Резисторы обозначение: Калькулятор цветовой маркировки резисторов

Содержание

Гост 2.728-74 ескд. обозначения условные графические в схемах. резисторы, конденсаторы

Где и для чего применяется

Мы уже рассмотрели, что резистор предназначен для ограничения тока в цепи, теперь мы рассмотрим несколько практических примеров, где используется резистор в электротехнике.

Первая область применения — ограничение тока, например, для питания светодиодов. Принцип действия и расчета такой цепи заключается в том, что из напряжения источника питания вычитают номинальное рабочее напряжение светодиода, сумму делят на номинальный (или желаемый) ток через светодиод. В результате вы получаете номинал ограничительного сопротивления.

Rогр=(Uпитания-U­требуемое)/Iноминальный

Второе — это делитель напряжения. Здесь выходное напряжение рассчитывают по формуле:

Uвых=Uвх(R2/R1+R2)

Также резистор нашел применение для задания тока транзисторам. В сущности, та же схема ограничителя, рассмотренная выше.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Мы рассмотрели, какие бывают резисторы, их назначение и принцип работы. Это важный элемент, с которого следует начать изучение электротехники. Для расчетов цепей с ним используют закон Ома и активной мощности, а в высокочастотных цепях учитывают и реактивные параметры – паразитную ёмкость и индуктивность.

Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

  • Как зависит сопротивление проводника от температуры
  • Маркировка резисторов по мощности и сопротивлению
  • Как выпаивать радиодетали из плат

Разновидности резисторов

Сегодня существует большое количество резисторов, которые встречаются в современных бытовых электроприборах. Можно выделить следующие виды:

  • Резистор металлический лакированный теплостойкий. Его можно встретить в ламповых приборах, которые имеют мощность не меньше чем 0,5 ватта. В советской аппаратуре можно отыскать такие резисторы, которые выпускали в начале 80-х годов. Они имеют разную мощность, которая напрямую зависит от размеров и габаритов радиоаппаратуры. Когда на схемах нет условного обозначения мощности, тогда разрешается использовать переменный резистор в 0,125 ватта.
  • Водостойкие резисторы. В большинстве случаев их находят в ламповых электроприборах, которые производились в 1960 году.
    В черно-белом телевизоре и радиолах обязательно встречаются эти элементы. Их маркировка очень похожа на обозначение металлических резисторов. В зависимости от номинальной мощности они могут иметь разные размеры и габариты.

Сегодня широко используется общепринятая маркировка резисторов, которые разделены на разные цвета. Таким образом, можно быстро и легко определить номинал без использования пайки схемы. Благодаря цветовой маркировке можно значительно ускорить поиск необходимого резистора. Сейчас производством таких элементов для микросхем занимается большое количество зарубежных и отечественных фирм.

Сборка регулятора

Головка регулировочного винта многооборотника и конусная часть штока обрабатываются активным флюсом и слегка (именно слегка) залуживаются, то же самое делается с отверстиями втулки. Затем втулка нагревается до температуры плавления олова и устанавливается на головку регулировочного винта многооборотного подстроечного резистора. Олово остывает и прочно фиксирует втулку по месту. Затем нагревается шток и так же вставляется во втулку. Данное соединение с первой попытки получается достаточно прочным и абсолютно соосным, то есть при вращении отсутствует биение, которое может постепенно привести к разрушению конструкции.

В корпусе делается пропил по ширине корпуса многооборотника на глубину, при которой соединительная втулка упрётся в дно. Многооборотник с удлинённым штоком вставляем в корпус. Никакой дополнительной фиксации даже в виде клея здесь не требуется. А вот со стороны штока можно (но не обязательно) установить, ранее снятый с этого места, шайбу — фиксатор. И запаять её.

Что такое сопротивление

Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.

Для ответа на этот вопрос поможет сантехническая аналогия. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.

Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.

В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.

Резистор с переменным сопротивлением.

Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока, измеряемую в амперах. Сопротивление, которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов, измеряемое в омах.

Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала, из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.

Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.

Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить, сравнив с медью, у которой удельное сопротивление 0,0175Ом*мм².

При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.

Переменное сопротивление – назначение

Переменные сопротивления главным образом применяются для регулировки громкости в различной бытовой и профессиональной радиоаппаратуре.  Можно сказать, что они предназначены для плавного изменения напряжения или тока в различных электросхемах посредством изменения собственного сопротивления. Например, с их помощью можно плавно регулировать яркость свечения электрической лампочки.

Резистор в цепи

На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка “зигзаг” с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.

Мощность может обозначаться полосками на прямоугольнике:

  • 2 Вт — 2 вертикальные черты;
  • 1 Вт — 1 вертикальная черта;
  • 0,5 Вт — 1 продольная линия;
  • 0,25 Вт — одна косая линия;
  • 0,125 Вт — две косые линии.

Допустимо указание мощности на схеме римскими цифрами.

Обозначение переменных резисторов отличается наличием дополнительной над прямоугольником линии со стрелкой, символизирующей возможность регулировки, цифрами может быть указана нумерация выводов.

Полупроводниковые резисторы обозначаются тем же белым прямоугольником, но перечеркнутым косой линией (кроме фоторезисторов) с буквенным указанием типа управляющего воздействия (U — для варистора, P — для тензорезистора, t — для терморезистора). Фоторезистор обозначается прямоугольником в круге, к которому направлены две стрелки, символизирующие свет.

Параметры резистора не зависят от частоты протекающего тока, это означает, что данный элемент одинаково функционирует в цепях постоянного и переменного тока (как низкой, так и высокой частоты). Исключением являются проволочные резисторы, которым свойственна индуктивность и возможность потери энергии вследствие излучения на высоких и сверхвысоких частотах.

В зависимости от требований к свойствам электрической цепи резисторы могут соединяться параллельно и последовательно. Формулы для расчета общего сопротивления при разном соединении цепей существенно отличаются. При последовательном соединении итоговое сопротивление равно простой сумме значений входящих в цепь элементов: R = R1 + R2 +… + Rn.

При параллельном соединении для вычисления суммарного сопротивления необходимо сложить величины, обратные значениям элементов. При этом получится значение, также обратное итоговому: 1/R = 1/R1+ 1/R2 + … 1/Rn.

Общее сопротивление параллельно соединенных резисторов будет ниже наименьшего из них.

Watch this video on YouTube

Устройство

Существует большое количество всевозможных конструкций переменных и подстроечных резисторов мощностью от десятков ватт до нескольких милливатт. Некоторые из них приведены ниже на фото.

Подстроечные резисторы имеют почти одинаковое устройство с переменными. Они состоят из подвижной и неподвижной частей, помещённых в общий корпус. Неподвижная часть представляет из себя пластинку из изоляционной подложки, на которую нанесён по незамкнутому кругу токопроводящий слой. Концы этого слоя выведены на два контакта.

Подвижная часть выполняет роль токосъёмного пружинящего контакта, закрепленного на оси. Таким образом обеспечивается надежная связь с токопроводящим слоем.

Немного другое устройство имеет резистор подстроечный многооборотный. У него проводящий слой нанесён на прямой стержень, а токосъёмный контакт перемещается параллельно ему на винтовом стержне.

Эти два метода изменения сопротивления применяются во всех типах подстроечных резисторов.

Виды резисторов

В настоящее время существует несколько видов резисторов. Вот некоторые из них:

  • Резисторы для поверхностного монтажа ()
  • Переменные резисторы
  • Специальные резисторы

Этот вид резисторов различаются по внешности и размера. Проволочные резисторы, как правило, изготавливают из длинного провода на основе сплавов, обычно хрома, никеля или сплава медно-никель-марганца. Этот вид резистора, пожалуй, один из самых старых видов. Проволочные резисторы имеют превосходные свойства, такие как высокие показатели мощности и низкие значения сопротивления. В процессе эксплуатации эти резисторы могут сильно нагреваться, и по этой причине их зачастую помещают в металлический ребристый корпус для лучшего охлаждения.

Металлопленочные резисторы изготавливаются из оксида металла или в виде небольших керамических стержней с нанесением на них тонкого слоя металла.

Они похожи на углеродно-пленочные резисторы и их сопротивление регулируется за счет толщины слоя покрытия. Характерными свойствами металлопленочных резисторов можно считать их надежность, точность и стабильность. Эти резисторы могут быть изготовлены в широком диапазоне сопротивлений (от нескольких Ом до МОм). наносится на корпус в буквенно-цифровом виде или в виде .

Маркировка

Размер резистивного элемента напрямую связан с его мощностью рассеивания, чем она выше, тем крупнее габариты детали. Если на схемах легко указать любое численное значение, то маркировка изделий бывает затруднена. Тенденция миниатюризации в производстве электроники вызывает необходимость использования элементов все меньших размеров, что повышает сложность как нанесения информации на корпус, так и ее прочтения.

Для облегчения идентификации резисторов в российской промышленности применяют буквенно-цифровую маркировку. Сопротивление обозначается так: цифрами указывают номинал, а букву ставят либо за цифрами (в случае десятичных значений), либо перед ними (для сотен). Если номинал менее 999 Ом, то число наносится без буквы (или могут стоять буквы R либо Е). Если же значение указано в кОм, то за числом ставится буква К, букве М соответствует значение в МОм.

Номиналы американских резисторов обозначаются тремя цифрами. Первые две из них предполагают номинал, третья — количество нулей (десятков), добавляемых к значению.

При роботизированном производстве электронных узлов нанесенные символы нередко оказываются на той стороне детали, которая обращена к плате, это делает прочтение информации невозможным.

Конструктивное исполнение

В промышленности распространены проволочные потенциометрические датчики перемещения. Они обладают высокой точностью и стабильностью, имеют малые величины температурного и переходного сопротивлений и низкий уровень шумов. К недостаткам относятся: небольшая величина сопротивления, малая разрешающая способность, износ подвижных частей и ограниченность применения при работе на переменном токе.

Устройства состоят из трех основных элементов:

  1. Каркас. Изготовлен из теплопроводного изоляционного материала или металла с диэлектрическим покрытием, не меняющий геометрические размеры при нагревании. Форма может быть в виде кольца, изогнутой пластины, стержня.
  2. Изолированная обмотка. Выполняется с точной укладкой провода, от шага которой зависит разрешающая способность прибора.
  3. Подвижная щетка. В местах ее соприкосновения с обмоткой витки очищены от изоляции. Подвижный контакт в устройствах может перемещаться поступательно или вращательно. В последнем случае устройства могут быть одно- или многооборотного исполнения.

Конструкция и принцип действия

Конструкция переменного непроволочного резистора показана на рисунке. На изоляционное основание 1 нанесен проводящий слой 2. Сверху нанесен защитный слой 3. По защитному слою перемещается контактный узел 4. Концы проводящего слоя снабжены токосъемными площадками 5.

1 — изоляционное основание; 2 — проводящий слой; 3 — защитный слой; 4 — контактый узел; 5 — токосъемные площадки.

Один потенциометр может состоять из нескольких резистивных элементов и контактных узлов. Такие потенциометры называются — сдвоенные потенциометры (dual potentiometr). Данный вид нашел применение в аудиотехнике для регулирования громкости нескольких каналов.

У сдвоенных потенциометров один вал перемещает два независимых контактных узла.

В некоторых потенциометрах в начальном положении устанавливают концевой выключатель. Такие потенциометры оснащаются двумя дополнительными выводами.

Изменение сопротивления может осуществляться не только с помощью р

РадиоКот :: Новая деталь — резистор.

РадиоКот >Обучалка >Аналоговая техника >Основы электроники >

Новая деталь — резистор.

Резистор — это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так — сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода. Однако у всех остальных элементов сопротивление — это не главная характеристика, а так скажем — побочная. На самом деле, лампочка — светит, двигатель — вращается, диод — выпрямляет, транзистор — усиливает, а провод — проводит. А вот у резистора нет иной «профессии», кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако — это несколько из области нестандартных применений…

На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части — это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.

А на схеме его в любом случае обозначают только так:

Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление — 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это — резистор. (Для каждого вида деталей в схеме ведется свой счет.)

Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 — Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление — достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как — длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае — не отчаивайтесь — это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.

мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха — 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… «Миллиметр», «километр», «мегабайт», «гигабайт», «децибелл» — все эти слова образованы из слов «метр», «байт» и «Белл» при помощи кратных приставок: «милли-«, «кило-«, «Мега-«, «Гиго-«, «деци-«. -12) (триллионная)

Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но — редко. Итак:

1 кОм = 1000 Ом
1 МОм = 1000 кОм = 1 000 000 Ом

Несколько примеров:

1,5 кОм = 1,5*1000 = 1500 Ом
0,2 кОм = 0,2*1000 = 200 Ом
и т.д.

Теперь поехали лопатить обозначения на корпусе!


Маркировка — это условные обозначения, наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве — сопротивлении.

Существует несколько различных способов маркировки резисторов.

Пример: 1К5, 68К, М16, 20Е, К39 и т.д.

Расшифруем:
1К5 = 1,5 кОм
68К = 68 кОм
М16 = 0,16 МОм = 160 кОм
20Е = 20 (единиц) Ом
К39 = 0,39 кОм = 390 Ом

Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем — 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм


Пример: 152, 683, 164, 200, 391.

Расшифруем:
152 = 15 00 Ом = 1,5 кОм
683 = 68 000 Ом = 68 кОм
164 = 16 0000 Ом = 160 кОм
200 = 20 Ом
391 = 39 0 Ом.

Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры — это некоторое число. Последняя — количество нулей, дописываемых после этого числа. Проще некуда!


Не подходит для дальтоников и ленивых.
Идеалогия — как в предыдущем способе, но вместо цифр — цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):


Как читать?
Берем резистор с цветовой маркировкой. На корпусе — 4 полоски. Три находятся рядом, одна — чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее — см. предыдущий способ.

Пример:


Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора — сопротивление всегда можно померить измерительными приборами. О них мы еще поговорим.

<<—Вспомним пройденное—-Поехали дальше—>>


Как вам эта статья?

Заработало ли это устройство у вас?

Резисторы

Добавлено 6 октября 2020 в 13:15

Сохранить или поделиться

Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько постоянное, мы можем надежно контролировать в цепи любую из этих переменных, просто управляя двумя другими. Возможно, самой простой для управления переменной в любой цепи является ее сопротивление. Это управление сопротивлением можно реализовать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

Что такое резистор?

Специальные компоненты, называемые резисторами, созданы специально для создания точного количества сопротивления, добавляемого в схему. Обычно они изготавливаются из металлической проволоки или углерода и спроектированы так, чтобы поддерживать стабильное значение сопротивления в широком диапазоне условий окружающей среды. В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку в работающей схеме ими рассеивается электрическая энергия. Однако обычно резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

Условные обозначения и номиналы резисторов на схеме

Условное обозначение резистора на схеме согласно ГОСТу – прямоугольник размером 4 мм x 8 мм. В англоязычной литературе распространено обозначение резистора в виде пилообразной линии:

Рисунок 1 – Условное графическое обозначение резистора

Номиналы резисторов в омах обычно отображаются на схеме в виде чисел рядом с условным обозначением, а если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, таким как R1, R2, R3 и т.д. Как видите, обозначения резисторов могут быть показаны горизонтально или вертикально:

Рисунок 2 – Обозначение номиналов резисторов на схеме (резисторы 150 Ом и 25 Ом)

Ниже показано несколько примеров резисторов разных типов и размеров:

Рисунок 3 – Примеры резисторов

Также на схеме можно показать, что резистор имеет переменное, а не фиксированное сопротивление. Это может быть сделано с целью описания реального физического устройства, разработанного для обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто имеет нестабильное сопротивление:

Рисунок 4 – Условное графическое обозначение переменного резистора

Фактически, каждый раз, когда вы видите обозначение компонента с нарисованной по диагонали стрелкой, это означает, что этот компонент имеет переменное, а не фиксированное значение. Этот символ «модификатор» (диагональная стрелка) является стандартным дополнением к обозначению электронных компонентов.

Переменные резисторы

Переменные резисторы должны иметь какие-то физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать, чтобы изменять величину электрического сопротивления. На фотографии ниже показаны устройства, называемые потенциометрами, которые можно использовать как переменные резисторы:

Рисунок 5 – Потенциометр

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию по мере того, как электрические токи через них преодолевают «трение» их сопротивления, то резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждения. Естественно, эта номинальная мощность указывается в физических единицах измерения, «ватт». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше. Номинальная мощность любого резистора примерно пропорциональна его физическому размеру. Обратите внимание на первую фотографию резисторов, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная мощность. Также обратите внимание на то, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое не делает ничего, кроме сопротивления электрическому току, резисторы – чрезвычайно полезные устройства в схемах. Поскольку они просты и так часто используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и источноков питания.

Чем полезны резисторы?

Для практической иллюстрации полезности резисторов посмотрите фотографию ниже. Это изображение печатной платы: сборка, состоящая из изолирующих слоев стеклотекстолита и слоем проводящих медных дорожек, в которую можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой». Различные компоненты на этой печатной плате обозначены напечатанными метками. Резисторы обозначаются любой меткой, начинающейся с буквы «R».

Рисунок 6 – Пример резисторов на печатной плате

Эта конкретная печатная плата представляет собой дополнение к компьютеру, называемое «модемом», которое позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть, как минимум, дюжину резисторов (все с номинальной рассеиваемой мощностью 0,25 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами», или «чипами») также содержит свой собственный массив резисторов, необходимый для работы. На другом примере печатной платы показаны резисторы, упакованные в еще меньшие корпуса, называемые SMD («surface mount device», «устройство поверхностного монтажа»). Эта конкретная печатная плата является нижней стороной жесткого диска компьютера; и снова припаянные к ней резисторы обозначены метками, начинающимися с буквы «R»:

Рисунок 7 – Пример резисторов на печатной плате

На этой печатной плате более сотни резисторов поверхностного монтажа, и это количество, конечно, не включает резисторы, встроенные в черные «чипы». Эти две фотографии должны убедить любого, что резисторы (устройства, которые «просто» препятствуют прохождению электрического тока) – очень важные компоненты в области электроники!

«Нагрузка» на принципиальных схемах

На схемах символы резисторов иногда используются для иллюстрации обобщенного типа устройств, выполняющих что-то полезное с электрической энергией. Любое неконкретизированное электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схему с символом резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей какие-либо концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращением чего-то еще более практичного, чем резистор.

Анализ резисторных схем

Чтобы обобщить то, что мы узнали в этой статье, давайте проанализируем следующую схему, определив всё, что можем, исходя из предоставленной информации:

Рисунок 8 – Пример схемы

Всё, что нам здесь дано для начала, – это напряжение батареи (10 вольт) и сила тока в цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Вспоминая формулы закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных значений напряжения и силы тока:

\(R=\frac{E}{I} \qquad и \qquad P=IE\)

Подставляя известные значения напряжения (E) и силы тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

\(R = \frac{10 \ В}{2 \ А} = 5 \ Ом\)

\(P = (2 \ А)(10 \ В) = 20 \ Вт\)

Для заданных условий цепи (10 В и 2 А) сопротивление резистора должно быть 5 Ом. Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы использовать резистор с минимальной номинальной мощностью 20 Вт, иначе бы он перегрелся и вышел из строя.

Материалы, из которых изготавливаются резисторы

В мире можно найти резисторы, изготовленные из самых разных материалов, каждый из которых имеет свои свойства и определенные области применения. Большинство инженеров-электронщиков используют типы, указанные ниже.

Проволочные резисторы

Рисунок 9 – Проволочные резисторы

Проволочные резисторы изготавливаются путем наматывания по спирали проволоки с высоким сопротивлением вокруг непроводящего сердечника. Обычно они применяются там, где нужна высокая точность или большая мощность. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивная проволока из никель-хромового сплава, которая не подходит для приложений с частотами выше 50 кГц. Достоинствами проволочных резисторов являются низкий уровень шума и устойчивость к колебаниям температуры. Доступны резисторы со значениями сопротивления от 0,1 до 100 кОм и с точностью от 0,1% до 20%.

Металлопленочные резисторы

Рисунок 10 – Металлопленочные резисторы

Для металлопленочных резисторов обычно используют нитрид нихрома или тантала. Резистивный материал обычно составляет комбинация керамического материала и металла. Значение сопротивления изменяется путем вырезания с помощью лазера или абразива спирального рисунка в пленке, очень похожей на углеродную пленку. Металлопленочные резисторы обычно менее стабильны при изменениях температуры, чем проволочные резисторы, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

Рисунок 11 – Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлопленочных резисторов. Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. По этой причине металлооксидные пленочные резисторы используются в приложениях, требующих высокой износостойкости.

Фольговые резисторы

Рисунок 12 – Фольговые резисторы

Фольговый резистор, разработанный в 1960-х годах, по-прежнему остается одним из самых точных и стабильных типов резисторов, которые вы найдете, и которые используются в приложениях с высокими требованиями к точности. Резистивный элемент составляет тонкая объемная металлическая фольга, которая приклеена на керамическую подложку. Фольговые резисторы имеют очень низкий температурный коэффициент сопротивления (ТКС).

Углеродные композиционные резисторы

Рисунок 13 – Углеродные композиционные резисторы

До 1960-х годов углеродные композиционные резисторы были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Для резистивного элемента углеродных резисторов используется смесь мелких частиц углерода и непроводящего керамического материала. Резистивному веществу придают форму цилиндра и запекают. Величину сопротивления определяют размеры корпуса и соотношение углерода и керамики. Использование большего количества углерода в процессе означает более низкое сопротивление. Углеродные композиционные резисторы по-прежнему полезны для определенных приложений из-за своей способности выдерживать мощные импульсы, хорошим примером применения может быть источник питания.

Углеродные пленочные резисторы

Углеродные пленочные резисторы представляют собой тонкую углеродную пленку (разрезанную по спирали для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике. Такая конструкция позволяет получить более точное значение сопротивления, а также увеличивает величину сопротивления. Углеродные пленочные резисторы намного точнее, чем углеродные композиционные резисторы. В приложениях, требующих стабильности на высоких частотах, используются специальные углеродные пленочные резисторы.

Ключевые показатели эффективности (KPI)

Ключевые показатели эффективности резисторов для каждого материала можно найти ниже:

Ключевые показатели эффективности резисторов в зависимости от материала
ХарактеристикаМеталлопленочные резисторыТолстопленочные резисторыТонкопленочные резисторыУглеродные композиционные резисторыУглеродные пленочные резисторы
Диапазон рабочих температур, °C-55 … +125-55 … +130-55 … +155-40 … +105-55 … +155
Максимальный температурный коэффициент сопротивления100100151200250–1000
Максимальное напряжение, В250–350250200350–500350–500
Шум, мкВ на 1 В приложенного постоянного напряжения0,50,10,145
Сопротивление изоляции, кОм1010101010
Изменение сопротивления при пайке, %0,200,150,0220,50
Изменение сопротивления при воздействии высокой температуры и влажности, %0,5010,50153,5
Изменение сопротивления при длительном хранении, %0,100,100,0052
Изменение сопротивления при работе в течение 2000 часов при температуре 70°C, %110,03104

Резюме

  • Устройства, называемые резисторами, предназначены для обеспечения точного значения сопротивления в электрических цепях. Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (Вт).
  • Номинальное сопротивление резистора не может быть определено по его физическому размеру, хотя судя по размеру можно сказать о приблизительном значении номинальной мощности. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
  • Любое устройство, которое выполняет с помощью электроэнергии какую-либо полезную задачу, обычно называют нагрузкой. Иногда символ резисторов используется в схемах для обозначения неконкретизированной нагрузки, а не для реального резистора.

Оригинал статьи:

Теги

ОбучениеРассеиваемая мощностьРезисторСопротивлениеСхемотехникаТемпературный коэффициент сопротивления / ТКС

Сохранить или поделиться

Введение в электронику. Резисторы

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Резисторы

Резисторы делятся на постоянные, подстроечные и переменные (потенциометры).
Практически в каждой конструкции встречается постоянный резистор. Он представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода).

Резистор имеет сопротивление и используется для того, чтобы установить нужный ток в электрической цепи.

Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки) , можно получить ту или другую скорость потока води (электрический ток разной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем большее сопротивление тока. Поэтому эту деталь иногда просто называют сопротивлением.
Из постоянных ранее применялись резисторы типа МЛТ (металлизированный лакированный теплостойкий). Их корпуса были окрашены в красный или зеленый цвет. Сегодня радиомагазины чаще заполнены резисторами белового цвета с цветными полосами. И те, и другие Вы можете смело использовать в своих устройствах. Подстроечные резисторы предназначены для настройки аппаратуры, а резистор со сменным сопротивлением (переменный или потенциометр) применяют для регулировки, например, для установки громкости в усилителях.
Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах, килоомах и мегоомах, а мощность – в ваттах. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры. Внешний вид постоянных резисторов показан на Рис. 1. Там же показано условно-графическое обозначение резисторов на принципиальной схеме с указанием мощности. Чаще мощность указывают рядом с резистором или рассказывают об этом в описании схемы.

Для миниатюризации своих устройств некоторые используют ЧИП-компоненты, среди которых могут быть как резисторы, так и конденсаторы. На Рис. 1г показан внешний вид ЧИП-резистора. В зарубежной электронике он называется SMD (от Surface Mounted Device – прибор, монтируемый на поверхность). Другими словами ЧИП-компоненты – это безвыводные радиодетали для монтажа со стороны печатных проводников.
Номинальное значение сопротивления резистора указывается производителем на корпусе изделия. Там же наносится и ряд других его характеристик. Для маркировки резисторов используют специальные кодировки: буквенно-цифровую, цветовую и цифровую.
В буквенно-цифровой маркировке единицу сопротивления Ом сокращенно обозначают буквой Е или R, килоом – буквой К, мегоом – буквой М. Если номинальное сопротивление резистора выражают целым числом, то буквенное обозначение единицы измерения ставят после этого числа, например: ЗЗЕ (33 Ом), 47К (47 кОм), ЮМ (10 мОм) . Когда же сопротивление резистора выражают десятичной дробью меньшим за единицу, то буквенное обозначение единицы измерения размещают перед числом, например: К22 (220 Ом) , М47 (470 кОм) . Выражая сопротивление резистора целым числом с десятичной дробью, целое число ставят впереди буквы, а десятичная дробь – после буквы, которая символизирует единицу измерения (буква заменяет запятую после целого числа), например: 1Е5 (1,5 Ом), 2К2 (2,2 кОм), 1М5 (1,5 мОм). Кроме этого, на корпус резистора производители наносят и допустимую мощность. Например, МЛТ-1 обозначает резистор мощностью 1 Вт. Как Вы догадались, данная маркировка верна для отечественных резисторов. В зарубежной принято применять цвета и цифры.

Цветовую маркировку наносят на цилиндрическую поверхность резистора в виде  точек или колец-поясков. Маркировочные знаки располагают на резисторе слева направо в следующем порядке: первый знак – первая цифра; второй знак – вторая; третий – множитель. Эти знаки определяют номинальное сопротивление. Четвертый знак – допустимое отклонение сопротивления. Для резисторов с номинальным сопротивлением, выраженным тремя цифрами и множителем, цветовая маркировка состоит из пяти знаков (колец): первые три знака – три цифры номинала: четвертый знак – множитель, пятый – допустимое отклонение сопротивления (см. Рис. 2) . В связи с этим в Интернете появилось множество онлайн калькуляторов для определения сопротивления резисторов. Но, как по мне, проще узнать сопротивление резистора с помощью цифрового прибора – тестера. 
При цифровой маркировке величина сопротивления резистора наносится тремя цифрами, из которых две первые показывают ее мантиссу, а третья служит показателем степени 10 для дополнительного множителя. Например, 150 означает 15 Ом, 151 это 150 Ом, 152 – 1500 Ом и т.д. Соответственно, на резисторе с сопротивлением 15 МОм увидим в этом коде: 156. Цифровая маркировка применяется в основном в SMD-компонентах. В следующей таблице приведены примеры некоторых цифровых маркировок.


Ранее я упоминал о мощности резисторов. В отечественной электронике стандарты жестче не только к резисторам, но и к другим компонентам. Это явно демонстрирует Рис. 3. От сюда следует: если в описании схемы говорится об использовании, например, МЛТ-2, его необходимо заменять зарубежным резистором большей мощности. Иначе Ваше устройство долго не “протянет”.

В отличие от постоянных резисторов, которые имеют два вывода, у переменных резисторов таких выводов три. Потенциометры могут содержать и более трех выводов. Такие переменные резисторы обычно используются для компенсации частот в звуковой аппаратуре.


На схеме указывают сопротивление между крайними выводами сменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении оси резистора, которое выступает наружу. Причем, если ось возвращают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Если же ось возвращают назад, происходит обратное. Переменные резисторы, как и постоянные, могут быть разной мощности, что можно определить по их размерам. Особенно большой мощностью обладают проволочные резисторы, которые предназначены для работы в цепях постоянного и переменного токов. Внешний вид некоторых
переменных резисторов и их обозначение на принципиальной схеме представлены на Рис. 4.
Подобным образом работают и подстроечные резисторы, однако, они, как уже понятно из названия, служат для подстройки, а точнее для установки более точного сопротивления. После чего их больше не трогают. Внешний вид некоторых подстроечников и их обозначение на принципиальной схеме представлены на Рис.5.


Резисторы шумят! Различают собственные шумы и шумы скольжения. Собственные шумы резисторов складываются из тепловых и токовых шумов. Их возникновение связано с тепловым движением свободных электронов и прохождением электрического тока. Собственные шумы резисторов тем выше, чем больше температура и напряжение. Высокий уровень шумов резисторов ограничивает чувствительность электронных схем и создает помехи при воспроизведении полезного сигнала. Шумы скольжения (вращения) присущи переменным резисторам. Они возникают в динамическом режиме при движении подвижного контакта по резистивному элементу в виде напряжения помех. В приемных устройствах эти помехи приводят к различным шорохам и трескам. Поэтому в электронике стали использовать цифровую
регулировку. Теперь не часто в аппаратуре встретишь регулятор громкости, построенный на потенциометре.

Кроме указанных выше резисторов, существуют полупроводниковые нелинейные резисторы – изделия электронной техники, основное свойство которых заключается в способности изменять свое электрическое сопротивление под действием управляющих факторов: температуры, напряжения, магнитного поля и др. В зависимости от воздействующего фактора они получили название фоторезисторы, терморезисторы и варисторы. В последнее время их стали относить к управляемым полупроводниковым резисторам. Иными словами, это элементы, чувствительные к воздействию определенного управляющего фактора (см. Рис. 6).

Среди них – фоторезисторы, меняющие свое сопротивление в зависимости от степени освещенности. Чем интенсивней свет, тем больше создается свободных носителей зарядов и тем меньше становится сопротивление элемента. У фоторезисторов обязательно определен и диапазон температуры. Если использовать датчик при разных температурах, то следует обязательно ввести уточняющие преобразования , т.к. свойство сопротивления зависит от внешней температуры. В зависимости от назначения фоторезисторы имеют совершенно различное конструктивное оформление. Иногда это просто пластина полупроводника на стеклянном основании с токонесущими выводами, в других случаях фоторезистор имеет пластмассовый корпус с жесткими штырьками. Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину. Не обходятся без них и автоматические выключатели уличного освещения.
Терморезисторы, или термисторы – изменяют свое сопротивление в зависимости от температуры. Существуют терморезисторы как с отрицательным, так и с положительным температурным коэффициентом сопротивления – позисторы.
Терморезисторы используются в системах дистанционного и централизованного измерения и регулирования температур, противопожарной сигнализации, теплового контроля и защиты машин, измерения мощности, измерения вакуума, скоростей движения жидкостей и газов и др. Номинальное сопротивление RH – электрическое сопротивление, значение которого обозначено на терморезисторе или указано в нормативной документации, измеренное при определенной температуре окружающей среды (для большинства типов этих резисторов при 20 °С, а для терморезисторов с высокими рабочими температурами до 300 °С).
Отличительной особенностью варисторов является резко выраженная зависимость электрического сопротивления от приложенного к ним напряжения. Их используют
для стабилизации и защиты от перенапряжений, преобразования частоты и напряжения, а также для регулирования усиления в системах автоматики, различных измерительных устройствах, в телевизионных приемниках. Например, варистор часто используют в сетевых (на 220В) удлинителях. Подключив такую деталь параллельно розеткам удлинителя, разработчики не стесняются заявлять о множестве различных защит и фильтров.


Перейти к следующей статье: Конденсаторы



1 Классификация и системы условных обозначений

РАЗДЕЛ ПЕРВЫЙ. РЕЗИСТОРЫ.

§1. Классификация и системы условных обозначений.

1.1 Классификация

Все резисторы подразделяются на постоянные и переменные (рис 1.1). В свою очередь постоянные резисторы в зависимости от назначения подразделяются на 2 группы: общего и специального назначения.

Рис.1.1.

Рекомендуемые файлы

Резисторы общего назначения.

Используются в качестве различных нагрузок, поглотителей и делителей в цепях питания, элементов фильтров, шунтов, в цепях формирования импульсов и т.д.

Диапазон номинальных значений сопротивлений этих резисторов от 1Ом ¸ 10 МОм, номинальные мощности рассеяния 0,125Вт ¸ 100Вт.

Допускаемые отклонение сопротивления от номинального значения (±2; ±5; ±10; ±20)%.

Все остальные резисторы являются, вообще говоря, специальными, обладающими специфическими свойствами и параметрами. Их разделяют на прецизионные, высокочастотные, высокомегаомные и высоковольтные.

Прецизионные резисторы отличаются большой точностью изготовления (высокоточные). Допуск (±0,001 до 1)% и высокой стабильностью параметров при эксплуатации.

Применяются в основном в измерительных приборах, ЭВМ и системах автоматики.

Диапазон номинальных значений сопротивлений прецизионных резисторов превышает диапазон номинальных значений сопротивлений общего применения.

Например, в качестве шунтов используются резисторы с сопротивлением менее 1 Ом, а в эталонных катушках и магазинах сопротивлений применяют проволочные резисторы с допуском ±0,01% и номинальным значением сопротивлений до десятков Гига Ом, зато мощности рассеяния их сравнительно небольшие – не более 2 Вт. Объясняется это высокими требованиями по стабильности, которые трудно выполнить при больших мощностях рассеяния.

Высокочастотные резисторы отличаются малой собственной индуктивностью и емкостью. Предназначены для работы в в/ч цепях, кабелях и волноводах, в качестве согласующих нагрузок, аттенюаторов, ответвителей, эквивалентов антенн. Непроволочные в/ч резисторы способны работать на частотах до сотен МГц и более, а в/ч проволочные резисторы до сотен кГц.

Высоковольтные резисторы рассчитаны на большие рабочие напряжения (от 0,5 Вт и выше). Применяются в качестве делителей напряжения, искрогасителей, поглотителей в разрядных и зарядных высоковольтных цепях.

Высокомегаомные резисторы имеют диапазон номинальных значений сопротивлений от десятков МОм до сотен тера Ом. Рассчитаны на небольшие рабочие напряжения от 100 до 400 Вт, поэтому они работают в ненагруженном режиме и мощности рассеяния их малы (менее 0,5 Вт). Используются в приборах ночного видения, дозиметрах и измерительной аппаратуре.

Переменные резисторы.

Подстроечные резисторы рассчитаны на периодические подстройки аппаратуры, их износоустойчивость невелика, примерно до 1000 циклов перемещение подвижной системы резисторов.

Регулировочные резисторы используются при многократных регулировках аппаратуры, обладают большой износоустойчивостью (более 5 тыс. циклов), по характеру зависимости сопротивления резисторов от перемещения его подвижной системы они подразделяются на резисторы с линейной и нелинейной функциональными характеристиками.

В зависимости от способа защиты от внешних факторов резисторы делятся на изолированные, неизолированные, герметизированные и вакуумные.

Изолированные резисторы имеют изоляционное покрытие (лак, компаунд, пластмасса) и допускают касание корпусом шасси и токоведущих частей радио электроаппаратуры (РЭА).

Герметизированные резисторы имеют герметичную конструкцию корпуса, которая исключает влияние окружающей среды на его внутреннее пространство. Герметизация осуществляется с помощью опрессовки специальным компаундом.

Вакуумные резисторы имеют резистивный элемент, помещенный в стеклянную колбу.


По способу монтажа

Различают резисторы для навесного и печатного монтажа, для микромодулей и интегральных микросхем.

По материалу резистивного элемента различают проволочные, непроволочные и металло-фольговые резисторы.

Рис.1.2.

 

Проволочные резисторы, – в которых резистивным элементом является высокоомная проволока (изготавливается из высокоомных сплавов, константант, нихром, никелин).

Непроволочные, – в которых резистивным элементом является пленки или объемные композиции с высоким удельным сопротивлением. Непроволочные резисторы можно разделить на тонкопленочные (толщина слоя в нм (10-9) толстопленочные (толщина слоя в долях мм) и объемные (толщина в ед.мм).

Металлофольговые резисторы, резистивным элементом, в которых является фольга определенной конфигурации.

Тонкопленочные резисторы подразделяются на металлодиэлектрические, металлоокисные и металлизированные, с резистивным элементом в виде микрокомпозиционного слоя из диэлектрика и металла, или тонкой пленки окиси металла, или сплава металла; углеродистая и бороуглеродистая, проводящий элемент которых представляет собой пленку углерода или бор органических соединений.

К толстопленочным относят лакосажевые, керметные и резисторы на основе проводящих пластмасс. Проводящие резистивные слои толстопленочных и объемных резисторов представляют собой гетерогенную систему (композицию) из нескольких фаз, получаемого механическим смещением проводящим компонентом (графиты или сажи, металла или окисла металла, с органическими или неорганическими наполнителями, пластификаторами или отвердителем). После термообработки образуется монолитный слой с необходимым комплексом параметров.

В объемных резисторах в качестве связующего компонента используют органические смолы или стеклоэмали. Проводящим компонентом является углерод.

В резистивных керметных слоях основным проводящим компонентом являются металлические порошки и их смеси, представляющие собой керамическую основу с равномерно распределенными частицами металла.

Сокращенное условное обозначение резисторов

Сокращенное условное обозначение состоит:

I элемент – буква или сочетание букв, обозначающих подкласс резисторов.

Р – резистор постоянный; РП – резистор переменный; НР – набор или сборка резисторов.

II элемент – цифра обозначающая группу резисторов по материалу резистивного элемента :  1 –    непроволочные

2 –    проволочные, или металлофольговые.

III элемент – регистрационный номер конкретного типа резистора.

Между II и III элементом ставится дефис.

Например:

1) постоянный непроволочный резистор с № 4.

Р1 – 4

2) Переменный непроволочный резистор с № 46

РП1 – 46.

Полное условное обозначение состоит из сокращенного обозначения, варианта конструктивного исполнения (при необходимости), значений основных параметров и характеристик резистора, климатического исполнения и обозначения документа на поставку.

Параметры и характеристики для постоянных резисторов указываются в следующей последовательности:

а.) номинальная мощность рассеяния.

б.) номинальное сопротивление и буквенное обозначение единицы измерения.

в.) допускаемое отклонения сопротивления в процентах (допуск).

г.) группа по уровню шумов (для непроволочных резисторов).

д.) группа по температурному коэффициенту сопротивления (ТКС).

Например: постоянный непроволочный резистор, с регистрационным № 4, номинальной мощностью рассеяния 0,5 Вт, номинальным сопротивлением 10 к Ом, с допуском ±1%, группой по уровню шумов А, группой ТКС – Б, всеклиматического исполнения (В):

Р1 – 4 – 0,5 – 10 к Ом ± 1% А-В-В ОЖО. 467. 157 ТУ.

Кодированное обозначение номинальных сопротивлений состоит из 3 или 4 знаков, включающих 2 цифры и букву или 3 цифры и букву. Буквы кода из русского или латинского алфавита, обозначает множитель, составляющий сопротивление и определяет положение запятой десятичного знака: R; К; М;G;Т – обозначают соответствующих множитель:

1, 103, 106, 109, 1012.

5R1 – 5,1 Ом;

150К – 150 кОм;

2М2 – 2,2 МОм.

Полное обозначение допускаемого отклонения состоит из цифр, а кодированное из букв.

Табл.1.1.

Допуск  %

±0,001

±0,002

±0,002

±0,01

±0,02

±0,05

±0,1

±0,25

±0,5

±1

±2

±5

±10

±20

±30

Кодобозн.

Е

L

R

P

U

X

B

C

D

F

G

J

K

M

N

ГОСТ 13453-68

I – элемент – буква или 2 буквы

С – резистор постоянный

СП – резистор переменный,

II – элемент – цифра, обозначающая тип резистора по материалу резистивного слоя:

1.     непроволочные тонкослойные углеродистые и бор-углеродистые.

1.     непроволочные тонкослойные металлодиэлектрические или металлоокисные.

2.     непроволочные композиционные пленочные.

3.     непроволочные композиционные проволочные.

4.     непроволочные композиционные объемные.

5.     проволочные.

6.     непроволочные тонкослойные металлизированные.

III – элемент – порядковый № изделия.

Например: С2-33.

Обозначает резистор постоянный, непроволочный, тонкослойный, металлодиэлектрический, регистрационный № 33.

Маркировка на резисторах тоже буквенно-цифровая. Она содержит: вид, номинальную мощность, номинальное сопротивление, допуск и дату изготовления.

При малых размерах резистора может применяться не полное, а сокращенное кодированное обозначение номинальных значений и допусков.

Система изображения номинальных сопротивлений.

Табл.1.2.

Единицы измерения

Кодированное обозначение ед.изм.

Пределы номинального сопротивления

Пример полного обозначения

Пример сокращенного обозначения

Ом

Е

До 99

0,47 Ом

4,7 Ом

Е47

4Е7

кОм

К

0,1…99

470 Ом

4,7 кОм

К470

4К7

МОм

М

0,1…99

470 кОм

4,7 МОм

М470

4М7

ГОм

Г

0,1…99

470 МОм

4,7 ГОм

Г470

4Г7

Кодированное обозначение допустимого отклонения номинального сопротивления.

Табл.1.3.

Допуск %

0,1

0,2

0,5

1

2

5

10

20

30

Код. обозн.

Ж

У

Д

Р

Л

И

С

В

Ф

Разработанные до 1968 г. и выпускаемые до сих пор резисторы обозначаются тремя буквами.

I буква – обозначает материал резистивного элемента (У – углеродистые,

К – композиционные, М – металлопленочные, П – проволочные, и т.д.).

II буква обозначает вид защиты (Л – лакированная, Г – герметизированная,

И – изолированная).

III буква – обозначает особые свойства или назначения резистора (Т – теплостойкие, П – прецизионные, В – высоковольтные, М – мегаомные).

Пример: МЛТ – металлопленочный, лакированный, теплостойкий резистор.

КЛВ – композиционный, лакированный, высоковольтный резистор.

На постоянных миниатюрных резисторах, в соответствии с ГОСТ 17598-72и требованиями Публикации 62 МЭК, допускается маркировка цветным кодом. Ее наносят знаками в виде полос или кругов. Для маркировки цветным кодом номинальное сопротивление резисторов в омах выражают 2-мя или 3-мя цифрами (в случае 3-х цифр последняя не равна 0) и множителем 10 в степени n, где n – любое число от –2 до +9. Маркировочные знаки сдвигаются к одному из торцов резистора, и располагается слева на право в следующем порядке:

I полоса – I цифра,

II полоса – II цифра,

III – полоса – множитель,

IV полоса – допуск.

Цвета знаков маркировки номинального сопротивления и допусков.

Табл. 1.4.

Цвет

знака

Номинальное сопротивление

Допуск

%

I

II

III

Множитель

Серебристый

10-2

±10

Золотистый

10-1

±5

Черный

0

1

Коричневый

1

1

1

10

±1

Красный

2

2

2

102

±2

Оранжевый

3

3

3

103

Желтый

4

4

4

104

Зеленый

5

5

5

105

±0,5

Голубой

6

6

6

106

±0,25

Фиолетовый

7

7

7

107

±0,1

Серый

8

8

8

108

±0,05

Белый

9

9

9

109

Пример:

Рис.1.3.

47*103±5%

(47 кОм ±5%)

Условные графические обозначения постоянных резисторов различной мощности рассеяния.

Рис.1.4.

0,05 Вт

0,125 Вт

0,25 Вт

0,5 Вт

1 Вт

2 Вт

5 Вт

Резисторы постоянные, с дополнительными отводами.

Рис 1.5.

 

Условные графические обозначения переменных резисторов.

Рис.1.6.

Резистор переменный

Резистор переменный в реостатном включении

Резистор переменный с двумя подвижными контактами

Резистор переменный с двумя механически связанными контактами

Резистор переменный сдвоенный

Резисторы подстроечные

Резистор с плавным регулированием

Резистор переменный с замыкающим контактом

Резистор со ступенчатым регулированием

Резистор с логарифмической характеристикой регулирования

Рекомендация для Вас — 2.3 Организационные отношения в системе менеджмента.

Резистор с экспоненциальной характеристикой регулирования

Резистор, у которого регулировка выведена на переднюю панель

2.1.2. Маркировка резисторов. Электронные самоделки

2.1.2. Маркировка резисторов

Первый элемент — буква или сочетание букв, обозначающих подкласс резисторов (в этом материале рассмотрим только резисторы, имеющие значения для усилительной и высококачественной техники): Р — резисторы постоянные, РП — переменные.

Второй элемент — группа по материалу изготовления: 1 — непроволочные, 2 — проволочные или металлофольговые.

Третий элемент — цифра, обозначающая регистрационный номер разработки. Между вторым и третьим элементом ставится дефис, например, Р1-4. Кроме того, четвертым обозначением (не всегда) ставится климатическое исполнение, что важно для высококачественных усилителей. В — всеклиматическое, Т — тропическое исполнение. Совершенно естественно, что в относительно жарком климате надежней резистор исполнения «Т».

По классификации до 1980 г. обозначение отечественных постоянных резисторов начиналось с буквы «С» — сопротивления (СП — переменные резисторы). Вторая цифра указывает на особенности токонесущей части: 1 — непроволочные тонкослойные углеродистые и бороуглеродистые, 2 — непроволочные тонкослойные металлодиэлектрические или металлоокисные, 3 — непроволочные композиционные пленочные, 4 — непроволочные композиционные объемные, 5 — проволочные, 6 — непроволочные тонкослойные металлизированные.

Единая структура условных обозначений всех резисторов, выпускаемых за рубежом, отсутствует. Поэтому каждая уважающая себя фирма обозначает резисторы по своему стандарту. Чтобы перечислить все возможные обозначения (особо важен материал резистора и технология изготовления), потребовалось бы опубликовать несколько книг.

То же справедливо относительно цветовой маркировки зарубежных резисторов. Поэтому в данной книге отмечу лишь один зарубежный стандарт обозначения (MIL).

Первый элемент обозначает серию резистора. Второй, третий, четвертый и пятый элементы — цифровой код, номинальное сопротивление. Эти данные сведены в табл. П2.3.

Шестой элемент — буквенный код, которым обозначается уровень надежности резисторов в течение 1000 час. Для пояснения этого параметра обратите внимание на табл. П2.4.

В последнее время пользуются популярностью металлопленочные резисторы MF. Материал основы — особо чистая керамика, резистивный слой — осажденный сплав Ni-Cr. Выводы таких резисторов из луженой меди. Температурный диапазон —55…+155 °C. Температурный коэффициент сопротивления ±15…±50 ppm/°C. Выпускаются с мощностью рассеяния 0,125…3 Вт. Особо малогабаритные варианты данного типа постоянных резисторов маркируются MF-S. Точность сопротивления (допуск отклонения) в пределах 0,1…5 %, что позволяет использовать их в высококачественных усилителях. Точность сопротивления и другие электрические параметры маркируются цветовыми полосами так, как рассмотрено ранее.

Еще один вариант подходящих постоянных резисторов для высококачественных усилителей звуковой частоты — металлооксидные резисторы MO. Основа та же. Резистивный слой — металлооксидная пленка дает название самому типу данных резисторов. Кроме отличий по электрическим характеристикам данный тип резисторов имеет огнеупорное покрытие, что позволяет строить на их основе устройства, работающие с высоким уровнем температуры воздуха, например, пожарной сигнализации. Малогабаритные варианты маркируются MO-S. Мощность рассеяния до 5 Вт при температуре +70 °C. Температурный коэффициент сопротивления чуть хуже: ±200 ppm/°C. Точность сопротивления (допуск) также уступают постоянным резисторам серии MF — только ±5 %. Температурный диапазон -55…+200 °C.

Постоянные резисторы серий KNP (проволочные резисторы), а также SQP и PRW (мощные проволочные резисторы с высокой перегрузочной способностью, закатанные в литой цементный корпус) для работы в высококачественном усилителе нежелательны из-за комплекса причин, одной из которых является чрезмерно нестабильный (для усилителей класса А) их температурный коэффициент сопротивления ±300 ppm/°C.

Проволочные резисторы

Кроме постоянных и переменных резисторов (наиболее популярных в практике радиолюбителя) существует отдельный подвид резисторов — проволочные. В табл. П2.5 представлены сведения, касающиеся материалов для изготовления проволочных резисторов.

Примечание.

Используя справочные данные, приведенные в табл. П2.5, можно самостоятельно изготовить проволочный резистор из соответствующего материала.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Характеристики резисторов, параметры и маркировка

   Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры. Раньше резисторы назывались сопротивлениями, но в соответствии с Государственным стандартом электрическим сопротивлениям, как схемным элементам, присвоено название «резисторы».І2 Ом.

   Различают следующие виды резисторов: постоянные и переменные. Переменные еще делят на регулировочные и подстроечные. У постоянных резисторов сопротивление нельзя изменять в процессе эксплуатации. Резисторы, с помощью которых осуществляют различные регулировки в радиоэлектронной аппаратуре изменением их сопротивления, называют переменными резисторами или потенциометрами. Резисторы, сопротивление которых изменяют только в процессе налаживания (настройки) радиоэлектронного устройства, называют подстроечными.

   Основные параметры резисторов

   Резисторы характеризуются такими основными параметрами: номинальным значением сопротивления, допустимым отклонением сопротивления от номинального значения, номинальной (допустимой) мощностью рассеяния, максимальным рабочим напряжением, температурным коэффициентом сопротивления, собственными шумами и коэффициентом напряжения.

   Номинальное значение сопротивления R обычно обозначено на корпусе резистора. Действительное значение сопротивления резистора может отличаться от номинального в пределах допустимого отклонения (допуска, определяемого в процентах по отношению к номинальному сопротивлению).

   Маркировка резисторов

   На корпусе резистора, как правило, наносится краской его тип, номинальная мощность, номинальное сопротивление, допуск и дата изготовления. Для маркировки малогабаритных резисторов используют бук-венно-цифровой код. Код состоит из цифр, обозначающих номинальное сопротивление, буквы, обозначающей единицу измерения, и буквы, указывающей допустимое отклонение сопротивления. Примеры наносимого на корпус резистора буквенного кода единиц измерения номинального сопротивления старого и нового стандартов приведены в табл. 1.1.

   Если номинальное сопротивление выражается целым числом, то буквенный код ставится после этого числа. Если же номинальное сопротивление представляет собой десятичную дробь, то буква ставится- вместо запятой, разделяя целую и дробную части. В случае, когда десятичная дробь меньше единицы, целая часть (ноль) исключается.

   При маркировке резисторов код допуска ставится после кодированного обозначения номинального сопротивления. Буквенные коды допусков приведены в табл. 1.2. Например, обозначение 4К7В (или 4К7М) соответствует номинальному сопротивлению 4,7 кОм с допустимым отклонением 20%. В табл. 1.1 и 1.2 приведены буквенные коды, соответствующие как старым, так и новым стандартам, так как в настоящее время встречаются оба варианта. Номинальная мощность на малогабаритных резисторах не указывается, а определяется по размерам корпуса.

   Таблица 1.1 Обозначение номинальной величины сопротивления на корпусах резисторов

   Полное обозначение

   Сокращенное обозначение на корпусе

   Обозначение

   Примеры

   обозначения

   Обозначение единиц измерения

   Примеры обозначения

   единиц измерении

   Старое

   Новое

   Старое

   Новое

   Ом

   Омы

   13 Ом

   470 0м

   R

   Е

   13R

   470R (К47)

   13Е 470Е (К47)

   кОм

   килоОмы

   1 кОм

   5,6 кОм

   27 кОм

   100 кОм

   К

   К

   1К0

   5К6

   27K

   100К(М10)

   1К0

   5К6

   27K

   100К(М10)

   МОм

   мегаОмы

   470 МОм

   4,7 МОм

   47 МОм

   М

   М

   М47 4М7 47 М

   М47

   4М7

   47М

   Таблица 1.2 Буквенные коды допусков сопротивлений, наносимых на корпуса резисторов

   Допуск, %

   ±0,1

   ±0,2

   ±0,25

   ±0,5

   ±1

   ±2

   ±5

   ±10

   ±20

   ±30

   Обозначение

   старое

   ж

   У

   –

   Д

   Р

   Л

   И

   С

   В

   Ф

   новое

   в

   –

   С

   D

   F

   G

   J

   К

   М

   N

   Цветовой код маркировки резисторов

   Тип маркировки, при котором на корпус резистора наносится краска в виде цветных колец или точек называют цветовым кодом (см. на рис. 1.1). Каждому цвету соответствует определенное цифровое значение. Цветовая маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Если маркировку нельзя разместить у одного, из выводов, то первый знак делается полосой шириной в два раза больше, чем остальные.

   На резисторы с малой величиной допуска (0,1…10%), маркировка производится пятью цветовыми кольцами. Первые три кольца соответствуют численной величине сопротивления в омах, четвертое кольцо ерть множитель, а пятое кольцо — допуск (рис. 1.1). Резисторы с величиной допуска 20% маркируются четырьмя цветными кольцами и на них величина допуска не наносится. Первые три кольца — численная величина сопротивления в омах, а четвертое кольцо — множитель. Иногда резисторы с допуском 20% маркируют тремя цветными кольцами. В этом случае первые два кольца — численная величина сопротивления в омах, а третье кольцо — множитель. Незначащий ноль в третьем разряде не маркируется.

   В связи с тем, что на рынке радиоаппаратуры значительное место занимают зарубежные изделия, заметим, что резисторы зарубежных фирм маркируются как цифровым, так и цветовым кодом. При цифровой маркировке первые две цифры обозначают численную величину номинала резистора в омах, а оставшиеся представляют число нулей. Например: 150 — 15 Ом; 181 — 180 Ом; 132 — 1,3 кОм; 113—11 кОм. Цветовая маркировка состоит обычно из четырех цветовых колец. Номинал сопротивления представляет первые три кольца, двух цифр и множителя. Четвертое кольцо содержит информацию о допустимом отклонении сопротивления от номинального значения в процентах. Определение номиналов зарубежных резисторов по цветовому коду такое же, как и для отечественных. Таблицы цветовых кодов отечественных и зарубежных резисторов совпадают.

   Многие фирмы, помимо традиционной маркировки, используют свою внутрифирменную цветовую и кодовую маркировки. Например, встречается маркировка SMD-резисторов, когда вместо цифры 8 ставится двоеточие. Так, маркировка 1:23 означает 182 кОм, a 80R6 — 80,6 Ом.

   Цвет колец или точек

   Номинальное сопротивление, Ом

   Множитель

   Допуск, %

   ТКС, %/ГС

   1-я цифра

   2-я цифра

   З-я цифра

   4-я цифра

   5-я цифра

   п

   Серебристый

   –

   –

   –

   0601

   ±10

   –

   Золотистый

   –

   –

   –

   061

   ±5

   –

   Черный

   –

   0

   –

   1

   –

   –

   Коричневый

   1

   1

   1

   10

   ±1

   100

   Красный

   2

   2

   2

   10^2

   ±2

   50

   Оранжевый

   3

   3

   3

   10^3

   –

   15

   Желтый

   4

   4

   4

   10^4

   –

   25

   Зеленый

   5

   5

   5

   10^5

   ±0,5

   –

   Синий

   6

   6

   6

   10^6

   ±0,25

   10

   Фиолетовый

   7

   7

   7

   10^7

   ±0,1

   5

   Серый

   8

   8

   8

   10^8

   ±0,05

   –

   Белый

   9

   9

   9

   10^9

   –

   1

                          

   Рис. 1.1. Цветовая маркировка отечественных и зарубежных резисторов в виде колец или точек, в зависимости от допуска и ТКЕ

    Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Базовые резисторы для начинающих и новичков

Базовые резисторы для начинающих и новичков Цветовые коды резисторов

HTML с сайта: http://www.btinternet.com/~dtemicrosystems/beginner.htm


ЦВЕТОВЫЕ КОДЫ И ИХ ОБЩЕЕ ИСПОЛЬЗОВАНИЕ

ПРИЗНАННЫЕ СТАНДАРТЫ

Есть десять международно признанных стандартов цвета, используемые для обозначения значений ряда электронных компонентов.Каждый присвоено числовое значение от 0 (ноль) до 9 (девять) в следующем порядке; чернить, коричневый, красный, оранжевый, желтый, зеленый, синий, фиолетовый, серый, белый.

Поскольку они чаще всего используются для определения номиналов резисторов, этот диапазон цвета часто (неправильно) называют «цветовой кодировкой резистора». В На практике они могут применяться к различным другим электронным компонентам, хотя в настоящее время это было в значительной степени заменено печатными сокращениями, которые будут объяснены потом.

Два других цвета также широко используются; золото и серебро, обычно в качестве знаков допуска на резисторах (наряду с некоторыми другими цветами), но они также удваиваются как деление маркировка коэффициентов для сопротивлений ниже 10 Ом. Их присвоенные значения допусков составляют 5%. для золота и 10% для серебра. В качестве коэффициентов деления их значения равны 10 и 100. соответственно.

Это будет звучать немного запутанно (мягко говоря!), Если вы не знакомы с любым из этих цветовых кодов, но, надеюсь, вскоре он станет более понятным.

ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА

ОБРАТИТЕ ВНИМАНИЕ:


Прежде всего, мы должны отметить, что следующая информация не относится к современным устройство поверхностного монтажа (SMD) или чип-резисторы, которые не используют цветовую кодировку, а вместо этого проштампован код сопротивления. Мы объясним это позже, но пока концентрируясь только на стандартных типах с цветовой кодировкой, помните, что этот раздел предназначен для новички. Несмотря на то, что он достаточно прост для понимания, прежде чем читать это переход на резисторы, вы, наверное, никогда бы не догадались, что самое принципиальное компонент в электронике может быть так задействован.

Наиболее распространенные типы резисторов с цветовой кодировкой поставляются с четырьмя или пятью цветные полосы. Вы также найдете шесть типов цветных полос, которые включают температуру диапазон коэффициентов, но, чтобы вас не запутать, мы пока будем игнорировать их быть и сконцентрироваться в основном на типе четырех диапазонов, после чего следует краткое объяснение пять полос типа, так как это просто расширение четырех полос.

КРАТКИЙ УРОК ИСТОРИИ

Раньше резисторы выглядели как субминиатюрные. реостаты, что-то вроде керамической трубки, с ножками, похожими на заостренные бирки для припоя, приваренные близко к концы трубки.При пайке они стояли примерно на одну восьмую дюйма. (3,175 мм) над монтажной платой. Весь корпус резистора окунул в бирюзу. цветной краской, а ценность определялась чудесным сочетанием точек, пятен и числа, которые в половине случаев разошлись по печатной машине на мили! Как углеродная пленка и резисторы из углеродного состава стали более популярными, цветные кольца или полосы вокруг всего тело стало «нормой» для идентификации.

Вот очень специфический аспект изготовления резисторов этого типа; в свое время они у всех было только четыре цветных полосы, обычно напечатанных на корпусе бордового цвета, и физически достаточно большой, чтобы можно было легко видеть и читать все цвета.В наши дни то же самое резисторы меньше четверти размера, имеют разный цвет корпуса и содержат больше цветные кольца, чем Сатурн! Это делает практически невозможным определение некоторых значений. человеческими глазами, даже со зрением 20:20. Даже опытные дизайнеры признаются в подключив некоторые из них к мультиметру, чтобы подтвердить значение.

Люди, которые привыкли к считыванию цветовых кодов резисторов, как правило, смогут взгляните на тело и скажите вам в течение двух секунд, каково значение этого резистора, без использования каких-либо таблиц преобразования.Хотите верьте, хотите нет, но вы тоже примете это как вторая натура после некоторого опыта.

КОНВЕНЦИИ

«R» = Ом. «K» = килом. «M» = мегом.

Чтобы избежать необходимости писать или работать с большим количеством цифр, приняты определенные условные обозначения. применяются к тому, как записываются значения резисторов, когда они достигают различных величин. Каждый 1000 Ом называется килом (килограмм = одна тысяча) и сокращается до заглавной буквы. буква «К». Каждые 1000000 Ом называют Мегаомом (Мега = один миллион), сокращенно до заглавной буквы «М».В качестве пары примеров; 4700 Ом резистор будет записан как 4.7K или 4K7, а 5600000 Ом будет записано как 5,6М или 5М6. Для полноты таким же образом можно записать значения ниже 10 Ом; Например, 3,9 Ом можно записать как 3R9.

Не существует жесткого правила, определяющего сокращенный метод их записи. использовал. Первоначально они писались с десятичной точкой посередине, но когда схема диаграммы начали массово появляться, особенно в журналах для любителей, стало очевидно что из-за технологии печати и использования низкосортной бумаги десятичная точка была очень часто воспроизводится не очень точно.Это привело к неправильной интерпретации напечатанного ценности и конструкторы строят схемы, которые не работают. И проблема не в ограничен журналами для любителей, множеством коммерческих схем и технических руководств. также были допущены те же упущения. Из-за этого многие схемы стали отключаться. изготовленные, номиналы резисторов которых были записаны буквой в середине.

ЧТО ПРОИЗОШЛО С OMEGA?

Еще одним символом, который также использовался для обозначения сопротивления, был сам знак Омега, но теперь он в значительной степени заменен заглавной буквой. «Р».Почему? Поскольку принципиальные схемы были нарисованы на бумаге рисовальщики используют трафареты, содержащие различные электронные символы и символы. С участием появление широко доступных CAD-машин для создания принципиальных схем, и текстовых процессоров, чтобы набрать письменную документацию, они внезапно поняли, что Omega символ не был стандартным типографским знаком. В «старые времена» при покупке пишущей машинки * вы указывали, какие спецсимволы (если есть) должны быть включенным для обслуживания вашего конкретного направления бизнеса.Но с новым цифровым системы, вы должны были обойтись тем, что было доступно, и буква «R», казалось, наиболее логично использовать для сопротивления, поэтому R = Ом.

ЦВЕТОВЫЕ КОДЫ 4-ПОЛОСНОГО РЕЗИСТОРА

, ОБЫЧНО ИСПОЛЬЗУЕМЫЕ ДЛЯ РЕЗИСТОРОВ УГЛЕРОДНОЙ ПЛЕНКИ
Цифра на Слева показан резистор с четырехцветной полосой вместе с таблицей преобразования, чтобы вы могли чтобы вычислить значение любого из этого типа. Все цвета должны быть преобразованы в их присвоенные значения для расчета сопротивления, и результат всегда получается в Ом.

НЕПРАВИЛЬНЫЕ ЦВЕТА:
Обратите внимание, как определенные цвета были опущены в первом и третьем столбцах. Это потому что первый столбец никогда не будет черным, а третий столбец никогда не будет иметь цвет с присвоенным значением выше 6, так как номиналы базового резистора колеблются от 1 Ом — коричневый, черный, золотой, до 10 МОм — коричневый, черный, синий. В нашем примере 27K сопротивление равно рассчитывается следующим образом;

ЗНАЧИМЫЕ ЦИФРЫ и МНОЖЕСТВЕННЫЕ ПОЛОСЫ:
Первые два цвета представляют два числовых значения, известных как значащие цифры, которые просто записываются по мере появления, т.е. «2» и «7».Далее полоса множителя указывает, сколько нулей нужно записать после первых двух цифр, и здесь нам нужно их три — «000». Вот и все! Теперь у вас есть сопротивление значение этого резистора в Ом — 27000 Ом. Поскольку каждые 1000 Ом представляют собой килом или «1K», значение в примере составляет 27K.
ЗОЛОТАЯ ИЛИ СЕРЕБРЯНАЯ ПОЛОСА МНОЖИТЕЛЯ:
Независимо от номинала, эти резисторы ДОЛЖНЫ иметь четыре цветных полосы. Однако только значения от 10 Ом и выше могут быть представлены с помощью «обычная» цветовая гамма от черного до белого, так как минимально допустимый цвет Последовательность Коричневый, Черный, Черный — 10 Ом.На рисунке справа показано, как значения ниже Представлено 10 Ом. Здесь для ленты множителя используется золото или серебро, только сейчас это означает, что рассчитанное значение сопротивления должно быть РАЗДЕЛЕННО на 10 или 100 соответственно. В в нашем примере показан резистор 5,6 Ом, но то же самое относится ко всем значениям ниже 10 Ом. Если бы полоса умножителя была серебряной, это значение было бы 0,56 Ом. Однако это очень маловероятно, что в настоящее время вы встретите такие типы резисторов с серебряным умножителем. группа.

ПОЛОСА ДОПУСКА:
Возвращаясь к нашему примеру 27K, четвертая полоса указывает допуск этого сопротивление в процентах.Если полоса допуска — золото, сопротивление будет в пределах 5% выше или ниже 27K, что соответствует допуску в 1350 Ом (5% от 27000 = 1350). Это означает, что фактическое сопротивление может составлять от 25650 Ом до 28350 Ом. Ом. Золотая полоса допуска, вероятно, является наиболее распространенной на стандартном угле. пленочные резисторы. Если полоса допуска красная, сопротивление будет в пределах 2% от 27 кОм, или в пределах 1%, если используется коричневый цвет. Если вам не удастся достать очень старые резисторы, серебро, которое представляет собой допуск 10%, редко (если вообще когда-либо) будет рассматриваться как допуск группа.Но он по-прежнему является частью стандарта цветовой кодировки, поэтому был включен в остальные из них.

ЦВЕТОВЫЕ КОДЫ Пятиполосного резистора

, ОБЫЧНО ИСПОЛЬЗУЕМЫЕ НА РЕЗИСТОРАХ ИЗ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ
Цифра на Слева показан резистор с пятицветной полосой вместе с таблицей преобразования цветов в позволяют рассчитать значение любого из этого типа. Как и в случае с 4 типами полос, все цвета должны быть преобразованы в назначенные им значения для расчета сопротивления, и опять же результат всегда выражается в Омах.

НЕПРАВИЛЬНЫЕ ЦВЕТА:
Как и в приведенной выше 4-полосной диаграмме, в этой тоже есть определенные цвета, отсутствующие в различных столбцы, опять же там, где их вряд ли можно будет найти. Первый столбец никогда не будет черным, а в четвертом столбце никогда не будет цвета с присвоенным значением выше 4 — желтый. Металл Номиналы пленочного резистора варьируются от 10 Ом — коричневый, черный, черный, золотой, до 1 МОм — коричневый, черный, черный, желтый. Расчет значения очень похож на метод, описанный для 4 типа полос.Используя наш пример 15K слева, это достигается следующим образом;

ЗНАЧИМЫЕ ЦИФРЫ и МНОЖЕСТВЕННЫЕ ПОЛОСЫ:
Первые три цвета представляют три числовых значения, известные как значащие цифры, которые просто записываются по мере появления, т.е. а «1», «5» и а «0». Затем полоса множителя указывает, сколько нулей нужно записать после первые три цифры, а здесь нам понадобятся две из них — «00». Вот и все! Теперь у вас есть значение сопротивления этого резистора в Ом — 15000 Ом, а так как каждые 1000 Ом представляет килом или «1 кОм», значение в примере составляет 15 кОм.

ЗОЛОТАЯ или СЕРЕБРЯНАЯ ПОЛОСА МНОЖИТЕЛЯ:
ДОЛЖНЫ быть представлены значения этих резисторов. пятью цветными полосами. Однако только значения от 100 Ом и выше могут быть представлены с помощью «обычная» цветовая гамма от черного до белого, так как минимально допустимый цвет Последовательность Коричневый, Черный, Черный, Черный — 100 Ом. На рисунке справа показано, как представлены значения ниже 100 Ом. Используя золото в качестве полосы множителя, рассчитанное сопротивление должно быть РАЗДЕЛЕННО на 10. В этом примере показан резистор 47 Ом.Если полоса умножителя была серебряной, значение должно было стать 4,7 Ом, но это всего лишь гипотеза, поскольку резисторы этих типов обычно не имеют значений ниже 10 Ом, поэтому очень маловероятно, что вы когда-нибудь найдете такой с серебряной лентой множителя.

ПОЛОСА ДОПУСКА:
Возвращаясь к нашему примеру 15K, пятая полоса указывает на допуск этого сопротивления. в процентах. Если полоса допуска красная, сопротивление будет в пределах 2% выше или ниже 15K, что соответствует допуску в 300 Ом (2% от 15000 = 300).Это означает фактическое сопротивление может составлять от 14 700 Ом до 15 300 Ом. Если полоса допуска коричневая, сопротивление будет в пределах 1%. Золотые или серебряные полосы допуска вряд ли когда-либо увидишь на этих резисторах. Но они по-прежнему являются частью цветового кода. стандартные, поэтому были включены с остальными.

ЦВЕТОВЫЕ КОДЫ 6-ПОЛОСНОГО РЕЗИСТОРА

ИСПОЛЬЗУЕТСЯ НА РЕЗИСТОРАХ ИЗ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ
Цифра на Слева показан резистор с шестицветной полосой — в нашем примере 620 кОм.Прежде чем вы сделаете запрос сопротивление, да, это стандартное значение, доступное для данного диапазона резисторов. Эти рассчитывается точно так же, как и пять указанных выше типов с полосами. Единственная разница добавление шестой полосы, указывающей температурный коэффициент резистора, который указывается в миллионных долях на градус Цельсия — PPM /.

В большинстве случаев вы столкнетесь с коричневой шестой полосой, так как это является наиболее распространенной производимой версией, поскольку она обеспечивает достаточно стабильную работу. резистор в широких условиях эксплуатации.Однако можно получить «специальные» с температурными коэффициентами ближе, чем 100 ppm / C, они используются в более точных или более критичных к температуре приложениях, поэтому не удивляйтесь, если вы встречаются с ними время от времени.

ЧТО ОЗНАЧАЕТ ТЕРМИН «PPM / C»?

УСТОЙЧИВОСТЬ РЕЗИСТОРА ОТ ТЕМПЕРАТУРЫ

Обозначает температурный коэффициент диапазона резистора. Не путайте это со значением резистора, это относится к составу резистора, будь то углеродная пленка, металлическая пленка, намотанная или что-то еще.Термин «ppm / C» не является специфическим для резисторы, он применяется практически ко всем электронным компонентам, когда-либо производившимся, и мера того, насколько стабильность этого компонента будет дрейфовать в ответ на изменение температура. Обычно это измеряется в миллионных долях на градус. по Цельсию — ppm / C. Значение «частей» — это единицы, из которых Компонент измеряется, вот оно Ом. Если бы мы говорили о конденсаторах, то единицы были бы быть фарадами, микрофарадами или пикофарадами и т. д. Стабильность частоты осциллятора будет выражаться Герц

Интересно, что большинство типов резисторов имеют указанные характеристики до рабочая температура около 70С.При этом необходимо учитывать не только окружающую среду. температуры, но также и любые факторы нагрева, влияющие на компонент в результате работы сам контур. Это может принимать форму рассеивания мощности, что приводит к довольно нормальный самоиндуцированный нагрев или вторичный нагрев, вызванный непосредственной близостью других более горячие компоненты, такие как трансформаторы, силовые транзисторы и т. д.

Чтобы упростить вычисления, воспользуемся Пример углеродного пленочного резистора 1 МОм — 1000000 Ом (показан слева).Мы будем также предположим, что его температурный коэффициент указан как 400 ppm / C, что довольно общий для углеродных пленочных резисторов.

При каждом изменении температуры на 1 ° С наш резистор на 1 МОм может сместиться на величину до 400 Ом выше или ниже указанного значения. Этот дрейф не зависит от других спецификации, установленные для резистора любого типа, к которому он относится. Другими словами, нет независимо от того, какой допуск или диапазон рабочих температур, пока он эксплуатируется в указанном температурном диапазоне сопротивление все еще может дрейфовать из-за любых ppm / C указано.

В нашем примере выше, за исключением допуска в 5%, что позволяет нашему 1 МОм резистор в диапазоне от 950 000 Ом до 1050 000 Ом при температуре до 70 ° C (5% от 1000000 = 50000 или 50K), его температурный коэффициент 400 ppm / C также позволяет ему дрейфовать вверх до 400 Ом на каждый 1С изменения температуры. В большинстве случаев сопротивление будет падать при повышении температуры, поэтому повышение температуры на 1 ° C может означают падение сопротивления до 400 Ом. И это касается каждого увеличения 1С в температура.

Не забывайте, что все эти допуски и температурные коэффициенты допустимые пределы для любого конкретного диапазона резисторов. Это не значит, что они будут изменить на указанные суммы, только то, что им разрешено, оставаясь при этом в пределах их спецификации. Вы можете легко подключить два, казалось бы, одинаковых резистора. через мультиметр и дает разные результаты для каждого из них. Но пока они оба находятся в этих пределах, то с ними все в порядке.

С точки зрения разработчиков, в критически важных приложениях, таких как аналогово-цифровой (A / D) преобразования и схемы измерения температуры, спецификация ppm является одним из наиболее важные факторы, определяющие тип используемых резисторов, в сочетании с Разработчики предусмотрели диапазон рабочих температур готовой схемы.

ПРАВИЛЬНО ЧИТАЮ НА РЕЗИСТОРЕ?

ИЛИ КАК Я УЗНАТЬ, ЧТО Я ЧИТАЮ ПРАВИЛЬНО?

Ответ на этот вопрос прост — опыт! Учитывая все эти типы резисторов, с их различными методами идентификации легко неверно истолковать ценность некоторых резисторы, и это довольно часто случается.Однако по мере того, как вы становитесь более знакомыми используя цветовые коды, вы начнете понимать, что только определенные последовательности и значения резисторов доступны, и скоро вы привыкнете к тому, что они находятся.

В качестве экономии вы всегда можете попытаться вычислить значение, а затем проверить свое сравните с таблицей номиналов резистора, чтобы увидеть, указан ли он там. Если это не так, попробуйте прочтите его снова, начиная с другого конца, затем проверьте еще раз. Обычно это только проблема с пяти- и шестиполосными металлопленочными резисторами, потому что стандартные четыре Типы углеродных пленок с полосами почти всегда будут иметь золотую полосу допуска на одном конце, так что вы знаете, что это нужно читать с другого конца.

ДЛЯ ЧЕГО ИСПОЛЬЗУЮТСЯ КОДЫ РЕЗИСТОРОВ?

С развитием технологий размеры резисторов значительно уменьшились по сравнению с их оригинального размера, и устройства для поверхностного монтажа (SMD) или чип-резисторы в настоящее время используются в огромных количествах. количества по производителям оборудования. Они действительно крошечные по сравнению с сегодняшними резисторы средней (скажем) ватт, что делает использование цветовой кодировки непрактичным, не только с производственной точки зрения, но также и для бедных конечных пользователей, которым нужно попробовать и читать их!

БУКВЕННО-ЦИФРОВАЯ КОДИРОВКА:
Для преодоления этого вместо этого используется кодирование цифрами и буквами.Этот способ фактически уже несколько лет используется на различных компонентах. Фигура слева показывает однопроводную (SIL) резисторную сеть, подобные которой существуют уже давно. лет, и современный резистор для поверхностного монтажа. Обратите внимание, что они не показаны в масштабе, некоторые из резисторов SMD настолько малы, что могут поместиться только между двумя контактами Сеть SIL!
КАК РАБОТАЕТ ЭТО КОДИРОВКА?
В основном эта кодировка состоит из трех цифр, иногда за которыми следует одна буква.Три числа на самом деле являются прямым представлением их эквивалентной цветовой полосы. значения, т.е. 1 — коричневый, 2 — красный, 3 — оранжевый и так далее. Где буква следует за цифрами, это означает, что обычно является диапазоном допуска, которым присваиваются следующие значения; M = 20%, K = 10%, J = 5%, G = 2%, F = 1%

Изучив их, вы сможете увидеть взаимосвязь между буквенно-цифровые коды и цветные полосы. Многим людям их легче читать и понять, чем их эквиваленты с цветовой кодировкой.Это всего лишь два примера того, где вы найдете этот тип кодирования. Также регулярно используются многие другие, в частности на резисторах высокой точности и других компонентах, где объем доступного пространства (или его отсутствие) делает цветовое кодирование непрактичным.

Нажмите здесь, чтобы вернуться

ЧТО ТАКОЕ (ИЛИ БЫЛО) ПИСАТЕЛЬ?

* ПИСАТЕЛЬ: Для младших читатели, это был своего рода механический текстовый процессор / принтер, сделанный в основном из чугуна, это было изобретено до электричества, и всегда казалось, что он весит около полтонны, даже легкие модели! Чтобы использовать старую пишущую машинку в течение любого времени, требуются мускулы. как Рэмбо, пара наушников (наушников) и обычная способность тянуть машина возвращается на расстояние до клавиатуры, после вибрации в «рации» подальше от вас во время набора текста!

Один лист бумаги был вставлен за пластину и повернут рукой в ​​нужное положение. готов к вводу прямо на.Печать на этих машинах достигалась несколько иначе. к сегодняшним принтерам, в котором печатающая головка оставалась неподвижной, а каретка тянулась справа налево тканевой лентой, прикрепленной к подпружиненному барабану. Когда бумага поля выставлены правильно, предупреждающее устройство в виде одиночного «звонка» колокольчика сообщил вам, что вы достигли правого края бумаги и что вы только осталось около 10 символов, прежде чем все внезапно остановилось! Возврат каретки и перевод строки был вызван оператором вручную за одну простую, но быструю операцию, которая пришлось резко щелкнуть самым большим рычагом, за который они могли дотянуться, и скользить по каретку в крайнее правое положение, пока она не остановится резко, рычаг сломался, или вся машинка перевернулась на бок! Однако последняя особенность был доступен только в стандартной комплектации на моделях с широкой тележкой! В качестве дополнительной опции на узких кареток, это было достигнуто за счет скольжения каретки назад на гораздо более высокой скорости !.

У этих машин не было экрана дисплея, памяти, масштабируемых шрифтов или графики. Однако жирный шрифт можно было получить, просто повернув каретку до слов, которые вы нужно выделить жирным шрифтом, а затем снова набрать всю партию поверх того, что уже было напечатаны, просто молясь, чтобы вы не нажали не ту клавишу по пути! Это тоже не позировало большая проблема, поскольку исправление ошибок обычно происходило всего в нескольких дюймах в виде крошечной бутылки, содержащей что-то вроде кисточки для лака для ногтей с завинчивающейся крышкой, которая был погружен в раствор, напоминающий белую шелковую виниловую эмульсионную краску, но пахнущий как химический завод! Известная как корректирующая жидкость, ее просто закрашивали поверх неправильного символа (ов) до тех пор, пока он не станет напоминать ссылку на трехмерную карту мини-кольцевой развязки или островок безопасности.Этому дали высохнуть в течение нескольких секунд, и правильные символы затем набирались поверх нарисованного «горба», что не только удаляло излишки «краски». и заменил его на требуемый символ, но также изменил появление этого символа примерно в следующие десять или около того раз, когда он был напечатан!

Чтобы решить эту проблему, используется версия этого средства исправления ошибок на пленке с сухим переносом. была изобретена техника, известная как корректирующая бумага, которая значительно облегчила жизнь бедным машинистка.Все, что здесь требовалось, — это держать пленку над неправильные символы, а затем введите эти символы снова. Идея заключалась в том, чтобы применить только количество корректирующей среды, необходимое для «скрытия» неправильных символов. К сожалению, любую заданную область пленки можно было использовать только один раз, и из-за отсутствия механическая точность пишущей машинки, неправильные символы, возможно, должны были быть перепечатали несколько раз, прежде чем исходный отпечаток был стерт. После такого лечения смотреть с лицевой стороны напечатанного документа было неплохо, но, к сожалению, обратное напоминало то, что мог прочитать слепой!

Вернемся к самой машинке.Обычно эти машины были монохромными, хотя также был доступен полный диапазон серых шкал, основанный на износе ленты и количество силы, приложенной во время набора текста. Полноцветные черные, красные и синие версии могут быть имелся за дополнительную плату, но одновременно был доступен только один цвет. Широкие модели тележек пишущей машинки также были доступны примерно до 24 дюймов, что, откровенно говоря, было улучшение ограничений сегодняшних современных принтеров! К сожалению, размер тела машинка с широкой кареткой не соответствовала ширине каретки, а удлиненные ножки на болтах должен был быть установлен, чтобы уравновесить вес каретки, когда она была на о его путешествии.

Печатать документы в этих системах требовалось отталкивать «клавиатуру» со всеми ваша сила, чтобы создать приемлемое изображение персонажа на бумаге. Это часто было проклят как причину повреждения нежных женских ногтей, которые сегодня в среднем ногти были исключительно длинными. Ущерб нанесен ногтями. ловя клавишу над клавишей, которую они пытались напечатать. Возможно, это был всего лишь один из причины, по которым машинистки, привыкшие пользоваться пишущими машинками, сказали, что близкие близость клавиш на современных компьютерных клавиатурах никогда не завоюет популярность и будет совершенно непригоден для набора текста, только на этот раз проблема будет не в повреждении ногтями, но типографских ошибок, вызванных тем, что ноготь набирает символ над тем, который должен печатать палец.Странно, как много ничего изменилось!

Нажмите здесь, чтобы вернуться

Цветовые коды резисторов

и идентификация компонентов

Цветовые коды резисторов


и идентификация других компонентов

Цветовой код резистора Обозначение

Хотя эти коды чаще всего связаны с резисторами, они также могут применяться к конденсаторам и другие компоненты.

Стандартный метод цветового кодирования резисторов использует разные цвета для обозначения каждого числа от 0 до 9: черный, коричневый, красный, оранжевый, желтый, зеленый, синий, фиолетовый, серый, белый.На 4-полосном резисторе первые два полосы представляют собой значащие цифры. На полосах 5 и 6 первые три полосы являются значащими цифрами. Следующая полоса представляет собой множитель или «декаду». Как и в приведенном выше примере с 4 полосами, первые две полосы красные и пурпурные, обозначающие 2 и 7. Третья полоса оранжевая, обозначающая 3, что означает 10 3 или 1000. Это дает значение 27 * 1000 или 27000 Ом. Золотая и серебряная декадные полосы делятся на степень 10, что позволяет использовать значения менее 10 Ом.Резисторы 5 и 6 диапазонов работают точно так же, как резисторы 4 диапазона. Они просто добавляют еще одну значащую цифру. Полоса после декады — это толерантность. Это говорит о том, насколько точно сопротивление по сравнению с его спецификацией. 4-полосный резистор имеет допуск на золото или 5%, что означает, что истинное значение резистора может составлять 5%. более или менее 27000 Ом, допустимые значения от 25650 до 28350 Ом. Последняя полоса на 6-полосном резисторе — это температурный коэффициент резистора, измеряемый в PPM / C или частей на миллион на градус Цельсия.Коричневые (100 PPM / C) являются наиболее популярными и подходят для большинства разумный температурный режим. Остальные специально разработаны для критических температурных приложений.

Буквенно-цифровой код идентификации

Из-за того, что размеры резисторов и других компонентов уменьшаются или меняют форму, становится все больше. сложно уместить все цветные полосы на резисторе. Следовательно, более простая буквенно-цифровая система кодирования используется. В этом методе используются три числа, иногда за которыми следует одна буква.Цифры представляют то же, что и первые три полосы на 4-полосном резисторе. В приведенной выше сети SIL 4 и 7 являются значащие цифры, а 3 — декада, что дает 47 x 1000 или 47000 Ом. Буква после цифр это терпимость. Различные представления: M = ± 20%, K = ± 10%, J = ± 5%, G = ± 2%, F = ± 1%.

Соглашение об именах

Чтобы упростить запись больших номиналов резисторов, сокращения K и M используются для одной тысячи и один миллион. Чтобы сохранить стандарт соглашения, R используется для представления 0.Из-за проблем со зрением десятичная точка в некоторых печатных текстах, 3 буквы: K M или R используются вместо десятичной точки. Таким образом, резистор 2700 Ом записывается как 2K7, а резистор 6,8 Ом записывается как 6R8.

Серия E12

Они идентифицируют ряд резисторов, которые известны как «предпочтительные значения». В линейке E12 есть являются 12 «предпочтительными» или «основными» значениями резисторов, а все остальные — просто десятки значений этих значений:

1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8 и 8.2

В таблице ниже перечислены все номиналы резисторов из диапазона предпочтительных значений E12. Вы заметите что есть 12 строк, содержащих основные значения резисторов, а в столбцах перечислены декады их значения. Этот диапазон обычно охватывает стандартные углеродные пленочные резисторы, которые не являются легко доступны при значениях выше 10 МОм — 10 МОм (10 миллионов Ом)

нет данных 2K7 / a
1R0 10R 100R 1K0 10K 100K 1M0 10M
1R2 12253
1R5 15R 150R 1K5 15K 150K 1M5 нет данных
1R8 180K 1M8 н / п
2R2 22R 220R 2K2 22K 220K 2M2
27K 270K 2M7 нет данных
3R3 33R 330R 3K3 33K 330K 3M3 н / д
3R9 39R 390R 3K9 39K 390K 470R 4K7 47K 470K 4M7 н / п
5R6 56R 560R 5K6 56K 56K 6R8 68R 680R 6K8 68K 680K 6M8 н / д
8R2 82R 82R

Серия E24

Диапазон предпочтительных значений E24 включает все значения E12 плюс еще 12 для включения подбор более точных сопротивлений.В диапазоне E24 предпочтительные значения:

1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2 и 9.1

В таблице ниже перечислены все номиналы резисторов из диапазона предпочтительных значений E24. Вы заметите что есть 24 строки, содержащие основные значения резисторов, и столбцы в правом списке их десятилетние значения. Чаще всего в этот диапазон входят резисторы с металлической пленкой, которые не легко доступны в значениях выше 1 МОм — 1M0.

240R 9025 300R 9019
1R0 10R 100R 1K0 10K 100K 1M0
1R1 11R 110254 11025 1R2 12R 120R 1K2 12K 120K нет
1R3 13R 130R 1R5 15R 150R 1K5 15K 150K нет
1R6 16R 160R 1R8 18R 180R 1K8 18K 180K нет данных
2R0 20R 2 00R 2K0 20K 200K нет данных
2R2 22R 220R 2K2 22K 220254 2K4 24K 240K нет данных
2R7 27R 270R 2K7 27K 270253 3K0 30K 300K н / д
3R3 33R 330R 3K3 33K 33025 360R 3K6 36K 360K нет данных
3R9 39R 390R 3K9 39K 390K нет данных
4R3 43R 430R 4K3 43K 430K нет
473 47254 473 47254 нет данных
5R1 51R 510R 5K1 51K 510K нет
5R6 56254 56254 нет
6R2 62R 620R 6K2 62K 620K нет
6R8 68253 6R8 68253 нет данных
7R5 75R 750R 7K5 75K 750K нет
8R2 82R 820R 8K2 82K 82OK нет данных
9R1 91R 910R 9K1 910R 9K1 900 Также существуют таблицы E48 и E96, в которых есть еще больше значений.Резисторы в этих группы менее распространены и, как правило, имеют более высокий рейтинг переносимости.

В таблице ниже показаны цветовые коды для предпочтительных значений E12 и E24. Обратите внимание, как первые два цвета в каждой строке одинаковы, и последний цвет в каждом столбце одинаков. Каждый столбец — декада, и каждая строка в этом столбце представляет собой другое значение E24.

Резисторы

1. Резисторы

Резисторы наиболее часто используемый компонент в электронике, и их цель — создать заданные значения тока и напряжения в цепи.А количество различных резисторов показано на фотографиях. (Резисторы на миллиметровой бумаге с интервалом 1 см, чтобы представление о габаритах). На фото 1.1a показаны резисторы малой мощности, а на фото 1.1b — некоторые высокая мощность резисторы. Резисторы с рассеиваемой мощностью менее 5 Вт (большинство обычно используемые типы) имеют цилиндрическую форму с выступающей из каждый конец для подключения в цепь (фото 1.1-а). Резисторы с рассеиваемой мощностью более 5 Вт являются показано ниже (фото 1.1-б).

Рис. 1.1a: Некоторые маломощные резисторы Рис. 1.1b: Резисторы большой мощности и реостаты

Символ резистора показан на следующая диаграмма (верхний: американский символ, нижний: европейский символ.)

Фиг.1.2a: Символы резисторов

Агрегат для Измерение сопротивления — Ом . (греческая буква Ω — называется Омега). Более высокие значения сопротивления обозначаются буквой «k». (килоом) и М (мегом). Для Например, 120000 Ом представлен как 120 кОм, а 1 200 000 Ом — как 1M2. Точка обычно опускается, так как его легко потерять в процессе печати. В какой-то цепи На диаграммах такое значение, как 8 или 120, представляет сопротивление в Ом.Другой распространенной практикой является использование буквы E для обозначения сопротивления в омах. В буква R. также может использоваться. Для Например, 120E (120R) обозначает 120 Ом, 1E2 обозначает 1R2 и т. д.

1.1 Маркировка резисторов

Значение сопротивления равно маркировка на корпусе резистора. Большинство резисторов имеют 4 полосы. Первые две полосы обеспечивают числа для сопротивления, а третья полоса обеспечивает количество нули. Четвертая полоса указывает на допуск.Значения допуска 5%, Чаще всего доступны 2% и 1%.

В следующей таблице показаны используемые цвета. для определения номиналов резистора:

ЦВЕТ ЦИФРА МНОЖИТЕЛЬ ДОПУСК TC
Серебро х 0.01 Вт 10%
Золото x 0,1 Вт 5%
Черный 0 x 1 Вт
Коричневый 1 x 10 Вт 1%100 * 10 -6 / K
Красный 2 x 100 Вт 2% 50 * 10 -6 / K
Оранжевый 3 x 1 кВт 15 * 10 -6 / K
Желтый 4 x 10 кВт 25 * 10 -6 / K
Зеленый 5 x 100 кВт 0.5%
Синий 6 x 1 МВт 0,25% 10 * 10 -6 / K
Фиолетовый 7 x 10 МВт 0,1% 5 * 10 -6 / K
Серый 8 x 100 МВт
Белый 9 x 1 GW 1 * 10 -6 / K

** TC — Темп.Коэффициент, только для SMD устройства

Рис. 1.2: б. Четырехполосный резистор, c. Пятиполосный резистор, d. Цилиндрический резистор SMD, эл. Резистор SMD плоский

Ниже показаны все резисторы от 0R1 (одна десятая ома) до 22M:

ПРИМЕЧАНИЯ:
Резисторы, указанные выше, имеют «общее значение» 5%. типы.
Четвертый диапазон называется диапазоном «допусков».Золото = 5%
(полоса допуска Серебро = 10%, но современные резисторы не 10% !!)
«общие резисторы» имеют номиналы от 10 Ом до 22 МОм.

РЕЗИСТОРЫ МЕНЬШЕ 10 ОМ
Когда третья полоса золото, это означает, что значение «цветов» необходимо разделить на 10.
золота = «разделите на 10», чтобы получить значения 1R0. по 8R2
Примеры см. в 1-й колонке выше.

Когда третий полоса серебряная, это означает, что значение «цветов» необходимо разделить на 100.
(Помните: в слове «серебро» больше букв, значит делитель «больше»)
Silver = «разделить на 100», чтобы получить значения от 0R1 (одна десятая ома) до 0R82
например: 0R1 = 0,1 Ом 0R22 = Точка 22 Ом
См. 4-й столбец выше. Примеры.

Буквы «R, k и M» занимают место десятичной дроби. точка. Буква «Е» также используется для обозначения слова «ом».
например: 1 R 0 = 1 Ом 2 R 2 = 2 точка 2 Ом 22 R = 22 Ом
2 к 2 = 2200 Ом 100 кОм = 100000 Ом
2 M 2 = 2200000 Ом

Резисторы общие имеют 4 группы.Они показаны выше. Первый две полосы указывают первые две цифры сопротивления, третья полоса — это множитель (количество нулей, которые должны быть добавлены к полученному числу от первых двух полос), а четвертая представляет собой допуск.

Маркировка сопротивления с помощью пять полос используются для резисторов с допуском 2%, 1% и др. резисторы высокой точности. Первые три полосы определяют первые три цифр, четвертая — множитель, пятая — допуск.

для поверхностного монтажа Device) на резисторе очень мало свободного места. Резисторы 5% используйте трехзначный код, в то время как 1% резисторов используют четырехзначный код.

Некоторые резисторы SMD изготавливаются в форма небольшого цилиндра, в то время как наиболее распространенный тип — плоский. Цилиндрические резисторы SMD помечены шестью полосами — первые пять «читаются» как с обычными пятиполосными резисторами, а шестая полоса определяет температурный коэффициент (TC), который дает нам значение сопротивления изменение при изменении температуры на 1 градус.

Сопротивление Плоские резисторы SMD маркируются цифрами на их верхней стороне. Первые две цифры — это значение сопротивления, а третья цифра представляет количество нулей. Например, напечатанное число 683 стоит для 68000Вт, то есть 68к.

Само собой разумеется, что массовое производство всех типы резисторов. Чаще всего используются резисторы E12. серии и имеют значение допуска 5%.Общие значения для первых двух цифры: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82.
E24 серия включает все значения, указанные выше, а также: 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75 и 91. Что означают эти числа? Это означает, что резисторы со значениями для цифр «39»: 0,39 Вт, 3,9 Вт, 39 Вт, 390 Вт, 3,9 кВт, 39 кВт и т. д. (0R39, 3R9, 39R, 390R, 3к9, 39к)

Для некоторых электрических цепей, допуск резистора не важен и не указывается.В этом в корпусе можно использовать резисторы с допуском 5%. Однако устройства, которые требуется, чтобы резисторы имели определенную точность, требуется указанная толерантность.

1,2 Резистор Рассеивание

Если поток ток через резистор увеличивается, он нагревается, а если температура превышает определенное критическое значение, он может выйти из строя. В номинальная мощность резистора — это мощность, которую он может рассеивать в течение длительного времени. промежуток времени.
Номинальная мощность резисторов малой мощности не указана. На следующих диаграммах показаны размер и номинальная мощность:

Рис. 1.3: Размеры резистора

Наиболее часто используемые резисторы в электронных схемах имеют номинальную мощность 1/2 Вт или 1/4 Вт. Существуют резисторы меньшего размера (1/8 Вт и 1/16 Вт) и выше (1 Вт, 2 Вт, 5 Вт, так далее).
Вместо одиночного резистора с заданной рассеиваемой мощностью, можно использовать другой с таким же сопротивлением и более высоким рейтингом, но его большие размеры увеличивают пространство, занимаемое на печатной плате а также добавленная стоимость.

Мощность (в ваттах) может быть рассчитана по одному из следующие формулы, где U — символ напряжения на резистор (в вольтах), I — ток в амперах, а R — сопротивление в Ом:

Например, если напряжение на 820 Вт резистор 12В, мощность, рассеиваемая резисторами это:

Резистор

А 1/4 Вт может использоваться.

Во многих случаях это непросто определить ток или напряжение на резисторе.В этом в случае, когда мощность, рассеиваемая резистором, определяется для «худшего» кейс. Мы должны принять максимально возможное напряжение на резисторе, т.е. полное напряжение источника питания (аккумулятор и т. д.).
Если мы отметим это напряжение как В В , максимальное рассеивание это:

Например, если В В = 9 В, рассеиваемая мощность 220 Вт резистор есть:

А 0.Резистор мощностью 5 Вт или выше должен использоваться

1,3 Нелинейные резисторы

Значения сопротивления указанные выше являются постоянными и не изменяются, если напряжение или ток меняется. Но есть схемы, требующие резисторов для изменить значение с изменением умеренного или светлого. Эта функция не может быть линейный, отсюда и название НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ.

Есть несколько типы нелинейных резисторов, но наиболее часто используемые включают: Резисторы NTC (рисунок a) (отрицательный температурный коэффициент) — их сопротивление снижается с повышением температуры. PTC резисторы (рисунок б) (положительный температурный коэффициент) — их сопротивление увеличивается с повышением температуры. Резисторы LDR (рисунок в) (Light Dependent Resistors) — их сопротивление уменьшается с увеличением свет. Резисторы VDR (резисторы, зависимые от напряжения) — их сопротивление критически снижается, когда напряжение превышает определенное значение. Символы, представляющие эти резисторы, показаны ниже.

Фиг.1.4: Нелинейные резисторы — a. НТЦ, б. PTC, c. LDR

дюйм любительские условия, когда нелинейный резистор может быть недоступен, это можно заменить другими компонентами. Например, NTC резистор можно заменить на транзистор с подстроечным резистором потенциометр, для регулировки необходимого значения сопротивления. Автомобильный свет может играть роль резистора PTC , в то время как резистор LDR можно было заменить открытым транзистором.В качестве примера на рисунке справа показан 2N3055 с его верхним часть удалена, так что свет может падать на кристалл внутри.

1,4 Практическая примеры с резисторами

На рис. 1.5 показаны два практических примеры с нелинейными и обычными резисторами в качестве подстроечных потенциометров, элементы, которые будут рассмотрены в следующей главе.

Рис. 1.5a: RC-усилитель

На рисунке 1.5a представлен RC-усилитель напряжения, который может использоваться для усиления низкочастотные аудиосигналы с малой амплитудой, например сигналы микрофона. Усиливаемый сигнал передается между узлом 1. (вход усилителя) и земля, а результирующий усиленный сигнал появляется между узлом 2 (выход усилителя) и заземление. Чтобы получить оптимальную производительность (высокая усиление, низкий уровень искажений, низкий уровень шума и т. д.) необходимо «установить» рабочая точка транзистора.Подробная информация о рабочей точке будет приведено в главе 4; а пока давайте просто скажем, что напряжение постоянного тока между узел C и gnd должны составлять примерно половину батареи (источника питания) Напряжение. Поскольку напряжение аккумулятора равно 6В, необходимо установить напряжение в узле C. до 3В. Регулировка осуществляется через резистор R1.

Подключить вольтметр между узел C и земля. Если напряжение превышает 3 В, замените резистор. R1 = 1,2 МВт с меньшим резистором, скажем R1 = 1 МВт.Если напряжение по-прежнему превышает 3 В, оставьте понижая сопротивление, пока оно не достигнет примерно 3 В. Если напряжение в узле C изначально ниже 3В, увеличьте сопротивление R1.

Степень усиления каскада зависит от сопротивления R2: более высокое сопротивление — более высокое усиление , более низкое сопротивление — нижнее усиление . Если значение R2 изменяется, напряжение в узле C следует проверить и отрегулировать (через R1).

Резистор R3 и конденсатор 100Ф сформировать фильтр, чтобы предотвратить возникновение обратной связи. Эта обратная связь называется «Моторная лодка», как это звучит как шум моторной лодки. Этот шум возникает только при использовании более чем одной ступени.
По мере добавления каскадов к цепи вероятность обратной связи в форма нестабильности или катания на лодке.
Этот шум появляется на выходе усилителя даже при отсутствии сигнала доставляется к усилителю.
Нестабильность возникает следующим образом:
Даже если на вход не поступает сигнал, выходной каскад производит очень слабый фоновый шум, называемый «шипением». Это происходит из-за ток, протекающий через транзисторы и другие компоненты.
Это помещает очень маленькую форму волны на шины питания. Эта форма волны поступил на вход первого транзистора и, таким образом, мы получили петля для «генерации шума». Скорость прохождения сигнала вокруг цепи определяет частоту нестабильности.К добавление резистора и электролита к каждому каскаду, фильтр низких частот производится, и это «убивает» или снижает амплитуду нарушения сигнал. При необходимости значение R3 можно увеличить.

Практические примеры с резисторами будет рассмотрено в следующих главах, поскольку почти все схемы требуют резисторы.

Рис. 1.5b: Звуковой индикатор изменения температуры или количества света

Практическое применение нелинейных резисторов показано на простом сигнальном устройстве, показанном на Рисунок 1.5б. Без триммера TP и нелинейного резистора NTC это аудио осциллятор. Частоту звука можно рассчитать по следующей формуле:

В нашем случае R = 47кВт и C = 47nF, а частота равна:

Когда по рисунку обрезать горшок и резистор NTC добавляются, частота генератора увеличивается. Если горшок обрезки установлен на минимальное сопротивление, осциллятор останавливается.При желаемой температуре сопротивление обшивки Pot следует увеличивать до тех пор, пока осциллятор снова не заработает. Для Например, если эти настройки были сделаны на 2C, осциллятор остается замороженным на более высоких температур, поскольку сопротивление резистора NTC ниже, чем номинальный. Если температура падает, сопротивление увеличивается и при 2С осциллятор активирован.

Если в автомобиле установлен резистор NTC, близко к поверхности дороги, осциллятор может предупредить водителя, если дорога покрытый льдом.Естественно, резистор и два соединяющих его медных провода к контуру следует беречь от грязи и воды.

Если вместо резистора NTC, резистор PTC используется, осциллятор будет активирован, когда температура поднимется выше определенный обозначенное значение. Например, резистор PTC может использоваться для индикации состояние холодильника: настроить осциллятор на работу при температурах выше 6C через подстроечный резистор TP, и цепь сообщит, если что-то не так с холодильником.

Вместо NTC мы могли бы использовать резистор LDR — осциллятор будет заблокирован, пока есть определенное количество света настоящее время. Таким образом, мы могли бы сделать простую сигнализацию для помещений, где свет должен быть всегда включен.

LDR может быть соединен с резистором R. In в этом случае осциллятор работает, когда присутствует свет, в противном случае он заблокирован. Это может быть интересный будильник для охотников и рыбаков, которые хотели бы встать на рассвете, но только если погода ясная.Рано утром в нужный момент обрезайте горшок должен быть установлен в самое верхнее положение. Затем сопротивление следует тщательно уменьшается, пока не запустится осциллятор. Ночью осциллятор будет заблокирован, так как есть нет света и сопротивление LDR очень высокое. По мере увеличения количества света в утром сопротивление LDR падает и осциллятор активируется, когда LDR освещается необходимым количеством света.

Обрезной горшок с рисунка 1.5b используется для точной настройки. Таким образом, TP с рисунка 1.5b можно использовать для установки осциллятор для активации при разных условиях (выше или ниже температура или количество света).

1,5 Потенциометры

Потенциометры

(также называемые горшками , ) переменные резисторы, используемые в качестве регуляторов напряжения или тока в электронные схемы. По конструкции их можно разделить на 2 группы: мелованные и проволочные.

С потенциометрами с покрытием (рисунок 1.6a), Корпус изолятора покрыт резистивным материалом. Существует проводящий ползунок перемещается по резистивному слою, увеличивая сопротивление между ползунком и одним концом горшка, уменьшая сопротивление между ползунком и другим концом горшка.

Рис. 1.6a: Потенциометр с покрытием

с проволочной обмоткой потенциометры изготовлены из токопроводящий провод намотан на корпус изолятора.По проводу движется ползунок, увеличивающий сопротивление. между ползунком и одним концом горшка, уменьшая сопротивление между слайдер и другой конец горшка.

Горшки с покрытием встречаются гораздо чаще. С их помощью сопротивление может быть линейным, логарифмическим, обратным логарифмическим или обратным логарифмическим. другое, в зависимости от угла или положения ползунка. Самый распространены линейные и логарифмические потенциометры, а наиболее распространенными являются приложения — радиоприемники, усилители звука и аналогичные устройства где горшки используются для регулировки громкости, тона, баланса, и т.п.

Потенциометры с проволочной обмоткой используются в приборах. которые требуют большей точности управления. В них есть более высокое рассеивание, чем у горшков с покрытием, и поэтому токовые цепи.

Сопротивление потенциометра обычно составляет E6 ряд, включающий значения: 1, 2.2 и 4.7. Стандартные значения допуска включают 30%, 20%, 10% (и 5% для проволочной обмотки). горшки).

Потенциометры

бывают разных формы и размеры, с мощностью от 1/4 Вт (горшки с покрытием для объема управление в амперах и т. д.) до десятков ватт (для регулирования больших токов).Несколько разных горшков показаны на фото 1.6b вместе с символом потенциометр.

Рис. 1.6b: Потенциометры

Верхняя модель представляет собой стерео потенциометр. На самом деле это две кастрюли в одном корпусе, с ползунки установлены на общей оси, поэтому они перемещаются одновременно. Эти используется в стереофонических усилителях для одновременного регулирования как левого, так и правильные каналы, и т.п.

Слева внизу находится так называемый бегунок потенциометр.

Справа внизу изображен горшок с проволочной обмоткой мощностью 20 Вт, обычно используется как реостат (для регулирования тока при зарядке аккумулятор и т. д.).

Для схем, требующих очень точной значения напряжения и тока, подстроечные потенциометры (или просто горшки для обрезки ). Это небольшие потенциометры с ползунком, который регулируется отверткой.

Обрезные горшки также бывают различных форм и размеров, с мощностью от 0,1 Вт до 0,5 Вт. Изображение 1.7 показаны несколько различных горшков для обрезки вместе с символом.

Рис. 1.7: Декоративные ванночки

Регулировки сопротивления сделано отверткой. Исключение составляет обрезной горшок в правом нижнем углу, который можно отрегулировать с помощью пластикового вала. Особенно точная регулировка достигается при помощи декоративного кожуха в пластиковом прямоугольном корпусе (нижний середина).Его ползунок перемещается винтом, так что можно сделать несколько полных оборотов. требуется для перемещения ползунка из одного конца в другой.

1,6 Практический примеры с потенциометрами

Как указывалось ранее, потенциометры чаще всего используются в усилителях, радио- и ТВ-приемниках, кассетные плееры и аналогичные устройства. Они используются для регулировки громкости, тон, баланс и т. д.

В качестве примера разберем общая схема регулировки тембра в аудиоусилителе.В нем два горшка и показан на рисунке 1.8a.

Рис. 1.8 Регулировка тона цепь: а. Схема электрическая, б. Функция усиления

Потенциометр с маркировкой BASS регулирует усиление низких частот. Когда ползунок находится в самом нижнем положения, усиление сигналов очень низкой частоты (десятки Гц) примерно в десять раз больше, чем усиление сигналов средней частоты (~ кГц).Если ползунок находится в крайнем верхнем положении, усиление очень низкое. частота сигналов примерно в десять раз ниже, чем усиление средних частотные сигналы. Усиление низких частот полезно при прослушивании музыки с битом (диско, джаз, R&B …), тогда как усиление низких частот должно быть снижается при прослушивании речи или классической музыки.

Аналогично, потенциометр с маркировкой TREBLE регулирует усиление высоких частот. Усиление высоких частот полезно, когда музыка состоит из высоких тонов. например, звуковой сигнал, в то время как, например, усиление высоких частот должно быть уменьшено, когда прослушивание старой записи для уменьшения фонового шума.

На диаграмме 1.8b показана функция усиления в зависимости от частоты сигнала. Если оба ползунка в крайнем верхнем положении результат показан кривой 1-2. Если оба находятся в среднем положении, функция описывается строкой 3-4, а оба ползунка в самом нижнем положении, результат отображается с помощью кривая 5-6. Установка пары ползунков на любые другие возможные результаты приводит к кривым между кривыми 1-2 и 5-6.

Потенциометры BASS и TREBLE имеют покрытие по конструкции и линейные по сопротивлению.

Третий горшок на диаграмме регулятор громкости. Покрытый и логарифмический по сопротивлению (отсюда марка журнал )

Обозначение сопротивления по цвету. Обозначения и маркировка резистора

Любой, кто работает с электроникой или когда-либо видел электронную схему, знает, что почти ни одно электронное устройство не обходится без резисторов.

Функция резистора в цепи может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени заряда или разряда конденсатора в RC-цепочке и т. Д.В любом случае, каждая из этих функций резистора выполнима благодаря главному свойству резистора — его активному сопротивлению.

Само слово «резистор» — это русскоязычное прочтение английского слова «резистор», которое, в свою очередь, происходит от латинского «resisto» — я сопротивляюсь. В электрических схемах применяются постоянные и переменные резисторы, а предметом данной статьи будет обзор основных типов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и их схемах.

Первые фиксированные резисторы, классифицируемые по максимальной мощности, рассеиваемой компонентом: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и более, до 1 кВт (резисторы для специальных применений).

Данная классификация не случайна, поскольку в зависимости от назначения резистора в цепи и от условий, в которых резистор должен работать, рассеиваемая на нем мощность не должна приводить к разрушению самого компонента и компонентов, расположенных рядом, что В крайнем случае резистор должен нагреваться от проходящего через него тока и уметь рассеивать тепло.

Например, керамический резистор SQP-5 с цементным наполнителем (5 Вт) При номинальном значении 100 Ом уже при постоянном напряжении 22 В, постоянно приложенном к его клеммам, он нагревается до температуры более 200 ° C. , и это необходимо учитывать.

Итак, лучше выбрать резистор необходимого номинала, скажем на те же 100 Ом, но с запасом максимальной рассеиваемой мощности, скажем, 10 Вт, который в условиях нормального охлаждения не нагревается выше 100 ° C — это будет менее опасно для электронного устройства.

Резисторы

SMD для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 Вт — сегодня также можно встретить на печатных платах. Такие резисторы, как и выходные, всегда берутся с запасом мощности. Например, в цепи на 12 В вы можете использовать резистор SMD 100 кОм размером 0402, чтобы поднять потенциал на отрицательную шину. Или на выходе 0,125 Вт, так как рассеиваемая мощность будет в десять раз дальше от максимально допустимой.

Резисторы проволочные и непроволочные, прецизионные

Резисторы

разного назначения используют разные.Нежелательно например проволочный резистор вставлять в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения тоже достаточно провода.

Проволочные резисторы, изготовленные путем намотки проволоки из манганина, нихрома или константана на керамическую или порошковую основу.

Изготовлены не из проволоки, а из токопроводящих пленок и смесей на основе связующего диэлектрика. Так, они излучают тонкие слои (на основе металлов, сплавов, оксидов, металл-диэлектрик, углерод и бор-углерод) и композитные (пленка с неорганическим диэлектриком, объемная и пленка с органическим диэлектриком).

Непроволочные резисторы часто представляют собой высокоточные резисторы, которые характеризуются высокой стабильностью параметров, способны работать на высоких частотах, в цепях высокого напряжения и внутри цепей.

Резисторы

в принципе делятся на резисторы общего и специального назначения. Резисторы общего назначения доступны с номинальными значениями от Ом до 10 МОм. Резисторы специального назначения могут иметь номинал от десятков мегаом до тераом и способны работать при напряжении 600 вольт и более.

Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку имеют крайне малые собственные емкости и индуктивности. Прецизионность и сверхточность отличаются точностью номинальных значений от 0,001% до 1%.

Номинальные характеристики и маркировка резисторов

Резисторы

доступны в различных номиналах, и есть так называемые серии резисторов, такие как широко распространенная серия E24.В общем, существует шесть стандартизованных рядов резисторов: E6, E12, E24, E48, E96 и E192. Число после буквы «E» в названии серии отражает количество значений номиналов на десятичный интервал, а в E24 эти значения равны 24.

Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — отрицательное или положительное целое число. Каждый ряд отличается своей терпимостью.

Цветовая маркировка выходных резисторов в виде четырех или пяти полос давно стала традиционной.Чем больше полос — тем выше точность. На рисунке показан принцип цветовой маркировки резисторов четырьмя и пятью полосами.

Резисторы для поверхностного монтажа (SMD — резисторы) с допуском 2%, 5% и 10% обозначены цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичном формате вместо нее ставим букву R. Маркировка 473 означает 47, умноженное на 10 в степени 3, то есть 47х1000 = 47 кОм.

Резисторы SMD

, начиная с типоразмера 0805, с допуском 1%, маркируются четырьмя цифрами, где первые три — мантисса (число, которое нужно умножить), а четвертая — степень числа 10, на которую мантисса должно приумножаться. Итак, 4701 означает 470×10 = 4,7 кОм. Чтобы обозначить десятичную точку, вместо нее поставьте букву R.


В маркировке sMD резисторов типоразмера 0603 используются две цифры и одна буква. Цифры — это код для определения мантиссы, а буквы — это код для показателя степени числа 10 — второго множителя.12D означает 130×1000 = 130 кОм.

На схемах резисторы обозначены белым прямоугольником с надписью, причем надпись иногда содержит как информацию о номинале резистора, так и информацию о его максимальной рассеиваемой мощности (если это критично для данного электронного устройства). Вместо точки в десятичной системе обычно ставят буквы R, K, M — если они означают Ом, кОм и МОм соответственно. 1R0 — 1 Ом; 4K7 — 4,7 кОм; 2M2 — 2,2 МОм и т. Д.

Чаще всего в схемах и на платах резисторы просто нумеруются R1, R2 и т. Д., а в сопроводительной документации на схему или плату под этими номерами указан список компонентов.

Что касается мощности резистора, то она буквально может быть указана на схеме, например 470 / 5W — значит — 470 Ом, резистор 5 ватт? или символ в прямоугольнике. Если прямоугольник пустой, значит резистор берется не очень мощный, то есть 0,125 — 0,25 Вт, если речь идет о выходном резисторе или максимум 1210 размера, если выбран SMD резистор.

Резистор — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току.

В соответствии с классификацией резисторов по функциональным характеристикам, резисторы можно разделить на постоянные и переменные. Резисторы, сопротивление которых не может быть изменено в процессе настройки и во время работы оборудования, относятся к группе постоянных резисторов. Резисторы, сопротивление которых можно изменять при наладке и настройке оборудования (обычно с помощью инструментов), составляют довольно большую группу ЭРЭ, называемых подстроечными резисторами.По типу токопроводящего материала, из которого изготовлены резисторы, они делятся на проволочные и непроволочные. В свою очередь непроволочные резисторы делятся на пленочные и насыпные. В пленочных резисторах используется металлический сплав или другой проводящий материал с высоким удельным сопротивлением, который наносится тонким слоем на поверхность корпуса резистора, который обычно изготавливается из керамического материала или другого термостойкого материала.

Пленочные резисторы имеют малые габаритные размеры, незначительную массу, минимальную собственную индуктивность, высокое постоянство сопротивления в широком диапазоне частот, проверенные технологии изготовления и относительно невысокую стоимость.Токопроводящая часть объемных непроволочных резисторов представляет собой стержень из материала с высоким удельным сопротивлением, покрытый слоем влагостойкой эмали.

Особую классификационную группу резисторов составляют непроволочные резисторы нелинейные — варисторы. Сопротивление этих резисторов широко варьируется в зависимости от величины приложенного к ним напряжения.

Особую группу непроволочных резисторов составляют фоторезисторы , сопротивление которых изменяется под действием световых лучей.

Проволочные резисторы представляют собой керамическую фарфоровую трубку, на которую намотана проволока с высоким удельным сопротивлением.

Как правило, буквенные и цифровые коды, используемые для обозначения постоянных резисторов, могут указывать на тип и размер резистора; показать марку материала, из которого изготовлен корпус резистора, и его токопроводящий слой; обозначить конструктивные и конструктивные особенности; значения сопротивления и максимально возможные отклонения от номинала; номинальная рассеиваемая мощность; максимальные шумы ЭДС; дата изготовления резистора; товарный знак производителя и вид приемки резисторов заказчиком или ОТК.

В соответствии с требованиями государственных стандартов буквенные и цифровые коды могут состоять из трех, четырех и пяти знаков. Эти коды обычно включают две буквы и цифру, три цифры и букву или четыре цифры и букву. В этом случае буквы заменяют десятичную запятую.

и допуски, нанесенные на корпус резистора, определяют его качественные показатели. Номинальное сопротивление резисторов стандартизировано и определяется математическими рядами, которые имеют следующие условные обозначения: Е6, Е12, Е24, Е96, Е192.Число в обозначении серии Е определяет качество значащих цифр — номиналов в каждом десятичном интервале. Например, в строке Е6 шесть номиналов сопротивления в разряде Ом, десятки и сотни в следующих цифрах.

Номинальное значение сопротивления обозначается, как правило, цифрами, обозначающими основные единицы измерения, а символы Ом и Ом обозначают заглавными буквами латинского алфавита K и M. Таким образом, резистор с сопротивлением 2.2 Ом можно обозначить: 2.2; 2,2 Ом; 2,2 Ом; 2.2E; 2E2. Резистор сопротивлением 220 Ом может иметь маркировку: 220; 220 Ом; 220 E; К220.

Допуски номинальные значения сопротивления указываются цифрами и рассчитываются в процентах. Например, ± 2%; ± 5% или всего 2; пять; 10.

Как упоминалось ранее, в некоторых обозначениях можно встретить букву или цифру дополнительного кода, который ставится после буквы, обозначающей допуск, и размещается так, чтобы не было путаницы между кодами, указывающими значение сопротивления и терпимость.Значения сопротивления, выраженные в омах, умножаются на соответствующие множители, которые кодируются буквами латинского алфавита R K M T и соответствуют 1; 10 3, 10 6, 10 9.

Резистор номинальной мощности — наибольшая мощность постоянного или переменного тока, при которой резистор может длительное время надежно работать, если его температура не превышает номинальную температуру t н.

Табл. 1. Примеры обозначений номиналов сопротивлений резисторов

Таблица 2 Маркировка допустимых отклонений сопротивлений резисторов

Отклонения, ±,%

Буквенные символы

Латиница

Табл.3. Буквенное обозначение года выпуска постоянных резисторов по международным правилам

Табл. 4. Буквенно-цифровое кодирование месяца выпуска

Например, март 1999 года обозначается L3; Декабрь 1999 г. — К.Д.

Табл. 5. примеры полной буквенно-цифровой маркировки резисторов

Обозначение на резисторе

Характеристика резистора

Постоянный резистор

Номинальное сопротивление резистора 1.5 Ом

Допустимое отклонение сопротивления от номинала ± 1%

Дата изготовления — 1986 год

Резистор постоянный.

Сопротивление резистора 5,1 МОм

Отклонение от номинала ± 20% (И — русская буква, М — латинская буква)

Дата изготовления — 1996 г.

ᴓ — Код производителя

СП-1 680 5-89

Переменный экранированный резистор

Максимальное сопротивление резистора 680 Ом

Допустимое отклонение от номинального значения сопротивления составляет ± 20%

Резистор имеет обратно-логарифмическую характеристику функциональной зависимости изменения сопротивления (В)

Резистор номинальной мощности 0.5 W

Дата изготовления — май 1989 г.

ᴓ — Код производителя.

Цветовая маркировка резисторов. Постоянные резисторы, изготовленные на основе углеродной или металлооксидной пленки небольшого размера, могут иметь маркировку цветовым кодом, обозначающим их номинальное сопротивление и предельно допустимое отклонение. Такая маркировка наносится на поверхность резистора в виде концентрических поясов (колец) с краской разного цвета, количества и размеров, которые обозначаются определенными цифрами, соответствующими значениям закодированных значений.

Для облегчения считывания цветовой маркировки первый ремень расположен ближе к краю резистора, либо последний ремень сделан намного шире, чем все остальные.

Первые два цвета на ремнях показывают два значимых числа сопротивления резистора, выраженные в омах, в полном соответствии с установленным параметрическим рядом E6, E12 или E24.

Пояс третьего цвета означает градус с множителем 10, пояс четвертого цвета определяет величину допуска от номинального значения резистора.Отсутствие пояса четвертого цвета на резисторе означает симметричное значение допуска ± 20%.

Иногда на резисторах можно встретить дополнительные цветные кольца, которые можно использовать, например, для обозначения температурного коэффициента. Затем наносится полоска пыльцы в качестве шестой более широкой полоски или проводится спиральная линия. В этом случае цветовое кодирование температурного коэффициента сопротивления применяется только к значениям с тремя значащими цифрами.

Рис. 1. Цветовая маркировка постоянных резисторов отечественного производства с сопротивлением: а — 510 кОм, ± 2%; б — 9.1 Ом, ± 5%; дюйм — 680 кОм, ± 20%

Таблица 6 Цветовая маркировка значений номинальных сопротивлений и допусков отечественных резисторов.

Большинство людей приходят на радиолюбительство из-за желания сделать что-то своими руками, что-то уникальное, что несомненно принесет пользу и себе, и окружающим … Но выбор конструкции для самостоятельной сборки часто вызывает массу проблем, связанных с плохой запас знаний в области радиоэлектроники. Конечно, обычное чтение книг по соответствующей тематике и извлечение оттуда ценной информации о разнообразии радиоэлементов, о работе транзистора и других устройств начинается немедленно.Когда много чего прочитано, уже есть представление об условном графическом отображении элементов на схеме, и есть некоторые представления о принципе действия, возникает проблема переноса схемы с бумаги в реальность, а именно: поиск компонентов схемы. Сейчас не проблема составить список, чтобы пойти и купить радиодетали, но у многих все еще нет возможности закупить запчасти, и на помощь приходит старое сломанное радиооборудование. О том, как найти нужные радиодетали в старой технике и пойдет речь в этой статье.Я специально не буду описывать какую-либо конкретную схему, так как в одном устройстве невозможно охватить все разнообразие электронных компонентов. Также я не буду описывать принцип работы элементов, все это вы уже должны знать.

Пассивные компоненты

Резисторы

Самым распространенным элементом является резистор , без него невозможно построить любую схему. Встретить его можно практически в любом электронном устройстве, резистор представляет собой цилиндр с двумя диаметрально противоположными выводами.Он служит для ограничения тока в цепи и имеет определенное сопротивление, измеряемое в Ом. Обозначается прямоугольником с двумя черточками на противоположных сторонах, внутри прямоугольника обычно указывается мощность (рис. 1).

В бытовой технике используются резисторы с номиналами, расположенными по ряду Е24, это означает, что в диапазоне от 1 до 10 имеется 24 значения сопротивления. Типов резисторов много, вот самые распространенные:

Рис. 1. Обозначение резисторов. Тип MLT

Резисторы типа МЛТ (металл с жаропрочным лаком) — часто встречаются в ламповом оборудовании (обычно не менее 0.12).

18 — 18 Ом, при обозначении единиц Ом букву иногда не ставят, в том числе на схемах.

Если номинальное сопротивление выражается целым числом с дробью, то единица измерения указывается с помощью запятой.

1М5-1,5 МВт.

К51- 510 Ом, если перед цифрой стоит буква, значит сопротивление меньше килоом (мегаома), следующая цифра показывает сопротивление.

Далее в обозначении буква, обозначающая допуск в процентах: (Е = ± 0.001; L = ± 0,002; R = ± 0,005; Р = ± 0,01; U = ± 0,02; В (Ж) = ± 0,1; С (Y) = ± 0,25; D (D) = ± 0,5; F (P) = ± 1; G (L) = ± 2; J (U) = ± 5; К (С) = ± 10; M (B) = ± 20; N (Ф) = ± 30. Значение допуска может применяться к номинальному сопротивлению во второй строке и будет выражаться в процентах.

Резисторы типа ВС (водонепроницаемые) можно встретить в ламповой аппаратуре 60-70-х годов (рис. 2). А именно в радио и в черно-белых телевизорах. Практической ценности в настоящее время не несет. Маркировка аналогична МЛТ, имеет несколько габаритов в зависимости от мощности.


Рис. 2. Тип ВС

В середине 80-х годов появилась цветовая маркировка резисторов (рис. 3, рис. 4), которая существует и сегодня, что позволило быстро определить номинал без пайки из схемы (тоже под рукой, ищем желаемый резистор сильно разгонялся). Резисторы с такой маркировкой производятся многими отечественными и зарубежными компаниями, поэтому определить конкретный тип резистора очень сложно, а зачастую и не нужно.


Рис. 3. Резисторы с цветовой кодировкой


Рис. 4. Расшифровка цветовой маркировки резисторов

В таблице показан метод определения номинала резистора и класса точности. Класс точности показывает, на сколько процентов сопротивление может отличаться от заявленного номинального значения.

Для определения сопротивления цветных полосок можно использовать :.

В последнее время наметилась тенденция к минимизации, и начали появляться SMD-компоненты. Вот так называемые чип-резисторы (рис.3 = 12000 Ом = 12 кОм. Часто встречаются чип-резисторы с обозначением 0, это резистор нулевого сопротивления или просто перемычка.

Для построения усилителей, а точнее их выходных каскадов часто требуются силовые резисторы более 2 Вт с сопротивлением не более 1 Ом. Обычно это резисторы марки PE или PEV — проволочные резисторы мощностью от 1 до нескольких сотен ватт (рис. 7). Также самые современные из различных производителей (рис. 8). Можно встретить в старинных ламповых телевизорах, магнитолах и устройствах промышленной автоматики.При отсутствии необходимого резистора его можно изготовить самостоятельно из спирали от электронагревателя, отрезав необходимую длину, подобрав сопротивление омметром.



Рис. 7. Резисторы шить


Фиг. Восемь

Особое место среди постоянных резисторов занимают резисторные сборки (рис. 9), которые очень удобны при построении схем, где требуется много одинаковых резисторов.


Рис. 9. Резисторные сборки дип и smd

Сборки

имеют два типа подключения, либо в виде нескольких обычных резисторов, только в одном корпусе, либо резисторов с одним общим выводом.Можно встретить во многих цифровых устройствах, где они обычно используются в качестве подтягиваний.

В электронных устройствах часто используются резисторы с переменным сопротивлением, их можно разделить на переменных — используются для быстрого изменения параметров устройства во время работы, таких как громкость, тембр, яркость, контрастность, и подстроечных резисторов — используются для настроить устройство при сборке и вводе в эксплуатацию.

Переменные резисторы:



Фиг.10. Переменные резисторы

.

Резисторы переменные рис.10:

1. Со встроенным тумблером, можно встретить в ламповых телевизорах и в магнитоле 70-х
2. Резистор типа СП3-30а можно было встретить в телевизорах, ресиверах, абонентских громкоговорителях до 90-х годов выпуска.
3. Резистор Сп-04, встречающийся в телевизорах и носимых магнитофонах 80-х годов.
4. СП3-4а в всей технике конца 80-х — начала 90-х гг.
5. Специализированная четверка с тумблером СП3-33-30, обычно встречается в различных типах магнитол.


Рис. 11. Ползунковые переменные резисторы

Резисторы

Slider (рис.11) часто встречаются в магнитофонах 80-90-х годов в качестве регуляторов звука и тона.


Рис. 12. Современные переменные резисторы

Более современные резисторы (рис. 12) можно найти в любой импортной технике начала 90-х годов, от кассетных плееров и автомагнитол до телевизоров и музыкальных центров. Часто встречаются сдвоенные резисторы для регулировки звука сразу на двух каналах (стерео).Очень интересен последний резистор (на картинке), так называемый 3D резистор или джойстик. Он состоит из нескольких сочлененных резисторов и отслеживает движение ручки влево-вправо, вверх-вниз и вращение вокруг своей оси. Вы можете встретить такой экземпляр в джойстиках игровых приставок.

Для всех переменных резисторов, помимо сопротивления, есть очень важный параметр — зависимость сопротивления от угла поворота вала (линейное перемещение), обозначаемая буквой после значения сопротивления:

Советский:
А — линейная зависимость
Б — логарифмическая зависимость
Б — обратная логарифмическая зависимость

Импортировано:
A — логарифм
B — линейный
C — обратный логарифм

Для регулировки громкости обычно используют резисторы с логарифмической зависимостью.

Подстроечные резисторы :



Рис. 13. Подстроечные резисторы СССР

Подстроечные резисторы

Рис.13:
1,2,3 — обычно встречаются в старых ламповых телевизорах.
4.7 (РП1-64Б), 8 (СП3-29А) — в полупроводниковых цветных телевизорах
5 — во всей советской технике 80-х
6 — СП5-50МА — мощный проволочный резистор, в цветных ламповых телевизорах.
9 — многооборотный подстроечный резистор СП3-36, обычно встречается в тюнере телеканала.


Фиг.14



Рис. 15. Резисторы многооборотные

Многооборотный подстроечный резистор, используемый в усилительном оборудовании для установки тока покоя и во всех системах, где требуется точная настройка.

Все переменные и подстроечные резисторы также различаются по мощности, которая обычно указывается на корпусе или в документации на элемент. Практически любые из перечисленных могут быть применены к их конструкциям исходя из требуемых габаритов и мощности.

Со временем как подстроечный резистор, так и переменные резисторы выходят из строя, и возникает нежелательное явление, называемое шорохом.Это явление вызвано недостаточным прижатием (контактом) ползуна или износом подложки, как правило, нет смысла ремонтировать резисторы, хотя иногда встречаются очень редкие и уникальные (например, в большинстве микшерных пультов), которых нет. можно найти замену. При этом резистор нужно аккуратно разобрать, загнуть контакт, твердым карандашом восстановить графитовое покрытие и заново собрать силиконовой смазкой. Резистор после такой реанимации еще может служить.

Есть еще резисторы, которые реагируют на изменения окружающей среды, в любительских конструкциях мало используются, но все же стоит упомянуть: термисторы


Рис. 16. Термисторы

Применяются для термостабилизации схемы, встречаются очень часто, а в самодельных устройствах используются очень мало.


Рис. 17. Фоторезистор

Меняет свое сопротивление в зависимости от света. Могут сниматься с любительских фотоаппаратов, где они используются как светочувствительный элемент.

Тензодатчики


Рис.18. Тензодатчики

Они меняют свое сопротивление в зависимости от деформации, очень редко встречаются в бытовой технике и обычно используются в виде датчиков в устройствах автоматики.

Варистор — это полупроводниковый резистор, сопротивление которого эффективно уменьшается под действием приложенного к нему напряжения, а ток, протекающий в цепи, увеличивается.


Рис. 19. Варисторы

Применяются как устройство защиты в импульсных блоках питания бытовой техники от перенапряжения.Встретить можно в любом современном устройстве.

Привет. Сегодня статья будет посвящена такому радиоэлементу, как резистор, или, как раньше его называли, сопротивление.

Основная задача резисторов — создание сопротивления электрическому току. Для большей наглядности представим себе электрический ток, как вода, текущая по трубе. В конце этой трубы установлен кран, который полностью откручивается, и он просто пропускает воду через себя. Как только мы начнем закрывать кран, мы сразу увидим, что поток слабее до того момента, когда поток воды полностью прекратится.

По такому принципу работают резисторы, только вместо трубы у нас электрический провод, вместо воды — ток, а вместо крана — резистор. Чем выше номинал резистора, тем больше сопротивление электрическому току. Сопротивление резистора измеряется единицей измерения, например ом.

Поскольку в схемах могут использоваться очень большие резисторы, номинальное значение которых может составлять около 1000-1000000 Ом, для упрощения расчетов используются производные единицы, такие как кОм , мМ и гом .

Для лучшего понимания этих единиц, вот следующая расшифровка:

1 кОм = 1000 Ом;

1 мОм = 1000 кОм;

1 гОм = 1000 мОм;

На практике все очень просто. Если ударить резистор с надписью 1,8 кОм, то, не сложив расчетов, увидим, что номинал в Ом будет 1800 Ом.

По принципу действия резисторы делятся на постоянных и переменных .

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные резисторы могут изменять свой номинал во время работы и используются для выполнения какой-то настройки. Примером использования переменных резисторов могут быть ручки регулировки громкости, тембра на магнитофонах.

Постоянные резисторы

Поговорим подробнее о постоянных резисторах. На практике обозначение номинальных резисторов наносят на корпус.Это может быть буквенно-цифровой код или цветные полосы (). Как узнать номинал по цветовой маркировке резистора, можно узнать из этого.

Что касается буквенно-цифрового обозначения, то обычно его обозначают так:

  1. Letter R Omah . Положение этого письма очень важно. Если резистор типа надит 12 R , тогда резистор будет 12Ом . Если буква в начале R 12 , тогда сопротивление будет 0.12 Ом . Также возможно обозначение типа. 12 R1 , что означает 12,1 Ом.
  2. Буква K — означает, что резистор будет измеряться от до Ом . Применяются те же правила, что и в предыдущем примере. 12 K = 12кОм K 12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М — означает, что резистор будет меряться в м Ом . 12 M = 12 мОм, M 12 = 0,12 мОм и 12M1 = 12,1 мОм.

Также на корпусе резистора обозначить такую ​​величину, как отклонение от номинала . В случае массового производства резисторов из-за несовершенства технологий производства сопротивления могут иметь некоторые отклонения от заявленного значения. Это возможное отклонение указано на корпусе резистора как ± 0,7% или ± 5%. Цифры могут быть разными, в зависимости от способа производства.

В процессе работы при высоких нагрузках резистор выделяет тепло. Если в цепь питания больших нагрузок поместить маломощный резистор, то он быстро нагреется и сгорит. Чем больше резистор, тем больше его мощность. На рисунке ниже показано обозначение силовых резисторов на схемах.

Обозначение силовых резисторов на схеме

Переменные резисторы

Как упоминалось ранее, переменные резисторы используются для плавной регулировки тока и напряжения в пределах номинала резистора.Переменные резисторы строение и регулировочное . Через регулировочные резисторы осуществляются постоянные нестандартные настройки оборудования (регулировка звука, яркости тембра и др.), А строительная техника используется для настройки оборудования в режиме настройки при сборке оборудования. Для регулировки резисторов допустимо иметь удобную ручку, а вот строительные обычно регулируются отверткой.



Если переменный резистор говорит, что он имеет номинал 10кОм , это означает, что он выполняет регулировки в диапазоне от 0 до 10 кОм .В среднем положении рукоятки ее номинал будет примерно 5 кОм , крайний или 0 10 кОм .

Продолжаем нашу серию справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах , они присутствуют в любой электронной схеме, даже самой простой. Они делятся на два типа: переменные и константы. Обычные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0,125 до 2 Вт. Если быть более точным, это серия из 0.125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт. Конечно, есть более мощные резисторы, например проволочные, но в электронных схемах они используются редко. На рисунке ниже показан внешний вид и размеры резисторов, а также их обозначения на принципиальных схемах.

Из них наиболее часто используются в электронике резисторы мощностью от 0,125 до 0,5 Вт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0,1-1%. Есть более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется.Если резистор может изменять сопротивление — это называется переменным (или подстроечным). Фото переменных резисторов:


Переменные резисторы тоже встречаются. провод и непроволочный Проволочный провод обычно рассчитан на большую мощность. Непроволочное устройство переменного резистора можно увидеть на картинке:


Резистор устроен следующим образом, на основе гетинакса наносится слой сажи, смешанный с лаком, в виде дуги.Этот резистор между первым и вторым контактами (на рисунке), другими словами, между крайними выводами, сопротивление постоянное, а между средним и крайним выводами изменяется при повороте ручки резистора. К этому слою с сопротивлением прикреплен подвижный контакт, который подключен к центральному выводу. Очень часто при интенсивном использовании регулятора этот слой сажи истирается, и сопротивление резистора при повороте ручки резистора резко изменяется, иногда даже становясь больше максимального установленного значения.Из-за этого износа и из динамиков появляется шорох и треск, а иногда при сильном износе звук пропадает полностью. Переменные резисторы бывают как одинарными, так и сдвоенными, сдвоенные обычно используются в устройствах со стереозвуком. Также к переменным резисторам относятся подстроечные резисторы:


Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отверткой. Также переменные резисторы бывают однооборотные и многооборотные.Схематическое изображение переменного и подстроечного резистора на рисунке ниже:


На советских резисторах МЛТ номинал резистора был написан, на импортных резисторах маркировка производится нанесением цветных колец, первые два кольца кодируют номинал , третье кольцо — умножитель, четвертое кольцо — допуск резистора (для обычных неточных резисторов).


Имеется маркировка с более чем четырьмя кольцами, расшифровать маркировку поможет следующий рисунок:

Иногда возникает необходимость узнать номинал резистора и по цветовым соображениям. по каким-то причинам это сделать сложно.В этом случае нужно обратиться к концепции устройства. В таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы не указаны), 100 К означает 100 кОм, 2 МОм означает 2 МОм. Иногда при сборке какой-либо схемы желаемого номинала нет под рукой, но есть много резисторов других номиналов, в этом случае резисторы последовательного или параллельного включения. Формулы счета всем известны из учебников физики, но если кто забыл, приведу здесь:

При последовательном подключении


При параллельном подключении


В последнее время многие переходят на SMD-детали, из которых наиболее распространены резисторы типоразмеров 0805 и 1206.Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра — количество нулей. Пример : маркировка 332 , значит 33 плюс два нуля, получается 3300, то есть 3,3 кОм. Реже встречается в электронике, но все же используются термисторы и фоторезисторы. На рисунке ниже показана схема термисторов:

В термисторах сопротивление зависит от температуры.Если сопротивление термистора увеличивается с повышением температуры, температурный коэффициент сопротивления TKS положительный, но если сопротивление уменьшается с повышением температуры, TKS отрицательный. Термистор изображен ниже:


На следующем рисунке показан фоторезистор, как он изображен на схемах:


Это полупроводниковый прибор, сопротивление которого изменяется под действием света.


Фоторезисторы особенно широко используются в устройствах автоматизации.Приведу типичную схему включения полупроводникового фотоприемника:


Обсудить статью РЕЗИСТОРЫ

RG Резисторы с внутренним шестигранником

RG ALLEN Силовые резисторы

Резисторы, необходимые для рассеивания значительного количества энергии, особенно используемые в источниках питания, схемах преобразования мощности и усилителях мощности, обычно называются силовыми резисторами; это обозначение свободно применяется к резисторам с номинальной мощностью 1 Вт или выше.Резисторы мощности физически больше и могут не использовать предпочтительные значения, цветовые коды и внешние пакеты.

Силовой резистор — хорошее решение для многих типов приложений питания и управления. Типичные области применения включают средства управления небольшими электродвигателями, промышленное оборудование, источники питания, сварочное оборудование, плазменные резаки, системы и средства контроля и подачи жидкости, наружное и подводное освещение, громкоговорители и усилители звука.
Цементные резисторы изготавливаются путем наматывания керамических стержней резистивной проволокой из металлического сплава и вставки ее в огнеупорный керамический ящик, затем бетон с негорючим и жаропрочным цементом.

Характеристики

  • Теплостойкость и огнестойкость
  • полностью изолированная характеристика подходит для печатной платы
  • Для обеспечения высокого сопротивления сердечник обмотки будет заменен на режущий сердечник из оксидной пленки.

Мы стремимся поставлять силовые резисторы, соответствующие требованиям и спецификациям наших клиентов. Благодаря широкому ассортименту продукции мы стремимся быть вашим предпочтительным поставщиком силовых резисторов.

Резистор обнаружения

Резистор цепи безопасности

Допуск 922 922 922 W22 D x 922 922 W x 22
Название, характеристика, изображение Рейтинг
Мощность
Сокращение
(Единицы измерения мм)
Диапазон значений сопротивления RoHS
Ом ~ Ом
Тип ME (встроенный термопредохранитель)
2 Вт 12 × 8 × 22 Пять 0.15 ~ 13к Дж (± 5%) Переписка
3 Вт 13 х 9 х 26,5 Пять 0,27 ~ 22к Дж (± 5%) Переписка
5 Вт 13 х 9 х 26,5 Пять 0,3 ~ 27к Дж (± 5%) Переписка
7 Вт 14 × 10 × 40 Пять 0.47 ~ 1,5k Дж (± 5%) Переписка
Модель CEG
(Встроенный плавкий предохранитель +
Тип снижения дымовыделения)

5 Вт · 7 Вт

5 Вт 13,8 х 10 х 25 Четыре 0,2 ~ 530 Дж (± 5%) Переписка
7 Вт 14 × 17.8 × 25 Четыре 0,4 ~ Дж (± 5%) Переписка
Модель LTRII (линейный термистор)
10 × 16 × 7,3 ~ Дж (± 5%) Corr

1. Базовые знания резисторов | Susumu International U.S.A. — Специалист по технологии тонких пленок —

1.1 Резисторы и закон Ома (как резисторы работают в схемах)

Типовые пассивные компоненты

  • ・ Резисторы
  • ・ Конденсаторы
  • ・ Катушки индуктивности

К резисторам применим закон Ома.

Возможное применение резисторов по закону Ома.

  • ・ Решающее напряжение
  • ・ Действующий
  • ・ Измерительный ток
  • ・ Потребляемая мощность (преобразование электричества в тепло)

Последовательные или параллельные резисторы и напряжение

V из = R 2 / (R 1 + R 2 )
I = Vin / ( 1 + 2 )
Я = Я 1 = Я 2

Последовательно напряжение пропорционально сопротивлению


Я = Я 1 + Я 2
V выход = V 2 = V 1 = Vin
1 2 = I 2 : I 1

Параллельно напряжение на каждом резисторе одинаковое.

Ток отрицательно пропорционален сопротивлению

1.2 Маркировка резистора и серия E

Значение сопротивления выражается 3- или 4-значными числами после серии E. Серия E — это серия с геометрической прогрессией, и в зависимости от того, сколько чисел используется от 1 до 10, они называются сериями E12, E24 и E96.

Серия E12 — это геометрическая прогрессия

12 10 n Замените «n» на 0… 11, и вы получите
1.0, 1.2, 1.5,… 8.2,
12 значений с одинаковым соотношением.

Серия

E24 добавляет число между каждой серией E12, в результате чего получается 24 числа. 24 10 n


Значение сопротивления выражается трех- или четырехзначным буквенно-цифровым числом на верхней части изделий, если поверхность слишком мала для нанесения маркировки.
⇒ Значимые цифры выражены в серии E.

Дополнительное пояснение : Примеры выражения значения сопротивления

Чип-резисторы в настоящее время имеют диапазон от мОм (миллиом) до МОм (мегаом). Используя степень 10 и серии E, значение сопротивления выражается следующим образом. Количество цифр меняется в зависимости от размера и значения сопротивления (подробности см. В каждой серии продуктов.Серия E описана на странице 7 каталога. )

Диапазон значений сопротивления и единицы


Серия E6, E12, E24 имеет 2 значащих цифры
Последняя цифра: n из 10 n
n = 1 ⇒ 10 1 = 10
n = 2 ⇒10 2 = 100
n = 3 ⇒10 3 = 1000
R означает десятичную точку ниже 10 Ом

Серия E96 имеет 3 значащих цифры
Последняя цифра — n из 10 n
n = 1 ⇒ 10 1 = 10
n = 2 ⇒10 2 = 100
n = 3 ⇒10 3 = 1000
При сопротивлении 1 Ом числа после десятичной точки выражаются тремя цифрами после R

3-х значное обозначение
102 => 10 x 100 = 1 кОм
331 => 33 x 10 = 330 Ом
3R0 => 3.0 Ом

* См. Стр. 7 каталога для 3-значного выражения серии E96

4-значное обозначение
1002 => 100 x 100 = 10 кОм
4990 => 499 x 1 = 499 Ом
3303 => 330 x 1000 = 330 кОм
3R00 => 3,0 Ом
R220 => 0,22 Ом = 220 мОм
R005 => 0,005 Ом = 5 мОм

Наборы подключаемых резисторов

— Спецификация

% PDF-1.6 % 1 0 объект > эндобдж 8 0 объект > эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать 2015-03-26T15: 26: 19-04: 002016-03-15T15: 27: 31 + 01: 002016-03-15T15: 27: 31 + 01: 00Adobe InDesign CC 2014 (Macintosh) uuid: 279481b3-4766-49d6 -85d4-f17dbde98d4dxmp.did: E3ED

B206811AFFD86D946FA9CDAxmp.id: 6b2deda2-6136-47d4-9f75-c7a0b69f5ec5proof: pdfxmp.iid: f803543b-dbd5-4d65-A912-d9186e7065d6xmp.did: 566E1874072068118A6D99C67F2F3763xmp.did: E3EDB206811AFFD86D946FA9CDAdefault
  • convertedfrom применение / х-к InDesign application / pdf Adobe InDesign CC 2014 (Macintosh) / 2015-03-26T15: 26: 19-04: 00
  • application / pdf
  • Схемы подключаемых резисторов — Спецификация
  • Связываемые резисторы для датчиков — Таблица выбора
  • Микро-измерения — Vishay Precision Group (VPG)
  • 2016 Vishay Precision Group Inc (VPG) 9 2013 г. Библиотека Adobe PDF 11.0Неизвестно Верно http://www.vishaypg.com/company/privacy-legal/ конечный поток эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 9 0 объект 5756 эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > транслировать HW [o ~ 篘 Gc} $ 7 .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *