Различия переменного и постоянного тока: «Чем переменный ток отличается от постоянного?» – Яндекс.Кью

Содержание

преимущество моторов постоянного тока перед моторами переменного тока

Для работы электрических насосов требуются электромоторы, позволяющие преобразовывать электрическую энергию в механическую для приведения циркуляционного насоса в движение. Наиболее распространены асинхронные двигатели переменного тока и бесщеточные двигатели постоянного тока (BLDC). Узнайте, в чем преимущество моторов BLDC перед моторами переменного тока.

На протяжении долгого времени пневматические насосы являлись самым популярным оборудованием для циркуляции краски. Они просты, надежны и подходят для безопасного использования в цехах подготовки краски с красками на основе растворителей. 

Однако у них есть один важный недостаток: высокое энергопотребление. Поскольку их КПД составляет всего 10 %, круглосуточное использование пневматических моторов может значительно увеличить расходы на электроэнергию. Поскольку у пневматических насосов слишком низкий КПД, появилась потребность в переходе к использованию других видов оборудования, в частности поршневых насосов с электрическим приводом.

Типы электрических моторов

Для работы насосов с электроприводом требуются электромоторы, преобразующие электрическую энергию в механическую для приведения насоса в движение. В отрасли используются различные типы электродвигателей, но чаще всего для этого используются индукционные моторы переменного тока и бесщеточные моторы постоянного тока (BLDC).

Для промышленного применения, как правило, используются индукционные моторы переменного тока. Они просты в эксплуатации, рентабельны и, если вам не нужен контроль частоты вращения, не требуют каких-либо дополнительных элементов управления. Моторы BLDC, которые стали популярны после появления недорогой силовой электроники в конце 1970-х годов, требуют наличия контроллера.

 

Различия между асинхронными моторами переменного тока (AC) и бесщеточными моторами постоянного тока (BLDC)

Асинхронные моторы переменного тока (АС) и бесщеточные моторы постоянного тока (BLDC) конструктивно очень похожи: основное отличие заключается в конструкции ротора. Асинхронный мотор переменного тока не имеет магнитов на роторе, вместо этого в нем используется несколько тонких пластин и обмоток. При подключении статора мотора к трехфазной сети возникает вращающееся магнитное поле. Под воздействием вращающегося магнитного поля индукционный ток проходит в ротор. Ток ротора создает магнитное поле, которое взаимодействует с магнитным полем статора, в результате чего возникает крутящий момент.

 

Мотор переменного тока с частотно-регулируемым преобразователем (ЧРП)

Большинство асинхронных двигателей переменного тока могут работать непосредственно от сети переменного тока без контроллера. Если требуется регулировка частоты вращения (как во многих вариантах применения насосов), это преимущество теряет актуальность. В таком случае требуется использование частотно-регулируемого привода (ЧРП).

ЧРП изменяет скорость вращения мотора за счет изменения частоты переменного тока, поступающего в мотор. Например, на моторе, имеющем номинальную скорость вращения 1800 об/мин при частоте 60 Гц, можно уменьшить скорость вращения до 900 об/мин, уменьшив частоту до 30 Гц.

Но даже при наличии ЧРП, частота вращения промышленных индукционных моторов находится в пределах 30–130 % от номинальной частоты вращения. Такие моторы не подходят для создания номинального крутящего момента на малых скоростях вращения или в случае остановки мотора.

 
Преимущества бесщеточного двигателя постоянного тока (BLDC)

Если индукционные моторы переменного тока более универсальны по сравнению с бесщеточными моторами постоянного тока (BLDC), почему для насосов используются моторы BLDC? Существует несколько преимуществ и функциональных особенностей, присущих только моторам BLDC:

  • Высокая эффективность Использование моторов BLDC позволяет сократить энергопотребление и уменьшить выработку тепла.
  • Точный контроль крутящего момента и частоты вращения мотора Насос может быстро реагировать на изменения в системе. Насос также может работать вхолостую, что позволяет мотору выдавать полный крутящий момент при нулевой скорости. Кроме того, этот мотор способен выдавать постоянный крутящий момент. Это помогает контролировать работу мотора для обеспечения постоянного уровня давления, что позволяет реагировать на изменения в системе циркуляции так же, как в случае с пневматическим насосом. 
  • Низкий момент инерции ротора Позволяет насосу значительно быстрее реагировать на изменение уровня давления в системе по сравнению с насосами с приводом от индукционного мотора переменного тока.
  • Более компактный размер При любых одинаковых мощностях моторы BLDC обычно имеют меньшие габаритные размеры, чем моторы переменного тока, что позволяет использовать насосы меньшего размера.


Высокая эффективность моторов BLDC наглядно представлена на графиках. На графике 1 представлены характеристики индукционных моторов переменного тока и моторов BLDC. На графике 2 показаны общие электрические и механические КПД разных моделей циркуляционных насосов.

График 1: Энергоэффективность 
Мощность
(зеленый) мотор BLDC     (синий) 3-фазный двигатель переменного тока     (желтый) 1-фазный мотор переменного тока
 

График 2: Эффективность расхода 
Расход материала, галлонов в минуту
(синий) Электрический циркуляционный насос с мотором BLDC     (желтый) Электрический насос с мотором переменного тока


Моторы переменного тока требуют сложной настройки

Для обоих типов моторов (переменного тока и постоянного тока) необходимо использовать метод преобразования вращательного движения мотора в линейно-поступательное движение поршня насоса.

Для этого в индукционных моторах переменного тока, обладающих постоянной скоростью работы и медленной динамической реакцией, используется специальный сложный механизм. К примеру, может использоваться кулачковый привод или хомут. 

Ниже представлен пример насоса, работающего от индукционного мотора переменного тока. Обратите внимание, что мотор переменного блока, редуктор и кулачковый привод являются отдельными блоками, трансформирующими вращательное движение в линейно-поступательное движение. Система кулачкового привода состоит из нескольких частей и в два–три раза больше фактического мотора. В них также имеются точки износа и подшипники, подверженные износу и поломкам и требующие затрат на техническое обслуживание или замену.

 
Преимущества простоты конструкции

Помимо меньшей инерции и оптимального управления крутящим моментом, присущая бесщеточному мотору постоянного тока (BLDC) быстрая реакция позволяет значительно упростить механическое соединение.  

По сравнению с габаритной конструкцией насоса с приводом от индукционного мотора переменного тока, в циркуляционном насосе краски может использоваться небольшой двигатель BLDC, двухступенчатый редуктор и простой реечный привод, используемый для преобразования вращательного движения в линейно-поступательное. 

Для выполнения возвратно-поступательного движения необходимо просто изменить направление вращения мотора BLDC. Благодаря низкому моменту инерции и лучшему контролю крутящего момента, моторы BLDC позволяют выполнить это быстро и эффективно. 

РАЗНИЦА МЕЖДУ ПЕРЕМЕННЫМ ТОКОМ (AC) И ПОСТОЯННЫМ ТОКОМ (DC) | СРАВНИТЕ РАЗНИЦУ МЕЖДУ ПОХОЖИМИ ТЕРМИНАМИ — ТЕХНОЛОГИЯ

Переменный ток (AC) против постоянного (DC)Переменный ток (AC) и постоянный ток (DC) — это два типа токов, которые используются для отправки электричества во все части мира. Оба тока имеют свои особе

Переменный ток (AC) против постоянного (DC)

Переменный ток (AC) и постоянный ток (DC) — это два типа токов, которые используются для отправки электричества во все части мира.

Оба тока имеют свои особенности с преимуществами и также используются в различных устройствах. В то время как постоянный ток однонаправлен и течет только в одном направлении, переменный ток растет и падает, постоянно меняя направление. Однако они похожи по своей природе, поскольку оба связаны с потоком электронов. Но на этом их сходство заканчивается, поскольку они фундаментально различны, и их различие начинается со способа их создания, а также того, как они передаются и используются.

Переменный ток

Переменный ток — это тип тока, который подается для электроснабжения домов и предприятий. Причина, по которой его предпочитают постоянному току, заключается в простоте его производства и передачи. На электростанциях, будь то угольные, ветряные или гидроэнергетические, ток вырабатывается вращающимися турбинами, которые, таким образом, производят переменный ток. При вращении турбина создает магнитное поле, которое толкает и притягивает электроны в проводе. Это постоянное толкание и вытягивание производит ток, который постоянно меняет направление, и, следовательно, переменный ток.

Постоянный ток

Постоянный ток — это тип тока, который вырабатывается источником, не имеющим движущихся частей. Хорошими примерами постоянного тока являются солнечные батареи и обычные батареи. Химическая энергия внутри батареи толкает электроны только в одном направлении, и, следовательно, возникающий ток также является однонаправленным. Одна уникальная вещь, о которой вы можете не знать, — это то, что большинство электронных устройств, таких как телевизоры и DVD, имеют встроенный адаптер переменного / постоянного тока, поскольку они работают от постоянного тока, а в домах — от переменного тока.

DC больше подходит для перевозки на большие расстояния, несмотря на то, что он не используется потребителями. Он преобразуется обратно в кондиционер перед отправкой в ​​дома и на предприятия.

Электронным устройствам необходим постоянный ток, что невозможно при переменном токе, поскольку он постоянно меняет направление. Однако существуют такие устройства, как лампочки, вентиляторы, КЛЛ и т. Д., Которые могут работать как от переменного, так и от постоянного тока, поскольку для них требуется только поток электронов, а направление для них не имеет значения. Вы можете не заметить, но когда лампочка горит от переменного тока, она постоянно включается и выключается, поскольку переменный ток меняет направление 50-60 раз в секунду. Но поскольку это изменение происходит так быстро, мы даже не можем заметить, горит ли лампочка или нет. Такие устройства, как стиральные машины, могут работать только от переменного тока, так как их двигатель может вращаться только от переменного тока. С автоматическими стиральными машинами это действительно усложнилось: двигатель работает от переменного тока, а его экран и компьютер работают от постоянного тока с помощью преобразователя постоянного тока.

Невозможно сравнивать переменный ток и постоянный ток, поскольку оба имеют свои преимущества, которые объясняются использованием домашних устройств. Оба они необходимы, и без них многие из устройств, на которые мы так сильно полагаемся, не будут работать.

Двигатели переменного тока и постоянного тока: в чем разница?

Электродвигатели — это машины, предназначенные для преобразования электрической энергии в механическую. Хотя они доступны во многих вариантах, их можно разделить на две основные категории: двигатели переменного тока и двигатели постоянного тока.

И двигатели переменного тока, и двигатели постоянного тока имеют одинаковую функцию; то есть преобразовывать электрическую энергию в механическую. Однако при выборе двигателя важно знать разницу между двигателями переменного и постоянного тока, поскольку каждый из них имеет разные требования к конструкции, питанию и управлению. В следующей статье обсуждаются различия между двумя типами двигателей, включая основные конструктивные и рабочие характеристики, преимущества и области применения. Купить электрический двигатель можно на сайте https://psnab.ru

Обзор двигателей переменного тока

Как следует из названия, двигатели переменного тока используют переменный ток (AC) для выработки механической энергии. Стандартная конструкция состоит из статора с обмоткой, встроенной по окружности, и свободно вращающейся металлической части (т. е. ротора) в центре.

Когда ток подается на обмотки статора в двигателе переменного тока, создается вращающееся магнитное поле. Это магнитное поле индуцирует электрический ток внутри электропроводного ротора и, следовательно, образует второе вращающееся магнитное поле. Взаимодействие между первым магнитным полем и вторым магнитным полем заставляет вращаться ротор.

При выборе электродвигателя переменного тока для применения необходимо учитывать два критических фактора:

  • Рабочая скорость (в оборотах в минуту): максимальная скорость, которую может достичь двигатель, рассчитывается по следующей формуле: (60 x частота сети переменного тока в Гц) ÷ количество полюсов двигателя
  • Пусковой крутящий момент, создаваемый двигателем при запуске с нулевой скоростью.

Обзор двигателей постоянного тока

Двигатели постоянного тока используют постоянный ток (DC) с постоянным напряжением для выработки механической энергии. Двигатели постоянного тока состоят из вращающейся обмотки якоря (т. е. Ротора) и статора возбуждения с обмотками, которые образуют набор неподвижных электромагнитов. Другой ключевой компонент двигателя постоянного тока — это коммутатор, прикрепленный к якорю.

Когда ток течет через двигатель постоянного тока, внутри статора возбуждения и вокруг обмотки якоря создается магнитное поле. Взаимодействие между этими двумя магнитными полями создает электромагнитную силу, которая заставляет якорь вращаться. Коммутатор изменяет направление тока в якорь и тем самым позволяет ему продолжать вращение, пока ток течет через систему.

Двигатели постоянного тока могут использоваться для создания различных уровней скорости и крутящего момента. Регулировка уровней напряжения, подаваемого на якорь, или статического тока возбуждения изменяет выходную скорость.

Преимущества двигателей переменного тока перед двигателями постоянного тока

И двигатели переменного тока, и двигатели постоянного тока демонстрируют уникальные преимущества, которые делают их пригодными для различных применений. Ниже мы описываем преимущества, предлагаемые обоими типами двигателей.

К преимуществам двигателей переменного тока можно отнести:

  • Более низкие требования к пусковой мощности
  • Лучший контроль над начальным уровнем тока и ускорением
  • Более широкие возможности настройки для различных требований к конфигурации и изменения требований к скорости и крутящему моменту
  • Повышенная прочность и долговечность

К преимуществам двигателей постоянного тока можно отнести:

  • Более простые требования к установке и обслуживанию
  • Более высокая пусковая мощность и крутящий момент
  • Более быстрое время отклика на пуск / остановку и ускорение
  • Более широкий выбор для различных требований к напряжению

Применение двигателей переменного тока по сравнению с двигателями постоянного тока

Как указано выше, двигатели переменного тока и двигатели постоянного тока подходят для различных применений. В промышленном секторе долговечность, гибкость и эффективность двигателей переменного тока делают их идеальными для использования в приложениях для широкого спектра устройств, включая бытовые приборы, компрессоры, конвейеры, вентиляторы и другое оборудование HVAC, насосы и транспортное оборудование. Более быстрое время отклика и более стабильные уровни крутящего момента и скорости, предлагаемые двигателями постоянного тока, делают их хорошо подходящими для использования в производственном и производственном оборудовании, лифтах, пылесосах и подъемно-транспортном оборудовании.

И двигатели переменного тока, и двигатели постоянного тока играют критически важную роль в производстве электроэнергии в широком спектре промышленных, коммерческих и жилых помещений. Поскольку оба типа двигателей обладают преимуществами и недостатками, важно понимать разницу между ними, чтобы выбрать подходящий для своего предприятия.

Генераторы тока: переменного и постоянного

Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока  — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока

Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током

Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.

В чем конструктивная разница между генераторами

Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

Особенности конструкции генераторов переменного тока

Электростанция такого типа состоит из:

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.

Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока

Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.


Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

Асинхронным машинам характерны:

  • Отсутствие электрической связи с ротором;
  • Вращение якоря под воздействием остаточного механизма статора;
  • Измененная электрическая нагрузка на статоре.

Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы генератора постоянного тока

Простейший  по конструкции генератор работает следующим образом:

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.

Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.


К преимуществам генераторов постоянного тока относят:

  • Небольшой вес и компактность агрегата;
  • Возможность использовать в экстремальных условиях;
  • Отсутствие потерь, связанных с вихревыми токами.

Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы генератора переменного тока

Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

Основные достоинства генераторов переменного тока

В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

Плюсами использования генераторов переменного тока являются:

  • Большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • Выработка электроэнергии на низких скоростях вращения ротора;
  • Проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • Конструкция токосъемного узла отличается большей надежностью;
  • Больше эксплуатационный ресурс и меньше эксплуатационные затраты.

Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Где применяются генераторы постоянного и переменного тока

Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники. 

Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования. 

Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.


В чем разница между постоянным и переменным током. Переменный электрический ток

Сейчас невозможно представить себе человеческую цивилизацию без электричества. Телевизоры, компьютеры, холодильники, фены, стиральные машины — вся бытовая техника работает на нем. Не говоря уже о промышленности и больших корпорациях. Основным источником энергии для электроприемников является переменный ток. А что это такое? Каковы его параметры и характеристики? Чем отличаются постоянный и переменный ток? Мало кто из людей знает ответы на эти вопросы.

Переменный против постоянного

В конце девятнадцатого века, благодаря открытиям в области электромагнетизма, возник спор по поводу того, какой же ток лучше применять, чтобы удовлетворить человеческие потребности. Как же все начиналось? Томас Эдисон в 1878 году основал свою компанию, которая в будущем стала знаменитой General Electric. Компания быстро разбогатела и завоевала доверие инвесторов и простых граждан Соединенных Штатов Америки, так как было построено по всей стране несколько сотен электростанций, работающих на постоянном токе. Заслуга Эдисона — в изобретении трехпроводной системы. Постоянный ток замечательно работал с первыми электрическими двигателями и лампами накаливания. Это были фактически единственные приемники энергии на то время. Счетчик, который также был изобретен Эдисоном, работал исключительно на постоянном токе. Однако в противовес развивающейся компании Эдисона выступили конкурентные корпорации и изобретатели, которые хотели противопоставить постоянному току переменный.

Недостатки изобретения Эдисона

Джордж Вестингауз, инженер и бизнесмен, заметил в патенте Эдисона слабое звено — огромные потери в проводниках. Однако ему не удалось разработать конструкцию, которая могла бы конкурировать с этим изобретением. В чем же недостаток Эдисоновского постоянного тока? Основная проблема — передача электроэнергии на расстояния. А так как при его увеличении растет и сопротивление проводников, то это значит, что будут увеличиваться и потери мощности. Для понижения этого уровня необходимо либо повышать напряжение, а это приведет к понижению силы самого тока, либо утолщать провод (то есть снижать сопротивление проводника). Способов эффективного повышения напряжения постоянного тока в то время не было, поэтому электростанции Эдисона держали напряжение, близкое к двум сотням вольт. К сожалению, передаваемые таким образом потоки мощности не могли обеспечить нужды промышленных предприятий. Постоянный ток не мог гарантировать генерацию электроэнергии мощным потребителям, которые находились на значительном расстоянии от электростанции. А повышать толщину проводов или строить больше станций было слишком дорого.

Переменный ток против постоянного

Благодаря разработанному в 1876 году инженером Павлом Яблочковым трансформатору, изменять напряжение у переменного тока было очень просто, что давало потрясающую возможность передавать его на сотни и тысячи километров. Однако на тот момент не существовало двигателей, которые работали бы на переменном токе. Соответственно, не было и генерирующих станций, и сетей для передачи.

Изобретения Николы Теслы

Несомненное преимущество постоянного длилось недолго. Никола Тесла, работая инженером в фирме Эдисона, понял, что постоянный ток не может обеспечить человечество электроэнергией. Уже в 1887 году Тесла получил сразу несколько патентов на аппараты переменного тока. Началась целая борьба за более эффективные системы. Основными конкурентами Теслы были Томсон и Стенли. А 1888 году однозначную победу получил сербский инженер, который предоставил систему, способную транспортировать электрическую энергию на расстояния в сотни миль. Молодого изобретателя быстро взял к себе Вестингауз. Однако сразу же началось противостояние между компаниями Эдисона и Вестингауза. Уже в 1891 году была разработана Теслой система трехфазного переменного тока, что позволило выиграть тендер по строительству огромной электрической станции. С тех пор однозначно позицию лидера занял переменный ток. Постоянный же сдавал свои позиции по всем фронтам. Особенно когда появились выпрямители, способные преобразовывать переменный ток в постоянный, что стало удобно для всех приемников.

Определение переменного тока

Пример простейшего генератора

В качестве самого простого источника используют прямоугольную рамку, изготовленную из меди, которая закреплена на оси и вращается в магнитном поле при помощи ременной передачи. Концы этой рамки припаяны контактными кольцами к медным, которые скользят по щеткам. Магнит создает равномерно распределенное в пространстве магнитное поле. Плотность силовых магнитных линий здесь одинакова в любой части. Вращающаяся рамка пересекает эти линии, и на ее сторонах индуцируется переменная электродвижущая сила (ЭДС). С каждым поворотом направление суммарной ЭДС меняется на обратное, так как рабочие стороны рамки за оборот проходят через разные полюса магнита. Так как меняется скорость пересечения силовых линий, то становится другой и величина электродвижущей силы. Поэтому если равномерно вращать рамку, то индуктированная электродвижущая сила периодически будет меняться как по направлению, так и по величине, ее можно измерить при помощи внешних приборов и, как следствие, использовать для того, чтобы создавать переменный ток во внешних цепях.

Синусоидальность

Что это такое? Переменный ток графически характеризуется волнообразной кривой — синусоидой. Соответственно, ЭДС, ток и напряжение, которые изменяются по этому закону, называются параметрами синусоидальными. Кривая так названа потому, что является изображением тригонометрической переменной величины — синуса. Именно синусоидальный характер переменного тока — наиболее распространенный во всей электротехнике.

Параметры и характеристики

Переменный ток — это явление, которое характеризуется определенными параметрами. К ним относят амплитуду, частоту и период. Последний (обозначается буквой Т) — это промежуток времени, в течение которого напряжение, ток или ЭДС совершает цикл полного изменения. Чем быстрее будет вращение ротора у генератора, тем период будет меньше. Частотой (f) называют количество полных периодов тока, напряжения или ЭДС. Она измеряется в Гц (герцах) и обозначает количество периодов за одну секунду. Соответственно, чем больше период, тем меньше частоты. Амплитудой такого явления, как переменный ток, называют наибольшее его значение. Записывается амплитуда напряжения, тока или электродвижущей силы буквами с индексом «т» — U т I т, Е т соответственно. Часто к параметрам и характеристикам переменного тока относят действующее значение. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Лишь немногие способны реально осознать, что переменный и постоянный ток чем-то отличаются. Не говоря уже о том, чтобы назвать конкретные различия. Цель данной статьи — объяснить основные характеристики этих физических величин в терминах, понятных людям без багажа технических знаний, а также предоставить некоторые базовые понятия, касающиеся данного вопроса.

Сложности визуализации

Большинству людей не составляет труда разобраться с такими понятиями, как «давление», «количество» и «поток», поскольку в своей повседневной жизни они постоянно сталкиваются с ними. Например, легко понять, что увеличение потока при поливе цветов увеличит количество воды, выходящей из поливочного шланга, в то время как увеличение давления воды заставит ее двигаться быстрее и с большей силой.

Электрические термины, такие как «напряжение» и «ток», обычно трудно понять, поскольку нельзя увидеть или почувствовать электричество, движущееся по кабелям и электрическим контурам. Даже начинающему электрику чрезвычайно сложно визуализировать происходящее на молекулярном уровне или даже четко понять, что собой представляет, например, электрон. Эта частица находятся вне пределов сенсорных возможностей человека, ее невозможно увидеть и к ней нельзя прикоснуться, за исключением случаев, когда определенное количество их не пройдет через тело человека. Только тогда пострадавший определенно ощутит их и испытывает то, что обычно называют электрическим шоком.

Тем не менее, открытые кабели и провода большинству людей кажутся совершенно безвредными только потому, что они не могут увидеть электронов, только и ждущих того, чтобы пойти по пути наименьшего сопротивления, которым обычно является земля.

Аналогия

Понятно, почему большинство людей не могут визуализировать то, что происходит внутри обычных проводников и кабелей. Попытка объяснить, что что-то движется через металл, идет вразрез со здравым смыслом. На самом базовом уровне электричество не так сильно отличается от воды, поэтому его основные понятия довольно легко освоить, если сравнить электрическую цепь с водопроводной системой. Основное различие между водой и электричеством заключается в том, что первая заполняет что-либо, если ей удастся вырваться из трубы, в то время как второе для передвижения электронов нуждается в проводнике. Визуализируя систему труб, большинству легче понять специальную терминологию.

Напряжение как давление

Напряжение очень похоже на давление электронов и указывает, как быстро и с какой силой они движутся через проводник. Эти физические величины эквивалентны во многих отношениях, включая их отношение к прочности трубопровода-кабеля. Подобно тому, как слишком большое давление разрывает трубу, слишком высокое напряжение разрушает экранирование проводника или пробивает его.

Ток как поток

Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку — как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

Постоянный ток

Какая разница между постоянным и переменным током, становится ясно уже из названия. Первый представляет собой движение электронов в одном направлении. Очень просто визуализировать его с использованием модели водяного контура. Достаточно представить, что вода течет по трубе в одном направлении. Обычными устройствами, создающими постоянный ток, являются солнечные элементы, батареи и динамо-машины. Практически любое устройство можно спроектировать так, чтобы оно питалось от такого источника. Это почти исключительная прерогатива низковольтной и портативной электроники.

Постоянный ток довольно прост, и подчиняется закону Ома: U = I × R. измеряется в ваттах и ​​равна: P = U × I.

Из-за простых уравнений и поведения постоянный ток относительно легко осмыслить. Первые системы передачи электроэнергии, разработанные Томасом Эдисоном еще в XIX веке, использовали только его. Однако вскоре разница в переменном токе и постоянном стала очевидной. Передача последнего на значительные расстояния сопровождалась большими потерями, поэтому через несколько десятилетий он был заменен более выгодной (тогда) системой, разработанной Николой Теслой.

Несмотря на то что коммерческие силовые сети всей планеты в настоящее время используют переменный ток, ирония заключается в том, что развитие технологии сделало передачу постоянного тока высокого напряжения на очень больших расстояниях и при экстремальных нагрузках более эффективной. Что, например, используется при соединении отдельных систем, таких как целые страны или даже континенты. В этом заключается еще одна разница в переменном токе и постоянном. Однако первый по-прежнему используется в низковольтных коммерческих сетях.

Постоянный и переменный ток: разница в производстве и использовании

Если переменный ток намного проще производить с помощью генератора, используя кинетическую энергию, то батареи могут создавать только постоянный. Поэтому последний доминирует в схемах питания низковольтных устройств и электроники. Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы.

Широко распространенным примером может служить любое транспортное средство — мотоцикл, автомобиль и грузовик. Генератор, устанавливаемый на них, создает переменный ток, который мгновенно преобразуется в постоянный с помощью выпрямителя, поскольку в системе электроснабжения присутствует аккумулятор, и большинству электроники для работы требуется постоянное напряжение. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

Направление движения

Это еще один пример разницы постоянного тока и переменного тока. Как следует из названия, последний представляет собой поток электронов, который постоянно меняет свое направление. С конца XIX века почти во всех бытовых и промышленных электрических всего мира используется синусоидальный переменный ток, поскольку его легче получить и гораздо дешевле распределять, за исключением очень немногих случаев передачи на большие расстояния, когда потери мощности вынуждают использовать новейшие высоковольтные системы постоянного тока.

У переменного тока есть еще одно большое преимущество: он позволяет возвращать энергию из точки потребления обратно в сеть. Это очень выгодно в зданиях и сооружениях, которые производят больше энергии, чем потребляют, что вполне возможно при использовании альтернативных источников, таких как солнечные батареи и Тот факт, что переменный ток позволяет обеспечить двунаправленный поток энергии, является основной причиной популярности и доступности альтернативных источников питания.

Частота

Когда дело доходит до технического уровня, к сожалению, объяснить, как работает переменный ток, становится сложно, поскольку модель водяного контура к нему не совсем подходит. Однако можно визуализировать систему, в которой вода быстро меняет направление потока, хотя не понятно, как она при этом будет делать что-то полезное. Переменный ток и напряжение постоянно меняют свое направление. Скорость изменения зависит от частоты (измеряемой в герцах) и для бытовых электрических сетей обычно составляет 50 Гц. Это означает, что напряжение и ток меняют свое направление 50 раз в секунду. Вычислить активную составляющую в синусоидальных системах довольно просто. Достаточно разделить их пиковое значение на √2.

Когда переменный ток меняет направление 50 раз в секунду, это означает, что лампы накаливания включаются и выключаются 50 раз в секунду. Человеческий глаз не может это заметить, и мозг просто верит, что освещение работает постоянно. В этом заключается еще одна разница в переменном токе и постоянном.

Векторная математика

Ток и напряжение не только постоянно меняются — их фазы не совпадают (они несинхронизированные). Подавляющее большинство силовых нагрузок переменного тока вызывает разность фаз. Это означает, что даже для самых простых вычислений нужно применять векторную математику. При работе с векторами невозможно просто складывать, вычитать или выполнять любые другие операции скалярной математики. При постоянном токе, если по одному кабелю в некоторую точку поступает 5A, а по другому — 2A, то результат равен 7A. В случае переменного это не так, потому что итог будет зависеть от направления векторов.

Коэффициент мощности

Активная мощность нагрузки с питанием от сети переменного тока может быть рассчитана с помощью простой формулы P = U × I × cos (φ), где φ — угол между напряжением и током, cos (φ) также называется коэффициентом мощности. Это то, чем отличаются постоянный и переменный ток: у первого cos (φ) всегда равен 1. Активная мощность необходима (и оплачивается) бытовыми и промышленными потребителями, но она не равна комплексной, проходящей через проводники (кабели) к нагрузке, которая может быть рассчитана по формуле S = U × I и измеряется в вольт-амперах (ВА).

Разница между постоянным и переменным током в расчетах очевидна — они становятся более сложными. Даже для выполнения самых простых вычислений требуется, по крайней мере, посредственное знание векторной математики.

Сварочные аппараты

Разница между постоянным и переменным током проявляется и при сварке. Полярность дуги оказывает большое влияние на ее качество. Электрод-позитивная сварка проникает глубже, чем электрод-негативная, но последняя ускоряет наплавление металла. При постоянном токе полярность всегда постоянная. При переменном она меняется 100 раз в секунду (при 50 Гц). Сварка при постоянном предпочтительнее, так как она производится более ровно. Разница в сварке переменным и постоянным током заключается в том, что в первом случае движение электронов на долю секунды прерывается, что приводит к пульсации, неустойчивости и пропаданию дуги. Этот вид сварки используется редко, например, для устранения блуждания дуги в случае электродов большого диаметра.

Содержание:

Не первое десятилетие продолжаются споры, какой же вид тока опаснее — переменный или постоянный. Одни утверждают, что именно выправленное напряжение несет большую угрозу, другие искренне убеждены, что синусоида переменного тока, совпав по амплитуде с биением человеческого сердца, останавливает его. Но, как всегда бывает в жизни, сколько людей — столько и мнений. А потому, стоит взглянуть на этот вопрос чисто с научной точки зрения. Но сделать это стоит языком, понятным даже для чайников, т.к. не у каждого имеется электротехническое образование. При этом, наверняка любому хочется узнать происхождение постоянного и переменного тока.

С чего же стоит начать? Да, наверное, с определений — что же такое электричество, почему его называют переменным либо постоянным, какой из этих видов опаснее и почему.

Большинству известно, что постоянный ток можно получить от различных блоков или элементов питания, а переменный поступает в квартиры и помещения посредством электросети и благодаря ему работают бытовые электроприборы и освещение. Но мало кто задумывался, почему одно напряжение позволяет получить другое и для чего это нужно.

Имеет смысл ответить на все возникшие вопросы.

Что такое электрический ток?

Электрическим током называют постоянную или переменную величину, которая возникает на основе направленного или упорядоченного движения, создаваемого заряженными частицами — в металлах это электроны, в электролите — ионы, а в газе — и те, и другие. Иными словами, говорят, что электрический ток «течет» по проводам.

Некоторые ошибочно полагают, что каждый заряженный электрон двигается по проводнику от источника до потребителя. Это не так. Он лишь передает заряд на соседние электроны, сам оставаясь на месте. Т.е. его движение хаотично, но микроскопично. Ну а уже сам заряд, двигаясь по проводнику, достигает потребителя.

Электрический ток имеет такие параметры измерения, как: напряжение, т.е. его величина, измеряющаяся в вольтах (В) и сила тока, которая измеряется в амперах (А). Что очень важно, при трансформации, т.е. уменьшении или увеличении при помощи специальных устройств, одна величина воздействует на другую обратно пропорционально. Это значит, что уменьшив напряжение посредством обычного трансформатора, добиваются увеличения силы тока и наоборот.

Ток постоянный и переменный

Первое, что следует понять — это разницу между постоянным и переменным током. Дело в том, что переменный ток не только проще получить, хотя это тоже немаловажно. Его характеристики позволяют передачу на любые расстояния по проводникам с наименьшими потерями, особенно при более высоком напряжении и меньшей его силе. Именно поэтому линии электропередач между городами являются высоковольтными. А уже в населенных пунктах ток трансформируется в более низкое напряжение.

А вот постоянный ток очень просто получить из переменного, для чего используют разнонаправленные диоды (т.н. диодный мост). Дело в том, что переменный ток (АС), вернее частота его колебаний, представляет собой синусоиду, которая, проходя через выпрямитель, теряет часть колебаний. Тем самым на выходе получается постоянное напряжение (АС), не имеющее частоты.

Имеет смысл конкретизировать, чем же, все-таки, они отличаются.

Различия токов

Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние. При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется. Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.

Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.

Ну и последнее по очереди, но не по смыслу — все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.

Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного — это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.

Передача тока на большие расстояния

У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.

Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?

Здесь необходимо вернуться к закону обратной пропорциональности — при трансформации тока, т.е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.

Особенности передачи

Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.

Дело в том, что частота переменного тока в электрических сетях общего пользования в России — 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с. заряд меняет свою полярность, в этом и заключается отличие постоянного тока — в нем колебания практически либо совершенно отсутствуют. Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник. Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.

Генерирование

Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.

Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому — габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.

Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.

Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году. А противниками в ней были Никола Тесла совместно с Джорджем Вестингауз ом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока. Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.

История

Компания Томаса Эдисона, которая называлась «Эдисон Электрик Лайт», была основана в конце 70-х годов XIX века. Тогда, во времена свечей, керосиновых ламп и газового освещения лампы накаливания, выпускаемые Эдисоном, могли работать непрерывно 12 часов. И хотя сейчас этого может показаться до смешного мало — это был настоящий прорыв. Но уже в 1880-е годы компания смогла не только запатентовать производство и передачу постоянного тока по трехпроводной системе (это были «ноль», «+110 В» и «-110 В»), но и представить лампу накаливания с ресурсом в 1200 часов.

Именно тогда и родилась фраза Томаса Эдисона, которая впоследствии стала известна всему миру, — «Мы сделаем электрическое освещение настолько дешевым, что только богачи будут жечь свечи».

Ну а уже к 1887-му в Соединенных Штатах успешно функционирует больше 100 электростанций, которые вырабатывают постоянный ток и где используется для передачи именно трехпроводная система, которая применяется в целях хотя бы небольшого снижения потерь электроэнергии.

А вот ученый в области физики и математики Джордж Вестингауз после ознакомления с патентом Эдисона нашел одну очень неприятную деталь — это была огромная потеря энергии при передаче. В то время уже существовали генераторы переменного тока, которые не пользовались популярностью по причине оборудования, которое бы на подобной энергии работало. В то время талантливый инженер Никола Тесла еще работал у Эдисона в компании, но однажды, когда ему было в очередной раз отказано в повышении зарплаты, Тесла не выдерживал и ушел работать к конкуренту, которым являлся Вестингауз. На новом месте Никола (в 1988 году) создает первый прибор учета электроэнергии.

Именно с этого момента и начинается та самая «война токов».

Выводы

Попробуем обобщить изложенную информацию. На сегодняшний день невозможно представить пользование (как в быту, так и на производствах) каким-то одним из видов электричества — практически везде присутствует и постоянный, и переменный ток. Ведь где-то необходим постоянный, но его передача на дальние расстояния невозможна, а где-то переменный.

Конечно, доказано, что АС намного безопаснее, но как быть с приборами, помогающими экономить электроэнергию во много раз, в то время как они могут работать только на DC?

Именно по этим причинам сейчас токи «мирно сосуществуют» в нашей жизни, закончив «войну», которая продлилась более 100 лет. Единственное, что не стоит забывать — насколько бы одно ни было безопаснее другого (постоянное, переменное напряжение — не важно), оно может нанести огромный вред организму, вплоть до летального исхода.

И именно поэтому при работе с напряжением необходимо тщательно соблюдать все нормы и правила безопасности и не забывать про внимательность и аккуратность. Ведь, как говорил Никола Тесла, электричества не стоит бояться, его стоит уважать.

Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.

Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.

Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.

Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:

АС: Электростанции и генераторы переменного тока производят переменный ток.

DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.

Применение переменного и постоянного тока:

АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин, и практически всего промышленного оборудования.

DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.

Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.

Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с низким напряжением постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.

Электричество – это тип энергии, передаваемый движением электронов через проводящий материал. Например, металлы представляют собой материалы с высокой электропроводностью и позволяют легко перемещать электроны. Внутри проводящего материала электроны могут двигаться в одном или нескольких направлениях.

Понятие о постоянном и переменном токе

Что такое постоянный ток, определяется из характера движения электрозарядов. Аналогично можно установить, что такое переменный ток.

  1. Когда поток электрозарядов задан в одном направлении, он считается постоянным током;
  2. Когда электронный поток меняет направление и интенсивность во времени, он называется переменным током. Причем изменения идут циклически, по синусоидальному закону.

Большинство современных электросетей используют переменный электрический ток, производящийся на электростанциях соответствующими генераторами.

Постоянный ток (DC) генерируется батареями, топливными элементами и фотоэлектрическими модулями. Существуют и генераторы постоянного тока . Другое его получение – преобразование из однофазного и трехфазного переменного тока (АС) с помощью выпрямительных устройств.

В обратном случае АС может быть получен из DC, используя инверторы, хотя технология здесь несколько сложнее.

История

В природе электричество встречается относительно редко: оно генерируется только несколькими животными и существует в некоторых природных явлениях. В поисках искусственной генерации потока электронов ученые поняли, что можно заставить электроны проходить через металлическую проволоку или другой проводящий материал, но только в одном направлении, так как они отталкиваются от одного полюса и притягиваются к другому. Так родились батареи и генераторы постоянного тока. Изобретение приписывается, в основном, Томасу Эдисону.

В конце 19-го века другой известный ученый, Никола Тесла, разрабатывал способы получения переменного тока. Основными причинами работ в этой области явились обнаруженные недостатки постоянного тока при передаче электроэнергии на большие дистанции. Оказалось, что для переменного тока гораздо проще повысить напряжение передающих линий, тем самым уменьшив потери и получив возможность транспортировки больших объемов электрической энергии, а эффективно повысить напряжение на линиях с постоянным током в те времена было неосуществимо.

Для получения переменного тока Тесла использовал вращающееся магнитное поле. Если МП изменяет направленность, направление электронного потока также варьируется, и генерируется переменный ток.

Изменение направления в электронном потоке осуществляется очень быстро, много раз в секунду. Измерения частоты производятся в герцах (равных циклам в секунду). Таким образом, переменный ток частоты 50 Гц можно представить, как выполнение 50 циклов в секунду. В каждом цикле электроны изменяют направление и возвращаются к первоначальному, поэтому поток электронов изменяет направленность 100 раз в секунду.

Сравнительные характеристики постоянного и переменного токов

Разница между двумя видами токов заключена в их природе и вытекающих из этого свойствах.

Отличие постоянного тока от переменного:

  1. При переменном токе изменяется направленность и интенсивность электронного потока, при постоянном – она неизменна;
  2. Частота постоянного тока не может существовать. Это понятие применимо только для переменного тока;
  3. Полюсы (плюс и минус) всегда одинаковы в электроцепи постоянного тока. В электроцепи переменного тока положительные и отрицательные полюса меняются с периодическими интервалами;
  4. При передаче переменного тока напряжение легко преобразуется и транспортируется с приемлемым уровнем потерь.

Изменение полярности подключения DC может привести к необратимому повреждению устройств. Чтобы этого избежать, на оборудовании обычно ставятся обозначения полюсов. Аналогично контакты отличаются традиционным использованием металлической пружины для отрицательного полюса и пластины – для положительного. В устройствах с перезаряжаемыми батареями трансформатор-выпрямитель имеет выход, так что соединение выполняется только одним способом, что предотвращает инверсию полярности.

В крупномасштабных установках, например, на телефонных станциях и другом телекоммуникационном оборудовании, где имеется централизованное распределение постоянного тока, используются специальные соединительные и защитные элементы,

Постоянный и переменный ток имеют свои достоинства и недостатки, отражающиеся на области их применения. По преимуществу широта использования переменного тока объясняется легкостью его преобразования.

Различия при транспортировке

Когда ток течет, часть энергии электронов преобразуется в тепло, благодаря активному сопротивлению проводов. Электрические нагреватели тоже основаны на этом эффекте. В конце линии меньше энергии передается потребителю. Рассеиваемые мощности называются потерями. Для уменьшения потерь применяется повышение напряжения при транспортировке. Эти физические зависимости применимы и к постоянному, и к переменному току, однако при реализации схем передачи возникают различия.

Достоинства и недостатки переменного тока

При начале строительства передающих электросетей использование трансформаторов было единственной возможностью получать высокие напряжения и затем снижать их до нужного уровня при распределении к потребителям. Такая технология называлась трансформаторной, и до сих пор структура транспортировки электроэнергии не изменилась. Почти повсеместно используется переменный ток, который представляет собой трехфазные системы.

Позже стали конструироваться и линии постоянного тока, которые последние годы используются все шире. Возросший интерес к их применению объясняется существенными недостатками систем переменного тока: в длинных линиях потери электроэнергии значительны. Причинами их являются наличие емкостного и индуктивного сопротивлений.

  1. При быстрой смене направления потока электронов наблюдается похожий на перезарядку конденсаторов эффект. Возникают дополнительные емкостные токи. Особенно это сказывается на наземных и подводных кабелях, изолирующий слой которых обладает высоким конденсаторным эффектом;
  2. Индуктивное сопротивление линий появляется потому, что электрические токи генерируют магнитные поля, меняющиеся с частотой тока. Появляются индуктивные токи.

Важно! Оба вида реактивных сопротивлений возрастают с увеличением протяженности линий.

Достоинства переменного тока:

  • легкая трансформация напряжения;
  • возможность комбинирования различных систем передачи;
  • возможность использования общесистемной частоты.

Недостатки переменного тока:

  • необходимость компенсации реактивной мощности при транспортировке на значительные расстояния;
  • сравнительно высокие потери.

Достоинства и недостатки постоянного тока

В первую очередь, чем отличается переменный ток от постоянного, – это присутствием источников потерь на реактивную энергию. Однако постоянный электрический ток предполагает потери на нагрев. Точное их определение зависит от технологии и уровня напряжения. Для высоких напряжений – около 3% на 1000 км.

Другим источником потерь в системах электропередачи на постоянном токе служат подстанции для преобразования переменного тока в постоянный, и наоборот. Суммарные потери намного ниже, чем для переменного тока, но существенными являются материальные затраты на строительство этих подстанций.

Важно! Для повышения рентабельности линий электропередачи на постоянном токе применяются ЛЭП большой длины.

Техническое развитие в последнее время получила передача электроэнергии на постоянном токе, благодаря разработке новых электронных компонентов для создания высоких уровней напряжения постоянного тока – высокопроизводительных тиристоров или биполярных транзисторов.

Интересно. Сегодня возможны системы передачи постоянного тока с напряжением до 800 кВ и пропускной способностью до 8000 мВт на расстояние более 2000 км.

Преимущества высоковольтных ЛЭП постоянного тока:

  • возможность передачи мощности по подводным, наземным и подземным кабельным линиям на большие расстояния;
  • нет потерь из-за реактивной мощности;
  • лучшее использование изоляции кабелей.

Недостатки высоковольтных ЛЭП постоянного тока:

  • недостаточно быстрая коммутация существующих каналов постоянного тока;
  • мало стандартизированной электротехники;
  • не развиты распределительные сети передачи электроэнергии, транспортировка ведется от пункта до пункта.

Другие варианты применения постоянного и переменного тока

  1. DC идеально подходит для зарядки аккумуляторов и батарей элементов. Им нужно такое питание, потому что зарядная мощность всегда должна идти в одном направлении. Соответственно, устройства, работающие от аккумуляторов, также нуждаются в DC, например, фонарик или ноутбук;
  2. Телевидение, радио, компьютерная техника используют DC;
  3. Используемые в промышленности и в быту электродвигатели работают как на АС, так и на DC. То же относится к плитам, утюгам, чайникам и лампам накаливания;
  4. DC нужен для установок электролиза, где важно наличие неизменных полюсов. Только иногда полярность соблюдать не обязательно, в частности при электролизе газов. Тогда может применяться переменный электроток;
  5. Около половины мировых контактных сетей железнодорожного транспорта используют DC. В начале развития электрифицированных железных дорог были попытки применения трехфазных двигателей, но создание контактной сети для них столкнулось с проблемами. На DC работает городской электротранспорт: трамваи, троллейбусы, метро. Другой способ устройства железнодорожных контактных сетей – применение одной фазы переменного тока;

Различия AC и DC ксенона

На сегодняшнее время в продаже существует адаптивный ксенон с лампами и блоками розжига AC и DC. Это один и тот же ксенон, но имеющий некоторые различия, о которых вы, как покупатель и пользователь, обязательно должны знать. Этот материал посвящен ксенону AC и DC, особенностям, отличиям и многому другому, что полезно будет знать.

Вступительная часть о ксеноне AC и DC

На первый взгляд отличить блоки розжига AC и DC невозможно. Главное их различие в том, что AC – это блоки розжига, которые имеют переменный ток, а DC – постоянный. Различие таких двух ксенонов можно заметить при их работе, а точнее во время розжига и поддержания тлеющего разряда. Мерцание ламп выдает блоки розжига DC.

Для того, чтобы конкретно понять различия между ксеноном AC и DC необходимо знать их конструкцию. Разительно отличаются такие комплекты именно по принципу работы, что является наиболее важным для данного устройства в светотехнике для автомобилей. Как уже отмечалось, их принцип работы виден в момент розжига ксеноновой лампы и поддержании горения. Для того, чтобы образовать электрическую дугу между электродами в колбе лампы необходима мощная подача импульса, то есть тока до 25000 В.

После того, как запустилось горение источника, для поддержания функционирования лампы необходима беспрерывная подача тока с напряжением 80-85 В, и следит за этим контроллер, который вмонтирован в балласт игнитора. Это стандартный принцип работы блоков розжига ксеноновых ламп. В AC блоках присутствует игнитор (инвертер) и стабильно работающий стабилизатор, в отличие от комплектов DC.

Комплекты блоков розжига DC: принцип розжига лампы

Адаптивные блоки розжига и ксеноновые лампы с постоянным током DC имеют значительно меньшую стоимость, легкий вес и небольшие габариты. Они обеспечивают единичный и нецикличный разряд, что и приводит, зачастую, к дрожанию электрической дуги и мерцанию света ксенонового источника. Чтобы правильно активизировать работу ксеноновой лампы необходим повторный импульс, что занимает дополнительные несколько секунд на ожидание повторной подачи тока. Отметим, что система DС по качеству намного лучше, чем галоген, но все же уступает комплектам AC c переменным током.

Комплекты блоков розжига AC: принцип розжига лампы

Ксеноновые блоки розжига и лампы с переменным током AC работают намного стабильнее и лучше, поскольку оснащены специальным стабилизатором, выравнивающим напряжение. АС блоки создают импульсы необходимой частоты и мощности, что и позволяет обеспечить бесперебойность и стабильность выдачи света лампами. Для того, чтобы создать амплитуду колебания в блоках и лампах АС используются специальные игниторы (иногда могут называться инверторами), которые обеспечивают преобразование низковольтного тока в высоковольтный импульс и наоборот. Таким образом из напряжения бортовой сети транспортного средства 12 В (иногда 24 В) обеспечивается генерация тока в 25000 В, что в считанные секунды гарантирует розжиг ксенонового излучателя. Стоит отметить, что у блоков АС есть двусторонняя связь с ксеноновыми лампами, таким образом, если свет начинает тухнуть, то блок обеспечивает подачу высоковольтного импульса, чтобы не привести к деактивации излучателя. Таким образом, комплекты адаптивного ксенона АС более стабильно работают, не наблюдается мерцаний ламп и скачков напряжения.

Сравнительная характеристика блоков АС и DC

Параметры Блоки AC Блоки DC
Ток Переменный Постоянный
Стартовый импульс Один мощный импульс в 25000 В, что обеспечивает моментальный розжиг ксеноновой лампы. Лампа моментально разжигается, не наблюдается мерцаний и снижения яркости света. Иногда стартовый импульс полностью не активизирует электрическую дугу, а поэтому приходится ждать повторной реакции, что занимает намного больше времени и свет лампы мерцает.
Вес Имеют больший вес, чем блоки с постоянным током, благодаря конструктивным особенностям. Характеризуются максимальной легкостью, а поэтому не создают давление на блок фары.
Габариты Бывают разные габариты, в зависимости от поколения. Блоки обладают практически одинаковыми габаритами.
Конструкция Имеют игнитор (инвертер) и стабилизатор. Отсутствует инвертер и стабилизатор напряжения.
Форм-фактор Бывают стандартного размера и слим, для использования в авто с маленьким подкапотным пространством. Практически все блоки розжига имеют стандартные размеры, но меньшего формата, чем обыкновенные блоки АС.
Звуковой сигнал Обладают специальным звуковым сигналом, который со временем затухает и оповещает водителя о пригодности ксенона для использования и начала движения авто. Блоки розжига постоянного тока не обеспечивают подачу звукового сигнала для водителя, а поэтому приходится ждать дольше, чтобы начать движение.
Лампы Используется исключительно с лампами переменного тока АС. Если подключить блок с лампами DC, то свечение не активизируется, поскольку блок не создает специальную полярность, которая нужна для функционирования ламп с постоянным током. Необходимо использовать исключительно с лампами DC. Если же подключить блок к лампам с переменным током АС, то увеличивается износ и ламп, и разжигающего изделия. К тому же свет ламп АС будет «дрожать», за счет отсутствия стабильности в дуговом разряде.
Длительность эксплуатации Использовав лампы и блоки АС комплект прослужит в среднем 2500-3000 часов. Пользуясь лампами и блоками DC свет фар будет годен в течении 1500-2000 часов.
Процент дефективности В среднем 2% брака. В среднем 5% брака.
Надежность Блоки обладают высокой надежностью и стабильностью работы, не допускают короткого замыкания и гарантируют бесперебойность свечения ксеноновой лампы. Надежность, по сравнению с блоками розжига АС немного снижена, не говоря о стабильности функционирования и бесперебойности свечения ксенонового излучателя.
Устойчивость к температурным перепадам Блоки обладают высокой устойчивостью к перепадам температуры, корпус надежно и герметично запаян, а элементы, которые максимально подвержены выходу из строя при попадании влаги — спрятаны. Стоит отметить, что блоки DC и AC по устойчивости к температуре идентичны. К тому же, благодаря качественному герметику блоки постоянного напряжения не подвержены попаданию влаги.
Стоимость За счет того, что блоки розжига АC оснащаются дополнительными компонентами, они стоят на порядок дороже, чем устройства постоянного тока. Стоят намного дешевле, чем блоки розжига с переменным током, поскольку отсутствуют важные компоненты, например, стабилизатор напряжения.

Будьте бдительны!

Зачастую случается так, что приобретая блоки розжига у недобросовестных продавцов, например на базарах, или же магазинах «в подвалах» покупатели наталкиваются на мошенничество. Многие хитрят и монтируют муляж инвертера в блоки розжига DC и выдают их за AC, естественно по стоимости на порядок выше. Именно поэтому, приобретайте адаптивные комплекты ксенона только у проверенных продавцов, которые гарантируют высокое качество продукции и обязательно предоставляют гарантию на любые приобретенные комплекты. 

Сравнение постоянного и переменного токов

Deprecated: Non-static method Date_TimeZone::isValidID() should not be called statically, assuming $this from incompatible context in /home/carkey/hitech/hardtech/kernel/pear/date/Date.php on line 576

Notice: Undefined offset: 1 in /home/carkey/hitech/hardtech/kernel/common/common/common.class.php on line 343

Notice: Undefined offset: 1 in /home/carkey/hitech/hardtech/kernel/common/common/common.class.php on line 343

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135


­Переменный ток подобно постоянному производит тепловое, магнитное и химическое действия. В этом параграфе будут рассмотрены сходства и отличия в действиях постоянного и пе-ременного токов.

1. Тепловое действие переменного тока
Переменный ток, как и постоянный, представляет собой движение электронов по проводнику, только при постоянном токе электроны движутся все время в одном направлении, а при переменном совершают колебательное движение. Понятно, что при этом происходят столкновения электронов с атомами проводника. Поэтому переменный ток производит такое же тепловое действие, как и постоянный. Тепловое действие переменного тока используется в различных электронагревательных приборах.

2. Магнитное действие переменного тока
Переменный ток создает переменное магнитное поле. Когда ток увеличивается, магнитное поле усиливается, его магнитные силовые линии растягиваются; когда ток уменьшается, ослабевает и магнитное поле, а его магнитные силовые линии сжимаются; когда ток равен нулю, исчезает и магнитное поле; когда ток меняет направление, меняет направление и магнитное поле. Переменное магнитное поле никак не влияет на качество печати каталогов и его нельзя наблюдать при помощи магнитной стрелки, так как стрелка обладает инерцией: она не успевает следовать за изменениями магнитного поля и остается на месте.

3. Химическое действие переменного тока
Переменный ток, как и постоянный, способен проходить через электролиты и разлагать их. Однако его химическое действие значительно отличается от химического действия постоянного тока. Так, если при разложении воды постоянным током на положительном полюсе выделяется газ кислород, а на отрицательном — газ водород, то при разложении воды переменным током на обоих полюсах выделяется смесь этих газов. Для химических целей переменный ток не применяется.
4. Физиологическое действие переменного тока. Переменный ток, применяемый в промышленности, производит такое же физиологическое действие, как и постоянный ток. Переменный ток сверхвысокой частоты, применяемый в радиолокации, проходит только по коже человека и поэтому может вызвать только местные ожоги. ­

Наша продукция

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/opt/alt/php56/var/lib/php/session) in Unknown on line 0

Разница между переменным и постоянным током (со сравнительной таблицей)

Переменный ток — это аббревиатура от переменного тока , а постоянного тока — это аббревиатура от постоянного тока . Основное различие между переменным и постоянным током состоит в том, что постоянный ток равен однонаправленному току , а переменный — двунаправленному току. Постоянный ток постоянен во времени, в то время как переменный ток изменяется в каждый момент времени.

Главный недостаток использования постоянного тока в том, что он начинает ухудшаться с увеличением расстояния.Электропитание от источника постоянного тока неудобно для больших расстояний, так как оно будет уменьшаться с увеличением расстояния. В случае с AC дело обстоит иначе. Таким образом, он надежен для передачи.

AC и DC, оба являются типами электрического тока, но оба отличаются друг от друга в отношении генерации, протекания в цепи и приложений. Еще одно важное различие между переменным и постоянным током — это величина напряжения. Напряжение постоянного тока — , напряжение низкого уровня — , а переменного — — напряжение высокого уровня.

Содержание: переменный и постоянный ток

  1. Таблица сравнения
  2. Определение
  3. Ключевые отличия
  4. Заключение


Сравнительная таблица
Параметры AC (переменный ток) DC (постоянный ток)
Определение Переменный ток — это тип электрического тока, который мгновенно изменяется во времени. Постоянный ток — это тип электрического тока, который остается постоянным во времени.
Передача на большие расстояния Подходит для передачи на большие расстояния, поскольку потери мощности минимальны. Не подходит, поскольку потеря мощности прямо пропорциональна расстоянию.
Поток электронов Двунаправленный поток электронов Однонаправленный поток электронов
Частота От 50 Гц до 60 Гц, в разных странах разная Частота постоянного тока равна нулю.
Коэффициент мощности Он находится между 0 и 1. В DC всегда будет 1.
Графическое представление Синусоидальная волна Постоянная линия
Генераторный механизм Поместив катушку с током во вращающееся магнитное поле. Поместив катушку с током в постоянное магнитное поле.
Генераторы Генераторы Элементы или батареи
Тип нагрузки Может быть резистивной, индуктивной или емкостной. Только резистивный
Емкостный импеданс Конденсатор позволяет постоянному току проходить через него, поэтому емкостное сопротивление будет низким. Конденсатор блокирует постоянный ток, поэтому емкостное сопротивление будет бесконечным.
Приложения Приложения высокого напряжения, такие как бытовая техника, офисное оборудование. Низковольтные приложения в электронных схемах


Определение

AC (переменный ток)

AC — это тип электрического тока, при котором полярность тока не остается постоянной.Ток — это следствие потока электронов. Если электроны текут в одном направлении, это однонаправленный ток, но если он течет в двух направлениях, то есть вперед и назад, это называется двунаправленным током .

AC — двунаправленный ток. Вы, должно быть, думаете , что заставляет переменный ток вести себя двунаправленно. Ваш ответ заключается в поколении переменного тока. Токопроводящий провод помещают во вращающееся магнитное поле. Теперь направление потока электронов также меняется с движением магнитного поля.

переменного тока также можно создать, поместив провод в статическое магнитное поле, но теперь провод, проводящий ток, необходимо повернуть. Вывод истории таков: либо нам нужно повернуть токоведущий провод, либо нам нужно повернуть магнитное поле при условии, что оставшийся параметр постоянен.

Позвольте мне обсудить, что именно происходит, когда провод, по которому проходит ток, помещается во вращающееся магнитное поле? Электроны, протекающие по проводу, испытывают магнитную силу, и они будут притягиваться к одному из полюсов магнитного поля.Если поле повернуть снова, направление притяжения электронов изменится.

Это изменяет направление потока электронов и, таким образом, происходит генерация переменного тока. Генерация переменного тока намного проще и удобнее, чем постоянного тока. Кроме того, мощность переменного тока не уменьшается с увеличением расстояния. Таким образом, он подходит для передачи на большие расстояния.

Представление сигнала переменного тока или переменного тока можно более четко понять с помощью графической диаграммы , представленной ниже.

DC (постоянный ток)

Постоянный ток также вызывается потоком электронов, но процесс генерации постоянного тока противоположен процессу генерации переменного тока. Однонаправленный ток может генерироваться, если провод, по которому проходит ток, находится в статическом магнитном поле .

Электроны, текущие в проводе, будут испытывать силу в одном направлении только потому, что магнитное поле стабильно. Таким образом, поток электронов в одном направлении будет генерировать постоянный ток.Мощность постоянного тока уменьшается с увеличением расстояния передачи. Это делает его непригодным для передачи на большие расстояния.

Примерами устройств генерации постоянного тока являются элемент, батарея и т. Д. Эти устройства обладают определенным значением постоянного напряжения. Обычно это низкие значения. Таким образом, элемент или батарея обладают энергией, которая толкает электроны, заставляя их течь по цепи. Но этим устройствам не хватает энергии, чтобы тянуть эти электроны. Таким образом, генерируется только однонаправленный ток.

Если мы рассмотрим графическое представление постоянного тока, очевидно, что постоянный ток постоянен во времени.

Ключевые различия между переменным током и постоянным током

  1. Направленная характеристика: Это одна из ключевых характеристик, которая отличает переменный и постоянный ток. Постоянный ток — это однонаправленный электрический ток, а переменный — двунаправленный электрический ток.
  2. Поколение: AC и DC имеют разные процедуры и устройства генерации. Постоянный ток генерируется статическим магнитным полем, а переменный ток генерируется с помощью динамического магнитного поля.Кроме того, переменный ток генерируется генераторами, в то время как постоянный ток генерируется элементом, батареями путем преобразования химической энергии элемента или батареи в электрическую энергию.
  3. Частота сигнала: Частота сигнала переменного тока варьируется от 50 Гц до 60 Гц. В разных странах все по-разному. Сигнал постоянного тока имеет нулевую частоту. Частота — это количество циклов в секунду. Поскольку сигнал постоянного тока не изменяется во времени циклически, поэтому он имеет нулевую частоту.
  4. Тип нагрузки: Нагрузка, подключенная к переменному току, может быть емкостной, резистивной или индуктивной.Напротив, нагрузка, подключенная к цепи постоянного тока, всегда является резистивной.
  5. Коэффициент мощности: Коэффициент мощности переменного тока находится в пределах от 0 до 1, а коэффициент мощности постоянного тока составляет 1.
  6. Легкость передачи: Мощность переменного тока может передаваться легко и эффективно по сравнению с мощностью постоянного тока.
  7. Уровень напряжения: Напряжение постоянного тока — это напряжение низкого уровня, а напряжение переменного тока — высокое по величине.
  8. Хранение: AC не может храниться, в то время как DC может храниться в элементе или батареях.Мы можем преобразовывать переменный ток в постоянный с помощью выпрямителя в наших зарядных устройствах, а мы можем преобразовывать постоянный ток в переменный с помощью инверторов. Но хранение переменного тока невозможно.


Заключение

Переменный ток — это двунаправленный ток большой величины, который может передаваться на большие расстояния без потери мощности. Напротив, постоянный ток — это однонаправленный ток небольшой величины, который не подходит для передачи на большие расстояния. Пассивный параметр в переменном токе — это импеданс, а в постоянном токе пассивный параметр — это сопротивление.

разница между переменным и постоянным током

Когда дело доходит до электрической мобильности, два отдельных электрических тока могут использоваться для заправки электромобиля (EV) — переменного тока (переменного тока) и постоянного тока (постоянного тока). Но прежде чем мы углубимся, вам следует помнить о двух вещах:

  • Электропитание, поступающее из сети, то есть вашей домашней розетки, всегда является переменным током (переменным током).
  • Энергия, которая хранится в батареях, всегда является постоянным током.

Переменный и постоянный ток, но не переменный / постоянный ток

AC и DC — это два совершенно разных типа электрического тока. Оба движутся в разных направлениях, текут с разной скоростью и имеют разные применения. AC / DC — хард-рок-группа, которая, несмотря на альбом под названием «High Voltage», не имеет ничего общего с электрическими токами или зарядкой электромобилей.

Переменный ток — это электрический ток или поток заряда, который периодически меняет направление, то есть чередует . Электроэнергия переменного тока может вырабатываться из возобновляемых источников, которые используют вращающиеся генераторы, такие как ветряные или гидроэнергетические турбины.Переменный ток также можно эффективно транспортировать на большие расстояния — вот почему практически все электрические сети мира используют переменный ток, и почему вы можете найти переменный ток у себя дома и в офисе.

DC всегда движется по прямой линии и может генерироваться с помощью технологий возобновляемой энергии, таких как солнечные батареи. Помимо прочего, постоянный ток можно использовать для накопления энергии и светодиодного освещения. Аккумуляторы хранят энергию постоянного тока, и, хотя вы, возможно, никогда не осознавали этого, каждый раз, когда вы заряжаете свой ноутбук, зарядное устройство преобразует мощность переменного тока из сети в мощность постоянного тока для аккумулятора вашего ноутбука.

Короче говоря, мы получаем мощность переменного тока от сети, и она преобразуется в мощность постоянного тока, чтобы ее можно было хранить в батареях, таких как батарея, используемая для питания электромобиля.

Зарядка постоянным и переменным током в электромобилях

Когда мы говорим о зарядке электромобиля, основное различие между зарядкой переменным и постоянным током заключается в том, где происходит преобразование переменного тока в постоянный. Независимо от того, использует ли электромобиль зарядную станцию ​​постоянного или переменного тока, аккумулятор электромобиля будет накапливать только энергию постоянного тока.

Когда вы используете зарядную станцию ​​постоянного тока, преобразование из переменного тока (из сети) в постоянный ток происходит внутри зарядной станции, позволяя постоянному току течь непосредственно от станции в аккумулятор.Поскольку процесс преобразования происходит внутри более просторной зарядной станции, а не в электромобиле, для очень быстрого преобразования энергии переменного тока из сети можно использовать более крупные преобразователи. В результате некоторые станции постоянного тока могут обеспечивать мощность до 350 кВт и полностью заряжать электромобиль за 15 минут.

Опережая тенденции

Еще одно ключевое различие между зарядкой постоянным и переменным током — это кривая зарядки. При зарядке переменным током мощность, протекающая к электромобилю, представляет собой ровную линию (так что кривой вообще нет).Это связано с относительно небольшим бортовым зарядным устройством, которое может получать только ограниченное распределение мощности в течение более длительных периодов времени.

Зарядка постоянным током, с другой стороны, формирует ухудшающуюся кривую зарядки. Это связано с тем, что аккумулятор электромобиля изначально принимает более быстрый поток энергии, но постепенно требует меньше, когда он достигает полной емкости.

В качестве примера представьте стакан в качестве батареи электромобиля, бутылку с водой в качестве зарядной станции постоянного тока и воду внутри этой бутылки в качестве источника питания. Сначала вы можете быстро наполнить стакан водой, но вам нужно будет сбавлять скорость, когда вы доберетесь до верха, чтобы стакан не переливался.

Та же самая логика может применяться для быстрой и сверхбыстрой зарядки постоянным током. Вот почему электромобили требуют меньше энергии, когда батарея заряжена примерно на 80 процентов, отсюда и кривая деградации, которую вы видите ниже.


Другие факторы, которые могут повлиять на скорость зарядки:

  • Процент заряда батареи (состояние заряда)
  • Состояние аккумулятора электромобиля
  • Погодные условия

Переменный ток для сети и постоянный ток для батареи

И переменный, и постоянный ток важны в мире электромобилей.Вы получаете переменный ток от сети, который затем преобразуется в постоянный ток, чтобы его можно было хранить в батарее электромобиля. При использовании зарядной станции переменного тока преобразование в постоянный ток происходит внутри электромобиля через бортовое зарядное устройство, которое часто ограничено. При использовании станций быстрой и сверхбыстрой зарядки постоянного тока преобразование происходит вне электромобиля с использованием преобразователя большего размера.

Хотите узнать больше о наших зарядных станциях переменного и постоянного тока?

Мы предлагаем ряд зарядных станций как часть наших решений для сквозной зарядки электромобилей для предприятий по всему миру.Чтобы получить полный список технических характеристик и вариантов использования, а также дополнительную информацию, взгляните на наши зарядные устройства для электромобилей для каждого предприятия, которое хочет электрифицировать свою работу.

Узнайте, что зарядка постоянным током может означать для вашего бизнеса

Прочтите нашу бесплатную электронную книгу, чтобы получить полный обзор всех возможностей быстрой зарядки электромобилей, их различий и того, на что следует обратить внимание перед инвестированием.

Почему постоянный ток не используется в домах: все недостатки

Ответ на вопрос, почему постоянный ток не используется в домах, восходит к внутренним характеристикам постоянного тока и их слабости по сравнению с переменным током (AC).Фактически, переменные токи могут легко передаваться на большие расстояния без больших потерь. Они также более безопасны при прямом контакте при равном напряжении. В этой статье мы пытаемся изучить этот вопрос.

Характеристики постоянного и переменного тока

Электричество определяется как ток электронов в проводнике, таком как провод. Поток электроэнергии устанавливается двумя способами, включая переменный и постоянный ток. Принципиальная разница между переменным и постоянным токами заключается в направлении движения электронов.

DC означает постоянный ток. Постоянный ток определяется как однонаправленный ток электричества. В постоянном токе электроны перемещаются из зоны отрицательного заряда в зону положительного заряда без какого-либо изменения направления. Это состояние несмотря на переменные токи, при которых ток может двигаться в обоих направлениях. Постоянный ток может проходить как через проводящие, так и через полупроводниковые материалы.

В постоянном токе сила тока изменяется со временем, но направление тока остается неизменным. Согласно определению, постоянный ток — это ток, полярность которого никогда не меняется.

Символы переменного и постоянного тока (Ссылка: quora.com )

Переменный ток — это поток заряда, который периодически меняет свое направление. Следовательно, уровень напряжения меняется вместе с током. Переменный ток — это тип тока, который используется для передачи энергии в места, где люди живут или путешествуют, например, дома, промышленные предприятия или другие здания.

Генератор переменного тока вырабатывает переменный ток. В магнитном поле индуцированный ток течет по петле из вращающейся проволоки.Вращение проволоки осуществляется разными способами, например, от любых турбин (ветряных, водяных, паровых и т. Д.).

Из-за того, что провод закручивается и периодически проникает в различные магнитные поля, напряжение и ток внутри провода чередуются. Следовательно, ток может иметь разные формы, такие как синусоидальная, квадратная, треугольная или другие формы волны. Наиболее распространенной формой тока является синусоида.

Синусоидальная форма напряжения переменного тока выражается следующим уравнением.

V \ left (t \ right) = V_p {\ mathrm {sin} \ left (2 \ pi ft + \ mathrm {\ Phi} \ right) \}

V (t) — это напряжение, которое является функцией времени, а V p — амплитудой. Переменная f — частота волны. Кроме того, t — независимая переменная. Наконец, Φ — это фаза синусоидальной волны.

Например, аккумулятор использует постоянный ток для передачи тока в электрическую цепь, в которой он присутствует.В аккумуляторной системе электрическая энергия вырабатывается из химической энергии, хранящейся в батарее. При подключении аккумулятора к электрической цепи обеспечивается постоянный ток заряда от отрицательного полюса аккумулятора к положительному.

На следующем рисунке показана разница между формами сигналов постоянного и переменного тока.

Осциллограммы переменного и постоянного тока (Ссылка: elprocus.com )

Постоянный и переменный токи могут быть преобразованы друг в друга. Инвертор используется для преобразования постоянного тока в переменный, а выпрямитель используется для преобразования переменного тока в постоянный.

Объяснение причины, почему DC C urrent составляет N ot U sed в H omes

Обычно основной источник постоянного тока генерируется батареями электрохимические или фотоэлектрические элементы. Однако наиболее предпочтительным в мире является AC. В соответствии с этим сценарием переменный ток преобразуется в постоянный.

Переменный ток обычно применяется в системах распределения электроэнергии по разным причинам.Самая значимая причина — готовность перейти с одного напряжения на другое. Сделать это с помощью DC значительно сложнее и дороже. Таким образом, чтобы преобразовать постоянный ток, переменный ток генерируется электронными схемами, а затем преобразуется с помощью трансформатора и выпрямителя в постоянный ток. 2

Для уменьшения потерь энергии важно поддерживать на низком уровне как сопротивление, так и электрический ток.Более низкий ток значительно важнее сопротивления из-за экспоненциального влияния на потери.

Мощность рассчитывается путем умножения вольт на амперы.

P = VI

Таким образом, для удельной мощности напряжение должно быть высоким, когда ток остается низким. В следующем уравнении числитель дроби постоянный, но знаменатель становится больше, поэтому произведение дроби уменьшается.

V = \ frac {P} {I}

Огромные трансформаторы используются в линиях электропередачи для контроля высоких значений напряжения и минимизации потерь.

Однако высокое напряжение небезопасно, особенно для жизни человека, поэтому вводить ток высокого напряжения в дом — недопустимое действие.

Затем мощность переменного тока быстро и эффективно преобразуется в почти безопасное напряжение на местных трансформаторах по месту жительства. Сделать это с DC не так просто и дешево.

Электрогенератор для дома (Ссылка: windows2universe.org )

Итак, здесь мы можем обобщить все причины, по которым постоянный ток не используется в домах.

  • Функционально напряжение постоянного тока не может перемещаться очень далеко, если оно не начинает терять энергию.
  • Переменный ток надежно передается на большие расстояния в городах и генерирует больше энергии.
  • Постоянный ток более вреден, чем переменный, для того же напряжения, поскольку его проблематично высвободить при прикосновении, поскольку напряжение не превышает нуля. Мышцы сокращаются с постоянной силой в случае постоянного тока.
  • Электролитическая коррозия более вероятна при постоянном токе, чем при переменном токе.
  • Дуги постоянного тока гаснут не так быстро, потому что напряжение не проходит через ноль.
  • Асинхронные двигатели переменного тока несложно создать и сохранить. Двигатели постоянного тока нуждаются в коммутаторе и щетках или сложной электронной системе переключения.
  • С помощью трансформатора переменный ток можно легко преобразовать из высокого напряжения в низкое и наоборот. Таким образом, замечательным преимуществом переменного напряжения перед постоянным является повышение и понижение напряжения в зависимости от требований.
  • Производство переменного тока и связь могут выполняться с использованием меньшего количества подстанций, чем постоянного тока.
  • Если человеческое тело поражено переменным током, переменный ток входит в человеческое тело и выходит из него через определенные промежутки времени. Однако постоянный ток постоянно доставляет неудобства человеческому организму.
  • Место, окруженное переменным током больше постоянного.
Передача электроэнергии высокого напряжения на большие расстояния (Ссылка: peoi.org )

Сравнение приложений переменного и постоянного тока

Переменный ток в основном используется в отрасли производства и транспортировки электроэнергии.AC обеспечивает электричеством почти каждое домашнее хозяйство по всему миру. ДК в основном не применяется для этих целей по ряду причин. Например, выделение тепла из-за больших потерь мощности по сравнению с переменным током, более значительной опасности возникновения пожара, больших затрат и проблем, связанных с преобразованием высокого напряжения и низкого тока в низкое напряжение и высокий ток с помощью трансформаторов.

Переменный ток — более популярный ток в электродвигателях, машинах, преобразующих электрическую энергию в механическую.Постоянный ток часто встречается в устройствах, содержащих батареи, которые заряжаются путем подключения адаптера переменного тока к постоянному току в розетку или с помощью кабеля USB для зарядки. Примеры включают мобильные телефоны, фонарики, современные телевизоры и гибридные автомобили.

В Китае был реализован проект, в рамках которого по линиям электропередачи постоянного тока подается энергия в дома с меньшими потерями энергии, чем по линиям переменного тока. Это показывает, что использование постоянного тока в домашних условиях становится все более популярным. Кроме того, компания Siemens установила линию постоянного тока высокого напряжения (HVDC) протяженностью 65 миль.Такие проекты могут беспрецедентно использовать возобновляемые источники энергии.

Тем не менее, хотя более высокие напряжения постоянного тока обычно вызывают более опасную передачу энергии и мониторинг сетей постоянного тока может быть сложной задачей, большие напряжения переменного тока могут быть снижены до более надежных уровней, когда они передаются от электростанции.

Заключение

С учетом всех вышеперечисленных описаний эксперты тестируют и представляют самый простой способ передачи мощности. Передача энергии переменным током зарекомендовала себя неоднократно.Кроме того, напряжение постоянного тока достигает точки, которая больше не считается неэффективным методом. Однако переменное напряжение по-прежнему остается самым надежным способом подачи энергии.

AC vs DC: в чем разница?

Одна из основных вещей, которую должен знать энтузиаст электроники, — это разница между переменным током и постоянным током.

Нет, мы не говорим о хард-рок-группе, мы говорим о переменном и постоянном токе в отношении электричества.

Некоторые из вас, возможно, уже это знают. Даже если вы какое-то время увлекались электроникой и думаете, что поняли это, я настоятельно рекомендую прочитать весь этот пост, так как есть некоторые вещи, которые могут вас удивить.

Один из самых простых способов объяснить разницу между переменным током и постоянным током — рассмотреть каждый из них отдельно и вникнуть в некоторые детали каждого из них.

С этой целью мы сначала начнем с DC, потому что это немного проще объяснить, и большинство ваших творений будет использовать его.

Электрический ток (или напряжение, поскольку напряжение и ток пропорциональны) можно разделить на постоянный ток (DC) или переменный ток (AC).

Постоянный ток течет только в одном направлении, а переменный ток периодически меняет направление.

В стране электричества другое слово для обозначения направления — полярность.

Но что мы на самом деле имеем в виду?

Если бы мы построили график зависимости напряжения идеальной батареи от времени, у нас была бы прямая линия, как вы, вероятно, уже знаете. С заданным источником постоянного тока эта линия может лежать либо на положительном конце оси Y, либо на отрицательном конце, но не на обоих сразу.

Чтобы понять, что я имею в виду, взгляните на простые картинки ниже.

Рисунок 1: положительное и отрицательное напряжение постоянного тока

Красные горизонтальные линии представляют напряжение постоянного тока.Слева мы видим положительное напряжение постоянного тока (оно также могло бы представлять ток, если бы мы обозначили ток по оси Y вместо напряжения).

Обратите внимание, как линия лежит выше оси x (которая представляет время) и как она никогда не опускается ниже оси x — если мы предполагаем установившееся напряжение — даже если мы перетащим ось x на бесконечность.

Однако часть ( b ) рисунка показывает напряжение, лежащее ниже оси x, что делает его отрицательным постоянным напряжением.

В обеих частях линия находится либо выше, либо ниже оси x, но на самом деле никогда не пересекает ось x, даже если мы наблюдаем за этой очень захватывающей «формой волны» бесконечное количество времени.

Переменный ток и постоянный ток: неожиданность постоянного тока

Для большинства из нас совершенно очевидно, что плоская горизонтальная линия на графике представляет напряжение постоянного тока.

Станьте Создателем, которым вы были рождены. Попробуйте Arduino Academy БЕСПЛАТНО!

А как насчет рисунка ниже? Это переменный ток или постоянный ток?

Рисунок 2: Переменный ток и постоянный ток: это переменный или постоянный ток?

Если вы сказали DC, вы правы.

Хотя на этом графике нет плоской горизонтальной линии, он не становится отрицательным ни в одной точке (при условии, что он остается устойчивым и периодическим).

На рисунке 2 изображен так называемый пульсирующий постоянный ток.

Пульсирующий постоянный ток периодически изменяется от некоторого минимального напряжения (в данном случае нуля) до некоторого максимального напряжения, обратно до минимума, а затем повторяется.

Под периодичностью мы подразумеваем, что форма сигнала повторяется через регулярные предсказуемые интервалы. Я избавлю вас от математического определения периодичности.

Помните, пульсирующий постоянный ток , а не , не изменяет положительное напряжение на отрицательное и наоборот. Он остается либо положительным, либо отрицательным по всей оси x, независимо от амплитуды или формы волны.

Этот тип напряжения / тока возникает на выходе некоторых зарядных устройств аккумуляторов, а также на выходе двухполупериодного мостового выпрямителя, который является частью схемы, преобразующей переменный ток в постоянный.

Помните, пульсирующий или постоянный (как плоская линия) постоянный ток — это ток, который течет только в одном направлении.На рисунке 3 ниже показана эта концепция в простой схеме.

Рисунок 3: простая схема

Используя поток электронов (подробнее о потоке электронов и обычном потоке тока см. Пост), ток будет течь от отрицательной клеммы батареи через сопротивление к положительной клемме.

Это направление не изменится, если мы не изменим полярность источника. Если мы изменим полярность батареи, перевернув ее (отрицательный конец теперь вверху), ток будет течь в направлении, противоположном стрелке.

В любом случае, ток (и напряжение) постоянный, потому что он никогда не будет менять направление вперед и назад.

Переменный ток или переменный ток — это электрический ток сначала в одном направлении в течение определенного периода времени, а затем в обратном направлении в течение определенного периода времени.

Постоянный ток может изменяться только по величине, а переменный ток может изменяться как по величине, так и по полярности.

Большинство из нас знакомо с электропитанием переменного тока, подаваемым в наши дома.

Некоторые из нас могут быть знакомы с генератором переменного тока в нашем автомобиле, который вырабатывает энергию.Генератор вырабатывает переменный ток (отсюда и название), прежде чем он выпрямляется и используется для зарядки аккумулятора и питания аксессуаров автомобиля.

Мощность в розетке в вашем доме, а также мощность, создаваемая генератором переменного тока в вашем автомобиле (до выпрямления), поступает в виде синусоидальной волны.

Синус — это сокращение от синусоидального, которое, как мы можем видеть из графика математической / тригонометрической функции синуса, описывает форму волны.

На рисунке ниже изображена типичная синусоида, которую вы можете встретить в розетке в вашем доме.

Рисунок 4: Типичная синусоида переменного тока

Электропитание переменного тока в вашем доме имеет синусоидальную природу, поскольку генерируется вращающимися проводниками в магнитном поле. Если мы возьмем один цикл синусоидальной волны выше и сложим отрицательную половину влево, мы увидим, что получившаяся форма имеет несколько круговой характер.

Под циклом мы подразумеваем одно изменение от нуля до некоторого максимального положительного значения, обратно к нулю, где оно пересекает ось x, затем вниз до некоторого минимального отрицательного значения, затем снова обратно к нулю, где цикл заканчивается.

На рисунке 4 есть маленький «x», где заканчивается первый цикл и начинается второй цикл.

Поскольку мы вращаем что-то круговыми движениями (с помощью генератора) для выработки энергии переменного тока, неудивительно, что синусоида имеет такую ​​форму. И поскольку в круге 360 градусов, каждый цикл синусоидальной волны также проходит через 360 градусов.

Переменный ток и постоянный ток: более подробная информация о переменном токе

Мы знаем, что переменный ток получил свое название, потому что он чередуется с положительного на отрицательный, но что это на самом деле означает?

В течение одного полупериода электроны текут в одном направлении.Затем они переключаются и текут в противоположном направлении в течение другого полупериода.

Рисунок 5 из Introductory DC / AC Electronics иллюстрирует это.

Рисунок 5: как движется переменный ток

В части (b) рисунка мы видим типичную синусоидальную волну. Часть (C) показывает, как движутся электроны во время положительного изменения, а часть (d) показывает, как они движутся во время отрицательного изменения.

Итак, электроны в цепи переменного тока будут двигаться вперед и назад вокруг фиксированной точки.

Для пояснения рассмотрим простую схему на рисунке 3, только там вместо батареи есть источник переменного тока.

Теперь представьте, что вы очень маленькие и можете «сидеть» в центре резистора и видеть проходящие мимо электроны.

В одно мгновение они проходят мимо вас в одном направлении, в другое мгновение — в противоположном.

На самом деле, если вы посчитаете количество электронов, которые проскальзывают мимо вас во время каждого изменения, вы увидите, что это не только одно и то же число в каждом направлении, но и если бы вы могли отличить каждого индивидуума от других, те же электроны будет продолжать проходить вас — сначала в одном направлении, затем в другом.

Все еще нужны разъяснения? Это фантастическое видео от Хуррама Танвира должно помочь.

На видео показаны основы работы генератора переменного тока.

Он также показывает, как электроны движутся вперед и назад вокруг фиксированной точки. Обратите внимание, что стрелка вольтметра движется вперед и назад (с 0 в качестве фиксированной точки), когда генератор вращается, создавая синусоидальную волну.

Один важный факт, связанный с переменным током, заключается в том, что он не обязательно должен быть синусоидальным.

На рисунке 6 изображены 3 других типа сигналов переменного тока вместе с синусоидальной волной.

Рис. 6. Другие типы сигналов переменного тока

Прямоугольная волна должна выглядеть знакомо; вы увидите похожие волны в цифровых схемах. Треугольные волны хороши для тестирования определенных типов устройств, например некоторых усилителей. Также часто возникают сложные волны. Они могут быть, а могут и не быть желательными, в зависимости от обстоятельств.

Например, синусоидальная волна с введенным в нее шумом может выглядеть как сложная волна на рисунке выше.Или радиосигнал AM может принимать аналогичную форму. Одно желательно, а другое — нет.

Независимо от формы, все они имеют одну общую черту: в течение некоторого времени они являются положительными, а затем — отрицательными.

Я знаю, что это слово на букву «м» заставляет некоторых из вас прямо сейчас стонать, в то время как другие радуются, но я обещаю — все будет не так уж плохо.

Математическое описание типичной (непульсирующей) формы сигнала постоянного тока очень просто:

В (t) = В

Где t — время.

Другими словами, это плоская горизонтальная линия, а V — это напряжение, которое остается постоянным во времени (поэтому график представляет собой горизонтальную линию).

Описание типичной формы сигнала переменного тока зависит от формы, но для простоты мы будем предполагать синусоиду.

Математически синусоида переменного тока технически описывается приведенным ниже уравнением.

v (t) = V sin (ωt + φ)

Где ω = 2πf.

Это уравнение может быть более знакомо, если вы инженер или электронщик.

Омега в нижнем регистре (ω) — это частота в радианах, а не в герцах. Поскольку большинство любителей не слишком хорошо знакомы с радианами, уравнение можно изменить в более знакомую форму.

v (t) = V sin (2πft + φ)

Далее следует подробное описание того, что означает каждая часть этого уравнения.

t представляет время.

v (t) — это функция того, как напряжение изменяется или изменяется со временем.Другими словами, v (t) изменяется с изменением времени. Материал справа от знака равенства описывает, как выглядит это изменение.

V — амплитуда синусоиды.

2 π — это константа, используемая для преобразования радианов, то есть угловой частоты (радиан в секунду) в герцы, единицы, с которыми вы, вероятно, более знакомы.

f — частота в герцах или циклах в секунду.В цепи 60 Гц один цикл занимает 1/60 секунды (это период волны, который описывает, как долго длится один цикл. В общем, период T = 1 / f, поэтому один цикл 60 Гц мощность длится около 17 мс). И наоборот, в цепи 60 Гц есть 60 циклов в одной секунде.

Φ — фаза волны. Это мера того, насколько волна смещена относительно времени и находится где-то между 0 и 360 градусами. Когда синусоида сдвигается на 360 градусов, кажется, что сдвига никогда не было.Волна такая же, потому что круг составляет 360 градусов. Другими словами, если бы я нарисовал круг с помощью циркуля, как только я повернул его на 360 градусов, круг замкнулся бы и снова начал с 0 градусов.

Вам может быть интересно, как это сочетается с напряжением 120 В, поступающим из розетки в вашем доме.

В США мощность переменного тока имеет пиковую амплитуду 170 В (120 В — среднеквадратичное значение) и частоту 60 Гц. Мы предполагаем отсутствие фазового сдвига.

С этой информацией мы можем записать

v (t) = 170 sin (2π60t)

, чтобы математически описать напряжение, исходящее от стены.

Не пытайтесь это сделать, но если бы вы увидели мощность переменного тока в своем доме на осциллографе, вы бы увидели синусоидальную волну 60 Гц с пиковой амплитудой 170 В.

Если мы изобразим это уравнение на графике Графический калькулятор или компьютер покажет то же самое — прицела не требуется.

Большинство моих гаджетов используют постоянный ток. Почему электроэнергетическая компания поставляет переменный ток?

Если у вас есть опыт работы в электронике, вы, вероятно, знаете ответ. Если вы новичок, это может быть неочевидно.

Большинство вещей, которые подключаются к розеткам в вашем доме, преобразуют подающий переменный ток в постоянный ток. Сюда входит ваш телевизор, компьютер, DVD-плеер, маршрутизатор Wi-Fi и многое другое.

Есть несколько веских причин, по которым энергетическая компания поставляет питание переменного тока, а не постоянного тока.

  • При питании от сети переменного тока вы можете легко повышать или понижать напряжение с помощью трансформатора. То же самое с DC сделать сложнее. Это позволяет сети использовать высокое напряжение и более низкий ток, что более эффективно. У проводов есть сопротивление, которое становится значительным, если они растянуты на много миль.Помните, Power = I 2 Чем больше ток, тем больше тепла теряется в сопротивлении всех этих проводов. Это потраченные зря деньги. Таким образом, вместо высокого тока они используют высокое напряжение (при сохранении низкого тока), которое позже можно легко уменьшить.
  • Преобразовать переменный ток в постоянный намного проще, чем преобразовать постоянный ток в переменный.
  • Генераторы, которые использует энергетическая компания, работают путем вращения проводников в магнитном поле. Как мы уже знаем, это естественным образом приводит к синусоидальному выходу переменного тока.Некоторые генераторы могут выдавать постоянный ток, но они более дорогие и более сложные. Кроме того, генераторы переменного тока обычно больше, что означает, что они могут генерировать больше энергии.

Интересно отметить, что битва между распределением мощности переменного и постоянного тока завершилась в 1890-х годах, и переменный ток стал победителем. Вот почему мы используем его сегодня.

Однако новая технология сделала сеть постоянного тока более осуществимой и эффективной. Есть несколько небольших областей по всему миру, которые тестируют эту идею. Достаточно сказать, что пройдет некоторое время, прежде чем вся сеть будет преобразована в постоянный ток, если это вообще произойдет.

Rockin ’Out с переменным током против постоянного тока

В мире переменного и даже постоянного тока есть гораздо больше, чем мы можем охватить в одном посте.

Например, мы не говорили о переходных процессах (DC) и не обсуждали такие вещи, связанные с переменным током, как RMS (среднеквадратичное значение), пиковое значение, размах колебаний или векторов во многих (или каких-либо) деталях.

Похоже, это место для будущей публикации в блоге!

А пока прокомментируйте и поделитесь темой, которую вы хотели бы осветить в следующем посте. Это может просто появиться?

Станьте Создателем, которым вы были рождены.Попробуйте Arduino Academy БЕСПЛАТНО!

Ссылки:

  1. Кук, Найджел П. Введение в электронику постоянного и переменного тока, 4-е изд. Prentice Hall, 1999. Печать.
  2. Александр, Чарльз К. и Мэтью, Садику Н.О. Основы электрических цепей, 2-е изд. Mc Graw Hill, 2004. Печать.

переменного и постоянного тока | 17 Различия между переменным и постоянным током

Электроэнергия производится двумя способами: переменный ток (AC) и постоянный ток (DC).Сегодня более 90% электроэнергии производится в виде переменного тока. Но есть много различий между переменным током и постоянным током. Давайте сравним переменный и постоянный ток.

Различия между переменным и постоянным током

Мы можем перечислить различия между переменным током (AC) и постоянным током (DC) следующим образом:

Определение

Ток, который периодически меняет направление и силу в зависимости от времени, называется переменным током (AC).Сила переменного тока зависит от мощности источника. Ток, направление и сила которого не меняются с течением времени, называется постоянным током (DC).

Форма волны

Переменный ток меняет направление (как положительное, так и отрицательное). Форма волны чистого переменного тока представляет собой синусоидальную волну. Другие формы волны переменного тока — квадрат, треугольник, пилообразная волна.

Постоянный ток всегда течет в одном направлении. Это либо положительно, либо отрицательно. Чистый DC — это ровная линия.

История и ученые

Первой системой распределения электроэнергии, представленной в 1882 году, была система Томаса Эдисона на 110 В постоянного тока со станции Перл-Стрит на Манхэттене. Затем последовала электростанция на Гейбл-стрит в Хьюстоне, штат Техас, и несколько других небольших электростанций в каждом городе.

С увеличением спроса на электроэнергию возрастала потребность в повышении надежности и эффективности. Парсонс сделал возможным эффективное производство электроэнергии благодаря изобретению паровой турбины в 1884 году.В 1881 году француз Люсьен Голар и англичанин Джон Д. Гиббс запатентовали в Англии систему передачи переменного тока. Этот патент был куплен американцем Джорджем Вестингаузом в 1885 году. В 1886 году Уильям Стэнли установил первую практическую трансмиссию переменного тока в Грейт-Баррингтоне, штат Массачусетс. Трансформатор использовался для повышения генерируемого напряжения до 3000 В для передачи и понижался другим трансформатором до 500 В для использования. В 1888 году Никола Тесла представил многофазную систему переменного тока. Позже было обнаружено, что трехфазные системы лучше, чем однофазные или двухфазные системы, и они стали стандартными системами передачи.AC по-прежнему широко используется в современных отраслях промышленности, на предприятиях и в домах по всему миру.

Безопасность

Источники питания постоянного тока

имеют положительную и отрицательную клеммы. Ток течет от отрицательной стороны батареи через цепь к положительной стороне батареи. Следовательно, прикосновение к одной стороне цепи не приведет к поражению электрическим током, потому что цепь не замкнута. Прикосновение к обеим сторонам приведет к замыканию цепи и может привести к поражению электрическим током.

Поскольку ток в цепи переменного тока течет в обоих направлениях, нет положительного и отрицательного, как в цепях постоянного тока. Вместо этого у них есть один или два токоведущих или горячих проводника, нейтральный провод и, возможно, заземляющий провод или земля, в зависимости от проводки.

Обычно, когда цепь замыкается, ток течет вперед и назад между горячим и нейтральным проводниками. Заземление служит мерой безопасности, позволяя разрядить избыточную энергию в случае опасности или неисправности.

Вы можете подумать, что для получения электрического разряда от цепи переменного тока вам нужно коснуться и горячего, и нейтрального, но это не так, по крайней мере, в типичных цепях переменного тока, подобных тем, что в здании. Поскольку у большинства цепей переменного тока есть заземление, если вы коснетесь только горячей стороны цепи, электричество пройдет через вас и вернется на землю, чтобы замкнуть цепь.

Передача и распределение

Уильям Стэнли разработал трансформаторы

, которые могли преобразовывать электричество в желаемое напряжение.В системе переменного тока трансформаторы использовались для повышения или повышения напряжения, выходящего из электростанции. Это позволило электричеству перемещаться по проводам на большие расстояния. Когда электричество достигло своего места назначения, другой трансформатор затем отключился или уменьшил напряжение, чтобы можно было использовать электроэнергию в домах и на фабриках. В системе постоянного тока не использовались трансформаторы. В системе постоянного тока напряжение падало по мере того, как оно перемещалось все дальше и дальше от генератора.Чтобы преодолеть этот недостаток, необходимо было бы строить электростанции рядом с опытными пользователями, что является дорогостоящим решением.

Вскоре система переменного тока — а не более дорогая, требующая больших затрат на обслуживание и менее эффективная система постоянного тока — стала получать большую часть заказов. Вскоре стало очевидным еще одно преимущество альтернативной системы: позволяя центральным станциям обслуживать более широкие рынки, система кондиционирования воздуха также поощряла коммунальные предприятия строить более крупные станции, которые затем получали выгоду от экономии за счет масштаба и снижали свои эксплуатационные расходы.

В 1893 году была выбрана система переменного тока для передачи электроэнергии из Ниагарского водопада в Буффало. Вскоре после этого «универсальная» система переменного тока стала новым стандартом для передачи электроэнергии. Теперь одна генерирующая станция может относительно дешево передавать электроэнергию в обширной зоне обслуживания.

Преобразование друг в друга

Электростанции

по умолчанию вырабатывают переменный ток, поэтому для его преобразования в постоянный ток потребуются дополнительные усилия. Преобразовать переменный ток в постоянный намного проще и дешевле, чем преобразовывать постоянный ток в переменный.

Поколение

Батареи, топливные элементы и солнечные элементы производят так называемый постоянный ток (DC). С другой стороны, мощность, поступающая от генератора на электростанции, называется переменным током (AC)

С помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях большой мощности.

КПД

Потери мощности в линии (P = I2R) зависят от сопротивления линии, а также от тока, протекающего по линии.Однако использование более узких, но менее дорогих проводов должно иметь более высокое сопротивление, чем проводник с более толстым радиусом (R = ρl / A). Однако из-за высокого напряжения ток в линии передачи становится низким, и квадрат меньшего тока уменьшает увеличение сопротивления линии, что приводит к уменьшению общих потерь мощности в линии. Таким образом, эффективность передачи переменного тока выше, чем передачи постоянного тока.

Частота

Частота переменного тока показывает, сколько раз меняется направление напряжения и тока.Если частота 50 Гц, это означает, что ток меняет направление 50 раз. Частота постоянного тока всегда равна нулю. Потому что он никогда не меняет своего направления.

Направление

Постоянные токи — это токи, которые, хотя их величина может меняться, по существу текут только в одном направлении. Другими словами, постоянные токи однонаправлены. С другой стороны, переменные токи двунаправлены и постоянно меняют направление своего потока.

Поток электронов

В переменном токе электроны соответственно меняют направление между отрицательным и положительным полюсами.В постоянном токе электроны движутся только от отрицательного полюса к положительному. Символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Коэффициент мощности

В цепи постоянного тока мощность равна произведению напряжения и тока. Эта формула также верна для чисто резистивных цепей переменного тока. Однако, когда в цепи переменного тока присутствует реактивное сопротивление — индуктивное или емкостное — формула мощности постоянного тока неприменима.Напротив, произведение напряжения и тока выражается в вольт-амперах (ВА) или киловольт-амперах (кВА). Этот продукт известен как кажущаяся мощность. Когда счетчики используются для измерения мощности в цепи переменного тока, полная мощность — это значение напряжения, умноженное на значение тока. Фактическая мощность, которая преобразуется схемой в другую форму энергии, измеряется ваттметром и называется истинной мощностью. При проектировании и эксплуатации системы питания переменного тока желательно знать отношение истинной мощности, преобразованной в данной цепи, к полной мощности цепи.Это соотношение называется коэффициентом мощности. Коэффициент мощности переменного тока варьируется от 0 до 1. Коэффициент мощности постоянного тока всегда 1.

Расчет

Анализ системы переменного тока всегда включает комплексные числа, а постоянный ток — только действительное число, что упрощает анализ. Анализ цепей постоянного тока имеет дело с постоянными токами и напряжениями, в то время как анализ цепей переменного тока имеет дело с изменяющимися во времени напряжениями и токами.

Хранение

DC легче хранить, особенно в небольших объемах.Когда электричество хранится, мы можем использовать его, когда нам это нужно. Лучший способ хранить электроэнергию для относительно небольших приложений — использовать перезаряжаемые аккумуляторные батареи. AC не может быть сохранен.

Двигатели тяговые

Изначально двигатели постоянного тока были основой электрических тяговых двигателей. Его основными преимуществами были крутящий момент-скорость и простая система управления тяговым усилием, однако в двигателях постоянного тока используются переключатели / щетки и коллекторы, что делает их менее надежными и подходящими для работы на высоких скоростях.Использование двигателей переменного тока вместо двигателей постоянного тока было первым изменением в электрике железнодорожного транспорта. Для более высоких плотностей мощности двигатели переменного тока уменьшили габариты и вес, повысили эффективность и удельную мощность, снизили эксплуатационные расходы и сократили техническое обслуживание, поскольку у них нет щеток. В настоящее время двигатели постоянного тока используются в специальных приложениях с более низкими требованиями к мощности, поскольку затраты на управление (силовая электроника) ниже.

Электромобили

Электромобили используют питание постоянного тока, и их батареи можно заряжать с помощью постоянного тока за небольшую часть времени, необходимого для зарядки с использованием переменного тока.Зарядные устройства для быстрых электромобилей всегда работают от постоянного тока.

Передача на очень большие расстояния

Передача переменного тока заменила передачу постоянного тока из-за простоты и эффективности преобразования напряжения с помощью трансформаторов. Однако передача высокого напряжения постоянного тока (HVDC) имеет то преимущество, что в ней отсутствуют реактивные составляющие тока и, следовательно, отсутствуют потери в линиях из-за таких токов и нет необходимости в синхронизации. Постоянный ток обычно используется только для передачи на большие расстояния, потому что оборудование, используемое для преобразования, стоит дорого.Он также используется для соединения двух систем с очень короткими линиями, поэтому фазы систем не нужно синхронизировать, а также для подводных силовых кабелей из-за ограничений по току зарядки в кабелях переменного тока.

Продолжить чтение

Различия между питанием переменного и постоянного тока и их применение

>> Различия между питанием переменного и постоянного тока и их использование

Мы ежедневно используем как переменный, так и постоянный ток для цифровой электроники и различных розеток.Однако люди до сих пор не знают основных различий между этими двумя вещами и того, зачем нам и то, и другое.

Имея это в виду, мы собираемся изучить некоторые ключевые различия между переменным и постоянным током, а также поговорим об их использовании в нашей повседневной жизни.

allaboutcircuits.com

Переменный ток — это не что иное, как периодическое изменение направления потока заряда. Проще говоря, переменный ток здесь для описания потока электричества через проводник. Как следует из названия, течение тока периодически изменяется, сохраняя при этом уровень напряжения.Переменный ток подается в домохозяйства и офисные здания и при необходимости может быть преобразован в постоянный ток.

Можно ли генерировать переменный ток? Конечно вы можете. Самым популярным устройством для генерации переменного тока является генератор переменного тока. Внутри генератора переменного тока находится магнитное поле, а также скрученная внутри проволочная петля, используемая для индукции тока. Чтобы производить ток, этот провод должен иметь какое-то вращение, которое может быть произведено текущей водой, паровой турбиной или ветряной турбиной.В процессе вращения проволока периодически меняет свою магнитную полярность, что приводит к чередованию тока и напряжения.

Когда дело доходит до формы волны, переменный ток сильно отличается от постоянного тока. Как вы, наверное, догадались, сигналы переменного тока имеют форму синусоиды. В этом легко убедиться, если подключить осциллограф к цепи переменного тока. Здесь мы видим несколько форм сигналов, в которых синусоида является наиболее распространенной. В большинстве случаев переменный ток, который вы используете в своем доме, имеет точно такую ​​же синусоидальную волну.Это указывает на то, что амплитуда тока изменяется со временем, что и есть переменный ток.

Поскольку мы упомянули разные типы сигналов, важно упомянуть прямоугольную волну. Прямоугольная волна часто используется в коммутационной и цифровой электронике для тестирования. Этот тип волны указывает на то, что амплитуда остается неизменной в течение определенного периода времени, а затем падает до отрицательного значения и остается там в течение того же периода времени. Процесс повторяется во время операции.

Наконец, у нас есть треугольная волна, которая встречается немного реже. В основном он используется для тестирования усилителей и другой линейной электроники.

Как мы упоминали ранее, кондиционер используется в наших домах и офисах. Основное преимущество переменного тока заключается в том, что его можно легко генерировать и транспортировать на большие расстояния, поэтому он является выбором номер один для вышеупомянутой цели. Только представьте, что вам нужно снабжать весь город или часть города с помощью одной электростанции. AC делает это возможным — это быстро и легко генерируется.Вдобавок ко всему, электростанции могут использовать трансформаторы для преобразования в / из высокого напряжения, если это необходимо. Чем выше напряжение, тем меньше ток, и в линии электропередачи выделяется меньше тепла.

Во многих бытовых приборах, таких как холодильники и посудомоечные машины, также используется кондиционер. Переменный ток может приводить в действие электродвигатели, которые преобразуют эту электрическую энергию в механическую (вращение, поступательное движение, крутящий момент и т. Д.).

Постоянный ток гораздо легче понять, поскольку это совершенно другой термин, чем переменный ток.Пока переменный ток движется вперед и назад, постоянный ток обеспечивает постоянный ток в одном направлении. Самый распространенный пример постоянного тока — это аккумулятор в фонарике или смартфоне, а также блок питания на вашем ПК.

DC можно генерировать множеством способов. Чаще всего используется выпрямитель. Выпрямитель — это именно то, на что он похож. Только представьте себе синусоидальную волну, которую нужно выпрямить или выпрямить, чтобы она выглядела как форма волны постоянного тока.Он имеет электронные или электромеханические элементы, которые пропускают ток в одном направлении. В качестве альтернативы, типичный генератор переменного тока с коммутатором может также производить постоянный ток, а также батареи, которые производят постоянный ток из-за химических реакций внутри них.

Direct Current имеет только одну форму волны, состоящую из прямой горизонтальной линии. Эта линия представляет изменение (или отсутствие изменения) напряжения во времени. На практике сила напряжения и тока может изменяться, но направление потока остается неизменным.Некоторые источники постоянного тока не могут постоянно отображать такой график, типичным примером являются батареи. Со временем они теряют свою мощность, и в какой-то момент напряжение начинает падать, создавая другой сюжет. В большинстве случаев мы можем предположить, что график выглядит именно так, как мы его описали — прямая горизонтальная линия, показывающая постоянное напряжение.

Постоянный ток используется в небольшой электронике, такой как смартфоны, фонарики и компьютеры. Вот почему вам нужен специальный блок питания в вашем компьютере — для преобразования переменного тока в постоянный.К другим типичным приложениям относятся телевизоры, а также электромобили нового поколения, поскольку они используют аккумуляторные батареи в качестве источников питания.

И переменный, и постоянный ток имеют свои собственные цели, и нельзя сказать, что одно лучше другого. В то время как переменный ток подходит для наших домашних хозяйств из-за простоты его производства и распределения, постоянный ток — единственный способ питания электроники и электромобилей на аккумуляторных батареях. Несмотря на огромную популярность и внедрение переменного тока, большая часть электроники, которую мы используем, использует преимущества постоянного тока, а это означает, что они оба нам нужны в равной степени.

В чем разница между сваркой на переменном и постоянном токе?

Что такое сварка постоянным током?

Постоянный ток — это электрический ток постоянной полярности, протекающий в одном направлении. Этот ток может быть положительным или отрицательным. При сварке постоянным током, поскольку магнитное поле и ток дуги постоянны, образуются стабильные дуги.

Преимущества

Преимущества сварки постоянным током:

  • Более плавная сварка по сравнению с AC
  • Более стабильная дуга
  • Меньше брызг
  • Негатив постоянного тока обеспечивает более высокую скорость наплавки при сварке тонких листов.
  • Позитив постоянного тока обеспечивает большее проникновение в металл шва

Недостатки

Недостатками сварки постоянным током являются:

  • Сварка постоянным током не может решить проблемы с дугой
  • Оборудование дороже, так как токи постоянного тока требуют внутреннего трансформатора для переключения тока

Приложения

Сварка

на постоянном токе идеально подходит для соединения более тонких металлов, а также используется в большинстве приложений для сварки штучной сваркой, включая сварку TIG сталей.Этот вид сварки также подходит для потолочных и вертикальных работ.

Что такое сварка на переменном токе?

Переменный ток — это электрический ток, который меняет направление много раз в секунду. Ток с частотой 60 Гц будет менять полярность 120 раз в секунду. При сварке на переменном токе, поскольку магнитное поле и ток быстро меняют направление, нет чистого отклонения дуги.

Преимущества

Преимущества сварки на переменном токе:

  • Переменный ток между положительной и отрицательной полярностью обеспечивает более устойчивую дугу при сварке магнитных деталей
  • Устраняет проблемы с дугой
  • Обеспечивает эффективную сварку алюминия
  • Сварочные аппараты переменного тока дешевле аппаратов постоянного тока

Недостатки

Недостатками сварки переменным током являются:

  • Больше брызг
  • Качество сварки не такое гладкое, как при сварке постоянным током
  • Менее надежен и поэтому более сложен в обращении, чем сварка постоянным током

Приложения

При переключении на положительный ток переменного тока он также помогает удалять оксид с поверхности металла — следовательно, он подходит для сварки алюминия.

Сварка

переменным током также широко используется в судостроении, особенно для сварных швов, поскольку она позволяет устанавливать ток выше, чем при сварке постоянным током. Сварка на переменном токе также обеспечивает быстрое заполнение и используется для сварки толстых листов вниз.

Одно из основных применений сварки на переменном токе — это намагничивание материалов. Это делает его полезным для ремонта техники.

Как TWI может помочь?

TWI была в авангарде разработки процессов дуговой сварки и, как таковая, предлагает ряд сопутствующих услуг.Достижения включают в себя изобретение процесса сварки MIG с двумя проволоками (используемого для увеличения скорости сварки и скорости осаждения металла или формирования сварного шва) и технологии управления транзисторами, которые проложили путь для TWI к разработке импульсной сварки TIG, сварки MIG с коротким замыканием и импульсной сварки. MIG процессы.

Наша команда, состоящая из более чем 20 профессионалов в области сварки, в том числе высококвалифицированных международных инженеров-сварщиков, может предоставить квалифицированные рекомендации по любому вопросу, связанному с соединением материалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *