по инвертирующему и неинвертирующему входам операционного усилителя

Подставив найденные значения сопротивлений и в выражение, получим

Сопротивление резистора выбираем из ряда номинальных значений:

Так как операционный усилитель охвачен обратной связью и по входным цепям не потребляет тока, то мощность резистора мала. Выбираем резистор типа МЛТ – 0,01 – 18 кОм ± 5 %.

В соответствии с выражением проведем проверку коэффициента усиления инвертирующего усилителя

Погрешность вычислений находим по выражению

С учетом найденного значения определяем величину

Погрешность не превышает 5 %, поэтому найденные значения резисторов можно считать приемлемыми.

Рис.2. Модель инвертирующего усилителя в программной среде Electronics Workbench

Рис.3. Осциллограммы цифрового осциллографа

Из осциллограмм (рис. 3) следует, что при входном напряжении инвертирующего усилителя (см. окно VA1 на рис. 3), выходное напряжение равно

Тогда коэффициент усиления по напряжению инвертирующего усилителя можно определить по уравнению

Следовательно, параметры инвертирующего усилителя с заданным коэффициентом усиления найдены верно.

Задание №2

Рассчитать параметры неинвертирующего усилителя (рис. 4), выполненного на операционном усилителе, который обеспечивает коэффициент усиления по напряжению при сопротивлении нагрузки . Для расчетов принимаем и .

Рис.4. Схема неинвертирующего усилителя

Решение:

Для расчетов используем операционный усилитель типа К140УД6.

Определяем сумму сопротивлений резисторов и при заданной нагрузке из условия ограничения выходного тока операционного усилителя на допустимом уровне:

Решим выражение относительно

Коэффициент усиления неинвертирующего усилителя определяется в соответствии с выражением

Из выражения определим отношение сопротивлений и и составим систему уравнений

Решая систему уравнений относительно , получаем, что , тогда Из стандартного ряда выбираем номинальные значения сопротивлений а .

Найдем ток, протекающий через резисторы и :

Подставив численные значения параметров в выражение, получим

В соответствии с выражением определим мощность резисторов и :

С учетом ряда стандартных мощностей выбираем резистор типа МЛТ0,0252,2 кОм 5%, а резистор типа МЛТ0,0252,7 кОм 5%.

С целью уменьшения токов и напряжений сдвигов в схему (рис.4) включают резистор . Сопротивление выбирают из условия равенства входных сопротивлений по инвертирующему и неинвертирущему входам операционного усилителя в соответствии с выражением

Согласно стандартному ряду сопротивлений принимаем

Так как ОУ охвачен обратной связью и не потребляет ток по входным цепям, то ток, протекающий через чрезвычайно мал. Поэтому мощность резистора принимаем равной 0,01 Вт, а резистор выбираем типа МЛТ0,011,3 кОм5%.

Проведем проверку коэффициента усиления неинвертирующего усилителя по выражению:

По уравнению определяем погрешность вычислений

Погрешность не превышает 5 %, поэтому найденные значения резисторов можно считать приемлемыми.

Рис.5. Модель неинвертирующего усилителя в программной среде Electronics Workbench

Рис.6. Диаграммы входного и выходного напряжений неинвертирующего усилителя

Из диаграмм напряжений следует, что при входном напряжении инвертирующего усилителя равном выходное напряжение составляет .

Коэффициент усиления по напряжению неинвертирующий усилитель определяется как отношение выходного напряжения к входному напряжению :

Анализ полученных диаграмм (рис. 6) показывает, что коэффициент усиления неинвертирующего усилителя составляет 2,227. Следовательно, параметры неинвертирующего усилителя с заданным коэффициентом усиления найдены верно.

Вывод: научился рассчитывать параметры инвертирующего и неинвертирующего усилителей, понял принципиальную разницу между ними, научился строить схемы усилителей в пакете схематического моделирования схем Electronics Workbench. В первом задании погрешность была на 2,169% больше, чем во втором задании. Также осциллограмма неинвертирующего усилителя дала значение коэффициента усиления по напряжению более близкое к данному значению, чем осциллограмма инвертирирующего усилителя. При расчетах использовал программное обеспечение Mathcad

Расчет и измерение напряжения смещения операционного усилителя Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

Трундов А.В.

РАСЧЕТ И ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ СМЕЩЕНИЯ ОПЕРАЦИОННОГО УСИЛИТЕЛЯ

Существуют различные методы измерения параметров операционных усилителей (ОУ). Для выбора оптимального метода измерения необходим их анализ. Одним из способов анализа является расчет параметров ОУ, который может проводиться на основе полной линейной модели [1], представленной на рисунке 1.

Рис. 1. Линейная модель операционного усилителя

С помощью данной эквивалентной схемы ОУ можно рассчитать следующие параметры ОУ, входящие в макромодель Бойла [2]: напряжение смещения ОУ; максимальное выходное напряжение ОУ;

коэффициент ослабления синфазной составляющей входного напряжения ОУ;

входное сопротивление ОУ;

средний входной ток ОУ;

выходное сопротивление ОУ;

коэффициент усиления ОУ.

инвертирующей и

Для измерения параметров ОУ возможно построение двух видов схем неинвертирующей. СИНФ

вышают значение

я

соответствует напряжению смещения ОУ. Также прене-

-д -ОШ

брегаем напряжением сдвига ОУ, напряжением дрейфа и шумовыми напряжениями.

Одним из важнейших параметров ОУ является напряжение смещения. Данный параметр влияет на точность схем с использованием ОУ, работающих в режиме усиления малых напряжений постоянного тока. Расчет напряжения смещения для инвертирующего включения ОУ проводится в соответствии с эквивалентной электрической схемой, представленной на рисунке

3 .

Рис. 3. Эквивалентная электрическая схема и ее модель для инвертирующего включения ОУ.

Д

Таким образом, при расчете значения ТТ можно бу-

ТСМ

дет пренебречь напряжением б

Д

Из эквивалентной электрической схемы видно,

Тд Ед+Тсм ‘

(1)

где ЕД падение напряжения на входном резисторе ОУ, Исм — напряжение смещения ОУ, и

Д

напряжение на инвертирующем входе ОУ. Напряжение на выходе ОУ равно:

ивых=- к- ед ■

(2)

где К — коэффициент усиления напряжения ОУ без обратной связи. Также выходное напряжение можно рассчитать по формуле:

— и0

(3)

Из этих выражений видно, что минимальное напряжение е можно получить при нулевом

ЕД

входном напряжении и коэффициенте усиления схемы с обратной связью равном -1. В итоге получится схема инвертирующего усилителя с единичным коэффициентом усиления, показанная на рисунке 4.

Рис.4. Из (1)

Схема измерения напряжения смещения ОУ в инвертирующем включении

видно, что при стремлении

Б.

к нулю, напряжение на инвертирующем входе ОУ

равно напряжению смещения. должно быть не менее 50 кОм.

Измерение напряжения смещения лучше проводить на выходе ОУ, так как подключение измерительных приборов к суммирующей точке ОУ может привести к увеличению погрешности измерения из-за влияния емкости измерительного прибора на вход ОУ. Но в этом случае точность измерения напряжения смещения буд ет определяться точностью прецизионных резисторов. Зависимость погрешности измерения от точности резисторов является недостатком данной схемы.

При измерении напряжения смещения по приведенной выше схеме для одного из образцов ОУ КР5 4 4УД2А получилось, что напряжение на выходе ОУ составило 17 . 4 мВ, а напряжение н а инвертирующем входе ОУ, равное напряжению смещения, составило 8.8 мВ. При расчете напряжения смещения исходя из измеренного значения выходного напряжения получилось

и = 87 В — При построении схемы использовались резисторы с точностью 5%. /Г ~ ЕП

Д

К

К

Из (7) видно, что

ИСМ — К ЕД ■

(8)

Е

Д ‘

К

Из (9) можно сделать вывод, что разность напряжений между входами ОУ меньше значения напряжения смещения в число, соответс твующее коэффициенту усиления ОУ без обратной связи. Для отечественных ОУ минимальный коэффициент усиления составляет 5000, поэтому, можно сделать вывод, что напряжение Е оказывает очень малый вклад в выходное напряже-

Е Д

ние и его значением можно пренебречь практически без увеличения погрешности измерения.

В данной схеме, как и в предыдущей, не применяются схемотехнические меры по снижению погрешности измерения, обусловленной шумами и темпера турными сдвигами напряжения. Поэтому необходимо конструктивно обеспечить минимальный уровень шумов, наводок и уменьшить влияние температуры. Схема измерения напряжения смещения приведена на рисунке 6 .

или

Рис. 6. Схема измерения напряжения смещения ОУ в неинвертирующем включении

При измерении напряжения смещения данным способом для ОУ КР544УД2А (который использовался ранее) получилось значение 8.8 мВ, которое совпадает со значением напряжения смещения, измеренным в схеме инвертирующего усилителя с единичным коэффициентом усиления .

Схема измерения напряжения смещения, представленная на рисунке 6, не содержит резисторов и позволяет производить измерение напряжения непосредственно на выходе ОУ. Этим она выгодно отличается от схемы, представленной на рисунке 4.

ЛИТЕРАТУРА

1. Достал И. Операционные усилители: Пер. с англ. — М.: Мир, 1982. — 512 с., ил.

2. Алексенко А.Г., Зуев Б.И. Макромоделирование интегральных схем операционных усилителей: Зарубежная радиоэлектроника,1977.

Неинвертирующий усилитель на ОУ | Практическая электроника

Схема неинвертирующего усилителя на ОУ


Неинвертирующий усилитель является базовой схемой с ОУ. Выглядит он до боли просто:

В этой схеме сигнал подается на НЕинвертирующий вход ОУ.

Итак, для того, чтобы понять принцип работы этой схемы, запомните самое важное правило, которое используется для анализа схем с ОУ: выходное напряжение ОУ стремится к тому, чтобы разность напряжения между его входами была равна нулю.

Принцип работы неинвертирующего усилителя на ОУ


Итак, давайте инвертирующий вход обозначим, буквой A:

Следуя главному правилу ОУ, получаем, что напряжение на инвертирующем входе равняется входному напряжению: UA=Uвх .   UA снимается с делителя напряжения, который образован резисторами R1 и R2. Следовательно:

UA = Uвых R1/(R1+R2)

Так как UA=Uвх , получаем что Uвх = Uвых R1/(R1+R2).

Коэффициент усиления по напряжению высчитывается как KU = Uвых /Uвх.

Подставляем сюда ранее полученные значения и получаем, что KU = 1+R2/R1.

Как работает неинвертирующий усилитель на ОУ на примере


Это также можно легко проверить с помощью программы Proteus. Схема будет выглядеть вот так:

Давайте рассчитаем коэффициент усиления KU.   KU = 1+R2/R1=1+90к/10к=10. Значит, наш усилитель должен ровно в 10 раз увеличивать входной сигнал. Давайте проверим, так ли это. Подаем на неинвертирующий вход синусоиду с частотой в 1кГц и смотрим, что имеем на выходе. Для этого нам потребуется виртуальный осциллограф:

Входной сигнал – это желтая осциллограмма, а выходной сигнал – это розовая осциллограмма:

Как вы видите, входной сигнал усилился ровно в 10 раз. Фаза выходного сигнала осталась такой же. Поэтому такой усилитель называют НЕинвертирующим.

Но, как говорится, есть одно “НО”. На самом же деле в реальном ОУ имеются конструктивные недостатки. Так как Proteus старается эмулировать компоненты, приближенные к реальным, давайте рассмотрим амплитудно-частотную характеристику (АЧХ), а также фазо-частотную характеристику (ФЧХ) нашего операционника LM358.

АЧХ и ФЧХ неинвертирующего усилителя на LM358

На практике, для того, чтобы снять АЧХ, нам надо на вход нашего усилителя подать частоту от 0 Герц и до какого-то конечного значения, а на выходе в это время следить за изменением амплитуды сигнала. В Proteus все это делается с помощью функции Frequency Responce:

По оси Y у нас коэффициент усиления, а по оси Х – частота. Как вы могли заметить, коэффициент усиления почти не изменялся до частоты 10 кГц, потом стал стремительно падать с ростом частоты. На частоте в 1МегаГерц коэффициент усиления был равен единице. Этот параметр в ОУ называется частотой единичного усиления и обозначается как f1. То есть по сути на этой частоте усилитель не усиливает сигнал. Что подали на вход, то и вышло на выходе.

[quads id=1]

В проектировании усилителей важен такой параметр, как граничная частота среза fгр . Для того, чтобы ее вычислить, нам надо знать коэффициент усиления на частоте Kгр:

Kгр= KUo / √2 либо = KUo х 0,707 , где  KUo  – это коэффициент усиления на частоте в 0 Герц (постоянный ток).

Если смотреть на АЧХ, мы увидим, что на нулевой частоте (на постоянном токе) у нас коэффициент усиления равен 10. Вычисляем Kгр.

Kгр = 10 х 0,707 = 7,07

Теперь проводим горизонтальную линию на уровне 7,07 и смотрим пересечение с графиком. У меня получилось около 104 кГц. Строить усилитель с частотой среза, более, чем fгр не имеет смысла, так как в этом случае выходной сигнал усилителя будет сильно затухать.

Также очень просто определить граничную частоту, если построить график в децибелах. Граничная частота будет находиться на уровне  KUo-3dB. То есть в нашем случае на уровне в 17dB. Как вы видите, в этом случае мы также получили частоту среза в 104 кГц.

Ну ладно, с частотой среза вроде бы разобрались. Теперь нам важен такой параметр, как ФЧХ. В нашем случае мы вроде бы как получили НЕинвертирующий усилитель. То есть сдвиг фаз между входным и выходным сигналом должен быть равен нулю. Но  как поведет себя усилитель на высоких частотах (ВЧ)?

Берем такой же диапазон частот от 0 и до 100 МГц и смотрим на ФЧХ:

Как вы видите, до частоты в 1 кГц неинвертирующий усилитель действительно работает как надо. То есть входной и выходной сигнал двигаются синфазно. Но после частоты в 1 кГц, мы видим, что фаза выходного сигнала начинает отставать. На частоте в 100 кГц она уже отстает примерно на 40 градусов.

Для наглядности АЧХ и ФЧХ можно разместить на одном графике:

Также в схемах  с  неинвертирующим  усилителем  часто  вводят  компенсирующий резистор RK .

Он определяется по формуле:

и служит для того, чтобы обеспечить равенство сопротивлений между каждым из входов и землей. Более подробно мы это разберем в следующей статье.

При участии Jeer

Операционные усилители с однополярным питанием: примеры применения

11 февраля 2020

Бонни Бейкер (Microchip Technology)

Ведущий инженер Microchip рассказывает о схемах базовых функциональных узлов на операционных усилителях (ОУ), типовых схемах систем управления на их базе и типичных ошибках при проектировании устройств на ОУ.

Операционный усилитель (ОУ) представляет собой основной после транзистора функциональный элемент для построения аналоговых схем. С помощью ОУ легко реализуются такие базовые функции как усиление сигнала, изоляция нагрузки, инвертирование сигнала, смещение уровня, сложение и/или вычитание сигналов. Также на базе ОУ можно реализовать и более сложные схемы, такие как инструментальные усилители, преобразователи тока в напряжение и фильтры. Независимо от сложности схемы собственно операционного усилителя, знание основных принципов его работы позволит сэкономить много времени на начальных этапах проектирования.

В курсе изучения операционных усилителей дается множество важной и полезной информации. Однако при этом часто упускают из виду вопросы, касающиеся практического применения ОУ. Так, при проектировании схем с операционными усилителями разработчики постоянно забывают о такой «мелочи» как блокировочные конденсаторы по питанию. С теоретической точки зрения эти компоненты не нужны. В то же время при отсутствии блокировочного конденсатора схема усилителя может возбудиться и в ней возникнут колебания, чего в теории быть не должно. Если же при проектировании схемы использовались только готовые решения из книг, эта проблема может оказаться трудноразрешимой.

Данное руководство состоит из трех частей. В первой части рассматриваются схемы базовых функциональных узлов на ОУ вместе с уравнениями для их расчета. Эти схемы были выбраны с учетом их применимости во встраиваемых системах.

Во второй части руководства рассматриваются более сложные аналоговые схемы для встраиваемых систем управления, построенные с использованием базовых функциональных узлов.

В третьей части руководства приведены наиболее распространенные ошибки, которые допускаются при проектировании схем на ОУ с однополярным питанием. Данный перечень ошибок – результат многолетней работы множества разработчиков по поиску неисправностей в аналоговых схемах. Большей части этих ошибок можно избежать, если применить рекомендации, приведенные в данной статье.

Основные принципы работы операционных усилителей

Операционный усилитель – это такой же «кирпичик» для построения аналоговых схем, как логический элемент – для цифровых. При помощи операционных усилителей мы можем кардинально изменять аналоговые сигналы, подобно тому как с помощью инверторов и логических элементов И/ИЛИ мы изменяем цифровые сигналы. В этой части мы рассмотрим такие базовые функциональные узлы на ОУ как повторитель напряжения, неинвертирующий и инвертирующий усилители, расщепитель питания (формирователь искусственной средней точки), дифференциальный и суммирующий усилители, а также преобразователь тока в напряжение.

Повторитель напряжения

Начнем с самой простой схемы – схемы буферного усилителя (рисунок 1). Буферный усилитель применяется для управления большими нагрузками для согласования входных/выходных сопротивлений или для развязки силовых цепей и чувствительных прецизионных схем.

Рис. 1. Буферный усилитель (повторитель напряжения)

Буферный усилитель, показанный на рисунке 1, может быть реализован на любом ОУ с однополярным питанием, устойчиво работающем при единичном коэффициенте усиления. В этой схеме, как и во всех схемах с ОУ, должен присутствовать блокировочный конденсатор по питанию. Для усилителей с однополярным питанием, работающих в полосе частот от нуля до единиц мегагерц, как правило, достаточно конденсатора емкостью 1 мкФ. Если полоса частот усилителя составляет десятки мегагерц, может потребоваться конденсатор меньшей емкости. В этом случае обычно используют конденсатор емкостью 0,1 мкФ. При отсутствии блокировочного конденсатора или при неправильном выборе его емкости операционный усилитель может самовозбудиться.

Коэффициент усиления схемы, приведенной на рисунке 1, равен +1 В/В. Обратите внимание, что хотя усиление всей схемы положительно, цепь обратной связи с выхода усилителя подключена к инвертирующему входу. Полагать, будто бы схема на ОУ, имеющая положительное усиление, требует наличия положительной обратной связи – очень распространенное заблуждение. Если мы охватим ОУ положительной обратной связью, то на выходе усилителя, скорее всего, установится уровень одной из шин питания.

Данная схема обеспечивает хорошую линейность в пределах всей полосы пропускания усилителя. Однако существуют и определенные ограничения – уровень синфазного сигнала на входе и размах выходного сигнала не должны выходить за определенные границы. Указанные ограничения обсуждаются в разделе «Подводные камни проектирования схем с ОУ».

Если эта схема предназначена для управления мощной нагрузкой, то примененный ОУ должен обеспечивать необходимый уровень выходного тока. Также данная схема может применяться для управления емкостной нагрузкой. Следует отметить, что далеко не каждый ОУ способен сохранять устойчивость при работе на емкостную нагрузку. Если усилитель рассчитан на управление емкостной нагрузкой, то в его документации это будет явно указано. С другой стороны, если ОУ не может работать на емкостную нагрузку, то в его документации это, как правило, особо не оговаривается.

Кроме того, буферный усилитель используется для решения задачи согласования входного и выходного сопротивлений. Это может потребоваться в том случае, если источник аналогового сигнала имеет достаточно высокое выходное сопротивление по сравнению со входным сопротивлением схемы. При прямом подключении источника к схеме уровень сигнала уменьшится из-за падения напряжения на делителе, образованном выходным сопротивлением источника и выходным сопротивлением схемы. Буферный усилитель прекрасно решает эту проблему. Входное сопротивление неинвертирующего входа КМОП ОУ может достигать значения 1013 Ом. В то же время выходное сопротивление буферного усилителя обычно не превышает 10 Ом.

Еще один вариант использования буферного усилителя – изоляция чувствительной прецизионной схемы от источника тепла, как показано на рисунке 2. Представьте, что схема, к которой подключен буферный усилитель, усиливает сигнал величиной 100 мкВ.

Рис. 2. Развязка нагрузки с использованием буферного усилителя

Усиление подобных сигналов – непростая задача, независимо от требуемой точности. При таких прецизионных измерениях из-за изменения выходного тока схемы усилителя может легко возникнуть погрешность. Увеличение тока нагрузки вызывает саморазогрев кристалла, что в свою очередь приводит к росту напряжения смещения. В таких ситуациях для управления мощной нагрузкой лучше использовать отдельный аналоговый буфер, а входным каскадам оставить только прецизионные измерения.

Усиление аналоговых сигналов

Буфер позволяет решить многие проблемы, связанные с передачей аналогового сигнала, однако на практике часто возникает необходимость усиления сигнала. Для этого можно использовать усилители двух типов. В усилителе первого типа, схема которого приведена на рисунке 3, сигнал не инвертируется. Этот вариант усилителя очень удобен для схем с однополярным питанием, в которых отрицательные сигналы, как правило, отсутствуют.

Рис. 3. Неинвертирующий усилитель на ОУ

Примечание. Когда в данной публикации говорится об однополярном питании, то подразумевается, что отрицательный вывод питания операционного усилителя соединен с общим проводом, а положительный вывод питания подключен к линии +5 В. Все рассуждения в этой статье можно экстраполировать и на другие значения напряжения питания, если напряжение однополярного источника превышает 5 В или же если используется двуполярное питание.

В данном случае входной сигнал подается на высокоимпедансный неинвертирующий вход операционного усилителя. Выходное напряжение данной схемы определяется по формуле 1:

$$V_{OUT}=\left(1+\frac{R_{2}}{R_{1}} \right)\times V_{IN}\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

В схемах с однополярным питанием значение сопротивления резистора R2, как правило, берется не менее 2 кОм. Сопротивление резистора R1 выбирается исходя из требуемого значения коэффициента усиления с учетом уровня шумов операционного усилителя и входного напряжения смещения, указанных в технической документации на ОУ. Стоит отметить, что данная схема имеет некоторые ограничения, касающиеся величины входного и выходного сигналов. Так, напряжение на неинвертирующем входе ОУ не должно превышать максимально допустимого для данного ОУ значения синфазного напряжения. Размах выходного сигнала ОУ также ограничен; допустимый диапазон указывается в технической документации на усилитель. Как правило, большая часть ошибок возникает из-за ограничения слишком большого выходного сигнала усилителя, а не из-за слабого сигнала на входе. При возникновении ограничения выходного сигнала коэффициент усиления схемы следует уменьшить.

Схема инвертирующего усилителя приведена на рисунке 4. Эта схема усиливает и инвертирует сигнал, поданный на входной резистор (R1). Выходное напряжение этой схемы определяется по формуле 2:

$$V_{OUT}=-\left(\frac{R_{2}}{R_{1}} \right)\times V_{IN}+\left(1+\frac{R_{2}}{R_{1}} \right)\times V_{BIAS}\qquad{\mathrm{(}}{2}{\mathrm{)}}$$

Рис. 4. Инвертирующий усилитель на ОУ

Сопротивления резисторов R1 и R2 выбираются из тех же соображений, что и для схемы неинвертирующего усилителя, приведенной на рисунке 3.

При использовании этой схемы в условиях однополярного питания легко допустить ошибку. Пусть, к примеру, R2 равен 10 кОм, R1 равен 1 кОм, VBIAS равно 0 В, а напряжение на входном резисторе R1 равно 100 мВ. В этом случае выходное напряжение, казалось бы, должно быть равно -1 В. Однако это значение выходит за границы диапазона выходного напряжения ОУ, поэтому на выходе ОУ установится минимально возможное положительное напряжение.

Для решения этой проблемы следует добавить в схему источник напряжения смещения VBIAS. Вернемся к предыдущему примеру. Если бы мы подали на вход VBIAS напряжение 225 мВ, то выходной сигнал оказался бы смещен на 2,475 В. Соответственно, вместо отрицательного напряжения на выходе ОУ было бы напряжение 2,475 В – 1 В = 1,475 В. Как правило, схемы рассчитывают таким образом, чтобы среднее значение выходного напряжения ОУ было равно половине напряжения питания VDD/2.

Схемы с однополярным питанием и расщепители питания

Как было показано на примере схемы инвертирующего усилителя (рисунок 4), при однополярном питании часто требуется смещать уровень сигнала, чтобы он оставался в пределах диапазона, определенного потенциалами выводов питания. Такое смещение можно обеспечить с использованием одного ОУ и нескольких пассивных элементов, как показано на рисунке 5. Во многих случаях эту схему можно реализовать на обычном буферном усилителе без конденсаторов частотной коррекции. В других ситуациях, например, при использовании этой схемы в качестве источника опорного напряжения аналого-цифрового преобразователя (АЦП), ее нагрузка будет динамически изменяться. В подобных приложениях напряжение смещения должно оставаться неизменным, иначе может возникнуть ошибка преобразования.

Рис. 5. Расщепитель питания на одном операционном усилителе. Данная схема особенно полезна при однополярном питании

Неизменное напряжение смещения можно легко сформировать, используя делитель напряжения (R3 и R4) или источник опорного напряжения с последующей буферизацией посредством ОУ. Выходное напряжение схемы, приведенной на рисунке 5, определяется по формуле 3:

$$V_{OUT}=V_{DD}\times \left(\frac{R_{4}}{R_{3}+R_{4}} \right)\qquad{\mathrm{(}}{3}{\mathrm{)}}$$

Схема, представленная на рисунке 5, имеет дополнительную цепь коррекции, обеспечивающую работу на большую емкостную нагрузку C1. Такая большая емкость используется потому, что имеет очень маленькое сопротивление переменному току по входу опорного напряжения АЦП. Этот конденсатор сглаживает кратковременные скачки тока, которые обязательно присутствуют на входе опорного напряжения АЦП.

Дифференциальный (разностный) усилитель

Дифференциальный усилитель представляет собой сочетание неинвертирующего и инвертирующего усилителей (рисунки 3 и 4). Схема дифференциального усилителя приведена на рисунке 6.

Рис. 6. Дифференциальный усилитель на ОУ

Выходное напряжение этой схемы определяется по формуле 4:

$$V_{OUT}=\left(V_{1}-V_{2} \right)\times \left(\frac{R_{2}}{R_{1}} \right)+V_{REF}\qquad{\mathrm{(}}{4}{\mathrm{)}}$$

Данная схема будет усиливать разность двух сигналов с хорошей точностью с условием, что выходное сопротивлении источников этих сигналов мало. Если выходные сопротивления этих источников окажутся большими по сравнению с сопротивлением R1, то уровень сигнала на входах ОУ снизится из-за влияния делителя напряжения, созданного выходным сопротивлением источника и входными резисторами дифференциального усилителя. Помимо этого, погрешности могут создавать различные значения выходных сопротивлений источников сигналов. Коэффициент усиления данной схемы может превышать или равняться единице.

Суммирующий усилитель

Суммирующие усилители (рисунок 7) используются, когда необходимо объединить несколько сигналов путем их сложения или вычитания. Дифференциальный усилитель, обрабатывающий только два сигнала, представляет собой частный случай суммирующего усилителя.

Рис. 7. Суммирующий усилитель на ОУ

Выходное напряжение этой схемы определяется по формуле 5:

$$V_{OUT}=\left(V_{1}+V_{2}-V_{3}-V_{4} \right)\times \left(\frac{R_{2}}{R_{1}} \right)\qquad{\mathrm{(}}{5}{\mathrm{)}}$$

На инвертирующий и неинвертирующий входы ОУ в этой схеме можно подавать любое равное количество сигналов через резисторы с одинаковым сопротивлением.

Преобразователь тока в напряжение

Операционный усилитель может применяться для преобразования токового сигнала от датчика, такого как фотодиод, в напряжение. Для этого в цепь обратной связи включается единственный резистор и (опционально) конденсатор, как показано на рисунке 8.

Свет, попадая на фотодиод, вызывает протекание через него обратного тока. При использовании операционного усилителя, изготовленного по технологии КМОП, который обладает высоким входным сопротивлением, весь ток фотодиода (ID1) будет течь по цепи с наименьшим сопротивлением – через резистор обратной связи R2. А благодаря очень малому входному току смещения КМОП-усилителей (обычно менее 200 пА), обусловленная им погрешность также будет невелика. Неинвертирующий вход операционного усилителя подключен к общему проводу, то есть все сигналы в схеме отсчитываются относительно общего провода. Обе схемы будут работать только в том случае, если ОУ допускает подачу на свои входы нулевого синфазного напряжения.

На рисунке 8 приведены две схемы. Верхняя схема обеспечивает измерение освещенности с высокой точностью. В ней напряжение на фотодиоде близко к нулю и равно напряжению смещения операционного усилителя. При такой конфигурации основным источником тока, протекающего через резистор R2, является воздействие света на фотодиод.

Рис. 8. Преобразователь тока в напряжение на ОУ и одном резисторе: схема (а) измерения освещенности обеспечивает повышенную точность, а схема (б) обладает повышенным быстродействием

Схема измерения освещенности, изображенная в нижней части рисунка 8, обеспечивает более высокое быстродействие. Это достигается путем смещения фотодиода в обратном направлении, в результате чего уменьшается его паразитная емкость. Недостатком данной схемы является увеличенная погрешность по постоянному току из-за большого обратного тока фотодиода.

Применение базовых схем

Инструментальный усилитель

Инструментальные усилители находят применение в самых разных областях: от медицинского оборудования до промышленных контроллеров. Инструментальный усилитель аналогичен дифференциальному усилителю в том смысле, что он тоже вычитает один аналоговый сигнал из другого, однако его входной каскад построен совершенно иначе. Классическая схема инструментального усилителя на трех ОУ приведена на рисунке 9.

Рис. 9. Инструментальный усилитель на трех ОУ

В этой схеме оба входных сигнала поступают на высокоомные неинвертирующие входы операционных усилителей. Поэтому, в отличие от дифференциального усилителя, данную схему можно использовать в случае, если выходные сопротивления источников сигналов велики и/или различаются. Коэффициент усиления входного каскада определяется сопротивлением резистора RG.

Второй каскад представляет собой обычный дифференциальный усилитель. Этот каскад подавляет синфазное напряжение входных сигналов и вычитает один сигнал из другого. Выходные сопротивления источников сигналов, поступающих на вход дифференциального усилителя, малы, имеют одинаковое значение и их легко контролировать.

Напряжение смещения дифференциального каскада измерительного усилителя можно изменять в широких пределах. В схемах с однополярным питанием напряжение смещения обычно выбирается равным половине напряжения питания. Для формирования напряжения смещения можно использовать расщепитель питания, схема которого приведена на рисунке 5. Выходное напряжение инструментального усилителя определяется по формуле 6:

$$V_{OUT}=\left(V_{1}-V_{2} \right)\times \left(1+\frac{2R_{2}}{R_{G}} \right)\times \left(\frac{R_{4}}{R_{3}} \right)+V_{REF}\qquad{\mathrm{(}}{6}{\mathrm{)}}$$

Другая схема инструментального усилителя показана на рисунке 10. В этой схеме оба ОУ служат для изоляции нагрузки и усиления сигнала. Кроме того, второй ОУ работает как дифференциальный усилитель.

Рис. 10. Инструментальный усилитель на двух ОУ. Эта схема лучше всего подходит, если нужно обеспечить высокий коэффициент усиления (более 3 В/В)

На первый ОУ можно подать напряжение смещения. Как правило, в схемах с однополярным питанием напряжение смещения выбирают равным половине напряжения питания. Выходное напряжение этой схемы определяется по формуле 7:

$$V_{OUT}=\left(V_{1}-V_{2} \right)\times \left(1+\frac{R_{1}}{R_{2}}+\frac{2R_{1}}{R_{G}} \right)+V_{REF}\qquad{\mathrm{(}}{7}{\mathrm{)}}$$

Плавающий источник тока

Плавающий источник тока может пригодиться для задания тока, протекающего через элемент с изменяющимся сопротивлением, например, резистивного термодатчика (RTD). Схема, приведенная на рисунке 11, представляет собой источник тока величиной 1 мА для RTD-датчика, хотя можно установить и любое другое значение тока.

Рис. 11. Плавающий источник тока, построенный на двух ОУ и прецизионном источнике опорного напряжения

В этой схеме из-за наличия резистора R1 напряжение VREF уменьшается на величину VR1. Соответственно, напряжение на неинвертирующем входе верхнего в схеме ОУ равно VREF – VR1. Это напряжение после усиления в два раза дает на выходе ОУ напряжение, равное 2 × (VREF – VR1). При этом выходное напряжение нижнего ОУ  схемы составляет VREF – 2 × VR1. Вычитая выходное напряжение верхнего ОУ из напряжения на неинвертирующем входе нижнего ОУ, получаем:

2(VREF – VR1) – (VREF – 2VR1), что равно VREF.

Величина тока, формируемого данной схемой, определяется по формуле 8:

$$I_{OUT}=\frac{V_{REF}}{R_{L}}\qquad{\mathrm{(}}{8}{\mathrm{)}}$$

Фильтры

На входе любого АЦП крайне желательно наличие полосового или низкочастотного фильтра, позволяющего удалить нежелательные составляющие сигнала. Фильтр нижних частот, схема которого приведена на рисунке 12, имеет два полюса, которые можно сконфигурировать таким образом, чтобы получить фильтр Баттерворта. Фильтры Баттерворта имеют плоскую АЧХ в полосе пропускания и хорошие характеристики в целом.

Рис. 12. Активные фильтры нижних частот с двумя полюсами легко реализовать на одном операционном усилителе

С другой стороны, на переходной характеристике фильтра этого типа присутствует небольшой выброс, а также звон. Это может быть проблемой, а может и не быть – все зависит от требований конкретного приложения. Коэффициент усиления этого фильтра определяется сопротивлением резисторов R3 и R4.

Обратите внимание на сходство уравнений для вычисления коэффициента усиления данного фильтра и неинвертирующего усилителя, показанного на рисунке 3.

Фильтры этого типа также называют антиалиасинговыми, если они используются для устранения составляющих сигнала, частота которых превышает половину частоты Найквиста конкретной дискретной системы. Таким образом, из спектра сигнала удаляются высокочастотные помехи, которые в противном случае наложились бы на полезный сигнал.

Коэффициент усиления по постоянному току схемы, приведенной на рисунке 12, определяется по формуле 9:

$$\frac{V_{OUT}}{V_{IN}}=\left(1+\frac{R_{4}}{R_{3}} \right)\qquad{\mathrm{(}}{9}{\mathrm{)}}$$

Полосовой фильтр, схема которого приведена на рисунке 13, имеет частотную характеристику с одним нулем и двумя полюсами и предназначен для обработки речевых сигналов. Фильтр высоких частот первого порядка реализован на конденсаторе C1 и резисторах R1 и R2, соединенных параллельно. Обратите внимание, что резисторы R1 и R2 также образуют делитель, формирующий на неинвертирующих входах операционных усилителей напряжение смещения. Это обеспечивает работу обеих ОУ в линейной области. На втором операционном усилителе U2 и компонентах R3, R4, C3 и C4 реализован фильтр низких частот второго порядка.

Рис. 13. Полосовой фильтр можно реализовать на двух ОУ: первый ОУ будет работать как фильтр верхних частот, а второй – как фильтр нижних частот

Этот фильтр подавляет высокочастотные помехи, которые в противном случае могли бы наложиться на полезный сигнал при аналого-цифровом преобразовании. Выходное напряжение данной схемы определяется по формуле 10:

$$V_{OUT}=V_{IN}\times \left(\frac{R_{3}}{R_{4}} \right)\times \left(\frac{R_{2}}{R_{1}+R_{2}} \right)\qquad{\mathrm{(}}{10}{\mathrm{)}}$$

Для получения дополнительной информации о фильтрах нижних частот ознакомьтесь с руководством по применению AN699 «Anti-Aliasing Analog Filters for Data Acquisitions Systems» («Антиалиасинговые аналоговые фильтры для систем сбора данных»).

Соединяем все вместе

Схема, приведенная на рисунке 14, реализует законченное устройство измерения температуры с однополярным питанием. В этой схеме применены четыре операционных усилителя и 12-разрядный аналого-цифровой преобразователь. В качестве датчика температуры используется RTD-датчик, который требует возбуждения током. Этот ток формируется плавающим источником тока, схема которого была приведена на рисунке 11. Усилительный каскад и антиалиасинговый фильтр реализованы по схеме, приведенной на рисунке 13.

Рис. 14. Законченная схема с однополярным питанием для измерения температуры

Сигнал с RTD-датчика поступает на усилительный каскад, который представляет собой комбинацию инвертирующего и неинвертируюшего усилителей.

С выхода этого усилительного каскада сигнал поступает на фильтр нижних частот второго порядка с коэффициентом усиления 6 В/В. Такое усиление было выбрано в соответствии со входным диапазоном аналого-цифрового преобразователя. Полагая, что частота дискретизации АЦП, также известная как частота Найквиста, равна 75 кГц, частота среза антиалиасингового фильтра (U4) была задана равной 10 кГц. Такой полосы пропускания фильтра достаточно для эффективного подавления составляющих сигнала с частотами, меньшими чем половина частоты Найквиста. В качестве аналого-цифрового преобразователя используется 12-битный АЦП последовательного приближения, выход которого подключен к микроконтроллеру PIC12C509.

Подводные камни проектирования схем с ОУ

В этой части руководства перечислены типичные проблемы, связанные с работой операционных усилителей, установленных на печатную плату. Эти проблемы разбиты на четыре категории:

  • общие советы;
  • входные каскады;
  • ширина полосы пропускания ОУ;
  • ОУ класса «rail-to-rail» при однополярном питании.

Общие советы

  • Соблюдайте осторожность при выборе напряжений, подаваемых на выводы питания ОУ. Не превышайте значений, указанных в спецификации на операционный усилитель, и, в то же время, не делайте их слишком маленькими. Высокие значения напряжений приведут к повреждению компонента, а низкие не смогут обеспечить требуемое смещение транзисторов на кристалле ОУ, необходимое для нормальной работы усилителя.
  • Убедитесь, что отрицательный вывод питания (обычно – земля) действительно подключен к шине с низким потенциалом. Кроме того, убедитесь, что источник положительного напряжения действительно обеспечивает требуемое напряжение относительно отрицательного вывода питания ОУ. Для проверки подключите вольтметр между отрицательным и положительным выводами питания ОУ.
  • Тщательно проверьте земляную шину, особенно при наличии на плате цифровых узлов. Хорошо продумайте трассировку земляной шины. Если схема содержит много цифровых цепей, подумайте над использованием отдельных слоев земли и питания. Очень сложно, а зачастую просто невозможно убрать из аналогового сигнала помехи, вызванные работой цифровых компонентов.
  • Развязывайте цепи питания операционных усилителей с помощью блокировочных конденсаторов, располагая их как можно ближе к ОУ. Для КМОП-усилителей обычно рекомендуется использовать конденсаторы емкостью 0,1 мкФ. Также выполните развязку самого источника питания с помощью конденсатора емкостью 10 мкФ.
  • Используйте короткие проводники на входах ОУ. Если вы применяете для макетирования беспаечные макетные платы, то имейте в виду, что они могут стать причиной появления в схеме паразитных шумов и колебаний. Можно надеяться, что эти проблемы не возникнут при реализации схемы на печатной плате.
  • Операционные усилители чувствительны к статическому электричеству. Если микросхема будет повреждена, то ОУ либо просто перестанет работать, либо возникнут непонятные погрешности (например, изменится напряжение смещения или входной ток смещения), которые со временем будут только увеличиваться.

Входные каскады

  • Учитывайте диапазон входных напряжений вашего ОУ. Если напряжение на любом из входов усилителя выйдет за допустимые пределы, то на выходе, скорее всего, установится напряжение одной из шин питания.
  • Если ваша схема имеет большой коэффициент усиления, не забывайте о напряжении смещения ОУ. Это напряжение усиливается вместе с полезным сигналом и может «забить» полезный сигнал на выходе усилителя.
  • Не используйте ОУ со входами типа «rail-to-rail», если в этом нет прямой необходимости. Заметим, что такие ОУ обычно требуются только для буферных усилителей и, в некоторых случаях, для реализации инструментальных усилителей. Если схема имеет усиление, то ограничение выходного сигнала в любом случае наступит до возникновения проблем со входом.

Ширина полосы пропускания ОУ

  • Учитывайте ширину полосы пропускания ОУ. Если у вас реализован усилитель с коэффициентом усиления 10, а величина выходного сигнала переменного тока намного меньше ожидаемой, то вам, возможно, следует подыскать усилитель с более широкой полосой пропускания.
  • Для обеспечения устойчивости ОУ обычно достаточно установить конденсатор параллельно резистору в цепи обратной связи усилителя. Но это помогает не всегда. Если усилитель теряет устойчивость, быстрый ее расчет укажет проблему и, возможно, подскажет пути ее решения.

ОУ класса «rail-to-rail» при однополярном питании

  • Операционный усилитель способен отдавать в нагрузку ограниченный ток.
  • Емкостная нагрузка опасна для ОУ. Убедитесь, что используемый усилитель рассчитан на нагрузки, имеющиеся в вашей схеме.
  • Большая редкость, когда операционный усилитель с однополярным питанием действительно обеспечивает полный размах выходного напряжения. На практике предельные значения выходного напряжения большинства таких усилителей отличаются от напряжения каждой из шин питания на 50…200 мВ. Проверьте это по технической документации на ваш усилитель.

Литература

  1. Sergio Franco, “Design with Operational Amplifiers and Analog Integrated Circuits”, McGrawHill, 2001
  2. Thomas Frederiksen, “Intuitive Operational Amplifiers: From Electron to Op Amp”, McGraw Hill, 1988
  3. Jim Williams, “Analog Circuit Design”, Butterworth-Heinemann, 1991
  4. Bonnie Baker, “AN699 – Anti-aliasing Analog Filters for Data Acquisition Systems”, Microchip Technology Inc., DS00699, 1999
  5. Bonnie Baker, “AN722 – Operational Amplifier Topologies and DC Specifications”, Microchip Technology Inc., DS00722, 1999
  6. Bonnie Baker, “AN723 – Operational Amplifier AC Specifications and Applications”, Microchip Technology Inc., DS00723, 2000

Оригинал статьи

Перевел Андрей Евстифеев по заказу АО КОМПЭЛ

 

 

•••

Наши информационные каналы

Как работают усилители на операционниках.

Дифференциальный усилитель на ОУ (схема и расчёт)

Итак, дифференциальный усилитель — это устройство, предназначенное для усиления разности подаваемых на его входы сигналов. Вот сейчас мы построением такого усилителя и займёмся.

Рассмотрим схему, построенную на базе операционного усилителя (ОУ), приведенную на рисунке справа.

Это наиболее общая схема усилителя на операционнике. По своей сути, любой усилитель на ОУ — вариант этой схемы (ниже я покажу несколько её превращений).

Прежде чем перейти к расчётам, давайте поговорим о том, что лежит в их основе. В основе расчётов всех схем с операционными усилителями лежат два положения, характеризующие идеальный операционный усилитель:

  1. ОУ имеет бесконечно большое входное сопротивление и как следствие — бесконечно маленький входной ток. Проще говоря — входной ток при расчётах считают равным нулю. Имеется ввиду, естественно, не входной ток построенного на ОУ усилителя, а ток, втекающий в ножки самого операционного усилителя.
  2. ОУ имеет бесконечно большой коэффициент усиления и как следствие — разность потенциалов между его входами (между входными ножками самого ОУ) в схемах с достаточной отрицательной обратной связью, равна нулю.
    1. — Почему? Потому что напряжение на выходе равно разнице напряжений на входах ОУ, умноженной на коэффициент усиления ОУ. Чтобы что-то умножить на бесконечно большое число и получить конечное число (напряжение на выходе — оно же конечное) — это что-то должно быть бесконечно маленьким.
    2. — Почему это относится только к схемам с обратной связью? Потому что если нет обратной связи — у операционника нет никакой возможности повлиять на напряжение на своих входах. В этом случае на выходе по идее должно было бы установиться бесконечно большое положительное или отрицательное напряжение, но в реальности выходное напряжение операционника не может выйти за границы положительного и отрицательного напряжений питания (даже ещё меньше из-за внутренних потерь) и на выходе устанавливается одно из этих граничных напряжений (операционник работает как компаратор).
    3. — Почему обратная связь должна быть отрицательной? Потому что только в этом случае система может прийти к состоянию устойчивого равновесия. Вообще про устойчивость, неустойчивость и колебания всяких разных систем есть целый курс отдельный в вузе. В двух словах теория устойчивости что-то не вяжется, но отмечу, что её основоположником является наш соотечественник, товарищ Ляпунов (Кто там сказал, что в России ничего не придумали? — быстро пересаживаемся из автомобиля в телегу).
    4. Что фактически происходит в схеме с отрицательной обратной связью? Фактически через обратную связь напряжение на инвертирующим входе подтягивается к напряжению на неинвертирующем входе. На напряжение на неинвертирующем входе обратная связь не влияет.
    5. — Почему отрицательная обратная связь должна быть достаточной? Потому что если она недостаточная, то выход операционника также упрётся в одно из крайних напряжений и дальше операционник влиять на напряжения на своём инвертирующем входе не сможет. При расчётах усилителей изначально считают, что она достаточная, потому что расчёт и сводится к тому, чтобы подобрать ООС так, чтобы на выходе получилось требуемое напряжение, естественно находящееся где-то между крайними положениями.
    6. Абсолютно те же принципы лежат в основе расчётов не только усилителей, но и в основе всяких сумматоров, вычитателей, интеграторов и прочих, построенных на операционниках вещей, — они по своей сути те же самые усилители, только усиливают специфические вещи специфическим образом (например, имеют хитро изменяющийся во времени коэффициент обратной связи, хитро построенную схему, хитро подобранные номиналы для соблюдения всяких там балансов и т.д.).

Фу, ну вот, теперь перейдём к расчётам нашего усилителя. Итак, при расчётах усилителя будем считать, что напряжение между входами операционника равно нулю, входной ток тоже равен нулю. На рисунке слева та же схема, что и выше, но с подписанными элементами, а также с подписанными токами и напряжениями (с учётом изложенных ранее положений).

По этой схеме составляем систему из четырёх уравнений, после чего из первых двух выражаем I1, а из третьего и четвёртого выражаем I2:

Далее из первого и третьего уравнений составляем новое уравнение:

Подставляем в него, найденные ранее, выражения для I1, I2 и преобразуем следующим образом:

Ну и, наконец, из последнего выражения находим формулу для определения выходного напряжения:

А вот теперь следите за руками. Преобразуем множитель перед U2 следующим образом: R1 перенесём из знаменателя в числитель, а оставшиеся в знаменателе скобки умножим и разделим на R2. Получится следующее выражение:

Из этого выражения очевидно, что если в нашей схеме RОС/R1=R3/R2, то множитель перед U2 можно заменить просто на R3/R2 или на Rос/R1 (без разницы, мы ведь как раз рассматриваем случай, когда эти соотношения одинаковы). Тогда формулу (1) можно преобразовать к такому виду:

То есть в этом случае наша схема усиливает разницу напряжений на входах, — вот и получился дифференциальный усилитель.

Но это ещё не всё, — следите за руками дальше. Если в этой схеме вход U1 подключить к общему проводу, резистор R2 взять равным нулю (закоротить его просто), а резистор R3 взять равным бесконечности (оторвать его нафиг от общего провода), то получится схема простейшего неинвертирующего усилителя, а формула (1) преобразуется к виду:

Далее. Если же вход U2 подключить к общему проводу, резистор R1 взять равным R2, а резистор R3 взять равным ROC, то получится схема простейшего инвертирующего усилителя, а формула (1) преобразуется к виду:

При этом эквивалентное сопротивление параллельно включенных резисторов R2, R3 (которые, как мы договорились, равны R1, ROC) превратилось в условие баланса.

Вот такие забавные превращения. На этом, пожалуй, всё, надеюсь кому-нибудь пригодится.

Update

Что такое напряжение смещения? Помните, мы при расчётах считали операционник идеальным и полагали, что схема стремится поддерживать напряжение между входами ОУ равным нулю? Так вот, в случае с реальным операционником схема стремится поддерживать между входами ОУ не ноль, а некоторое очень маленькое, но вполне конкретное напряжение. Именно это напряжение и называется напряжением смещения (или точнее напряжением смещения нуля).

На что оно влияет? В первую очередь оно влияет на точностные характеристики схем с ОУ. Чтобы понять, как это происходит, — давайте вернёмся к схеме, с которой мы начинали расчёт, только теперь будем считать, что напряжение на обоих входах не одинаковое, а отличается на величину Uсм. На неинверирующем входе пусть так и останется Uв, а на инвертирующем пусть будет Uв-Uсм. Тогда в нашей системе из четырёх уравнений, для первых двух придётся написать не «=Uв«, а «=Uв-Uсм«, и решение этой системы примет вот такой вид:

При соблюдении условия RОС/R1=R3/R2 формула, определяющая выходное напряжение дифференциального усилителя, превратится вот в такую:

Из этой формулы видно, что если входной дифференциальный сигнал сравним по величине с напряжением смещения, то и их вклады в выходной сигнал тоже будут одного порядка. А учитывая, что напряжение смещения для каждого операционника своё (даже для одного типа операционников оно всё равно чуть-чуть отличается от экземляра к экземпляру) — становится совершенно невозможно предсказать, что в итоге будет на выходе. Чтобы исключить влияние напряжения смещения на выходной сигнал — входной дифференциальный сигнал должен быть на порядок больше, чем Uсм. То есть, например, операционник, у которого напряжение смещения может составлять до 0,5 мВ НЕТ НИКАКОГО СМЫСЛА ставить в схему измерения напряжения величиной порядка 0,5 мВ (скажем для измерения падения на токоизмерительном резисторе 0,02 Ом при токе 25 мА).

расчёт параметров схмы ОУ

расчёт параметров схмы ОУ
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
ОГЛАВЛЕНИЕ
СТРАНИЦА 12 Выходное сопротивление схемы.

   Реальные операционные усилители довольно далеки от идеала в отношении выходного сопротивления. Так, рассмотренный выше ОУ типа mА741 имеет rвых порядка 1 кОм. Оно, правда, в значительной степени уменьшается применением отрицательной обратной связи по напряжению. Снижение выходного напряжения схемы, вызванное падением напряжения на rвых при подключении нагрузки, передается на n-вход усилителя через делитель напряжения R1, R2. Возникающее при этом увеличение дифференциального напряжения компенсирует изменение выходного напряжения.

   Выходное сопротивление операционного усилителя, не охваченного обратной связью, определяется выражением:


   Для усилителя, охваченного обратной связью, в соответствии со схемой на рис. 12, эта формула принимает вид:

(12)

   При работе усилителя, охваченного обратной связью, величина Uд не остается постоянной, а изменяется на величину

dUд= — dUn = -bdUвых (13)

   Для усилителя с линейной передаточной характеристикой изменение выходного напряжения составляет

dUвых=KUdUд — rвых dIвых

   Величиной тока, ответвляющегося в делитель напряжения обратной связи в данном случае можно пренебречь. Подставив в последнее выражение величину dUд из (13) с учетом (12), получим искомый результат:


   Если, например, b =0,1, что соответствует усилению входного сигнала в 10 раз, а KU =105 , то выходное сопротивление усилителя mА741 снизится с 1 кОм до 0,1 Ом. Вышеизложенное, вообще говоря, справедливо в пределах полосы пропускания усилителя fп, которая для mА741 составляет всего только 10 Гц. На более высоких частотах выходное сопротивление ОУ с обратной связью будет увеличиваться, т.к. величина |KU| с ростом частоты будет уменьшаться со скоростью 20дБ на декаду (см. рис. 3). При этом оно приобретает индуктивный характер и на частотах более fт становится равным величине выходного сопротивления усилителя без обратной связи.

Коррекция частотной характеристики.

   Вследствие наличия паразитных емкостей и многокаскадной структуры операционный усилитель по своим частотным свойствам аналогичен фильтру нижних частот высокого порядка. Системы такого рода, имеющие большой коэффициент усиления, при наличии обратной связи склонны к неустойчивости, проявляющейся в том, что даже при отсутствии сигнала на входе системы, на ее выходе существуют колебания относительно большой амплитуды. Устойчивость ОУ с обратной связью удобно исследовать по его частотным характеристикам. Типичные логарифмические асимптотическая амплитудно-частотная (ЛАЧХ) и фазово-частотная (ЛФЧХ) характеристики (диаграмма Боде) ОУ без частотной коррекции приведены на рис. 13.


Рис. 13. Типичные логарифмические амплитудно-частотная и фазово-частотная характеристики ОУ

   Выше частоты f1 частотная характеристика определяется инерционным звеном с максимальной постоянной времени. Коэффициент усиления в этой области убывает со скоростью -20 дБ/дек. Выше частоты f2 начинает действовать второе инерционное звено, коэффициент усиления убывает быстрее (-40 дБ/дек), а фазовый сдвиг между Uд и Uвых достигает j = -180°. Частота, при которой выполняется это условие, называется критической fкр. Частота, при которой модуль коэффициента усиления петли обратной связи (коэффициента петлевого усиления) |Kп| = |bKU|=1, называется частотой среза fср. Коэффициент b в этом соотношении является коэффициентом передачи цепи обратной связи. Как для инвертирующего, так и для неинвертирующего включения ОУ при резистивной обратной связи он определяется как


b = R1/(R1+R2) для инвертирующего включения

для неинвертирующего включения.

(14)

   В соответствии с логарифмическим вариантом критерия Найквиста для минимально-фазовых систем, к которым можно отнести ОУ с отрицательной обратной связью, усилитель будет устойчив, если для логарифмических частотных характеристик разомкнутой петли обратной связи bKU выполнено условие:

fср < fкр (15)

   При резистивной обратной связи ЛФЧХ петли совпадает с ЛФЧХ усилителя, а ЛАЧХ петли проходит на 20lg(1/b) ниже ЛАЧХ усилителя, так что частота среза fср соответствует точке пересечения графика ЛАЧХ усилителя с горизонтальной прямой, проведенной на 20lg(1/b) выше оси частот. На диаграмме рис. 13 видно, что при больших значениях K (и, соответственно, малых b) условие (15) выполняется, причем имеется достаточный запас устойчивости по фазе. При K<200 операционный усилитель с частотными характеристиками, такими, как на рис. 13, неустойчив.

   Степень устойчивости, а также мера затухания переходных процессов приближенно определяется запасом устойчивости по фазе. Под этой величиной понимается дополнительный до 180° угол к фазовому запаздыванию на критической частоте:


a =180° + j(fкр).

   На рис. 14 представлены типичные графики переходных функций (реакций на единичный скачек) операционного усилителя, включенного по схеме неинвертирующего повторителя при различных запасах устойчивости по фазе a.

   По диаграмме Боде разомкнутого ОУ можно непосредственно определить, какая величина затухания окажется у схемы усилителя с заданным значением b . В качестве примера рассмотрим на рис. 13 случай для 1/b =8000. При этом из диаграммы находим fкр =100 кГц и
a =65°. Таким образом, для такой обратной связи получается приемлемая величина затухания. В случае более глубокой обратной связи величина a быстро уменьшается и при 1/b =200 достигает нуля.


Рис. 14. Переходные характеристики ОУ, охваченного обратной связью
Полная частотная коррекция.

   Если операционный усилитель разрабатывается для универсального применения, то фазовый сдвиг его при |KU| >1 должен быть по абсолютной величине меньше 120°. При этом для любого коэффициента обратной связи 0<b<1 запас по фазе будет составлять не менее 60°. Это требование выполняется коррекцией частотной характеристики, причем коррекция производится так, чтобы при |KU|>1 она была аналогична характеристике фильтра нижних частот первого порядка (т.е. имела бы вид рис. 2). Так как нежелательные инерционные звенья с частотами среза f2 и f3, как это показано на рис. 13, не могут быть устранены из схемы усилителя, то необходимо путем выбора конденсатора коррекции Ск (см. рис. 10) так уменьшить частоту среза f1 основного инерционного звена, чтобы условие |KU| <1 было бы выполнено до того, как начнется существенное влияние второго инерционного звена.

   На рис. 15 представлен этот вариант коррекции. Очевидно, что при таком соотношении параметров даже для самого неблагоприятного с точки зрения устойчивости случая обратной связи, как b=1, еще имеется достаточный запас по фазе a=65°, а при меньших значениях b он практически равен 90°. Можно отметить также, что из-за наличия частотной коррекции полоса пропускания разомкнутого ОУ существенно сужается. Частотная коррекция усилителя на нижних частотах увеличивает его фазовый сдвиг на 90°, а на более высоких частотах практически на него не влияет. Для многих универсальных ОУ достаточна емкость корректирующего конденсатора Ск = 30 пФ. У усилителей с полной внутренней коррекцией, таких как, например, 140УД6, 140УД7, 140УД17 и др., корректирующий конденсатор изготавливается методами интегральной технологии.


Рис. 15. Логарифмические частотные характеристики ОУ с полной частотной коррекцией и без нее
Подстраиваемая частотная коррекция.

   Полная частотная коррекция операционного усилителя гарантирует достаточный запас устойчивости по фазе для резистивной отрицательной обратной связи с любыми параметрами. Однако этот способ имеет тот существенный недостаток, что ширина полосы пропускания усилителя, охваченного обратной связью, обратно пропорциональна коэффициенту усиления K.

   Смысл этого соотношения наглядно пояснен на рис. 16. При менее глубокой обратной связи для стабилизации усилителя достаточно было бы меньшего снижения усиления в области средних и высоких частот, так как в этом случае точка |bKU| = 1 достигается при |KU| =1/b >1. Как видно из рис. 16, при 1/b=10 ширину полосы пропускания ОУ без обратной связи можно увеличить с 10 Гц до 100 Гц уменьшением Ск от 30 пФ до 3 пФ. При этом полоса пропускания усилителя с обратной связью возрастет со 100 кГц до 1 МГц.


Рис. 16. Зависимость полосы пропускания от коэффициента усиления при подстраиваемой частотной коррекции

   Для того, чтобы можно было осуществить такие изменения частотной коррекции, выпускаются операционные усилители, у которых отсутствует корректирующий конденсатор, а вместо него выведены соответствующие точки схемы (например, 153УД6, 140УД14). В других вариантах, например, в усилителях 544УД2, осуществляется неполная частотная коррекция с уменьшенным значением корректирующей емкости. Для подключения дополнительного конденсатора (чтобы обеспечить устойчивость при значениях b, близких к единице) также имеются соответствующие выводы. В паспортных данных некоторых типов ОУ указываются минимальные значения коэффициентов усиления ОУ в неинвертирующем включении, при которых усилитель сохраняет устойчивость. Например, для ОУ AD840K это значение составляет 10, для ОРА605К — 50 и т. д. Изготавливаются усилители с одинаковой схемотехникой, одни из которых имеют встроенный корректирующий конденсатор, а другие — без такого конденсатора. Например, некоторые фирмы выпускают ОУ типа ОР-27 и ОР-37 (отечественные аналоги, соответственно, 140УД25 и 140УД26). Первый из них имеет встроенный корректирующий конденсатор, частоту единичного усиления fт = 8 МГц, максимальную скорость нарастания — 2,8 В/мкс, и работает устойчиво вплоть до 100%-ной обратной связи. ОУ типа ОР-37 не имеет корректирующего конденсатора. Его частота единичного усиления fт = 60 МГц, скорость нарастания — 17 В/мкс. Он работает устойчиво при коэффициентах усиления входного сигнала более пяти.

   В комплексе мероприятий по обеспечению устойчивости схемы с операционным усилителем (особенно быстродействующим) важное место занимает его правильный монтаж. Проводники, соединяющие резисторы обратной связи с инвертирующим входом усилителя, должны иметь минимальную длину. При невыполнении этого правила на входе ОУ образуется паразитная емкость, которая при наличии плоскостей заземления может составлять 0,4 пФ на миллиметр проводника. Эта емкость совместно с резисторами обратной связи образует дополнительное инерционное звено в петле обратной связи, уменьшающее запас устойчивости по фазе. Некоторую компенсацию этого эффекта дает включение конденсатора равной емкости между выходом ОУ и инвертирующим входом.

Скорость нарастания.

   Наряду со снижением полосы пропускания усилителя частотная коррекция дает еще один нежелательный эффект: скорость нарастания выходного напряжения ограничивается при этом довольно малой величиной. Максимальное значение скорости нарастания r определяется в основном скоростью заряда корректирующего конденсатора:


   Максимальный выходной ток дифференциального каскада (см. рис. 10) равен току источника в цепи эмиттеров транзисторов Т1 и Т2. Принимая его равным 20 мкА, найдем для емкости корректирующего конденсатора Ск=30 пФ:


rмакс = 0,67 В/мкс.

   Вследствие ограниченного значения этой величины, при быстрых изменениях выходного напряжения возникают характерные искажения сигнала, которые не могут быть устранены путем введения отрицательной обратной связи. Их называют динамическими искажениями. Если входной сигнал усилителя — синусоида, то, чем больше ее амплитуда, тем при меньшей частоте появляются динамические искажения.

Скорость нарастания.

   Если операционный усилитель имеет емкостную нагрузку, то последняя вместе с выходным сопротивлением усилителя образует инерционное звено, которое дает дополнительный фазовый сдвиг выходного напряжения. Все это уменьшает запас по фазе, и схема усилителя может самовозбудиться уже при незначительной величине нагрузочной емкости. Порой достаточно коснуться выхода усилителя щупом осциллографа, чтобы усилитель начал самовозбуждаться. Для устранения этого явления в цепь обратной связи включается дополнительный конденсатор Сф (рис. 17). В этом случае обратная связь представляет собой интегродифференцирующее фазо-опережающее звено, создающее в окрестности частоты среза положительный фазовый сдвиг, компенсирующий запаздывание, вносимое емкостью нагрузки.


Рис. 17. Компенсация емкостной нагрузки
Используются технологии uCoz
Коэффициент усиления операционного усилителя

— Пояснение к расчетному уравнению »Примечания к электронике

Коэффициент усиления

является ключевым аспектом проектирования схемы операционного усилителя: вычисления могут выполняться для общих схем или с более конкретными формулами для инвертирующих и неинвертирующих усилителей.


Учебное пособие по операционному усилителю Включает:
Введение Усиление операционного усилителя Пропускная способность Скорость нарастания операционного усилителя Смещение null Входное сопротивление Выходное сопротивление Понимание спецификаций Как выбрать операционный усилитель Сводка схем операционного усилителя


Одним из ключевых аспектов характеристик операционных усилителей и их электронной схемы является коэффициент усиления.Операционные усилители сами по себе предлагают огромные уровни усиления при использовании в так называемой конфигурации с разомкнутым контуром.

В условиях разомкнутого контура коэффициент усиления операционного усилителя может быть любым, превышающим 10 000, при этом некоторые операционные усилители имеют уровни усиления более чем в десять раз превышающие это значение. Даже для операционных усилителей одного типа возможны большие отклонения коэффициента усиления в результате используемых процессов изготовления.

Хотя операционные усилители сами по себе предлагают огромные уровни усиления, это усиление редко используется в такой форме для усиления сигнала — его будет чрезвычайно сложно использовать, поскольку даже очень малые входные сигналы будут выводить выходной сигнал за пределы напряжения шины, что приводит к ограничению. или обрезка вывода.

Используя метод, известный как отрицательная обратная связь в конструкции электронной схемы, можно использовать огромные уровни усиления с положительным эффектом, обеспечивая плоские частотные характеристики, низкие искажения и очень определенные уровни усиления для всей схемы, независимо от фактическое усиление ИС, но от внешних компонентов, значения которых можно точно выбрать.

В других схемах ОУ обратная связь может использоваться для обеспечения других эффектов, таких как фильтрация и т.п.

В некоторых случаях может использоваться положительная обратная связь, но обычно это делается определенным образом для достижения определенного эффекта.


Посмотрите наше видео об усилении операционного усилителя


Основы усиления ОУ

Существует два основных сценария, которые можно рассмотреть при рассмотрении коэффициента усиления операционного усилителя и конструкции электронной схемы с использованием этих электронных компонентов:

  • Коэффициент усиления разомкнутого контура: Этот вид усиления измеряется, когда к схеме операционного усилителя не применяется обратная связь.Другими словами, он работает в формате разомкнутого цикла. Коэффициенты усиления для операционного усилителя в этой конфигурации обычно очень высоки, обычно от 10 000 до 100 000. Это коэффициент усиления самого операционного усилителя.

    В технических паспортах операционных усилителей часто приводятся цифры в вольт на милливольт, В / мВ. Указание выигрыша в этих терминах позволяет записать выигрыш в более удобном формате. 10 В / мВ соответствует коэффициенту усиления по напряжению 10 000. Это избавляет от записи множества нулей.

  • Коэффициент усиления замкнутого контура: Этот вид усиления измеряется, когда работает контур обратной связи, то есть замкнутый контур. Применяя отрицательную обратную связь, общий коэффициент усиления схемы значительно снижается, и его можно точно настроить на требуемый уровень или создать требуемый выходной формат, как в случае фильтров, интеграторов и т. Д. Можно добавить несколько электронных компонентов. в схему операционного усилителя для обеспечения необходимой обратной связи.

    Коэффициент усиления измеряется при замкнутом контуре, и при наличии достаточной разницы между усилением разомкнутого и замкнутого контуров схема будет работать в соответствии с расположенной вокруг него обратной связью. Другими словами, при условии, что операционный усилитель имеет достаточный коэффициент усиления (который у него будет), коэффициент усиления всей схемы определяется отрицательной обратной связью, а не коэффициентом усиления самого операционного усилителя.

    Хотя отрицательная обратная связь обычно используется для аналоговых цепей, бывают случаи, когда используется положительная обратная связь. Чаще всего это применяется для компараторов, где требуется выходной сигнал на одном из двух уровней. Триггер Шмитта является одним из примеров, когда в систему вводится гистерезис.В этих приложениях следует использовать микросхемы компаратора, а не операционные усилители, потому что они предназначены для работы в этом режиме.

Одним из аспектов, тесно связанных с усилением операционного усилителя, является полоса пропускания. Огромное усиление операционных усилителей может привести к нестабильности, если не будут приняты меры для обеспечения стабильности операционного усилителя и его схемы даже при наличии отрицательной обратной связи.

Используется метод, известный как компенсация. В ранних операционных усилителях внешние электронные компоненты использовались для добавления компенсации, но в более поздних микросхемах она была добавлена ​​внутри.Проще говоря, к внутренним элементам операционного усилителя добавляется небольшой конденсатор. Это снижает склонность к колебаниям, но также уменьшает полосу пропускания разомкнутого контура.

Коэффициент усиления и частотная характеристика ОУ с обратной связью.

Хотя полоса пропускания разомкнутого контура схемы операционного усилителя уменьшается, после применения отрицательной обратной связи для большинства целей может быть достигнуто достаточное усиление уровня с ровной частотной характеристикой.


Обобщенное усиление ОУ

Отрицательная обратная связь используется для управления усилением всей схемы операционного усилителя.Существует много способов применения обратной связи при проектировании электронной схемы — она ​​может быть независимой от частоты или, например, может зависеть от частоты при создании фильтров.

Можно выработать обобщенную концепцию применения отрицательной обратной связи. Исходя из этого, можно разработать более конкретные сценарии.

Общая конфигурация отрицательной обратной связи операционного усилителя

Можно вычислить общую формулу для коэффициента усиления операционного усилителя в цепи:

Выходное напряжение можно рассчитать, зная входное напряжение, коэффициент усиления и обратную связь:

Vout = A Vsum = A Vin-A B Vout

Теперь его можно использовать для генерации общего уравнения усиления ОУ с обратной связью.

Используя это общее уравнение, можно разработать уравнения для более конкретных сценариев. Обратная связь может быть частотно-зависимой или плоской по мере необходимости.

Двумя простейшими примерами схем операционных усилителей, использующих обратную связь, являются форматы для инвертирующих и неинвертирующих усилителей.

Инвертирующее усиление ОУ

Схема инвертирующего операционного усилителя показана ниже. Эта схема имеет выход, сдвинутый по фазе на 180 ° с входом, а также обеспечивает виртуальный вход заземления.

Схема операционного усилителя довольно проста и состоит из нескольких электронных компонентов: одного резистора обратной связи от выхода к инвертирующему входу и резистора от инвертирующего входа к входу схемы. Неинвертирующий вход берется за точку заземления. В этой схеме операционного усилителя используются только два дополнительных электронных компонента, что делает ее очень простой и легкой в ​​реализации.

Базовая схема инвертирующего операционного усилителя

Вывести уравнение усиления операционного усилителя несложно.Сам по себе вход операционного усилителя не потребляет ток, насколько наши расчеты касаются наших расчетов, так как импеданс каждого входа обоих усилителей будет намного выше 100 кОм и, возможно, намного больше 1 МОм. Это означает, что любой ток, протекающий через чип, можно игнорировать.

Из этого мы видим, что ток, протекающий в резисторах R1 и R2, одинаков, потому что ток не течет через соединение между двумя резисторами.

Используя закон сопротивления V out / R 2 = -V in / R 1 .Следовательно, коэффициент усиления по напряжению схемы Av можно принять как

В качестве примера, усилитель, требующий десятикратного усиления, можно построить, сделав R 2 47 кОм и R 1 4,7 кОм.

Усиление неинвертирующего ОУ

Схема для неинвертирующего операционного усилителя показана ниже. Он предлагает более высокий входной импеданс, чем схема инвертирующего операционного усилителя. Как и схема инвертирующего операционного усилителя, она требует добавления только двух электронных компонентов: двух резисторов для обеспечения необходимой обратной связи.

Неинвертирующий усилитель также имеет свойство, состоящее в том, что вход и выход находятся в одной фазе в результате подачи сигнала на неинвертирующий вход операционного усилителя.

Базовая схема неинвертирующего операционного усилителя

Коэффициент усиления неинвертирующей схемы для операционного усилителя также легко определить в процессе проектирования электронной схемы. Расчет основан на том факте, что напряжение на обоих входах одинаково.

Это происходит из-за того, что усиление усилителя чрезвычайно велико.Если выход схемы остается в пределах шины питания усилителя, то деление выходного напряжения на коэффициент усиления означает, что между двумя входами практически нет разницы.

Мы можем предположить, что для целей наших расчетов вход операционного усилителя не потребляет ток, так как импеданс входов микросхемы будет намного выше значений используемых резисторов.

Это означает, что ток, протекающий в резисторах R 1 и R 2 , одинаков.Напряжение на инвертирующем входе формируется делителем потенциала, состоящим из R 1 и R 2 , и, поскольку напряжение на обоих входах одинаковое, напряжение на инвертирующем входе должно быть таким же, как и на не -инвертирующий вход.

Это означает, что Vin = Vout x 1 рэндов / ( 1 + 2 рэндов). Следовательно, уравнение усиления операционного усилителя для усиления по напряжению схемы Av можно принять как

В качестве примера, усилитель, требующий одиннадцатого усиления, можно построить, сделав R 2 47 кОм и R 1 4. 7 кОм.

Коэффициент усиления ОУ определить очень легко. Расчеты для разных схем немного отличаются, но, по сути, обе схемы могут предложить одинаковые уровни усиления, хотя значения резисторов не будут одинаковыми для одинаковых уровней усиления операционного усилителя.

Коэффициент усиления ОУ в других ситуациях

Использование операционных усилителей в линейных приложениях с отрицательной обратной связью является нормальным, хотя это не всегда так. При этом используется очень высокий коэффициент усиления усилителя разомкнутого контура для обеспечения воспроизводимой характеристики, управляемой внешними компонентами.

Примеры этих схем операционных усилителей включают усилители, фильтры, дифференциаторы и интеграторы.

Однако также можно использовать операционные усилители с другими формами обратной связи для получения других эффектов.

Одно из применений использования положительной обратной связи в схеме операционного усилителя для обеспечения переключения, для которого компараторы обеспечивают гораздо лучшую производительность, поскольку они работают намного быстрее и не страдают от проблем с фиксацией, но это не означает, что основные принципы положительной обратной связи не применяются. Однако основные принципы обратной связи и усиления по-прежнему применимы к этому типу ИС или схемных блоков.

Тем не менее, отрицательная обратная связь является наиболее широко используемой формой обратной связи для аналоговых, линейных приложений.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Возврат в меню проектирования схем.. .

Калькулятор напряжения и усиления операционного усилителя

Калькулятор для расчета коэффициента усиления и выходного напряжения операционного усилителя

Обзор

Этот калькулятор помогает рассчитать значения выходного напряжения, а также инвертирующие и неинвертирующие коэффициенты усиления операционного усилителя. Введите значения резисторов, входных напряжений и питающих напряжений и нажмите кнопку «вычислить».

Операционный усилитель (ОУ) — это усилитель напряжения с дифференциальным входом и несимметричным выходом.Две основные конфигурации операционных усилителей — это инвертирующий усилитель и неинвертирующий усилитель. Термины «инвертирующий» и «неинвертирующий» относятся к полярности выходного напряжения по отношению к полярности входного напряжения. Инвертирующий усилитель обеспечивает выходное напряжение, полярность которого противоположна входному напряжению. Неинвертирующий усилитель не меняет полярность своего входного напряжения.

Обратите внимание, что этот калькулятор может использоваться как для инвертирующей, так и для неинвертирующей конфигурации операционного усилителя.Для неинвертирующего операционного усилителя установите V2 на 0 В и используйте V1 в качестве входа. Если требуется инвертирующий операционный усилитель, установите V1 на 0 В и используйте V2 в качестве входа. Используйте очень большое значение для R3 (например, 9999999999), если положительный входной терминал операционного усилителя должен быть подключен непосредственно к земле.

Уравнения

$$ V_ {out} = A V_ {input} $$

Для инвертирующего ОУ:

$$ A = — \ frac {R_ {2}} {R_ {1}} $$

Для неинвертирующего операционного усилителя:

$$ A = 1 + \ frac {R_ {2}} {R_ {1}} $$

Приложения

Операционный усилитель — это модуль дифференциального усилителя с высоким коэффициентом усиления, который образует центральный компонент в различных полезных и простых схемах усилителя.Проектирование с использованием операционных усилителей намного проще, чем создание индивидуальных усилителей из дискретных компонентов, а полученные схемы легко настраиваются в соответствии с потребностями приложения. Фундаментальный прием в реализации операционного усилителя — использование отрицательной обратной связи. В типичных инвертирующих и неинвертирующих конфигурациях цепь обратной связи имеет форму двух резисторов. Низкочастотное усиление готовой схемы почти полностью определяется номиналами этих двух резисторов.

Дополнительная литература

Анализ схем операционного усилителя

Полный анализ схем операционного усилителя, как показано в трех примерах указанное выше может не потребоваться, если интерес представляет только коэффициент усиления напряжения. Эта основан на предположениях, что находится в диапазоне между источниками положительного и отрицательного напряжения (например, рельсы ) и , можно предположить , т.е. . Если один из два входа заземлены, второй также примерно заземлен, называл фактически обоснованным .Если ни один из двух входов не заземлен, можно предположить, что их напряжения практически одинаковы. На основе это предположение, анализ всех схем операционного усилителя существенно упрощенный. Однако обратите внимание, что если входное и выходное сопротивление схемы операционного усилителя также представляют интерес, полный анализ показан предварительно необходимо.

  • Повторитель напряжения (буфер)


    На выходе то же самое, что и вход, почему мы не можем заменить это Схема операционного усилителя куском провода?
  • Инвертор

    Поскольку он очень велик, ток в операционном усилителе незначителен, и . Применяя KCL к узлу, мы имеем

    В общем и инвертора можно заменить на две сети (с сопротивления и соответственно), содержащие резисторы и конденсаторы и анализ схемы можно легко провести в частотной области:


    Это удобный способ создания фильтров с различными частотными характеристиками.
  • Неинвертирующий усилитель


  • Лето-инвертор

    Применить KCL к:


  • Алгебраическое лето (вводы разных знаков)

    Можно показать, что (см. Здесь) выход — некоторая алгебраическая сумма входов с положительными и отрицательные коэффициенты:


  • Дифференциальный усилитель

    Отметим, что дифференциальный усилитель похож на инвертирующий. усилитель, но с дополнительным входом на неинвертирующую сторону.Сначала определим , а затем примените KCL к обоим и получить:


    и

    Подставляя второе к первому, получаем:

    Если один из двух входов, соединенный с постоянным опорным напряжением рассматривается как опорное напряжение, то дифференциальный усилитель также может использоваться в качестве переключателя уровней.

    Далее мы рассмотрим некоторые частные случаи:

    • Если и, то получаем

    • Если (обрыв цепи, может быть любое значение), то, а схема представляет собой комбинацию инверторных и неинверторных усилителей:

    • Если , тогда схема принимает вид последователь:

    • Если и, то схема становится инвертором:

    • Если, и, тогда схема становится неинверторный:

    Вероятно, что оба входа подвержены общему шуму. (е.g., помехи от источника питания 60 Гц):


    В этом случае на выходе будет

    не подвержен влиянию общего шума, т.е. дифференциальный усилитель может подавлять синфазный сигнал (например, шумовой сигнал) в то время как усиливают сигнал дифференциального режима (например, и).
  • Инструментальный усилитель

    Основным недостатком дифференциального усилителя является то, что его вход импеданс () может быть недостаточно высоким, если выходное сопротивление источника высока.Чтобы преодолеть эту проблему, два неинвертирующих усилители с высоким входным сопротивлением используются каждый для одного из два входа к дифференциальному усилителю. Результирующая схема называется инструментальным усилителем.

    Напомним, что выходное сопротивление неинвертирующего усилителя равно очень низкий, его выходное напряжение не будет зависеть от цепи нагрузки, здесь дифференциальный усилитель, входное сопротивление которого ( а) не очень высокий. Следовательно, выходы двух неинверторы в первой ступени инструментального усилителя находятся:


    Выходное напряжение дифференциального усилителя:

    Два резистора можно объединить, чтобы получить я.е., то вывод можно записать как:

    В качестве альтернативы мы рассматриваем ток, идущий от до через, и:


    Из уравнения первых двух слагаемых получаем:

    Из уравнения вторых двух членов получаем:

    Используя приведенное выше уравнение дифференциального усилителя, мы получаем тот же результат, что и выше:

    В схеме приборов AD623, , (разомкнутая цепь), т. е. Схема имеет единицу усиления по напряжению.Однако если внешний резистор () подключен к цепи, усиление может быть больше до 1000.
  • Преобразователь прямоугольных сигналов

    Без обратной связи на выходе операционного усилителя . Как есть большой, насыщенный, равный положительному или отрицательному напряжение питания, в зависимости от того, больше или нет. Когда входной сигнал любой формы сравнивается с опорным напряжением, выход представляет собой прямоугольную волну:

  • Аналого-цифровой преобразователь

    Эти два возможных выхода, положительный и отрицательный, можно рассматривать как « 1 ». и « 0 » двоичной системы.На рисунке показан аналого-цифровой преобразователь, созданный компанией три операционных усилителя для измерения напряжения от 0 до 3 вольт с разрешением 1 В.

    Из-за делителя напряжения входные напряжения трех операционных усилителей составляют: соответственно 2,5 В, 1,5 В и 0,5 В. Выходы этих операционных усилителей перечислены ниже для каждого уровня входного напряжения. Цифровая логическая схема (a декодер) может преобразовывать 3-битный вывод операционных усилителей в 2-битный двоичный представление.


  • Интегратор и дифференциатор

    Интегратор

    Во временной области, как и, мы имеем (KCL)


    где .В частотной области мы имеем:

    Дифференциатор

    Если мы поменяем местами резистор и конденсатор, мы получим во временной области:


    В частотной области мы имеем:

  • ПИД-регулятор

    Пропорционально-интегрально-производный (ПИД) регулятор может быть реализован как показано. Выход схемы представляет собой линейную комбинацию сигнал вместе с его интегралом и производной:

  • Источник тока Хауленда

    Предполагая , мы можем показать, что выходной ток через нагрузку — константа, определяемая входом напряжения и, а также параметры схемы (глянь сюда):


  • Логарифмические и экспоненциальные усилители

    На основе отношения между сквозным током и напряжением через диод и предположение о виртуальном заземлении, мы можем показать что выходное напряжение экспоненциального усилителя (слева) равно приблизительно экспоненциальная функция входного напряжения, и выходное напряжение логарифмического усилителя (справа) равно приблизительно логарифмическая функция входного напряжения:


    (Домашнее задание: выведите это соотношение и определите коэффициенты и . )
  • Операционный усилитель

    : основы, типы и применение | Статья

    .

    СТАТЬЯ


    Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается один раз в месяц

    Мы ценим вашу конфиденциальность

    Что такое операционный усилитель?

    Операционный усилитель (ОУ) — это блок аналоговой схемы, который принимает входное дифференциальное напряжение и выдает несимметричное выходное напряжение.

    Операционные усилители

    обычно имеют три клеммы: два входа с высоким импедансом и выходной порт с низким сопротивлением.Инвертирующий вход обозначается знаком минус (-), а неинвертирующий вход использует положительный знак (+). Операционные усилители работают для усиления разности напряжений между входами, что полезно для множества аналоговых функций, включая цепочки сигналов, питание и приложения управления.

    Классификация операционных усилителей

    Существует четыре способа классификации операционных усилителей:

    • Усилители напряжения принимают напряжение и вырабатывают напряжение на выходе.
    • Усилители тока получают токовый вход и выдают токовый выход.
    • Усилители крутизны преобразовывают входное напряжение в выходной ток.
    • Трансрезистивные усилители преобразуют входной ток и выдают выходное напряжение.

    Поскольку большинство операционных усилителей используются для усиления напряжения, в этой статье основное внимание будет уделено усилителям напряжения.

    Операционные усилители: основные характеристики и параметры

    Операционные усилители (см. Рисунок 1) имеют много различных важных характеристик и параметров.Эти характеристики более подробно описаны ниже.

    Рисунок 1: Схема операционного усилителя

    Коэффициент усиления без обратной связи

    Коэффициент усиления без обратной связи: коэффициент усиления без обратной связи («A» на рис. 1 , ) операционного усилителя — это мера усиления, достигаемого при отсутствии обратной связи в схеме. Это означает, что цепь обратной связи разомкнута. Коэффициент усиления без обратной связи часто должен быть чрезвычайно большим (10 000+), чтобы быть полезным сам по себе, за исключением компараторов напряжения.

    Компараторы

    сравнивают напряжения на входных клеммах. Даже при небольших перепадах напряжения компараторы напряжения могут направлять выходной сигнал либо на положительную, либо на отрицательную шины. Высокие коэффициенты усиления без обратной связи полезны в конфигурациях с обратной связью, поскольку они обеспечивают стабильное поведение схемы при изменении температуры, процесса и сигнала.

    Входное сопротивление

    Другой важной характеристикой операционных усилителей является то, что они обычно имеют высокое входное сопротивление («Z IN » на рис. 1 ).Входное сопротивление измеряется между отрицательной и положительной входными клеммами, и его идеальное значение равно бесконечности, что минимизирует нагрузку на источник. (На самом деле происходит небольшая утечка тока.) Расположение схемы вокруг операционного усилителя может значительно изменить эффективное входное сопротивление источника, поэтому внешние компоненты и контуры обратной связи должны быть тщательно настроены. Важно отметить, что входной импеданс определяется не только входным сопротивлением постоянному току. Входная емкость также может влиять на поведение схемы, поэтому это также необходимо учитывать.

    Выходное сопротивление

    Операционный усилитель в идеале должен иметь нулевой выходной импеданс («Z OUT » в , рис. 1 ). Однако выходное сопротивление обычно имеет небольшое значение, которое определяет величину тока, который он может выдавать, и насколько хорошо он может работать в качестве буфера напряжения.

    Частотная характеристика и полоса пропускания (BW)

    Идеальный операционный усилитель имел бы неограниченную полосу пропускания (BW) и был бы способен поддерживать высокий коэффициент усиления независимо от частоты сигнала. Однако все операционные усилители имеют конечную полосу пропускания, обычно называемую «точкой -3 дБ», где коэффициент усиления начинает падать при увеличении частоты. Затем коэффициент усиления усилителя уменьшается со скоростью -20 дБ / декаду, а частота увеличивается. Операционные усилители с более высокой полосой пропускания обладают улучшенными характеристиками, поскольку они поддерживают более высокий коэффициент усиления на более высоких частотах; однако этот больший выигрыш приводит к большему потреблению энергии или увеличению стоимости.

    Рисунок 2: Кривая частотной характеристики разомкнутого цикла рабочего усилителя

    Произведение прироста полосы пропускания (GBP)

    Как следует из названия, GBP — это произведение коэффициента усиления и полосы пропускания усилителя.GBP является постоянной величиной на кривой, и ее можно рассчитать с помощью уравнения (1):

    $$ GBP = Прирост x пропускная способность = A x BW $$

    фунтов стерлингов измеряется в точке частоты, в которой коэффициент усиления операционного усилителя достигает единицы. Это полезно, поскольку позволяет пользователю рассчитать коэффициент усиления разомкнутого контура устройства на разных частотах. Коэффициент полезного действия операционного усилителя обычно является мерой его полезности и производительности, поскольку операционные усилители с более высоким коэффициентом полезного действия можно использовать для достижения лучших характеристик на более высоких частотах.

    Это основные параметры, которые следует учитывать при выборе операционного усилителя для вашей конструкции, но есть много других факторов, которые могут повлиять на вашу конструкцию, в зависимости от приложения и требований к производительности. Другие общие параметры включают входное напряжение смещения, шум, ток покоя и напряжения питания.

    Отрицательная обратная связь и усиление с обратной связью

    В операционном усилителе отрицательная обратная связь реализуется путем подачи части выходного сигнала через внешний резистор обратной связи и обратно на инвертирующий вход (см. Рисунок 3) .

    Рисунок 3: Отрицательная обратная связь с инвертирующим операционным усилителем

    Отрицательная обратная связь используется для стабилизации усиления. Используя отрицательную обратную связь, коэффициент усиления с обратной связью можно определить с помощью внешних компонентов обратной связи, которые могут иметь более высокую точность по сравнению с внутренними компонентами операционного усилителя. Это связано с тем, что внутренние компоненты операционного усилителя могут существенно отличаться из-за технологических сдвигов, изменений температуры, изменения напряжения и других факторов. Коэффициент усиления с обратной связью можно рассчитать с помощью уравнения (2) :

    $$ \ frac {V_ {OUT}} {V_ {IN}} = \ frac 1 f $$

    Операционные усилители: преимущества и ограничения

    Использование операционного усилителя дает множество преимуществ.Операционные усилители часто имеют форму ИС и широко доступны с бесчисленным количеством выбираемых уровней производительности для удовлетворения потребностей любого приложения. Операционные усилители имеют широкий спектр применений и, как таковые, являются ключевым строительным блоком во многих аналоговых приложениях, включая конструкции фильтров, буферы напряжения, схемы компараторов и многие другие. Кроме того, большинство компаний предоставляют поддержку моделирования, такую ​​как модели PSPICE, чтобы дизайнеры могли проверить свои проекты операционных усилителей перед созданием реальных проектов.

    Ограничения на использование операционных усилителей включают тот факт, что они являются аналоговыми схемами, и требуют, чтобы разработчик понимал основы аналоговой обработки, такие как нагрузка, частотная характеристика и стабильность. Нередко проектируют, казалось бы, простую схему операционного усилителя, только чтобы включить ее и обнаружить, что она колеблется. В связи с некоторыми ключевыми параметрами, обсуждавшимися ранее, разработчик должен понимать, как эти параметры влияют на его дизайн, что обычно означает, что разработчик должен иметь опыт аналогового проектирования от среднего до высокого.

    Топологии конфигурации операционных усилителей

    Существует несколько различных схем операционного усилителя, каждая из которых отличается по функциям. Ниже описаны наиболее распространенные топологии.

    Повторитель напряжения

    Самая простая схема операционного усилителя — повторитель напряжения (см. Рисунок 4) . Эта схема обычно не требует внешних компонентов и обеспечивает высокий входной импеданс и низкий выходной импеданс, что делает ее полезным буфером.Поскольку входное и выходное напряжение равны, изменения на входе вызывают эквивалентные изменения выходного напряжения.

    $$ V_ {OUT} = V_ {IN} $$

    Рисунок 4. Повторитель напряжения

    Наиболее распространенными операционными усилителями, используемыми в электронных устройствах, являются усилители напряжения, которые увеличивают величину выходного напряжения. Инвертирующая и неинвертирующая конфигурации — две наиболее распространенные конфигурации усилителей. Обе эти топологии являются замкнутыми (это означает, что имеется обратная связь от выхода к входным клеммам), и, таким образом, коэффициент усиления по напряжению устанавливается соотношением двух резисторов.

    Инвертирующий операционный усилитель

    В инвертирующих операционных усилителях операционный усилитель заставляет отрицательную клемму равняться положительной клемме, которая обычно является землей. Следовательно, входной ток определяется соотношением V IN / R1 (см. Рисунок 5) .

    Рисунок 5: Инвертирующий операционный усилитель

    В этой конфигурации такой же ток течет через R2 к выходу. В идеале ток не поступает на отрицательную клемму операционного усилителя из-за высокого значения Z IN .Ток, протекающий от отрицательной клеммы через R2, создает инвертированную полярность напряжения по отношению к V IN . Вот почему эти операционные усилители имеют инвертирующую конфигурацию. Обратите внимание, что выход операционного усилителя может качаться только между положительным и отрицательным питанием, поэтому для создания отрицательного выходного напряжения требуется операционный усилитель с отрицательной шиной питания. V OUT можно рассчитать с помощью уравнения (3) :

    $$ V_ {OUT} = — \ left ({R_2} \ over {R_1} \ right) x V_ {IN} $$

    Неинвертирующий операционный усилитель

    В схеме неинвертирующего усилителя входной сигнал от источника подключается к неинвертирующей (+) клемме (см. Рисунок 6) .

    Рисунок 6: Неинвертирующий операционный усилитель

    Операционный усилитель вынуждает инвертирующее (-) напряжение на клеммах равняться входному напряжению, что создает ток через резисторы обратной связи. Выходное напряжение всегда находится в фазе с входным напряжением, поэтому эта топология известна как неинвертирующая. Обратите внимание, что с неинвертирующим усилителем коэффициент усиления по напряжению всегда больше 1, что не всегда имеет место в инвертирующих конфигурациях. VOUT можно рассчитать с помощью уравнения (4) :

    $$ V_ {OUT} = \ left (1 + \ frac {{R_2}} {R_1} \ right) x V_ {IN} $$

    Компаратор напряжения

    Компаратор напряжения операционного усилителя сравнивает входное напряжение и подает выход на шину питания того входа, который выше.Эта конфигурация считается работой без обратной связи, потому что нет обратной связи. Компараторы напряжения работают намного быстрее, чем топологии с обратной связью, описанные выше (см. Рисунок 7) .

    Рисунок 7: Компаратор напряжения

    Как выбрать операционный усилитель для вашего приложения

    В следующем разделе обсуждаются некоторые соображения при выборе подходящего операционного усилителя для вашего приложения.

    Во-первых, выберите операционный усилитель, который может поддерживать ожидаемый диапазон рабочих напряжений.Эту информацию можно получить, посмотрев на напряжения питания усилителя. Напряжение питания, вероятно, будет либо V DD (+), либо заземлением (одинарное питание), либо усилитель может поддерживать как положительное, так и отрицательное напряжение. Отрицательное питание полезно, если выход должен поддерживать отрицательное напряжение.

    Во-вторых, рассмотрим GBP усилителя. Если ваше приложение должно поддерживать более высокие частоты или требует более высокой производительности и уменьшения искажений, рассмотрите возможность использования операционных усилителей с более высокими значениями коэффициента мощности.

    Следует также учитывать энергопотребление, поскольку для некоторых приложений может потребоваться работа с низким энергопотреблением. Рекомендуемые требования к питанию обычно можно найти в техническом описании детали и обычно указаны как ток питания и потребляемая мощность. Потребляемая мощность также может быть оценена как произведение тока и напряжения питания. Как правило, операционные усилители с более низкими токами питания имеют более низкое значение GBP и соответствуют более низким характеристикам схемы.

    Для приложений, требующих более высокой точности, разработчику следует обратить особое внимание на входное напряжение смещения усилителя, так как это напряжение приводит к смещению выходного напряжения усилителя.

    Сводка

    Операционные усилители широко используются во многих аналоговых и силовых приложениях. Преимущества использования операционного усилителя заключаются в том, что они, как правило, широко понятны, хорошо документированы и поддерживаются, а также довольно просты в использовании и реализации. Операционные усилители полезны для многих приложений, таких как буферы напряжения, создание аналоговых фильтров и пороговые детекторы. Обладая более глубоким пониманием ключевых параметров и распространенных топологий, связанных с операционными усилителями, вы можете начать применять их в своих схемах.

    _________________________

    Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

    Просмотреть все сообщения на форуме

    Идеальный операционный усилитель (операционный усилитель)

    Ultimate Electronics: практическое проектирование и анализ схем


    Идеальная модель операционного усилителя является ключевым строительным блоком при разработке аналоговых фильтров, усилителей, генераторов, источников и многого другого. Читать 13 мин

    Операционные усилители, обычно сокращаемые до «операционных усилителей», являются важным строительным блоком аналоговых электронных систем. В различных конфигурациях с несколькими другими компонентами операционные усилители могут использоваться для обработки и управления аналоговым сигналом напряжения множеством различных способов. Сюда входят многие виды фильтров (низкочастотный, высокочастотный, полосовой, интегратор, дифференциатор), усилители (буферные, инвертирующие, неинвертирующие, дифференциальные, суммирующие, измерительные), генераторы, компараторы, источники (напряжение, ток ), преобразователи (напряжение-ток, ток-напряжение) и даже некоторые нелинейные приложения.

    Эти приложения чрезвычайно полезны, и мы рассмотрим каждое из них по отдельности в следующих разделах, но сначала давайте разберемся с идеальным операционным усилителем самостоятельно.


    Сегодня операционный усилитель — это интегральная схема (ИС), содержащая несколько десятков отдельных транзисторов и пассивных компонентов. Исторически, до эпохи ИС (1960-1970-е годы) большинство усилителей или каскадов обработки аналоговых сигналов были специально разработаны для конкретного применения, чтобы избежать относительно высокой сложности и стоимости операционного усилителя.Но теперь, когда операционные усилители на ИС имеют всего несколько выводов и стоят всего несколько копеек, обычно имеет смысл воспользоваться их огромным потенциалом для упрощения аналоговых схем.

    Большинство операционных усилителей стремятся работать как идеальный операционный усилитель , теоретическая модель, которая хорошо работает при моделировании и позволяет легко решать схемы вручную. В результате большинство разработчиков и аналитиков рассматривают операционный усилитель как идеальный, и с этого мы начнем.

    Позже мы обсудим, как эта идеальность нарушается в реальных неидеальных операционных усилителях.Эти ограничения имеют решающее значение для понимания того, когда вы можете приблизить свой анализ к идеальному операционному усилителю, а когда нет. Они также могут помочь вам выбрать правильный операционный усилитель для реализации вашего дизайна.


    Идеальный операционный усилитель — это усилитель напряжения с двумя входами и одним выходом:

    Два входа называются неинвертирующим входом (+) и инвертирующим входом (-) .

    Внимательно следите за знаками + и — внутри треугольника! Операционный усилитель обычно рисуется в любом направлении, со знаком + сверху или снизу, в зависимости от того, что упрощает рисование остальной части схемы.(В CircuitLab выберите операционный усилитель и нажмите «V», чтобы перевернуть символ по вертикали.) Если вы случайно поменяете местами два входа, ваш дизайн не будет работать ни на бумаге, ни в реальном мире!

    Концептуально идеальный операционный усилитель вычитает два входа, а затем умножает эту разницу на огромное число, называемое усилением без обратной связи . AOL. :

    Vout = AOL (V + −V-)

    В качестве шагов обработки сигнала это вычитание и умножение выглядят так:

    В качестве альтернативы, идеальный операционный усилитель можно смоделировать как источник напряжения с регулируемым напряжением (VCVS):

    Если вы присмотритесь, модель VCVS выше поднимает новый вопрос: почему внутри операционного усилителя внезапно появилась земля? Поскольку напряжения всегда относительны, это означает, что Voffset = 0 в более полном и правильном уравнении:

    (Vout − Voffset) = AOL (V + −V-) Vout = AOL (V + −V -) + Voffset

    Если мы возьмем операционный усилитель и закоротим входные клеммы так, чтобы V + −V- = 0 , на выходе будет Vout = Voffset . В реальном мире, в реальном операционном усилителе с закороченными входами, на выходе не обязательно будет какое-то конкретное напряжение, и какое бы оно ни было напряжение, оно обязательно будет относительно того, что мы измеряем. Однако при анализе идеальной схемы операционного усилителя мы обычно предполагаем Voffset = 0 в качестве упрощающего предположения, потому что либо:

    • Операционный усилитель используется в конфигурации с обратной связью с обратной связью , где статическое смещение становится неактуальным после применения правил обратной связи (тем более, что коэффициент усиления AOL такой большой), или
    • Операционный усилитель используется в конфигурации с разомкнутым контуром без обратной связи, и в этом случае мы все равно быстро доводим выход до нелинейного, неидеального поведения.

    Насколько велик выигрыш? В реальных неидеальных операционных усилителях типичные значения коэффициента усиления без обратной связи составляют от сотен тысяч до десятков миллионов:

    AOL, неидеальный, тип = 105-107

    Это действительно здорово! Разница в милливольтах на входах становится на выходе сотнями или тысячами вольт! Он настолько велик, что при анализе идеального операционного усилителя мы делаем еще одно упрощающее предположение, принимая предел, предполагающий, что коэффициент усиления стремится к бесконечности:

    Vout = AOL (V + −V-) AOL, идеальный → ∞

    Это алгебраическая модель идеального операционного усилителя : она вычитает напряжение на инвертирующем входе из неинвертирующего входа, а затем умножает разницу на очень большой коэффициент усиления, приближающийся к бесконечности.

    Даже в реальных операционных усилителях таблица данных часто гарантирует только минимальное усиление без обратной связи, но не максимальное. Вы не можете и не должны разрабатывать схему, полагаясь на точное значение коэффициента усиления без обратной связи операционного усилителя.

    Трудно думать о бесконечности! Один полезный мысленный трюк — приостановить время и представить, что происходит в динамике: вместо того, чтобы сразу же прыгать в бесконечность, представьте, что при небольшой разнице входных сигналов выходное напряжение идеального операционного усилителя просто начинает расти, расти, приближаться к бесконечности! Позже мы представим различные конфигурации обратной связи с обратной связью, и вы увидите, что это быстрое повышение выходного напряжения в конечном итоге возвращается, чтобы повлиять на один или оба входа одного и того же операционного усилителя, так что не беспокойтесь: бесконечность долго не протянет.

    С бесконечностями тоже может быть сложно. Предлагается оставить AOL на месте в качестве переменной, и только в конце возьмем предел AOL → ∞ .


    Идеальный операционный усилитель непрерывно измеряет напряжения на входах и регулирует выходное напряжение:

    • Если на неинвертирующем (+) входе напряжение на выше, чем на инвертирующем (-) входе, то операционный усилитель на увеличит свое выходное напряжение на .
    • Если на неинвертирующем (+) входе напряжение на ниже на , чем на инвертирующем (-) входе, операционный усилитель на уменьшит свое выходное напряжение на .

    В форме уравнения:

    Vout увеличивается, если V +> V-Vout уменьшается, если V +

    Если обратная связь присутствует и в правильном направлении, то операционный усилитель будет постоянно корректировать свое выходное напряжение до тех пор, пока два входных напряжения не станут одинаковыми.


    Есть ряд других предположений, которые инженеры делают об идеальных операционных усилителях. Все эти предположения будут нарушены для реальных (неидеальных) операционных усилителей, поэтому следите за тем, как они могут повлиять на вашу схему.

    Узнав об этих предположениях об идеальности, мы можем решить, когда мы можем разработать схему, предполагая, что операционный усилитель идеален (и, следовательно, его намного легче анализировать), и когда эта упрощенная модель может вступить в противоречие с реальностью. Мы рассмотрим эти проблемы более подробно в следующих разделах.

    Никакой ток не может течь на входные клеммы идеального операционного усилителя или из них. Входные клеммы могут измерять только свое напряжение. От Thevenin Equivalent Circuits это все равно что сказать, что входное сопротивление, смотрящее на входные клеммы, бесконечно: Zin = ∞

    Выход идеального операционного усилителя может удерживать Vout. и подавать любое количество тока, входящего или выходящего, без изменения напряжения.В эквивалентной модели Thevenin, если смотреть на выходной терминал (и землю), он выглядит как источник напряжения с нулевым сопротивлением — следовательно, с нулевым выходным сопротивлением: Zout = 0

    В идеальных операционных усилителях мы предполагаем, что неинвертирующий и инвертирующий входы идеально сбалансированы, так что Vout = AOL (V + −V-) . В реальном мире из-за производственных процессов существует некоторое входное напряжение смещения, такое что Vout = AOL (V + −V- + Vinput offset) . Вы можете подумать об этом концептуально, просто добавив небольшой источник напряжения последовательно с одним из входов.Если точность постоянного тока имеет значение, это входное смещение (даже всего несколько милливольт!) Может иметь большое значение, особенно потому, что оно может дрейфовать во время работы схемы. Но в идеальном операционном усилителе мы предполагаем: смещение Vinput = 0

    На схематическом изображении идеального операционного усилителя отсутствуют подключения к источнику питания, но настоящий операционный усилитель должен откуда-то получать питание и подавать питание на схему. В таблице это начинается с тока покоя операционного усилителя IQ. . (См. Раздел «Питание» для обсуждения учета мощности и энергии в цепях.В идеальных операционных усилителях мы рассматриваем это как VCVS: это активный источник, который может подавать питание на схему.

    Скорость, с которой операционный усилитель может изменять свое выходное напряжение, называется скоростью нарастания . В реальных операционных усилителях существует предел скорости роста или падения выходной мощности, измеряемый в Vs. . (Это похоже на мысленный трюк с размышлением о бесконечном усилении без обратной связи, о котором говорилось выше.) В идеальных операционных усилителях мы допускаем бесконечную скорость нарастания напряжения: выходной сигнал может двигаться бесконечно быстро.

    В дополнение к пределу скорости нарастания напряжения (который является нелинейным пределом), существует также ограничение полосы пропускания в реальных операционных усилителях: они не реагируют на все частоты.Реальные операционные усилители имеют коэффициент усиления без обратной связи, который является функцией частоты, AOL (f). , а на высоких частотах он уменьшается. В частности, произведение коэффициента усиления на полосу пропускания (GBW) — это частота, на которой коэффициент усиления разомкнутого контура операционного усилителя падает до 1. Примечательно, что коэффициент усиления начинает падать намного раньше этой частоты. Но в идеальных операционных усилителях мы предполагаем, что коэффициент усиления разомкнутого контура постоянный и большой (приближающийся к бесконечности) для всех частот.

    Как подробно обсуждалось выше, мы предполагаем, что идеальные операционные усилители имеют коэффициент усиления, приближающийся к бесконечности.Реальные операционные усилители имеют конечное усиление без обратной связи, что может ограничивать степень усиления, которую мы можем получить от одного каскада операционного усилителя.

    В идеальных операционных усилителях мы предполагаем, что если мы удвоим разницу входного напряжения, мы удвоим выходное напряжение. Настоящие операционные усилители состоят из нелинейных компонентов, и это неверно. Однако, поскольку операционные усилители используются в конфигурациях с обратной связью с обратной связью, обратная связь сохраняет разницу входного напряжения чрезвычайно малой, в пределах диапазона, в котором мы видим в основном линейное поведение. Можно с уверенностью предположить линейность в идеальном операционном усилителе.

    Идеальный операционный усилитель может иметь входы любого значения; имеет значение только их различие. Но в реальном операционном усилителе будут ограничения на допустимые входные напряжения, чтобы предотвратить повреждение входных транзисторов. Вычитание не будет работать должным образом, если ваши входные данные превышают эти пределы, и ваша схема не будет работать должным образом. (Более тонко, вы получите нелинейные искажения до того, как достигнете жестких пределов.) В большинстве случаев пределы соответствуют положительному и отрицательному напряжению источника питания, но вы должны проверить данные, чтобы быть уверенным.

    Идеальный операционный усилитель может выдавать любое напряжение. Но в реальном операционном усилителе вы ограничены тем, что могут обеспечить выходные транзисторы. Эти пределы обычно соответствуют положительному и отрицательному напряжению источника питания, но вам следует проверить таблицу данных.

    Идеальный операционный усилитель реагирует только на изменение напряжения на неинвертирующих и инвертирующих входных контактах. Но настоящий операционный усилитель может «просачивать» некоторые отклонения от контактов источника питания на выход. (Это зафиксировано как спецификация коэффициента отклонения источника питания [PSRR] в таблице данных.) Это позволяет источнику питания с помехами испортить сигнал.

    Идеальный операционный усилитель не добавляет шума к сигналу. Но в реальном операционном усилителе шум добавляется и, возможно, даже усиливается.


    Идеальный операционный усилитель — это просто фантастика! К сожалению, все они распроданы. Настоящие операционные усилители на ИС, которые вы можете купить, не идеальны во всех описанных выше способах, и производители полупроводников должны идти на собственные уступки, чтобы достичь своих целевых характеристик и ценовой категории.

    В результате, если проблема аналогового дизайна, которую вы пытаетесь решить, особенно сложна в каком-либо направлении, вы можете не захотеть использовать операционный усилитель. Например, если вам нужно спроектировать каскад усилителя с абсолютно высокими частотными характеристиками или с абсолютно низким энергопотреблением, вы, вероятно, не собираетесь использовать операционный усилитель.

    К счастью, в продаже есть тысячи различных моделей операционных усилителей, и все они идут на разные компромиссы между этими неидеальными идеалами. Во многих случаях, понимая свою дизайнерскую проблему и то, как она соотносится с этими неидеальными идеалами, вы сможете найти тот, который отвечает вашим потребностям прямо из коробки!


    Часто бывает полезно ослабить допущение о «неограниченном диапазоне выходного напряжения», приведенное выше, и вместо этого смоделировать идеальный операционный усилитель с шинами напряжения , где выходной сигнал должен находиться в пределах указанного диапазона.

    Полезно запустить симуляцию DC Sweep, чтобы увидеть, как выглядит выходной сигнал идеального операционного усилителя с разомкнутым контуром, с шинами напряжения и без них. Две выходные кривые перекрываются посередине, если не превышены пределы. Но с шинами напряжения линия В (Output_with) обрезается, чтобы быть плоской и горизонтальной после превышения пределов:

    Exercise Щелкните, чтобы открыть и смоделировать схему, описанную выше, и понаблюдать за тем, как один выход кажется ограниченным при изменении входа.

    (Обратите внимание, что для многих реальных операционных усилителей его выход не может полностью качаться до положительной шины питания и не может полностью опускаться до отрицательной шины.)

    Теперь, когда у нас есть идеальный операционный усилитель с шинами напряжения, мы можем использовать его в качестве компаратора напряжения без обратной связи. Бесконечный коэффициент усиления идеального операционного усилителя фактически равен по сравнению с , поскольку имеет ограничения по выходному напряжению, так что фактически:

    Vout = Vlimit, posfor V +> V- + ϵVout = Vlimit, negfor V +

    для очень маленьких ϵ .

    Это можно продемонстрировать, подключив два генератора синусоидальных функций с разными частотами к двум входам операционного усилителя:

    Exercise Щелкните, чтобы открыть и смоделировать схему выше. Посмотрите, как выходной сигнал достигает крайних значений при пересечении входов.

    В реальном мире операционный усилитель — не лучший аналоговый компаратор напряжения: есть гораздо лучшие специализированные детали. Однако это одно из немногих применений операционных усилителей без обратной связи, поэтому вы можете создать и протестировать его в своей лаборатории.


    Полезно моделировать схемы операционного усилителя в области Лапласа, потому что мы можем решать системы обратной связи алгебраически. В частности, полезная модель для идеального операционного усилителя предполагает наличие конечного коэффициента усиления без обратной связи AOL. :

    Еще более полезная модель включает в себя конечное произведение коэффициента усиления на полосу пропускания GBW. . Это моделируется как имеющий конечный коэффициент усиления AOL. на постоянном токе, с однополюсным фильтром нижних частот с угловой частотой fc = GBWAOL . ФНЧ имеет передаточную функцию Glpf (s) = 11 + sω. , где ω = 2πfc .Сочетание усиления и низких частот дает:

    G (с) = AOL1 + s (AOL2πGBW)

    и может быть реализован в CircuitLab, как показано:

    Мы будем использовать эту модель в следующих разделах приложения для алгебраического решения примеров обратной связи с обратной связью.


    Насколько полезно иметь усилитель с действительно огромным (в идеале бесконечным!) Усилением? Само по себе не так уж и много. В этом разделе мы исследовали поведение разомкнутого контура, и наиболее полезным результатом является посредственный аналоговый компаратор напряжения.

    Но как только мы построим схему вокруг идеального операционного усилителя, мы сможем «замкнуть контур» и приручить дико огромное усиление во что-то, что мы можем разработать и управлять с помощью обратной связи с обратной связью . Оказывается, наличие компонента вычитания и умножения на бесконечность является почти магически полезным строительным блоком для широкого спектра потребностей обработки аналоговых сигналов. Мы рассмотрим их в следующих нескольких разделах, начиная с одного из самых простых: буфера напряжения операционного усилителя.


    Роббинс, Майкл Ф. Ultimate Electronics: Практическое проектирование и анализ схем. CircuitLab, Inc., 2020, ultimateelectronicsbook.com. Доступно. (Авторское право © 2020 CircuitLab, Inc.)

    20 формул для проектирования схем операционного усилителя

    Ⅰ Введение

    Несмотря на то, что существует множество типов операционных усилителей , различные схемы усилителей подходят для взаимодействия с различными типами датчиков, но наиболее сложные усилители создаются путем объединения операционных усилителей.Чтобы получить хороший эффект усиления, необходимо спроектировать схему усилителя. В этой статье представлены 20 формул операционных усилителей в качестве справочной информации.

    Формулы операционного усилителя для расчета напряжения

    Каталог

    Ⅱ Формулы операционного усилителя

    Сегодня почти всегда операционные усилители конфигурируются по-разному с использованием сети обратной связи для «расчета» входного сигнала. Для расчета используется 20 формул.

    Рисунок 1.Повторитель напряжения

    Примечание: буферный сигнал с высоким импедансом и нагрузка с низким импедансом

    Рисунок 2. Синфазный операционный усилитель

    Примечание: синфазное усиление сигнала

    Рисунок 3. Операционный усилитель с обращенной фазой

    Примечание: усилить и инвертировать вход

    Рисунок 4. Вычитатель напряжения, дифференциальный усилитель

    Примечание: увеличьте разницу напряжений и подавите синфазное напряжение

    Рисунок 5. Сумматор напряжения

    Примечание: суммирование суммируемых значений напряжения

    Рисунок 6. Фильтр нижних частот, интегратор

    Примечание: ограничение полосы пропускания сигнала

    Рисунок 7. Фильтр высоких частот, дифференциатор

    Примечание: исключить постоянный ток, усилить сигнал переменного тока

    Рисунок 8. Дифференциальный усилитель

    Примечание: преобразование дифференциального сигнала привода в аналого-цифровой преобразователь от дифференциального или несимметричного источника сигнала

    Рисунок 9.Инструментальный усилитель

    Примечание: усиление разностного сигнала низкого уровня и подавление синфазного сигнала

    Рис. 10. Шум ОУ в одном состоянии

    Примечание: RTO NOISE = NG × RTI NOISE

    RTI = преобразовано во вход

    RTO = преобразовано в выход

    Формула децибел (эквивалентное сопротивление)

    Формула шума Джонсона-Найквиста

    Закон Ома (цепь постоянного тока)

    Рисунок 11. Частотная характеристика с обратной связью (усилитель с обратной связью по напряжению)

    Формулы сопротивления

    Формулы реактивного сопротивления

    Трансформатор (повышающий или понижающий коэффициент)

    Формулы импеданса (последовательно)

    Примечание: RL в серии

    RC в серии

    LC в серии

    RLC последовательно

    Формулы напряжения и импеданса (параллельное соединение)

    Часто задаваемые вопросы о схеме рабочего усилителя

    1.Как сделать схему операционного усилителя?

    2. Что такое усилитель с примером? Усилители
    обычно проектируются так, чтобы хорошо работать в определенных приложениях, например: радио- и телевизионные передатчики и приемники, высококачественное стереооборудование, микрокомпьютеры и другое цифровое оборудование, гитарные и другие инструментальные усилители.

    3. Почему операционные усилители имеют два входа?
    Операционные усилители имеют две шины питания, потому что им обычно требуется качание биполярных выходных напряжений, которые становятся либо положительными, либо отрицательными в ответ на нормальный диапазон входных сигналов…. Без двойных источников питания выходной сигнал будет ограничиваться потенциалом земли.

    4. Какой усилитель лучше? Усилители
    класса «A» считаются лучшими в конструкции усилителей главным образом благодаря их превосходной линейности, высокому усилению и низким уровням искажений сигнала при правильной конструкции.

    5. Операционные усилители являются переменным или постоянным током?
    Базовая конструкция операционного усилителя представляет собой устройство с 3 контактами, с 2 входами и 1 выходом (за исключением силовых соединений).Операционный усилитель работает либо от двойного положительного (+ V), и от соответствующего отрицательного (-V) источника питания, либо они могут работать от одного источника постоянного напряжения.

    6. Может ли операционный усилитель усиливать как переменный, так и постоянный ток?
    Infinite — Идеальный операционный усилитель имеет бесконечную частотную характеристику и может усиливать любой частотный сигнал от постоянного до самых высоких частот переменного тока, поэтому предполагается, что он имеет бесконечную полосу пропускания.

    7. Работают ли операционные усилители с постоянным током?
    В принципе, да, вы можете усилить постоянный ток с помощью операционного усилителя, при условии соблюдения ограничений усилителя.В основном усиленное выходное напряжение должно находиться в пределах выходных пределов операционного усилителя. … (Часть конечного выхода источника питания возвращается на отрицательный вход операционного усилителя для регулирования всей цепи.)

    8. Как усилить постоянный ток? Для увеличения тока можно использовать транзистор
    А. У вас будет путь с низким током от базы к эмиттеру в NPN и путь с более высоким током от коллектора к эмиттеру. Коллекторный ток будет кратен базовому току, если это позволяет схема.

    9. Каковы идеальные характеристики операционного усилителя?
    Идеальные операционные усилители не потребляют питание, имеют бесконечное входное сопротивление, неограниченную ширину полосы пропускания и скорость нарастания напряжения, отсутствие входного тока смещения и входного смещения. У них неограниченное соблюдение напряжения.

    10. Какая скорость нарастания операционного усилителя?
    Скорость нарастания напряжения определяется как максимальная скорость изменения выходного напряжения операционного усилителя и задается единицами измерения вольт за микросекунду. Скорость нарастания напряжения измеряется путем подачи большого шага сигнала, например 1 В, на вход операционного усилителя и измерения скорости изменения от 10% до 90% амплитуды выходного сигнала.

    Цепь дифференциального усилителя операционного усилителя

    В этом руководстве мы узнаем об одной из важных схем в разработке аналоговых схем: дифференциальном усилителе. По сути, это электронный усилитель, который имеет два входа и усиливает разницу между этими двумя входными напряжениями.

    Операционный усилитель

    внутренне является дифференциальным усилителем с такими функциями, как высокий входной импеданс, низкий выходной импеданс и т. Д. Для получения дополнительной информации об операционном усилителе прочтите «Основы работы с операционным усилителем ».

    Введение

    Дифференциальная пара или конфигурация дифференциального усилителя является наиболее широко используемым строительным блоком при проектировании аналоговых интегральных схем. Фактически, это входной каскад любого операционного усилителя.

    Разностный усилитель или дифференциальный усилитель усиливает разницу между двумя входными сигналами. Операционный усилитель — это дифференциальный усилитель; у него есть инвертирующий вход и неинвертирующий вход. Но коэффициент усиления по напряжению без обратной связи операционного усилителя слишком высок (в идеале бесконечен), чтобы его можно было использовать без подключения обратной связи.

    Итак, в практическом дифференциальном усилителе используется соединение с отрицательной обратной связью для управления коэффициентом усиления по напряжению.

    НАЗАД

    Дифференциальный усилитель

    Разностный усилитель, показанный в приведенной выше схеме, представляет собой комбинацию как инвертирующих, так и неинвертирующих усилителей. Если неинвертирующий вывод подключен к земле, схема работает как инвертирующий усилитель, и входной сигнал V 1 усиливается на — (R 3 / R 1 ).

    Аналогичным образом, если инвертирующий входной терминал подключен к земле, схема ведет себя как неинвертирующий усилитель. Когда инвертирующая входная клемма заземлена, R 3 и R 1 работают как компоненты обратной связи неинвертирующего усилителя.

    Вход V 2 потенциально разделен между резисторами R 2 и R 4 , чтобы получить V R4 , а затем V R4 усиливается на (R 3 + R 1 ) / R 1 .

    С V 2 = 0,

    В O1 = — (R 3 / R 1 ) * V 1

    С V 1 = 0,

    V R4 = {R 4 / (R 2 + R 4 )} * V 2

    и

    V O2 = {(R 1 + R 3 ) / R 1 } * V R4

    Следовательно,

    V O2 = {(R 1 + R 3 ) / R 1 } * {R 4 / (R 2 + R 4 )} * V 2

    Если входные сопротивления выбраны так, что R 2 = R 1 и R 4 = R 3 , тогда

    В O2 = {R3 / R 1 } * V 2

    Теперь, согласно принципу суперпозиции, если присутствуют оба входных сигнала V 1 и V 2 , то выходное напряжение будет

    .

    V O = V O1 + V O2

    = {- (R 3 / R 1 ) * V 1 } + {R3 / R 1 } * V 2

    Что дает,

    V O = (R 3 / R 1 ) * {V 2 — V 1 }

    Когда резисторы R 3 и R 1 имеют одинаковое значение, выход представляет собой прямую разницу приложенных входных напряжений. Выбрав R 3 больше, чем R 1 , выходной сигнал может быть усилен версией разности входных напряжений.

    НАЗАД

    Входное сопротивление

    Одна из проблем при выборе резисторов разностного усилителя в виде R 2 = R 1 и R 3 = R 4 заключается в том, что входные сопротивления для инвертирующего усилителя и неинвертирующего усилителя неодинаковы.

    Входное сопротивление для напряжения В 1 составляет 1 R R, как и в случае инвертирующего усилителя.Для неинвертирующего входа, то есть для входного напряжения V 2 , входное сопротивление составляет (R 2 + R 4 ).

    Эта разница во входных сопротивлениях приводит к большему усилению одного из входных сигналов, чем другого.

    Выходное уравнение разностного усилителя V O можно получить, сделав соотношение R 4 / R 2 таким же, как R 3 / R 1 , вместо того, чтобы сделать R 2 = 1 рандов и 4 = 3 рандов.

    Разница входного сопротивления не вызовет проблем, если сопротивление источника сигнала намного меньше входного сопротивления. Кроме того, обычно желательно иметь R 2 = R 1 и R 4 = R 3 , чтобы минимизировать входные напряжения смещения.

    НАЗАД

    Дифференциальный коэффициент усиления

    Дифференциальный коэффициент усиления разностного усилителя определяется как коэффициент усиления выходного сигнала по отношению к разности подаваемых входных сигналов.

    Выходное напряжение дифференциального усилителя определяется как,

    V O = A D (V 1 — V 2 )

    где, A D = — (R 3 / R 1 ) — дифференциальный коэффициент усиления усилителя.

    НАЗАД

    Синфазный вход

    Разностный усилитель усиливает разницу между двумя входными напряжениями. В идеале, вход синфазного сигнала V см будет делать входы (V 1 + V см ) и (V 2 + V см ), что приведет к отмене V см , когда разница двух входных напряжений усиливается.

    Поскольку выходной сигнал практического разностного усилителя зависит от соотношения входных сопротивлений, если эти соотношения резисторов не совсем равны, то одно входное напряжение усиливается на большую величину, чем другое входное.

    Следовательно, синфазное напряжение V см не будет полностью отменено. Поскольку практически невозможно точно подобрать соотношения резисторов, вероятно, будет некоторое синфазное выходное напряжение.

    При наличии синфазного входного напряжения выходное напряжение дифференциального усилителя определяется как,

    V O = A d V d + A c V c

    Где Vd = разность напряжений В 1 2

    В = синфазное напряжение (В 1 + В 2 ) / 2

    НАЗАД

    Коэффициент подавления синфазного сигнала (CMRR)

    Способность дифференциального усилителя подавлять входные синфазные сигналы выражается через коэффициент подавления синфазного сигнала (CMRR).Коэффициент подавления синфазного сигнала дифференциального усилителя математически определяется как отношение коэффициента усиления дифференциального напряжения дифференциального усилителя к его коэффициенту усиления синфазного сигнала.

    CMRR = | A d / A c |

    В идеале коэффициент усиления синфазного напряжения дифференциального усилителя равен нулю. Следовательно, в идеале CMRR бесконечно.

    НАЗАД

    Характеристики дифференциального усилителя
    • Высокое усиление дифференциального напряжения
    • Низкое усиление синфазного сигнала
    • Высокое входное сопротивление
    • Низкое выходное сопротивление
    • Высокая CMRR
    • Большая полоса пропускания
    • Низкие напряжения и токи смещения

    НАЗАД

    Дифференциальный усилитель в качестве компаратора

    Схема дифференциального усилителя является очень полезной схемой операционного усилителя, поскольку ее можно настроить для «добавления» или «вычитания» входных напряжений путем соответствующего добавления дополнительных резисторов параллельно входным резисторам.

    Конструкция схемы дифференциального усилителя на мосту Уитстона показана на рисунке выше. Эта схема ведет себя как компаратор дифференциального напряжения.

    Подключив один вход к фиксированному напряжению, а другой к термистору (или светозависимому резистору), схема дифференциального усилителя определяет высокие или низкие уровни температуры (или интенсивности света), поскольку выходное напряжение становится линейной функцией от изменения активной ветви резистивной мостовой сети.

    Дифференциальный усилитель на мосту Уитстона также можно использовать для поиска неизвестного сопротивления в цепи резистивного моста путем сравнения входных напряжений на резисторах.

    НАЗАД

    Выключатель светового включения с дифференциальным усилителем

    Схема, показанная на рисунке выше, действует как светозависимый переключатель, который включает или выключает выходное реле, когда интенсивность света, падающего на светозависимый резистор (LDR), превышает или опускается ниже заданное значение на неинвертирующей входной клемме V 2 .

    Напряжение V 2 определяется переменным резистором V R1 . Резисторы R 1 и R 2 действуют как цепь делителя потенциала. Фиксированное опорное напряжение подается на инвертирующем вход, через R 1 и R 2 .

    Эту же схему можно модифицировать для обнаружения изменений температуры, просто заменив LDR термистором. Меняя местами LDR и V R1 , можно сделать схему для определения темноты или света (или тепла или холода с использованием термистора).

    НАЗАД

    Пример дифференциального усилителя

    Определите выходное напряжение дифференциального усилителя для входных напряжений 300 мкВ и 240 мкВ. Дифференциальный коэффициент усиления усилителя составляет 5000, а значение CMRR составляет (i) 100 и (ii) 10 5

    .

    Дифференциальный усилитель для указанных данных представлен, как показано на рисунке.

    i) CMRR = A d / A c

    100 = 5000 / A c

    А с = 50

    V d = V 1 — V 2 = 300 мкВ — 240 мкВ = 60 мкВ

    V c = (V 1 + V 2 ) / 2 = 540 мкВ / 2 = 270 мкВ

    V O = A d V d + A c V c

    = [5000 x 60 + 50 x 270] мкВ

    В O = 313500 мкВ = 313.500 мВ

    ii) CMRR = 10 5

    A c = A d / CMRR = 5000/10 5 = 0,05

    V O = A d V d + A c V c = [5000 × 60 + 0,05 × 270] мкВ

    В O = 3000 13,5 мкВ

    Примечание: В идеале A c равно нулю. Таким образом, на выходе получается только A d V d , что дает V O = 5000 x 60 мкВ = 300 мВ.

    НАЗАД

    Сводка по дифференциальному усилителю
    • Дифференциальный усилитель, также известный как дифференциальный усилитель, представляет собой полезную конфигурацию операционного усилителя, которая усиливает разницу между приложенными входными напряжениями.
    • Дифференциальный усилитель представляет собой комбинацию инвертирующих и неинвертирующих усилителей. Он использует соединение с отрицательной обратной связью для управления усилением дифференциального напряжения.
    • Коэффициент усиления дифференциального напряжения усилителя зависит от соотношения входных сопротивлений.Следовательно, тщательно выбирая входные сопротивления, можно точно регулировать усиление разностного усилителя.
    • В идеале коэффициент усиления синфазного сигнала дифференциального усилителя равен нулю. Но из-за несоответствия номиналов резистора будет очень маленькое выходное синфазное напряжение и конечное синфазное усиление.
    • Путем соответствующей модификации соединений резисторов на входных клеммах можно сделать разностный усилитель для сложения, вычитания и сравнения приложенных уровней входного напряжения.

    НАЗАД

    Предыдущая запись — Суммирующий усилитель

    Следующая запись — Инструментальный усилитель

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *