Резистор полярность: Как проверить резистор на работоспособность мультиметром не выпаивая

Содержание

Как проверить резистор на работоспособность мультиметром не выпаивая

Резистор — это один из наиболее часто используемых элементов в современной электронике. Его название происходит от английского «resist», что означает сопротивление. С помощью резистора можно ограничить действие электрического тока и измерять его, разделять напряжение, задавать обратную связь в электрической цепи. Смело можно сказать, что без этого элемента не обходится ни одна электросхема, ни один прибор. Именно поэтому часто появляется необходимость в измерении сопротивления резистора мультиметром и проверке его работоспособности. В этом материале будет рассказано, как проверить плату на работоспособность мультиметром.

Что такое резистор

В русской научной литературе электрорезиторы часто называют просто «сопротивление». Из этого наименования сразу же становится понятно его предназначение — сопротивляться действию электрического тока. Резистор является пассивным электроэлементом, так как под его действием ток только уменьшается, в отличие от активных элементов, которые повышают его действие.

Обозначение элемента на электросхеме

Из закона Ома и второго закона Кирхгофа следует, что если ток протекает через резистор, то его напряжение падает. Величина его равна силе протекающего тока, умноженной на сопротивление резистора.

Важно! Условное обозначение резистора на схемах — это прямоугольник, так что это легко запомнить. В зависимости от вида резистора он изображается как прямоугольник с обозначением внутри.

Выводной электрорезистор

Резисторы подразделяют по методу монтажа. Они бывают:

  • Выводными, то есть монтируются сквозь микросхему с радиальными или аксиальными выводами-ножками. Этот вид использовался повсеместно несколько десятков лет назад и сейчас используется для простых устройств;
  • SMD, то есть электрорезисторы без выводов. Они имеют лишь незначительно выступающие ножки, поэтому они монтируются в саму плату. В современных приборах чаще всего используют именно их, так как при автоматической сборке платы конвейером это выгодно и быстро.
Микро SMD-резистор

Что такое мультиметр

Мультиметр — это прибор, который может производить замеры силы постоянного или переменного тока, напряжения и сопротивления. Он заменяет собой сразу три аналоговых или цифровых прибора: амперметр, вольтметр и омметр. Также он способен изменять основные показатели любой электрической сети, производить ее прозвон. Существует два вида мультиметров: цифровые и аналоговые. Первые представляют собой портативные устройства с дисплеем для отображения результатов. Большинство мультиметров на современном рынке — цифровые. Второй тип уже устарел и не пользуется былой популярностью. Он выглядит, как обычный измерительный прибор со шкалой делений и аналоговой стрелкой, показывающей значение измерений.

Современный цифровой мультиметр

Прозвон резистора

Резистор можно и нужно прозванивать. Прозвонить можно и без выпаивания элемента с платы. Прозванивание элемента на обрыв производится следующим образом:

  1. Включить мультиметр и выключить прибор, если прозвонка осуществляется без выпаивания;
  2. Мультиметром без учета полярности прикоснуться к выводам электрорезистора;
  3. Зафиксировать значение. Если оно равно единице, то это свидетельствует о неисправности и произошел обрыв, а сам элемент следует заменить.

При невыпаивании следует учитывать тот факт, что если схема сложная, то, возможно, придется делать прозвонку через обходные пути и цепи. О 100 % неисправности элемента сказать можно лишь тогда, когда хотя бы одна из его ножек выпаяна.

Выполнение прозвонки электрорезистора

Полярность резистора

Многие интересуются тем, как узнать полярность резистора, чтобы точно определить, каким контактом выхода и куда его вставлять. Чтобы не вводить людей в заблуждение, сразу можно сказать, что полярности у электрорезистора нет и быть не может. Данный радиоэлемент бесполярен. Считается, что резисторы неполярны и подключаться к печатной плате могут при любом положении своих выводов, в любой их комбинации. Как и с предохранителем, проверять работоспособность резистора можно в любой комбинации контактов мультиметра и выводов, а порядок его припайки к электрическим схемам разницы не имеет. Важно лишь учитывать и проверять номинальную сопротивляемость элемента перед припоем, так как потом в случае появившихся неисправностей сделать это будет тяжелее за счет влияния на измерение других элементов и цепей платы.

Маркировка номиналов

Номинальное сопротивление

Основной параметр любого резистора — это номинал сопротивления. Равномерностью этого сопротивления является единица измерения Ом. Номинальное значение любого приобретенного резистора маркируется на нем самом, то есть на его корпусе с помощью обозначений в виде полосочек различного цвета. Это было сделано в первую очередь для удобства конвейерного монтажа, где автоматы с машинным зрением с легкостью определяют элемент, который нужно использовать.

На некоторых резисторах указано номинальное сопротивление

Важно! Узнать номинал можно несколькими способами: с помощью специальных справочников и таблиц обозначений, а также любым измерительным прибором.

Таблицы представлены в любом справочнике по электронике и электротехнике, а также идут в комплекте с купленным набором резисторов. Второй способ определения более удобный и понятный, так как все, что нужно сделать — это измерить сопротивление собственноручно. Это поможет определить, насколько сопротивление отличается от номинального, и даст характеристику элемента.

Проверка сопротивляемости и исправности с помощью цифрового мультиметра

Проверка мультиметром

Для того чтобы проверить электрорезистор, следует действовать следующим образом:

  1. Взять требующий проверки радиоэлемент;
  2. Включить мультиметр и настроить его на измерение сопротивления;
  3. Задать шкалу измерения и ее границы;
  4. Любым способом подключить один щуп мультиметра к одной из сторон резистора, а второй — к оставшейся стороне;
  5. Зафиксировать измерения на экране или аналоговой шкале и закончить тестирование.
Внешний вид регулируемого потенциометра

Если значение равно нулю или сильно отличается от номинального, то элемент неисправен и подлежит утилизации, так как изменение значения может вывести из строя всю схему. Если значение в норме, то электрорезистор можно использоваться для создания электронных схем. При проверке значений, не выпаивая электрорезистор, следует учитывать влияние шунтирующих цепей.

Терморезистор СТ3-19 15кОм

Таким образом, был разобран вопрос: как проверить резистор мультиметром или тестером. На самом деле сложного ничего нет, так как данный радиоэлемент является одним из самых простых и распространенных среди всех и имеет всего два выхода-контакта без учета полярности. Именно поэтому проверить его сможет каждый, у кого есть мультиметр, тестер или омметр.

Урок 3 — Основы монтажа и пайки

Основы монтажа и пайки

Необходимые для работы инструменты и материалы рассмотрены в уроке №1.

Кратко напомню о том, что потребуется для сборки конструктора: паяльник, припой с каналом канифоли, радиотехнические бокорезы, пинцет, держатель платы типа «третья рука», спирт, салфетки, старая зубная щётка, стол, настольная лампа, стул.
Итак, приступим к сборке.
Мы будем собирать набор Мастер Кит NS073 – «Живое сердце», хотя для целей обучения совершенно не важно, сборку какого набора рассматривать.
Вот что должно получиться в итоге:

Мастер Кит Урок 3 - Основы монтажа и пайки

Светодиоды собранного устройства эффектно перемигиваются, создавая очень красивый эффект «бегущего огня».
Но сначала нужно собрать набор. Для этого потребуется установить каждую деталь на своё место, а затем припаять все детали.
Глаза боятся – руки делают. Приступим!

 

Общие требования к рабочему месту. Основы безопасности

Несмотря на то, что мы уже говорили об этом в уроке №1, о таких серьёзных вещах, касающихся безопасности, нелишне напомнить снова:

— рабочее место (стол) не должен быть захламлён. На свободном столе работать приятнее и эффективнее. Кроме того, радиодетали не смогут легко потеряться в окружающем хламе;
— Так как радиодетали мелкие, во избежание излишнего перенапряжения глаз рабочее место должно быть хорошо освещено. Всегда включайте настольную лампу;
— во время пайки предусмотрите хорошую вентиляцию рабочего места. Открывайте форточку, или включайте настольный вентилятор, отгоняющий дым от паяльника в сторону;
— паяльник горячий! Держитесь только за его ручку. Не допускайте прикосновений пальцев к жалу;
— после пайки, как и после любой другой работы, всегда мойте руки.

 

Печатная плата

Печатная плата является основной, шасси всей конструкцией.
Все детали устанавливаются с лицевой стороны платы (с той, где есть надписи), а выводы деталей припаиваются с тыльной стороны (где имеются токопроводящие дорожки).

Мастер Кит Урок 3 - Основы монтажа и пайки

 

Монтаж резисторов

Допустим, мы хотим установить резистор R1. По таблице из инструкции определяем, что R1 должен иметь сопротивление 1 МОм. Находим в наборе резистор соответствующего номинала (как определить номинал резистора, рассказывается в уроке №2). Ищем на печатной плате установочное место R1. Чтобы резистор R1 удобно «улёгся» на предназначенное для него место на печатной плате, выводы резистора нужно отформовать, то есть изогнуть определённым образом. Изгибать выводы можно пальцами или с помощью пинцета. Если с первого раза не получилось изогнуть выводы правильно – ничего страшного, можно поправить формовку. Но надо помнить, что если изгибать вывод в одном месте более нескольких раз, то он может обломиться.

Мастер Кит Урок 3 - Основы монтажа и пайки

Вот так выглядит установленный резистор с разных ракурсов:

Мастер Кит Урок 3 - Основы монтажа и пайки

Резистор R1 установлен «вертикально», то есть его корпус находится над поверхностью платы. Угол между компонентом и корпусом может быть любым, это не влияет на качество работы схемы. Также вспомним из урока №2, что резистор не имеет полярности, то есть может быть установлен как коричневой полосой вверх (как на рисунке), так и коричневой полосой вниз.

Чтобы деталь не выпадала при поворотах платы, с обратной стороны платы выводы резистора загибаем в разные стороны:

Мастер Кит Урок 3 - Основы монтажа и пайки

Мы можем сразу же обрезать излишки вывода резистора и припаять его. Затем установить следующую деталь, опять обрезать его выводы и припаять… Но можно сначала установить все детали, затем обрезать их выводы, а затем все сразу припаять. Так получится быстрее, технологичнее, именно так поступают профессиональные монтажники на производстве. Мы тоже будем действовать таким образом.

Установим резистор R2. Обратите внимание, что этот резистор устанавливается «горизонтально», то есть его корпус вплотную прилегает к плоскости печатной платы. Соответственно, и формовка выводов этого резистора несколько другая.

Мастер Кит Урок 3 - Основы монтажа и пайки

Снова напомню, что резисторы не имеют полярности. В данном случае синяя полоса резистора находится справа. Но можно установить его и в обратную сторону – синей полосой влево.
Таким же образом устанавливаем все остальные резисторы (в данном наборе их 9 штук).

 

Монтаж конденсаторов

Мастер Кит Урок 3 - Основы монтажа и пайки

В данном наборе всего один конденсатор – С1, поэтому перепутать его с каким-то другим невозможно. Но всё-таки проверим, что на конденсаторе в полном соответствии с перечнем компонентов указан код ёмкости 104.
В данном случае выводы конденсатора можно не формовать, так как компонент прекрасно устанавливается на плату в заводском состоянии выводов.
Также мы знаем из урока №2, что керамический конденсатор полярности не имеет и может устанавливаться на плату в любом положении.
Если в каком-то другом наборе будет несколько керамических конденсаторов, необходимо по указанному на компоненту коду ёмкости определить, на какое посадочное место следует его установить – С1, С4 или С17, например.
В наборе NS073 нет других конденсаторов, но в целях обучения на примере другого набора рассмотрим также монтаж электролитического конденсатора.
Помним о том, что электролитический конденсатор должен устанавливаться с учётом его полярности.

Мастер Кит Урок 3 - Основы монтажа и пайки

 

Монтаж диода

Находим на печатной плате посадочное место диода VD1. Вспомним из урока №2, что диод имеет полярность. Обратите внимание, что на печатной плате имеется обозначение «ключа» диода – полоса вблизи одного из выводов. Такая же полоса имеется и на самом диоде. При установке диода необходимо строго придерживаться меток полярности. Если установить диод в неправильной полярности (в данном случае неправильная установка — полосой вверх), то схема не заработает. Более того, диод или другие элементы схемы в таком случае могут выйти из строя.

Мастер Кит Урок 3 - Основы монтажа и пайки

Формовка выводов диода аналогична резистору R2.

 

Монтаж транзистора

В наборе NS073 нет транзисторов, но для полноты изложения материала на примере другого набора рассмотрим монтаж транзистора. Помним о том, что транзистор имеет «ключ», который при установке необходимо совмещать с соответствующей меткой на печатной плате.

Мастер Кит Урок 3 - Основы монтажа и пайки

Кроме того, важно помнить, что разные транзисторы могут быть одинаковыми по внешнему виду. И если в набор входят два или более транзисторов, необходимо проверять маркировку на их корпусах и устанавливать компоненты строго на нужные позиции – VT1, VT2 и т.п.

 

Монтаж микросхем

Мастер Кит Урок 3 - Основы монтажа и пайки

В данный набор входят две микросхемы. При установке необходимо соблюдать их ключи, обозначенные выемками как на печатной плате, так и на самом компоненте.
Загибаем выводы микросхемы – не обязательно все, достаточно двух противоположных. Микросхема зафиксирована и не выпадет.
Кроме того, надо учитывать, что микросхемы DD1 и DD2 разные. Правда, в данном случае у микросхем разное количество выводов: у одной – 14, а у другой – 16, поэтому при установке вы сразу поймёте, если что-то делаете неправильно. Но бывает так, что разные микросхемы имеют одинаковые корпуса с одинаковым количеством выводов. Поэтому всегда обращайте внимание на маркировку на корпусах микросхем и информацию в табличке-перечне компонентов инструкции.

 

Монтаж перемычки

В некоторых наборах, и в NS073 в частности, требуется такая технологическая операция, как установка перемычки. Перемычка на печатной плате обозначается чертой:

 Мастер Кит Урок 3 - Основы монтажа и пайки

Перемычка не является электронным компонентом и в состав набора не входит. Её можно выполнить как из небольшого обрезка провода, так и из обрезка одного из выводов любой радиодетали. Формуют перемычку так же, как и резистор.

 

Монтаж светодиодов

Светодиод – это разновидность диода. И он тоже имеет полярность, которую важно соблюдать при монтаже.

На печатной плате обозначен вывод «+» (анод) светодиода.

Мастер Кит Урок 3 - Основы монтажа и пайки

У самого светодиода вывод «+» (анод) длиннее. Но ориентироваться на этот ключ можно только до обрезки выводов диода. Есть и другая метка полярности – скос на корпусе диода у вывода катода («-»).
Монтируем все светодиоды (в наборе NS073 их 20 штук). Загибаем их выводы с обратной стороны платы. Торчащих выводов становится много, плата принимает неаккуратный вид, но не нужно этого бояться, на следующем этапе мы обрежем лишние выводы. Если же выводы очень мешают – можно обрезать некоторые из них или вообще все в процессе монтажа. Как это делать, рассказывается ниже.

 

Обрезка выводов

Мастер Кит Урок 3 - Основы монтажа и пайки

 

Вот такой «ужас» наблюдается у нас с обратной стороны платы после установки всех компонентов.

Сейчас мы приведём плату в аккуратный вид, обрезав выводы (или, как говорится на жаргоне радиомонтажников, «причешем» плату).

Нам потребуются радиотехнические бокорезы (подробнее об этом инструменте описано в уроке №1). Инструмент держим практически перпендикулярно плате. От каждого вывода оставляем около 1-2 мм. Слишком длинный вывод будет некрасиво торчать. Кроме того, длинные выводы разных компонентов могут в процессе последующей пайки замкнуться друг с другом и образовать паразитные перемычки. Слишком коротко обрезанный вывод может привести к выпадению компонента.
Желательно, чтобы вывод не выходил за пределы контактной площадки.
На картинках ниже излишне длинный вывод и вывод оптимальной длины.

Мастер Кит Урок 3 - Основы монтажа и пайки

Таким образом. обрезаем все выводы. В итоге у нас получится примерно такая картина:

Мастер Кит Урок 3 - Основы монтажа и пайки

Плата готова к пайке.

 

Пайка конструкции

О необходимом для сборки набора паяльном инструменте рассказывается в уроке №1.
Кратко напомню: потребуется паяльник (или паяльная станция) и припой с каналом канифоли. Удобно также применять фиксатор платы – так называемую «третью руку».

Плату удобно зафиксировать с помощью специального держателя типа «третья рука», или каким-либо другим образом.

В одну руку (для правшей – в правую) берём паяльник, в другую – пруток припоя.
Конечно, паяльник должен быть горячим. Таковым он становится не мгновенно после включения в розетку, а через несколько минут после этого.
Если подвести горячее жало к припою, тот начнёт плавиться.

Жало паяльника ставим на точку пайки. Обратите внимание – не на кончик вывода детали, а именно на контактную площадку. Одновременно подаём в эту же точку пруток припоя.
Как и жало паяльника, пруток подаём не на кончик вывода, не на паяльник, а на контактную площадку. Припой начинает плавиться. Немного как бы подаём пруток на точку пайки, при этом слегка перемещая паяльник. Всё, у нас сформировалась точка пайки. Убираем припой, а затем паяльник. Ждём секунду – припой застыл, точка пайки готова. На точку пайки уходит 2-3 миллиметра прутка припоя (это очень ориентировочные данные, зависящие от типа припоя и контактной площадки).
Процесс идёт гораздо быстрее, чем я об этом рассказываю. На одну точку пайки у меня уходит около секунды. Допустимо – до трёх секунд. Если греть точку пайки дольше, теоретически могут возникнуть проблемы: можно перегреть деталь, или контактная площадка или дорожка могут отклеиться от основы платы. Но на практике это маловероятно. В комплекте Мастер Кит только качественные платы, а компоненты в конструкторах для начинающих не такие «нежные» и прощают многие ошибки, в том числе и перегрев.

Качественная пайка блестит и ровная. Если пайка рыхлая, матовая – значит, вы используете некачественный припой (либо припой без канала канифоли), или паяльник либо недостаточно горячий, либо, что чаще всего бывает, слишком горячий.
Я рассказал о технологии пайки, при которой пруток припоя подаётся непосредственно в зону пайки, а жало же используется только как нагреватель. Для современных жал из малообгораемых материалов это единственно правильная техника. Если же вы используете паяльник с обычным медным жалом, можно расплавлять некоторое количество припоя на жале, и переносить жидкий припой в точку пайки на жале, как на лопате. Попробуйте – возможно, так вам будет удобнее.
Всё очень просто. Но это как футбол: требуется практика. Можно прочесть многие тома по теории футбола, но это не значит, что вы научитесь в него играть. Практика – это что-то другое и совершенно необходимое.

 

Промывка платы

Мастер Кит Урок 3 - Основы монтажа и пайки

 

Строго говоря, современные флюсы, входящие в состав припоев, допускают безотмывочный процесс. То есть можно плату не промывать. Но такая печатная плата выглядит некрасиво, на ней плохо видны дефекты пайки, да и вообще есть такое понятие – «культура производства», и каждый уважающий себя производитель платы промывает. На производстве применяют специальные отмывочные машины, но тратить несколько тысяч долларов и приобретать такую машину размером с половину комнаты для радиолюбителя нецелесообразно. Хороших результатов можно достичь с помощью спирта, старой зубной щётки и салфеток. Смачивая щётку, хорошенько надраиваем плату со стороны пайки, на заключительно же этапе удобно применять для очистки и просушки платы салфетки. Теперь наша смонтированная плата чистенькая, красивая, её и людям не стыдно показать.
После отмывки на плате легче найти дефекты. Поэтому ещё раз внимательно посмотрите на плату и убедитесь, что все контактные площадки хорошо припаяны, а паразитных замыканий нет. При необходимости дефекты устраняем.

 

Устранение дефектов пайки

На рисунке ниже имеются два дефекта пайки: один из выводов пропаян неполностью, только с одной стороны. Такой контакт ненадёжный (на профессиональном жаргоне это называется «непропай»). Другой же вывод мы просто забыли припаять.
Собранная с такими дефектами пайки конструкция может или совсем не заработать, или работать нестабильно.

Мастер Кит Урок 3 - Основы монтажа и пайки

Исправим дефекты, заново пропаяв обнаруженные проблемные точки пайки.

Иногда в процессе пайки допускаются паразитные соединения припоем соседних выводов:

Мастер Кит Урок 3 - Основы монтажа и пайки

Если не заметить такие дефекты пайки, то готовая конструкция может не только не заработать, но и вообще выйти из строя сразу же после включения. Поэтому необходимо внимательно проверять монтаж. Допустим, мы обнаружили паразитное замыкание (на радиотехническом жаргоне такой дефект часто называют неблагозвучно – «соплёй»). Я расскажу вам, как восстановить нормальную пайку.


1. С помощью ножа (скальпеля). Прогреваем паяльником дефектную пайку, и проводим острым лезвием между точками пайки. Дефект устранён.
2. С помощью специального инструмента – вакуумной помпы, которая по-другому называется «радиотехнический отсос». Прогреваем место пайки, подносим отсос, нажимаем его кнопку – излишки припоя втягиваются в инструмент. Пайка исправлена!
3. С помощью специальной радиотехнической «оплётки». Прогреваем место пайки, вводим в место пайки многожильную медную «оплётку» — под действием сил натяжения лишний припой впитывается на «оплётку». Пайка исправлена!

В следующем уроке я расскажу о том, как настраивать и подключать собранную конструкцию.

 

Скачать урок в формате PDF

виды, как выглядит и из чего состоит, принцип работы, характеристика

Автор Aluarius На чтение 9 мин. Просмотров 423 Опубликовано

В электрических цепях важную роль играет проводник. Для чего нужен резистор и что это такое стоит разобраться подробнее. Он способен поделить напряжение и ограничить ток, измерить его и создать цепь обратной связи. Основная задача маленькой детали создать необходимое сопротивление для электрического тока.

резисторыРезисторы бывают различных цветов, форм и размеров

Что такое резистор

Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».

Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.

Справка! Соединение проводников может быть последовательным, параллельным или смешанным.

Также есть два вида полупроводников:

  • линейные, сопротивление у которых от тока и напряжения не зависит;
  • нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.

Основным параметром резисторов является номинальное напряжение.

Как выглядит

Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.

разные-резисторыРазница во внешнем виде и размерах

Из чего состоит

Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.

Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.

Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.

Для чего используется

Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.

Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.

Обозначение на схемах

В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:

postoyannie-rezistoriОбозночения постоянных элементов на схеме

Переменные, в том числе подстроечные, а также нелинейные следующим образом:

переменные-резисторыОбозначения переменных проводников

Важно! Всегда есть погрешность в заявленном производителем сопротивлении, она обозначается с помощью букв и цифр в процентном выражении.

Принцип работы резистора

В основе работы проводников лежит закон Ома, согласно которому напряжение зависит от величины тока и напряжения. Различные номиналы деталей помогут изменить ток и напряжение на необходимую величину. Суть заключается в том, что ток, движущейся по цепи, попадает в деталь и снижает свое продвижение.

Пример схемы

Резисторы могут соединяться параллельно и последовательно, на схемах также часто встречаются смешанные варианты. На фото ниже можно увидеть отличия в обозначениях деталей на схемах.

otlichiya-rezistorovОбозначения элементов на схемах

Типы резисторов

К типам резисторов общего применения относят постоянные, сопротивление которых невозможно изменить и переменные, когда допустимо его менять в пределах допустимых значений. Мощность рассеивания при этом будет в пределах 0,125-100 Вт, а сопротивление не превысит 10 мегаом.

Постоянные

Отличаются постоянные проводники наличием только двух выводов и постоянным сопротивлением. Поскольку этот вид предназначен только для уменьшения силы тока, то он отлично справляется со своей задачей в различных электрических приборах. Постоянные элементы делятся на общего и специального назначения.

Переменные

Переменные имеют три вывода, а на схеме можно увидеть пограничные значения рабочего режима. Поменять сопротивление поможет бегунок, который движется по резистивному слою. Во время движения сопротивление падает между средним и одним из боковых выводов, соответственно в другой стороне увеличивается. Переменные резисторы делятся на подстроечные и регулировочные.

Классификация резисторов

Резисторы отличаются не только возможностью регулировать сопротивление. Они могут изготавливаться из разных резистивных материалов, иметь различное количество контактов и иметь другие особенности.

По типу резистивного материала

Элементы могут быть проволочными, непроволочными или металлофольговыми. Высокоомная проволока является признаком проволочного элемента, для ее изготовления используют такие сплавы, как нихром, константан или никелин. Пленки с повышенным удельным сопротивлением являются основой непроволочных элементов. В металлофольговых используется специальная фольга. Теперь выясним из чего состоят резисторы.

konstrukcia-rezistorovКонструкция полупроводника

Непроволочные делятся на тонкослойные и композиционные, толщина первых измеряется в нанометрах, а вторых – в долях миллиметра. Тонкослойные делятся на:

  • металлоокисные;
  • металлизированные;
  • бороуглеродистые;
  • металлодиэлектрические;
  • углеродистые.

Композиционные в свою очередь подразделяются на объемные и пленочные. Последние могут быть с органическим или неорганическим диэлектриком. Чтобы понять есть ли полярность у резистора следует знать, что стороны у них идентичны.

По назначению сопротивления

Постоянные и переменные полупроводники также имеют некоторые различия в характеристиках. Постоянные делятся на проводники общего и специального назначения. Последние могут быть:

  • высокочастотными;
  • высоковольтными;
  • высокомегаомными;
  • прецизионными.

Такие детали используются в точных измерительных приборах, они выделяются особой стабильностью.

Переменные резисторы можно разделить на подстроечные и регулировочные. Последние могут быть с линейной или нелинейной функциональной характеристикой.

По количеству контактов

В зависимости от назначения резистора у него может быть один, два и более контактов. Сами контакты также отличаются, например, у SMD-резисторов это контактная площадка, у проволочных – особого состава проволока. Есть резисторы металлопленочные, с квантовыми точечными контактами, а в переменных они подвижные.

rezistorРазное количество контактов на элементах

Другие

Отличаются резисторы формой и типом сопротивления, а также характером зависимости величины сопротивления от напряжения. Описание зависимости величины может быть линейной или нелинейной. Использование элемента простое, емкость указывается на корпусе, минус и плюс не отличаются.

Резисторы могут быть защищены от влаги или нет, корпус может быть лакированным, вакуумным, герметичным, впрессованным в пластик или компаундированным. Нелинейные подразделяются на:

  • варисторы;
  • магниторезисторы;
  • фоторезисторы;
  • позисторы;
  • тензорезисторы;
  • терморезисторы.

Все они выполняют свою определенную функцию, одни меняют сопротивление от температуры, другие от напряжения, третьи от лучистой энергии.

Основные характеристики и параметры резисторов

Характерны для полупроводников такие параметры, как номинальное значение сопротивления, его допустимое отклонение. Мощность рассеяния также определяется номинальным и допустимым значениями. Элементы различны по максимальному рабочему напряжению и коэффициентом температуры сопротивления, а также шумами.

Виды соединения резисторов

Различают три типа соединения резисторов:

  • параллельное;
  • последовательное;
  • смешанное.

Для последовательного соединения конец одного резистора нужно паять с началом другого и далее по цепочке. Так компоненты соединяются друг за другом и пропускают общий ток, проводник нужно правильно припаять. Количество таким образом соединенных проводников будет влиять на протекающий ток и оказывать общее сопротивление.

Параллельное соединение элементов отличается тем. Что все они сходятся в одной общей точке в начале и в другой точке в конце. В этом случае через каждый элемент течет свой ток, а значит сопротивление снижается. Смешанное соединение объединяет в себе оба предыдущих варианта, а расчет итогового сопротивления подсчитывают разбив схему на простые участки.

Какими могут быть номиналы резисторов

Номиналы резисторов четко определены и имеют показатели от нуля и до десяти. При этом всегда учитывается допустимое отклонение, а потому производители выпускают элементы с определенным шагом. Шагами при 10% отклонения будут: 100, 120, 150, 180, 220 и далее по схеме. Полупроводники отличаются разновидностью сборки, своими свойствами.

Как маркируются резисторы

В основном для таких элементов используется цветовая маркировка, но SMD-резисторы имеют буквенную. Цветовая включает от 4 до 6 полос, несущих определенную информацию. Две первые цифры покажут номинальное сопротивление, а третья число, на которое умножаются первые два, в результате получается величина сопротивления. Четвертая говорит о точности проводника. Если полос больше, то меняется только первый показатель на одну цифру.

cveta-rezistorovЦветовое обозначение на элементах

Внимание! Первой полосой считается та, которая ближе других расположена к краю элемента.

Чем отличается резистор от реостата, транзистора

Реостат является электрическим аппаратом. Который способен регулировать ток и напряжение в электрической цепи. В общем это аналог переменного резистора. Он включает проводящий элемент и регулятор сопротивления. Влиять на изменение показателя можно плавно, а при желании это можно сделать ступенчато. В стандартизации реостатом называют резисторы переменные, регулировочные и подстроечные.

Транзистор является прибором для управления электрическим током. По сути он усиливает ток и может им управлять, а проводник регулирует сопротивление в сети. Внешне два элемента значительно отличаются друг от друга. Резистор имеет цилиндрическую форму и цветную окраску, а транзистор облачен в пластиковый или металлический квадратный корпус.

Важно! Резистор способен работать при любом токе, а транзистор только при постоянном.

Выводы: проводники имеют одинаковую функциональность, а у транзистора разную. Также транзистор – это полярный элемент, а резистор – неполярный. По этой причине перепутать два элемента можно только в том случае, если человек совершенно далек от электротехники и радиоэлектроники.

Резистор необходимый элемент во всех микросхемах современных электроприборах. Оказывая сопротивление в цепи, полупроводник делит или уменьшает напряжение, благодаря чему, различные приборы могут работать от сети. Сопротивление тока измеряется в Омах, а грамотный подбор полупроводника обеспечит продолжительную работу любого электроприбора. Так мы выяснили, что такое резистор и для чего он нужен, чем отличается от реостата и транзистора и как обозначается на схемах.

последовательное и параллельное соединение, токоограничивающие и подтягивающие сопротивления [Амперка / Вики]

Резистор (сопротивление) — один из наиболее распространённых компонентов в электронике. Его назначение — простое: сопротивляться течению тока, преобразовывая его часть в тепло.

Основной характеристикой резистора является сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.

Закон Ома

Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I, напряжение U, сопротивление R, если известны две остальные:

Для обозначения напряжения наряду с символом U используется V.

Рассмотрим простую цепь

Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1. Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.

Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.

В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал — 240 или 220 Ом.

Аналогично, мы могли бы расчитать требуемое напряжение, если бы оно было не известно, а на руках были значения сопротивления и желаемая сила тока.

Соединение резисторов

При последовательном соединении резисторов, их сопротивление суммируется:

При параллельном соединении, итоговое сопротивление расчитывается по формуле:

Если резистора всего два, то:

В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.

Таким образом можно получать новые номиналы из имеющихся в наличии.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

  1. Токоограничивающий резистор (current-limiting resistor)

  2. Стягивающий, подтягивающий резистор (pull-down / pull-up resistor)

  3. Делитель напряжения (voltage divider)

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

Мощность резисторов

Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:

При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!

Как проверить резистор мультиметром на исправность, как прозвонить резистор?

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

Особенности измерения сопротивления резистора мультиметром

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Как проверить резистор тестером

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Как проверить резистор тестером

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Как прозвонить резистор

Режим прозвонки

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

Код Значение Код Значение Код Значение Код Значение Код Значение Код Значение
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634437964995953
161433221048309644538066596976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверить сопротивление резистора

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Как проверить сопротивление переменного резистора

Переменный резистор

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

  • Мультиметр включают в режим измерения.
  • Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
  • Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.

Видео: как проверить резистор мультиметром


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Как проверить сопротивление переменного резистора

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Простая и быстрая проверка резистора мультиметром

Рубрика: Статьи обо всем, Статьи про радиодетали, Электрические измерения Опубликовано 01.03.2020   ·   Комментарии: 0   ·   На чтение: 3 мин   ·   Просмотры:

Post Views: 828

Проверить номинал резистора можно с помощью измерения сопротивления (омметр).

В разъем COM вставляется черный щуп, а в VΩ красный. VΩ — это измерение напряжения и сопротивления.

Переводим мультиметр в режим измерения сопротивления. Диодная прозвонка не поможет. Прозвонка измеряет только падение напряжения, но не сопротивление. Начинаем с малого значения в 200 Ом.

Единица обозначает две ситуации. Если у резистора сопротивление выше, чем выбранный предел, мультиметр покажет зашкаливающее значение. Так же единица обозначает, что прибор не видит радиодеталь или есть плохой контакт между щупами и деталью.

Точка на экране показывает предел измерения. Здесь выбран предел 20 кОм.

Мультиметр показывает 2,7 кОм. При измерениях нельзя касаться одновременно двух металлических оснований щупов. Ваше тело может шунтировать измеряемую деталь, и показания пробора будут ложными.

Неисправный резистор труднее всего диагностировать. Он может быть как пробитым (короткое замыкание) так и с обрывом. Проблема в том, что если вы не знаете маркировку или у вас нет схемы, определить неисправную деталь будет труднее.

Пробитый резистор мультиметр определит как с 0 сопротивлением. А в режиме диодной прозвонки, мультиметр начнет пищать. Однако, если реальное сопротивление резистора было 1 Ом, то прибор может пищать, а в режиме измерения сопротивления будет показывать погрешности.

Тоже самое с резисторами, чьи номиналы сопротивления выше, чем у измеряемого прибора. Можно его проверить и с помощью диодной прозвонки. При исправном резисторе диодная прозвонка не будет пищать, она покажет падение напряжения. Но и тут проблема.

Если сопротивление очень высоко, аккумулятора и измеряемых цепей мультиметра не хватит для таких высоких значений. И прибор покажет обрыв.

Если требуется проверить резистор на плате, лучше выпаивайте один контакт, иначе прибор будет показывать ложные значения. Другие радиодетали на плате будут шунтировать и вносить свои искажения при измерениях.

Чем заменить неисправный

Учитывайте цепь, в которой надо поменять деталь. Если SMD резистор, то подойдет только такой же +-5% от номинала. Если это DIP резистор, который стоит в блоке питания, то можно обойтись с большей погрешностью. Проблема в том, что некоторые схемы могут быть рассчитаны на большую погрешность, а схемы для точны приборов нет. SMD компоненты обладают меньшей емкостью и индуктивностью, чем DIP. И в тоже время, SMD не предназначены для высокой мощности.

Еще можно объединить разные резисторы в один нужный, для временного ремонта. Например, резистор мощностью 2 Вт и сопротивлением 10 кОм чернеет и перегревается. Чем можно его заменить? Можно соединить два резистора по 20 кОм 2 Вт параллельно, и получим эквивалентную мощность 4 Вт и сопротивление 10 кОм. А можно и последовательно соединить два по 5 кОм 2 Вт. И получится резистор 10 кОм 4 Вт.

Маркировка резисторов

Не нужно учить или зубрить маркировку. Она пригодится в тех ситуациях, когда на плате резистор сгорел или повредился, а данных о его сопротивлении нет.

DIP маркируются кольцами. У них есть множители и проценты погрешности.

SMD в виду своих габаритов маркируются цифрами.


Post Views: 828

Проверка сопротивления резистора при помощи мультиметра не выпаивая на плате

Автор Aluarius На чтение 7 мин. Просмотров 306 Опубликовано

Что такое резистор и его основные признаки работоспособности

Цифровые мультиметры имеют много полезных функций. Одна из вещей, на которую способны цифровые мультиметры – это тестирование компонентов. Эта статья покажет вам, как использовать цифровой мультиметр для тестирования резистора.

резисторы

Резисторы, как правило, представляют собой 2 клеммных компонента, основной целью которых является ограничение тока для других компонентов. Происходит падение напряжения между двумя клеммами и сопротивление можно рассчитать по закону Ома R = V / I; где R = сопротивление, V = напряжение и I = ток.

Виды встречающихся неисправностей

Чаще всего встречается такое:

  • ошибочная или неправильная маркировка резисторов
  • обрыв токоведущей поверхности резистора
  • отслоение металлического колпачка от поверхности резистивного слоя
  • обрыв цепи из-за чрезмерного температурного перегрева
  • окисление выводов резистора
  • короткое замыкание между выводами pезистоpа

Для того, чтобы диагностировать и предупредить их и используется мультиметр.

Проверка резистора на годность мультиметром

Рассмотрим такие вопросы как полярность резистора, как определить резистор на плате, как измерить его мультиметром, когда нужно подключать паяльник, как на замерения влияет переменный ток.

проверка резистора мультиметром

  1. Подключите щупы к цифровому мультиметру. Подключите черный зонд к порту com (common), а красный зонд – к порту, помеченному символом Ома, который выглядит как перевернутая подкова. Для тех из вас, кто помнит греческий, символом Ом является греческая буква Омега. Этот цифровой мультиметр имеет банановые гнезда для разъемов порта. Другие цифровые мультиметры могут иметь винтовые клеммы или разъемы BNC.
  2. Подсоедините зажимы типа «крокодил» к каждой клемме резистора. Наиболее распространенные резисторы имеют 4-х цветную полосу. Первые два цвета указывают значения, 3-я полоса указывает множитель, а 4-я полоса указывает % допуска значения резистора. Изображенный резистор красный (2), фиолетовый (7), оранжевый (х 1000) и золотой (5%). Этот резистор должен теоретически иметь значение 2700 Ом с допуском 5% от значения. Чем ниже значение допуска, тем лучше резистор.
  3. Установите для цифрового циферблата мультиметра значение Ом (Омега). Некоторые менее дорогие цифровые мультиметры имеют настройки Ом с множителями (х 100, х 1000 и т. Д.). Показанный цифровой мультиметр является автоматическим выбором диапазона, поэтому множитель будет отображаться на экране вместе с показаниями, которые и позволят померить данные.
  4. Возьмите показания цифрового мультиметра. Изображенный тест показывает значение 27,02 кОм. Следовательно, значение резистора составляет 2702 Ом. Это значение находится в пределах 5% отклонения от 2700 Ом. Резистор готов для вашего проекта.
  5. Возьмите показания цифрового мультиметра. Этот резистор имеет цветовой код зеленый, коричневый, золотой и поэтому должен иметь значение 510 Ом. Цифровой мультиметр показывает 509 Ом. Тест цифрового мультиметра показывает хороший резистор.

проверка-резистора мультиметром

Проверка сопротивления постоянного резистора

Одним из важных измерений, которое можно выполнить с помощью мультиметра, является измерение сопротивления. Мало того, что они могут быть сделаны для проверки точности резистора или проверки его правильной работы, но измерения сопротивления могут потребоваться и во многих других сценариях. Для должного качества мультиметр нужно правильно настроить. На самом деле есть много случаев, когда измерение сопротивления представляет большой интерес и важность. Во всех этих случаях мультиметр является идеальным испытательным оборудованием для измерения сопротивления, чтобы качественно выпаять плату.

Основы измерения сопротивления

Есть несколько простых шагов, необходимых для измерения сопротивления с помощью аналогового мультиметра:

  1. Выберите измеряемый элемент: это может быть что угодно, где необходимо измерить сопротивление, и оцените, каким может быть сопротивление.
  2. Вставьте щупы в необходимые гнезда. Часто у мультиметра будет несколько гнезд для щупов. Вставьте их или проверьте, что они уже находятся в правильных розетках. Как правило, они могут быть помечены как COM для общего, а другие, где знак омов виден. Обычно это сочетается с разъемом для измерения напряжения.
  3. Обнулить счетчик: счетчик должен быть обнулен, чтобы получилось всё правильно замерить. Это делается путем плотного размещения двух датчиков вместе, чтобы дать короткое замыкание, и затем настройкой контроля нуля, чтобы дать показания нулевого сопротивления (отклонение полной шкалы). Этот процесс необходимо повторить, если диапазон изменяется.
  4. Выполните измерение: с помощью мультиметра, готового к выполнению измерения, датчики можно наложить на предмет, который необходимо измерить. Диапазон может быть скорректирован при необходимости устранить неисправность.
  5. Выключите мультиметр для проверки исправности. После измерения сопротивления целесообразно повернуть функциональный переключатель на диапазон высокого напряжения. Таким образом, если мультиметр снова используется для другого типа считывания, то никакого повреждения не будет, если он будет случайно использован без выбора правильного диапазона и функции, но проверять все равно нужно.

Проверка переменного резистора

Первое, на что следует обратить внимание – это то, что сам счетчик реагирует на ток, протекающий через тестируемый компонент. Высокое сопротивление соответствует низкому току, и стрелка измерителя располагается на левой стороне циферблата, а низкое сопротивление соответствует большему току, и стрелка измерителя отклоняется больше, поэтому она появляется на правой стороне циферблата. Если все выполнить правильно, резистор будет легко прозваниваться.

Как прозвонить резистор, чтобы понять, что он исправный или неисправный.

Основная идея заключается в том, что мультиметр подает напряжение на два датчика, и это приведет к течению тока в элементе, для которого измеряется сопротивление. Измеряя сопротивление, можно определить сопротивление между двумя датчиками мультиметра или другого элемента испытательного оборудования.

Аналоговые мультиметры хороши при измерении сопротивления, хотя следует отметить несколько моментов, касающихся того, как это делается.

Как проверить резистор мультиметром, не выпаивая на плате

Измерение сопротивления с помощью цифрового мультиметра проще и быстрее, чем измерение сопротивления с помощью аналогового мультиметра, так как нет необходимости обнулять счетчик. Поскольку цифровой мультиметр дает прямое показание измерения сопротивления, также не существует эквивалента обратного показания, найденного на аналоговых мультиметрах.

Как проверить резистор

Проверка работоспособности резистора мультиметром:

  1. Выберите измеряемый элемент: это может быть что угодно, где необходимо измерить сопротивление, и оцените, каким может быть сопротивление.
  2. Вставьте щупы в необходимые гнезда. Часто цифровой мультиметр имеет несколько гнезд для щупов. Вставьте их или проверьте, что они уже находятся в правильных розетках. Как правило, они могут быть помечены как COM для общего, а другие, где знак омов виден. Обычно это сочетается с разъемом для измерения напряжения.
  3. Включите мультиметр
  4. Выберите необходимый диапазон. Требуется цифровой мультиметр и необходимый диапазон. Выбранный диапазон должен быть таким, чтобы можно было получить наилучшие показания. Обычно функциональный переключатель мультиметра помечается как максимальное значение сопротивления. Выберите тот, где оценочное значение сопротивления будет ниже, но близко к максимуму диапазона. Таким образом, можно сделать наиболее точное измерение сопротивления.

Не сложная схема для которой подойдет любой тестер. Цифровые мультиметры являются идеальными образцами испытательного оборудования для измерения сопротивления. Они относительно дешевы и они предлагают высокий уровень точности и общей производительности.

Как проверить резистор (сопротивление) с помощью мультиметра если он в килоомах

Как проверить резистор

Как и при любом измерении, при измерении сопротивления необходимо соблюдать некоторые меры предосторожности. Таким образом можно избежать повреждения мультиметра и сделать более точные измерения. Рассмотрим как проверить резистор, как узнавать его исправноть по внешним признакам, как узнать точные данные.

  • Не забудьте убедиться, что тестируемая цепь не включена. При некоторых обстоятельствах необходимо измерять значения сопротивления, действительные в цепи. При этом очень важно убедиться, что цепь не включена . Мало того, что ток, протекающий в цепи, сделает недействительными любые показания, но если напряжение будет достаточно высоким, то возникший ток может повредить мультиметр.
  • Убедитесь, что конденсаторы в тестируемой цепи разряжены. Любой ток, который течет в результате приведет их к изменению показаний счетчика. Кроме того, любые конденсаторы в цепи, которые разряжены, могут заряжаться в результате тока от мультиметра, и в результате может потребоваться короткое время для установления показаний.

Как измерить сопротивление, когда номинал неизвестен

Установка высшего порога при измерении сопротивления не так важно. В режиме омметра можно выбрать любой диапазон. Если прибор высветит “1”, что означает бесконечный заряд, порог нужно повысить, пока на экране не высветится нужный результат. Таким нехитрым способом наличие или отсутствие номинала и вовсе стает несущественным.

Аналоговые мультиметры являются идеальными образцами испытательного оборудования для измерения сопротивления. Они относительно дешевы и предлагают достаточно хороший уровень точности и общей производительности. Они обычно обеспечивают уровень точности, который более чем достаточен для большинства рабочих мест.

Резистор

и типы резисторов

Различные типы резисторов — фиксированные, переменные, линейные и нелинейные резисторы и приложения

Сопротивление:

Свойство вещества, которое препятствует прохождению электрического тока (или электричества). ) через него называется Сопротивление ИЛИ Сопротивление — это способность цепи, противодействующей току.

Слюда, стекло, резина, дерево и т. Д. — примеров резистивных материалов . Единица измерения сопротивления — ОМ (Ом) , где 1 Ом = 1 В / 1 А. который выводится из основного электрического закона Ома = V = IR.

Другие определения Ом «Ω» следующие;

Если между двумя концами проводника существует разность потенциалов в 1 вольт, а ток, протекающий через него, составляет 1 ампер, то сопротивление этого проводника будет 1 Ом (Ом). OR

Если через сопротивление протекает ток 1 ампер и генерируется энергия (в виде тепла) 1 джоуль в секунду (1 Вт), то измерение этого сопротивления составляет 1 Ом.

Ом — величина измерения сопротивления, которая производит один джоуль энергии (в виде тепла) за одну секунду, когда через него протекает ток в один ампер.

Сопротивление, обратное сопротивлению, называется проводимостью.

Резистор

Резистор — это компонент или устройство, конструкция которых имеет известное значение сопротивления. OR,

Те компоненты и устройства, которые специально разработаны для обеспечения определенного сопротивления и используются для противодействия или ограничения электрического тока, протекающего через них, называются резисторами.

Полезно знать : Сопротивление резистора зависит от его длины (l), удельного сопротивления (ρ) и площади его поперечного сечения (a), что также известно как закон сопротивления R = ρ (l / а) .

Символы IEEE и IEC для резисторов
Types of Resistors. IEEE & IEC symbols of Resistors Types of Resistors. IEEE & IEC symbols of Resistors Символы IEEE и IEC для различных типов резисторов.

Типы резисторов:

Резисторы доступны в различных размерах, формах и материалах. Мы обсудим все возможные типы резисторов один за другим подробно, с плюсами, минусами и применением, как показано ниже.

Resistors Types chart and Tree Resistors Types chart and Tree Таблица / дерево различных типов резисторов.

Есть два основных типа резисторов.

  • Линейные резисторы
  • Нелинейные резисторы
Линейные резисторы:

Те резисторы, значения которых меняются в зависимости от приложенного напряжения и температуры, называются линейными резисторами. Другими словами, резистор, значение тока которого прямо пропорционально приложенному напряжению, называется линейным резистором.

Как правило, существует два типа резисторов с линейными свойствами.

  • Постоянные резисторы
  • Переменные резисторы
Постоянные резисторы

Как видно из названия, постоянный резистор — это резистор, который имеет определенное значение, и мы не можем изменить значение постоянных резисторов.

Типы постоянных резисторов.

  • Резисторы из углеродного состава
  • Резисторы с проволочной обмоткой
  • Тонкопленочные резисторы
  • Толстопленочные резисторы
Резисторы из углеродного состава

Типичная постоянная смесь гранулированных резисторов изготавливается из или порошкообразный углерод или графит, изоляционный наполнитель или связующее на основе смолы.Соотношение изоляционного материала определяет фактическое сопротивление резистора. Изоляционный порошок (связующее) выполнен в виде стержней, и на обоих концах стержня есть две металлические заглушки.

На обоих концах резистора есть два проводящих провода для облегчения подключения в цепи посредством пайки. Пластиковое покрытие покрывает стержни с различными цветовыми кодами (напечатанными), которые обозначают значение сопротивления. Они доступны с сопротивлением от 1 до 25 мегаом и номинальной мощностью от Вт до 5 Вт.

Carbon Composition Resistors.Construction and Wattage Rating Carbon Composition Resistors.Construction and Wattage Rating Конструкция и номинальная мощность резисторов из углеродного состава.

Характеристика постоянных резисторов

Как правило, они очень дешевые и маленькие по размеру, следовательно, занимают меньше места. Они надежны и доступны с различными номинальными сопротивлениями и мощностью. Кроме того, постоянный резистор можно легко подключить к цепи и выдержать большее напряжение.

С другой стороны, они менее стабильны, что означает очень высокий температурный коэффициент. Кроме того, они создают небольшой шум по сравнению с резисторами других типов.

Резисторы с проволочной обмоткой

Резисторы с проволочной обмоткой изготавливают из изолирующего сердечника или стержня путем наматывания на резистивный провод. Проволока сопротивления обычно изготавливается из вольфрама, манганина, нихрома или никеля или никель-хромового сплава, а изолирующий сердечник изготавливается из фарфора, бакелита, прессованной бумаги или керамической глины.

Манганиновые резисторы с проволочной обмоткой очень дороги и используются с чувствительным испытательным оборудованием, например Мост Уитстона и т. Д. Они доступны в диапазоне от 2 Вт до 100 Вт и более.Сопротивление резисторов этих типов составляет от 1 Ом до 200 кОм или более, и их можно безопасно эксплуатировать при температуре до 350 ° C.

Кроме того, номинальная мощность резистора с проволочной обмоткой большой мощности составляет 500 Вт, а доступное значение сопротивления этих резисторов составляет 0,1 Ом — 100 кОм.

Wire wound Resistors Types and Construction Wire wound Resistors Types and Construction Конструкция резисторов с проволочной обмоткой

Преимущества и недостатки резисторов с проволочной обмоткой

Резисторы с проволочной обмоткой производят меньше шума, чем резисторы из углеродистой композиции.Их характеристики хорошо работают в условиях перегрузки. Они надежны и универсальны и могут использоваться с диапазоном частот постоянного тока и звука. Недостатком резисторов с проволочной обмоткой является то, что они дороги и не могут использоваться в высокочастотном оборудовании.

Применение резисторов с проволочной обмоткой

Резисторы с проволочной обмоткой используются там, где требуется высокая чувствительность, точное измерение и сбалансированный контроль тока, например как шунт с амперметром. Кроме того, резисторы с проволочной обмоткой обычно используются в устройствах и оборудовании с высокой номинальной мощностью, контрольно-измерительных приборах, отраслях промышленности и контрольно-измерительном оборудовании.

Тонкопленочные резисторы

В основном все тонкопленочные резисторы изготавливаются из керамического стержня с высокой сеткой и резистивного материала. Очень тонкий слой проводящего материала, нанесенный на изолирующий стержень, пластину или трубку из высококачественного керамического материала или стекла. Есть еще два типа тонкопленочных резисторов.

  • Углеродистые пленочные резисторы
  • Металлопленочные резисторы
Углеродистые пленочные резисторы

Углеродные пленочные резисторы содержат стержень или сердечник из изоляционного материала из высококачественного керамического материала, который называется подложкой.Очень тонкий резистивный углеродный слой или пленка, наложенная вокруг стержня. Эти типы резисторов широко используются в электронных схемах из-за незначительного шума, широкого рабочего диапазона и стабильности по сравнению с твердотельными углеродными резисторами.

Construction of Carbon Film Resistors & Its labels. Construction of Carbon Film Resistors & Its labels. Конструкция углеродных пленочных резисторов и их этикетки.
Металлопленочные резисторы

Металлопленочные резисторы аналогичны по конструкции углеродным пленочным резисторам, но главное отличие состоит в том, что они состоят из металла (или смеси оксидов металлов, никеля, хрома или смеси металлов и стекла, называемой металлом). глазурь, которая используется как резистивная пленка) вместо углерода.Металлопленочные резисторы очень малы, дешевы и надежны в эксплуатации. Их температурный коэффициент очень низкий (± 2 ppm / ° C) и используется там, где важны стабильность и низкий уровень шума.

Metal Film Resistor. Construction and name of internal parts. Metal Film Resistor. Construction and name of internal parts. Конструкция и внутренние части металлопленочного резистора. ,
Толстопленочные резисторы

Метод производства толстопленочных резисторов такой же, как и тонкопленочных резисторов, но разница в том, что вокруг толстая пленка вместо тонкой пленки или слоя резистивного материала.Вот почему их называют толстопленочными резисторами. Есть два дополнительных типа толстопленочных резисторов.

  • Металлооксидные резисторы
  • Керметопленочные резисторы
  • Плавкие резисторы
Металлооксидные резисторы

Путем окисления толстой пленки хлорида олова на нагреваемом простом стеклянном стержне (подложке) образуется метод изготовления металлооксидного резистора. Эти резисторы доступны в широком диапазоне сопротивлений с высокой температурной стабильностью.Кроме того, уровень рабочего шума очень низкий, и его можно использовать при высоких напряжениях.

Керметооксидные резисторы (сетевые резисторы)

Керметооксидные резисторы имеют внутреннюю поверхность на керамических изоляционных материалах. Затем на резистор наматывают пленку или слой из углеродного или металлического сплава, а затем закрепляют его в металлокерамике (которая известна как Cermet). Они имеют квадратную или прямоугольную форму, а выводы и контакты находятся под резисторами, что упрощает установку в печатные платы.Они обеспечивают стабильную работу при высоких температурах, поскольку их значения не меняются при изменении температуры.

cermet film resistor network construction cermet film resistor network construction Конструкция сети пленочного резистора из кермета
Плавкие резисторы

Эти типы резисторов аналогичны резисторам с проволочной обмоткой. Когда номинальная мощность цепи превышает указанное значение, этот резистор срабатывает, т.е. он размыкает или размыкает цепь. Вот почему они называются плавкими резисторами. Плавкие предохранители выполняют двойную работу: они ограничивают ток, а также могут использоваться в качестве предохранителя.

Они широко используются в телевизорах, усилителях и других дорогих электронных схемах. Обычно омическое сопротивление плавких резисторов составляет менее 10 Ом.

Переменные резисторы

Как видно из названия, те резисторы, значения которых можно изменить с помощью шкалы, ручки и винта или вручную подходящим способом. В этих типах резисторов есть скользящий рычаг, который соединен с валом, и значение сопротивления может быть изменено путем вращения рычага.Они используются в радиоприемнике для регулировки громкости и сопротивления регулировки тембра.

Ниже приведены другие типы переменных резисторов

  • Потенциометры
  • Реостаты
  • Подстроечные резисторы
Потенциометры

Потенциометр используется для управления уровнем с тремя выводами, который является напряжение в цепи. Сопротивление между двумя внешними клеммами постоянно, а третья клемма соединена с подвижным контактом (Wiper), который может изменяться.Величину сопротивления можно изменить, вращая стеклоочиститель, соединенный с валом управления.

Potentiometer Construction Potentiometer Construction Конструкция потенциометра

Таким образом, потенциометры можно использовать в качестве делителя напряжения, и эти резисторы называются резисторами переменного состава. Они доступны до 10 МОм.

Different Types of Potentiometers resistors Different Types of Potentiometers resistors Различные типы потенциометров
Реостаты

Реостаты представляют собой устройство с двумя или тремя выводами, которое используется для ограничения тока вручную или вручную.Реостаты также известны как резисторы с отводами или переменные резисторы с обмоткой .

Types of Rheostats resistor and construction of Screw Drive Rheostat Types of Rheostats resistor and construction of Screw Drive Rheostat Типы резисторов реостатов и конструкция реостата с винтовым приводом

Для изготовления реостатов они обматывают нихромовым сопротивлением керамический сердечник и затем собирают в защитную оболочку. Металлическая полоса обернута вокруг элемента резистора, и его можно использовать в качестве потенциометра или реостата (см. Примечание ниже для разницы между реостатом и потенциометром ).

Construction of Tapped Rheostat Resistor Construction of Tapped Rheostat Resistor Конструкция реостата с отводами

Переменные проволочные резисторы доступны в диапазоне от 1 до 150 Ом. Доступная номинальная мощность этих резисторов составляет от 3 до 200 Вт. В то время как наиболее часто используемые реостаты в зависимости от номинальной мощности составляют от 5 до 50 Вт.

Wirewound Rheostat Construction Wirewound Rheostat Construction Конструкция реостата с проволочной обмоткой

Полезно знать:

В чем главное отличие потенциометра от реостата?

В принципе, между потенциометром и реостатом нет разницы.Оба являются переменными резисторами. Основное различие заключается в использовании и работе схемы, то есть для какой цели мы используем этот переменный резистор?

Например, если мы подключим цепь между выводами резистивного элемента (где один вывод является общим концом резисторного элемента, а другой — скользящим контактом или стеклоочистителем) в качестве переменного резистора для управления током схемы, то это будут реостаты. ,

С другой стороны, если мы сделаем то же самое, что упомянуто выше, для управления уровнем напряжения, то этот переменный резистор будет называться потенциометром.Это оно.

Триммеры

Есть дополнительный винт с потенциометром или переменными резисторами для повышения эффективности и работы, они известны как триммеры. Величину сопротивления можно изменить, изменив положение винта на вращение с помощью небольшой отвертки.

Construction of Different Types of Trimmers. Trimmer potentiometer Resistor construction Construction of Different Types of Trimmers. Trimmer potentiometer Resistor construction Конструкция различных типов подстроечных резисторов и подстроечных потенциометров Резистор

Они изготовлены из углеродной композиции, углеродной пленки, металлокерамики и проволочных материалов и доступны в диапазоне от 50 Ом до 5 мегаом.Номинальная мощность потенциометров Trimmers составляет от 1/3 до Вт.

Нелинейные резисторы

Мы знаем, что нелинейные резисторы — это те резисторы, в которых ток, протекающий через них, не изменяется в соответствии с законом Ома, а изменяется с изменением температуры или приложенного напряжения.

Кроме того, если ток, протекающий через резистор, изменяется при изменении температуры тела, такие резисторы называются термистерами. Если ток, протекающий через резистор, изменяется в зависимости от приложенного напряжения, он называется варистором или VDR (резисторы, зависимые от напряжения).

Ниже приведены дополнительные типы нелинейных резисторов.

  • Термистры
  • Варистеры (VDR)
  • Фоторезистор или фотопроводящая ячейка или LDR
Термистры

Термистры — это двухконтактное устройство, которое очень чувствительно к температуре. Другими словами, термистеры — это тип переменного резистора, который замечает изменение температуры. Термистры изготавливаются из кобальта, никеля, стронция и оксидов металлов марганца.Сопротивление термистора обратно пропорционально температуре, т. Е. Сопротивление увеличивается при понижении температуры и наоборот.

Thermisters types & Construction Thermisters types & Construction Типы термисторов и их конструкция

Это означает, что термисторы имеют отрицательный температурный коэффициент (NTC), но есть также PTC (положительный температурный коэффициент), который изготовлен из полупроводниковых материалов на основе титаната бария, и их сопротивление увеличивается при повышении температуры. ,

Варистеры (VDR)

Варистеры — это резисторы, зависящие от напряжения (VDR), которые используются для устранения переходных процессов высокого напряжения.Другими словами, специальный тип переменных резисторов, используемых для защиты цепей от деструктивных скачков напряжения, называется варистерами.
Когда напряжение увеличивается (из-за освещения или неисправности линии) на подключенном чувствительном устройстве или системе, оно снижает уровень напряжения до безопасного уровня, т. Е. Меняет уровень напряжений.

Types of Varisters Resistors Types of Varisters Resistors Типы варистеров
Фоторезистор или фотопроводящая ячейка или LDR (светозависимые резисторы)

Фоторезистор или LDR (светозависимые резисторы) — это резистор, конечное значение сопротивления которого изменяется в зависимости от интенсивности света.Другими словами, те резисторы, значения сопротивления которых меняются при падающем на их поверхность свете, называются фоторезистором или фотопроводящей ячейкой или LDR (светозависимым резистором). Материал, который используется для изготовления таких резисторов, называется фотопроводниками, например сульфид кадмия, сульфид свинца и т.п. (электронно-дырочные пары) из-за световой энергии, которые уменьшают сопротивление полупроводникового материала (т.е.е. количество световой энергии обратно пропорционально материалу полупроводника). Это означает, что фоторезисторы имеют отрицательный температурный коэффициент.

Types of Photo cells, and LDR Types of Photo cells, and LDR Типы фотоэлементов и резисторы LDR
SMD (технология поверхностного монтажа)

Вы можете прочитать более подробную информацию о специальных резисторах, например, резисторе SMD с методами цветовой кодировки, которые мы уже обсуждали ранее.

Применение и применение фоторезисторов / фотопроводящих элементов или LDR

Эти типы резисторов используются в охранной сигнализации, открывателях дверей, детекторах пламени, детекторах дыма, световых счетчиках, схемах управления реле с активацией света, в промышленных и коммерческих автоматическое управление уличным освещением и фотографические устройства и оборудование.

Применение резисторов

Практически оба типа резисторов (постоянный и переменный) обычно используются для следующих целей.

Используются резисторы :

  • Для регулирования и ограничения тока
  • Для изменения электрической энергии в виде тепловой энергии
  • В качестве шунта в амперметрах
  • В качестве множителя в вольтметре
  • Для контроля температуры
  • Для управления напряжением или падением
  • В целях защиты e.грамм. Плавкие резисторы
  • В лабораториях
  • В бытовых электроприборах, таких как нагреватель, утюг, погружной стержень и т. Д.
  • Широко используется в электронной промышленности

Полезно знать : Характеристики различных типов резисторов одинаковы для обоих типов переменного тока и DC, но между сопротивлением AC DC есть разница.

Похожие сообщения:

.Значения стандартных резисторов

»Руководство по резисторам

Стандартные номиналы резисторов

В 1952 году IEC (Международная электротехническая комиссия) решила определить значения сопротивления и допусков в качестве нормы, чтобы упростить массовое производство резисторов. Они называются предпочтительными значениями или серией E, и они опубликованы в стандарте IEC 60063: 1963. Эти стандартные значения действительны также для других компонентов, таких как конденсаторы, катушки индуктивности и стабилитроны. Предпочтительные значения резисторов были установлены в 1952 году, но концепция геометрической серии была введена военным инженером Ренардом еще в 1870-х годах.

Стандартизация номиналов резисторов служит нескольким важным целям. Когда производители производят резисторы с разными значениями сопротивления, они оказываются примерно одинаковыми в логарифмической шкале. Это помогает поставщику ограничить количество различных ценностей, которые необходимо производить или хранить на складе. При использовании стандартных значений резисторы разных производителей совместимы для одной и той же конструкции, что благоприятно для инженера-электрика.

Помимо предпочтительных значений, существует множество других стандартов, относящихся к резисторам.Примером могут служить стандартные размеры резисторов или маркировка резисторов цветовыми кодами или цифровыми кодами. Номинальные мощности резисторов в норме не определены, поэтому часто отклоняются от вышеуказанной серии.

Предпочтительные значения или серия E

В качестве основы был разработан Е12. E12 означает, что каждое десятилетие (0,1-1, 1-10, 10-100 и т. Д.) Делится на 12 шагов. Размер каждого шага равен:

Можно также сказать, что каждое значение равно 21% или 1.В 21 раз выше, чем предыдущий, с округлением до целых чисел. Из-за этого все резисторы с допуском 10% перекрываются. Ряд выглядит следующим образом: 1–1,2 — 1,5 — 1,8 — 2,2 — 2,7 — 3,3 — 3,9 — 4,7 — 5,6 — 6,8 — 8,2 — 10 и т. Д. Все эти значения могут быть степенями десяти (1,2–12 — 120 и т. Д.).

Помимо серии E12 существуют другие серии. Если требования к допускам невысоки, рекомендуется указывать резисторы низкой серии. Самые распространенные серии:

  • E6 20%
  • E12 10%
  • E24 5% (также доступен с 1%)
  • E48 2%
  • E96 1%
  • E192 0.5% (также используется для резисторов с 0,25% и 0,1%).

Серия E6 (допуск 20%)

10 15 22 33 47 68

Серия E6 имеет шесть значений в каждой декаде. Допуск 20%.

Серия E12 (допуск 10%)

10 12 15 18 22 27
33 39 47 56 68 82

Серия E12, вероятно, является наиболее распространенной серией и существует почти для каждого резистора.Допуск составляет ± 10%.

Номиналы резисторов серии E12, включая их цветовую кодировку.

Серия E24 (допуск 5% и 1%)

10 11 12 13 15 16
18 20 22 24 27 30
33 36 39 43 47 51
56 62 68 75 82 91

Серия E48 (допуск 2%)

100 105 110 115 121 127
133 140 147 154 162 169
178 187 196 205 215 226
237 249 261 274 287 301
316 332 348 365 383 402
422 442 464 487 511 536
562 590 619 649 681 715
750 787 825 866 909 953

Каждая декада разделена на 48 значений.Добавляется третья значащая цифра (как для серий E96 и E192).

Серия E96 (допуск 1%)

100 102 105 107 110 113
115 118 121 124 127 130
133 137 140 143 147 150
154 158 162 165 169 174
178 182 187 191 196 200
205 210 215 221 226 232
237 243 249 255 261 267
274 280 287 294 301 309
316 324 332 340 348 357
365 374 383 392 402 412
422 432 442 453 464 475
487 499 511 523 536 549
562 576 590 604 619 634
649 665 681 698 715 732
750 768 787 806 825 845
866 887 909 931 953 976

Серия E192 (допуск 0.5%, 0,25% и 0,1%)

100 101 102 104 105 106 107 109 110 111 113 114
115 117 118 120 121 123 124 126 127 129 130 132
133 135 137 138 140 142 143 145 147 149 150 152
154 156 158 160 162 164 165 167 169 172 174 176
178 180 182 184 187 189 191 193 196 198 200 203
205 208 210 213 215 218 221 223 226 229 232 234
237 240 243 246 249 252 255 258 261 264 267 271
274 277 280 284 287 291 294 298 301 305 309 312
316 320 324 328 332 336 340 344 348 352 357 361
365 370 374 379 383 388 392 397 402 407 412 417
422 427 432 437 442 448 453 459 464 470 475 481
487 493 499 505 511 517 523 530 536 542 549 556
562 569 576 583 590 597 604 612 619 626 634 642
649 657 665 673 681 690 698 706 715 723 732 741
750 759 768 777 787 796 806 816 825 835 845 856
866 876 887 898 909 920 931 942 953 965 976 988
,Емкость резистора

»Руководство по резисторам

Что такое емкость резистора?

Емкость — это способность тела накапливать электрическую энергию в виде электрического заряда. Практические резисторы всегда демонстрируют емкость как паразитное свойство. В зависимости от области применения емкость резистора можно легко не учитывать, особенно в цепях постоянного тока. В некоторых приложениях, таких как демпфирующие резисторы, емкостный паразитный эффект на самом деле является желательным эффектом. С другой стороны, паразитная емкость резистора может быть существенным фактором в высокочастотных приложениях переменного тока, создавая нежелательный эффект.Причина этого в том, что сопротивление резистора увеличивается с частотой приложенного напряжения из-за увеличения его реактивного сопротивления. Чем выше частота, тем ниже импеданс, что означает, что резистор больше не может рассматриваться как постоянный элемент на высоких частотах и ​​становится частотно-зависимым элементом.

Конденсаторы и резисторы

Электрические нагрузки можно разделить на два типа: реальные (или резистивные) нагрузки и реактивные нагрузки. Реальные нагрузки используются для преобразования электроэнергии в тепло.Идеальный резистор — это чисто резистивная нагрузка, что означает, что вся электрическая мощность, подаваемая на резистор, рассеивается в виде тепла. С другой стороны, реактивные нагрузки преобразуют электрическую энергию в магнитное или электрическое поле и временно сохраняют ее перед тем, как вернуть ее остальной части цепи. Реактивные нагрузки могут быть индуктивными или емкостными. Индуктивная нагрузка хранит энергию в виде магнитного поля, а емкостная нагрузка хранит энергию в виде электрического поля.
Основное различие между идеальными резисторами и идеальными конденсаторами состоит в том, что резисторы рассеивают электрическую мощность в виде тепла, а конденсаторы преобразуют электрическую энергию в электрическое поле.Идеальные резисторы имеют нулевое реактивное сопротивление и, как следствие, их емкость также равна нулю. К сожалению, электрические устройства не идеальны на практике, и даже самые простые резисторы имеют небольшое паразитное емкостное реактивное сопротивление.

Паразитная емкость

Резисторы

используются, когда требуется чисто резистивная нагрузка, поэтому емкость часто является нежелательным побочным эффектом, и в этом контексте ее называют «паразитной емкостью». Все настоящие резисторы обладают паразитной емкостью в большей или меньшей степени, в зависимости от конструкции и конструкции резистора.Паразитные емкости в цепи переменного тока могут вызывать нежелательные связи между системными блоками или могут быть причиной задержки отклика схемы на высоких частотах. Существуют резисторы, разработанные специально для использования на высоких частотах, которые рекламируются как резисторы с малой емкостью, однако точные цифры для емкостей трудно найти в таблицах данных.

Расчет реактивного сопротивления и емкости

В цепях переменного тока электрический импеданс — это мера сопротивления, которое цепь представляет прохождению тока при приложении напряжения.Поскольку паразитная емкость подключена параллельно резистору (емкость шунтирует резистор), комплексное сопротивление такого резистора определяется формулой параллельного подключения:

Где Z — комплексный импеданс, R — сопротивление, X — реактивное сопротивление цепи, а j — мнимая единица. В этой статье предполагается, что паразитное реактивное сопротивление реального резистора чисто емкостное, поэтому реактивное сопротивление составляет:

Таким образом, комплексное сопротивление резистора с чисто емкостными паразитными эффектами составляет:

, где ω — угловая частота, а C — паразитная емкость резистора.
При дальнейшем анализе приведенных выше уравнений можно увидеть, что полный импеданс резистора с емкостными паразитными эффектами уменьшается с увеличением частоты напряжения. Это снижение обычно незначительно, но в некоторых приложениях может стать весьма значительным.

Емкости разных резисторов

Как упоминалось ранее, производители редко предоставляют типовые значения емкости для своих резисторов. Как правило, резисторы SMD (поверхностного монтажа) имеют гораздо более низкие паразитные характеристики, чем резисторы для сквозного монтажа.Объяснение заключается в том, что даже идеальные проводники в идеальных условиях обладают определенной способностью накапливать заряд. Металлические выводы, которые соединяют резистор с остальной частью схемы, являются примером таких проводников. Чем длиннее выводы, тем больше заряда может храниться и тем выше паразитная емкость. Таким образом, чем короче выводы, тем меньше паразитных эффектов можно увидеть в данном резисторе, поэтому резисторы SMD имеют меньше паразитных эффектов.
Если требуется низкая емкость, резистор должен быть как можно меньше и компактнее.Следует избегать использования резисторов с проволочной обмоткой, поскольку обмотки создают межкатушечную емкость, что делает их непригодными для использования на частотах выше 50 кГц. Резисторы угольного типа можно использовать на частотах до 1 МГц. С другой стороны, фольговые резисторы имеют превосходные характеристики для высокочастотного использования, с емкостью обычно менее 0,05 пФ, что позволяет им работать на частотах до 100 МГц.

Приложения, в которых играют роль паразитные эффекты

Паразитные эффекты наиболее заметны на высоких частотах.Например, резистор 1 кОм из металлической фольги на частоте 100 МГц фактически будет вести себя как резистор 1,001 кОм, если учесть все паразитные эффекты. Это пример хорошей частотной характеристики резистора.
Для сравнения, резистор с проволочной обмоткой можно использовать только до 50 кГц из-за как индуктивных, так и емкостных паразитных эффектов. Даже когда используются бифилярные (неиндуктивные) методы намотки, межкатушечная емкость ограничивает максимальную используемую частоту.
Некоторые приложения, которые особенно чувствительны к паразитным воздействиям: схемы высокочастотных усилителей, тактовые генераторы ГГц, микроволновые схемы и так далее.
Примером схемы, которая использует емкостный паразитный эффект, является демпферный резистор, используемый для защиты переключающих элементов (переключателей и тиристоров) от скачков напряжения, которые генерируются индуктивными нагрузками, такими как электродвигатели, во время отключения тока. Чаще всего их изготавливают в виде бифилярных резисторов с проволочной обмоткой для уменьшения индуктивности. Для демпфирующих приложений резисторы спроектированы так, что емкость включена последовательно с резистором, а не параллельно, как в случае со стандартными паразитными емкостями.

,Схема защиты от обратной полярности

с использованием диода ИЛИ МОП-транзистора с P-каналом

Батареи являются наиболее удобным источником питания для подачи напряжения на электронную схему. Есть много других способов питания электронных устройств, таких как адаптер, солнечная батарея и т. Д., Но наиболее распространенным источником питания постоянного тока является аккумулятор. Как правило, все устройства поставляются со схемой защиты от обратной полярности , но если у вас есть какое-либо устройство с батарейным питанием, которое не имеет защиты от обратной полярности, вы всегда должны быть осторожны при замене батареи, иначе она может взорвать устройство.

Итак, в этой ситуации Схема защиты обратной полярности будет полезным дополнением к схеме. Существует несколько простых методов защиты схемы от подключения с обратной полярностью, например, использование диода или диодного моста или использование полевого МОП-транзистора с каналом P в качестве переключателя на ВЫСОКОЙ стороне.

Защита от обратной полярности с помощью диода

Использование диода — самый простой и дешевый метод защиты от обратной полярности, но он имеет проблему утечки мощности .Когда входное напряжение питания высокое, небольшое падение напряжения может не иметь значения, особенно при низком токе. Но в случае низковольтной операционной системы недопустимо даже небольшое падение напряжения.

Reverse Polarity Protection Using Diode

Как мы знаем, падение напряжения на диоде общего назначения составляет 0,7 В, поэтому мы можем ограничить это падение напряжения с помощью диода Шоттки, потому что его падение напряжения составляет от 0,3 до 0,4 В, и он также может выдерживать большие токовые нагрузки. Будьте осторожны при выборе диода Шоттки, потому что многие диоды Шоттки имеют высокую утечку обратного тока, поэтому убедитесь, что вы выберете диод с низким обратным током (менее 100 мкА).

При 4 А потери мощности на диоде Шоттки в цепи будут:

4 x 0,4 Вт = 1,6 Вт

А в обычном диоде:

4 x 0,7 = 2,8 Вт.

Вы даже можете использовать мостовой выпрямитель для защиты от обратной полярности, независимо от полярности. Но мостовой выпрямитель состоит из четырех диодов, поэтому количество потерь энергии будет вдвое больше, чем в приведенной выше схеме с одним диодом.

Reverse Polarity Protection Using Full Bridge Rectifier

Защита от обратной полярности с использованием P-канального MOSFET

Использование полевого МОП-транзистора с каналом P для защиты от обратной полярности более надежно, чем другие методы, из-за низкого падения напряжения и высоких токов.Схема состоит из P-канального МОП-транзистора, стабилитрона и понижающего резистора. Если напряжение питания меньше, чем напряжение затвор-исток (Vgs) P-канального MOSFET, вам понадобится только MOSFET без диода или резистора. Вам просто нужно подключить вывод затвора полевого МОП-транзистора к земле.

Теперь, если напряжение питания больше, чем Vgs, вам нужно понизить напряжение между выводом затвора и истоком. Компоненты, необходимые для изготовления аппаратной части схемы, упомянуты ниже.

Необходимые материалы

  • FQP47P06 МОП-транзистор с P-каналом
  • Резистор (100кОм)
  • Стабилитрон 9,1 В
  • Макет
  • Соединительные провода

Принципиальная схема

Reverse Polarity Protection Circuit Diagram Using P-Channel MOSFET

Работа схемы защиты от обратной полярности с использованием P-канального полевого МОП-транзистора

Теперь, когда вы подключаете батарею в соответствии с принципиальной схемой, с правильной полярностью, это вызывает включение транзистора и пропускание тока через него.Если батарея подключена в обратном направлении или с обратной полярностью, то транзистор выключается, и ваша схема становится защищенной.

Эта схема защиты более эффективна, чем другие. Давайте проанализируем схему , когда батарея подключена правильно. , МОП-транзистор с P-каналом включится, потому что напряжение между затвором и истоком отрицательное. Формула для определения напряжения между затвором и истоком:

  Vgs = (Vg - Vs)  

Когда батарея подключена неправильно , напряжение на выводе затвора будет положительным, и мы знаем, что P-Channel MOSFET включается только тогда, когда напряжение на выводе затвора отрицательное (минимум -2.0 В для этого полевого МОП-транзистора или меньше). Таким образом, всякий раз, когда батарея подключается в обратном направлении, цепь будет защищена полевым МОП-транзистором.

Теперь давайте поговорим о потере мощности в схеме , когда транзистор включен, сопротивление между стоком и истоком почти ничтожно, но для большей точности вы можете просмотреть данные P-Channel MOSFET. Для P-канального МОП-транзистора FQP47P06 статическое сопротивление сток-исток во включенном состоянии (R DS (ON) ) составляет 0,026 Ом (макс.).Итак, мы можем рассчитать потери мощности в цепи, как показано ниже:

  Потери мощности = I  2  R  

Предположим, ток, протекающий через транзистор, составляет 1 А. Значит потеря мощности будет

  Потери мощности = I  2  R = (1A)  2  * 0,026 Ом = 0,026 Вт  

Следовательно, потери мощности примерно в 27 раз меньше, чем в схеме с одним диодом. Вот почему использование P-канального MOSFET для защиты от обратной полярности намного лучше, чем другие методы.Он немного дороже диода, но делает схему защиты более безопасной и эффективной.

Мы также использовали в схеме стабилитрон и резистор для защиты от превышения напряжения затвор-исток. Добавив резистор и стабилитрон на 9,1 В, мы можем ограничить напряжение затвор-исток максимум до отрицательного значения 9,1 В, следовательно, транзистор останется безопасным.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о