Ротор асинхронного двигателя: Трехфазный асинхронный двигатель

Содержание

Асинхронные электродвигатели

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Статор асинхронного двигателя (рис. 187) состоит из сердечника 2, обмотки 3 и корпуса (станины) 1. Сердечник статора является частью магнитопровода и собран из отдельных стальных пластин 4 толщиной 0,35-0,5 мм. Чтобы снизить до минимума потери энергии на вихревые токи, пластины изолируют друг от друга (чаще всего тонким слоем специального лака). В пазах стального статора укладывают провода, образующие трехфазную обмотку статора. Каждая фазная обмотка состоит из одной или нескольких катушек и рассчитана на определенное номинальное фазное напряжение. На двигателе указывается два номинальных напряжения (например, 380 и 220 В), отличающихся в j/З раз.

При большем напряжении сети фазные обмотки статора соединяют звездой, а при меньшем напряжении — треугольником. В том и другом случае к каждой фазной обмотке подводится одинаковое напряжение, являющееся номинальным фазным напряжением двигателя.

Начала обмоток статора обозначают CI, С2, СЗ, а концы — С4, С5, С6.

Расположение выводов обмоток на щитке (рис. 188) удобно для соединения обмоток звездой или треугольником. Сердечник статора с обмоткой расположен (обычно запрессован) внутри корпуса, кото-

Рис. 187. Статор асинхронного двигателя

рый отливают из чугуна или алюминиевого сплава. С боков сердечник статора закрывается крышками, в которых имеются подшипники.

Ротор двигателя представляет собой цилиндр, набранный из листовой электротехнической стали. Обмотка ротора состоит из нескольких медных стержней, соединенных на концах медными кольцами, и называется «беличьим колесом» (рис. 189, а). В новых асинхронных электродвигателях короткозамкнутая обмотка образуется путем заливки пазов ротора алюминием (рис. 189, б).

При прохождении по обмоткам статора трехфазного переменного тока создается магнитное поле, вращающееся с частотой пх = 6011/Д где 1 — частота подводимого к двигателю тока; р — число пар полюсов, которое зависит от числа катушек.

Если имеются три катушки, то вращающийся магнитный поток имеет два полюса (/7=1) и пх — — 3000 об/мин. Если число катушек увеличить в 2 раза, то р = 2, а пх = = 1500 об/мин.

Магнитные линии поля статора пересекают обмотку ротора и в ней возникает ток, создающий свое магнитное поле. В результате взаимодействия магнитных полей ротор начинает вращаться в направлении магнитного поля статора с частотой п.

Ротор и поле статора вращаются с различными частотами. В противном случае не было бы пересечения ротора силовыми линиями магнитного поля статора. Отношение разности частот вращающегося поля статора пх и ротора п к частоте магнитного поля статора называют скольжением (отставанием): 5 = (п, — п)/пх, или 5 = (п, — п)!пхX Х100%. При пуске двигателя п = 0, а 5 = 1, или 100%.

Во время холостого хода двигатель имеет минимальное скольжение (1-2%). С увеличением нагрузки уменьшается частота вращения ротора и увеличивается скольжение при номинальной нагрузке, достигая 5-6%.

Электромагнитная связь обмоток ротора и статора аналогична электромагнитной связи обмоток трансформатора. Поэтому с увеличением скольжения, когда линии магнитного поля статора чаще пересекают ротор, увеличивается ток в обмотках ротора и статора.

Частота тока в обмотке ротора зависит от скольжения: /2 = /х5. При пуске 5=1 и /2 = /х = 50 Гц. С возрастанием частоты враще-

Рис. 188. Расположение выводов обмоток на щитке (а) и соединение обмоток звездой (б) и треугольником (е)
Рис. 189. Короткозамкнутая обмотка ротора (а) и короткозамкнутая обмотка ротора, выполненная в виде алюминиевой отливки (б):

/- короткозамыкающие кольца; 2 — листы магнитопривода; 3 — вентиляционные лопатки; 4 — стержни ния ротора п уменьшается скольжение S и частота /2. При холостом ходе двигателя /2 = ІЧ-4 Гц.

Благодаря простоте устройства, дешевизне и большой надежности в работе короткозамкнутые асинхронные двигатели получили широкое распространение. К недостаткам короткозамкнутых асинхронных двигателей относятся: значительное потребление тока в момент пуска; слабый пусковой вращающий момент; потребление реактивного тока из-за индуктивности обмоток статора, вызывающее снижение cos ф.

При пуске двигателя магнитное поле статора с максимальной частотой пересекает неподвижный ротор и в нем наводится наибольшая э. д. с. В результате этого ток в обмотках ротора и статора больше номинального в 5-8 раз. Пусковые токи не успевают нагреть машину до высокой температуры, но вызывают снижение напряжения в сети, что отрицательно влияет на работу других потребителей, включенных в эту же сеть.

Вращающий момент М асинхронного двигателя образуется в результате взаимодействия магнитного потока Ф статора с активной составляющей тока ротора /

а2 = /2cos ф2. Следовательно, М = = C®/2cos ф2, где С — коэффициент, зависящий от конструкции двигателя; ф2 — разность фаз э. д. с. ?2 и тока /2 ротора.

При пуске в короткозамкнутом роторе асинхронного двигателя возникает ток наибольшей частоты /2. Поэтому индуктивное сопротивление ротора XL2 = 2лf2L2 значительно больше активного г2. Активная составляющая тока ротора /2cos ф2 = /2

г2/]/г\ х?2 и вращающий момент не достигают максимального значения. С увеличением скорости частота /2 тока в роторе и его индуктивное сопротивление начнут уменьшаться, что в свою очередь вызовет увеличение активной составляющей тока ротора и вращающего момента двигателя. Вращающий момент асинхронного двигателя достигает наи большего значения при равенстве активного и индуктивного сопротивлений ротора, т. е. при г2 = ХЬ2.

При дальнейшем увеличении частоты вращения это равенство нарушается, т. е.

< г2 и вращающий момент вновь начнет уменьшаться.

При скольжении 5 = 1 (рис. 190) двигатель развивает пусковой момент /И

п, при номинальном скольжении 5Н = 0,02+-0,06- номинальный момент Мн. Максимальный момент /ИтаХ двигатель развивает при скольжении, называемом критическим (5кр я» 0,2).

Трехфазные асинхронные электродвигатели с короткозамкнутым ротором типа МСТ применяют в стрелочных электроприводах. Основные характеристики этих электродвигателей приведены в табл. 11.

Электродвигатели типов МСТ-0,25 и МСТ-0,3 устанавливают в электроприводах тяжелых и обычных стрелок электрической централизации, типа МСТ-0,6 — в электроприводах стрелок маневровых районов.

Для увеличения начального вращающего момента, необходимого для перевода стрелок, короткозамкнутую обмотку ротора стрелочных электродвигателей выполняют с повышенным активным сопротивлением. Изменение направления вращения ротора электродвигателя осуществляется переменой мест двух линейных проводов, подводящих ток к электродвигателю. При этом изменяется направление вращения магнитного поля статора, а следовательно, и ротора. Асинхронные электродвигатели малой мощности включают в сеть перемен

Г!лс. 190. Зависимость вращающего момента асинхронного двигателя от скольжения

Таблица 11

Тип электро-

МОЩНОСТЬ,

Напряжение питання, В, при соединении обмоток

Потребляе-

Частота вращения ротора, об/мин

двигателя

Вт

звездой

треугольни ком

мый ток, А

МСТ-0,25

250

220

127

1,4/2,4*

1250±50

МСТ-0,3

300

190+5,? — 9,5

но±53?5

2,1/3,6

850+42,5

МСТ-0.3А

300

330±|?,6

190±и.

1,2/2,1

850+42,5

МСТ-0,6

600

190±в6

Н0±1;\

2,8/4,85

2850+285

МСТ-0.

600

ззо±ї“,5

юо±и.

2/3,46

2850+285

* В числителе указывается потребляемый ток при соединении обмоток звездой, в зна-менатсле — при соединении обмоток треугольником.

ного тока без пусковых приспособлений. При значительных мощностях (более 5 кВт) пусковой ток ограничивают.

Существуют два способа пуска в ход короткозамкнутых асинхронных электродвигателей. Непосредственный (прямой) пуск применяют в случае, если мощность двигателя значительно меньше мощности сети. Пуск переключением обмоток со звезды на треугольник можно использовать в том случае, если обмотки статора двигателя постоянно должны быть соединены треугольником. Для того чтобы снизить пусковой ток, на период пуска обмотки статора соединяют звездой (рис. 191, а). Благодаря этому напряжение на каждой обмотке снизится в ]1 3 раз, а линейный ток уменьшится в 3 раза. Когда двигатель разовьет скорость, переключают рубильник Р2 и обмотки соединяют треугольником.

Для снижения пускового тока последовательно с обмоткой статора можно включать элементы с активным или индуктивным сопротивлением (рис. 191, б и в). После пуска эти элементы шунтируются.

Однофазный асинхронный двигатель. Обмотка статора однофазного асинхронного двигателя состоит из одной катушки. Ток, проходящий по этой катушке, создает пульсирующий магнитный поток, который можно разложить на два вращающихся магнитных потока Фх и Ф2, имеющих одинаковую величину, но разное направление вращения.

Первый магнитный поток вращается (относительно неподвижного ротора) с частотой пх по движению часовой стрелки, а второй — с такой же частотой — в противоположном направлении. При пуске моменты Мх и М2, создаваемые каждым вращающимся потоком, равны, но направлены в противоположные стороны. В результате пусковой вращающий момент М — Мх — М2 = 0. Если ротору сообщить первоначальное движение, например по движению часовой стрелки, то вращающийся в этом же направлении магнитный поток Фх будет

Рис. 191. Схемы пуска асинхронного двигателя:

а переключением обмоток статора со звезды на треугольник; б, в — с коротко-замкнутым роторам с помощью соответственно активных и индуктивных элементов действовать на ротор, как и в трехфазном короткозамкнутом двигателе. Магнитный поток Ф2, вращающийся относительно ротора в противоположном направленні!, будет индуцировать в роторе токи большей частоты. Индуктивное сопротивление ротора для этой частоты возрастет и еще больше будет отличаться от активного сопротивления. В результате этого вращающий момент Л42 уменьшится. Результирующий вращающий момент М = М, — М2 будет направлен в сторону первоначального движения ротора.

Пусковой вращающий момент в однофазном асинхронном двигателе (рис. 192) может быть получен за счет дополнительной пусковой обмотки ПО, которую укладывают в пазах статора под углом 90° к главной обмотке ГО. Ток !х главной обмотки отстает по фазе от напряжения и на угол чд. Последовательно с пусковой обмоткой включен конденсатор С, и ток /2 опережает по фазе напряжение на угол <р2. Поэтому токи в обмотках сдвинуты на угол ф1 — <р2 = 90е и в машине возникает вращающееся магнитное поле, которое создает пусковой момент. Однофазные асинхронные конденсаторные двигатели типа АСОМ-48 устанавливают в кодовых путевых трансмиттерах, которые применяют в устройствах кодовой автоблокировки и автоматической локомотивной сигнализации. Электродвигатель может питаться от источника с переменным напряжением 110 В частотой 50 и 75 Гц. При частоте 50 Гц в электрическую схему двигателя включают конденсатор емкостью 6 мкФ (рис. 193, а), при частоте 75 Гц — конденсатор емкостью 2 мкФ (рис. 193, б). Основные характеристики электродвигателя типа АСОМ-48: полная мощность 16,5 В — А; полезная мощность 3,5 Вт; к. п. д. 0,3; частота вращения якоря при частоте 50 Гц 982 об/мин, при частоте 75 Гц — 1473 об/мин.

В однофазную сеть можно включать трехфазные асинхронные двигатели (рис. -0,9.

⇐Путевые дроссель-трансформаторы | Электропитающие устройства и линейные сооружения автоматики, телемеханики и связи железнодорожного транспорта | Синхронные генераторы⇒

Проектирование асинхронного двигателя с короткозамкнутым ротором для привода вентилятора

Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/27843

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Title: Проектирование асинхронного двигателя с короткозамкнутым ротором для привода вентилятора
Authors: Суюнов, Хакимжон Алишер угли
metadata.dc.contributor.advisor: Гирник, Андрей Сергеевич
Keywords: изоляция; двухслойная обмотка статора; статор; короткозамкнутый ротор; двигатель асинхронный; рабочие характеристики; squirrel-cage rotor; stator; two-layer stator winding; performance; induction motor; insulation
Issue Date: 2016
Citation: Суюнов Х. А. Проектирование асинхронного двигателя с короткозамкнутым ротором для привода вентилятора : дипломный проект / Х. А. Суюнов ; Национальный исследовательский Томский политехнический университет (ТПУ), Энергетический институт (ЭНИН), Кафедра электротехнических комплексов и материалов (ЭКМ) ; науч. рук. А. С. Гирник. — Томск, 2016.
Abstract: Объектом проектирования является асинхронный двигатель с короткозамкнутым ротором. В процессе работы спроектирован асинхронный двигатель для привода вентилятора, а именно: рассчитаны главные размеры, выбраны обмотки статора и ротора, обмоточные провода, изоляция, рассчитаны рабочие характеристики, произведен механический расчет вала и тепловой расчет двигателя. Также разработан технологический процесс общей сборки, рассчитана себестоимость спроектированного двигателя, оценена безопасность и экологичность проекта. Выпускная квалификационная работа выполнена в текстовом редакторе Microsoft Word 2016, чертежи выполнены в графическом редакторе КОМПАС-3D V16. 1.
The object of the design is asynchronous motor with squirrel-cage rotor. In operation, the induction motor is designed for driving the fan, namely the main calculated size are selected and the rotor windings of the stator, winding wire, insulation, designed performance, produced by mechanical and thermal shaft payment calculation engine. Also, the technological process of general assemblies, designed projected cost of the engine, to evaluate the safety and sustainability of the project. Final qualifying work carried out in Microsoft Word 2016 text editor, drawings made in КОМПАС-3D V16.1 graphical editor.
URI: http://earchive.tpu.ru/handle/11683/27843
Appears in Collections:Выпускные квалификационные работы (ВКР)

Асинхронные и синхронные двигатели

Вот это совершенно неожиданный поворот, для нашего блога. Но пора писать не только про розетки, светильники и другие электротехнические изделия. Пора поговорить о том, без чего наша жизнь не возможна, но это тоже имеет огромное отношение к электрике. Я бы даже сказал, что такие двигатели это очень большие подмастерья нашей жизни. Посудите сами, они используются настолько широко, что голова идет кругом. Вы можете встретить их почти в любой сфере жизни — от газонокосилок и лифтов, до гидроэнергетики. Сегодня я предлагаю начать разговор про асинхронные и синхронные двигатели. Плюс, нам с вами нужно разобраться в том, что такое магнитные поля, что такое статор и ротор, и еще много чего интересного.

На картинке выше изображено электромагнитное поле. Это фундаментальное физическое поле, на котором основана масса физических процессов, включая движущую силу синхронных и асинхронных двигателей. Оно взаимодействует с электрически заряженными частицами, а так же с телами имеющими собственные магнитные поля. Такое поле представляет собой смесь электрического и магнитного полей, которые являются одной сущностью, но в то же время могут порождать друг друга. Изучение физических свойств электромагнитного поля, это удел электродинамики. Нам с вами сейчас нужно знать лишь то, что это поток фотонов, который двигается в определенных пределах. И именно это поле, в конечном итоге заставляет крутиться двигатель.

Асинхронная машина — это двигатель, частота вращения ротора которого, медленнее нежели движение электромагнитного поля создаваемого статором. Это двигатель берет питание от электричества, и может быть как двигателем как и генератором. Но о режимах работы такой машины мы поговори позже, а пока перейдем к конструктиву. Асинхронная машина имеет в своей конструкции две основные части — статор и ротор. Статор — как правило неподвижная, внешняя часть двигателя. Ротор — внутренняя часть машины, которая вращается. Между статором и ротором всегда должен быть воздушный зазор, поэтому в двигателе есть много вспомогательных деталей. С помощью этих деталей обеспечивается возможность кручения ротора, жесткость конструкции, и так далее. Так как двигатели имеют либо одну, либо три фазы, обмотки статора, всегда соответствуют их числу. Очень редко асинхронные двигатели имеют многофазную обмотку, иногда число фаз доходит до десяти. Но такие двигатели имеют невероятно низкий коэффициент полезного действия, их используют только в тех местах, где нужны двигатели с легко управляемой, низкой частотой вращения. Число оборотов однофазной асинхронной машины может доходить до 3000 оборотов, трехфазной до 1000. Обмотка статора асинхронного двигателя, согласно количеству фаз, равномерно намотана на него. Так же статор имеет магнитопровод, который чаще всего собирается из очень тонких пластин, который сделаны из электрической стали. Магнитопровод по такому же принципу делается и в роторе, он максимально снижает потери электричества. Теперь о роторах, они бывают двух основных типов — фазный и короткозамкнутый. Разница непосредственно в обмотке ротора. Фазный ротор имеет трехфазную обмотку, выведенную на контактные кольца. Такой метод обмотки позволяет плавно регулировать скорость вращения. При короткозамкнутом методе обмотки, она выполняется из алюминиевых, медных или латунных стержней. Такой метод является более грубым в управлении.


Теперь о том, зачем же нужно было говорить про магнитное поле. Постараюсь рассказать то, что происходит в асинхронном двигателе в момент его работы. На обмотку статора подается напряжение. Это напряжение, как мы помним из статьи про трансформаторы,создает ток в обмотках ротора, и возникают два магнитных поля. Из-за того, что статор держится статичным начинает вращаться ротор, и вот двигатель работает. Стоит отметить, что для лучшего, направленного вращения, обмотки сдвинуты относительно друг друга на 120. Мы с вами говорили, про то, что у асинхронной машины есть два режима работы — двигательный и генераторный. С двигателем все понятно, в этот момент просто вращается ротор, выполняя далее ту или иную работу. Двигателем машина считается, если скорость вращения ротора меньше скорости вращения электромагнитного поля. Если же благодаря помощи из вне разогнать ротор быстрее скорости вращения электромагнитного поля, то такая машина начнет генерировать энергию. Вот так работают асинхронные машины.

Сегодня мы с вами обсудили очень сложную тему простыми словами. Что мы имеем в итоге? Асинхронная машина— повсеместно используемый электрический двигатель, работающий за счет создания внутри электромагнитного поля. Теперь, конда вы будете на даче, косить газон с помощью электрического триммера, вы будете знать, что происходит в момент ее включения в ее двигателе. Но тогда возникает логичный вопрос: Если коса заведена, и ротор вращается, почему пока не нажмешь на кнопку, леска не начнет крутиться? Потому, что когда вы нажимаете на кнопку, происходит сцепление ротора двигателя и вала, который вращает леску. Так что кнопка — своего рода сцепление. 

До новых встреч.

Асинхронные двигатели — MirMarine

Асинхронными называются двигатели, у которых число оборотов ротора отстает от скорости вращения магнитного поля статора при прохождении в его обмотках трехфазного тока. При прохождении в обмотках статора трехфазной машины трехфазного тока возникает вращающееся магнитное поле, под действием которого в роторе индуктируется электрический ток. В результате взаимодействия вращающегося магнитного поля статора стоками, индуктируемыми в проводниках ротора, возникает механическое усилие, действующее на проводник с током, которое и создает вращающий момент, приводящий в движение ротор. При этом число оборотов ротора у асинхронного двигателя всегда меньше числа оборотов вращающегося магнитного поля статора за счет скольжения ротора, которое у современных двигателей составляет примерно 2—5%.

Таким образом, асинхронный двигатель получает энергию, подводимую к ротору вращающимся магнитным потоком (индуктивно) в отличие от двигателей постоянного тока, у которых энергия подводится по проводам.

Асинхронные двигатели в отличие от синхронных возбуждаются переменным током.

Асинхронный двигатель, так же как и синхронный, состоит из двух основных частей: статора с фазными обмотками, по которым проходит трехфазный переменный ток, и ротора, ось которого уложена в подшипниках. Ротор может быть коротко-замкнутым и фазным (рис. 175).

Короткозамкнутый ротор(рис. 175, в) представляет из себя цилиндр, по окружности которого параллельно его оси расположены проводники, замкнутые между собой с обеих сторон ротора кольцами (в виде беличьего колеса).

Асинхронный двигатель с таким ротором называется короткозамкнутым. К недостаткам их относятся малый пусковой момент и большой ток в обмотках статора при пуске. Если хотят увеличить пусковой момент или уменьшить пусковой ток, применяют асинхронные двигатели с фазным ротором (рис. 175,г).

У этих двигателей на роторе размещают такую же обмотку, как и на статоре. При этом концы обмоток соединяют с контактными кольцами (рис. 175, д), расположенными на валу двигателя. Контактные кольца при помощи щеток соединяются с пусковым реостатом. Для пуска двигателя в питающую сеть включают статор, после чего постепенно выводят из цепи ротора сопротивление пускового реостата. Когда двигатель пущен в ход, контактные кольца при помощи особых приспособлений замыкаются накоротко, а щетки поднимаются над кольцами. Остановка электродвигателя производится простым выключением рубильника. После остановки двигателя необходимо опустить щетки и разомкнуть контактные кольца. На рис. 176 показан продольный разрез асинхронного двигателя с фазным ротором. На валу 1 двигателя имеется механизм для замыкания контактных колец 8 и подъема щеток ручкой 7. В корпусе 6 статора помещена обмотка 5, уложенная в пазы 4 стали статора. В пазах 2 стали ротора лежит обмотка 3 ротора.

Пуск в ход электродвигателя с короткозамкнутым ротором может быть осуществлен непосредственным включением рубильника на полное рабочее напряжение сети (способ прямого пуска.) Однако вследствие резкого возрастания индуктируемой э. д. с. и величины пускового тока напряжение в сети в пусковой момент снижается, что отрицательно сказывается на работе приводного двигателя и других потребителей, питающихся от этой сети. В случае большой величины пускового тока, для его уменьшения асинхронные двигатели с короткозамкнутым ротором обычно пускают двумя способами: переключением обмоток статора в момент пуска со звезды на треугольник, если обмотки статора при нормальной работе электродвигателя соединены треугольником или включением электродвигателя через пусковое сопротивление (или автотрансформатор) в цепи статора.

Остановка электродвигателя производится выключением рубильника. После остановки электродвигателя пусковой реостат или автотрансформатор полностью вводится. Скорость вращения асинхронных двигателей регулируют, изменяя сопротивление реостата, включенного в цепь ротора (у электродвигателей с фазным ротором) и переключением статорных обмоток для изменения числа пар полюсов (у электродвигателей с коротко-замкнутым ротором).

Изменение направления вращения асинхронных электродвигателей достигается изменением направления вращающегося магнитного поля статора путем переключения любых двух из трех фаз обмотки статора (с помощью проводов, соединяющих зажимы статорной обмотки с сетью) при помощи обычного двухполюсного переключателя.

Асинхронные двигатели

  • просты по конструкции
  • обладают по сравнению с двигателями постоянного тока меньшими габаритами и весом, вследствие чего он значительно дешевле
  • более надежны в эксплуатации
  • требуют меньшего внимания при обслуживании из-за отсутствия у них вращающегося коллектора и щеточного аппарата
  • обладают более высоким к. п. д.
  • аппаратура управления ими значительно проще и дешевле, чем у двигателей постоянного тока
  • Асинхронные двигатели работают без искрообразования, которое возможно в машинах постоянного тока с нарушенной коммутацией, поэтому они более безопасны в пожарном отношении.

Перечисленными основными преимуществами асинхронных двигателей объясняется современная тенденция повсеместного внедрения переменного тока на морских судах. Следует отметить, что в промышленности асинхронные двигатели давно завоевали господствующее положение по сравнению с другими типами электродвигателей. Асинхронные двигатели строятся мощностью от долей киловатта до многих тысяч киловатт. На судах морского флота в основном применяются асинхронные двигатели с короткозамкнутым ротором, которые выпускаются в водозащищенном и брызгозащищенном исполнении и рассчитаны на напряжение 380/220 в.

Похожие статьи

Генератор для ветряка из асинхронного двигателя

>

немного вводной информации по переделке асинхронных двигателей в генератор
Переделка асинхронного двигателя довольно популярный метод изготовления генератора для ветрогенератора. Асинхронные двигатели с малым количеством полюсов рассчитаны на высокие обороты, к примеру двух-полюсные на 3000 об/м, но для ветрогенераторов нужны низкие обороты, по этому нужно выбирать самые низко-оборотистые двигатели. Сейчас в доступности самые низко-оборотистые на 750 и 1000 об/м, соответственно на 8 и 6 полюсов.

Двигатели на 2-4 полюса приходится перематывать чтобы сделать больше количество полюсов, это достаточно сложно и затратно, а двигатели на 6-8 полюсов можно не перематывать и использовать как есть. Вся переделка двигателя в генератор заключается в переделке ротора на неодимовые магниты. Делается это достаточно просто, родной ротор просто протачивается на толщину магнитов (к примеру 5 мм), далее ротор делится на количество полюсов (к примеру 8) и на полюса наклеиваются магниты.

Магниты подбираются небольших размеров и из них набираются полюса. К примеру двигатель АИР112MB8 3 кВт имеет ротор диаметром 131 мм, а длинна 130 мм. Значит длинна окружности ротора (130 мм*3,14=408,2 мм), но мы протачиваем ротор на 5 мм, значит (130 мм-10 мм*3,14=376.8 мм) делим на количество полюсов (376.8:8=47.1 мм) и получаем ширину полюса 47.1 мм. Магниты возьмём 30*10*5 мм, их поместится 4 ряда в полюсе и останется зазор в 7 мм между полюсами. По длине ротор 130 мм, а у нас как-раз 4 магнита по длинне 120 мм, и получается на ротор нужно по 16 магнитов на полюс, а всего понадобится 128 магнитов.

Можно использовать магниты любых других удобных размеров для набора полюсов. Магниты клеятся на супер-клей и другие клеи, а после наклейки оборачивается ротор скотчем и заливается эпоксидной смолой. Чтобы наиболее эффективно использовать магниты нужно делать минимальный зазор между магнитами и статором, тогда диаметр ротора с магнитами делают по диаметру статора, чтобы он на миллиметр не заходил в статор. После наклейки и заливки магнитов ротор подгоняют в статор шлифуя магниты, стачивают по немногу и пробуют вставлять в статор, добиваются того чтобы магниты были как можно ближе к зубам статора и при этом ротор вращался свободно без зацепов статора. При шлифовке очень важно не перегреть магниты, можно шлифовать на болгарке поливая водой, или на токарном станке.

>

Вообще желательно сделать новый цельно-металлический ротор под магниты, или на родной ротор асинхронника под магниты одеть металлическую гильзу. Так магниты будут работать гораздо эффективнее, и хватит толщины 3-4 мм, а если не ставить гильзу, то магниты желательно ставить потолще, к примеру 6-10 мм.

Ниже представлены данные по асинхронным двигателям, размеры, толщина обмоточного провода, количество полюсов, сопротивление обмотки и прочее. Атак-же расчёт мощности переделанного генератора на различных оборотах при работе на аккумуляторы напряжением 12/24/48 вольт. За основу расчёта я взял магнитную индукцию равной 1 Тл, но на практике она может быть больше или меньше, всё зависит от толщины магнитов, плотности заполнения полюсов. Если будет протачиваться родной ротор и без металлической гильзы, то при толщине магнитов 5 мм марки n50 магнитная индукция будет 0.8 Тл примерно, если магниты толщиной 8-10 мм, то магнитная индукция будет 1-1.2 Тл. А если с гильзой или с цельно-металлическим ротором, то при толщине магнитов 5-6 мм магнитная индукция составит около 1-1.2 Тл

Асинхронный двигатель АИР100L6 2,2 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 168 мм, внутренний диаметр 113 мм, длина статора 120 мм, число зубов 36. Обмотка: число проводников в пазу 42, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 2.39 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
6013
120265,4/70
1803910. 8/1405,4/140
2405216.2/21110,8/281
3006521.6/28116.2/4224,5/247
3607827/35221/56310/540
4209132.5/42227/70415/832
60013048/63343/112631/1710
90019575/98570/183058/3172

Асинхронный двигатель АИР100L8 1.5 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 168 мм, внутренний диаметр 117 мм, длина статора 120 мм, число зубов 48. Обмотка: число проводников в пазу 48, диаметр провода 1,01 мм, трехфазный, сопротивление фазы 3.7 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
60171/13
120345,6/732/56
1805110/1306. 7/175
2406814.8/19311,3/2954,3/244
3009522/28818.6/48411.6/604
36011226.7/34723.2/60416.2/843
42012931/40727.8/72320.8/1082
60017042.4/55138.9/101131.8/1658
90025565.4/85061.8/160954/2852

Асинхронный двигатель АИР112MA6 3 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 100 мм, число зубов 54. Обмотка: число проводников в пазу 28, диаметр провода 1,19 мм, трехфазный, сопротивление фазы 2 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
6013
90193/39
120266. 5/84
1803913/1696.5/169
2405219.5/25313/338
3006526/33819.5/5076.5/338
3607832.5/42226/67613/676
4209139/50732.5/84519.5/1014
60013058.5/76052/135231.8/39/2028

Асинхронный двигатель АИР112MA8 2.2 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 100 мм, число зубов 48. Обмотка: число проводников в пазу 40, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 2.6 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
60171. 5/20
90348/1053/80
1205114.6/1909.6/250
1806831/27516/4206.1/320
2408527/36022.6/59012.6/550
30011238/49533/86023/1200
36012944.6/57939.6/103029.6/1540
42014651/66546/120036/1880
60016357.6/75052.6/137042.6/2220

Асинхронный двигатель АИР112MB8 3 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 191 мм, внутренний диаметр 132 мм, длина статора 130 мм, число зубов 48. Обмотка: число проводников в пазу 31, диаметр провода 1,25 мм, трехфазный, сопротивление фазы 1. 93 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
60172/26
903411/1434.2/109
1205120/26013.1/242
1806828.9/37622.1/5748.4/437
2408537.8/49231/80717.3/903
30011252.1/67745.2/117631.5/1642
36012961/79354.2/140940.5/2107
42014670/91063.1/164249.4/2572
60016378.9/102672. 1/187458.4/3037

Асинхронный двигатель АИР132S6 5.5 кВт

Число полюсов 6, 1000 об/м. Размеры статора: наружный диаметр 225 мм, внутренний диаметр 154 мм, длина статора 115 мм, число зубов 54. Обмотка: число проводников в пазу 21, диаметр провода 1,13 мм, трехфазный, сопротивление фазы 1 Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
6013
90196/78
1202613/169
1803926/33813/338
2405239/50726/676
3006552/67639/101413/676
3607865/84552/135226/1352
4209178/101465/169039/2028
600130117/1521104/270478/4056

Асинхронный двигатель АИР132S8 4 кВт

Число полюсов 8, 750 об/м. Размеры статора: наружный диаметр 222 мм, внутренний диаметр 158 мм, длина статора 112 мм, число зубов 48. Обмотка: число проводников в пазу 28, диаметр провода 1,48 мм, трехфазный, сопротивление фазы 1,24Ом.
Примерная мощность на АКБ 12/24/48 вольт при соединении треугольником
Обороты ( об/м)Напряжение ХХАКБ 13 V А/Ватт*чАКБ 26 V А/Ватт*ч АКБ 52 V А/Ватт*ч
60173,2/41
903416.9/2206,4/127
1205130.6/39820/524
1806844.3/52633.8/88012.9/670
2408558/75447.5/123726.6/1383
30011279.8/103769.3/180348. 3/2516
36012993.5/121683/215962/3229
420146120/157296.7/251675.8/3941
60016357.6/750110/287289.5/4654

Множество двигателей не имеет смысла просчитывать, думаю представленной информации выше достаточно для того чтобы понять что получится из асинхронного двигателя различных размеров. Думаю что вполне можно и четырёх-полюсные на магниты переделывать, и даже двух-полюсные, но мощность будет ниже. Так-же я посчитал мощность при соединении фаз треугольником так-как при таком соединении сопротивление генератора меньше и следовательно ток зарядки выше. Но можно соединять и звездой, напряжение при этом поднимется в 1,7раза выше, но и сопротивление тоже, зато зарядка начнётся при ещё более низких оборотах.

Маломощные асинхронные двигатели от 0.18 до 1 кВт без перемотки статора не подходят для ветрогенераторов, энергию конечно давать будут, но из-за большого сопротивления обмоток ток зарядки будет очень маленький. Например 6-ти полюсной двигатель мощностью 0.55 кВт имеет сопротивление фазы 22Ом, и при 600 об/м мощность будет всего (130-13:22=5,3*13=69) 69ватт на АКБ 12вольт, а на 48вольт около 180ватт.

Винт для генератора можно рассчитать и изготовить из ПВХ труб, или сделать из дерева. Програ ммка по расчёту лопаситей описана в этой статье — Расчёт лопастей для ветрогенератора

Асинхронный двигатель с ротором

— обзор

3.1.3.1 Двигатели переменного тока

Двигатели переменного тока бывают трех основных типов: асинхронные, синхронные и последовательные, и определяются следующим образом:

Асинхронные двигатели. Асинхронный двигатель — это двигатель переменного тока, в котором первичная обмотка на одном элементе (обычно статоре) подключена к источнику питания, а многофазная вторичная обмотка или вторичная обмотка с короткозамкнутым ротором — на другом элементе (обычно роторе). несет индуцированный ток.Есть два типа:

Асинхронный двигатель с короткозамкнутым ротором. Асинхронный двигатель с короткозамкнутым ротором — это двигатель, в котором вторичная цепь состоит из обмотки с короткозамкнутым ротором, подходящей для размещения в пазах вторичного сердечника.

Асинхронный двигатель с фазным ротором. Асинхронный двигатель с фазным ротором — это асинхронный двигатель, вторичная цепь которого состоит из многофазной обмотки или катушек, выводы которых либо закорочены, либо замкнуты через соответствующие цепи.

Синхронный двигатель. Синхронный двигатель — это синхронная машина, преобразующая электрическую энергию в механическую.

Двигатель с последовательной обмоткой. Двигатель с последовательной обмоткой — это двигатель, в котором цепь возбуждения и цепь якоря соединены последовательно.

Многофазные двигатели. Многофазные двигатели переменного тока бывают с короткозамкнутым ротором, с фазным ротором или синхронными.

Дизайнерские буквы. Многофазные асинхронные двигатели с короткозамкнутым ротором и интегральной мощностью могут быть одного из следующих:

Конструкция A.Конструкция A Двигатель — это двигатель с короткозамкнутым ротором, предназначенный для выдерживания пуска при полном напряжении и развития крутящего момента заторможенного ротора, как показано в MG 1-12.37, крутящего момента, как показано в MG 1-12.39, крутящего момента пробоя, как показано в MG 1-12.39. MG 1-12.38 с током заторможенного ротора, превышающим значения, указанные в MG 1-12.34 для 60 Гц и MG 1-12.25 для 50 Гц, и имеющий скольжение при номинальной нагрузке менее 5 % . Двигатели с 10 или более полюсами могут иметь скольжение немного больше 5 % .

Конструкция Б .Двигатель конструкции B — это двигатель с короткозамкнутым ротором, предназначенный для того, чтобы выдерживать пуск при полном напряжении и развивать крутящий момент с заторможенным ротором, пробой и тяговый момент, достаточный для общего применения, как указано в MG 1-12. 37, MG 1-12.38 и MG 1. -12.39, потребляющий ток заторможенного ротора, не превышающий значений, указанных в MG 1-12.34 для 60 Гц и MG 1-12.35 для 50 Гц, и имеющий скольжение при номинальной нагрузке менее 5 % . Двигатели с 10 и более полюсами могут иметь скольжение немного больше 5 % .

Конструкция С .Двигатель конструкции C — это двигатель с короткозамкнутым ротором, предназначенный для того, чтобы выдерживать запуск при полном напряжении и развивать крутящий момент с заторможенным ротором для специальных применений с высоким крутящим моментом до значений, указанных в MG 1-12.37, крутящий момент при подъеме, как показано в MG 1- 12.39, момент пробоя до значений, указанных в MG 1-12.38, с током заторможенного ротора, не превышающим значений, указанных в MG 1-12.34 для 60 Гц и MG 1-12.35 для 50 Гц, и с проскальзыванием при номинальной нагрузке. менее 5 % .

Конструкция D . Двигатель конструкции D — это двигатель с короткозамкнутым ротором, который выдерживает пуск при полном напряжении и развивает высокий крутящий момент с заторможенным ротором, как показано в MG 1-1. 37 с током заторможенного ротора не более, чем указано в MG 1-12.34 для 60 Гц и MG 1-12.35 для 50 Гц, и имеющим скольжение при номинальной нагрузке 5 % или более.

Однофазные двигатели. Однофазные двигатели переменного тока обычно представляют собой асинхронные или последовательные двигатели, хотя однофазные синхронные двигатели доступны в меньших номиналах.

Дизайнерские буквы. Однофазные двигатели с интегральной мощностью могут быть одной из следующих:

Конструкция L.Двигатель A конструкции L представляет собой однофазный двигатель со встроенной мощностью в лошадиных силах, предназначенный для выдерживания пуска при полном напряжении и развития момента пробоя, как показано в MG 1-10.33, с током заторможенного ротора, не превышающим значений, указанных в MG 1- 12.33.

Конструкция M. Двигатель конструкции M представляет собой однофазный двигатель со встроенной мощностью в лошадиных силах, разработанный, чтобы выдерживать пуск при полном напряжении и развивать момент пробоя, как показано в MG 1-10. 33, с током заторможенного ротора, не превышающим значения указаны в MG 1-12.33.

Однофазные двигатели с короткозамкнутым ротором. Однофазные асинхронные двигатели с короткозамкнутым ротором классифицируются и определяются следующим образом:

Двухфазный двигатель. Двигатель с расщепленной фазой — это однофазный асинхронный двигатель, оснащенный вспомогательной обмоткой, смещенной в магнитном положении от основной обмотки и подключенной параллельно с ней. Примечание: Если не указано иное, предполагается, что вспомогательная цепь размыкается, когда двигатель достигает заданной скорости.Термин «двигатель с расщепленной фазой», используемый без уточнения, описывает двигатель, который будет использоваться без сопротивления, отличного от импеданса, обеспечиваемого самими обмотками двигателя, другие типы определены отдельно.

Двигатель с сопротивлением пуска. Двигатель с резистивным пуском — это двигатель с расщепленной фазой, сопротивление которого последовательно подключено к вспомогательной обмотке. Вспомогательная цепь размыкается, когда двигатель достигает заданной скорости.

Конденсаторный двигатель. Конденсаторный двигатель — это однофазный асинхронный двигатель, основная обмотка которого предназначена для прямого подключения к источнику питания, а вспомогательная обмотка подключена последовательно с конденсатором. Существует три типа конденсаторных двигателей, а именно:

Двигатель с конденсаторным пуском. Двигатель с конденсаторным запуском — это двигатель с конденсатором, в цепи которого конденсаторная фаза присутствует только в течение периода пуска.

Двигатель с постоянным разделением конденсаторов. Конденсаторный двигатель с постоянным разделением каналов — это конденсаторный двигатель, имеющий одинаковое значение емкости как для пусковых, так и для рабочих условий.

Конденсаторный двигатель с двумя значениями. Двухзначный конденсаторный двигатель — это конденсаторный двигатель, использующий разные значения эффективной емкости для условий запуска и работы.

Двигатель с расщепленными полюсами. Двигатель с расщепленными полюсами — это однофазный асинхронный двигатель, снабженный вспомогательной короткозамкнутой обмоткой или обмотками, смещенными в магнитном положении от основной обмотки. Это приводит к самозапуску двигателя.

Однофазные двигатели с фазным ротором. Двигатели с одинарным ротором определяются и классифицируются следующим образом:

Отталкивающий двигатель. Отталкивающий двигатель — это однофазный двигатель, имеющий обмотку статора, предназначенную для подключения к коммутатору. Щетки на коммутаторе закорочены и размещены так, чтобы совмещать магнитную ось обмотки статора. Этот тип двигателя имеет вариаторную характеристику.

Асинхронный двигатель с отталкиванием. Асинхронный двигатель с отталкивающим пуском — это однофазный двигатель, имеющий те же обмотки, что и отталкивающий двигатель, но при заданной скорости обмотка ротора замыкается накоротко или иным образом соединяется, чтобы получить эквивалент обмотки с короткозамкнутым ротором.Этот тип двигателя запускается как отталкивающий двигатель, но работает как асинхронный двигатель с характеристиками постоянной скорости.

Отталкивающий асинхронный двигатель. Отталкивающий асинхронный двигатель — это разновидность отталкивающего двигателя, который имеет короткозамкнутую обмотку в роторе в дополнение к обмотке отталкивающего двигателя. Двигатель этого типа может иметь характеристику постоянной скорости (см. MG1-1.30) или переменной скорости (см. MG 1-1.31).

Универсальные моторы. Универсальный двигатель — это двигатель с последовательной обмоткой, предназначенный для работы примерно с одинаковой скоростью и выходной мощностью как на постоянном, так и на однофазном переменном токе с частотой не более 60 циклов / с и примерно одинаковым среднеквадратичным напряжением.Есть два типа:

Двигатели с серийной обмоткой. Двигатель с последовательной обмоткой — это коллекторный двигатель, в котором цепь возбуждения и цепь якоря соединены последовательно.

Двигатель с компенсацией серии. Компенсированный последовательный двигатель — это последовательный двигатель с компенсирующей обмоткой возбуждения. (Компенсирующая обмотка возбуждения и последовательная обмотка возбуждения могут быть объединены в одну обмотку возбуждения.)

Как работает ротор асинхронного электродвигателя?

Индукция протекания тока через стержни ротора асинхронного электродвигателя возникает, когда ток подается на статор.Этот приложенный ток через обмотки статора запускает вращение магнитного поля статора с линейной частотой.

Стержни неподвижного ротора затем подвергаются максимальному относительному движению магнитного поля статора к стержням. В этот момент вдоль стержней генерируется максимальный ток. Когда северный полюс статора вращается мимо стержня ротора, ток индуцируется вдоль стержня ротора. В то же время южный полюс статора вращается, проходя через стержень на 180 °, и индуцирует ток вдоль стержня в противоположном направлении.Этот круговой поток тока вдоль стержней ротора через закорачивающие кольца и вокруг пластин заставляет ротор становиться электромагнитом.

Именно в этой начальной начальной точке (заблокированный ротор) электромагнитная сила ротора наиболее высока. Электромагнитный ротор начнет разгоняться до синхронной скорости или скорости, с которой вращается магнитное поле статора. По мере увеличения скорости ротора относительное движение между стержнями ротора и вращающимся магнитным полем уменьшается.Это приводит к уменьшению тока и крутящего момента. Когда относительное движение (вращающая сила) между стержнями ротора и магнитным полем статора приближается к нулю, ток вдоль ротора прекращается. Магнетизм ротора прекратится, и ротор замедлится до тех пор, пока крутящий момент, создаваемый двигателем, не станет равным крутящему моменту ведомого оборудования. (Нагрузка)

Если нагрузка двигателя увеличивается, скорость двигателя уменьшается. Уменьшите нагрузку, и двигатель увеличит скорость. Асинхронный двигатель никогда не достигнет синхронной скорости из-за потерь на трение и сопротивление воздуха.Разница между синхронной скоростью и скоростью асинхронного ротора называется частотой скольжения.

Тодд А. Хэтфилд, вице-президент по проектированию и ремонту

HECO — Все системы идут

269-381-7200

[email protected]

Об авторе:

Тодд Хэтфилд является совладельцем HECO и вице-президентом по проектированию и ремонту.Он имеет более чем 35-летний опыт работы в области ремонта и проектирования генераторов и электродвигателей. Тодд имеет степень бакалавра в области электротехники и специализируется в следующих областях: модернизация и проектирование электрических и механических двигателей, анализ первопричин отказов и качественное восстановление электродвигателей.

Асинхронный двигатель с фазным ротором Экономия

Асинхронные двигатели с большим ротором (WRIM) используются в некоторых отраслях промышленности на протяжении десятилетий. В цементной и горнодобывающей промышленности мощные WRIM используются на больших мельницах, где они имеют преимущество в виде контролируемых пусковых характеристик и регулируемой скорости.Эти двигатели также используются в больших насосах в водопроводной и канализационной промышленности.

WRIM имеет трехфазный статор с обмоткой, который обычно подключается непосредственно к системе питания. Ротор имеет трехфазную обмотку с тремя выводами, подключенными к отдельным контактным кольцам, которые обычно подключаются к жидкостному реостату или группе резисторов. Реостат используется для запуска и может быть отключен, когда двигатель наберет нужную скорость. Изменяя сопротивление ротора с помощью реостата, можно изменять скорость двигателя.В прошлом мощность, рассеиваемая реостатом, терялась в виде тепла; однако, используя привод с регулируемой скоростью вместо реостата, мощность скольжения может быть восстановлена ​​и возвращена в сеть, таким образом, экономя энергию. Кроме того, используя привод для увеличения мощности, снимаемой с ротора, можно снизить скорость двигателя. В качестве бонуса, подавая мощность на ротор через привод, двигатель может работать выше синхронной скорости. Скорость, конечно, должна быть в пределах проектных ограничений двигателя.

В системе восстановления мощности скольжения используется современный низковольтный привод с широтно-импульсной модуляцией.Эта новая реализация основана на стандартной линейке низковольтных приводов асинхронных двигателей TMEIC, используемых в обрабатывающих отраслях, таких как обработка металлов и производство бумаги. Оборудование очень надежное и знакомое и подходит для новых или существующих двигателей. Мощность скольжения представляет собой низкое напряжение и составляет лишь небольшую часть от общей мощности двигателя, поэтому требуемый привод имеет малую мощность и более низкую стоимость, чем полноразмерный привод среднего напряжения.

Расчеты для WRIM мощностью 5000 л.с., работающего на 90% полной скорости, показывают, что рекуперированная энергия составляет 360 кВт на сумму более 200 000 долларов в год.

Woods Air Movement — Основные двигатели — Основные принципы — Асинхронные двигатели переменного тока

Асинхронные двигатели переменного тока

Типы двигателей, наиболее часто используемых в вентиляторах Woods Air Movements, — это асинхронные двигатели переменного тока. Они могут работать напрямую от электросети, они надежны, не требуют особого обслуживания и относительно невысоки.

В трехфазном асинхронном двигателе переменного тока катушки изолированного провода находятся в пазах статора, расположенных в корпусе.Эти катушки сконфигурированы для обеспечения набора электромагнитных полюсов для каждой из трех электрических фаз (U, V и W) при включении.

На рисунке 1 показан двигатель, в котором катушки расположены таким образом, чтобы обеспечивать пару полюсов для каждой фазы (обозначены U1 и U2, V1 и V2, W1 и W2). Поскольку у каждой фазы два полюса, это описывается как двухполюсная конфигурация; если бы для каждой фазы было две пары полюсов, это была бы 4-полюсная конфигурация и так далее.

Когда катушки статора подключены к источнику переменного тока, электрический ток будет течь и создавать магнитное поле — катушки намотаны так, что полюса в каждой паре имеют противоположную полярность.

Рисунок 1. Циклическое вращающееся магнитное поле в трехфазном асинхронном двигателе переменного тока

Цикличность формы волны переменного тока приводит к тому, что магнитное поле вращается вокруг центральной оси статора с двумя северными и двумя южными полюсами одновременно. Скорость этого вращения определяется количеством пар полюсов и частотой электросети (50 Гц или 60 Гц — см. «Двигатели, основная часть первая»).

Если имеется одна пара полюсов, магнитное поле вращается один раз за электрический цикл; где есть две пары, магнитное поле вращается один раз за два цикла, а где есть три пары, оно вращается один раз за три цикла.

Основное уравнение для определения синхронной скорости выглядит следующим образом:

Синхронная скорость (об / мин) = 2 x Частота питания (Гц) x 60

Количество полюсов для каждой фазы

Итак, если бы двигатель на Рисунке 1 работал от источника питания 50 Гц, синхронная скорость была бы:

2 x 50 x 60 = 3000 об / мин

2

Таким образом, можно видеть, что чем больше число полюсов, тем медленнее будет синхронная скорость — поэтому двигатель с 12 полюсами на фазу будет иметь синхронную скорость всего 500 об / мин.

Ротор

Помимо статора, наиболее важной частью асинхронного двигателя переменного тока является ротор. Он состоит из стержней ротора, обычно изготовленных из алюминия или меди, которые на концах соединены с кольцами из того же материала. Иногда это называют ротором «беличья клетка» (см. Рисунок 2).

Поскольку ротор расположен во вращающемся магнитном поле статора, образующиеся линии магнитного потока будут разрезать стержни ротора и индуцировать напряжение в роторе.Это, в свою очередь, приведет к прохождению электрического тока по стержням ротора (обозначенным на рисунке 2 красными стрелками), который будет генерировать собственное магнитное поле вокруг стержней ротора. Это магнитное поле взаимодействует с магнитным полем статора, создавая силу на стержнях ротора, заставляя ротор вращаться вокруг своей оси.

Рисунок 2. Ротор типа «беличья клетка»

Поскольку напряжение в стержнях ротора создается магнитным полем в статоре, прорезающим стержни ротора, если ротор вращается с синхронной скоростью, не будет относительного движения между стержнями ротора и магнитным полем статора, что приведет к на стержнях ротора не возникает напряжения.

Если к ротору приложена нагрузка, он начнет замедляться, и, следовательно, он начнет взаимодействовать с магнитным полем статора, и будет создаваться крутящий момент, как показано на рисунке 2. Это будет тот крутящий момент, который приводит в движение приложенную нагрузку. к ротору.

Синхронная скорость является функцией частоты электросети и конфигурации обмотки статора (количества полюсов). Разница между синхронной скоростью и скоростью ротора известна как скольжение; это выражается в процентах от синхронной скорости и может быть рассчитано по формуле:

Скольжение = Синхронная скорость — скорость ротора

Синхронная скорость

Конструкция ротора

На рис. 3 показана конструкция типичного ротора.Штанги ротора обычно содержатся в пазах в стальном сердечнике для усиления магнитного поля ротора. Стержни ротора обычно перекошены так, что они не совпадают с обмотками статора, что снижает электромагнитный шум и обеспечивает более плавную передачу крутящего момента.

Рисунок 3. Типовая конструкция ротора

Сердечник изготовлен из стальных пластин, уложенных друг на друга, в то время как стержни ротора и концевые кольца обычно создаются путем заливки расплавленного алюминия в матрицу или форму, которая окружает ламинированный пакет ротора.Этот расплавленный алюминий протекает через прорези в пакете ротора, образуя стержни ротора. Между стержнями ротора и стальным сердечником нет изоляции, так как индуцированное напряжение низкое.

Рисунок 4. Компоненты асинхронного двигателя переменного тока общего назначения

Однофазные асинхронные двигатели переменного тока

Статор, сконфигурированный для однофазного питания, не сможет инициировать вращение неподвижного ротора, потому что его магнитное поле просто переключается между полярностями.В результате требуется дополнительная обмотка для создания прогрессивно вращающегося магнитного поля. Эта вспомогательная обмотка подключена к однофазному источнику питания через конденсатор, так что форма ее волны напряжения может быть не в фазе с формой волны первичной обмотки.

Рисунок 5. Непрерывно вращающееся магнитное поле в однофазном асинхронном двигателе переменного тока, создаваемое вспомогательной обмоткой, подключенной к конденсатору

На рисунке 5 показано, как это создает непрерывно вращающееся магнитное поле, позволяющее индуцировать вращение.

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ ПРОЧИТАТЬ ЧАСТЬ 3

Строительство асинхронного двигателя — Circuit Globe

Трехфазный асинхронный двигатель является предпочтительным типом двигателя. Он в основном используется в промышленных приводах, потому что он очень разумный и мощный, экономичный и надежный. Его также называют асинхронным двигателем, потому что он не работает с синхронной скоростью. Асинхронный двигатель требует минимального обслуживания и обладает высокой перегрузочной способностью.

Состав:

Трехфазный асинхронный двигатель в основном состоит из двух частей, называемых статором и ротором . Статор — это неподвижная часть асинхронного двигателя, а ротор — это вращающаяся часть. Конструкция статора аналогична трехфазному синхронному двигателю, а конструкция ротора отличается для разных машин. Конструкция асинхронного двигателя подробно описывается ниже.

Конструкция статора

Статор изготовлен из пластин из высококачественной легированной стали для уменьшения потерь на вихревые токи. Он состоит из трех основных частей, а именно внешней рамы, сердечника статора и обмотки статора.

Наружная рама

Внешний корпус двигателя. Его основная функция — поддерживать сердечник статора и защищать внутренние части машины. Для небольших машин внешняя рама отлита, а для больших — изготовлена. На рисунке ниже показана конструкция статора.

Сердечник статора

Сердечник статора изготовлен из штампованной высококачественной кремнистой стали. Его основная функция — переносить переменное магнитное поле, которое вызывает гистерезис и потери на вихревые токи. Штамповки закреплены на станине статора. Каждая штамповка изолирована от другой тонким слоем лака. Толщина штамповки обычно варьируется от 0,3 до 0,5 мм . На внутренней стороне штамповок сделаны прорези, как показано на рисунке ниже:

Обмотки статора

Сердечник статора имеет трехфазные обмотки, которые обычно получают питание от трехфазной сети.Шесть выводов обмоток (по две каждой фазы) соединены в клеммной коробке машины. Статор двигателя намотан на определенное количество полюсов в зависимости от скорости двигателя. Если количество полюсов больше, скорость двигателя будет меньше, а если количество полюсов меньше, скорость будет высокой.

Поскольку соотношение между скоростью и полюсом двигателя определяется как:

Обмотки можно соединять звездой и треугольником.

Конструкция ротора

Ротор также состоит из тонких пластин того же материала, что и статор. Ламинированный цилиндрический сердечник установлен непосредственно на валу. Эти листы имеют прорези на внешней стороне для размещения проводов. Есть два типа роторов.

Ротор с беличьей клеткой

Ротор с короткозамкнутым ротором состоит из многослойного цилиндрического сердечника. Круглые прорези на внешней периферии полузакрыты. Каждый слот содержит неизолированный стержневой провод из алюминия или меди.На конце ротора проводники закорочены тяжелым кольцом из меди или алюминия. Схема ротора сепаратора показана ниже:

Пазы ротора обычно не параллельны валу, а перекошены. Перекос проводов ротора дает следующие преимущества:

  • Уменьшает гудение и обеспечивает плавную и бесшумную работу.
  • Это приводит к равномерной кривой крутящего момента для различных положений ротора.
  • Тенденция к блокировке ротора снижена.Поскольку зубья ротора и статора притягиваются друг к другу и блокируются.
  • Увеличивает сопротивление ротора за счет увеличенной длины проводников стержня ротора.

Преимущества ротора с короткозамкнутым ротором

Ниже приведены следующие преимущества ротора с сепаратором:

  • Ротор с сепаратором дешевле, а конструкция прочна.
  • Отсутствие щеток снижает риск искрения.
  • Его содержание меньше.
  • Коэффициент мощности выше.
  • КПД ротора сепаратора выше.

Ротор с фазовой обмоткой

Ротор с фазовой обмоткой также называется ротором с контактным кольцом. Он состоит из ламинированного цилиндрического сердечника. На внешней периферии ротора имеется полузамкнутая прорезь, в которой установлены 3-фазные изолированные обмотки. Обмотки ротора соединены звездой.

Асинхронный двигатель с контактным кольцом показан на рисунке ниже:

Контактные кольца установлены на валу с опирающимися на них щетками.Щетки подключены к переменному резистору. Функция контактных колец и щеток заключается в обеспечении средств подключения внешних резисторов в цепи ротора. Резистор позволяет изменять сопротивление каждой фазы ротора для следующих целей:

  • Увеличивает пусковой момент и уменьшает пусковой ток.
  • Используется для управления скоростью двигателя.

Ротор этого типа также перекос. Вал из низкоуглеродистой стали проходит через центр ротора и крепится к нему.Назначение вала — передача механической энергии.

Преимущества ротора с фазовой обмоткой

Ниже приведены преимущества ротора с фазовой обмоткой.

  • Высокий пусковой момент и низкий пусковой ток.
  • Для управления скоростью двигателя в цепь можно добавить внешнее сопротивление.

Таким образом, создается асинхронный двигатель.

Асинхронные двигатели переменного тока

с роторами с короткозамкнутым ротором — Bodine

Почему его называют «ротор с короткозамкнутым ротором»? штанги ротора и концевые кольца.Обычный термин для этой конструкции ротора — «беличья клетка», потому что, если вы удалите стальные пластины после того, как ротор был отлит под давлением, вы получите скелет, очень похожий на колесо хомяка. Мы предполагаем, что в те времена, когда был изобретен этот термин, больше людей использовали в качестве домашних животных белок, чем хомяков. 🙂 Литой под давлением ротор с короткозамкнутым ротором является недорогим и относительно простым в производстве, если вы производите их в больших количествах.

В асинхронном двигателе переменного тока обмотка статора создает магнитное поле, которое взаимодействует с токонесущими проводниками ротора, создавая вращающий момент.Роторные токи индуцируются в проводниках ротора изменяющимся магнитным полем статора, а не посредством коммутатора и щеток (как в двигателе с постоянным постоянным током). Это индукционное действие является основным принципом работы асинхронных двигателей переменного тока. Основные рабочие характеристики асинхронных двигателей переменного тока зависят от: 1) типов обмоток (расщепленная фаза, экранированные полюса, трехфазные и т. Д.) И 2) количества фаз, частоты и напряжения источника питания. источник.

Ротор типичного асинхронного двигателя состоит из ряда стальных пластин, каждая из которых имеет пазы или отверстия по периферии.Когда листы укладываются вместе и скрепляются заклепками, эти отверстия образуют каналы, которые заполняются проводящим материалом (обычно медью или алюминием) и закорачиваются друг с другом посредством проводящих концевых колец. Проводники обычно формируются методом литья под давлением. В асинхронных двигателях переменного тока с открытой рамой ротор, отлитый под давлением, обычно включает в себя встроенные лопасти вентилятора, которые обеспечивают эффективное и экономичное охлаждение двигателя. Обычный термин для этого типа ротора — «беличья клетка» (из-за сходства с взлетно-посадочной полосой старомодной беличьей клетки).Это недорогая и распространенная форма индукционного ротора переменного тока.

Когда вращающееся поле проходит мимо стержней в роторе, возникает индуцированный ток. Поскольку ток в проводнике создает магнитное поле соответствующей полярности, возникает притяжение между вращающимся магнитным полем статора и индуцированным полем в роторе. Вращение возникает в результате попытки ротора успевать за вращающимся магнитным полем (статора). Скорость изменения, с которой магнитные линии пересекают ротор, определяет индуцированное напряжение.Когда ротор неподвижен, это напряжение максимально. По мере увеличения скорости ротора ток и соответствующий крутящий момент уменьшаются. В точке синхронной скорости (скорости вращающегося поля) индуцированный ток и развиваемый крутящий момент равны нулю.

Ротор асинхронного асинхронного двигателя переменного тока всегда будет работать с некоторой скоростью, меньшей, чем синхронная, если ему не помогает какое-либо дополнительное приводное устройство. Это отставание ротора от вращающегося магнитного поля называется «скольжением» и выражается в процентах от синхронной скорости:

При разработке роторов для асинхронных двигателей форма и размеры пазов явно влияют на рабочие характеристики двигателя.Форму прорези (планки) можно увидеть на примерах ламинирования на фото. Другим конструктивным фактором, характерным для большинства индукционных роторов с короткозамкнутым ротором, является преднамеренный «перекос» пазов (размещение пазов под небольшим углом к ​​валу) во избежание зазубрин и значительных колебаний пускового момента, которые могут возникнуть при установке стержней параллельно друг другу. пазы статора. Также важно отметить, что однофазные двигатели переменного тока требуют вспомогательной схемы запуска. См. «Руководство по мотор-редукторам Bodine» для получения дополнительной информации о принципах конструкции и различных конструкциях двигателей.

(На фото ниже показаны два разных слоя ротора слева, готовый ротор асинхронного двигателя переменного тока с подшипниками, запрессованными на вал, и беличья клетка после того, как ламинированная сталь была растворена азотной кислотой.)

Авторские права Bodine Electric Company © 06/2016. Все права защищены.

1 Типы ротора асинхронного двигателя (a) Раненый ротор (b) Ротор с короткозамкнутым ротором.

Бездатчиковое прямое управление крутящим моментом (DTC) асинхронного двигателя — это простой метод управления, требующий меньших вычислительных затрат и быстрого отклика электромагнитного крутящего момента.Он не требует преобразований текущего контроллера и координат, таких как стратегия Field Oriented Control (FOC). Общим недостатком DTC является высокая пульсация крутящего момента, приводящая к дополнительным потерям и шуму. Частота выборки обычного кода неисправности непостоянна, а также применяется только один пространственный вектор напряжения для всего периода выборки. Следовательно, крутящий момент двигателя может превышать верхний / нижний предел крутящего момента, даже если ошибка небольшая, потому что он будет предпринимать те же действия, если ошибка маленькая или большая.Для решения этой проблемы был предложен метод пространственно-векторной модуляции (SVM). Используя метод SVM с DTC, частота дискретизации поддерживается постоянной и снижается пульсация крутящего момента с низкими коммутационными потерями. Кроме того, применение нечеткой логики и искусственной нейронной сети (методы искусственного интеллекта) приводит к уменьшению пульсаций крутящего момента, магнитного потока и тока и хорошей оценке параметров, которые необходимы для DTC. В этом тезисе есть введение DTC и его улучшение за счет улучшения таблицы переключения.Эта работа в основном ориентирована на наблюдателей за состоянием для оценки состояний, которые используются в алгоритмах DTC. Кроме того, адаптивная система эталонной модели (MRAS) используется для оценки скорости ротора параллельно с сопротивлением статора. В этой работе также показано, что оценка скорости вращения ротора по этим схемам вполне удовлетворительна при моделировании. Также предлагается применить методы искусственного интеллекта в качестве селектора состояния переключения, заменив обычный регулятор скорости и обнаружение сектора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *