Резистор 1 мегаом: CF-50 (С1-4) 0.5 Вт, 1 МОм, 5%, Резистор углеродистый

Содержание

мегаом [МОм] в ом [Ом] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

мегаом [МОм] в ом [Ом] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления. Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Резисторы

ВНИМАНИЕ!
Здесь приводится очень сокращённый текст статьи. Если данная информация вас заинтересовала, то вы можете скачать полную версию статьи по указанной ниже ссылке.


Скачать бесплатно статью о резисторах (+ программа для преобразования цветовой кодировки в сопротивление и обратно) можно ЗДЕСЬ

 Не могу скачать :о( 


Содержание

  • РЕЗИСТОРЫ
    • Что это такое?
    • Обозначение резисторов на электрических схемах
    • Зачем они нужны?
    • Виды резисторов
      • Сопротивление
      • Класс точности
      • Мощность рассеивания
      • Переменные резисторы
      • Подстроечные резисторы

Что это такое?

Это слово произошло от английского resist.

Что в переводе означает сопротивляться. Резисторы также называют сопротивлениями. Что же такое сопротивление? Представьте, что вы идете против ветра. Идти тяжело, потому что Вы испытываете сопротивление воздуха. Затем ветер стихает, и вы идете дальше без особого труда. То есть сопротивление как бы «исчезает». На самом деле сопротивление остается, только становится значительно меньше, и вы его не чувствуете. Электрический ток, текущий по проводам, также испытывает сопротивление, которое, правда, вызвано другими причинами. Однако это сопротивление также меняется в зависимости от внешних условий и свойств проводника. Чем тоньше провод – тем больше сопротивление. Чем длиннее провод, тем больше сопротивление. Если вы уже прошли километров десять, то идти становится тяжелее, чем в начале пути. Это сравнение не совсем правильное с точки зрения физики, но если у вас по физике твердая двойка, оно хоть как-то поможет вам понять вышеописанные свойства проводников.

Итак, от чего же зависит величина сопротивления?

  • От длины проводника
  • От площади поперечного сечения проводника
  • От температуры проводника
  • От напряжения, приложенного к концам проводника
  • От силы тока
  • От материала, из которого изготовлен проводник

Многовато получилось? Но не отчаивайтесь.

Многими из этих параметров в реальной практике можно пренебречь. И вообще, мы сейчас говорим о резисторах, а не изучаем законы физики и, в частности, закон Ома. Кстати об омах – пора бы уже поговорить о том, в каких единицах принято измерять сопротивление.

Около двухсот лет назад жил в германии человек по имени Георг Ом. Он и открыл всем известный закон, который впоследствии назвали его именем – закон Ома.

Закон Ома мы оставим на потом, а сейчас нужно запомнить главное – сопротивление измеряется в Омах. Что же такое Ом?

Проводник имеет сопротивление 1 Ом, если сила тока, который протекает по этому проводнику, равна 1 А (Ампер), а напряжение, приложенное к концам этого проводника, равно 1 В (Вольт).

Если вы учили в школе физику, то должны знать, что сопротивление обозначается буквой R, напряжение – буквой U, а сила тока – буквой I.

В электронных конструкциях, как правило, используется довольно много различных резисторов. Все их, конечно же, не изготовишь самостоятельно. Да и сопротивление 1 Ом – величина слишком маленькая. Поэтому промышленностью выпускаются резисторы разных номиналов. Но прежде чем перейти к рассмотрению выпускаемых промышленностью резисторов, приведем здесь единицы измерения больших сопротивлений:

1 КОм (килоом) = 1000 Ом
1 МОм (мегаом) = 1000 КОм = 1 000 000 Ом

Виды резисторов

Как уже упоминалось, резисторы бывают трёх видов:

  • Постоянные
  • Переменные
  • Подстроечные

Самый многочисленный класс – это постоянные резисторы – резисторы, сопротивление которых нельзя изменить. Потому они и называются постоянными. С них и начнем.

Старые резисторы имели довольно большой размер, поэтому все номиналы указывались обычными буквами на корпусах этих резисторов. Ну а что же там пишут? Чтобы в этом разораться, рассмотрим основные характеристики постоянных резисторов:

  • Сопротивление
  • Класс точности (допуск)
  • Мощность рассеивания

Есть и другие характеристики, но о них как-нибудь в другой раз. А пока нам хватит и этих.

Сопротивление

Что такое сопротивление мы уже знаем. Осталось узнать, как оно обозначается на корпусах резисторов. Итак,

Если сопротивление меньше 1000 Ом:

В этом случае после цифры, которая указывает значение сопротивления, пишут букву R. Или не пишут совсем никакой буквы. На некоторых старых резисторах советского производства вы можете увидеть слово Ом. На современные резисторы принято наносить следующие символы: сначала пишут целую часть числа, затем букву R, а затем – дробную часть числа. Примеры обозначения сопротивлений:

100 = 100 Ом
100 R = 100 Ом

Более современные обозначения:

1R5 = 1,5 Ом
1R0 = 1 Ом
0R2 = 0,2 Ом

Если первая цифра – 0, то ее обычно не пишут, поэтому:

0R2 = R2 = 0,2 Ом

Если сопротивление больше 1000 Ом:

В этом случае, чтобы не писать большие числа, используют килоомы и мегаомы. Вообще-то есть и более весомые приставки, например Гига- и Тера-, но такие большие сопротивления в электронике практически не встречаются, поэтому ограничимся кило- и мегаомами.

Принцип записи значений остается таким же, просто меняются буквы, а, следовательно, и значения сопротивлений. Примеры:

K100 = 100 Ом
1К0 = 1 КОм = 1000 Ом
1К5 = 1,5 КОм = 1500 Ом
M220 = 220 KОм = 220 000 Ом
1М0 = 1 МОм = 1000 КОм = 1 000 000 Ом
3М3 = 3,3 МОм = 3300 КОм = 3 300 000 Ом

Но это еще не все. Современная аппаратура имеет небольшие размеры, а значит и компоненты, которые в ней используются, также имеют небольшие размеры. Резисторы нужны маленькие – написать на них какие-либо буквы еще можно, но вот разглядеть эти буквы потом будет непросто. Поэтому была разработана цветовая маркировка резисторов.

Если вы думаете, что это все – то вы сильно ошибаетесь. Есть еще резисторы, предназначенные для поверхностного монтажа (совсем маленькие плоские «деталюшечки» прямоугольной формы). Такие детали не имеют выводов (вернее, выводы есть – но это не проволочные выводы, а две металлические полоски по краям). Детали для поверхностного монтажа припаивают прямо на печатные проводники платы.

Они занимают мало места и широко применяются в современной аппаратуре. Маркировку сопротивлений на них принято наносить другим способом.

И если вы думаете, что с такими резисторами вы никогда не столкнетесь, то вы глубоко заблуждаетесь. Практически в любой современной аппаратуре используются детали для поверхностного монтажа. К тому же почти все импортные конденсаторы и многие другие детали маркируют таким же образом.

«Ну, наконец-то с резисторами мы разобрались» – подумали вы. И снова жестоко ошиблись. Идем дальше.

Класс точности

Вы помните, как мы изготавливали резистор из нихрома. Его можно было изготовить и без расчетов – просто измерить очень точным омметром участок проволоки, и отрезать нужный кусок. Но в промышленности так никто работать не будет. И вообще, из нихрома делают только низкоомные мощные сопротивления. А большинство резисторов изготавливают из специального материала. При этом трудно сделать все резисторы абсолютно одинаковыми – по разным причинам происходит разброс параметров.

А если так, то все значения сопротивлений – это номинальные параметры, которые в реальности немного отличаются в ту или иную сторону. Величину этих отличий и определяет класс точности (допуск). Допуск измеряется в процентах.

Пример: резистор 100 Ом +/- 5%

Это означает, что сопротивление реального резистора может отличаться на пять процентов от номинала. Вспомним начальную школу: в нашем случае 100 Ом – это 100%, значит 5% – это 5 Ом.

100 – 5 = 95; 100 + 5 = 105

То есть величина конкретного экземпляра резистора может находиться в пределах от 95 до 105 Ом. Для большинства конструкций – это пустяк. Но в некоторых случаях требуется подобрать более точное сопротивление – тогда выбирают резистор с более высоким классом точности. То есть не 5%, а, например 2%.

Осталось узнать, как же этот класс точности обозначают на резисторах.

Если используется цветовой код – то просто смотрите в таблицу. (Если на резисторе всего три полосы, то допуск равен 20%).

На старых резисторах допуск так и пишут: 20%, 10%, 5% и т.п.

Но есть еще буквенная кодировка. Если на резисторе указано сопротивление способом, рассмотренным на стр. 8 и 9, то последняя буква (если она есть) обозначает величину допуска. Значения этих букв приведены в таблице 2.

Мощность рассеивания

Для начала вспомним, что такое мощность. Мощность измеряется в ваттах (обозначается Вт или W). В физике мощность электрического тока обозначается буквой Р.

«Ну хорошо, – скажите вы – мощность резистора мы теперь сможем рассчитать. Ну а зачем нам вообще знать эту мощность? Разве не достаточно знать сопротивление?»

В некоторых случаях достаточно. Если вы разрабатываете устройство, которое не содержит цепей, через которые протекает большой ток, то в это устройство можно устанавливать резисторы любой мощности – ничего с ними не случится. Но если через резистор течет значительный ток, то он может перегреться и выйти из строя (попросту сгореть). Это не только приведет к тому, что ваша конструкция перестанет работать, но в худших случаях может вызвать даже пожар. Чтобы этого не случилось, в подозрительных ситуациях следует перестраховаться и рассчитать мощность, которая будет выделяться на резисторе – мощность рассеивания. А потом посмотреть в справочнике или на самом резисторе значение мощности и выбрать подходящий экземпляр. Мощность пишется на корпусе резистора либо римскими, либо арабскими цифрами. На маломощных резисторах мощность обычно не указывают – здесь вам помогут только справочники да собственный практический опыт.

Примеры обозначений:

1 W = 1 Ватт
IV W = 4 Ватт
2 Вт = 2 Ватт
V Вт = 5 Ватт


Резистор С2-14-0,25-1,98 кОм +- 0,255 – А

Справочник содержания драгоценных металлов в радиодеталях, создан на основе справочных данных организаций занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах, этикетках и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.

Содержание драгоценных металлов в резисторе: С2-14-0,25-1,98 кОм +- 0,255 – А

Золото: 0
Серебро: 0.002432
Платина: 0
МПГ: 0
По данным: из переченя Роскосмоса

Какие драгоценные металлы содержатся в резисторах

В постоянных резисторах содержится только серебро, которое нанесено на выводы. С переменными резисторами все лучше, в них может содержатся золото, серебро, платина и сплавы палладия. Особо богаты на драгметаллы претензионные переменные резисторы.

Сопротивление резистора – его основная характеристика. Основной единицей электрического сопротивления является ом (Ом). На практике используются также производные единицы – килоом (кОм), мегаом (МОм), гигаом (ГОм). Драгоценные металлы в основном содержатся в переменных и построечных резисторах, в них часто используется палладий в виде бегунков или проволоки реохорды.

Типы резисторов

Существует три основных типа резисторов:
Переменный резистор – это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.
Постоянные резисторы, сопротивление у данного резистора не изменить. Как правило имеют только два вывода. В данных резисторах может содержаться только серебро, в виде посеребренных выводов.
Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.

Основные характеристики резисторов

Номинальное сопротивление (Ом, кОм, мОм).
Максимальная рассеиваемая мощность (0,25 Вт, 0,5 Вт, 1 Вт, и т.д.)
Допуск или класс точности (от этого значения зависит допустимый разброс параметров резистора).

Примеры буквенно-цифрового обозначения резистора

Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:
47 Ом – 47 R;
47 кОм – 47 K;
47 МОм – 47 M.
Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:
0,47 Ом – R 47;
0,47 кОм – K 47;
0,47 МОм – M 47.
Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:
4,7 Ом – 4R7;
4,7 кОм – 4K7;
4,7 МОм – 4M7.
Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±7%, ±10%, ±40%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка…

Похожее

Каталог продукции — Пассивные элементы — Резисторы постоянные — Резисторы выводные — Резисторы выводные 2W

Сопротивление

 0,15 Ом  0,2 Ом  0,39 Ом  0,47 Ом  0,51 Ом  0,75 Ом  0.1 Ом  1 кОм  1 МОм  1 Ом  1,1 кОм  1,1 МОм  1,2 кОм  1,2 МОм  1,2 Ом  1,3 кОм  1,5 кОм  1,6 кОм  1,8 кОм  1,8 МОм  1,8 Ом  1. 3 Ом  1.5 Ом  10 кОм  10 МОм  10 Ом  100 кОм  100 Ом  11 кОм  11 Ом  12 кОм  12 Ом  120 кОм  120 Ом  13 кОм  13 Ом  130 кОм  130 Ом  15 кОм  15 Ом  150 кОм  150 Ом  16 кОм  160 кОм  160 Ом  18 кОм  18 Ом  180 кОм  180 Ом  2 кОм  2 Ом  2,2 кОм  2,2 МОм  2,2 Ом  2,4 кОм  2,4 Ом  2. 7 кОм  2.7 Ом  20 кОм  20 Ом  200 кОм  200 Ом  22 кОм  22 Ом  220 Ом  24 кОм  24 Ом  240 Ом  27 Ом  270 кОм  270 Ом  3 кОм  3 Ом  3,3 кОм  3,3 Ом  3,6 кОм  3,9 кОм  3,9 МОм  3,9 Ом  30 кОм  30 Ом  300 кОм  300 Ом  33 кОм  330 кОм  330 Ом  36 Ом  360 кОм  360 Ом  39 кОм  39 Ом  390 кОм  390 Ом  4,7 кОм  4,7 МОм  43 кОм  43 Ом  430 кОм  430 Ом  47 кОм  47 Ом  470 кОм  470 Ом  5,1 кОм  5,1 Ом  5,6 кОм  5. 1 Ом  51 кОм  51 Ом  510 кОм  510 Ом  56 кОм  56 Ом  560 кОм  560 Ом  6,2 МОм  6,2 Ом  6,8 кОм  6,8 МОм  6,8 Ом  62 кОм  62 Ом  620 Ом  68 Ом  680 кОм  680 Ом  7,5 кОм  7,5 МОм  75 кОм  75 Ом  750 кОм  750 Ом  8,2 кОм  8,2 МОм  8,2 Ом  9,1 кОм  9,1 МОм  91 Ом  910 Ом

Сопротивление r 5 1j чем заменить.

Резистор. Резисторы переменного сопротивления. Где какие конденсаторы применяют

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R ) и его порядковый номер в схеме (R1 ). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах. Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к , то этот резистор имеет сопротивление 10 кило Ом (10 кОм – 10 000 Ом). Про множители и приставки «кило», «мега» можете .

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов.

    Номинальное сопротивление.

    Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.

    Рассеиваемая мощность.

    Более подробно о мощности резистора я уже писал .

    При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.

    На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.

    К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.

    Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.

    Допуск.

    При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.

    Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.

    Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.

    Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.

    Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25…0,05%.

    Температурный коэффициент сопротивления (ТКС).

    Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.

    В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал .

    Первые три параметра основные, их надо знать!

    Перечислим их ещё раз:

      Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм…)

      Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт…)

      Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

    Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление , рассеиваемая мощность и допуск .

    В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2…3 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

    Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

    Таблица цветового кодирования.

    Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

    Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

    На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

    Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

    Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

    Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

    В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

Часто во время внешнего осмотра можно обнаружить повреждение лакового или эмалевого покрытия. Резистор с обуглившейся поверхностью или с колечками на ней также неисправен. Небольшое потемнение лакового покрытия допустимого у таких резисторов следует проверить величину сопротивления. Допустимое отклонение от номинальной величины не должно превышать ±20 %. Отклонение величины сопротивления от номинала в сторону возрастания наблюдается при длительной эксплуатации у высокоомных резисторов (более 1 МОм).

В ряде случае обрыв токопроводящего элемента не вызывает никаких изменений внешнего вида резистора. Поэтому проверку резисторов на соответствие их величин номинальным значениям производят с помощью омметра. Перед измерением сопротивления резисторов в схеме следует выключить приемник и разрядить электролитические конденсаторы. При измерении необходимо обеспечить надежный контакт между выводами проверяемого резистора и зажимами прибора. Чтобы не шунтировать прибор, не следует касаться руками металлических частей щупов омметра. Величина измеренного сопротивления должна соответствовать тому номиналу, который обозначен на корпусе резистора с учетом допуска, соответствующего классу данного резистора и собственной погрешности измерительного прибора. Например, при измерении сопротивления резистора I класса точности с помощью прибора Ц-4324 суммарная погрешность во время измерения может достигать ±15 % (допуск резистора ±5 % плюс погрешность прибора ±10). Если резистор проверяется без. выпаивания его из схемы, то необходимо учитывать влияние шунтирующих цепей.

Наиболее часто встречающаяся неисправность у резисторов- пе регорание токопроводящего слоя, которое может быть вызвано прохождением через резистор недопустимо большого тока в результате различных замыканий в монтаже или пробоя конденсатора. Проволочные резисторы значительно реже выходят из строя. Основные неисправности их (обрыв или перегорание проволоки) обычно находят при помощи омметра.

Переменные резисторы (потенциометры) чаще всего имеют нарушения контакта подвижной щетки с токопроводящими элементами резистора. Если такой потенциометр используется в радиоприёмнике для регулировки громкости, то при повороте его оси в головке динамического громкоговорителя слышны трески. Встречаются также обрывы, износ или повреждение токопроводящего слоя.

Исправность потенциометров определяют омметром. Для этого подключают один из щупов омметра к среднему лепестку потенциометра, а второй щуп — к одному из крайних лепестков. Ось регулятора при каждом таком подключении очень медленно вращают. Если потенциометр исправен, то стрелка омметра перемещается вдоль шкалы плавно, без дрожания и рывков. Дрожание и рывки стрелки свидетельствуют о плохом контакте щетки с токопроводящим элементом. Если стрелка омметра вообще не отклоняется, это означает, что резистор неисправен. Такую проверку рекомендуется повторить, переключив второй щуп омметра ко второму крайнему лепестку резистора, чтобы убедиться в исправности и этого вывода. Неисправный потенциометр необходимо заменить новым или отремонтировать, если это возможно. Для этого вскрывают корпус потенциометра и тщательно промывают спиртом токопроводящий элемент и наносят тонкий слой машинного масла. Затем его собирают и вновь проверяют надежность контакта.

Резисторы, признанные непригодными, обычно заменяются исправными, величины которых подбирают так, чтобы они соответствовали принципиальной схеме приемника. При отсутствии резистора с соответствующим сопротивлением его можно заменить двумя (или несколькими) параллельно или последовательно соединенными. При параллельном соединении двух резисторов общее сопротивление цепи можно рассчитать по формуле

где Р — рассеиваемая на резисторе мощность, Вт; U — напряжение на резисторе,. В; R — величина сопротивления резистора; Ом.

Желательно взять резистор с несколько большей мощностью рассеяния (на 30,..40 %), чем полученная при расчете. При отсутствии резистора требуемой мощности можно подобрать несколько резисторов меньшей. мощности и соединить их между собой параллельно или последовательно с таким расчетом, чтобы их общее сопротивление оказалось равным заменяемому, а общая мощность не ниже требуемой.

При определении взаимозаменяемости различных типов постоянных и переменных резисторов для последних учитывают также характеристику изменения сопротивления от угла поворота его оси. Выбор характеристики изменения потенциометра определяют его схемным назначением. Например, чтобы получить равномерное регулирование громкости радиоприемника, следует выбирать потенциометры группы В (с показательной зависимостью изменения сопротивления), а в цепях регулировки тембра — группы А.

При замене вышедших из строя резисторов типа ВС можно рекомендовать резисторы типа МЛТ соответствующей мощности рассеяния, имеющие меньшие габариты и лучшую влагоустойчивость. Номинальная мощность резистора и класс его точности не имеют существенного значения в цепях управляющих сеток ламп и коллекторов транзисторов малой мощности.

Продолжение статьи о начале занятий электроникой. Для тех, кто решился начать. Рассказ о деталях.

Радиолюбительство до сих пор является одним из самых распространенных увлечений, хобби. Если в начале своего славного пути радиолюбительство затрагивало в основном конструирование приемников и передатчиков, то с развитием электронной техники расширялся диапазон электронных устройств и круг радиолюбительских интересов.

Конечно, такие сложные устройства, как, например, видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, причем достаточно успешно.

Другим направлением является конструирование электронных схем или доработка «до класса люкс» промышленных устройств.

Диапазон в этом случае достаточно велик. Это устройства для создания «умного дома», преобразователи 12…220В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярны , а также многое другое.

Передатчики и приемники отошли на последний план, а вся техника называется теперь просто электроникой. И теперь, пожалуй, следовало бы называть радиолюбителей как-то иначе. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть будут радиолюбители.

Компоненты электронных схем

При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.

Активными считаются радиодетали, которые обладают свойством усиливать электрические сигналы, т. е. обладающие коэффициентом усиления. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы, и многое другое.

Одним словом все те элементы, у которых маломощный входной сигнал управляет достаточно мощным выходным. В таких случаях говорят, что коэффициент усиления (Кус) у них больше единицы.

К пассивным относятся такие детали, как резисторы, и т.п. Одним словом все те радиоэлементы, которые имеют Кус в пределах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот сначала и рассмотрим пассивные элементы.

Резисторы

Являются самыми простыми пассивными элементами. Основное их назначение ограничить ток в электрической цепи. Простейшим примером является включение светодиода, показанное на рисунке 1. С помощью резисторов также подбирается режим работы усилительных каскадов при различных .

Рисунок 1. Схемы включения свтодиода

Свойства резисторов

Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы .

Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, примерно так же, как в механике удельный вес и объем.

Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Нетрудно увидеть, что чем длиннее и тоньше провод, тем больше сопротивление.

Можно подумать, что сопротивление не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде случаев как раз это препятствие является полезным. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I 2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных нагревательных приборах и лампах накаливания.

Резисторы на схемах

Все детали на электрических схемах показываются с помощью УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.

Рисунок 2. УГО резисторов

Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а точнее даже тремя: P = U * I, P = I 2 * R, P = U 2 / R.

Первая формула говорит о том, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.

Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буква К или М может ставиться вместо запятой), R5 — 5,1МОм.

Современная маркировка резисторов

В настоящее время маркировка резисторов производится с помощью цветных полос. Самое интересное, что цветовая маркировка упоминалась в первом послевоенном журнале «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новая американская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.

Рисунок 3. Маркировка резисторов

На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип — резистор». Для любительских целей наиболее подходят резисторы типоразмера 1206. Они достаточно крупные и имеют приличную мощность, целых 0,25Вт.

На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.

Рисунок 4. Резисторы для поверхностного монтажа SMD

Чип резисторы самых маленьких размеров выпускаются без маркировки, поскольку ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из трех цифр. Первые две представляют собой номинал, а третья множитель, в виде показателя степени числа 10. Поэтому если написано, например, 100, то это будет 10 * 1Ом = 10Ом, поскольку любое число в нулевой степени равно единице первые две цифры надо умножать именно на единицу.

Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 гласит, что перед нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и определить номинал можно лишь пользуясь таблицей, которую можно отыскать в интернете.

В зависимости от допуска на сопротивление номиналы резисторов разделяются на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.

Рисунок 5.

Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответствующем ряду. Если ряд E6 имеет допуск 20%, то в нем всего лишь 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал.

Кроме мощности и номинального сопротивления резисторы имеют еще несколько параметров, но о них пока говорить не будем.

Соединение резисторов

Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Причин этому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используется две схемы соединения резисторов: последовательное и параллельное. Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.

Рисунок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления

В случае последовательного соединения общее сопротивление равно просто сумме двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть и больше. Такое включение бывает в . Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего. Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Например, соединили в параллель десять резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.

Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора.

Продолжение читайте в следующей статье.

При сборке любого устройства, даже самого простейшего, у радиолюбителей часто возникают проблемы с радиодеталями, бывает что не удается достать какой то резистор определенного номинала, конденсатор или транзистор… в данной статье я хочу рассказать про замену радиодеталей в схемах, какие радиоэлементы на что можно заменять и какие нельзя, чем они различаются, какие типы элементов в каких узлах применяют и многое другое. Большинство радиодеталей могут быть заменены на аналогичные, близкие по параметрам.

Начнем пожалуй с резисторов.

Итак, вам наверное уже известно, что резисторы являются самыми основными элементами любой схемы. Без них не может быть построена ни одна схема, но что же делать, если у вас не оказалось нужных сопротивлений для вашей схемы? Рассмотрим конкретный пример, возьмем к примеру схему светодиодной мигалки, вот она перед вами:

Для того чтобы понять, какие резисторы здесь в каких пределах можно менять, нам нужно понять, на что вообще они влияют. Начнем с резисторов R2 и R3 – они влияют (совместно с конденсаторами) на частоту мигания светодиодов, т.е. можно догадаться, что меняя сопротивления в большую или меньшую сторону, мы будем менять частоту мигания светодиодов. Следовательно, данные резисторы в этой схеме можно заменить на близкие по номиналу, если у вас не окажется указанных на схеме. Если быть точнее, то в данной схеме можно применить резисторы ну скажем от 10кОм до 50кОм. Что касается резисторов R1 и R4, в некоторой степени и от них тоже зависит частота работы генератора, в данной схеме их можно поставить от 250 до 470Ом. Тут есть еще один момент, светодиоды ведь бывают на разное напряжение, если в данной схеме применяются светодиоды на напряжение 1,5вольт, а мы поставим туда светодиод на большее напряжение – они у нас будут гореть очень тускло, следовательно, резисторы R1 и R4 нам нужно будет поставить на меньшее сопротивление. Как видите, резисторы в данной схеме можно заменить на другие, близкие номиналы. Вообще говоря, это касается не только данной схемы, но и многих других, если у вас при сборке схемы скажем не оказалось резистора на 100кОм, вы можете заменить его на 90 или 110кОм, чем меньше будет разница – тем лучше ставить вместо 100кОм 10кОм не стоит, иначе схема будет работать некорректно или вовсе, какой либо элемент может выйти из строя. Кстати, не стоит забывать что у резисторов допустимо отклонение номинала. Прежде чем резистор менять на другой, прочитайте внимательно описание и принцип работы схемы. В точных измерительных приборах не стоит отклоняться от заданных в схеме номиналов.

Теперь что касается мощностей, чем мощнее резистор тем он толще, ставить вместо мощного 5 ваттного резистора 0,125 ватт никак нельзя, в лучшем случае он будет очень сильно греться, в худшем — просто сгорит.

А заменить маломощный резистор более мощным – всегда пожалуйста, от этого ничего не будет, только мощные резисторы они более крупные, понадобится больше места на плате, или придется его поставить вертикально.

Не забывайте про параллельное и последовательное соединение резисторов, если вам нужен резистор на 30кОм, вы можете его сделать из двух резисторов по 15кОм, соединив последовательно.

В схеме что я дал выше, присутствует подстроечный резистор. Его конечно же можно заменить переменным, разницы никакой нет, единственное, подстроечный придется крутить отверткой. Можно ли подстроечные и переменные резисторы в схемах менять на близкие по номиналу? В общем то да, в нашей схеме его можно поставить почти любого номинала, хоть 10кОм, хоть 100кОм – просто изменятся пределы регулирования, если поставим 10кОм, вращая его мы быстрее будем менять частоту мигания светодиодов, а если поставим 100кОм. , регулировка частоты мигания будет производиться плавнее и «длиннее» нежели с 10к. Иначе говоря, при 100кОм диапазон регулировки будет шире, чем при 10кОм.

А вот заменять переменные резисторы более дешевыми подстроечными не стоит. У них движок грубее и при частом использовании сильно царапается токопроводящий слой, после чего при вращении движка сопротивление резистора может меняться скачкообразно. Пример тому хрип в динамиках при изменении громкости.

Подробнее про виды и типы резисторов можно почитать .

Теперь поговорим про конденсаторы, они бывают разных видов, типов и конечно же емкостей. Все конденсаторы различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск. В радиоэлектронике применяют два типа конденсаторов, это полярные, и неполярные. Отличие полярных конденсаторов от неполярных заключается в том, что полярные конденсаторы нужно включать в схему строго соблюдая полярность. Конденсаторы по форме бывают радиальные, аксиальные (выводы у таких конденсаторов находятся сбоку), с резьбовыми выводами (обычно это конденсаторы большой емкости или высоковольтные), плоские и так далее. Различают импульсные, помехоподавляющие, силовые, аудио конденсаторы, общего назначения и др.

Где какие конденсаторы применяют?

В фильтрах блоков питания применяют обычные электролитические, иногда еще ставят керамику (служат для фильтрации и сглаживания выпрямленного напряжения), в фильтрах импульсных блоков питания применяют высокочастотные электролиты, в цепях питания — керамику, в некритичных цепях тоже керамику.

На заметку!

У электролитических конденсаторов обычно большой ток утечки, а погрешность емкости может составлять 30-40%, т.е. емкость указанная на банке, в реальности может сильно отличаться. Номинальная ёмкость таких конденсаторов уменьшается по мере их срока эксплуатации. Самый распространённый дефект старых электролитических конденсаторов – это потеря ёмкости и повышенная утечка, такие конденсаторы не стоит эксплуатировать дальше.

Вернемся мы к нашей схеме мультивибратора (мигалки), как видите там присутствуют два электролитических полярных конденсатора, они так же влияют на частоту мигания светодиодов, чем больше емкость, тем медленнее они будут мигать, чем меньше емкость, тем быстрее будут мигать.

Во многих устройствах и приборах нельзя так «играть» емкостями конденсаторов, к примеру если в схеме стоит 470 мкФ – то надо стараться поставить 470 мкФ, или же параллельно 2 конденсатора 220 мкФ. Но опять же, смотря в каком узле стоит конденсатор и какую роль он выполняет.

Рассмотрим пример на усилителе низкой частоты:

Как видите, в схеме присутствует три конденсатора, два из которых не полярные. Начнем с конденсаторов С1 и С2, они стоят на входе усилителя, через эти конденсаторы проходит/подается источник звука. Что будет если вместо 0.22 мкФ мы поставим 0.01 мкФ? Во первых немного ухудшится качество звучания, во вторых звук в динамиках станет заметно тише. А если мы вместо 0.22 мкФ поставим 1 мкФ – то на больших громкостях у нас появятся хрипы в динамиках, усилитель будет перегружаться, будет сильнее нагреваться, да и качество звука снова может ухудшиться. Если вы глянете на схему какого нибудь другого усилителя, можете заметить, что конденсатор на входе может стоять и 1 мкФ, и даже 10 мкФ. Все зависит от каждого конкретного случая. Но в нашем случае конденсаторы 0.22 мкФ можно заменять на близкие по значению, например 0.15 мкФ или лучше 0.33 мкФ.

Итак, дошли мы до третьего конденсатора, он у нас полярный, имеет плюс и минус, путать полярность при подключении таких конденсаторов нельзя, иначе они нагреются, что еще хуже, взорвутся. А бабахают они очень и очень сильно, может уши заложить. Конденсатор С3 емкостью 470 мкФ у нас стоит по цепи питания, если вы еще не в курсе, то скажу, что в таких цепях, и например в блоках питания чем больше емкость, тем лучше.

Сейчас у каждого дома имеются компьютерные колонки, может быть вы замечали, что если громко слушать музыку, колонки хрипят, а еще мигает светодиод в колонке. Это обычно говорит как раз о том, что емкость конденсатора в цепи фильтра блока питания маленькая (+ трансформаторы слабенькие, но об этом я не буду). Теперь вернемся к нашему усилителю, если мы вместо 470 мкФ поставим 10 мкФ – это почти то же самое что конденсатор не поставить вообще. Как я уже говорил, в таких цепях чем больше емкость, тем лучше, честно говоря в данной схеме 470 мкФ это очень мало, можно все 2000 мкФ поставить.

Ставить конденсатор на меньшее напряжение чем стоит в схеме нельзя, от этого он нагреется и взорвется, если схема работает от 12 вольт, то нужно ставить конденсатор на 16 вольт, если схема работает от 15-16 вольт, то конденсатор лучше поставить на 25 вольт.

Что делать, если в собираемой вами схеме стоит неполярный конденсатор? Неполярный конденсатор можно заменить двумя полярными, включив их последовательно в схему, плюсы соединяются вместе, при этом емкость конденсаторов должна быть в два раза больше чем указано на схеме.

Никогда не разряжайте конденсаторы замыкая их вывода! Всегда нужно разряжать через высокоомный резистор, при этом не касайтесь выводов конденсатора, особенно если он высоковольтный.

Практически на всех полярных электролитических конденсаторах на верхней части вдавлен крест, это своеобразная защитная насечка (часто называют клапаном). Если на такой конденсатор подать переменное напряжение или превысить допустимое напряжение, то конденсатор начнет сильно греться, а жидкий электролит внутри него начнет расширяться, после чего конденсатор лопается. Таким образом часто предотвращается взрыв конденсатора, при этом электролит вытекает наружу.

В связи с этим хочу дать небольшой совет, если после ремонта какой либо техники, после замены конденсаторов вы впервые включаете его в сеть (например в старых усилителях меняются все подряд электролитические конденсаторы), закрывайте крышку и держитесь на расстоянии, не дай бог что бабахнет.

Теперь вопрос на засыпку: можно ли включать в сеть 220вольт неполярный конденсатор на 230 вольт? А на 240? Только пожалуйста, сходу не хватайте такой конденсатор и не втыкайте его в розетку!

У диодов основными параметрами являются допустимый прямой ток, обратное напряжение и прямое падение напряжения, иногда еще нужно обратить внимание на обратный ток. Такие параметры заменяющих диодов должны быть не меньше, чем у заменяемых.

У маломощных германиевых диодов обратный ток значительно больше, чем у кремниевых. Прямое падение напряжения у большинства германиевых диодов примерно в два раза меньше чем у похожих кремниевых. Поэтому в цепях, где используется это напряжение для стабилизации режима работы схемы, например в некоторых оконечных усилителях звука, замена диодов на другой тип проводимости не допустима.

Для выпрямителей в блоках питания главными параметрами являются обратное напряжение и предельно допустимый ток. Например, при токах 10А можно применять диоды Д242…Д247 и похожие, для тока 1 ампер можно КД202, КД213, из импортных это диоды серии 1N4xxx. Ставить вместо 5 амперного диода 1 амперный конечно же нельзя, наоборот можно.

В некоторых схемах, например в импульсных блоках питания нередко применяют диоды Шоттки, они работают на более высоких частотах чем обычные диоды, обычными диодами такие заменять не стоит, они быстро выйдут из строя.

Во многих простеньких схемах в качестве замены можно поставить любой другой диод, единственное, не спутайте вывода, с осторожностью стоит к этому относиться, т. к. диоды так же могут лопнуть или задымиться (в тех же блоках питания) если спутать анод с катодом.

Можно ли диоды (в т.ч. диоды Шоттки) включать параллельно? Да можно, если два диода включить параллельно, протекающий через них ток может быть увеличен, сопротивление, падение напряжения на открытом диоде и рассеиваемая мощность уменьшаются, следовательно – диоды меньше будут греться. Параллелить диоды можно только с одинаковыми параметрами, с одной коробки или партии. Для маломощных диодов рекомендую ставить так называемый «токоуравнивающий» резистор.

Транзисторы делятся на маломощные, средней мощности, мощные, низкочастотные, высокочастотные и т.д. При замене нужно учитывать максимально допустимое напряжение эмиттер-коллектор, ток коллектора, рассеиваемая мощность, ну и коэффициент усиления.

Заменяющий транзистор, во первых, должен относиться к той же группе, что и заменяемый. Например, малой мощности низкой частоты или большой мощности средней частоты. Затем подбирают транзистор той же структуры: р-п-р или п-р-п, полевой транзистор с р-каналом или n-каналом. Далее проверяют значения предельных параметров, у заменяющего транзистора они должны быть не меньше, чем у заменяемого.
Кремниевые транзисторы рекомендуется заменять только кремниевыми, германиевые — германиевыми, биполярные – биполярными и т.д.

Давайте вернемся к схеме нашей мигалки, там применены два транзистора структуры n-p-n, а именно КТ315, данные транзисторы спокойно можно заменить на КТ3102, или даже на старенький МП37, вдруг завалялся у кого Транзисторов, способных работать в данной схеме очень и очень много.

Как вы думаете, будут ли работать в этой схеме транзисторы КТ361? Конечно же нет, транзисторы КТ361 другой структуры, p-n-p. Кстати, аналогом транзистора КТ361 является КТ3107.

В устройствах, где транзисторы используются в ключевых режимах, например в каскадах управления реле, светодиодов, в логических схемах и пр… выбор транзистора не имеет большого значения, выбирайте аналогичной мощности, и близкий по параметрам.

В некоторых схемах между собой можно заменять например КТ814, КТ816, КТ818 или КТ837. Возьмем для примера транзисторный усилитель, схема его ниже.

Выходной каскад построен на транзисторах КТ837, их можно заменить на КТ818, а вот на КТ816 уже не стоит менять, он будет очень сильно нагреваться, и быстро выйдет из строя. Кроме того, уменьшится выходная мощность усилителя. Транзистор КТ315 как вы уже наверное догадались меняется на КТ3102, а КТ361 на КТ3107.

Мощный транзистор можно заменить двумя маломощными того же типа, их соединяют параллельно. При параллельном соединении, транзисторы должны применяться с близкими значениями коэффициента усиления, рекомендуется ставить выравнивающие резисторы в эмиттерной цепи каждого, в зависимости от тока: от десятых долей ома при больших токах, до единиц ом при малых токах и мощностях. В полевых транзисторах такие резисторы обычно не ставятся, т.к. у них положительный ТКС канала.

Думаю, на этом закончим, в заключении хочу сказать, что вы всегда сможете попросить помощи у Google, он вам всегда подскажет, даст таблицы по замене радиодеталей на аналоги. Удачи!

Тема 4. Курс «Настройка и регулировка электронной аппаратуры»

Курс «Настройка и регулировка электронной аппаратуры»
Тема 4.
«Резисторы»


Резисторы
Основные функции
■ делитель напряжения
■ ограничитель тока
■ нагрузка
Основной параметр: сопротивление (resistance), измеряется в Омах (Ω).
В электронике встречаются номиналы резисторов от сотой доли Ома до
сотен мегаОм.В схемотехнике Омы обозначают R, E, ohm, или просто
цифрой без указания единиц. Например 100R это резистор
в 100 ом. Килоомы (1000 ом) обозначаются буквой К (100К – резистор
в 100 килоОм). Мегаомы (1000000 ом)
обозначаются буквой М (1М – резистор в 1 МегаОм). Точность резистора
(tolerance) – параметр допуска отклонения реального сопротивления
резистора от заявленного. Выражается в процентах – — 10%, 5%, 1%,
0. 5%, 0.1%. В обычных (без особых требований) электронных приборах
в основном применяются резисторы с допуском в 10% и 5%. Более точные
резисторы намного дороже и применяются только если этого требуют
параметры данной схемы.
Мощность резистора
(power dissipation) – параметр, показывающий какую мощность
(произведение тока и напряжения на резисторе) этот резистор может
перевести в тепловую энергию без критичного перегрева и вреда
для себя. Мощность резистора напрямую зависит от размера
резистора и способа его монтажа. Для всех номиналов сопротивления
существует множество вариантов величины и геометрии корпуса для
подбора нужной мощности.
Температурный коэффициент резистора
Этот параметр показывает изменение его сопротивления при нагревании
на 1 градус. Все производители резисторов стараются свести этот
параметр к минимуму, он линейный. Обращать на него внимание следует,
когда прибор работает при высоких перепадах температур и к нему
предъявляются требования высокой точности.
Резисторы делятся на:
 Поверхностного (SMD) и навесного монтажа
(Through hole)
 Постоянного и переменного номинала (переменные
и подстроечные резисторы)
 Общего назначения и резисторы-нагрузки. Резисторы нагрузки обычно
имеют высокую теплостойкость и способность рассеивать тепло
(керамический или металлический корпус с радиатором).





В современной электронике существует тенденция к минимизации
геометрических размеров электронных компонентов и к переходу к
компонентам поверхностного монтажа, поэтому всё чаще используются
резисторы SMD с наиболее мелкими размерами (0603, 0402, 0201),
а резисторы навесного монтажа всё больше используются только в
учебных целях.
На сборочное производство электронных устройств резисторы обычно
поставляются в специальных бумажных лентах на бобинах для
установки на станки автоматического монтажа.

[email protected]

Телефон администратора этой странички: +7 9827458948.

Desco — Резистор 1 МОм

МЭК 61340-5-2:

Пункт 5.1.1 Общие положения

Резистор номиналом 1 МОм обычно используется в браслетах и ​​для заземления рабочих поверхностей. В случае прикосновения оператора к проводнику, находящемуся под напряжением, для нормального электроснабжения от сети этот резистор ограничивает ток, протекающий через человека, до менее 0,5 мА. Также следует учитывать устройства ограничения или отключения тока, которые в некоторых областях могут требоваться законодательством.

МЭК 61340-5-1

Пункт 5.2.7 Ремешок на руку

Шнур должен иметь заделку, совместимую с EBP, и должен включать по крайней мере один изолированный токоограничивающий резистор. Сопротивление между концом должно соответствовать таблице 1. Для шнуров с одним резистором резистор должен быть встроен в обозначенный конец шнура на запястье.

Если шнур, вероятно, будет использоваться в EPA, который содержит открытые проводники с потенциалами, превышающими 250 В a.c. или 500 В постоянного тока, максимальный номинальный потенциал должен быть указан на шнуре.

МЭК 61340-5-2

Пункт 5.2.7 Ремешок на запястье

Тип резистора должен быть таким, чтобы в случае выхода из строя резистора режимом отказа был разрыв цепи.

МЭК 61340-5-1

Пункт 5.3.4 Шнуры заземления EPA

Если в шнуре заземления EPA используется один резистор, он должен быть расположен рядом с точкой заземления. Если используется более одного резистора, резистор с минимальным значением сопротивления, равным половине общего сопротивления, должен располагаться рядом с точкой заземления.

МЭК 61340-5-1

Рисунок A.4 — ПРИМЕЧАНИЕ. — Должен быть включен предохранительный резистор или его эквивалент для ограничения тока до 0,5 мА (переменного тока) или 2 мА (постоянного тока).

Это соответствует требованиям Ассоциации ESD для резистора 1 МОм в наручных ремнях и заземлителях для ног.

Согласно ESD-S1.1-1998, параграф 7.1 Руководства по конструкции, ограничивающее сопротивление по току

«Сопротивление, достаточное для ограничения тока до менее 0,0005 ампер (0,5 мА) при самом высоком напряжении, которое может встретиться, должно быть включено в браслет.

Номинально 800 000 Ом (800 кОм) достаточно для напряжений до 240 В переменного тока. Значение 1 МОм указано, потому что это дискретный резистор стандартного номинала.

Дискретные токоограничивающие резисторы должны быть расположены рядом с соединением между заземляющим шнуром и манжетой ».

Шнуры заземления ESD служат одной цели — соединять проводящую поверхность с тем же потенциалом, что и земля.

«Мягкое заземление» — это шнур заземления со встроенным последовательным сопротивлением, обычно 1 МОм, предназначенный исключительно для ограничения любого потенциального тока, с которым оператор может контактировать при воздействии 110 В переменного тока и максимум до 250 В переменного тока. Underwriters Laboratories рекомендует ограничить электрический ток, которому подвергается оператор, до 0,25 мА. При 250 вольт резистор 1 МОм делает это.

Используемая формула — закон Ома E = IR, поэтому 250 вольт = 0,25 миллиампера умножить на 1 000 000 Ом и / или 500 вольт = 0,50 миллиампера умножить на 1 000 000 Ом.

Резистор

с высоким сопротивлением для работы с низким напряжением | IMS

Резисторы — обычные устройства, необходимые для современной электроники.Они настолько распространены в дизайне, что мы часто думаем, что они не требуют пристального внимания к присущим им свойствам. Хотя многие приложения могут быть разработаны с использованием предположений о производительности, полученных на основе многолетнего опыта, это не всегда верно для всех резисторов.

При использовании резисторов очень высокого номинала существует ряд общих характеристик резисторов, которые могут не применяться или, в некоторых случаях, противоречат традиционному мышлению. Одно из таких противоречивых соотношений — это коэффициент сопротивления напряжения (VCR).VCR — это соотношение между напряжением, воспринимаемым резистивным элементом, и соответствующим сопротивлением, измеренным данным устройством. Одним из наиболее важных параметров точных высокоомных резисторов является видеомагнитофон. Цель производителей резисторов — попытаться создать резисторное устройство, которое имеет постоянное заявленное значение сопротивления, но не имеет переменных значений сопротивления в широком диапазоне напряжений.

Коэффициент напряжения — это изменение сопротивления с приложенным напряжением в определенном диапазоне напряжений.Мы измеряем стабильность резистора по отношению к изменению напряжения. Резистор с VCR 100 ppm / V изменит 0,1% при изменении 10 В и 1% при изменении 100 В.

Скорость изменения значения сопротивления на 1 вольт в заданном диапазоне напряжений выражается следующей формулой:

VCR (ppm / V) = (Ro -R) / Ro X 1 / (Vo -V) X 10e6 R:
Измеренное сопротивление (Ω) при базовом напряжении
Ro: Измеренное сопротивление (Ω) при верхнем напряжении
V: Базовое напряжение
Vo: Верхнее напряжение

Для примера резистора 50 Ом при 100 ppm / В диапазон 10 В дает всего. 1% от допустимого значения омического сопротивления или 0,005 Ом и 1% при изменении 100 В. Там, где допуски для толстопленочных резисторов обычно составляют 1% и 5%, это представляет собой чрезвычайно низкую сумму до неопределенности номинала резистора из-за изменения напряжения. Этим соотношением нельзя пренебречь, когда речь идет о точных компонентах с высоким омическим сопротивлением. Компонент, аналогичный приведенному выше, на 1 Гигагом, может иметь VCR 10 000 ppm / V. Хотя это кажется довольно высоким, следует помнить, что это составляет около 10% от значения в диапазоне 10 В или 100 Мегаом для продукта с сопротивлением 1 Гигабайт.

Разработчику может потребоваться резистор на 500 МОм в конструкции, но предполагается сопротивление 500 МОм на всех рабочих напряжениях конструкции, а не только на одном. В случае применения различных входных напряжений компенсация результирующего сигнала не будет теоретическим значением, но может отражать теоретическое значение плюс изменение любого воздействия напряжения на резистор.

Частично причина, по которой значение TCR является высоким для значений омического сопротивления выше 500 МОм, связана с тем фактом, что мы наблюдаем изменение как отношение к постоянному значению сопротивления, где это значение теперь на несколько порядков выше, чем «типичные» значения резистора. .Вторая причина связана с чрезвычайно низким результирующим током, который возникает в результате изменения сигнала при таком напряжении. Напряжение ограничено в толстопленочном материале, так что проводящие фазы на микроскопическом уровне могут даже не находиться в прямом контакте друг с другом, чтобы позволить току течь. Это создает очень высокое сопротивление, но также создает более изменчивую механическую среду, где небольшие изменения тока могут резко повлиять на эффективный путь тока и результирующее сопротивление резистора.Другими словами, резистор настолько хорош в «сопротивлении», что становится трудно удерживать этот атрибут, когда напряжение низкое и меняется. Это также означает, что характеристики видеомагнитофона не являются линейными для всех напряжений, как это предполагалось в
нижних диапазонах стандартных значений сопротивления.

В действительности, коэффициент напряжения будет изменяться для каждого значения сопротивления для данной модели резистора. Вот почему следует быть осторожными с таблицами данных, в которых указан единственный коэффициент напряжения. Если в данной спецификации не указано, что это наихудший коэффициент напряжения для данной модели, это обычно лучший коэффициент напряжения для модели.Разница между 1 В и 5 В может быть больше VCR, чем разница между 5 и 9 В, даже если изменение напряжения такое же. Это особенно важно, когда разработчики используют детали с высоким сопротивлением в качестве смещений в своих конструкциях и хотят, чтобы результирующий ток был пропорционален напряжению в диапазонах низкого общего напряжения, например 1-5 В. Резистор высокого номинала, анализируемый для видеомагнитофона при очень высоком напряжении, не снизит производительность видеомагнитофона до 1 В.

Чтобы продемонстрировать это, было проведено исследование по оценке низковольтных характеристик резисторов. Резисторы IMS RCX серии 0603 сравнивались с аналогичными резисторами конкурентов. Конкурент рекламирует видеомагнитофон 5000ppm / V для проверенного значения. Резисторы IMS не имеют заявленного видеомагнитофона, но оцениваются в 5000-7000ppm при 5В. От каждого производителя были отобраны и проанализированы от 10 до 100 случайных компонентов Гом. Таблица 1 содержит результаты измерений.

Результаты измерений деталей обоих производителей вышли за пределы максимальной оценки 5000 ppm / V VCR. Что наиболее примечательно, так это тот факт, что в расчетах видеомагнитофона была значительная разница в зависимости как от величины, так и от диапазона испытательных напряжений.

Резисторы серии

IMS RCX были измерены ближе к «номинальному» значению 100 гига-Ом, у них было более низкое среднее значение VCR в исследовании из 10 элементов и намного меньше стандартного. отклонение значений, когда дело дошло до согласованности видеомагнитофонов в партии образцов.

Высокоомные резисторы играют очень важную роль в современных конструкциях, особенно тех, которые используются в приборах для счетчиков и измерительной продукции. Чипы с высоким сопротивлением обычно используются в приборах с высоким импедансом, схемах испытательного оборудования, схемах измерения температуры и других схемах усилителей с высоким импедансом.Поскольку для специальных применений используются высокие значения омического сопротивления, важно учитывать эти факторы фактических характеристик при оценке заявленных характеристик продуктов. Испытательные комплексы IMS не имеют себе равных с передовыми средствами в мировой метрологии и инженерными лабораторными помещениями, которые специально разработаны для устранения эффектов электромагнитного загрязнения, трибоэлектрических помех и радиочастотных помех при измерении чрезвычайно низких токов, необходимых для оценки высокого сопротивления. продукты, особенно при очень низких напряжениях.

При выборе компонентов для приложений с высоким сопротивлением более важно, чем когда-либо прежде, выбрать проверенный компонент, а также производителя, имеющего опыт измерения и обращения с этими устройствами, чтобы достичь наилучших результатов в приложениях.

Загрузите наш технический документ здесь.

arduino — Что означает «резистор в качестве эталона»?

Проще говоря, пьезоэлектрический преобразователь может выдавать высокое напряжение при вибрации.Пьезоэлектрический преобразователь имеет чрезвычайно высокое внутреннее сопротивление — вы можете попробовать измерить его в самом высоком диапазоне омного диапазона вашего мультиметра, поэтому ток, который он может выдавать, очень низкий. В результате мы называем это «источником с высоким импедансом». (Импеданс можно рассматривать как сопротивление току.)

Аналоговый вход вашего микроконтроллера имеет входной диапазон от 0 до 5 В постоянного тока, и для наилучшего использования этого сигнала наш входящий в него сигнал должен быть в этом диапазоне напряжений. Например, сигнал от 0 до 0,5 В будет использовать только 1/10 диапазона АЦП (аналого-цифрового преобразователя), и для вашего микроконтроллера, я думаю, это даст вам 102 возможных значения из 1024.

Чтобы получить максимальное напряжение от вашего слабого преобразователя, вам необходимо подать небольшой ток на резистор высокого номинала. При значении 1 МОм в вашей цепи мы можем видеть из закона Ома, что вы достигнете 5 В, когда ток от преобразователя равен \ $ I = \ frac {V} {R} = \ frac {5} {1M} = 5 \ \ му \ текст А \ $.

Дизайн схемы невысокий. Преобразователь может выдавать отрицательные напряжения или напряжения выше 5 В, и они полагаются на внутренние защитные диоды микроконтроллера для предотвращения повреждения ИС.Коммерческий образец, вероятно, будет включать внешнюю защиту.


Вам необходимо подключить резистор высокого номинала (например, 1 мегаом) в качестве ссылки на землю, чтобы он работал нормально.

Думаю, мы это уже рассмотрели. Резистор преобразует ток преобразователя в напряжение для микроконтроллера.

Более низкие значения резистора делают пьезоэлемент менее чувствительным к вибрациям.

Мы рассмотрели это. Резистор меньшего номинала приведет к более низкому напряжению для данного тока преобразователя.

Что означает «резистор в качестве эталона»?

Плохой выбор слов. Это действительно «нагрузка» для пьезоэлектрического преобразователя тока в напряжение.

А почему бы пьезо менее чувствительны с резисторами меньшего номинала?

Объяснено выше.

Резисторы

— одна из самых запутанных вещей для меня.

Резисторы

могут использоваться для ограничения тока в цепи, уменьшения напряжения или преобразования тока в напряжение.Продолжайте учиться, и вы начнете понимать, где они используются и почему, когда будете читать больше схем.

ECEN 2420, Беспроводная электроника для связи, весна 2012 г., набор задач 3

ECEN 2420, Беспроводная электроника для связи, Весна 2012 г., набор задач 3

ECEN 2420 — Беспроводная электроника для связи

Питер Мэтис, Весна 2012


Набор задач 3


Цели этого набора задач
  • Изучите основные свойства резисторов (R) и конденсаторов (C).
  • Thevenin и Norton эквиваленты сетей с линейным источником.
  • Узнайте, как использовать LTspice для моделирования основных цепей R и RC.
  • Измерьте характеристику батареи 9 В.
  • Используйте генератор функций и осциллограф для измерения RC-цепи.
LTspice

При необходимости загрузите LTspice с Программное обеспечение для линейных технологий сайт и установите его на свой компьютер. Вам также следует скачать Руководство пользователя LTspice так что вы можете найти инструкции и параметры для конкретных задач.

Когда вы откроете LTspice, вы должны увидеть следующий экран.

В меню «Файл» выберите «Новая схема».

Теперь у вас должна быть пустая страница схемы соединений, как показано ниже.

Обратите внимание, что теперь та часть панели инструментов, где вы можете выбрать наиболее часто использованные компоненты активируются.

Выберите символ резистора на панели инструментов и разместите его на схеме.

Поместите второй резистор под первым.Обратите внимание, что резисторы автоматически помечается R1, R2 и т. д. Далее мы хотим добавить источник напряжения к схеме. Щелкните «компонент» на панели инструментов (или под «Edit») и выберите «Voltage», как показано ниже.

Поместите источник напряжения на схему.

Теперь у нас есть все компоненты, необходимые для простого делителя напряжения. Использовать Инструмент «Wire» для подключения R1 к источнику напряжения.

На следующем рисунке показаны все подключенные схемы делителя напряжения.

Каждый контур в специях (LTspice в комплекте) необходим опорная земля «GND» (помеченный «0» в списке соединений) относительно где все напряжения в цепи измеряются и отображаются. Использовать символ «GND» на панели инструментов для размещения контрольного заземления и подключите его, как показано ниже.

Прежде чем мы сможем запустить какое-либо моделирование, нам нужно указать числовые значения для все компоненты. Начните с назначения резистора R2 100 Ом. Для этого щелкните правой кнопкой мыши на «R» и введите 100 в текстовое поле.

Числа могут быть выражены в LTspice не только в экспоненциальной форме, например, 1e3; но также с использованием инженерных множителей. То есть 1e3 или 1000 также могут записывается как 1К. Ниже представлена ​​таблица множителей, понимаемых в LTspice.

9019 9019 9019 Mega 9019 9019 9019 9019 Mega 9019 9019 9019 9019 Mega K
Имя Суффикс Множитель
tera T 1e12
гига G 1e9 1e3
милли m 1e-3
micro u (или μ) 1e-6
nano
1 pico p 1e-12
femto f 1e-15

В суффиксах регистр не учитывается.Таким образом, 10 м и 10 м означают «10 милли» (или 1е-2). Распространенной ошибкой является запись значения 1 МОм для резистора 1 МОм. Фактически это будет интерпретироваться как Резистор на 1 миллиом. Используйте 1 МОм для резистора 1 МОм.

Возвращаясь к схеме делителя напряжения, хотелось бы получить напряжение 5 В от источника 15 В. Таким образом, присвоим следующие значения остальные компоненты.

Теперь необходимо установить тип моделирования и параметры.Под В пункте меню «Моделировать» нажмите «Редактировать команду моделирования».

LTspice может выполнять следующие типы моделирования: Нелинейный переходный анализ. (.TRAN), линеаризованный анализ переменного тока малых сигналов (.AC), анализ развертки источника постоянного тока (.DC), анализ шума в частотной области (.NOISE), функция передачи постоянного тока слабого сигнала (.TF), и найдите рабочую точку постоянного тока (.OP). Для простого делителя напряжения выбираем постоянный ток анализ рабочей точки, как показано ниже.

Выбранный тип моделирования помещается на схему в виде команда «точка» (.op в данном случае).

Чтобы запустить симуляцию, щелкните значок «Выполнить» на панели инструментов. Для анализа рабочей точки LTspice распечатывает список всех узловых напряжений. и токи элементов, как показано ниже.

Одна небольшая проблема заключается в том, что не сразу видно, какие имена узлов находятся в цепи. Однако, если подвести курсор к узлу, то отображается имя узла и напряжение узла в нижнем левом углу окна LTspice, как показано на следующем рисунке для узел N002.

Аналогично, при наведении курсора на компонент на схеме с курсор, ток через компонент и рассеиваемая мощность по компоненту отображаются в нижнем левом углу окна LTspice. Это показано ниже для источника напряжения V1.

Обратите внимание, что мощность, рассеиваемая источником, отрицательна. Под соглашение о пассивном знаке, которое означает, что источник генерирует мощность.

Далее нас интересует симуляция развертки постоянного тока, чтобы увидеть, как напряжение на R2 изменяется в зависимости от изменения напряжения источника напряжения V1 от 10 В до 20 В.В разделе «Моделировать» и «Edit Simulation Cmd» выбираем DC sweep и вводим параметры, указанные ниже.

Обратите внимание, что на схеме директива .op закомментирована (; op) и появляется новая директива .dc V1 10 20 0.1, инструктирующая LTspice для запуска источника постоянного напряжения V1 от 10 до 20 В с шагом 0,1 В приращения.

На рисунке ниже показано поведение LTspice по умолчанию после моделирования. который производит график.К сожалению, это поведение по умолчанию оставляет желать лучшего.

Прежде всего, различные подокна выложены плиткой, а не каскадом. Это делает графики и схемы очень широкими и разбитыми, и в результате, например, со снимка экрана практически не видно. Чтобы лучше расположить вложенные окна на экране, щелкните меню «Окно» и выберите «Каскад», как показано ниже.

Далее мы хотели бы увидеть результаты развертки постоянного тока на графике.В Интересная величина — это напряжение на R2. Чтобы выбрать это напряжение для отображения, переместите курсор в узел между R1 и R2 и щелкните узел.

Чтобы отобразить график, щелкните окно графика или выберите его из Меню «Окно». И вот вторая плохая часть дефолта поведение LTspice. График имеет черный фон и тонкую зеленая линия. Если вы сделаете снимок экрана и включите его в документе, который находится в процессе обработки, его будет очень трудно читать и, усугубляя травму, используйте при распечатке много тонера.

Чтобы изменить это поведение по умолчанию и сделать фон более светлым, перейдите в меню «Инструменты» и выберите «Настройки цвета» как показано далее.

В редакторе цветовой палитры выберите «Фон» и переместите ползунки красного, зеленого и синего вправо, чтобы получить белый фон.

Нажмите «ОК», и у вас должен появиться гораздо более удобный график. с белым фоном. Немного менее эффектно смотрится на экран компьютера, но это улучшает качество скриншотов и распечатки кардинально.

Теперь, когда мы закончили представление моделирования развертки постоянного тока В результате мы можем интерпретировать то, что видим. При изменении входного напряжения линейно, линейно изменяется и выходное напряжение делителя напряжения, но отношение выходного напряжения к входному остается неизменным.

Другой интересный вариант анализа делителя напряжения — это добавить нагрузку на выход. Добавьте резистор (R3) параллельно резистору R2, как показано ниже.

Наша цель — увидеть, как напряжение на R2 и нагрузка изменяется при сопротивление нагрузки изменяется. Таким образом, мы хотим иметь возможность изменять значение R3 во время моделирования. Для этого мы устанавливаем значение от R3 до {RL}, где RL теперь является переменной, обозначенной фигурными подтяжки.

Затем щелкните значок «Разместить директиву SPICE» на инструменте. bar и поместите директиву параметра .param со следующим определением для RL.

Чтобы указать моделированию, какой параметр изменить и в каком диапазоне для использования в схему добавляется директива .step, как показано ниже.

Если мы хотим сохранить входное напряжение для делителя напряжения фиксированным и только измените значение резистора нагрузки RL, тогда мы должны изменить команда моделирования обратно к анализу рабочей точки постоянного тока.

Завершенная схема со всеми директивами SPICE показана ниже.Примечание что директива; dc V1 10 20 0.1 закомментирована (с; перед строки).

Выполнение моделирования теперь дает следующий график.

По горизонтальной оси указано значение RL, а по вертикальной На оси указано напряжение на RL (узловое напряжение V (n002).

Предположим теперь, что нужно изменить конструкцию делителя напряжения так, чтобы выходное напряжение остается в пределах плюс / минус 10% от 5 В, т.е.е., такое что напряжение узла V (n002) остается в диапазоне от 4,5 до 5,5 В. Если R2 зафиксирован на 100 Ом, каков самый большой диапазон RL, который может быть размещены? Мы перепроектируем делитель напряжения так, чтобы выходное напряжение составляет 5,5 В при отсутствии нагрузки. Это достигается с помощью следующих значение для R1.

Повторное моделирование через RL в диапазоне от 100 до 1000 Ом. дает следующий график.

В результате выходное напряжение составляет 5 В плюс / минус 10% для сопротивлений нагрузки. RL в диапазоне примерно от 286 Ом до бесконечности.

На следующей схеме показан эквивалент измененного напряжения Thevenin. разделитель. Напряжение Thevenin равно выходному напряжению напряжения делитель без нагрузки (напряжение холостого хода). Тевенинское сопротивление (ретроспективный анализ) сопротивление) составляет 100 Ом параллельно 172,7 Ом, что дает 63,33 Ом. Ом.

Результат моделирования этой схемы для RL в диапазоне от 100 до 1000 Ом показан на графике ниже.

Результат идентичен графику, полученному с исходным переделан делитель напряжения.

Проблемы

Примечание: Все графики LTspice должны быть удобочитаемыми и правильно отформатированы. Снимки экрана такого типа, как показано ниже, не принимаются!

Используйте белый фон для графиков и каскадных подокон вместо использования тайлинг по умолчанию.

Задача 1. Это основано на проблеме 1 (резисторы) в главе 2 в книге.

1.a Прочтите задачу 1 в книге и решайте вопросы по частям. А и Б.

1.b Используйте следующую схему Т-аттенюатора в LTspice.

Определите ослабление напряжения и мощности в дБ от входа (не включая сопротивление источника 50 Ом) к выходу с сопротивлением нагрузки RL = 50 Ом. Определите тевенинский эквивалент источника / аттенюатора. комбинация (без RL).Запустите моделирование с RL в диапазоне от 10 до 100 Ом, чтобы увидеть, как изменяются напряжение и затухание мощности при этом диапазон нагрузочных сопротивлений.

1.c Повторите (b) для схемы, показанной ниже.

В этом случае определите эквивалент источника / аттенюатора Norton. комбинация (без RL) вместо эквивалента Thevenin.


Проблема 2. Это основано на Задаче 2 (Источники) в Главе 2 в книге.2 / R) С до подключение резисторов к аккумулятору. Резисторы в вашем в комплекте резисторы на 1/4 Вт. Возможно, вам придется использовать последовательные / параллельные комбинации для получения большей мощности. Измерьте напряжение v на резисторе RL и затем вычислите результирующий ток i. Делайте измерения короткими и дайте батарее время восстановиться между измерениями. Используйте Matlab для график i против v. Из графика определите эквивалент Тевенина Аккумулятор 9 В.

2.c Проверьте результаты в части (b) с помощью LTspice.


Проблема 3. Это основано на Задаче 3 (Конденсаторы) в Главе 2 в книге.

3.a Прочтите описание проблемы 3 в книге, чтобы понять, что вам нужно сделать, чтобы выполнить части с A по K. Примечание: мы будем использовать стандартный резистор 330 кОм вместо 300 кОм.

3.b В качестве подготовки к измерениям с помощью функционального генератора и осциллограф, запустите моделирование в LTspice.Начнем со следующего схема.

Если вы укажете переходный анализ 200 мс (.tran 0,2) для моделирования вы должны получить следующий график.

Если все параметры выбраны правильно, вы должны увидеть на осциллографе при измерении реальной RC-цепи.

3.c Выполните части с A по K задачи 3 в книге. Используйте LTspice для прогнозирования и проверки форм сигналов, которые вы увидите на осциллограф.Если есть большая разница между LTspice и тем, что вы Измерьте на реальной RC-цепи, вы должны найти и объяснить причину за разницу.



© 2012, П. Матис. Последняя редакция: 12.07.2012, PM.

Перевести мегаом в килоом — Преобразование единиц измерения

›› Перевести мегаом в килоом

Пожалуйста, включите Javascript для использования конвертер величин.
Обратите внимание, что большинство объявлений можно отключить здесь:
https: // www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация в конвертере величин

Сколько МОм в 1 кОм? Ответ — 0,001.
Мы предполагаем, что вы конвертируете МОм и кОм .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
мегаом или килоом
Производная единица в системе СИ для электрического сопротивления — ом.
1 Ом равен 1,0E-6 мегаом, или 0,001 кОм.
Обратите внимание, что могут возникнуть ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать мегаом в килоом.
Введите свои числа в форму для преобразования единиц!


›› Таблица конвертации мегаом в килоом

1 МОм в килоом = 1000 кОм

2 МОм в килоом = 2000 кОм

3 мегаом в килоом = 3000 кОм

4 МОм в килоом = 4000 кОм

5 мегаом в килоом = 5000 кОм

6 МОм в килоом = 6000 кОм

7 МОм в килоом = 7000 кОм

8 МОм в килоом = 8000 кОм

9 МОм в килоом = 9000 кОм

10 МОм в килоом = 10000 кОм



›› Хотите другие единицы?

Вы можете произвести обратное преобразование единиц измерения из килоом в мегаом, или введите любые две единицы ниже:

›› Преобразование общего электрического сопротивления

мегаом на тером
мегаом на миллиом
мегаом на гигом
мегаом на ом
мегаом на статом
мегаом на ом
мегаом на пиком
мегаом на мкОм
мегаом на наном
мегаом на 9000 мегаом

›› Определение: Megaohm

Префикс SI «мега» представляет собой коэффициент 10 6 , или в экспоненциальной записи 1E6.

Итак, 1 МОм = 10 6 Ом.

Ом имеет следующее определение:

Ом (символ: Ом) — это единица измерения электрического сопротивления в системе СИ или, в случае постоянного тока, электрического сопротивления, названная в честь Георга Ома. Он определяется как сопротивление между двумя точками проводника, когда постоянная разность потенциалов в 1 вольт, приложенная к этим точкам, создает в проводнике ток в 1 ампер, причем проводник не является источником какой-либо электродвижущей силы.


›› Определение: Kiloohm

Префикс СИ «килограмм» означает коэффициент 10 3 , или в экспоненциальной записи 1E3.

Итак, 1 кОм = 10 3 Ом.

Ом имеет следующее определение:

Ом (символ: Ом) — это единица измерения электрического сопротивления в системе СИ или, в случае постоянного тока, электрического сопротивления, названная в честь Георга Ома. Он определяется как сопротивление между двумя точками проводника, когда постоянная разность потенциалов в 1 вольт, приложенная к этим точкам, создает в проводнике ток в 1 ампер, причем проводник не является источником какой-либо электродвижущей силы.


›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, аббревиатуры или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

Heel Grounders: 1 мег против.2 мегапикселя | Продукты ESD и статического контроля

Один мегабайт против двух мегапикселей

Введение

Вы когда-нибудь задумывались, что значит, когда пяточный землянин описал, что у него «резистор на 1 мегапиксель»? или резистор на 2 мп? Размер токоограничивающего резистора часто указывается в описании продуктов для индивидуального заземления, но что это значит и насколько я должен быть обеспокоен размером резистора, когда покупаю заземлители для пяток? Сегодня мы ответим на эти вопросы, но сначала немного предыстории:

Что такое резистор?

Резистор общий

Резистор — это компонент электрической цепи, препятствующий прохождению электрического тока.У резистора есть два вывода, через которые должно проходить электричество, и он предназначен для снижения напряжения тока, когда он течет от одного вывода к другому. Резистор в основном используется для создания и поддержания известного безопасного тока. У большинства заземляющих устройств есть токоограничивающий резистор, который обычно составляет один мегом (1 мег), номинал не менее 1/4 ватта при рабочем напряжении 250 вольт. Это гарантирует, что текущий ток будет в пределах безопасного уровня.

Пяточные заземлители и защита от электростатического разряда?
Пяточные заземлители устраняют статическое электричество с человека, создавая путь к земле для этих статических зарядов.Пяточный заземлитель изготовлен из проводящего материала и надевается на каждую обувь, и его следует использовать с заземленным полом ESD. Проводящая лента, помещенная внутри обуви или носка пользователя, обеспечивает электрический контакт с кожей через пот. Лента соединена с резистором, который ограничивает ток в случае возможного случайного воздействия электричества. Другой конец резистора присоединен к токопроводящей подошве. Эта подошва контактирует с заземленным напольным ковриком ESD или системой напольного покрытия ESD и создает путь к земле для статических зарядов.Пяточные заземлители следует носить на обеих ногах, чтобы поддерживать контакт с землей во время ходьбы. UL и OSHA рекомендуют сопротивление заземления (RTG) минимум 1 МОм, чтобы ограничить ток в целях безопасности.

Типы пяточных заземлителей?
Heel Grounders бывают разных стилей:

  • Чашка Стиль: Изготовлен с двумя двусторонними подошвами для увеличения срока службы.
  • Sole Grounder: Обеспечивает более полный путь к земле за счет более широкой площади контакта и покрытия от пятки до пят.
  • Одноразовый: на обувь наклеивается полоска из проводящего материала. Экономичный и идеальный для одноразового использования.
  • Toe Grounder: идеально подходит для высоких каблуков, когда стандартные пятки не подходят должным образом.

Резисторы и пяточные заземлители
Пяточные заземлители поставляются с резистором на 1 или 2 МОм. Когда одна нога стоит на земле, пяточный заземлитель 1 МОм дает вам РИТЭГ на 1 МОм, а пяточный заземлитель 2 МОм дает 2 МОм. Но когда обе ноги стоят на земле, сумма резисторов дает RTG 1/2 этого измерения.
Например:

  • Когда вы носите два заземлителя по 1 МОм и обе ноги стоят на полу, ваш РИТЭГ составляет всего 1/2 МОм, а НЕ 1 МОм!
  • Если вы носите два заземлителя на каблуке 2 МОм и обе ноги стоят на земле, ваш RTG составляет 1 МОм.
  • Используя два пяточных заземлителя с резистором 2 МОм, вы всегда соблюдаете нормы UL и OSHA.

Иногда это может сбивать с толку. Мы сделали диаграмму для иллюстрации:

Заключение

Заземлители

— это эффективный и популярный способ заземления мобильного персонала в зонах электростатического разряда.В пяточных заземлителях используются встроенные резисторы для ограничения любого потенциального тока, протекающего через устройство, для обеспечения безопасности оператора. Размер резистора, который вы используете, зависит от стандартов конкретной операции, но, надев два пяточных заземлителя с резистором 2 МОм, вы всегда соблюдаете UL и OSHA.

Чтобы узнать больше о пяточных заземлителях и резисторах ESD, посетите Transforming Technologies.com

Измерение гигаомов простым мультиметром

Измерение гигаомов простым мультиметром

Введение

Цифровой мультиметр (или цифровой мультиметр) — очень удобный инструмент в лаборатории и ваш верный друг для большинства простых электрических измерений.Он может измерять напряжение, ток, сопротивление и часто многое другое. Он может точно обрабатывать значения, которые вы хотите измерить, почти все время: просто подключите провода, выберите нужную функцию, соответствующий диапазон (при необходимости), и вы готовы к работе.

Но бывают случаи, когда вы хотите, чтобы он мог сделать немного больше. Например, однажды я хотел измерить сопротивление изоляции некоторых материалы. Здесь мы говорим о ГОм (гига-Ом, 10 9 Ом) и возможно ТОм (тераом, 10 12 Ом).Вы не можете измерить это с помощью цифрового мультиметра … или можете?

Что ж, подходящий прибор для этого — электрометр. Он точен, может измерять до нескольких ПОм (пета-Ом, 10 15 Ом), но он стоит столько же, сколько новый автомобиль … и, что самое печальное, У меня его нет. Лучший мультиметр, который у меня есть, может считывать значения сопротивления до 50 МОм. (мегаом, 10 6 Ом), средние (дешевые) цифровые мультиметры считывают до 10 или 20 МОм … я бы хотел, чтобы значения были прочитаны около 1000 раз или даже на 10’000 выше.Надеюсь, есть очень простой прием, позволяющий расширить диапазон; это далеко не так точен, как электрометр, но это лучше, чем ничего. И все, что вам нужно, это ваш цифровой мультиметр и батарейки. Давайте посмотрим.


Как это работает

Когда вы выбираете функцию сопротивления вашего цифрового мультиметра, он подает небольшой Напряжение постоянного тока на его выводах, так что ток может течь через неизвестное резистор, он отрегулирует этот ток до некоторого удобного значения и, считывая напряжение, ток и, используя закон Ома, он будет отображать соответствующее сопротивление.Если резистор слишком большой, небольшое напряжение не сможет пройти достаточно ток, и цифровой мультиметр отобразит сообщение о выходе за пределы диапазона. Итак, первая часть уловки — помочь цифровому мультиметру путем подключения внешнего напряжение выше, чем обычно, и измерять ток в неизвестный резистор.

Обычно, когда вы хотите измерить ток, вы просто выбираете текущий функция вашего цифрового мультиметра: дисплей показывает прямо в амперах, а входное импеданс очень мал, так что вы не слишком сильно нарушаете схему.Но вы можете читать только до 1 мА, может быть, 100 мкА или даже немного меньше, в зависимости от вашего цифрового мультиметра, но ток протекает с большим значением резистор намного ниже, скажем, 1 нА (наноампер, 10 −9 A) или меньше. «Текущая» функция вашего мультиметра здесь вам не поможет.

Но решение очень простое: просто используйте вместо этого функцию напряжения: вы просто измеряете напряжение на его большом входном импедансе, скажем 10 МОм или около того.Если вы прочитаете 10 мВ, более 10 МОм, это 1 нА. Если вы прочитаете 1 мВ, это 100 пА (пикоампер, 10 −12 А). В нормальной ситуации шунтирующий резистор 10 МОм был бы необоснованным. высокий, чтобы пропустить через него любой практический ток, но здесь сопротивления мы которые пытаются измерить, настолько велики, что 10 МОм — очень удобный ценить.

Итак, настройка будет выглядеть примерно так: вам нужен внешний источник испытательного напряжения U 0 , опционально защитный резистор R S , ваш верный мультиметр (с входным сопротивлением R M ) и, конечно же, резистор высокого номинала для измерения R X .Что ж, может вам понадобится карманный калькулятор или калькулятор встроен в эту веб-страницу.


Принципиальная схема измерительной установки.

Принципиальная схема представлена ​​на рисунке выше и также очень просто: все просто последовательно соединено. Вам действительно не нужно подключать отрицательную клемму аккумулятора к земля (даже если это неплохая идея): символ земли просто напоминает где эталон 0 В для измерений.

Уравнение для расчета R X — это просто «напряжение divider «формула делителя изменена для включения R S :

Возьмем пример: предположим, что ваше испытательное напряжение U 0 равно 50 В, у вашего мультиметра R M 10 МОм, а у вашего защитный резистор R S составляет 1 МОм. Если ваш цифровой мультиметр измеряет 500 мВ, ваш тестируемый резистор R X исправен. 989 МОм; это так просто.

Выполняя эти измерения, убедитесь, что у вас достаточно времени, чтобы емкости для зарядки и достижения устойчивого состояния. Помните, что 10 пФ и 100 ГОм имеют постоянную времени, равную единице. второй … если вы видите, что значения все еще меняются, подождите несколько секунд пока показания не станут стабильными.

Прежде чем взглянуть на все эти элементы один за другим, чтобы обсудить, как выберите их, их плюсы и минусы, вот простой калькулятор, который определить сопротивление всего за один клик.


Мы уже видели, что формула для определения сопротивления довольно проста, но вычислять вручную на карманном калькуляторе может быть утомительно, поэтому я создал это простой инструмент для автоматизации операций. Просто введите значения для U 0 , R M , R S и U M и нажмите кнопку «вычислить», чтобы найти R X . Если вам известна погрешность измеренного напряжения, введите ΔU M , и вы также получите минимум и максимум пределы расчетного сопротивления.Если вам все равно, просто используйте 0 или игнорируйте эти значения.


Используйте самый лучший и самый точный мультиметр, который у вас есть. Вы будете слишком далеко выходить за рамки, каждая маленькая ошибка ухудшит ваш результаты: используйте лучшее, что есть под рукой. Вам также необходимо знать его входное сопротивление как можно точнее для (всех) его диапазоны постоянного напряжения. Обычно это около 10 МОм, и, возможно, это написано в его техническом описании, но также зависит от диапазона напряжения, который вы используете, и, скорее всего, от тот самый инструмент, который у вас в руках.Итак, я предлагаю измерить это. Попробуйте использовать другой цифровой мультиметр, если у вас есть запасной.


Использование другого мультиметра для измерения импеданса прибора. (нажмите, чтобы увеличить).

Мой Fluke 179, например, имеет очень расплывчатую таблицу данных, в которой указано только «входное сопротивление:> 10 МОм» … не достаточно для любого расчет. Я измерил его с помощью другого Fluke 177 и смог определить следующее: импедансы:

Диапазон Входное сопротивление R M
600 мВ 10.00 МОм
6 В 11,12 МОм
60 В 10,11 МОм
600 В 10,02 МОм
1000 В 10,01 МОм

Входное сопротивление зависит от используемого диапазона. Убедитесь, что вы знаете, какой диапазон выбран, и используете правильное значение, особенно, если ваш цифровой мультиметр автоматически выбирает диапазон.

При проведении этого измерения убедитесь, что напряжение, выдаваемое цифровым мультиметром, измерение сопротивления не выходит за пределы диапазона измерения мультиметра. измеряется. Например, если вы пытаетесь измерить входное сопротивление Диапазон 600 мВ при испытательном напряжении 2,5 В, вы, вероятно, получите неправильное значение, потому что защита цифрового мультиметра от перенапряжения может изменить импеданс.

Если у вас только один цифровой мультиметр или он не справляется с этой задачей, вы все равно можете Определите входной импеданс, измерив известный резистор высокого номинала с метод, описанный на этой странице, и отрегулируйте импеданс в соответствии с рассчитанное значение к реальному значению резистора.Я использую резистор 10 МОм, потому что его тоже можно измерить напрямую с цифровым мультиметром, и это значение по-прежнему легко найти (большие значения нечасто). Вы также можете использовать несколько резисторов 10 МОм, которые можно измерить. индивидуально, а затем соединены последовательно, чтобы сформировать больший резистор известного ценить.


Измерение резистора 10 МОм для проверки входного импеданса прибора. (нажмите, чтобы увеличить).


Для проведения измерений нам нужен внешний источник напряжения.Чем выше напряжение, тем выше точность. Но давайте будем разумными: будьте осторожны, оставайтесь ниже 50 В. Например, используйте последовательно пять батарей 6LR61 9 В: вы получите 45 В, возможно, даже немного больше с новыми батареями и все безопасно на ощупь. Поскольку в тестируемом резисторе почти нет тока (это почти изолятор) просадка напряжения из-за подключения нагрузки сильно Не ошибка.

До 50 В все безопасно прикасаться, ничего страшного не случится.Использование более высокого напряжения сделает измерение более точным или позволит измерение более высоких значений резисторов, но это рискованное дело. Я делаю это, но настоятельно не рекомендую. Если да, то вы действительно должны знать, что делаете. Делайте это на свой страх и риск.

Для этого необходимо использовать напряжение постоянного тока. Причина, по которой вы не можете использовать переменный ток, заключается в том, что любая паразитная емкость будет играть важную роль и испортят ваши измерения: при 50 Гц даже крошечный пФ ваш тестируемый резистор представит параллельное реактивное сопротивление 3 ГОм: на первый взгляд кажется большим, но слишком маленьким, чтобы быть пренебрегали.


Защитный резистор R S не нужен строго, но хороший идея. Обычно я использую 1 МОм, но это значение не критично. Его роль — ограничить ток, если вы случайно сделаете короткое замыкание. или трогать то, чего не следует.

Короткое замыкание на массу источника 500 В через 1 МОм резистор даст ток всего 500 мкА: я не тестировал (это было бы глупо), но он не должен кусать палец, если вы случайно прикоснуться к нему и, вероятно, также должен предотвратить отключение вашего красивого цифрового мультиметра, если Тестируемый резистор больше похож на короткое замыкание, чем на изолятор.Это дешевая страховка: чудес не сотворит, но может помочь.

1 МОм достаточно мал, чтобы им можно было пренебречь, но его также очень легко вычтите его из конечного результата. В калькуляторе на этой странице я включил его как Что ж. Если вы его не используете или измеряете U 0 после предохранительного резистора, просто введите «0» в качестве значения для R S .


Помехи

Из-за очень высокого импеданса, задействованного в этой установке, измерения могут быть подвержены ошибкам из-за помех.Мы уже говорили, что использование постоянного тока очень важно для предотвращения случайных эффектов. емкости, но близлежащие электрические и магнитные поля также могут ошибки. Не все мультиметры экранированы должным образом, не все из них нечувствительны к компонентам переменного тока, связанным с крошечным напряжением постоянного тока, поскольку они должно быть. Перед выполнением любых измерений подготовьте настройку и убедитесь, что вы прочитали ноль вольт, когда напряжение питания не запитано (или не подключено).Если вы этого не сделаете, переместите все в металлический ящик, чтобы защитить вашу установку от помехи.

Вы также заметите, что простое движение руками или телом меняет чтений немного. Если все обнулится, когда вы перестанете двигаться, все в порядке, если вы слишком сильно влияя на измерения, переместите всю вашу установку в металлическую контейнер.


Точность

Прежде чем перейти к вопросу о точности, следует иметь в виду, что сопротивление, которое мы измеряем, изменяется как 1 / U M : чем меньше напряжение тем больше резистор.Но это также означает, что крошечная ошибка на крошечном напряжении приводит к большой неуверенность в сопротивлении. Кроме того, U M прямо пропорционален U 0 : a более высокое испытательное напряжение приводит к более высокому измеренному напряжению: если погрешность на измеряемом напряжении то же самое, это увеличивает точность измерения результат. В следующей таблице показаны напряжения, которые можно измерить в течение пяти разные резисторы и четыре разных испытательных напряжения.

Ожидаемое напряжение U M Испытательное напряжение
U 0 = 15 В U 0 = 50 В U 0 = 150 В U 0 = 500 В
Резистор для измерения
R M
100 МОм 1’363.6 мВ 4’545,4 мВ 13’636,4 мВ 45’454,6 мВ
1 ГОм 148,5 мВ 495,1 мВ 1’485,2 мВ 4’950,5 мВ
10 ГОм 15,0 мВ 50,0 мВ 149,9 мВ 499,5 мВ
100 ГОм 1.5 мВ 5,0 мВ 15,0 мВ 50,0 мВ
1 ТОм 0,2 мВ 0,5 мВ 1,5 мВ 5,0 мВ

Не все цифры на дисплее вашего цифрового мультиметра точны и нужно знать, как точное измерение — следует обратиться к техническому описанию прибора или, даже лучше, к его сертификату калибровки.Представим, что мы измеряем эти напряжения с точностью до ± 2 мВ: в следующей таблице показана погрешность расчетного значение сопротивления.

Измеренная точность R M с ошибкой
± 2 мВ на U M
Испытательное напряжение
U 0 = 15 В U 0 = 50 В U 0 = 150 В U 0 = 500 В
Резистор для измерения
R M
100 МОм +0.16 МОм
−0,16 МОм
+0,048 МОм
-0,048 МОм
+0,016 МОм
-0,016 МОм
+0,0048 МОм
-0,0048 МОм
1 ГОм +0,014 ГОм
-0,013 ГОм
+0,0041 ГОм
−0,0041 ГОм
+0,0014 ГОм
−0,0014 ГОм
+0,00041 ГОм
−0,00041 ГОм
10 ГОм +1.5 ГОм
-1,2 ГОм
+0,42 ГОм
−0,39 ГОм
+0,14 ГОм
-0,13 ГОм
+0,040 ГОм
-0,040 ГОм
100 ГОм + ∞ ГОм
−57 ГОм
+67 ГОм
−29 ГОм
+15 ГОм
−12 ГОм
+4,2 ГОм
−3,8 ГОм
1 ТОм + ∞ ТОм
−0,93 ТОм
+ ∞ ТОм
−0.80 ТОм
+ ∞ ТОм
−0,57 ТОм
+0,6667 ТОм
-0,2857 ТОм

Возьмем пример: если вы измеряете резистор 10 ГОм с Испытательное напряжение 50 В, мы уже видели, что мультиметр должен показать 50 мВ. Если у вас есть ошибка ± 2 мВ на этом значении, вы ожидаете реального напряжение должно быть в пределах от 52 мВ до 48 мВ, что соответствует 9,61 ГОм и 10,42 ГОм. В таблице указано, что это значение находится в пределах -0.39 ГОм и +0,42 ГОм от 10 ГОм, что тоже самое.

Как можно видеть, неопределенность сопротивления быстро становится очень большой для большое сопротивление: легко достаточно точно измерить 10 ГОм всего 50 В; для измерения 100 ГОм более высокое напряжение будет лучше, если вы думаете, что справитесь с риском. А для измерения 1 ТОм … ну не только высокое напряжение нужно, но и также очень точный цифровой мультиметр: если вы можете прочитать 5 мВ ± 0,2 мВ (это то, на что способен мой Fluke 179), при испытательном напряжении 500 В вы может считывать 1 ТОм в пределах −0.038 ТОм и +0,042 ТОм. С лучшим цифровым мультиметром вы, безусловно, могли бы добиться большего. Но остерегайтесь высокого напряжения: я вас предупреждал, делайте это на свой страх и риск.

В любом случае, даже если этот метод станет менее точным для больших сопротивлений и вы не можете определить точное значение, измеряя только несколько милливольт, тем не менее, это измерение может быть полезно и намного лучше, чем ничего. Например, при сравнении двух изоляторов это маленькое напряжение может быть достаточно, чтобы показать некоторую утечку и помочь вам выбрать лучший материал, даже если он не позволит вам точно определить его сопротивление.

Погрешность мультиметра часто выражается двумя терминами: процент на показания и абсолютная погрешность при подсчете. Например, для моего Fluke 179 указано ± 0,09% и ± 2 единицы счета в диапазон 600 мВ, где «count» — одна единица крайнего правого цифра. Это означает, что если я прочту, скажем, 315,7 мВ, первый член представит ± 0,3 мВ погрешности и второй ± 0,2 мВ для общей ± 0,5 мВ: фактическое напряжение где-то между 315.2 и 316,2 мВ. С другой стороны, если я прочитал 12,5 мВ, первый член теперь дает вклад в всего ± 0,011 мВ, но второй все равно ± 0,2 мВ а фактическое напряжение составляет от 12,3 до 12,7 мВ.


Простой источник постоянного тока высокого напряжения

Я знаю, что это опасно, но когда мне нужна дополнительная точность, я использую высокий источник напряжения. Но я знаю, что делаю (надеюсь), и принимаю все необходимые меры предосторожности.Например, всегда отключать все дважды (выключать и отключать) прежде чем прикасаться к какой-либо части — хорошая привычка. Кроме того, замкните провод высокого напряжения на землю с помощью изолированного щупа. прежде чем прикасаться к нему — еще одна хорошая привычка. И всегда держать подключенным дополнительный вольтметр, чтобы убедиться, что напряжение действительно ушел в ноль тоже хорошая идея. Но это зависит от вас: я рекомендую вам не делать этого, но если вы играете с опасные напряжения (более 50 В) вы уже должны знать все это прочее и многое другое.Так что делайте это на свой страх и риск.

При этом мне часто нужно высокое напряжение (пара сотен вольт или около того). для многих приложений это только одно. Другие предназначены для питания вакуумных ламп или газоразрядных трубок. Обычно я использую вариак, чтобы отрегулировать сетевое напряжение в диапазоне от 0 до 280 В AC , просто потому, что это то, на что способен мой вариак. Затем я исправляю и подаю это напряжение, чтобы получить регулируемое напряжение постоянного тока между 0 и 400 В DC .Чтобы упростить настройку, я построил коробочку с выпрямителем, фильтром. конденсатор, выключатель нагрузки, резистор утечки и контрольная лампа. Поскольку я считаю, что это удобное устройство, когда вам нужно высокое напряжение постоянного тока, вот принципиальная схема:


Принципиальная схема моего выпрямительно-фильтрующего блока.

Это позволяет использовать двухполупериодный мостовой выпрямитель или полуволновой (простой диод). выпрямитель, в зависимости от того, нужно ли заземление.Имейте в виду, что нейтральный провод вашей сети, скорее всего, заземлен где-нибудь в вашей распределительной коробке. Мой вариак — настоящий трансформатор с изолированной вторичной обмоткой, но большинство вариаки — это простые автотрансформаторы без изоляции от сети линия; В этом случае рекомендуется установить дополнительный изолирующий трансформатор. Опять же, убедитесь, что вы знаете, что делаете здесь.


Изображение внутренней части блока фильтра выпрямителя.(нажмите, чтобы увеличить).


Изображение передней панели блока выпрямителя-фильтра. (нажмите, чтобы увеличить).


Некоторые примеры

Давайте теперь посмотрим на несколько примеров, давайте измерим несколько больших сопротивлений. После настройки источника напряжения и приборов первым делом необходимо сделать — это проверить его вообще без резистора: через несколько секунд После стабилизации цифровой мультиметр установится на 0.0 мВ: хорошие новости, нет проблемы с помехами. Затем давайте попробуем резистор 10 МОм: он проверяется на 10,28 МОм при прямом считывании с цифрового мультиметра и при 10,30 МОм с настройкой: у нас все хорошо. Давайте попробуем подключить последовательно пять резисторов по 10 МОм: я измерил их все. один за другим, и они в сумме составляют 50,57 МОм; эта установка гласит 50,58 МОм. Отлично: все ок, замерим что-нибудь побольше.

Давайте попробуем, например, дерево: когда я был ребенком, мне говорили, что дерево — это электрический изолятор.В этом утверждении есть доля правды. Действительно, он использовался в качестве изолятора более века назад … и очень быстро заменены другими материалами, доступными в то время, такими как стекло или фарфор. На самом деле дерево — очень плохой изолятор, и его, безусловно, следует избегать. электрическая изоляция по двум причинам: она поглощает воду и действительно горит с легкостью.


Измерение сопротивления зубочисткой. (нажмите, чтобы увеличить).

Но это интересный материал для тестирования: давайте узнаем, как его утеплить. является. Зубочистка удобной формы сделана из дерева. Сначала я взял новую сухую зубочистку из новенькой коробки и подключил свой тест. настроил и измерил более 300 ГОм: не лучший изолятор в мир, но все же респектабельный … но подождите, давайте сделаем еще один тест: давайте отсоедините зубочистку, подержите в руке 30 секунд и измерьте И снова: на этот раз его сопротивление упало до 112 ГОм… гул, а не как как раньше. А еще есть удивительный феномен: если дышать или дуть на зубочисткой во время измерения ее сопротивление значительно падает. Вероятно, это связано с влажностью вдыхаемого воздуха. впитывается зубочисткой. Я мог наблюдать значения 2 ГОм или меньше, которые быстро восстанавливаются после перестань это делать. Это в 100 раз больше проводимости! Может быть, вы сможете сделать из него гигрометр, но дерево отстойно как изолятор.Для финального теста я окунул (отсоединенную) зубочистку в водопроводную воду, высушил его тканью, подождал 10 минут, чтобы убедиться, что он больше не выглядит мокрым и снова измерил: 1,45 МОм, примерно в 200000 раз больше проводящий. Это определенно больше не изолятор: не использовать дерево в качестве электричества. изолятор — мудрый выбор.


Измерение сопротивления изоляции небольшого отрезка изолированного провода. (нажмите, чтобы увеличить).

А теперь замерим «настоящие» изоляторы: взял пять маленьких проводов. вырезы от нового трехфазного кабеля. На изоляцию нанесено клеймо «ПВХ». Сначала я удалил медь изнутри и попытался измерить только изоляцию. материала, но его сопротивление было слишком высоким, и цифровой мультиметр показал 0,0 мВ. У него определенно есть сопротивление, но это недостижимо для этого простого метода. Поэтому мне пришлось измерить изоляцию с медным проводом в ней: путь ток в изоляции короче и идет снаружи провод внутрь, отодвигается на несколько сантиметров в сторону и возвращается наружу как показано на рисунке ниже.Я также измерил сопротивление снаружи внутрь провода шумоизоляция, найдя примерно половину стоимости. Алюминиевая фольга, оборачивающая провода, имеет длину около 1 см и 1 см. Кроме.


Изображение измерения изоляции снаружи на внутри и назад к внешней стороне изолированного провода ПВХ (изображение слева) и от снаружи внутрь того же провода (изображение справа). (нажмите, чтобы увеличить).

Все провода измерены в диапазоне 6 ТОм, кроме черного. что было всего около 2 ТОм. Похоже, это нормально, потому что черный пигмент, использованный для окрашивания пластиковый материал, если он часто основан на углеродных частицах, которые слегка проводящий. У меня нет возможности проверить эту гипотезу, но мои измерения точно показывают что черная изоляция более проводящая, чем другие цвета. Обычно это не проблема, но, возможно, стоит подумать, если вы конструировать электрометр…

У меня также был проложен провод с изоляцией из ПВХ, который я использовал в качестве антенны в своем сад около года, прежде чем я заменил его на голый медный провод. Я измерил сопротивление изоляции и нашел удивительно низкое значение: около 500 ГОм. Это в 10 раз меньше того, что я только что измерил на новых проводах. Я думаю, что низкое сопротивление связано с повреждениями, вызванными погодными условиями (большинство вероятно УФ-излучением). К сожалению, у меня нет отрезка того же провода, который бы не подвергался воздействию элементы для сравнения, поэтому я не могу быть уверен.Тем не менее, это интересное измерение.

Наконец, я попытался измерить некоторые другие изоляторы: кусок платы FR-4 PCB (примерно такие же размеры, как зубочистка), предметное стекло микроскопа и кусок трубки из ПТФЭ (тефлона). FR-4 показал себя на отметке 4 ТОм, но я не уверен, что это было действительно его сопротивление или просто грязь на поверхности. Я не смог очистить его лучше. Кстати, хорошая практика — всегда тщательно очищать все поверхности: грязь, пыль, отпечатки пальцев, влага и другие загрязнения могут существенно влияют на измерения высокого сопротивления.Стекло и ПТФЭ были слишком высокими, чтобы их можно было измерить.

В следующей таблице приведены мои измерения. Это не исчерпывающий список или источник достоверных данных: это просто сбор случайных измерений для иллюстрации того, что может (или не может) быть измеряется этим методом. Я знаю, что им не хватает научной строгости, но они дают представление.

Образец Испытательное напряжение U 0 Измеренное напряжение U M Импеданс цифрового мультиметра R M Тестируемый резистор R X
Ничего — обрыв 395.3 В 0,0 мВ ± 0,20 мВ 10,00 МОм> 20 ТОм
Резистор 10 МОм 394,1 В 194,3 В ± 0,37 В 10,02 МОм 10,30 МОм ± 0,04 МОм
Строка из 5 резисторов по 10 МОм 390,6 В 64,58 В ± 0,078 В 10,02 МОм 50,58 МОм ± 0,07 МОм
Зубочистка сухая из коробки 391.8 В 11,9 мВ ± 0,20 мВ 10,00 МОм 329,2 ГОм ± 5,7 ГОм
Зубочистка после удержания в пальцах 30 секунд 391,5 В 34,8 мВ ± 0,23 мВ 10,00 МОм 112,6 ГОм ± 0,8 ГОм
Зубочистка при дыхании 391,1 В 1,620 В ± 1,7 мВ 11.12 МОм 2,673 ГОм ± 0,003 ГОм
Зубочистка, смоченная водой и просушенная в течение 10 минут 392,3 В 342,6 В ± 0,5 В 10,02 МОм 1,454 МОм ± 0,017 МОм
Черный провод с ПВХ изоляцией 390,4 В 1,8 мВ ± 0,20 мВ 10,00 МОм 2,169 ТОм [1,952 … 2,440] ТОм
Жёлто-зелёный провод с ПВХ изоляцией 390.3 В 0,6 мВ ± 0,20 мВ 10,00 МОм 6,505 ТОм [4,879 … 9,757] ТОм
Синий провод с ПВХ изоляцией 390,5 В 0,6 мВ ± 0,20 мВ 10,00 МОм 6,508 ТОм [4,881 … 9,762] ТОм
Коричневый провод изолированный PCV 390,4 В 0,6 мВ ± 0,20 мВ 10,00 МОм 6.507 ТОм [4,880 … 9,760] ТОм
Серый провод изолированный ПВХ 390,4 В 0,7 мВ ± 0,20 мВ 10,00 МОм 5,577 ТОм [4,338 … 7,808] ТОм
Серый провод с изоляцией из ПВХ, снаружи и внутри 390,6 В 1,7 мВ ± 0,20 мВ 10,00 МОм 2,298 ТОм [2,056 … 2,604] ТОм
Синий провод с изоляцией из ПВХ через год за пределами 394.4 В 7,1 мВ ± 0,20 мВ 10,00 МОм 555 ГОм ± 17 ГОм
Кусок доски FR-4 размером примерно с зубочистку 395,1 В 1,0 мВ ± 0,20 мВ 10,00 МОм 3,95 ТОм [3,3 … 4,9] ТОм
Предметное стекло для микроскопа 393,8 В 0,0 мВ ± 0,20 мВ 10,00 МОм> 20 ТОм
Тефлоновая трубка 394.2 В 0,0 мВ ± 0,20 мВ 10,00 МОм> 20 ТОм

Для увеличения контактной поверхности я намотал изолятор на две небольшие части алюминиевой фольги на расстоянии 1 см друг от друга. Это также предотвращает врезание зажимов типа «крокодил» в изоляцию. Оказывается, довольно сложно равномерно обернуть крошечные фольги. чтобы убедиться, что поверхность и расстояние между электродами всегда одинаковый.Я не особо беспокоился о том, что делал, но определенно кое-что следует следить за действительно точными измерениями.

Мой источник тестового напряжения просто выпрямляет сетевое напряжение. Поскольку напряжение в сети не регулируется, оно все время меняется. Не сильно, но немного. Поэтому выпрямленное напряжение также немного меняется, и во избежание внесения дополнительные ошибки, я отслеживаю их с помощью второго цифрового мультиметра, чтобы прочитать оба U 0 и U M одновременно.Если вы используете аккумулятор (или регулируемый источник питания), вам не нужно беспокоиться: Достаточно один раз измерить U 0 .


Ток утечки диода

У этого метода есть небольшой «бонус»: вы также можете измерять ток утечки диода. Этот ток обычно очень низкий, и его сложно измерить. С помощью этого метода вы сможете легко измерить до 1 нА, может быть, даже ниже. Этого достаточно для большинства обычных диодов, но я признаю, что эти специальные диоды с утечками в диапазоне pA вне досягаемости простого цифрового мультиметра.Тем не менее, попробовать стоит. Принципиальная схема установки практически такая же, только компонент под тест другой:


Принципиальная схема установки для измерения утечки диодов.

Сначала несколько слов о токе утечки диодов: все диоды должен пропускать ток при прямой поляризации и полностью блокировать ток при другой поляризации (обратная поляризация).Пока все хорошо, вот что делают диоды. Но настоящие диоды на самом деле не полностью блокируют ток при обратной поляризации; всегда есть крошечный ток, который проходит через заблокированный диод то есть обратный ток утечки или просто утечка текущий . Не все диоды одинаковы: некоторые специально предназначены для утечка очень низкая. Но очень часто утечка не является проблемой для наиболее распространенных приложений, поэтому производители мало что делают для его контроля, оптимизируя другие характеристики диода вместо.

Ток утечки сильно увеличивается с температурой, слегка увеличивается с напряжение, а также зависит от того самого диода, который вы тестируете: все они разные, даже если все они одной модели из одной партии того же производителя. Держа диод в руках, он немного нагреется, но этого достаточно, чтобы измените его ток утечки на 30% или более, и вам придется подождать несколько минут, пока снова не стабилизируется.

Ни один диод не может удерживать обратный ток, если напряжение выше его обратного напряжение пробоя: испытательное напряжение U 0 следует выбирать с умом. Обычно вас интересует обратное напряжение, которое будет испытывать диод. в вашей цепи, и это тестовое напряжение, которое вы должны использовать. Я произвольно использовал 30 В для большинства следующих измерений, потому что Я просто хотел представить здесь кучу разных диодов. Но для германиевого диода OA90 я выбираю 20 В, потому что он обратный напряжение ровно 30 В и хотелось иметь некоторый запас.Если диод сломается, ничего страшного не произойдет, потому что сопротивление DMM очень высокий, ограничивая ток до очень безопасного значения, но вы не будете измерение тока утечки больше.


Измерение тока утечки диода 1N4148. (нажмите, чтобы увеличить).

На практике начните с выбора подходящего напряжения источника (испытательного напряжения) как объяснил и измерить ток утечки с помощью внутреннего импеданса Цифровой мультиметр как высокоэффективный шунт.Это почти то же самое, что мы делали раньше для измерения изоляторов: просто замените изолятор на диод. Убедитесь, что вы подключаете диод с обратной полярностью. Как только вы получите измеренное напряжение UM, просто воспользуйтесь законом Ома для расчета ток ( I утечка = U M / R M ). Я не предоставил для этого калькулятор; Я думаю эта формула проста довольно. Если напряжение, которое вы используете, низкое (ниже 50 В), вы можете не использовать меры безопасности. резистор RS и используйте вместо него источник питания с ограничением тока.

Вот несколько диодов, которые я тестировал прямо из мусорной коробки:

Модель диода Тип соединения Испытательное напряжение U 0 DMM Импеданс R M Измеренное напряжение U M Ток утечки
1N4148 Кремний PN 30 В 10.00 МОм 59,8 мВ 5,98 нА
1N4007 Кремний PN 30 В 10,00 МОм 82,1 мВ 8,21 нА
BY550-600 Кремний PN 30 В 10,00 МОм 75,2 мВ 7,52 нА
BAT43 Шоттки 30 В 11.12 МОм 2.456 В 220,9 нА
MUR120 Шоттки 30 В 10,00 МОм 4,9 мВ 490 pA
1N5822 Шоттки 30 В * 922,5 кОм 4,339 В 4,703 мкА
OA90 точечный контакт из германия 20 В * 922.5 кОм 4,384 В 4,752 мкА
AA117 точечный контакт из германия 30 В * 922,5 кОм 2,835 В 3,073 мкА
2N2222 Транзистор биполярный C-E 30 В 10,00 МОм <0,1 мВ <10 па
BC547 Транзистор биполярный C-E 30 В 10.00 МОм <0,1 мВ <10 па
*: резистор 1,006 МОм был подключен к параллельно с цифровым мультиметром, чтобы снизить его полное сопротивление.

Некоторые диоды оказались на удивление негерметичными; так много, что почти полный запас на цифровом мультиметре появилось напряжение, что заставило меня подумать, что диоды закорочены или установлен в обратном направлении. Это те, которые отмечены знаком «*». Я проверил их с помощью функции проверки диодов цифрового мультиметра, и они были «хорошо» и действительно были смонтированы правильно, просто очень-очень дырявый.Итак, я подключил резистор 1 МОм параллельно цифровому мультиметру, чтобы понизить свой импеданс и до сих пор измеряют их ток утечки, который оказался в диапазоне нескольких микроампер. Я знал, что германий и некоторые диоды Шоттки дают утечку, но не ожидал, что много. В любом случае, если вас интересует утечка диодов, это, вероятно, потому, что вы хотите с малой утечкой … Между прочим, я не могу придумать ни одного приложения, в котором утечка была бы желательна. Очень часто это приемлемо, но нежелательно.Таким образом, вам, вероятно, не придется беспокоиться о подключении дополнительный резистор … вы уже знаете, что этот конкретный диод протекает как сито: просто используйте другое.

Как правило, диоды Шоттки имеют большие токи утечки, но не все из них: некоторые из них специально разработаны с учетом низкой утечки и очень хороши. Часто сильноточные диоды также имеют большие утечки и высоковольтные диоды. имеют меньшие утечки при использовании при низком напряжении.

Кстати, то, что диод протекает, не значит, что он плохой: он будет вероятно, отлично работает для большинства распространенных приложений. Будет отличным выпрямителем в вашем блоке питания, хорошим обратным защита от полярности для вашего любимого усилителя с батарейным питанием, надежный зажим для этого релейного дросселя, всегда готовый стрелять высоким напряжением повсюду место, … применения, требующие диодов с малой утечкой, встречаются редко и часто требуют точности и высокого сопротивления.Они могут понадобиться вам для интегратора, выборки и хранения, ввода АЦП или где-то еще, крошечный ток имеет значение.

И, наконец, небольшой «бонусный трюк»: соединение база-коллектор нормального биполярного транзистора обычно является диод с очень низкой утечкой. Итак, если у вас нет диода с низкой утечкой, когда он вам нужен, попробуйте подключить коллектор и база транзистора с подходящим напряжением и током (и оставьте эмиттер открытым): это может спасти вам день (и уберечь вас от потери три недели в ожидании того особенного дорогого диода, идущего через Атлантический).Не так хорошо, как настоящий диод с низкой утечкой, но определенно хороший трюк.


Диодные эквиваленты биполярного транзистора.

Кстати, для полноты картины переход база-эмиттер биполярный транзистор ведет себя как стабилитрон с обратным напряжением обычно около 6 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *