Ремонт импульсных блоков питания своими руками: Ремонт импульсных блоков питания: схемы, описание, неисправности

Содержание

Ремонт импульсных блоков питания (ремонтные модули)

Стоимость: $0,5

Сегодня я хочу рассказать о модулях для ремонта импульсных блоков питания ( далее — ИБП). Импульсные блоки питания достаточно сложные изделия и они нередко выходят из строя (особенно изделия нонейм невысокого качества). Стоит ли их ремонтировать? Не всегда. Часто, если блок питания не очень качественный и имеет стандартное напряжение,  гораздо проще, быстрее и дешевле просто купить новый готовый блок питания или высококачественную  плату с разборки (китайцы часто недорого продают платы брендовые блоков питания с разборки или после восстановления).  

Давно не писал. Проект kupislonica некоммерческий (по этой причине меркантильные авторы сбежали на другие ресурсы, писать хвалебные обзоры на товары бесплатно предоставляемые магазинами, что, вероятно, к лучшему). Теперь это полностью мой блог (ну может будут ещё 1-2 автора). Так а как работы за которую платят (и неплохо) у меня хватает и она идет вне очереди, статьи долго не писались.

Но, наконец, я решил возобновить это неблагодарное дело, тем более что информации для написания статей накопилось масса.  

Бывают случаи, когда блок питания просто поменять не так уж просто или вообще невозможно. Например, если он имеет несколько нестандартных напряжений на выходе, необычные размеры или интегрирован в основную плату дорогого и/или уникального изделия. В таком случае альтернативы ремонту нет. А отремонтировать ИБП иногда сложно и недешево. При проблеме в «горячей» части обычно пробивает силовой транзистор, который тянет за собой низкоомный токовый резистор, микросхему ШИМ, диодный мост, предохранитель а иногда и синфазный дроссель. В совокупности, стоимость этих деталей уже велика, и это не считая  времени, затраченного на ремонт, а время это один из самых дорогих ресурсов. Много времени часто уходит на то, чтобы распознать элементы, найти и купить их или их аналоги. Иногда микросхемы ШИМ не имеют маркировки или она затерта и приходится искать соответствие по выводам, подбирать варианты и изучать даташиты.

Иногда специфические микросхемы или мосфеты бывает сложно приобрести или доставка очень долгая. При заказе можно нарваться на перемаркировку и, прождав пару месяцев, сжечь их при первом включении или первой серьезной нагрузке.  И самая худшая на мой взгляд ситуация: блок питания уже кто-то пытался ремонтировать, «перепахал» половину платы, поднял и повредил часть дорожек, заменил некоторые детали (и не факт что на аналогичные а не на те, похожие, что были под рукой). При  таком варианте время, которое придется затратить на то чтобы восстановить схему, найти все проблемы, заказать и приобрести детали, может превысить все разумные пределы и сделать ремонт нерентабельным, даже если клиент готов дорого платить. Вот тогда-то и помогают ремонтные модули. 

Они предназначены для того чтобы быть встроенными в любой ИБП после выпрямителя, подключиться к существующему силовому трансформатору и обеспечить работу блока питания в штатном режиме, не касаясь «холодной» части схемы, тем самым сохранив все напряжения и настройки ремонтируемого блока питания.

 Стоимость таких ремонтных модулей невелика (часто ниже чем стоимость деталей, которые нужно заменить при ремонте ИБП а время ремонта гарантированно сокращается до десятков минут. 

Справка: ремонтные модули появились уже довольно давно и предназначались для ремонта блоков питания телевизоров. Они были построены на контроллерах Gakun и активно обсуждались на ремонтных форумах. Гакун стало именем нарицательным, как в свое время Ксерокс, джакузи, унитаз, бендикс и т.п. Модули GAKUN стоили немало, от десяти долларов и выше, но при ремонте телевизора ценой от нескольких сотен до тысяч долларов такая стоимость была оправданной, модули окупались.  

К тому времени я уже не занимался ремонтом телевизоров, а при ремонте сетевого оборудования или другой недорогой техники высокая стоимость ремонтных модулей сводила смысл ремонта к нулю и GAKUN были для меня не интересны. Проще уж было вкорячить какой-нибудь ТОР или TNY. Но мне хотелось более изящных решений при ремонтах, я даже сам начал разрабатывать ремонтный модуль на микросхеме KA5M63035R (десяток их у меня завалялся, вот и хотелось пустить их в дело), разводить печатную плату и т.

п. Но до серии дело не дошло. Китайцы наладили массовое производство нескольких видов ремонтных модулей. И пусть они сделаны неидеально, их цена в несколько раз ниже, чем себестоимость при собственном изготовлении и это решающий фактор. 

Ремонтные модули бывают разные по мощности и по схеме включения. Есть модули практически вообще не использующие схему ремонтируемого блока и требующие для своего подключения всего 5 точек: плюс и минус высоковольтного конденсатора, drain мосфета долженен быть удален), плюс и минус выходного напряжения. На плате такого модуля есть сам ШИМ контроллер, мощный MOSFET, миниатюрный трансформатор питания с выпрямителем, схема стабилизации с оптопарой и подстроечный резистор чтобы выставить напряжение стабилизации. 

Мощность блоков питания, которые можно починить с помощью таких модулей ограничивается только мосфетом на модуле (можно заменить на нужный). Стоят такие модули от 2 долларов и выше (изначально можно выбрать с мосфетом нужной мощности), у них есть свои недостатки но о них таких ремонтных модулях я напишу отдельный обзор, они того стоят.   

Самые простые и дешёвые (я брал от 50 центов) ремонтные модули состоят из миниатюрной платки, контроллера со встроенным силовым транзистором и пары деталей. И про них я и хочу сегодня рассказать. 

Данные ремонтные модули сделаны на микросхеме FSDM0465 (или FSDM0565) и используют обмотку самопитания штатного трансформатора ремонтируемого блока питания и его оптопару,  предполагая тем самым что схема контроля напряжения ремонтируемого блока питания исправна.  

Что обещает нам микросхема 

Features
■ Internal Avalanche Rugged SenseFET
■ Advanced Burst-Mode Operation Consumes
under 1W at 240VAC and 0.5W Load
■ Precision Fixed Operating Frequency: 66kHz
■ Internal Startup Circuit
■ Improved Pulse-by-Pulse Current Limiting
■ Over-Voltage Protection (OVP)
■ Overload Protection (OLP)
■ Internal Thermal Shutdown Function (TSD)

■ Abnormal Over-Current Protection (AOCP)
■ Auto-Restart Mode
■ Under-Voltage Lock Out (UVLO) with Hysteresis
■ Low Operating Current: 2. 5mA
■ Built-in Soft-Start

Как по мне, так очень даже неплохо. Некоторые продавцы на своих страницах обещают мощность до 180W. В даташите на FSDM0465 не так оптимистично, мощность указана до 56W. Модули на FSDM0565 то же самое, но мощность до 80W.

На это имеет смысл обратить внимание при покупке. Иногда выгоднее купить на 2-3 цента дороже но иметь полуторный запас мощности.

Приехали данные модули прямо на общей плате. Нужен тебе – отломай и используй.

Это говорит о том что врядли их кто-то тестирует перед продажей, запаяли и вперёд. О том что это не промышленное производство говорит и то, что на общей плате запаяны микросхемы с абсолютно разными маркировками, датами производства и даже разными стилями лазерной маркировки (не факт что среди десятка нормальных нет 1-2 перемаркированных и нерабочих). Но мне пока нерабочие не попадались.

Кроме микросхемы ШИМ со встроенным силовым транзистором там всего пару деталей и разноцветный шлейф. Я не исключаю, что у разных подвальных производителей цвет проводов может отличаться, поэтому нужно перепроверять а не надеяться на описание подключения только по цвету, тем более у некоторых продавцов в описании фигурирует синий провод, который на самом деле белый. Вероятно описание взяли с чужой странички.  

Разобраться что куда подключать не так уж сложно. Но это если продавец любезно выложил у себя на странице условную схему блока питания с указанием точек подключения.

Что-то типа такого. Но это не лучший вариант инструкции. Продавцы часто не понимают что они продают и выкладывают картинки, которые воруют у конкурентов. Смотрите внимательно.

У некоторых есть описание текстом. Гуглоперевод с китайского на английский а потом с английского на русский сложен к пониманию, я по крайней мере не стал на него полагается. Проще поискать по страницам аналогичных товаров других продавцов, особенно если товар продают дороже. Есть вероятность что для товара за более высокую цену продавец потратил чуть больше времени на описание и может быть приложил схему подключения.

 

Типа такой. Ну вот, другое дело! Все понятно ведь?

Или такой. 

Для владеющих английским будет полезна такая картинка:

Я же составил простую табличку:

Цвет провода Назначение
Зеленый +320V («плюс» высоковольтного конденсатора)
Желтый Сток мосфета (Drain), трансформатор 
Красный Самопитпние ШИМ
Белый FB с оптопары
Черный Общий провод («минус»высоковольтного конденсатора)

А вот моя примерная схема условного блока питания с цветными точками куда что подключать.

С помощью данного типа ремонтных блоков я вернул в строй несколько дорогостоящих приборов, которые казались уже неподьемными, так как в разное время прошли через нескольких ремонтников с разной степенью криворукости и на платах встроенных блоков питания питания живого места не было.  

Но давайте уже перейдем к делу, я на практике покажу как восстановить убитый ИБП.

Ко мне попали остатки блока питания от ноутбука DELL из сервис-центра (фото до восстановления не сделал, да и что там смотреть?) с классической неисправностью: пробит силовой транзистор, низковольтный резистор в истоке, диодный мост, синфазный дроссель, предохранитель и ШИМ контроллер. Короче, выгорело все что могло выгореть. В сервисе выпали неисправные элементы и посчитали что ремонт такого блока питания не имеет смысла, поэтому с платы сняли конденсаторы, диод Шоттки синфазный дроссель заменили перемычками (наверно в самом начале, когда была надежда починить), микросхему (с обвесом), отвечающую за сигнал ID выпаяли и, вероятно, переставили в другой блок. Странно что высоковольтный конденсатор остался на месте и оказался исправным. В таком плачевном виде плата досталась мне. Но трансформатор был на месте, микросхема TL431 в smd исполнении и ее обвязка визуально казались нетронутыми и это вселяло надежду.   

Паяли в сервисе не аккуратно, восстанавливать блок явно не собирались, да и плата изначально была обмазана герметиком, все вместе это представляло «душераздирающее зрелище», как говорил ослик из известного детского мультика. На том месте где должен быть ШИМ на плате оторвано несколько дорожек разной длины, не хватает много smd деталей. Восстанавливать такой блок питания классическим способом (поиск ШИМ и замена всех деталей) конечно же не имеет смысла, себестоимость такого ремонта будет соизмерима с ценой нового блока питания (тем более что микросхемы ID уже нет). А вот с помощью ремонтного модуля за $0,5 получить рабочий блок питания с неплохими характеристиками можно попробовать. Изначально поставил себе цель восстановить этот ИБП из того что есть в наличии, не докупая ничего за деньги, себестоимость ремонта не должна была превысить стоимость ремонтного модуля (50 центов или 1 белорусский рубль). И это мне удалось.

Прежде всего я запаял диодный мост. Подходящего по габаритам не нашлось, пришлось взять с запасом по мощности от компьютерного блока питания, чуть подогнув выводы и расширив отверстия в плате. Ничего, больше не меньше. Запаял отсутствующие конденсаторы во вторичной цепи (потом зашунтирую их керамикой). По напряжению взял с запасом, благо ранее раскурочил несколько плат от старых кинескопных мониторов и халявных конденсаторов стоит целая коробка. Также запаял отсутствующий сдвоенный диод Шоттки на 50 вольт 45А (тоже лежит горка после ремонтов компьютерных блоков питания). К этому диоду я вернусь чуть позже более подробно. Тестером проверил отсутствие короткого замыкания по выходу. Предохранитель на плате был предусмотрен специфический, маленький квадратный в пластиковом корпусе. У меня в наличии таких нет. Вместо предохранителя запаял NTC термистор. Он должен ограничить пусковой ток конденсатора при включении в сеть. Тесты буду проводить на стенде, там уже есть трансформаторная развязка с сетью, подключаемая токоограничительная лампочка и предохранители. Когда буду отправлять этот ИБП в работу, запаяю предохранитель на место одной половины синфазного дросселя (сейчас там просто перемычки). Я знаю что синфазный дроссель в схеме не лишний, но на плате он стоял малюсенький, врядли он парой своих витков что-то серьезно фильтровал, скорее просто создавал видимость. И главное, такого типоразмера у меня в наличии нет, да и в половине китайских блоков их нет вообще. Наличие же NTC предотвращает искрение при включении и обгорание контактов вилки и розетки, на мой взгляд это важнее. Далее выпаял и проверил оптопару. Были случаи когда из-за неисправной оптопары блоки питания работали не в режиме или вообще выходили из строя. Оптопара оказалась исправной. Далее я вместо оптопары временно запаял красный светодиод и подключтил к выходу ИБП лабораторный блок питания, выставил ограничение тока (на всякий случай) и стал плавно поднимать напряжение. Когда оно достигло 19,4 В светодиод загорелся. Это говорит об исправности схемы стабилизации напряжения. 

Далее выпаиваю светодиод, запаиваю на место оптопару и приступаю к подключению ремонтного модуля. Больше ничего выпаивать с платы не понадобилось («все уже украдено до нас…»), детали обвязки микросхемы ШИМ остались на плате, они никак не будут участвовать в дальнейшей работе блока питания.  

Прикинул место где будет располагаться ремонтный модуль и укоротил провода и выводы микросхемы, торчащие с обратной стороны платы ремонтного модуля. Далее запаял по цветам в соответствии с таблицей. 

Включил через лампочку, светодиод на выходе засветился, измерение показало что на напряжение выходе 19,4 В. Выключил, потрогал элементы. Все холодное. Что ж, пришла пора немного нагрузить блок питания. В качестве нагрузки припаял к выходу автомобильную лампу на 20W. Лампа 12-вольтовая, но за непродолжительный срок и на 19В ничего с ней не случится. Включаю, 12-вольтовая лампа ярко горит. Но через секунд 30-40 начинает мигать и еще через пару секунд гаснет окончательно. Отключаю блок от сети, трогаю детали: контроллер на ремонтном модуле горячий, явно сработала Internal Thermal Shutdown Function (TSD). Диод Шотки на выходе ненормально раскален. Явно без КЗ здесь не обошлось.

Отпаиваю лампочку, меряю выход, так и есть, КЗ. Пробита одна половина сдвоенного диода. Но ведь диод 45 амперный а ток через него был небольшой, чуть больше ампера, он при таком токе и греться-то сильно не должен. И вот тут-то я начинаю вспоминать, а где я взял этот диод? А не из той ли коробочки, в которую я сбрасывал сомнительные детали, снятые с компьютерных блоков питания которые пошли на разборку? Но диод был исправен, я прозвонил его мультиметром и вставлял в электронный тестер радиокомпонентов. Все было ОК! А достаточно ли такой проверки чтобы быть полностью уверенным в исправности диода? Как насчет утечек? Как поведет он себя под нагрузкой на пульсирующих токах?  

Беру из той же коробки другой такой же сдвоенный диод с той же маркировкой (явно из той же партии), мультиметром в режиме прозвонки диодов он звонится как исправный. Выставляю мультиметр на измерение сопротивлений на предел 20КОм. Диод показывает проводимость в обе стороны, в прямом направлении 2-3 кОм, в обратном около 10-15кОм. Так быть не должно.

Если бы в контроллере не было столько всяких защит, не исключено что такая работа под нагрузкой могла бы закончиться бабахом. Плюсик ремонтному модулю!

Беру новый, заведомо исправный диод, он в обратном направлении на этом пределе измерений никак не звонится. Теперь все становится понятно. Или диоды были подуставшие, или они из бракованной партии. Запаиваю новый диод в плату ИБП и снова включаю.  

Все работает, небольшой нагрев под нагрузкой есть, но он в пределах нормы, тем более что впоследствии и микросхема ШИМ с силовым элементом, и диод Шотки будут стоять на радиаторах. Тестовый прогон показал вполне стабильную работу. Корпуса и радиаторов для данного блока питания пока нет, возможно он пойдет в качестве замены в какой-нибудь сгоревший блок питания, пока просто отложу его в сторону до лучших времен. 

Выводы: данные ремонтные модули имеют низкую цену. Они просты в установке, не требуют наладки. Имеют множество разных защит, гальванически развязаны со вторичными цепями и безопасны для оборудования. Часто они могут быть просто спасением при ремонте блоков питания какого-либо уникального оборудования.

Для себя я заказал еще пару десятков, пусть будут про запас. 

P.S. сегодня нашел вот такой интересный фирменный блок питания, тоже от ноутбука и тоже его кто-то уже пытался ремонтировать.

Часть деталей в обвязке ШИМ отсутствует, остальное все на месте.

Это явно будет следующий кандидат на внедрение ремонтного модуля.


Вот еще несколько ссылок на такие же модули: ссылка1, ссылка2.

Более мощный модуль: ссылка.

Более мощный и более универсальный модуль с подстройкой напряжения: ссылка


 

 

 

 

Возможно, вам будет интересно:

Неисправности импульсного блока питания с шим. Быстрый ремонт импульсных блоков питания своими руками

При диагностике телевизионных устройств на отыскание неисправного компонента тратится несоизмеримо больше времени, чем на его замену, особенно, если поиск дефекта осуществляется своими силами, а не профессиональным телемастером. Безусловно, логичнее поручить ремонт специалисту, имеющему опыт и большую практику такого рода работ, но если есть желание, навыки обращения с паяльником и тестером, необходимая техническая документация в виде принципиальной электрической схемы, можно попытаться починить телевизор на дому самостоятельно.

Блок питания современного телевизора, будь то плазменная панель или ЖК, LED тв, представляет собой импульсный источник питания с заданным диапазоном выходных питающих напряжений и номинальной мощностью, отдаваемой в нагрузку по каждому из них. Плата питания может быть выполнена в виде отдельного блока, это характерно для приемников небольших диагоналей, или интегрирована в телевизионное шасси и располагаться внутри устройства.

Характерными признаками неисправности этого блока являются следующие:

Разберем схемотехнику стандартного блока питания и его типовые неисправности на примере телевизора ViewSonic N3260W.

Для полноценного просмотра схемы ее можно открыть в новом окне и увеличить, либо загрузить себе на компьютер или мобильное устройство

Первое, с чего следует начать, это тщательный визуальный осмотр платы на выключенном из сети аппарате. Для этого блок необходимо демонтировать из телевизора, отсоединив разъемы, и обязательно разрядить высоковольтный конденсатор в фильтре — C1. В блоках этой серии телевизоров довольно часто выходят из строя электролитические конденсаторы фильтров вторичных источников питания. Они легко диагностируются по вздутой верхней крышке. Все конденсаторы, внешний вид которых вызывает сомнение, необходимо сразу заменить.

Узел дежурного режима выполнен на IC2 (TEA1532A) и Q4 (04N70BF) с элементами стабилизации выходного напряжения 5V на оптроне IC7 и управляемом стабилитроне ICS3 EA1. Отсутствующее или заниженное напряжение на выходе этого узла, измеренное на конденсаторах CS22, CS28, свидетельствует о его неправильной работе. Опыт восстановления этого участка схемы свидетельствует, что более всего уязвимы элементы IC2, Q7, ZD4 и Q11, R64, R65, R67, которые требуют проверки и замены в случае необходимости. Работоспособность деталей проверяется тестером непосредственно на плате блока. При этом сомнительные комплектующие выпаиваются и тестируются отдельно, для исключения влияния на их показатели соседних элементов схемы. Микросхема IC2 просто подлежит замене.

При наличии на выходе схемы дежурного режима напряжения 5V на лицевой панели телевизора загорается красный светодиод. По команде с пульта или кнопки на лицевой панели телевизора блок питания должен перейти в рабочий режим. Эта команда — Power_ON — в виде высокого потенциала около 5V приходит на 1 вывод разъема CNS1, открывая ключи на QS4 и Q11. При этом на микросхемы IC3 и IC1 подаются питающие напряжения, переводя их в рабочий режим. На 8 вывод IC3 непосредственно с коллектора Q11, на 12 вывод IC1 через ключ Q9 после запуска схемы PFC. Работоспособность схемы коррекция коэффициента мощности (Power Factor Correction) косвенно определяется увеличением напряжения с 310 до 390 вольт, измеренным на конденсаторе C1. Если появились выходные питающие напряжения 12V и 24V, то и основной источник на IC3, Q1, Q2 функционирует в нормальном режиме. Практика показывает низкую надежность UCC28051 и LD6598D в критических условиях, когда ухудшается фильтрация вторичных источников, а их замена носит рядовой характер.

Обобщая опыт ремонта телевизионных блоков питания следует отметить, что самым слабым звеном в их составе являются конденсаторы фильтров, теряющие со временем свои свойства и номинальные параметры. Иногда неисправная «емкость» видна по вздутой крышке, иногда нет. Последствия плохой фильтрации выпрямленного напряжения могут быть самыми разными: от потери работоспособности самого источника питания, до повреждения элементов инвертора или сбоя программного обеспечения у микросхем памяти на материнской плате.

Самостоятельно разобраться во всех причинах и следствиях при ремонте блока питания современного телевизора, правильно его диагностировать без специальных инструментов и приборов весьма затруднительно. Наш совет в таких случаях — . Это не сильно ударит по карману при нынешних невысоких ценах на ремонт телевизионной техники и сэкономит время.

Обратите внимание! Маленькие картинки кликабельны.

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет .

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2 ), конденсаторов (С1, С2, С3, С4 ) и дросселя со встречной намоткой Tr1 . Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Основой импульсного преобразователя является ШИМ-контроллер . Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

В зависимости от причин и видов возникших поломок, могут потребоваться различные виды инструментов, обязательно необходимо иметь:

  • набор отверток с различными типами рабочих наконечников и размерами;
  • изоляционная лента;
  • пассатижи;
  • нож с острым лезвием;
  • паяльный аппарат, припой и флюс;
  • оплетка, предназначенная для удаления ненужного припоя;
  • тестер или ;
  • пинцет;
  • кусачки;

В наиболее сложных случаях, когда не удается установить точную причину неполадок, может понадобиться осциллограф.

Ремонт основных неисправностей


После осуществления диагностики, и выявления причин некорректной работы
, можно приступать к его ремонту:

  1. Скопившуюся внутри блока питания пыль можно просто устранить при помощи обычного бытового пылесоса.
  2. Если причина была в неисправном предохранителе , то необходимо приобрести новую деталь, которая имеется во всех соответствующих в магазинах. После этого, осуществляется удаление старого элемента и пайка нового предохранителя. Если эта последовательность действий не помогла, и блок питания так и не заработал, то остается отдать его в мастерскую для диагностики при помощи профессиональных видов оборудования, либо просто приобрести новое устройство.
  3. Если проблема была в конденсаторах или , то неисправность исправляется по такому же алгоритму: приобретаются новые детали и впаиваются в схему вместо старых элементов.
  4. Если проблема неисправности заключалась в дросселе , то его заменять необязательно, поскольку этот элемент можно починить по довольно легкой методике. Дроссель извлекается из блока питания, после чего его потребуется разобрать и начать сматывать обгоревший провод, при этом, важно внимательно считать сматываемые витки. Затем необходимо подобрать аналогичный провод с равным диаметром и намотать его вместо испорченного проводника, осуществляя такое же количество витков, которое было смотано. После осуществления этих действий, дроссель устанавливается обратно на свое место и, если все было сделано правильно, устройство должно функционировать.
  5. Термисторы ремонту не подлежат , их просто меняют на новые элементы, чаще всего это осуществляется вместе с предохранителями.
  6. Для профилактики , во время ремонта можно извлечь из устройства кулер и смазать машинным маслом, после чего установить его на место.
  7. Если на поверхности платы были обнаружены трещины, которые повредили соединение контактов, то их необходимо закрыть при помощи пайки. Таким же образом исправляется любое нарушение контактов в резисторе, индукторе или .

Устройство


структурная схема ИБП

Блоки питания подобного типа являются по своей сути разновидностью стабилизаторов напряжения, устройство которых выглядит следующим образом:

  1. Сетевой выпрямитель является одним из основных элементов, который необходим для сглаживания возникающих пульсаций. Также, он требуется для поддержания заряда фильтрующих конденсаторов во включенном режиме и непрекращающейся передаче электроэнергии в нагрузку, если напряжение в главной питающей сети упало ниже допустимых для работы параметров. В его конструкцию входят особые разновидности фильтров, позволяющие подавлять большинство возникающих помех.
  2. Преобразователь напряжения , основными составными частями которого являются конвертор и контроллер управляющего устройства.
  3. Конвертор также имеет сложную структуру, в которую входит трансформатор импульсного типа, инвертор, ряд выпрямителей и стабилизаторов, которые обеспечивают вторичную подпитку и снабжение нагрузки напряжением. Инвертор необходим для изменения формы постоянного выходного напряжения, которое после процесса преобразования становится переменным напряжением с прямоугольной формой. Наличие трансформатора, функционирующего на высоких частотах со значением выше 20 кГц, обусловлено необходимостью поддержания рабочего состояния инвертора в автогенераторном режиме, а также получения напряжения, которое используется для подпитки контроллера, нагрузочных цепей и ряда защитных схем.
  4. Контроллер выполняет функции по управлению транзисторным ключом, который входит в состав инвертора. Помимо этого, он стабилизирует параметры напряжения, подаваемого на нагрузку, и защищает устройство в целом от возможных перегрузок и нежелательных перегревов. Если в блоке питания имеется дополнительная функция, обеспечивающая дистанционное управление устройством, то за ее реализацию также отвечает контроллер.
  5. Контроллер блоков питания подобного типа состоит из целого ряда функциональных узлов, таких как источник, обеспечивающий его бесперебойным питанием; защитная система; модулятор длительности импульсов; логическая схема для обработки сигналов и формирователь особого вида напряжения, предназначенного для поступления на транзисторы, располагающие в конверторе.
  6. В большинстве современных моделей, присутствуют оптроны, используемые в качестве развязки. Они постепенно заменяют собой трансформаторные разновидности развязки, это происходит благодаря тому, что они занимают меньше свободного пространства и обладают возможностью передачи сигналов в гораздо более широком частотном спектре, но при этом требуют значительного количества промежуточных усилителей.

Основные неисправности и их диагностика


Иногда импульсные блоки питания ломаются и их неисправности могут носить самый разный характер, но существует ряд схожих случаев, на основе которых был составлен список наиболее часто встречающихся видов неисправностей:

  1. Нежелательное попадание внутрь устройства пыли, особенно строительной.
  2. Выход из строя предохранителя , чаще всего эта проблема вызывается другой неисправностью – выгоранием диодного моста.
  3. Отсутствие выходного напряжения при работоспособном и исправном предохранителе. Данная проблема может быть вызвана различными причинами, наиболее часто ими является поломка выпрямительного диода, либо перегорание фильтрационного дросселя в низковольтной области схемы.
  4. Выход из строя конденсаторов , чаще всего это случается по следующим причинам: потеря емкости, приводящая к плохому качеству фильтрации напряжения на выходе и повышению уровня рабочих шумов; чрезмерное увеличение параметров последовательного сопротивления; короткое замыкание внутри устройства или разрыв внутренних выводов.
  5. Нарушение соединений контактов , которое чаще всего вызывается трещинами в плате.

Если блок питания по каким-либо причинам вышел из строя, то перед самостоятельным проведением любых работ по устранению неполадок необходимо провести тщательную диагностику, чтобы выявить их причины.

В зависимости от разных ситуаций, эта процедура имеет свои особенности:

  1. Осмотреть блок питания в целом на наличие скопившейся в нем пыли, которая может быть причиной его некорректной работы.
  2. Проверить главную плату на наличие на ее поверхности трещин.
  3. Проведение визуального осмотра основной платы блока питания позволяет определить состояние предохранителей. Заметить поломку будет достаточно просто, этот элемент устройства вздуется или полностью разрушится в случае пробоя. Также рекомендуется сразу провести комплексную проверку силового моста, конденсатора фильтра и всех силовых ключей.
  4. Если предохранитель находится в исправном состоянии , то необходимо проверить дроссель и электролитные конденсаторы, неисправности также элементарно выявляются визуальным методом по возникшим деформациям либо вздутиям. Сложнее осуществляется диагностика диодного моста или отдельных диодов, их потребуется выпаять из схемы и отдельно проверить при помощи тестера или мультиметра.
  5. Проверка конденсатором также осуществляется визуальным методом, поскольку возникшие перегревы могли расплавить электролит и разрушить их корпусы, или при помощи специального прибора, предназначенного для измерения уровня их емкости, если внешних неисправностей выявлено не было.
  6. Провести осмотр термистора , который подвержен частым поломкам из-за скачков напряжения или перегревов. Если его поверхность стала черной, а сам он разрушается от легких прикосновений, значит, причина неполадок именно в нем.
  7. Проверить контакты всех оставшихся элементов (резистора, трансформатора, индуктора) на возможные нарушения соединения.


Дополнительно при осуществлении диагностики или ремонта импульсных блоков питания рекомендуется следовать следующим советам:

  1. Осуществление самостоятельного ремонта подобных устройств является довольно сложным процессом, который требует определенных навыков и знаний, даже если в наличии имеются подробные инструкции. Поэтому, если отсутствует уверенность в своих силах, лучше обратиться к квалифицированному мастеру, чтобы не нанести блоку питания еще более серьезные поломки.
  2. Перед началом осуществления любых действий с импульсным блоком питания , его необходимо отключить от электросети. При этом, нажатие соответствующей клавиши на самом устройстве не гарантирует полной безопасности во время ремонта, поэтому необходимо осуществить отключение силового шнура.
  3. После того, как блок питания был полностью обесточен, необходимо выждать около 10-15 минут перед началом каких-либо работ. Это время требуется для полной разрядки конденсаторов на плате.
  4. Если требуется проведение паяльных работ , то их необходимо осуществлять крайне осторожно, поскольку перегрев места пайки может вызвать отслоение дорожек, а также существует риск их замыкания припоем. Лучше всего, для этих целей подходят паяльные аппараты с параметром мощности, находящимся в диапазоне 40-50Вт.
  5. Сбор блока питания после окончания ремонта, допускается производить только после внимательного осмотра мест пайки, в частности, требуется проверка замыкание припоем между дорожками.
  6. Рекомендуется обеспечить импульсному блоку питания качественную вентиляцию и охлаждение, которые защитят его загрязнений и перегревов, что минимизирует возможные поломки. Также, не допускается перекрытие вентиляционных отверстий на устройстве.


Промышленные блоки питания нередко выходят из строя, иногда даже и высококачественные и дорогостоящие образцы. В таком случае обычный человек чаще всего выбрасывает и приобретает новое, но причина поломки может быть незначительной, а для радиолюбителя такие устройства представляют немалый интерес в плане изучения и возможности возвращения работоспособности. При том, что зачастую выбрасываются устройства, стоящие немало денег.

Предлагаем пользователям рассмотреть простой ремонт стабилизированного блока питания импульсного типа, основанного на обратноходовом генераторе с обратной связью по току и напряжению, что кроме стабилизации позволяет осуществить и защиту от перегрузки. Блок питается от сети переменного тока с напряжением от 100 до 240 Вольт частоты 50/60 Герц и выдаёт постоянное напряжение 12 Вольт 2 Ампер.

Описываемая здесь неисправность довольно часто встречается в блоках питания указанного типа и имеет следующие симптомы: напряжение на выходе периодически появляется и пропадает с определённой частотой, что визуально наблюдается как вспышки и погасания светодиода индикатора выходного питания:

Если же индикаторный светодиод не установлен, то подобный симптом можно обнаружить стрелочным вольтметром, подключив его к выходу блока питания. При этом стрелка вольтметра периодически будет отклоняться до некоторого значения и возвращаться обратно (может не до конца). Такое явление наблюдается вследствие срабатывания защиты устройства, при превышении напряжения или тока в определённых точках выше допустимого.

Это может произойти как и при коротком замыкании, так и при разрыве цепи. Короткое замыкание чаще всего бывает во время пробоя конденсаторов или полупроводниковых радиоэлементов, таких как диоды или транзисторы. Обрыв же может наблюдаться как у полупроводников, так и резисторов. В любом случае в первую очередь следует визуально осмотреть печатную плату и установленные на ней радиоэлементы.

Диагностика блока питания перед ремонтом

Лучше всего проводить визуальную диагностику с помощью увеличительной лупы:


На плате был обнаружен подгоревший резистор с позиционным номером R18, при прозвонке которого выявился его обрыв и нарушение контакта:

Ремонт блока питания пошагово с фото

Сгорание резистора могло произойти при долговременном превышении на нём номинальной мощность рассеивания. Сгоревший резистор был выпаян, а его посадочное место было зачищено:


Для замены резистора нужно узнать его номинал. Для этого был разобран заведомо исправный блок питания. Указанный резистор оказался с сопротивлением 1 Ом:


Далее по цепи этого резистора был обнаружен пробитый конденсатор с позиционным номером C6, прозвонка которого показала его низкое сопротивление, а следовательно и непригодность для дальнейшего использования:


Как раз пробой этого конденсатора и мог стать причиной сгорания резистора и дальнейшей неработоспособности всего устройства в целом. Этот конденсатор также был удалён со своего места, вы можете сравнить, насколько он мал:


Пробитый конденсатор соизмерим со спичечной головкой, вот такая маленькая деталь стала причиной поломки блока питания. Рядом с ним на плате, параллельно ему, установлен второй такой же конденсатор, который уцелел. К сожалению, конденсатора для замены не оказалось и все надежды легли на оставшийся второй конденсатор. А вот на место сгоревшего резистора был подобран резистор с нужным сопротивлением в 1 Ом, но не поверхностного монтажа:


Этот резистор был установлен на посадочное место сгоревшего, места пайки были зачищены от остатков флюса, а посадочное место пробитого конденсатора было покрыто лаком для лучшей изоляции и устранения возможности воздушного пробоя этого места:


После пробного включения блок питания заработал в нормальном режиме и индикаторный светодиод перестал мигать:


Впоследствии установленный резистор всё же был заменён на резистор поверхностного монтажа и на месте удалённого конденсатора был нанесён второй слой лака:


Конечно идеальным было бы установить и второй конденсатор, но даже и без него блок питания работает нормально, без постороннего шума и мерцания светодиода:


После включения адаптера в сеть был произведён замер выходного напряжения, оно оказалось в пределах нормы, а именно 11,9 Вольт:


На этом ремонт устройства можно считать завершённым, так как ему была возвращена работоспособность и его и дальше можно применять по назначению. Стоит отметить, что блок выполнен по весьма хорошей схеме, которую, к сожалению, не представилось возможным зарисовать.

На данный момент по быстрому внешнему осмотру можно выделить хороший сетевой и выходной фильтр, продуманную схемотехнику управления силовым транзистором и хорошую стабилизацию выходного напряжения. Физическое исполнение устройства тоже на высоком уровне, монтаж жёсткий и ровный, пайка чистая, использованы прецизионные радиоэлементы. Всё это позволяет получить устройство высокого качества с точно заданными параметрами и характеристиками.

  • Читайте больше о
Из общих рекомендаций по поиску неисправностей, в первую очередь следует осуществить визуальный осмотр, обращая внимание на потемневшие участки платы или повреждённые радиоэлементы. При обнаружении сгоревшего резистора или предохранителя обязательно нужно прозвонить ближайшие детали, непосредственно соединённые с визуально повреждённой.

Особенно опасны полупроводники и конденсаторы в высоковольтных цепях, которые в случае пробоя могут повлечь за собой необратимые последствия для всего устройства при многократном его включении без выявления полного списка повреждённых компонентов. При правильной и внимательной диагностике в большинстве случаев всё заканчивается хорошо и поломку удаётся устранить заменой повреждённых деталей на такие же исправные или близкие по номиналу и параметрам.

Видеоинструкция по ремонту импульсного блока питания:

Импульсные блоки питания — самый ненадежный узел в современных радиоустройствах. Оно и понятно — огромные токи, большие напряжения. Через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.

Большинство производителей применяют простые схемы импульсного блока питания, оно и понятно. Наличие нескольких уровней защиты часто лишь усложняет ремонт и практически не влияет на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а при ремонте приходится долго разбираться, что это за детали и зачем они нужны.

Конечно, каждый импульсный блок питания имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими параметрами, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.

Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех импульсных блоков питания практически одинаков, отличие только в схемных решениях и типах применяемых деталей.

  • Как исправить ?
Мы рассмотрим методику, выработанную многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.

Итак, пошаговая инструкция ремонт импульсного блока питания:

  1. Включаем телевизор, убеждаемся, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в блоке питания. На всякий случай надо будет проверить напряжение питания строчной развертки.
  2. Выключаем телевизор, разбираем его.
  3. Проводим внешний осмотр платы телевизора, особенно участка, где размещен блок питания. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и другое. Надо будет в дальнейшем проверить их.
  4. Внимательно смотрим пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.
  5. Проверяем цепь питания: прозваниваем шнур питания, предохранитель, выключатель питания (если он есть), дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предохранитель не сгорает — просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.
  6. Проверяем остальные детали блока — диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.
  7. Смотрим, нет ли замыканий во вторичных цепях питания — для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.
Выполнив все проверки и заменив неисправные детали, можно заняться проверкой под током. Для этого вместо сетевого предохранителя подключаем лампочку 150–200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила блок питания в случае, если неисправность не устранена. Отключите размагничивающее устройство.

Включаем. На этом этапе возможны три варианта:

  1. Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку — для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150–160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим. В некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть) или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
  2. Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что импульсный блок питания не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280–300 Вольт. Если его нет — иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено, может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
  3. Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните — чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.
На 95 % неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.Не выбрасывайте повреждённые устройства, восстанавливайте их. Конечно иногда дешевле и проще купить новое, но ремонт — это полезное и увлекательное занятие, позволяющее развить навыки восстановления и конструирования своих собственных устройств.

Делаем импульсный блок питания на UC3842 своими руками

При создании какого-либо устройства может возникнуть проблема создания простого и надежного источника питания. Один из вариантов — импульсный источник питания.

Сегодня много простых схем импульсных блоков питания на минимальном количестве не дефицитных элементов.

В статье, ниже предлагаем описание одного из вариантов простого импульсного блока питания на недорогой микросхеме UC3842.

Схема реализована на основе микросхемы UC3842. Эта микросхема получила широкое распространение, начиная со второй половины 90-х годов. На ней реализовано множество различных источников питания для телевизоров, факсов, видеомагнитофонов и другой техники. Такую популярность UC3842 получила благодаря своей малой стоимости, высокой надежности, простоте схемотехники и минимальной требуемой обвязке.

Принципиальная схема импульсного источника питания на мс UC3842 (КА3842)

На входе блока питания, расположен сетевой выпрямитель напряжения, включающий плавкий предохранитель FU1 на ток 5 А, варистор Р1 на 275 В для защиты блока питания от превышения напряжения в сети, конденсатор С1, терморезистор R1 на 4,7 Ом, диодный мост VD1…VD4 на диодах FR157 (2 А, 600 В) и конденсатор фильтра С2 (220 мкФ на 400 В). Терморезистор R1 в холодном состоянии имеет сопротивление 4,7 Ом, и при включении питания ток заряда конденсатора С2 ограничивается этим сопротивлением. Далее резистор разогревается за счет проходящего через него тока, и его сопротивление падает до десятых долей ома. При этом он практически не влияет на дальнейшую работу схемы.

Резистор R7 обеспечивает питание ИМС в период запуска блока питания. Обмотка II трансформатора Т1, диод VD6, конденсатор С8, резистор R6 и диод VD5 образуют так называемую петлю обратной связи (Loop Feedback), которая обеспечивает питание ИМС в рабочем режиме, и за счет которой осуществляется стабилизация выходных напряжений. Конденсатор С7 является фильтром питания ИМС. Элементы R4, С5 составляют времязадающую цепочку для внутреннего генератора импульсов ИМС.

Резистивный делитель R2, R3 задает напряжение, вырабатываемое петлей обратной связи, на входе усилителя ошибки, другими словами, определяет напряжение стабилизации. Элементы R5, С6 необходимы для компенсации. АЧХ усилителя ошибки. Резистор R9 — токоограничивающий, резистор R13 защищает полевой транзистор VT1 в случае обрыва резистора R9. Резистор R11 является измерительным для определения тока через транзистор VT1. Элементы R10, C10 образуют интегрирующую цепочку, через которую напряжение с резистора R11, являющееся эквивалентом тока через транзистор VT1, поступает на второй компаратор ИМС. Элементы VD7, R8, С9, VD8, С11 и R12 формируют требуемую форму импульсов, устраняют паразитную генерацию фронтов и защищают транзистор от мощных импульсов напряжения.

Трансформатор преобразователя намотан на ферритовом сердечнике с каркасом ETD39 фирмы Siemens+Matsushita. Этот набор отличается круглым центральным керном феррита и большим пространством для толстых проводов. Пластмассовый каркас имеет выводы для восьми обмоток. Намоточные данные трансформатора приведены в таблице, ниже:

Сборка трансформатора осуществляется с помощью специальных крепежных пружин. Следует обратить особое внимание на тщательность изоляции каждого слоя обмоток с помощью лакоткани, а между обмотками I, II и остальными обмотками следует проложить несколько слоев лакоткани, обеспечив надежную изоляцию выходной части схемы от сетевой. Обмотки следует наматывать способом «виток к витку», не перекручивая провода. Естественно, не следует допускать перехлеста проводов соседних витков и петель.

Выходная часть блока питания представлена на рисунке, ниже. Она гальванически развязана от входной части и включает в себя три функционально идентичных блока, состоящих из выпрямителя, LC-фильтра и линейного стабилизатора. Первый блок — стабилизатор на 5 В (5 А) — выполнен на ИМС линейного стабилизатора А2 SD1083/84 (DV, LT). Эта микросхема имеет схему включения, корпус и параметры, аналогичные МС КР142ЕН12, однако рабочий ток составляет 7,5 А для SD1083 и 5 А для SD1084.

Второй блок — стабилизатор +12/15 В (1 А) — выполнен на ИМС линейного стабилизатора A3 7812 (12 В) или 7815 (15 В). Отечественные аналоги этих ИМС — КР142ЕН8 с соответствующими буквами (Б, В), а также К1157ЕН12/15. Третий блок — стабилизатор -12/15 В (1 А) — выполнен на ИМС линейного стабилизатора. А4 7912 (12 В) или 7915 (15 В). Отечественные аналоги этих ИМС- К1162ЕН12Д5.

Резисторы R14, R17, R18 необходимы для гашения излишнего напряжения на холостом ходу. Конденсаторы С12, С20, С25 выбраны с запасом по напряжению ввиду возможного возрастания напряжения на холостом ходу. Рекомендуется использовать конденсаторы С17, С18, С23, С28 типа К53-1А или К53-4А. Все ИМС устанавливаются на индивидуальные пластинчатые радиаторы с площадью не менее 5 см2.

Конструктивно блок питания выполнен в виде одной односторонней печатной платы, установленной в корпус от блока питания персонального компьютера. Вентилятор и входные сетевые разъемы используются по назначению. Вентилятор подключен к стабилизатору + 12/15 В, хотя возможно сделать дополнительный выпрямитель или стабилизатор на +12 В без особой фильтрации.

Все радиаторы установлены вертикально, перпендикулярно выходящему через вентилятор воздушному потоку.

К выходам стабилизаторов подключены по четыре провода длиной 30…45 мм, каждый комплект выходных проводов обжат специальными пластиковыми зажимами-ремешками в отдельный жгут и оснащен разъемом того же типа, который используется в персональном компьютере для подключения различных периферийных устройств.

Параметры стабилизации определяются параметрами ИМС стабилизаторов. Напряжения пульсаций определяются параметрами самого преобразователя и составляют примерно 0,05% для каждого стабилизатора.

Автор: Семьян А.П.



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:
  • Пробник для проверки цифровых устройств.
  • В радиолюбительской практике часто бывает необходимо про­верить состояние сигнала в различных участках устройства. В большинстве случаев это делают с помощью осциллографа. Но такой прибор не всегда имеется под рукой, да и приобрести его под силу не каждому начинающему радиолюбителю. Опре­деленную помощь при отсутствии осциллографа могут оказать различные пробники. Например, такой, о котором рассказыва­ется в предлагаемой статье. Подробнее…

  • Всё про автоматическую коробку передач
  • Не так давно на современных легковых автомобилях высокого класса АКПП (автоматическая коробка переключения передач) с гидротрансформатором и гидроприводными фрикционами стала дополнятся двумя новыми функциями: функция Tiptronic (функция мгновенного переключения от легкого прикосновения к рычагу АКПП) и функция DSP (функцией адаптивного программного управления процессами переключения).

    Эти функции реализуются с применением средств электронного автоматического управления и придают АКПП совершенно новое свойство — способность адаптироваться к условиям движения и манере водителя управлять автомобилем.

    Подробнее…

  • ИСТОЧНИК ПИТАНИЯ С ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКОЙ на LT1070.
  • Существуют схемы усилителей НЧ, пере­датчиков, других устройств, которые требуют питания не только от двуполярного источника, но и от двух гальванически развязанных источ­ников, не имеющих соединения с «землей» или общих связанных цепей. Организовать питание такого устройства в стационарных условиях весьма просто, так как источником питания служит электросеть, а значит будет силовой или импульсный трансформатор. Достаточно сделать две вторичные обмотки, не соединен­ные с другими цепями, и переменные напряже­ния с них подать на отдельные независимые выпрямители. Подробнее…


Популярность: 9 399 просм.

Ремонт блока питания видеокамеры своими руками, мастер класс с фото

Прочитав этот мастер-класс с пошаговыми фото вы научитесь, как отремонтировать блок питания видеокамеры своими руками.

Ремонт питания блока видеокамеры своими руками, мастер-класс с фото

Недавно я рассказывал о замене жёсткого диска видеорегистратора и о ремонте наружной видеокамеры.

Если в вашей системе видеонаблюдения погасла камера, то для начала попробуйте подключить её к другому источнику питания. Довольно часто, как и в этом случае, неисправность кроется именно в блоке питания.

Перед вами — импульсный блок питания для видеокамеры с выходным напряжением 12 вольт и силой тока 1 ампер.


С разборкой корпуса прибора повезло — он оказался не склеенным, а зафиксированным двумя защёлками и саморезом, головка которого закрыта наклейкой с напечатанными на ней данными БП.

Итак, корпус вскрыт, сгоревших дорожек, вздутых конденсаторов и прочих «прелестей» не видно, но, тем не менее, это не предвещает лёгкого ремонта блока питания видеокамеры.

Красным прямоугольником выделен предохранитель — первая из обнаруженных перегоревшая деталь.

Вверху в зелёном прямоугольнике — полевой транзистор, при проверке оказался исправным.

Внутри красного овала — электролитический конденсатор 22 мкФ 400 В. При прозвонке без выпаивания из схемы никаких признаков своего присутствия он не показал — скорее всего, полная или почти полная потеря ёмкости.

Внизу в зелёном прямоугольнике — четыре диода выпрямительного моста. Скажу сразу, что при проверке их лучше выпаять, т.к. в процессе ремонта новый предохранитель снова сгорел, а имевшие утечку, но не вышедшие до конца из строя два диода были тут же пробиты — при прозвонке в схеме сложно добиться точных результатов измерений и подозрительные детали не всегда могут быть выявлены.

Если под рукой нет нужного предохранителя, то его можно заменить медным проводом диаметром около 1 мм. Для сравнения — это средняя толщина человеческого волоса.

Проверка показала, что конденсатор полностью потерял свою ёмкость. Неисправную деталь меняем на аналогичную с рабочим напряжением не меньше 400 вольт.

Собираем блок и подключаем его к сети. 

Чтобы избежать в случае не выявленных неисправностей глобальных неприятностей, подключать прибор к сети следует через последовательно соединённую лампу накаливания напряжением 220 вольт и мощностью порядка 40 Вт. 

Если не считать инцидента с двумя пробитыми диодами, то ремонт прошёл вполне удачно.

Остаётся только предупредить, что работы при включённом блоке нужно проводить крайне осторожно, т. к. некоторые его детали не имеют гальванической развязки от сети, и случайное прикосновение к ним может вызвать поражение током.

Самодельный импульсный блок питания 12 вольт 2 ампера


Задумал я сделать импульсный блок питания на 12V 4A своими руками, выбрал схему, посоветовался с людьми на форуме, спаял. В результате отладки выяснилось, что нагрузку 4А, данный самодельный блок питания, не сможет держать, но с 2А он справится отлично.
За основу взята схема дежурки пользователя Starichok51. Она получила дополнения, например, обзавелась фильтрами, а также, претерпела ряд изменений номиналов, позволяющих сделать блоки питания более мощным.

Трансформатор для данного импульсного блока питания  я использовал с сердечником EI-28. У боковых частей E части было полное примыкание к I части, а у средней – имелся заводской зазор в 0,65 мм.  Трансформатор пришлось перематывать несколько раз.
В первый раз обмотки были следующими: I – 46 витков (Ø – 0. 36 мм), I I – 5 витков (Ø – 1 мм х 3), обратная связь – 4 витка (Ø – 0.22 мм). Индуктивность первичной обмотки — 490 uH. Вторичная обмотка и ОС находились между двумя половинами первичной. При этом был избыточный нагрев транзистора даже при малых нагрузках, напряжение ОС – выше необходимого.
Во второй раз перемотал трансформатор по совету пользователя Starichok51, из расчета на 12В 4А: I – 36 витков (Ø – 0.36 мм), I I – 4 витков (Ø – 1 мм х 2), обратная связь – 2 витка (Ø – 0.36 мм). Индуктивность первичной обмотки – порядка 250 uH. Как и в первом случае, первичная обмотка разделена на две половины. Блок питания при таких обмотках запускался в узком диапазоне подбираемых деталей. Но даже в тот момент, когда он запускался, его работа была нестабильна и «прожорливой».
В третий раз перемотал трансформатор по своему усмотрению. Точнее, взял имеющийся кусок провода Ø 0.36 мм и намотал его весь. Получилось, что ко второй половине первичной обмотке добавил еще 26 витков. В сумме – первичная обмотка составляла 62 витка, проводом Ø – 0. 36 мм. Индуктивность первичной обмотки – ориентировочно составила 850 uH. Блок питания начал вести себя более-менее адекватно.
Для достижения максимальной стабильности и производительности, начал подбирать номиналы R9+C5, R2, C7+R11. Те, на которых я остановился, указаны на схеме. Также, вместо транзистора C5027, запаивал C5763. У последнего оказался нагрев без радиатора на 2-3 градуса ниже. В качестве радиатора использовал алюминиевую пластину, толщиной 2 мм и площадью 15 см2, изогнутую таким образом, чтобы она поместилась в корпусе и не контактировала с остальными деталями. Транзистор посажен на теплопроводящую пасту.
L1 сделал самостоятельно. Его конструкцию подсмотрел из АТ компьютерного блока питания. В оригинальном исполнение кольцо имело внешний диаметр 17 мм, а ширину – 8 мм, обмотки имели по 18 витков Ø – 0.5 мм. Я подобрал кольцо, от материнской платы, похожее по габаритам, а в качестве проводов использовал часть витой пары. L2 – готовый дроссель (выпаянный не помню откуда). Сердечник L2 в высоту 20мм, Ø – 5 мм, обмотка – 18 витков Ø – 1 мм, индуктивность 3,9uH.
 

Привожу фотографию первой версии печатной платы с расположенной на ней элементами. Т.к. в процессе отладки, схема претерпела изменения, разводку печатной платы подправил под конечный результат. Разводку печатной платы данного самодельного блока питания 12V 2A в формате *.lay6 можно скачать ЗДЕСЬ. Печатная плата разводилась под имеющийся в наличии корпус. Для дополнительного охлаждения элементов схемы, в корпусе просверлил вентиляционные отверстия.
Выражаю свою благодарность пользователям Starichok51 и Serj66610, которые принимали активное участие в процессе обсуждения отладки данного блока питания.

Ремонт блока питания своими руками в домашних условиях

Рубрика: Уроки по ремонту техники Опубликовано 05.02.2020   ·   Комментарии: 0   ·   На чтение: 3 мин   ·   Просмотры:

Post Views: 581

Очень часто у бытовой техники и компьютеров выходят из строя блоки питания. Перегрузка, несоблюдение режима работы, попадание молнии, влаги и удары по корпусу прибора. Тем не менее, его можно отремонтировать, если неисправность не критичная.

Типичные неисправности у блоков питания

Самая популярная это вздутые конденсаторы. Обычно такое происходит из-за перегрева корпуса или платы. Далее, как не странно, идет поломанный шнур питания. Да да, именно шнур. Сначала попробуйте поменять его. Третье место занимают полупроводники. Обычно это транзисторы или диоды, они не выдерживают резких перегрузок, и наступает тепловой пробой.

Что потребуется для ремонта

Для ремонта пригодится мультиметр, паяльник, лампочка и отвертка. Лампочка нужна в качестве предохранителя, ее можно подключить между сетевым проводом и платой, если вы не уверены в результате ремонта.

Рассмотрим несколько случаев.

DVD плеер и электролиты

Классическая неисправность блока питания.


Из симптомов — не включается блок питания

Внешний осмотр и ремонт

Сразу при внешнем осмотре выявляются «вспухшие» электролитические конденсаторы. Судя по их внешнему виду и остаткам канифоли их ставили на место вышедших из строя «родных» конденсаторов.

Замена неисправных электролитов на новые.

Почему нужно менять именно на новые, а не с доноров? Электролитические конденсаторы имеют ряд параметров, которые со временем эксплуатации теряют свои первоначальные значения. Например, емкость, ток утечки и активное сопротивление. Старые детали — не новые.  


DVD запустился.

Почему конденсаторы высыхают

Что же может быть изначальной причиной выхода из строя электролитов? Их много. Начиная с банальных внешних условий (что-то ставили на корпус, перегрев) заканчивая внутренними неисправностями (высокая частота пульсаций, недостаточная емкость, ESR).

Также причиной выхода из строя может быть выработка ресурса работоспособности компонента. Химические источники эл тока не рассчитаны на долгий срок эксплуатации, особенно если это касается бытовой техники.

Аналогичные случаи в ремонтах мониторов.

Ремонт блока питания моноблока

Блок питания моноблока Lenovo ThinkCentre m71z.

Моноблок не включался, внешне повреждений не имел, однако блок питания не включается. После вскрытия оказалось, что у блока питания отсутствовало дежурное напряжение +5В на блоке питания.

И сразу же визуально выявляется обгоревший резистор, у которого явно не хватает 1 вывода. Черные следы на радиаторе. Фото сделано после его демонтажа.

Внешний осмотр и ремонт

Судя по всему, он служил перемычкой от одной части платы к другой. Для дальнейшей диагностики было принято решение включить блок питания в сеть через лампочку 40 Вт.

Лампочка сразу вспыхнула. Это значит, что в схеме есть короткое замыкание и резистор не выдержал. Но какой большой ток мог повредить его?

К этому элементу по печатной плате напрямую идет защитный диод, который так же оказался неисправен так как звонился накоротко. Дорожка от диода идет прямо в район мощного полевого транзистора.

Чтобы убедиться в неисправности транзистора, необходимо его выпаять из платы (или же просто оплеткой убрать припой с контактов) тем самым будет исключено влияние схемы на измерения.


Выяснилось, что и полевик неисправен. Нужно подобрать все детали аналогичными неисправным.

Чтобы заменить полевой транзистор — нужно выпаять вот этот здоровый дроссель.

Результат ремонта

И наконец, появляются дежурные 5В. Замкнутые 5В на землю дали и 12В. Однако. моноблок отказался включаться. Всему виной вышедший из строя северный мост. Коллеги по работе поменяли его и моноблок запустился. Видимо, блок питания потянул за собой и мост.

Когда ремонт нерентабелен

Например, если плата имеет значительные повреждения или деформацию. Еще не стоит забывать о том, что импульсные трансформаторы починить довольно сложно. Его придется перематывать.

Поэтому, есть два варианта: или брать с донора или покупать новый. А цена нового трансформатора может стоит до половины нового блока питания.

Post Views: 581

Блок питания ж/к телевизора

Блок питания современного телевизора (ТВ), независимо от марки его дисплея, представляет собой импульсный преобразователь напряжения с фиксированными выходными характеристиками. Их нормируемые значения определяют штатный режим работы всего устройства в целом. В случае появления каких-либо неисправностей по их изменению можно судить о характере поломки.

Устройство и принцип работы

Плата импульсного блока питания (ИБП) нередко выполняется в виде отдельного электронного модуля, что является характерной чертой ТВ с небольшой диагональю экрана. В более габаритных моделях она интегрируется в шасси приемника и находится внутри его конструкции (смотрите фото ниже).

В плату БП входят следующие обязательные составляющие:

  • Импульсный трансформатор.
  • Фильтр сетевого питания, собранный на основе дросселей и конденсаторов.
  • Узлы дежурного и рабочего режима.
  • Модуль защиты от перегрузок.
  • Элементы охлаждения (радиаторы).

Принцип работы БП заключается в приведении сетевого напряжения к виду, удовлетворяющему требованиям энергоснабжения основных электронных узлов телевизора (включая его матрицу).

Дополнительная информация: Величина и форма питающих потенциалов должны соответствовать рабочим напряжениям и их эпюрам, приводимым в специальных таблицах.

Иногда они указываются непосредственно на электрической схеме конкретного устройства.

Характерные неисправности и их выявление

Типовые неисправности блока питания рассмотрим на примере телевизора с ж/к экраном марки «ViewSonic N3260W». Внешние их проявления выражаются в следующих отклонениях от нормальных режимов работы воспроизводящего устройства:

  • При нажатии на кнопку «Сеть» телевизор совсем не включается.
  • Индикатор светится, но ТВ не переходит из дежурного в рабочий режим.
  • Изображение появляется только спустя некоторое время.
  • Включить телевизор удается лишь через несколько попыток, после чего появляются нормальное изображение и звук.

Первое, с чего начинается обследование при обнаружении большинства из этих неисправностей – это тщательный визуальный осмотр платы БП при полностью отключенном от сети устройстве. Если ничего подозрительно не обнаружено – следует перейти к более подробному анализу причин их появления. Для этого потребуется демонтировать питающий модуль из корпуса телевизора, отсоединив прежде все разъемы.

Затем необходимо разрядить высоковольтный фильтрующий конденсатор цепей питания, остаточное напряжение на котором опасно для человека. В силовых блоках большинства моделей ТВ, включая эту, причинами неисправности чаще всего являются:

  • Выход из строя электролитов вторичных питающих цепей.
  • Некачественная пайка отдельных составляющих платы (дросселей и полупроводниковых элементов, в частности).
  • Выгорание силовых (ключевых) транзисторов.
  • Обрыв или пропадание контакта в подводящих разъемах.

Обратите внимание: Убедиться в том, что электролиты состарились и вышли из строя удается по их вздутой крышке (фото сверху).

Последствия плохой фильтрации напряжения вследствие их неисправности бывают самыми различными. Они проявляются либо в полной потере работоспособности БП, либо в связанных с этим повреждениях элементов инвертора. Нередко они приводят к сбою программного обеспечения в чипах памяти материнской платы и необходимости его обновления.

Остальные неисправности также выявляются визуально. При выгорании транзисторов, например, в районе их ножек явно различим черный налет гари. Периодическое пропадание контакта в разъемах определяется по его восстановлению при легком покачивании из стороны в сторону. Для проведения такой проверки потребуется тестер, включенный в режим «Прозвонка». В остальных случаях неисправности выявляются по пропаданию нужных напряжений на выходе (или отклонению их от нормы).

Прядок диагностирования и устранения неисправностей

Общий порядок диагностирования и устранения обнаруженных неисправностей сводится к следующей последовательности ремонтных операций:

  1. Все конденсаторы, внешний вид которых вызывает хоть какие-то подозрения, необходимо сразу же заменить.
  2. При нарушении работы блока дежурного режима следует проверить напряжения 5 Вольт на управляемом стабилитроне.
  3. Если на выходе этого узла напряжение на фильтрующих конденсаторах отсутствует или его значение сильно занижено – это значит, что нарушен режим работы.
  4. Для его восстановления потребуется убедиться в исправности всех линейных элементов схемы.

Дополнительная информация: Их работоспособность проверяется с помощью того же тестера без полного выпаивания из платы блока.

Для этого достаточно выпаять только один контакт «подозрительного» резистора или конденсатора. Выявленные сгоревшие элементы удаляются из платы полностью и заменяются новыми. При обнаружении некачественной пайки следует залудить это место с флюсом, а затем убедиться, что контактная ножка надежно закреплена в зоне фиксации.

О восстановлении работоспособности схемы дежурного режима свидетельствует появление напряжения 5 Вольт, а также загорание красного светодиода на лицевой панели телевизора (фото сверху).

При каждой очередной замене других «подозрительных» элементов следует сразу же проверять произошедшие на выходе БП изменения. О восстановлении функции рабочего режима, например, судят по нормальному включению телевизора и появлению на его экране изображения и звука.

В заключение обзора отметим, что выявление и устранение неисправностей импульсных блоков питания, входящих в состав современных телевизионных приемников – это совсем непростая процедура. Она требует наличия специальной измерительной аппаратуры и некоторых навыков в ремонте электронной техники. Если вы затрудняетесь самостоятельно диагностировать причину отказа телевизора – лучше всего пригласить телемастера-профессионала. При нынешней, сравнительно невысокой стоимости на ремонт телевизионной техники, это позволит сэкономить время и не расходовать попусту свои силы.

Наши группы ВКонтакте и Одноклассниках

Заходите на прикольный канал Шахан TV

Ремонт импульсного источника питания

Внутреннее обозначение блока питания ATX:

А — выпрямитель мостовой
В — конденсаторы входного фильтра
между B и C — радиатор высоковольтных транзисторов
С — трансформатор
между C и D — Радиатор низковольтных сильноточных выпрямителей
D — катушка выходного фильтра
Е — конденсаторы выходного фильтра

Выход трансформатора (который теперь представляет собой переменный ток) затем выпрямляется специальными высокоскоростными диодами, чтобы снова переключить его на постоянный ток.Однако этот выход не является чистым постоянным током и требует обширной фильтрации для удаления высокочастотного «шума», который генерируется быстрым переключением транзисторов. Фильтрация осуществляется с помощью комбинации катушек (также известных как «дроссели») и конденсаторов.

Выходное напряжение источника питания регулируется путем подачи части выходного сигнала обратно на интегральную схему, которая управляет переключающими транзисторами. Если выходное напряжение слишком низкое, ИС позволяет транзисторам оставаться под напряжением в течение более длительного периода времени, повышая напряжение.Слишком высокое выходное напряжение сигнализирует микросхеме о необходимости сократить транзисторы, снижая выходное напряжение.

Отказ источника питания

Я обнаружил, что есть лишь небольшая часть компонентов, которые не работают в импульсных источниках питания регуляторов. Чаще всего выходят из строя сами переключающие транзисторы. В транзисторах происходит короткое замыкание, в результате чего через трансформатор протекает большой ток и перегорает предохранитель.

Отказ транзистора часто вызван неисправными конденсаторами.Чрезвычайно часто встречаются вздутые или протекающие конденсаторы выходного фильтра. Любой неисправный конденсатор следует заменить. Чтобы предотвратить повторение этого общего отказа, конденсаторы выходного фильтра следует заменить специальными конденсаторами с низким ESR (эквивалентным последовательным сопротивлением). Эти конденсаторы специально разработаны для работы в условиях строгой фильтрации в импульсном источнике питания. Большинство производителей источников питания не устанавливают конденсаторы с низким ESR в качестве оригинального оборудования, поскольку они несколько дороже обычных конденсаторов.Однако использование их в качестве запасных компонентов того стоит, поскольку они значительно продлят срок службы источника питания в полевых условиях. Когда я работаю с источником питания, я заменяю все конденсаторы выходного фильтра конденсаторами с низким ESR, независимо от того, хорошие они или плохие. Поскольку сервисный вызов стоит гораздо дороже, чем конденсаторы, это разумный поступок.

Отказ диода — еще одна распространенная проблема. В импульсном блоке питания довольно много диодов, и выход из строя любого из них приведет к срабатыванию предохранителя или отключению блока питания. Чаще всего выходят из строя диоды из-за короткого замыкания выходных выпрямителей +12 В или -5 В. Выход из строя этих диодов не приведет к срабатыванию предохранителя. Блок питания просто обнаруживает короткое замыкание и отключается. Некоторые из этих отказов могут быть вызваны использованием выходов +12 или -5 В для питания ламп дверцы монетоприемника. Выход -5 В не имеет защиты от перегрузки по току во всех источниках питания. Короткое замыкание в патроне лампы может привести к срыву диода из-за слишком большого тока от источника питания. Диоды +12 В могут перегореть, если случайно использовать лампочки на 6 В вместо ламп на 12 В.Также возможно короткое замыкание высоковольтных входных диодов. Это часто сопровождается коротким замыканием коммутирующих транзисторов и перегорает предохранитель.

Проверка и ремонт

Все испытания проводятся при выключенном питании. Начнем с тестирования пары переключающих транзисторов. Они будут установлены на радиаторе, который поможет им работать холоднее. Проверьте их с помощью омметра или цифрового мультиметра, настроенного на диапазон проверки диодов. Проверьте каждый транзистор на короткое замыкание между эмиттером и коллектором.Замените все транзисторы, которые вы сочтете неисправными. Хотя некоторые технические специалисты утверждают, что вам следует заменить их оба, даже если только один из них неисправен, я не счел это необходимым.

Между прочим, эти транзисторы всегда будут казаться закороченными между базой и эмиттером при тестировании «в цепи». Обычно я не утруждаюсь тестированием перехода база-эмиттер транзисторов. Когда переключающие транзисторы выходят из строя, они всегда замыкаются между эмиттером и коллектором. Если вы сомневаетесь, вытащите транзисторы из цепи, чтобы проверить их.Если транзисторы закорочены, предохранитель перегорит. Обязательно проверьте и высоковольтные диоды. Высоковольтные диоды обычно являются частью мостового выпрямителя, хотя могут быть отдельными диодами.

Затем проверьте выходные выпрямители. Необходимо проверить три пары диодов. Одна пара предназначена для выхода -5 В. Они будут довольно маленькими; примерно такого же размера, как вездесущий 1N4004, с которым все мы знакомы. Диоды +12 В обычно несколько больше.Два выходных диода +5 В размещены вместе в «двойном диодном» корпусе, который очень похож на транзистор. Как и переключающие транзисторы, этот диодный корпус установлен на радиаторе. Обычно на нем напечатаны символы схемы диодов. Этот диод обычно не тестирует правильно в цепи. Тестирование можно упростить, отпаяв его с помощью «присоски для припоя» вместо того, чтобы полностью снимать его с печатной платы. Я видел очень мало отказов выходных диодов +5 В.Все диоды необходимо заменить быстродействующими диодами, иначе блок питания будет генерировать чрезмерный шум.

Выполните эти тесты, заменив все выходные конденсаторы конденсаторами с низким ESR и включите источник питания. Блок питания следует проверить под нагрузкой. Используйте резистор на 1 Ом, 50 Вт или эквивалент в качестве «фиктивной нагрузки», подключенный между выходом +5 В и землей (DC COM). Это потребляет 5 ампер от источника питания, что достаточно для тестирования. Если источник питания все еще не работает, возможно, неисправна интегральная схема.Проверьте микросхему, сняв ее с печатной платы и установив в надежный источник питания. У меня есть запасной блок питания с розеткой, который я использую исключительно для тестирования интегральных схем. Практически все расходные материалы используют одну и ту же микросхему; тип 494. Эквивалентные интегральные схемы: TL494CN, uA494, uPC494C, IR3MO2 и MB3759. Их можно заменить на ECG1729.

Получение запасных частей

Одним из основных аргументов в пользу того, чтобы выбросить неисправные блоки питания в мусорное ведро, было то, что стоимость заменяемых компонентов почти равна стоимости нового блока питания.Это просто неправда. Переключающие транзисторы доступны по цене около 0,90 доллара за штуку.

В большинстве случаев вы можете сказать, что конденсатор плохой, просто взглянув на его верхнюю поверхность. Если он вздулся вверху, это плохо, и его следует немедленно заменить. Иногда конденсаторы, которые выглядят нормально, тоже могут быть плохими, и для их определения вам понадобится измеритель ESR. Конденсаторы, которые вы хотите заказать, произведены Nichicon. Закажите 3300 мкФ при 16 вольт (номер детали UVX1C332M) и 1000 мкФ при 25 вольт (номер детали UVX1E102M.Они подходят для замены конденсаторов выходных фильтров практически во всех моделях источников питания. Помните, что при замене конденсаторов фильтра вы всегда можете заменить конденсатор более высоким напряжением. НАПРИМЕР. Конденсатор на 1000 мкФ, 16 В можно заменить на 1000 мкФ, 25 В.

Слишком высокий выход минус 5 В

Большинство источников питания импульсных стабилизаторов имеют три выхода постоянного тока. Один из них — это основной выход +5 В постоянного тока, который питает компьютерную систему.Остальные — выходы +12 и -5 В. Эти выходы постоянного тока часто используются для питания системы генерации звука и самого аудиоусилителя. Когда вы тестируете источник питания, важно проверить все три выхода. Это особенно верно, когда у вас есть игра, которая в основном работает нормально, но имеет искаженный или отсутствующий звук.

При выходе из строя источника питания импульсного регулятора напряжение на всех трех выходах обычно падает до нуля. Однако иногда выходное напряжение может повышаться.Если вы обнаружите, что выходы +5 В постоянного тока и +12 В постоянного тока в норме, но выходное напряжение -5 В постоянного тока слишком высокое (более -6 В постоянного тока), попробуйте заменить дроссель выходного фильтра -5.

Дроссель фильтра -5 В легко найти даже без принципиальной схемы. Просто проследите след на печатной плате от выхода -5 В постоянного тока источника питания. В конечном итоге вы придете к компоненту, который может выглядеть как конденсатор, но будет четко обозначен на плате буквой «L» и, как правило, будет сопровождаться схематическим обозначением катушки.Катушка намотана на ферритовую катушку и покрыта пластиковой гильзой, на которую нанесена термоусадка. Осмотрите катушку. Если термоусадочная крышка расплавилась или отсутствует полностью, змеевик может быть неисправен.

Есть несколько вариантов получения катушки на замену. Предпочтительный метод — отключить катушку от ненужного источника питания. В качестве альтернативы вы можете снять перегоревший провод с ферритового сердечника и самостоятельно перемотать дроссель, используя провод соответствующего калибра. На нем не так много витков провода, чтобы за пять минут не перемотать новую катушку.

Замена выходного конденсатора

Я получил несколько звонков и писем от операторов и технических специалистов, у которых возникли проблемы с получением запасных конденсаторов для источников питания импульсных регуляторов. Рекомендую использовать конденсаторы марки Nichicon. Я использую их почти два года и на сегодняшний день не видел повторного выхода конденсатора из строя.

Я рекомендую вам заказать только два конденсатора разных производителей Nichicon для использования в качестве замены конденсаторов выходного фильтра. Когда у вас есть номера деталей, это очень помогает. Для выхода +5 В постоянного тока используйте конденсаторы емкостью 3300 мкФ, 16 В постоянного тока. Номер детали Nichicon — UVX1C332M. Для каждого блока питания требуется два таких блока.

Чтобы упростить заказ и хранение, я использую один и тот же конденсатор для выходов +12 В постоянного тока и -5 В постоянного тока. Это конденсатор емкостью 1000 мкФ, 25 вольт. Номер детали Nichicon — UVX1E102M. Хотя в некоторых источниках питания для вывода +12 В постоянного тока используется конденсатор на 2200 мкФ, я считаю, что 1000 мкФ вполне удовлетворительны.В большинстве источников питания используется по одному конденсатору для выходов +12 В постоянного тока и -5 В постоянного тока, поэтому заказывайте такое же количество конденсаторов на 1000 мкФ, что и конденсаторы на 3300 мкФ. При замене конденсаторов выходного фильтра рекомендуется заменить их все сразу.

Замена выходного диода

Выходные диоды — частая неисправность в блоке питания импульсного регулятора. Я бы сказал, что от двадцати пяти до тридцати процентов из них имеют плохие выходные диоды.

Высокоскоростные диоды

Имеется три пары выходных диодов; по одной паре для каждого из выходов: +5 В постоянного тока, +12 В постоянного тока и -5 В постоянного тока.Это не обычные диоды. Это специальные быстродействующие диоды с «быстрым восстановлением». Высокоскоростные диоды предназначены для очень быстрого переключения (около 40 тысяч циклов в секунду) источника питания.

Я редко заменял диодную сборку +5 вольт в блоке питания импульсного регулятора. Выходные диоды +12 и -5 В являются наиболее частыми отказами. Плохое испытание этих диодов при проверке «в цепи» является нормальным явлением. Обычно на выходе источника питания имеется резистор с низким сопротивлением (обычно около 100 Ом), который вызывает очень низкие показания при проверке выходных диодов +12 или -5 В.Большинство людей распаивают и удаляют один конец каждого диода, чтобы проверить его, но обычно вы можете обойти этот шаг. Когда эти диоды выходят из строя, они, как правило, полностью замыкаются. Вместо значения около 100 Ом вы получите значение около нуля Ом; тупик!

Запасные диоды

Выходные диоды +12 В обычно имеют оригинальный номер детали, например, PXPR302 или FR302. Это диоды на 3 ампера. Выходные диоды -5 В часто имеют тип PXPR1502 или аналогичные. Хорошая инженерная практика диктует, что в этой схеме должны использоваться высокоскоростные диоды с «быстрым восстановлением».Я обнаружил, что нормальные диоды преждевременно выходят из строя и как таковые неприемлемы в качестве замены. Чем больше вы работаете над ремонтом блоков питания, тем легче это становится. Если учесть, что многие ремонты блоков питания производятся с заменой одного диода, то можно увидеть, что они совсем не одноразовые!

Плохие импульсные блоки питания обычно попадают в следующие категории:

1. Мертвый и тихий с сгоревшим предохранителем
2. Мертвый и тихий с исправным предохранителем
3. Мертвый и чириканье / щелчок с предохранителем исправен
4. Выходное напряжение в порядке, но игра ведет себя глупо с этим источником питания.

# 2 исправить труднее всего.

Импульсные блоки питания работают следующим образом:

Сторона высокого напряжения: выпрямление сетевого напряжения методом грубой силы с помощью набора диодов — либо отдельных, либо 4-выводного мостового выпрямителя. Он фильтруется через конденсатор и поступает в схему переключения (после понижения через другие компоненты) и в главный переключающий транзистор.Проблемы здесь относятся к №1 и их довольно легко исправить.

Регулировка: эта схема запускает питание и обеспечивает правильный выход. Он запускает колебания главного переключающего транзистора и контролирует выход высокочастотного понижающего трансформатора через механизм обратной связи. Проблемы здесь связаны с № 2 — решить эту проблему сложно.

Сторона низкого напряжения: здесь находятся выпрямительные диоды, дроссельные катушки фильтра и конденсаторы, которые превращают высокочастотный выход переменного тока трансформатора в выход постоянного тока, необходимый для игры. Здесь есть небольшая часть схемы, которая обеспечивает обратную связь с регулирующей схемой, чтобы все работало стабильно. Проблемы здесь связаны с №3 и №4.

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: * ВСЕ * перечисленные методы поиска и устранения неисправностей выполняются при выключенном питании. Имейте в виду, что проблемы, перечисленные под номерами №2, №3 и №4, связаны с тем, где предохранитель находится в ХОРОШЕМ порядке, а в секции высокого напряжения платы может быть заряд на больших конденсаторах фильтра. У некоторых источников питания есть резисторы для утечки через них.Другие НЕТ. Используйте резистор 150 кОм 1/2 Вт, чтобы удалить эти колпачки и проверить напряжение своим измерителем, чтобы избежать неприятного электрошока. Постоянный ток заставляет ваши мышцы сокращаться, и если вы возьмете в руки блок питания, вы можете обнаружить, что не можете их отпустить. Да, однажды со мной такое случалось. Соблюдайте соответствующие меры предосторожности. Вот как я узнал, что не все блоки питания имеют резисторы для защиты от утечки основных фильтров на стороне высокого напряжения. Блин блоки питания Apple II …

Крепление стороны высокого напряжения:

С помощью омметра проверьте сопротивление во всех комбинациях 4 ножек мостового выпрямителя.Они НЕ должны показывать нулевое сопротивление. Если да, поменяйте местами провода и проверьте еще раз … если есть … замените компонент.

Проделайте то же самое испытание на выводах главного переключающего транзистора и любого другого полупроводника (диода / транзистора) в секции высокого напряжения. Замените все закороченные компоненты.

Имейте в виду, что в некоторых импульсных источниках питания вокруг переключающего транзистора используются маломощные резисторы. Если вы читаете около 2 Ом, возможно, вы читаете их. Закороченный компонент обычно составляет 1/2 Ом или меньше.

Если вы обнаружите закороченные компоненты где-либо в секции высокого напряжения, вам следует проверить резисторы на предмет обрыва и при необходимости заменить. Замените предохранитель, отремонтируйте все потрескавшиеся паяные соединения, соберите заново и проверьте . ..

Устранение неполадок со стороны низкого напряжения: Чириканье питания обычно означает проблемы с выходом. Это может быть проблема и с регулирующей частью, но я никогда не видел этого в этом случае. В каждом случае чирикающих источников питания, над которыми я работал, закрывался выпрямительный диод в секции низкого напряжения.

Некоторые диоды представляют собой сдвоенные диоды, похожие на транзисторы. Посмотрите на печатную плату, поскольку большинство из них помечены как «D #» или «CR #». Проверьте эти компоненты с помощью омметра и найдите тот, который показывает короткое замыкание в обе стороны. Высокоскоростные сдвоенные выпрямители обычно считывают очень низкое сопротивление в одну сторону — выглядят почти закороченными — но они будут считывать высокие значения в другую сторону, если они не закорочены.

Замените закороченные выпрямители, устраните трещины в паяных соединениях, соберите заново и проверьте.

Блок питания работает, но игра с ним нестабильна: проверьте конденсаторы фильтра на выходной секции блока питания. Ищите те, у которых верхняя часть разделена, или те, которые наклонились или поднялись из-за того, что резиновая заглушка выскочила из дна. Если все они выглядят нормально, либо стреляйте в них, либо проверьте выходы с помощью осциллографа и поищите на них беспорядочные высокочастотные пульсации переменного тока. При необходимости замените колпачки, чтобы очистить эти выводы, исправить любые потрескавшиеся паяные соединения, собрать и проверить.

Проблема в разделе регулирования: Ну, это может быть сложно понять. Единственный раз, когда мне удавалось починить их без схемы (что не очень часто, так как вы обычно не можете получить схемы для них), это когда дробовик колпачков в секции регулирования или обнаружил трещину паяного соединения.

Что делать, если у меня возникла проблема, связанная с №1 или №3, и я не могу найти закороченный компонент? Что ж, это становится сложнее. Иногда полупроводник не замыкается. Иногда он становится «негерметичным», что означает, что прямое сопротивление низкое, как обычно, но сопротивление обратного пути ниже, чем должно быть. Если вы столкнетесь с подобными ситуациями, внимательно проверьте компоненты. Если вы найдете один с низким односторонним сопротивлением и от 500 до 1000 или около того Ом (может быть, немного больше, может немного меньше), то снимите одну ногу детали, поднимите эту ногу из платы и проверьте, что часть вне цепи. . Если он показывает низкий уровень в одном направлении, а не высокий в другом (в другом случае должно быть десятки, если не сотни тысяч Ом или выше), замените его, так как он может иметь негерметичность.

За годы работы я починил сотни коммутационных блоков — Apple II и более старые Mac II, SE, SE / 30 и множество клонов ПК.Я также отремонтировал их для различных сетевых устройств. Помните о мерах безопасности и убедитесь, что колпачки сняты, и вы в безопасности.

Как отремонтировать импульсный источник питания (SMPS)

В этом посте мы пытаемся диагностировать сгоревшую цепь SMPS, а также пытаемся устранить неисправности и отремонтировать цепь. Представленный блок представляет собой дешевую готовую схему ИИП китайского производства. Эта статья написана по просьбе г-на Кесавы.

Мой SMPS сгорел

Нижеприведенное приложение представляет собой SMPS 12 В, 1,3 А для зарядки сельскохозяйственного опрыскивателя. Если зарядка полная, зеленый светодиод будет светиться … Если заряд низкий, красный светодиод будет светиться …

Но теперь эта зарядка не работает … И я проверяю внутри, входной мостовой выпрямитель переменного тока IN4007 1 диод был поврежден … я заменил его новым диодом … Теперь новый диод также поврежден …. Пожалуйста, посоветуйте мне, сэр .. ..

В нашем магазине..данные зарядные устройства недоступны сэр…Но моя цель не покупать новый .. я сам хочу исправить с вашим руководством, сэр …. Пожалуйста, помогите мне, сэр ….

Извините за плохой английский. Я не хороший сэр. ..

Благодарности и приветы Н.Кесаварадж

Устранение неполадок

Привет, Кесава,

Это, скорее всего, из-за сгоревшего МОП-транзистора, который можно увидеть на радиаторе. Вы можете попробовать заменить его новым, а также не забудьте заменить соседний резистор 10 Ом, который также выглядит так, как будто он сгорел.

С уважением.

Ремонт цепи SMPS

Ссылаясь на изображения выше, первичная сторона устройства, по-видимому, представляет собой популярный адаптер SMPS на 1 А 12 В, использующий схему переключения на основе МОП-транзистора, и включает в себя секцию зарядного устройства на базе операционного усилителя с автоматическим отключением на вторичной обмотке. Часть платы

Из первых двух изображений мы можем ясно видеть, что один из диодов полностью разлетелся и отвечает за отключение всей печатной платы.

Мостовой выпрямитель обычно можно увидеть в начале любой цепи SMPS и вводится в основном для выпрямления сетевого переменного тока в двухполупериодный постоянный ток, который далее фильтруется с помощью конденсатора фильтра и применяется к ступени МОП-транзистор / индуктор для предполагаемого использования. обратная операция переключения первичной стороны.

Это переключение первичной стороны вызывает наведение эквивалентного пульсирующего постоянного тока низкого напряжения на вторичной стороне трансформатора, который затем сглаживается с помощью конденсатора фильтра большой емкости на вторичной стороне для получения окончательного понижающего выхода постоянного тока SMPS.

Из изображения видно, что вся конструкция основана на топологии переключения МОП-транзистора, индуктивности, в которой МОП-транзистор становится основным переключающим элементом в схеме.

Диоды в мостовом выпрямителе выглядят как обычные диоды 1N4007, которые способны выдерживать ток не более 1 А, поэтому, если это значение на 1 А превышает значение, диоды могут проскочить и повредиться.

Диод мог сгореть из-за прохождения большого тока, что, в свою очередь, могло произойти из-за остановки работы индуктора mofet. Это означает, что МОП-транзистор мог перестать соприкасаться, вызывая короткое замыкание, позволяя всему переменному току проходить через компоненты внутри входной линии питания.

Как отремонтировать цепь SMPS.

Показанный сгоревший импульсный источник питания можно отремонтировать, выполнив следующие простые шаги.

1) Снимите МОП-транзистор с печатной платы и проверьте его с помощью мультиметра

2) Несомненно, вы обнаружите, что МОП-транзистор является неисправным компонентом, поэтому вы можете быстро заменить его, используя правильно подобранный МОП-транзистор

.

3) После замены mosfet не забудьте также заменить сгоревший выпрямительный диод, а в идеале заменить все 4 диода в мосте, чтобы убедиться, что в сети нет ослабленных диодов.

4) Вы также можете проверить, есть ли какие-либо другие детали, такие как резисторы или термисторы, которые могут выглядеть подозрительно, и заменить их новыми.

5) После замены всех сомнительных элементов пора включить SMPS для окончательной проверки.

Однако это должно быть сделано с последовательной защитной нагрузкой в ​​виде последовательной лампы накаливания, чтобы убедиться, что цепь не сгорает из-за какой-либо другой скрытой неисправности. Лампа на 25 Вт будет как раз хороша для защиты устройства от любых катастрофических обстоятельств.

6) Если при включении ИИП лампочка не горит, это, вероятно, означает, что все в порядке, и блок был успешно отремонтирован. Теперь вы можете свободно проверять выходное напряжение ИИП с помощью измерителя и убедиться, что он дает правильные показания.

7) Наконец, не снимая лампу, подключите соответствующую номинальную нагрузку постоянного тока и проверьте, правильно ли она работает.

8) Если кажется, что все работает нормально, вы можете удалить серийную лампочку и повторить процесс тестирования, но обязательно включите небольшой предохранитель последовательно с входным источником питания.

9) Однако, если лампа горит ярким светом, это указывает на серьезную проблему, сохраняющуюся в цепи SMPS, и ее необходимо исследовать заново, это можно сделать, сначала выключив устройство, а затем проверив каждый компонент в нем. первичная сторона трафанформера.

10) Компоненты, требующие повторной проверки, будут в основном теми, которые подвержены высокому напряжению и току повреждения, например, небольшие BJT, диоды и резисторы с низким сопротивлением.

11) Компоненты, которые можно не проверять, — это те, которые имеют соответствующие характеристики и способны защитить себя от высокого напряжения и бросков тока.Сюда могут входить резисторы с высоким номиналом выше 50 кОм или резисторы с проволочной обмоткой с низким номиналом выше 1 кОм.

Точно так же конденсаторы, которые могут быть рассчитаны на напряжение выше 200 В, можно не проверять, если только один из них не выглядит несколько поврежденным снаружи.

Испытание сгоревшего трансформатора индуктивности

Каждая цепь SMPS по существу будет включать небольшой ферритовый трансформатор, который эта часть также может стать причиной сгоревшей цепи SMPS, хотя вероятность повреждения трансформатора может быть слишком мала.

Это связано с тем, что проводам внутри индуктора может потребоваться некоторое время, чтобы сгореть, и прежде, чем это может произойти, другие более уязвимые части, такие как диоды и транзисторы, будут вынуждены взорваться, что предотвратит дальнейшее повреждение индуктора.

Таким образом, вы можете быть уверены, что трансформатор — это единственный элемент, который может быть самым безопасным и неповрежденным элементом в данной неисправной цепи SMPS.

Если в редких случаях произойдет возгорание индуктора, это будет отчетливо видно по пригоревшей изоляционной ленте, которая также может расплавиться и прилипнуть к обмотке.SMPS с сгоревшим трансформатором может быть практически непоправимым, потому что сгоревший трансформатор приведет к сгоранию большинства элементов вместе с выкорчеванными дорожками на печатной плате. Пора покупать новый SMPS.

Вторичная сторона обычно не требует какой-либо проверки, поскольку она изолирована от первичной и, как ожидается, будет в стороне от опасностей.

На этом мы завершаем статью, в которой объясняются советы по ремонту цепи SMPS. Если вы думаете, что я упустил некоторые важные моменты, или если у вас есть что-то важное, что нужно добавить в список, сообщите нам об этом в своих ценных комментариях.

Руководство по ремонту SMPS — Советы по ремонту импульсных источников питания | Терри Тровес

Приобретение надлежащего руководства по ремонту SMPS на самом деле очень важно для тех, кому не хватает опыта и ноу-хау для успешного ремонта неисправных импульсных источников питания.

Вы один из тех неопытных мастеров по ремонту, которые очень хотят как можно быстрее научиться ремонтировать блоки питания?

Хорошо, прямо сейчас загружаемая книга по ремонту SMPS, полная советов по ремонту и пошаговых картинок, определенно вам очень поможет.

Даже если у вас всего 1% таланта в ремонте импульсных источников питания, если вы готовы усердно работать и следовать соответствующему руководству, вы в конечном итоге будете очень хороши в этом.

Черт возьми, ты можешь даже стать гением в этом!

И это неоспоримый факт.

Не верите? Что ж, сам мистер Гений, так сказал великий Альберт Эйнштейн!

Вот оно, прямиком от самого человека!

Кто вы такие, чтобы опровергнуть одного из самых умных людей, которые когда-либо жили?

Хорошо, хорошо, тупая шутка.Приношу свои извинения вам и мистеру Эйнштейну за то, что вложил слова в его уста.

Но если серьезно, без хорошо составленного справочника все может стать очень неровным. Вы будете чувствовать себя так, как будто работаете в темноте.

Устранение неисправностей неисправных источников питания, очевидно, является сложной задачей, поэтому вы не можете просто выбрать подход, основанный на идее и надежде на лучшее.

Итак, где же я могу найти руководство по ремонту SMPS?

Да, этот вопрос (или аналогичный) мне задавали много раз в прошлом, и, естественно, новички в ремонте электроники и техники.

Ответ на этот простой, но неотложный вопрос можно найти по по этой ссылке . Вы наконец-то найдете решение проблем, связанных с ремонтом вашего импульсного источника питания.

Почему эта книга для скачивания?

1) Он содержит исчерпывающую информацию о блоках питания ATX, компонентах SMPS, принципах его работы, инструкции по ремонту и т.д.

2) Со схемами и подробным обзором функций каждой области импульсного источника питания i.е. первичный и вторичный.

3) Он значительно устраняет необходимость в догадках при поиске неисправностей в источниках питания , потому что есть много интересной информации и подсказок, относящихся к каждой функции схемы, доступной в SMPS, напряжениях и даже критических сигналах.

4) Важнейшие протоколы безопасности описаны в книге вместе с 11 историями поиска неисправностей и ремонта. Истории болезни чрезвычайно информативны . Мне еще не удалось найти руководство по ремонту SMPS, которое предлагает такое довольно большое количество историй болезни.

5) Изоляция проблем, связанных с импульсным источником питания, может быть решена несколькими способами, и эта книга содержит инструкции, которые помогут вам в этом. Возможность изолировать источник сбоя / ошибки очень полезна, потому что позволяет вам точно определить проблему, не теряя слишком много времени .

6) Он научит вас правильному способу выполнения проверки напряжения импульсного источника питания. Пошаговый процесс, описанный в книге, прост для понимания .

7) Вот самое большое преимущество … эта книга по ремонту SMPS на самом деле поставляется с индивидуальной поддержкой по электронной почте . Кто оказывает поддержку? Да ведь автор книги, конечно же, сама Джестин Йонг.

Jestine Yong Bsc UK

Парень очень хорошо разбирается в вопросах, связанных с ремонтом электроники и в довершение всего; он очень полезен и очень быстро отвечает, когда дело доходит до ответа по электронной почте.

Скачав его книгу, я прочитал ее от корки до корки, но все же столкнулся с парочкой проблем, которые просто не мог понять.Я написал Jestine по электронной почте и получил ответ в течение нескольких часов.

Его ответ был подробным и точным. Благодаря предложениям и советам Джестин я смогла решить эти проблемы за считанные минуты.

С тех пор мы несколько раз переписывались по электронной почте, и он часто отвечал в течение 24 часов.

В целом, я очень рад, что решил загрузить это руководство по ремонту SMPS, потому что поначалу я был немного скептически настроен.

Я подумал, что книга не подходит для начинающих.

Что ж, я рад, что ошибся!

Также следует отметить, что Джестин — настоящая находка.

Под этим я подразумеваю, что он на самом деле настоящий профессиональный инженер-электронщик, а также инструктор. Эта фотография, которую вы видите выше, не является каким-то случайным ботаном (прости, Джестин!), Которого каждый может получить на веб-сайтах стоковых фотографий.

Как я уже сказал, он также инструктор и управляет собственным учебным центром в Малайзии, стране в Юго-Восточной Азии.

Его учебный центр называется Noahtech Electronics Training, и он обучил и обучил бесчисленное количество начинающих техников / ремонтников электроники.

Вот фотография, на которой он обучает своих учеников в классе.

Вот еще одна фотография, на которой он позирует со своими учениками. Джестин слева с новой прической.

Так что будьте уверены, если вы получите его проводника, то попадете в надежные руки.

Перейдите сюда , чтобы узнать больше об этой книге по ремонту импульсных блоков питания, предназначенной только для загрузки, от Джестин Йонг.

Около года назад мне захотелось сходить с ума, потому что я не мог найти подходящего руководства по устранению неисправностей импульсного источника питания.

Инструкции, которые я обнаружил на разных веб-сайтах, были слишком запутанными, и их было трудно понять.

Излишне говорить, что я был крайне разочарован и разочарован, потому что мне действительно хотелось узнать, как как можно быстрее устранять неисправности импульсного источника питания.

Но я не бросил поиски!

В конце концов мое терпение было вознаграждено в виде руководства по ремонту SMPS, составленного очень опытным инженером-электронщиком.

Инженера зовут Джестин, и теперь он в значительной степени мой наставник по всем вопросам, связанным с поиском и устранением неисправностей импульсного источника питания.

Если вас интересует подробное руководство по ремонту ИИП, обязательно ознакомьтесь с его предложением.

Он доступен для скачивания и наполнен большим количеством картинок и диаграмм, которые помогут вам лучше понять вещи.

Что мне больше всего нравится в руководстве по ремонту SMPS от Jestine, так это то, что к нему прилагается индивидуальная поддержка по электронной почте.

Эта функция очень полезна, особенно для кого-то вроде меня, который в то время был новичком в том, как устранять неисправности импульсного источника питания.

Вот почему я считал Джестина своим личным наставником, потому что он несколько раз держал меня за руку, когда я консультировался с ним по электронной почте.

Я вспомнил, прочитав его руководство в прошлом году и применив некоторую информацию к действию, у меня возникло несколько вопросов относительно термистора с отрицательным температурным коэффициентом для импульсного источника питания, над которым я работал, и он быстро предоставил мне ответы на эти вопросы. все мои вопросы.

Это очень информативное руководство с первоклассной поддержкой, поэтому я без колебаний порекомендую его всем, кто ищет комплексные руководства по поиску и устранению неисправностей в импульсном блоке питания.

В любом случае, вот некоторая полезная информация об SMPS…

Количество основных цепей в импульсном источнике питания

Типичный импульсный источник питания содержит всего 11 основных цепей:

мостовая схема, обнаружение ошибок, цепь обратной связи, вход Схема защиты и фильтрации электромагнитных помех, схема генератора, схема коррекции коэффициента мощности, схема защиты, схема выборки, цепь вторичного выходного напряжения, цепь ожидания и, наконец, цепь постоянного тока запуска и работы.

Обратите внимание, что если одна из вышеперечисленных цепей перестанет работать, весь SMPS столкнется с рядом проблем.

Индикатор варистора

Варистор является одним из основных компонентов импульсного источника питания и предназначен для защиты электронного устройства от повреждения переходными напряжениями, генерируемыми молнией.

По сути, этот компонент помогает минимизировать электрические повреждения, тем самым делая электронику намного более надежной.

Так как же узнать, что варистор не работает должным образом?

Что ж, ключ кроется в верхней части варистора.Проблемный варистор обычно имеет темную верхнюю часть, которая открывается.

Вы можете легко проверить это с помощью аналогового измерителя с настройкой X 10 кОм и проверить, есть ли какие-либо показания.

Если да, это означает, что варистор не работает как обычно.

Чтобы получить полную информацию о том, как устранить неполадки импульсного источника питания, вам действительно следует ознакомиться с в этом руководстве .

Получите соответствующее руководство по поиску и устранению неисправностей SMPS, и вы будете ремонтировать блоки питания, как ветеран, в кратчайшие сроки!

Каждый раз, когда технический специалист-новичок спрашивает меня, как починить блок питания через Skype, я всегда рекомендую этому человеку приобрести руководство хорошего качества.

Это то, что окупится во много-много раз. Знания — это сила, люди.

Если вы планируете зарабатывать на жизнь этим видом деятельности, вам следует собрать как можно больше справочных материалов по поиску и устранению неисправностей электроники и ремонту.

Вы знаете, пару лет назад я ничего не знал о ремонте неисправных блоков питания. В то время я был начинающим техником.

Конечно, я не знал, как починить блок питания, поэтому сразу же зашел в Интернет и загрузил это довольно подробное руководство по ремонту блока питания.

В нем были все учебные пособия, информация и скриншоты, которые дали мне действительно огромную фору.

Я предполагаю, что вам также может понадобиться фору, потому что давайте посмотрим правде в глаза, устранение неполадок и ремонт импульсных источников питания не так прост, как ABC.

Вот несколько советов и подсказок по ремонту импульсного источника питания…

1) Знание компонентов

Убедитесь, что вы ознакомились с компонентами, имеющимися в блоке питания.

Когда вы, например, ремонтируете блок питания компьютера, вы должны быть знакомы с такими компонентами, как силовые транзисторы, силовая ИС и силовой полевой транзистор.

Помимо вышеупомянутых компонентов, источник питания, как правило, также содержит следующие компоненты: импульсный трансформатор

, конденсатор фильтра, оптоизолятор IC, мостовой выпрямитель, вторичные выходные диоды, главный предохранитель, конденсаторы вторичного фильтра, и т. д.

2) Схема защиты

Я подумал, что должен просто упомянуть, что импульсный источник питания хорошо сохраняется благодаря так называемой схеме защиты.

Как следует из названия, цель этой схемы — защитить компоненты, расположенные внутри источника питания.

Когда происходит что-то нежелательное, эта схема отключает определенную часть в блоке питания или может даже отключить все это.

Всего существует четыре широко используемых схемы защиты:

i) OCP или защита от перегрузки по току
ii) SP или защита от перенапряжения
iii) SDP или защита от теплового отключения
iv) OVP или защита от перенапряжения

3) закорочены Компоненты на первичной стороне

Обнаружение закороченных компонентов на первичной стороне источника питания может оказаться серьезным препятствием.

Но если вы его найдете, не останавливайтесь на достигнутом. Попробуйте также проверить резисторы.

Кто знает, может быть обрыв цепи, поэтому его обязательно нужно заменить.

После того, как вы заменили поврежденные компоненты, внимательно посмотрите, можете ли вы найти какие-либо потрескавшиеся паяные соединения, и убедитесь, что вы их исправили.

Соберите все вместе и выполните тест, чтобы определить, работает ли блок питания.

В идеале вы можете протестировать его, используя технику лампочки, которую вы можете просмотреть на странице 154 руководства по ремонту источника питания.

Пособие прекрасно подходит как справочник по ремонту компьютерных блоков питания; Источники питания ЖК- и ЭЛТ-мониторов, ЖК-телевизоры, DVD-плееры и многие другие электронные устройства, содержащие импульсный источник питания.

Теперь вы можете быстро и легко приступить к делу и узнать, как исправить импульсный источник питания, как давний профессионал.

Продолжайте и ознакомьтесь с этим руководством по ремонту SMPS . Я на сто процентов уверен, что вы будете рады, что сделали.

Понимание и ремонт блока питания от аналогового компьютера 1969 года

Недавно мы начали восстанавливать аналоговый компьютер vintage1.В отличие от цифрового компьютера, который представляет числа с дискретными двоичными значениями, аналоговый компьютер выполняет вычисления с использованием физических, непрерывно изменяемых значений например, напряжения. Поскольку точность результатов зависит от точности этих напряжений, прецизионный источник питания имеет решающее значение для аналогового компьютера. В этом сообщении блога обсуждается, как работает блок питания этого компьютера, и как мы решили проблему с ним. Это второй пост в серии; первый пост обсудили прецизионные операционные усилители в компьютере.

Аналоговый компьютер Model 240 от Simulators Inc. представлял собой «прецизионный аналоговый компьютер общего назначения» для настольных компьютеров, содержащий до 24 операционных усилителей. (У этого 20 операционных усилителей.)

Аналоговые компьютеры были популярны для быстрых научных вычислений, особенно для дифференциальных уравнений, но практически вымерли в 1970-х годах как цифровые компьютеры. стал мощнее. Обычно их программировали путем подключения кабелей к коммутационной панели, в результате чего образовывалась путаница проводов, напоминающая спагетти.На фото выше красочная патч-панель находится посередине. Над коммутационной панелью 18 потенциометров устанавливают уровни напряжения для ввода различных параметров. Патч-панель меньшего размера для цифровой логики находится в правом верхнем углу.

Блок питания

В компьютере используются два опорных напряжения: +10 В и -10 В, которые блок питания должен генерировать с высокой точностью. (Старые ламповые аналоговые компьютеры обычно использовали опорные напряжения +/- 100 В.) Блок питания также обеспечивает регулируемое напряжение +/- 15 В для питания операционных усилителей, питания различных реле в компьютере и питания ламп.

Блок питания в нижней части аналогового компьютера. Секция трансформатора / выпрямителя находится слева, а каркас платы регулятора — справа. Жгуты проводов в верхней части блока питания соединяют его с остальной частью компьютера.

На фото выше показан блок питания в нижней части задней части аналогового компьютера. Блок питания сложнее, чем я ожидал. Секция слева преобразует линейное напряжение переменного тока в низковольтный переменный и постоянный ток. Эти выходы идут в отсек для карт справа, на котором есть 8 печатных плат, регулирующих напряжения.Сложные жгуты проводов над источником питания обеспечивают питание пяти аналоговых вычислительных модулей над источником питания. а также остальной компьютер.

Для старого компьютера важно убедиться, что блок питания работает правильно, так как если он генерирует неправильный напряжения, результаты могут быть катастрофическими. Итак, мы действуем методично, сначала проверяя компоненты в блоке питания, а затем тестируя выходы блока питания при отключении. от остальной части компьютера и, наконец, включение всего компьютера.

Блок трансформатора / выпрямителя

Мы начали с того, что сняли блок питания с компьютера и отсоединили две половинки. Левая половина блока питания (ниже) выдает четыре нерегулируемых выхода постоянного тока и один низковольтный выход переменного тока. Он содержит два больших силовых трансформатора, четыре больших конденсатора фильтра, выпрямители на шпильках (вверху сзади), диоды меньшего размера (спереди справа) и предохранители. Это большой и очень тяжелый модуль из-за трансформаторов. Меньший трансформатор питает лампы и реле, а больший трансформатор питает источники +15 и -15 В, а также генератор.Предположительно, использование отдельных трансформаторов предотвращает влияние шума и колебаний ламп и реле на источники прецизионного эталона.

Эта секция источника питания снижает сетевое напряжение переменного тока до низкого напряжения постоянного и переменного тока.

Одна проблема со старыми блоками питания заключается в том, что электролитические конденсаторы могут со временем высохнуть и выйти из строя. (Эти конденсаторы представляют собой большие цилиндры наверху.) Мы измерили емкость и сопротивление больших конденсаторов (используя старинный измеритель LCR HP LCR от Марка), и они прошли проверку.Мы также проверили входное сопротивление блока питания, чтобы убедиться в отсутствии явных коротких замыканий; все казалось нормально.

Мы вынули все карты из каркаса, осторожно подключили блок питания и … вообще ничего не произошло. По какой-то причине на блок питания не поступало переменное напряжение. Взрыватель был очевидным подозреваемым, но все в порядке. Карл спросил про выключатель питания на панели управления, и мы разобрались. что выключатель был подключен к источнику питания через розетку с надписью «CP» (ниже).Мы добавили перемычку, включили источник питания и на этот раз нашли ожидаемые напряжения постоянного тока от модуля.

На боковой стороне источника питания расположены три розетки переменного тока с поворотным замком, обозначенные «FAN», «DVM-LOGIC» и «CP» (панель управления). На разъем «DVM-LOGIC» подается 5-вольтовый источник питания цифровой логики, который нам еще предстоит отремонтировать.

Регулятор карт

Далее мы по отдельности протестировали различные карты блока питания. Блок питания имеет четыре платы регуляторов, генерирующих «напряжение лампы», «+15», «-15» и «напряжение реле».Плата регулятора предназначена для снятия нерегулируемого постоянного напряжения с модуля трансформатора и снижения его до желаемого выходного напряжения.

Мы подключили платы регуляторов, используя настольный источник питания в качестве входа, чтобы убедиться, что они работают правильно. Мы настроили потенциометр на регуляторе +15 В, чтобы получить ровно 15 В. Стабилизатор -15 В казался темпераментным, и когда мы его настраивали, напряжение скакало. Я подозревал грязный потенциометр, но он успокоился до стабильного результата (рассказчик: это предзнаменование).Мы не знаем, какими должны быть напряжения лампы и реле, и они не критичны, поэтому мы оставили эти платы без изменений.

Одна из плат регулятора напряжения. К радиатору прикреплен большой силовой транзистор.

На фото выше изображена одна из плат регулятора; вы можете подумать, что в нем много компонентов, предназначенных только для регулирования напряжения. Первая микросхема регулятора напряжения была создана в 1966 году, поэтому в этом компьютере вместо нее используется линейный регулятор, построенный из отдельных компонентов.Большой металлический транзистор на радиаторе — это сердце регулятора напряжения; он действует как переменный резистор для контролировать выход. Остальные компоненты подают управляющий сигнал на этот транзистор для получения желаемого выходного сигнала. Стабилитрон (желтые и зеленые полосы справа) действует как источник опорного напряжения, и выходной сигнал сравнивается с этим опорным сигналом. Транзистор меньшего размера генерирует управление сигнал для силовых транзисторов. В правом нижнем углу многооборотный потенциометр используется для регулировки выходного напряжения.Чем больше конденсаторы (металлические цилиндры) фильтруют напряжение, а конденсаторы меньшего размера обеспечивают стабильность. Большинство источников питания всего через несколько лет заменит все эти компоненты (кроме конденсаторов фильтра) на микросхему регулятора напряжения.

Генератор прерывателя

Прецизионные операционные усилители аналогового компьютера используют схему прерывателя для улучшения характеристик постоянного тока, а прерыватель требует импульсов 400 Гц. Эти импульсы генерируются платой генератора в источнике питания (почему-то называемой затвором).Мы включили плату отдельно, чтобы проверить ее, и обнаружили, что он выдавал 370 Гц, что казалось достаточно близким.

Плата затвора обеспечивает колебания 400 Гц для управления прерывателями операционного усилителя.

Схема этой карты несколько необычна, и это совсем не то, что я ожидал от карты с осциллятором. На левой стороне расположены три больших конденсатора и три диода, питаемые от низковольтного переменного тока. от трансформатора. Немного поразмыслив над этим, я решил, что это двухполупериодный удвоитель напряжения, производящий постоянный ток при вдвое большем напряжении, чем на входе переменного тока.Я предполагаю, что импульсы прерывателя должны быть более высокого напряжения, чем питание компьютера +15 В, поэтому они использовали этот удвоитель напряжения для получить достаточное колебание напряжения.

Сам генератор (правая сторона платы) использует один транзистор NPN в качестве генератора, а другой транзистор NPN в качестве буфера. Мне потребовалось время, чтобы понять, как работает однотранзисторный генератор. Оказывается, это генератор сдвига фазы; три белых конденсатора посередине доски сместите сигнал на 180 °; инвертирование вызывает колебания.

Операционные усилители

Расчеты в аналоговом компьютере относятся к эталонным напряжениям +10 В и -10 В, поэтому эти напряжения должны быть очень точными. Карты регулятора выдают довольно стабильные напряжения, но недостаточно хорошие. (Во время тестирования плат регуляторов я заметил, что выходное напряжение заметно сдвигается при изменении входного напряжения.) Для достижения этой точности опорные напряжения генерируются схемами операционного усилителя, построенными из двух плат операционных усилителей и сетевой карты обратной связи.

Карта операционного усилителя. Эта карта имеет единственный вход справа. В нем используется микросхема операционного усилителя с круглым металлическим корпусом, но схема прерывателя улучшает характеристики.

Как ни странно, карты операционных усилителей, используемые в блоке питания, точно такие же, как и прецизионные операционные усилители, используемые в аналоговый компьютер сам. Еще в 1969 году интегральные схемы операционного усилителя не были достаточно точными для аналогового компьютера, поэтому разработчики этого аналогового компьютера объединил микросхему операционного усилителя со схемой прерывателя и многими другими деталями, чтобы создать высокопроизводительную операционную карту.Карты ОУ подробно описал в первом посте, поэтому я не буду здесь вдаваться в подробности.

Сетевая карта

Сетевая карта выполняет две работы. Во-первых, в нем есть прецизионные резисторы для создания цепей обратной связи для операционных усилителей питания. Во-вторых, он имеет два силовых транзистора (круглые металлические компоненты ниже), которые буферизуют опорные напряжения от операционного усилителя для использования остальной частью компьютера.

Сетевая карта. Два разъема слева подключены к входам операционного усилителя.

Одна из проблем аналогового компьютера заключается в том, что точность результатов зависит от точности компонентов. Другими словами, если опорное напряжение 10 В отключено на 1%, ваши ответы будут неверными на 1%. В результате аналоговым компьютерам требуются дорогие высокоточные резисторы. (Напротив, напряжения в цифровом компьютере могут сильно дрейфовать, если можно различить 0 и 1. Это одна из причин почему цифровые компьютеры заменили аналоговые.) Типичные резисторы имеют допуск 20%, что означает, что сопротивление может отличаться на 20% от указанного значения.Более дорогие резисторы имеют допуск 10%, 5% или даже 1%. Но резисторы на этой плате имеют допуск 0,01%! (Эти резисторы представляют собой розовые цилиндры.) Два больших резистора слева представляют собой силовые резисторы «Коричневый дьявол» на 15 Ом. Они защищают выходы напряжения на случай, если кто-то подключает не тот провод к патч-панели и замыкает выход, что было бы легко сделать.

Сетевая карта получает регулировочное напряжение от панели управления, а также имеет справа многооборотные потенциометры для регулировки (как и платы регуляторов).Зеленые разъемы используются для подключения сетевой карты к платам операционного усилителя. (Операционные усилители имеют отдельный разъем для входа, чтобы уменьшить электрические помехи.)

Включение и устранение проблемы

Наконец, мы поместили все платы блока питания обратно в шкаф, снова вставили блок питания в компьютер и включили корпус. (но не аналоговые компьютерные модули). Загорелись некоторые световые индикаторы на панели управления, и на измерителе показалось напряжение +15 В.Однако источник -15 В не подавал никакого напряжения, и на передней панели горели индикаторы перегрузки операционного усилителя, а опорных напряжений от операционных усилителей не было. Плохое питание -15 В выглядело как первое, что нужно исследовать, так как без это, платы операционного усилителя не будут работать.

Я извлек из каркаса для плат работающий регулятор +15 и неисправный регулятор -15 и проверил их на стенде. Удобно, что обе платы идентичны, поэтому я мог легко сравнить сигналы на двух платах.(В современных схемах обычно используются специальные регуляторы для выходов с отрицательным напряжением, но в этом источнике питания использовался один и тот же регулятор для обоих.) Выходной транзистор на плохой плате не получал никакого управляющего сигнала на своей базе, поэтому он не производил никакого выходного сигнала. Отслеживая сигналы, я обнаружил, что транзистор, генерирующий этот сигнал, не получает напряжения. Этот транзистор питался напрямую от разъема, так почему же на транзистор не поступало напряжение?

Плата регулятора вышла из строя из-за ослабленных винтов (красные стрелки).Схема была запитана через толстую нижнюю дорожку печатной платы, а затем ток проходил через радиатор от нижнего винта к верхнему.

Я изучил печатную плату и заметил, что между транзистором и разъемом нет следа на печатной плате! Вместо этого часть пути прохождения тока была от до радиатора. Радиатор был прикручен к печатной плате, образуя соединение между двумя красными стрелками выше. После того, как я закрутил все винты, плата заработала нормально.

Аналоговый компьютер со снятой коммутационной панелью и боковыми сторонами, показывающими внутреннюю схему. Блок питания находится в нижней части спины. Один модуль был удален и помещен перед компьютером.

Мы вставили платы обратно, включили шасси, и на этот раз все напряжения оказались правильными. Индикаторы перегрузки операционного усилителя оставались выключенными; сигнальная лампа загорелась раньше, потому что операционные усилители не могли работать при отсутствии одного напряжения. Следующим шагом является включение модулей аналоговой схемы и их проверка.Нам также необходимо отремонтировать отдельный 5-вольтовый источник питания, используемый цифровой логикой, поскольку мы обнаружили неисправные конденсаторы, которые необходимо заменить. Итак, это задачи для следующих занятий.

Следуйте за мной в Twitter @kenshirriff, чтобы быть в курсе будущих статей. Еще у меня есть RSS-канал.

Примечания и ссылки

Ремонт блока питания, Bruker Advance, Elba Artesyn, отказал вентилятор


БАД «ELBA ARTESYN» ИСТОЧНИК ПИТАНИЯ


УСИЛИТЕЛЬ BLAX, BLARH, ЯМР БРУКЕРА, МАГНИТНЫЙ РЕЗОНАНС
Отказ вентилятора вызывает сбой питания
Билл бити (beaty atsign chem Washington e d u)
Пн, 10 мая 2004 16:07:47 -0700
Вместо того, чтобы платить 1500 долларов за замену, мне удалось отремонтировать
связка этих источников питания 28VDC в усилителях Bruker BLAX и BLARH.Хотите немного информации?

Во-первых, обратите внимание, что эти источники питания Artesyn или "Elba" 220 В переменного тока БУДУТ РАБОТАТЬ НА 120 В переменного тока.
Это упрощает тестирование. Но я бы не рекомендовал рисовать 200-ваттный
нагрузки, когда напряжение в сети настолько низкое.

Также обратите внимание, что вам нужно разместить небольшую нагрузку на + 15В, -15В, + 5В.
выходы питания, и 10-ваттная нагрузка на + 28В. Если вы запустите их без нагрузки
вообще, коммутируемое питание запускается, но затем прекращается через несколько секунд.
Без нагрузки выходные напряжения сначала на короткое время исправны, а затем начинаются.
падение.Итак, загрузите выход +28 В резистором на 47 Ом 25 Вт. Поставил 91-ом
2 Вт на каждом из + и - 15 В и пара резисторов 15 Ом 2 Вт, подключенных параллельно
на линии + 5В. Если нагрузка слишком мала, напряжение питания тоже не работает.
появляются вообще, или поднимается не на тот уровень, то закрывается микросхема ШИМ
вниз, и выход медленно спадает до нуля.
 
На первой поставке отремонтировал, главный мостовой выпрямитель и большой Были поджарены полевые транзисторы APT5025 для регулирования коэффициента мощности 365 В постоянного тока.Эти компоненты находятся прямо на линии 220 В переменного тока, поэтому любой сильный скачок напряжения может убить их. Диодный мост - странная тонкая штука под основной платой, номер детали D20XB60, можно приобрести в Mouser Electronics, (мост 600 В, 35 А). МОП-транзисторы APT5025BN от Advanced Power Technology, advancedpower.com/ http://www.dz98.com/wjj-pdf/apt5025.pdf Я нашел настоящий APT5025BN, но, вероятно, похожий транзистор работаю, если найдешь пакет ТО-247 на 500В 23А 0.25 Ом 300 Вт, N-канал, порог ворот макс. 4 В (например, IXFh34N50 или IRFP360 от DigiKey.)
У второго мертвого блока также был плохой NPN-транзистор от ZETEX, который, если Я правильно помню, управлял воротами основных переключающих МОП-транзисторов, управляющих Переключатель 220AC на 365VDC. Большие МОП-транзисторы были мертвы, как и UC3854N. ИС коэффициента мощности на впаянной дочерней плате PFC рядом с 270uF 400V конденсаторы. (См. Ниже схему, похожую на дочерняя плата PF-схема коррекции.) Был поджаренный резистор на 22 Ом под большим ферритовым трансформатором и закороченным стабилитроном 1N6284A через Выход 28 В постоянного тока (расположен около середины трех микросхем UC3524 рядом с выходные клеммы.) Несомненно, скачок напряжения в сети 220 В перем. компонент, а большой ток разрушил все остальное. Обязательно проверьте значение этого резистора 22 Ом, потому что, если его значение становится слишком большим более 22 Ом регулируемое выходное напряжение 28 В постоянного тока может значительно возрасти.
В третьем блоке остановился вентилятор. Жара убила два больших по 270 мкФ Электролитические 400 В. Кроме того, значения крошечных электролитов были неверными. на впаянной дочерней плате PF (плата рядом с 270uF 400v колпачков.) Я обнаружил, что могу заменить все эти крошечные конденсаторы, не имея распаять множество контактов на дочерней плате. Обязательно отметьте полярность, так как на этой печатной плате нет знаков плюса для шелкографии. Эти конденсаторы являются частью крошечного высокочастотного импульсного источника питания, который работает компоненты на этой плате, поэтому высокие температуры сожгут эти конденсаторы и отключите питание во время включения.(Судя по всему, поставки с Эльбы могут работает почти вечно, когда его вентилятор не работает, но дополнительное тепло медленно разрушает конденсаторы критичные для последовательности включения.) Я заменил два 47uF 50v (удвоитель вольт), который запускает микросхему коэффициента мощности, конденсатор 100 мкФ 50 В на угол рядом с силовым транзистором, и две крышки 22 мкФ 35 В рядом с разъем вентилятора (они необходимы для питания вентилятора.)
Теперь наш четвертый мертвый отряд был очень интересным. Есть явная конструктивная слабость в 30В секции питания «Эльбы». источник питания используется в некоторых версиях BLAX 300 и аналогичных усилителях.Когда поставка первый подходит, микросхема регулятора переключения 30VDC (UC3825) на втором дочерней плате требуется не менее 9 В, чтобы проснуться и начать подавать постоянный ток. В нормальном при работе он создает собственное напряжение питания от собственного регулируемого 30 В постоянного тока. выход ... он сам поднимается в небо! Но во время при запуске, ему временно требуется другой запас. Он получает это от маленького "начальная обмотка источника питания" часть этого большого железного ленточного индуктора в центр печатной платы...который является частью схемы переключения коэффициента мощности. На выходе этой обмотки напряжение удвоено двумя диодами и тремя конденсаторами (два по 10 мкФ, один 220 мкФ, частично скрытый под трансформатором), создающий 20 В постоянного тока, который обеспечивает Регулятор LM7812, который якобы выдает 12 В постоянного тока для микросхемы UC3825. Но UC3825 потребляет 33 мА, что может перетащить напряжение питания 12 В бутстрапа / LM7812 до 8,9 В ... и иногда UC3825 переходит в непрерывный повторный сброс и никогда не запускается.Он ожидает загрузки начальной загрузки для подниматься выше 9,0 В. Все это зависит от температуры и от многих значений компонентов. Возможно это плохой дизайн? Они должны были дать достаточно свободы действий (например, спроектировав его так, чтобы он фактически выдавал 12 В постоянного тока, даже когда он потребляет 33 мА.) Что касается идеи о том, что тепло может убить эти запасы ... да, если что-то из три небольших электролитических конденсатора рядом с регулятором LM7812 в напряжении- питание удвоителя начальной загрузки должно сгореть, поэтому их значение емкости падает, или их внутренняя утечка становится большой... тогда эти изменения будут толкать вещи через край. UC3825 на съемной дочерней плате в край основной платы никогда не получает 12 В постоянного тока, и источник питания не может проснуться себя больше. Обычный симптом: ваша система работала много дней или недель, но затем после выключения или сбоя в электроснабжении здания, он больше не проснется. (Но иногда, если вы выключите и снова включите его более одного раза, он "поймать" и начать бежать.) У нашего мертвого источника был электролитический 220uF 50V конденсатор (рядом с LM7812), который за эти годы изменился на 20 мкФ. При замене питание снова заработало. Но замените все три заглушки в этом кластере 220 мкФ и два 10 мкФ, поскольку все они подвергаются воздействию высокий темп. Так что обратите внимание, что эти усилители Bruker часто умирают после сбоя питания, но очень часто ЭТО НЕ ВЫЗЫВАЕТСЯ ВЛИЯНИЕМ. Вместо этого неисправен блок питания. недели назад, но проблема оставалась незаметной, пока усилитель оставался в действии.Если мощность переменного тока упадет на секунду или две, значит, мощность блок питания переходит в спящий режим и никогда не просыпается, пока не будут заменены конденсаторы.
Также о схеме блока питания ELBA: Я обнаружил, что схема переднего конца, входной секции 220 В переменного тока, очень похожа на схему, показанную в следующем приложении. примечание для Микросхема UC3854, используемая в дочерней плате коррекции коэффициента мощности источника питания. В нем используется большой полевой МОП-транзистор и индуктор для измерения любого входного линейного напряжения (50 В переменного тока - 270 В переменного тока) и подает 400 В постоянного тока (365 В) на остальную часть платы.В 400 В пост. Тока позже переключается на прямоугольную волну 200 кГц и подается на ферритовый понижающий трансформатор на 28 В постоянного тока. Схема: ИС управления усовершенствованной коррекцией коэффициента мощности (схема на стр. 4) http://focus.ti.com/lit/an/slua177a/slua177a.pdf Обратите внимание, что этот блок питания *** БУДЕТ РАБОТАТЬ *** на 120 В переменного тока, по крайней мере, для тестирования. Предположительно, он преобразует любое сетевое напряжение переменного тока между прибл. 60 В переменного тока и 250 В переменного тока. Однако я бы не стал оставлять весь усилитель ЯМР на 120 В переменного тока, поскольку источник питания, вероятно, не соответствует спецификации по коэффициенту мощности, и может перегрев при нагрузке 600 Вт.Другие схемы для справки: UC3823A, B И UC3825A, B УЛУЧШЕННОЕ ПОКОЛЕНИЕ ШИМ-КОНТРОЛЛЕРОВ http://focus.ti.com/lit/an/slua125/slua125.pdf Схема контролируемой коррекции коэффициента мощности UC3854 http://focus.ti.com/lit/an/slua144/slua144.pdf UC3854 обеспечивает ограничение мощности синусоидальным линейным током http://focus.ti.com/lit/an/slua196a/slua196a.pdf Оптимизация производительности UC3854 http: // focus.ti.com/lit/an/slua172/slua172.pdf Также смотрите сообщения (нужен пароль от форума AMMRL nmr): вопрос об усилителях Bruker и их модулях питания http://www.ammrl.org/archives/Feb February-2004/13.html вопрос об усилителях Bruker и их модулях питания - Резюме http://www.ammrl.org/archives/Feb February-2004/17.html Вентилятор охлаждения блока питания Bruker BLAX / H http://www.ammrl.org/archives/June-2001/7.html
Билл Бити (beaty atsign chem Washington e d u) Пн, 10 мая 2004 16:07:47 -0700 Еще новости! Слабость конструкции блока питания BLAX Elba НЕ заключается в его конструкции. номиналы конденсатора как я и думал.Но проблема рядом: LM7812 перегревает конденсаторы, в результате чего их значение со временем медленно уменьшается, поэтому поставка прекращается рано. Там есть стабилитрон 10 В, который, кажется, источник проблемы, и это может помочь, если мы изменим его на меньшее значение (например, 4,3 В 1N4731.) Это несущественно. Вместо этого просто замените три плохих конденсатора, чтобы все снова заработало.) Перегрев трех конденсаторов происходит из-за небольшого напряжения удвоитель на обмотке индуктора большой серии (два диода и три конденсаторы, 220 мкФ 10 мкФ 10 мкФ) должен подавать только 22 В постоянного тока на LM7812 на пару секунд; при включении питания до тех пор, пока не появится основное + 30В постоянного тока онлайн.Выход этого удвоителя напряжения пропускается через диод, так как является основным выходом 28 В постоянного тока. Оба применяются к входному контакту регулятора LM7812, и в зависимости от того, что выше, регулирующий орган получает питание от него. Это позволяет загрузке ремешок питания посылает ток на LM7812 во время включения, а затем через пару через несколько секунд основное +28 В берет на себя удвоение напряжения, когда он позже просыпается. Но, к сожалению, Эльба поставила стабилитрон 10 В постоянного тока последовательно с 30 В постоянного тока. выход, чтобы понизить его до 20 В (без сомнения, потому что LM7812 без радиатор сильно нагревается при входном напряжении 30 В, поэтому серийный стабилитрон там, чтобы разделить часть тепловой мощности.) Таким образом, маленький удвоитель напряжения И основные 30 В ОБЕИ настроены на прибл. 20В и если вам не повезло, и у вас просто неправильные значения схемы, тогда ОБА ВСЕГДА ЗАПИТЫВАЮТ LM7812. А может удвоитель напряжения "выигрывает" и становится основным источником питания UC3285 на этой дочерней плате. Это Плохая новость для трех конденсаторов в удвоителе напряжения, так как они обычно увидеть двухамперные импульсы на частоте около 50 кГц, и они будут довольно горячими. Над месяцы и годы, когда они перегорают, их значения уменьшаются, их 20Vdc выходное напряжение уменьшается, и, наконец, напряжение падает ниже 9.0 В постоянного тока Требуется основной микросхемой регулятора 30 В постоянного тока UC3825 на второй дочерней плате. Также не помогает то, что конденсаторы прямо против очень горячих Регулятор LM7812; и это может быть даже настоящей проблемой здесь, в конце концов. Но Тем не менее, временное напряжение источника питания начальной загрузки становится слишком низким, и система начинает нестабильно при включении и не может каждый раз просыпаться. Однако если он УЖЕ запущен, поставка начальной загрузки не критична для работы, и система будет работать нормально... пока ты его никогда не выключишь! :) Или, если ваш BLAX или BLARH, по-видимому, умирает сразу после отключения питания, имейте в виду что в некоторых случаях запас начальной загрузки все еще ОЧЕНЬ близок к правильному Напряжение. Попробуйте, возможно, выключить и включить его пару раз (если повезет, может «зацепиться» и заработать.) Используемое нами лекарство (ваш пробег может отличаться!): Замените два 10 мкФ и один Конденсаторы 220 мкФ (все они склеены, расположены рядом с ними). Регулятор напряжения LM7812 примерно посередине основной платы, возле одного края сменной дочерней платы.) Замените их на с низким СОЭ, Электролитические колпачки 105 ° C. Но это не решает реальной проблемы. Поэтому также ищите цепочку резисторов прямо на краю основной платы (с надписью DZ1, DZ2, DZ3.) Один - стабилитрон на 10 В, остальные - перемычки с нулевым сопротивлением. Я заменил стабилитрон 10 В на стабилитрон мощностью 4,3 В. Это позволяет Плохая маленькая цепь удвоителя напряжения отключается, когда в ней нет необходимости. Но это заставляет регулятор LM7812 работать даже больше, чем раньше, во время загрузки.Если я увижу еще один из этих мертвых припасов, думаю, я тоже положу пара маленьких радиаторов ТО-220 на регуляторе LM7812 (HS214-ND из дигики.)
См. Также (с паролем): Создано и поддерживается Биллом Бити.

MCH K305D 30V 5A Мини-одноканальный импульсный источник питания постоянного тока, подходящий для ремонта iPhone Регулируемые источники питания Источники сигналов и кондиционирование Бизнес и промышленность

MCH K305D 30V 5A Мини-одноканальный импульсный блок питания постоянного тока, подходящий для ремонта iPhone Регулируемые источники питания Источники сигналов и кондиционирование Бизнес и промышленность

Блок питания, подходящий для ремонта iPhone MCH K305D 30V 5A Мини-одноканальный импульсный блок питания постоянного и постоянного тока, подходящий для ремонта iPhone MCH K305D 30V 5A Мини-одноканальное переключение, он будет работать в плавающем режиме, номинальная выходная мощность: 150 Вт (5 А), диапазон выходного тока: 0-5 А, l Регулировка нагрузки (10-100%): 50 мВ, l Регулировка нагрузки (10-100%) 20 мА, l Подключение выходных портов: подключение тестовых проводов только к портам «+» и «-», бесплатная доставка на следующий день, забавный и модный бренд, 100% гарантия соответствия, в официальном интернет-магазине, доступные цены с быстрой доставкой., MCH K305D 30V 5A Мини-одноканальный импульсный источник питания постоянного тока, подходящий для ремонта iPhone.





например, коробка без надписи или пластиковый пакет. См. Список продавца для получения полной информации. См. Все определения условий : Бренд: Без марочного обозначения , Диапазон выходного напряжения: : 0-30 В : MPN: Не применяется , Диапазон выходного тока: 0-5 А : Входное напряжение: : 110 В 60 Гц , Точность отображения напряжения: : ± 0,5% : Номинальная выходная мощность: : 150 Вт (5 А) , Точность отображения тока: : ± 0,5% : Рабочая температура окружающей среды: 0 ℃ -40 ℃ Эффективность: : > 85% : Влажность: : ≤80 % RH , Регулируемый тип источника питания : : Импульсный источник питания (SMPS) : Температура окружающей среды при хранении: : 20 ℃ -80 ℃ , UPC: : Не применяется ,。, он будет работать в плавающем режиме.. Состояние: Новое: Совершенно новый, неоткрытый, если товар не был упакован производителем в непродажную упаковку, неиспользованный, MCH K305D 30V 5A Mini Single Channel Switching DC Power Supply, подходящий для ремонта iPhone. Номинальная выходная мощность: 150 Вт (5 А). Диапазон выходного тока: 0-5 А. l Регулировка нагрузки (10-100%): 50 мВ. l Регулировка нагрузки (10-100%) 20 мА. l Подключение выходных портов: подключение измерительных проводов только к портам «+» и «-», неповрежденный элемент в оригинальной упаковке (если упаковка применима). Упаковка должна быть такой же, как в розничном магазине.

MCH K305D 30V 5A мини одноканальный импульсный источник питания постоянного тока подходит для ремонта iPhone



Женский манекен из стекловолокна с двумя сменными головками Дисплей # MZ-ABF4, Подробная информация о линейной направляющей Machifit HGR25 с деталями ЧПУ линейного направляющего рельса HGh35CA, Retekess T111 Система вызова ресторанного фургона 20 Пейджер 3 Быстрый режим 433 МГц. 2-жильный провод для подключения конденсатора, MCH K305D 30V 5A Мини-одноканальный импульсный источник питания постоянного тока, подходящий для ремонта iPhone , L Death Note Наклейка JDM Забавный виниловый автомобильный бампер для ноутбука 6 дюймов.MRMN300-M P3035 Твердосплавные пластины 3 мм Для стали 10 шт., 10 шт. GT2 Шкив ГРМ 20 зубьев 5 мм 8 мм для зубчатого ремня GT2 2gtbeWLFR, НОВИНКА 1/4 «ЗОЛОТОЙ вход моно гнездо для гнезда ПК Крепление Cliff CL13103 Gibson Trace Qty 5, MCH K305D 30V 5A Мини-одноканальный импульсный источник питания постоянного тока, подходящий для ремонта iPhone . 5-дюймовая регулируемая высота на ножках с двумя рельсами на роликах Z, хром и черный, Keystone 209 Cell Leaf Spring Контакт батареи A AA CR2 CR123A 2/4/10/20/40 шт. Игровое кресло для компьютерного офиса NHT в гоночном стиле с подушкой.Выберите размер ID 31-34 мм TC с двумя кромками и резиновым уплотнением вала вращающегося вала с пружиной. MCH K305D 30V 5A мини одноканальный импульсный источник питания постоянного тока подходит для ремонта iPhone ,


MCH K305D 30V 5A мини одноканальный импульсный источник питания постоянного тока подходит для ремонта iPhone

MCH K305D 30V 5A мини одноканальный импульсный источник питания постоянного тока подходит для ремонта iPhone

MCH K305D 30V 5A Мини-одноканальный импульсный источник питания постоянного тока, подходящий для ремонта iPhone, 5A Мини-одноканальный импульсный источник питания постоянного тока, подходящий для ремонта iPhone MCH K305D 30V, мини-одноканальный импульсный источник питания постоянного тока, подходящий для ремонта iPhone MCH K305D 30V 5A.

5 Схема блока питания ПК для вас

Хорошая схема импульсного блока питания постоянного тока от старого компьютера, который не используется. Он мощный, прочный и отлично работает.
В настоящее время компьютер становится электроприбором, необходимым для каждого дома, потому что они очень полезны.

Но срок службы и очень быстро устаревают. Есть новая программа. Желаемая машина с высоким КПД. Всегда можно поменять на новое. (К современному).

-Где старые компы? Скорее всего, он будет отброшен как спам.Это может быть очень ценно для многих, в том числе и для меня. Многие соседи всегда давали мне старый компьютер для работы над проектами.

-Первое, что мне нравится использовать, это мощность, пусть даже старая, но мощная, долговечная и отлично работает. Но это всегда должно быть правильно заземлено. Для предотвращения утечки тока или поражения электрическим током. Нормальное напряжение составляет 3,3 В, 5 В, 12 В и многое другое.

5V 12V 15A max Цепь питания с коммутационным режимом

Это цепь питания с импульсным режимом 5V 12V, макс 15A.Это старая схема блока питания для ПК мощностью 200 Вт . Эта схема подходит для ремонта. Я использую популярную микросхему TL494 в качестве основной. В схеме имеется сдвоенный выход на 2 части.

  • 5V 15A и -5V 1A
  • 12V 10A и -12V 1A

TL494, популярный IC PWM


Источник: я не знаю источник.

Я надеюсь, что эта схема может в рядах проверять медитацию на ремонте компьютера у друзей. Думаю, снова используйте номер интегральной схемы TL494.И по-прежнему использовать транзисторную мощность.

Самостоятельно ремонтировать компьютер Dell GX620

Я давно пользуюсь компьютером Dell GX620, потому что он хорош и долговечен. Я потерял его несколько дней назад. Мой друг, который занимается ремонтом компьютеров, сказал, что проблема с блоком питания. Он сказал мне купить его на amazon.com, они очень хорошие, у него невысокая стоимость, и его тоже можно доставить бесплатно.

Иногда замена цепей питания компьютера серии может оказаться нецелесообразной.Потому что покупать его не было или могло быть слишком дорого.

Отремонтировать блок питания ЭБУ до поиска неисправности. Это хорошее решение. Какие нормальные цепи таким образом питаются. Часто сначала разрабатывается как дешевое оборудование. Например, резисторы-предохранители. Маленькие транзисторы. Или конденсаторный тип, дружественный к электролизу, часто проблема, решение для выхода из строя, особенно на старых компьютерах около 10 лет.

Для простоты ремонта нам нужна схема. Я предлагаю следующие схемы…

-Иногда вам, возможно, придется использовать старый компьютер.Дети будут изучать основы или играть в простые игры. Цепь питания повреждена. Что делать?

— Основные моменты девятого автодрома — это старая технология, это самая простая часть. Но иногда бывает сложно найти схемы. Собираю старую, планирую руководство ремонтом или модификацией не ограничивается. Имеется 5 схем, как показано ниже. (см. ниже!)

200W PC блок питания коммутации 110V-220V


Это будет блок питания ПК для компьютера снова интересная схема.Может быть полезным с друзьями по занятию можно починить компьютер? Подумайте, как быть персонажем Импульсный источник питания 200 Вт, размер источника переменного напряжения 2, уровень 110 В и 220 В можно использовать не спеша. И все же используйте напряжение во многих группах + 5В, + 12В, -12В, которого достаточно для питания малогабаритного компьютера или AT. Когда вы увидите схему, вы подумаете, что использовать интегральную схему IC TL494, источник питания, будет опорным оборудованием. Сделайте так, чтобы схема была несложной или легко ремонтировалась. Детали другие, пожалуйста, посмотрите в схеме лучше.

Compaq Блок питания для ПК 200 Вт


Сегодня в гости к нам приезжает друг, который занимается ремонтом компьютеров. Он думает, что я делаю итоги круга на сайте. Тогда дайте Compaq блок питания 200Watt Circuit, продолжайте анонсировать на сайте. Судя по тому, что он принес с другого сайта, уже не может вспомнить название. Как я вижу, не уверен, что да, схема Compaq Computer или нет. Но поблагодари своего друга. Мне хорошо часто давай всегда. По крайней мере, надеюсь, что эта трасса может быть полезна друзьям.

Старый компьютер Схема питания ПК на TL494


Мой старший брат занимается ремонтом компьютера. Однажды встретившись с проблемой переключения блока питания, компьютер потерял. Это старая схема. Затем я помогаю искать отдачу. Получите эту схему думаю можете не согласиться. Но достаточное использование может заменить. Если друзья встретят такую ​​же проблему, попробуйте, пожалуйста. Он может выдавать выходное напряжение 5 В, + 12 В, -12 В. Используйте интегральную схему TL494 для оборудования столба искать хорошее легко.
При подаче напряжения 110В и 220В выбираем включенный виток SW1.Это еще одна деталь, которую друг видит в схеме.

Схема блока питания компьютера 230Вт 220В


Здесь схема блока питания компьютера 230Вт 220В.
он использует IC-TL494 и транзистор.
Выход 5 В, 12 В

250 Вт Китай Схема блока питания компьютера

Мой друг спрашивает о схеме переключения блока питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *