Сопротивление кожи человека в омах: Чему равно сопротивление тела человека

Содержание

Чему равно сопротивление тела человека

Сопротивление тела человека

Электрическое сопротивление различных тканей тела человека не одинаково. Например, при токе частотой 50 Гц удельное сопротивление равно: кости – 107 Ом∙м, кожа сухая – 105 Ом∙м, крови – 1,7 Ом∙м. При сухой, чистой и неповрежденной коже сопротивление тела, измеренное, при напряжении 15-20 В переменного тока (50 Гц), колеблется в пределах от 1 до 10 кОм, а иногда и в более широких пределах.

Сопротивление кожи, а следовательно сопротивление тела в целом резко уменьшается при повреждении ее рогового слоя, наличие влаги на ее поверхности, интенсивном потовыделении и загрязнении.

Электрическое сопротивление тела человека зависит так же от места приложения электродов к телу, значений тока, проходящего через человека, и приложенного к телу напряжения, рода и частоты тока, площади электродов, длительности прохождения тока через человека и некоторых других факторов. Увеличение тока приводит к снижению сопротивления соответствующих участков кожи, за счет местного нагрева кожи и действия на центральную нервную систему (усиливается приток крови, повышается потоотделение). С ростом напряжения сопротивление тела уменьшается в десятки раз. При больших напряжениях приближается к наименьшему пределу 300 Ом. В России в качестве расчетных значений сопротивление человека равно 1000 Ом при напряжении, приложенном к телу, равное 50 В и выше и сопротивление человека равное 6000 Ом при приложенном напряжении 36 В. Опыты показывают, что сопротивление тела человека постоянному току больше, чем переменному любой частоты. Разница в значениях сопротивлений постоянному и переменному (50 Гц) током особенно велико при малых напряжениях – до 10 В. С ростом приложенного напряжения эта разница уменьшается и начиная с 40-80 В сопротивление тела человека как постоянному, так и переменному току промышленной частоты становится практически одинаковым.

На значение сопротивления тела человека влияют и другие факторы, хотя в значительно меньшей степени.

Пол и возраст. У женщин, как правило, сопротивление тела меньше, чем у мужчин, а у детей – меньше, чем у взрослых, у молодых людей меньше, чем у пожилых. Объясняется это, очевидно, тем, что у одних людей кожа тоньше и нежнее, у других — толще и грубее.

Физическое раздражение снижает сопротивление тела на 20-25%.

Повышенная температура окружающего воздуха (30-450 С) или тепловое облучение человека, вызывает некоторое понижение сопротивление тела.

Принцип работы трансформатора отбора напряжения в шкафу отбора напряжения
Обслуживание устройств АПВ
Назначение и область применения устройства автоматического повторного включения

Сопротивление человека прохождению электрического тока

    Минимальное расчетное сопротивление человека прохождению электрического тока принимают равным 1000 ом. Сопротивление организма прохождению тока зависит от возраста и состояния здоровья. У людей с заболеваниями сердца, нервной системы, легких и у пожилых людей сопротивление пониженное. Сопротивление влажной кожи, особенно при попадании на нее электролитов (кислоты, щелочи, соли), снижается на 40— 50%. Сопротивляемость кожи уменьшается при увеличении времени соприкосновения ее с источником тока и зависит от величины тока и его напряжения. Так, начальное сопротивление кожи, равное 200 000 ом, через 2 мин снижается до 80000 ом. Высокое напряжение вызывает перерождение кожного покрова и также способствует снижению его защитных свойств. 
[c.169]

    Величина тока, протекающего через тело пострадавшего, зависит от его сопротивления, которое может изменяться в широких пределах (от 1000 до 200 000 Ом). По этой причине для человека может оказаться опасным напряжение от 50 В и выше. Величина сопротивления тела определяется многими факторами состоянием кожи в месте контакта с токонесущей поверхностью (сухая или влажная), площадью и местом соприкосновения, общим состоянием организма и т. д. Наиболее опасно прохождение электрического [c.9]

    Воздействие электрического тока на организм человека. Электрический ток, проходящий через тело человека, представляет большую опасность для его здоровья и жизни. Он может вызывать тяжелые ожоги, а прохождение тока через жизненно важные органы человека (мозг, сердце) вызывает паралич дыхания и остановку сердца. В последнем случае опасность представляет даже ток силой 0,01 а. Величина тока, прошедшего через тело человека, зависит от напряжения и сопротивления электрической цепи, одним звеном которой является человек. При влажной коже и плотном контакте с проводником сопротивление может быть относительно небольшим, поэтому уже невысокое напряжение может представлять опасность. 

[c.15]

    Существенно влияет на исход поражения путь прохождения тока через тело человека. Наиболее опасными являются пути токаз руки — ноги, рука —рука, руки — туловище, так как в втих случаях более вероятно поражение сердца и органов дыхания менее опасен путь тока нога —нога.

Опасность поражения переменным током существенно зависит от его частоты, так как с увеличением частоты изменяется величина сопротивления тела человека. Наиболее опасен ток промышленной частоты 50 Гц. Характер включения человека в замкнутую. электрическую цепь также определяет исход поражения электрическим током, о чем сказано в следующем параграфе. [c.41]

    Тело человека обладает определенным электрическим сопротивлением, которое изменяется в широких пределах (от 500 до 100 ООО Ом) и зависит от многих причин общего состояния здоровья, толщины и состояния кожного покрова и его влажности, условий окружающей среды, длительности прохождения тока и некоторых других факторов. В расчетах по технике безопасности сопротивление человеческого тела обычно принимается равным 1000 Ом. [c.328]

    Опасность воздействия электрического тока на человека зависит от сопротивления организма человека и приложенного к нему напряжения, силы, тока, длительности его воздействия, пути прохождения, рода и частоты тока, индивидуальных свойств пострадавшего и других факторов.

[c.22]

    По известному закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Следовательно, степень опасности поражения электрическим током зависит от напряжения, при котором работает данная электрическая установка, и условий, при которых человек попал под напряжение. Величина сопротивления тела человека прохождению тока различна не только у разных людей, но и у одного и того же человека и зависит от многих условий и факторов состояния самого человека (нервное состояние, степень усталости), величины поверхности контакта, величины и продолжительности прохождения тока, рода тока, частоты переменного тока, напряжения, пути прохождения тока в организме, состояния кожи. 

[c.34]

    Большая опасность поражения электрическим током, особенно при повыщенных (до 825 в) и высоких напряжениях, общеизвестна. При обслуживании электролизеров эта опасность по ряду причин усиливается. Считается безопасным, если ток, проходящий через тело человека, не превыщает 0,05 а при токе от 0,05 до 0,1 а человек может получить тяжелые травмы ток выше 0,1 а может оказаться смертельным. Проходящий ток определяется напряжением и сопротивлением тела, зависящим в свою очередь от состояния кожного покрова, площади соприкосновения с источником тока, а также от продолжительности воздействия тока на человека. Изменение сопротивления человеческого тела при прохождении через него тока разной величины связано с процессами, вызванными нагревом тела. Сопротивление тела человека при токе 0,1 ма составляет 500 000 ом, а при токе 1,0 ла —только 8000 ом. Изменение сопротивления тела в зависимости от величины напряжения связано с электрическим пробоем кожных покровов, резко снижающим величину сопротивления. Сопротивление человеческого тела обычно измеряется десятками тысяч ом, но может снижаться и до 800—1000 ом. В последнем случае при прохождении тока более 0,05 а, уже представляющего опасность для человека, напряжение должно составлять всего 40—50 в. 

[c.247]

    Имеют значенйе также и индивидуальные свойства человека например, у людей с. заболеваниями сердца, легких, нервной системы, у принявших спиртные напитки сопротивление прохождению тока оказывается меньшим, и поэтому опасность поражения делается большей.

Замечено также, что люди, знакомые со свойствами электричества и предполагающие возможность электрического удара, переносят его легче. / [c.222]

    Характер и последствия поражения человека электрическим током зависят от большого количества факторов величины тока, сопротивления тела человека, рода и частоты тока, пути прохождения тока, напряжения, длительности воздействия и др. [c.164]

    I Характер и последствия поражения человека электрическим I током зависят от величины, частоты и пути прохождения тока, продолжительности его воздействия, сопротивления тела человека, внешней среды, индивидуальных свойств организма и т. п,. 

[c.186]

    Изучение действия постоянного тока на организм человека показало, что электрическое сопротивление последнего при постоянном токе всегда выше, чем при переменном. Наибольшее сопротивление прохождению тока оказывает верхний роговой слой кожи, лишенный кровеносных сосудов и нервов. Этот слой, толш,ина которого едва достигает 0,05 — 0,2 мм, при некоторых условиях может рассматриваться почти как диэлектрик. Общее сопротивление тела человека, пока роговой слой кожи цел, почти целиком зависит от величины сопротивления этого слоя. [c.65]

    Опасность воздействия электрического тока на организм человека зависит от электрического сопротивления тела, силы тока, длительности воздействия, путей прохождения, рода и частоты тока, индивидуальных свойств человека и некоторых других факторов. 

[c.10]

    Случайное прикосновение человека к частям, находящимся под напряжением, и, как следствие, прохождение через него электрического тока могут иметь самый различный исход, определяемый электрическими параметрами как сети, так и человеческого тела. Приближенно можно считать, что степень поражения эдектриче-ским током определяется силой тока, которая является функцией напряжения, сопротивления цепи (в том числе и самого организма) (табл. 35). [c.229]

    Этот расчет условен, потому что есть еще и другие факторы, влияющие на силу тока при его прохождении через организм человека, в частности —условия подключения в электрическую сеть. Все же он достаточно характеризует опасность электротока в зависимости от напряжения и сопротивления, 

[c.220]

    Электрическое сопротивление тела человека зависит от многих факторов состояния кожи, общего состояния организма, участка, продолжительности прохождения тока, приложенного [c.203]

    Как известно, все тела делятся на проводники и непроводники электрического тока. Металлы, например, хорошо проводят электричество, точно так же про водниками электричества являются растворы минеральных солей, кислоты, вода и т. д. Человеческое тело также может быть отнесено к проводникам электричества. Некоторым сопротивлением прохождению тока через тело человека является кожный покров человека в том случае, если он ничем не загрязнен. Но так как кожа рабочего в условиях работы на химическом производспве может быть смочена кислыми жидкостями и руки могут быть загрязнены продуктами и частицами металла (от соприкосновения с оборудованием), тс при этих условиях тело рабочего становится хорошим проводником электричества. Земля, являясь, в свою очередь, прекрасным проводником, обладает способностью замыкаться с любым другим проводником, имеющим эле ктрический заряд. Поэтому, когда рабочий случайно коснется какой-либо токоведущей ча)сти, то через него произойдет замыкание данной токоведущей части с землей. Вследствие этого прикосновение рукой к голому рубильнику или проводу может вызвать тяжелые последствия. Электрический ток в зависимости от напряжения и места прикосновения к токоведущей части может вызвать электрический удар с возможным смертельным исходом или тяжелый ожог. Опасность представляет не только незащищенный рубильник, но иногда и рубильник, защищенный металлическим колпаком, так как при порче рубильника последний может коснуться кожуха, который, в свою очередь, окажется под напряжением. Во избежание этого всякую поверхность (мотор, трансформатор, рубильник или аппарат), которая может оказаться под напряжением, заземляют, т. е. данную металлическую часть соединяют при помощи проволоки с землей. Для лучшего контакта места соединения токоведущей поверхности припаиваются к проволоке, отводящей ток. Заземлением достигается то, что электрический ток, проходящий по какой-нибудь поверхности, уйдет в землю, даже в том случае, если этой поверхности нечаянно коснется и человек. Происходит это потому, что ток идет по линии наименьшего сопротивления, и так как хорошая проволока служит все же лучшим проводником, чем человек, то ток уйдет в землю через про- [c.261]

    Поражение человека электрическим током происходит в том случае, когда он замыкает своим телом цепь электрического тока (рис. 85). Степень опасности поражения электрическим током зависит от напря ния и условий, при которых человек оказался под напряжением. Человек может случайно замкнуть своим телом два фазных или один фазный и нулевой провода и таким образом оказаться под напряжением. Сопротивлением для электрического тока в обоих случаях является только тело человека. Это значит, что тело человека пропустит ток большой силы, что нанесет ему тяжелую травму. Возможен и другой случай, когда человек случайно прикоснется к одному фазному проводу, находящемуся под напряжением. В этом случае сопротивлением для прохождения тока является тело человека, его обувь, решетка или коврики, на которых он стоит. Если машинист при этом не имеет под ногами решетки или резинового коврика, ему грозит тяжелая электротравма. Большую опасность для маишниста представляет прикосновение к токоведущим частям или незаземленному корпусу оборудования с электроприводом, оказавшемуся случайно под напряжением. [c.137]

    Электрическое сопротивление организма человека падает при увеличении тока и длительности его прохождения вследст-ви усиления местного нагрева кожи, что приводит к расширению сосудов, а следовательно, к усилению снабжения этого участка кровью и увеличению выделения пота. [c.22]


Электрическое сопротивление тела человека

Конспект по безопасности жизнедеятельности

Значение тока через тело человека сильно влияет на тяжесть электротравм. В свою очередь, сам ток согласно закону Ома определяется сопротивлением тела человека и приложенным к нему напряжением, т.е. напряжением прикосновения.

Сопротивление тела человека является комплексной переменной величиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, окружающей среды, центральной нервной системы, физиологических факторов. Электрическое сопротивление различных тканей тела человека не одинаково: кожа, кости, сухожилия и хрящи имеют относительно большое сопротивление, а мышечная ткань, кровь, лимфа, пот и особенно нервные пути, спинной и головной мозг – малое сопротивление.

Электрическое сопротивление тела человека, т.е. сопротивление между двумя электродами, наложенными на поверхность тела, в основном определяется сопротивлением кожи. Кожа состоит из двух основных слоёв: наружного (эпидермис), и внутреннего (дерма). Эпидермис состоит из мёртвых ороговевших клеток, лишён кровеносных сосудов и нервов и поэтому является слоем неживой ткани. Толщина этого слоя 0,05 – 0,2 мм. В сухом и незагрязнённом состоянии его можно рассматривать как диэлектрик, обладающий большим удельным сопротивлением. Дерма состоит из волокон соединительной ткани. В этом слое находятся кровеносные и лимфатические сосуды, нервные окончания, корни волос, потовые и сальные железы. Дерма обладает малым сопротивлением току.

Полное сопротивление тела человека есть сумма сопротивлений тканей, расположенных на пути тока. Основным фактором, определяющим величину полного сопротивления, является состояние кожного покрова в цепи тока. При сухой, чистой и неповреждённой коже сопротивление тела человека, измеренное при напряжении до 15 В, составляет 3…100 кОм. Если на участке кожи, где прикладываются электроды, удалить эпидермис, сопротивление тела составит 500…700 Ом. Если под электродами полностью удалить кожу, то будет измерено сопротивление внутренних тканей, которое составит 300…500 Ом.

Электрическое сопротивление тела человека зависит от ряда факторов. Его могут снизить повреждения рогового слоя, увлажнение кожи, тепловое облучение, повышенная температура воздуха.

Сопротивление наружного слоя кожи уменьшается с увеличением площади электродов и зависит от места их приложения, что объясняется различной толщиной эпидермиса, неравномерным распределением потовых желёз, неодинаковой степенью наполнения кровью сосудов кожи. Повышение напряжения, приложенного к телу человека, вызывает уменьшение его сопротивления, которое при напряжениях более 200 В соответствует сопротивлению внутренних тканей (Rвн).

При оценке опасности поражения электрическим током и расчёте защитных мер в электроустановках сопротивление тела человека (Rh)принимают равным 1 кОм.

Рис. Эквивалентная схема электрического сопротивления тела человека

На рис. 4.1 приведён упрощённый вариант эквивалентной схемы цепи протекания электрического тока через тело человека.

На рисунке обозначено: 1 – электроды; 2 – эпидермис; 3 – внутренние ткани и органы тела человека, включая дерму; Ih – ток, протекающий через тело человека; Uh – напряжение, приложенное к электродам; – активная составляющая сопротивления наружного слоя кожи; – ёмкость условного конденсатора, обклад ка ми которого являются электрод и хорошо проводящие ток ткани тела человека, расположен ные под эпидермисом, а диэлектриком – эпидермис; Rвн – активное сопротивление внутренних тканей, включая дерму.

Из схемы на рис. следует, что комплексное сопротивление тела человека определяется соотношением:

где Xн = 1/ jw Cн – величина ёмкостной составляющей сопротивления тела человека;

w=2p f , f – частота действующего тока.

Для практических применений используют модуль комплексного сопротивления тела человека:

Конспект по безопасности жизнедеятельности

Сопротивление — тело — человек

Сопротивление — тело — человек

Cтраница 1

Сопротивление тела человека при сухой чистой и неповрежденной коже, измеренное при напряжении до 15 — 20 в, колеблется в пределах примерно от 3000 до 100000 ом. Если на участках кожи, где прикладываются электроды, соскоблить роговой слой, сопротивление тела упадет до 1000 — 5000 ом, а при удалении всего верхнего слоя кожи ( эпидермиса) — до 500 — 700 ом. Если же под электродами полностью удалить кожу, то сопротивление составит всего лишь 300 — 500 ом.  [1]

Сопротивление тела человека и величина приложенного к нему напряжения также влияют на исход поражения, но лишь поскольку они определяют величину тока, проходящего через человека.  [3]

Сопротивление тела человека зависит от многих факторов и определяется, в частности, сопротивлением внутренних тканей и кожи ( поверхностного рогового слоя), от которых в основном зависит общее сопротивление тела человека, так как внутреннее сопротивление тела относительно мало и составляет примерно 1000 Ом, а сопротивление сухой чистой кожи может достигать 100000 Ом. Величина сопротивления кожи не является постоянной и зависит от ее состояния ( чистоты и сухости), от размера поверхности соприкосновения и плотности контакта, от продолжительности воздействия тока и его напряжения.  [4]

Сопротивление тела человека — величина нелинейная, зависящая от многих величин.  [6]

Сопротивление тела человека прохождению тока зависит от состояния кожного покрова, плотности, толщины и влажности кожи и от общего состояния организма и возраста человека. Оно колеблется в пределах от нескольких сотен ом до нескольких тысяч и сотен тысяч ом. Расчетной условной величиной сопротивления тока человека принято 1000 ом.  [7]

Сопротивление тела человека меняется в широких пределах и зависит от многих факторов: состояния здоровья, нервной системы, психического состояния, от одежды, обуви, влажности кожи и ряда других причин. В среднем сопротивление тела принимается равным 8000 ом, колеблется же оно от 800 до 100000 ом.  [8]

Сопротивление тела человека складывается из сопротивления кожи и сопротивления внутренних органов. Сухая кожа имеет сопротивление около 100000 ом, влажная — около 1000 ом, а сопротивление внутренних органов составляет 500 — 1000 ом.  [9]

Сопротивление тела человека в зависимости от многих причин колеблется в широких пределах: от нескольких сотен до тысяч омов.  [10]

Сопротивление тела человека может быть в пределах от нескольких сотен до нескольких сотен тысяч Ом. Оно зависит главным образом от состояния кожного покрова: значительно уменьшают сопротивление увлажнение кожи, выделение пота, а также общая усталость.  [12]

Сопротивление тела человека зависит от пола и возраста людей: у женщин это сопротивление меньше, чем у мужчин, у детей — меньше, чем у взрослых, у молодых людей меньше, чем у пожилых. Это объясняется толщиной и степенью огрубления верхнего слоя кожи. Кратковременное ( на несколько минут) снижение сопротивления тела человека ( на 20 — 50 %) вызывает внешние, неожиданно возникающие физические раздражения: болевые ( удары, уколы), световые и звуковые.  [13]

Сопротивление тела человека зависит от многих факторов и определяется, в частности, сопротивлением внутренних тканей и кожи ( поверхностного рогового слоя), от которых в основном зависит общее сопротивление тела человека, так как внутреннее сопротивление тела Относительно мало и составляет примерно 1000 Ом, а сопротивление сухой чистой кожи может достигать 100000 Ом. Величина сопротивления кожи не является постоянной и зависит от ее состояния ( чистоты и сухости), от размера поверхности соприкосновения и плотности контакта, от продолжительности воздействия тока и его напряжения.  [14]

Сопротивление тела человека может находиться в пределах от нескольких сотен до. Оно зависит главным образом от состояния кожного покрова: значительно уменьшают сопротивление увлажнение кожи, выделение пота, а также общая усталость. Расчетной величиной сопротивления принято считать 1 000 ом.  [15]

Страницы:      1    2    3    4    5

Электрическое сопротивление человеческого тела: значение в омах

Сопротивление происходит от слова “сопротивляться”. В электронике  есть такое понятие, как Ом. Что это такое и с чем его едят? Для более развернутого ответа, давайте рассмотрим вот такую схему:

  • Буквы в кружочках – это измерительные приборы

Вольтметр служит для измерения напряжения, а амперметр – для измерения силы тока. Как ими правильно пользоваться читаем в этой статье.

Итак, если пропустить по проводу электрический ток с силой тока в 1 Ампер, а на концах этого провода у нас появится напряжение в 1 Вольт,  это значит, что наш провод обладает сопротивлением в 1 Ом.

В электротехнике и электронике сопротивление обозначается буквой R. Например, тело человека имеет сопротивление от  нескольких сотен Ом и до 100 кОм. Для расчетов берут 1 кОм.

Это зависит от многих факторов, таких как пол, возраст, состояние кожи, сила прикосновения проводников к коже, уровень алкоголя в крови и тд.

Медный провод длиной в метр и сечением в  1 мм2  имеет сопротивление 0,1 Ом.

От чего зависит сопротивление

  1. Какой из предметов будет оказывать большее сопротивление электрическому току?
  2. Садовый шланг
  3. или нефтяная магистраль?

Конечно же садовый шланг. Почему? Да потому что его диаметр намного меньше, чем у нефтяной магистрали.

  • А теперь ответьте на такой вопрос, какой шланг будет обладать большим сопротивлением, с учетом того, что их длины и диаметры равны?
  • Гофрированный
  • или гладкий?

Разумеется гофрированный. Его стенки будут препятствовать потоку воды.

И еще один нюанс. У нас есть садовый гофрированный шланг. Мы обрезали от него небольшую длину, но все равно остался еще большой моток шланга

У какого шланга будет большее сопротивление потоку воды? Думаю, у того, который длиннее.

Формула сопротивления


Как ни странно, но дела с проводом обстоят точно также. Чем тоньше и длиннее провод, тем больше его сопротивление электрическому току.

Большую роль играет также материал, из которого он изготовлен.  Различные материалы по разному проводят электрический ток.

Есть те, которые замечательно проводят ток, типа серебра, а есть те, которые почти не пропускают через себя электрический ток, типа фарфора.

Поэтому, формула будет иметь такой вид:

В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом х мм2 /м.  Чтобы перевести  в Ом х м, достаточно умножить на 10-6, так как 1 мм2=10-6м2.

Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником в конструировании радиоэлектронных устройств. Ну а самым распространенными и дешевыми – медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.

Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников.

Резисторы

В электронике уже имеются специальные радиоэлектронные компоненты. Их называют резисторами.

  1. Существуют постоянные резисторы, у которых сопротивление практически не меняется:
  2. а есть также и переменные резисторы:
  3. С помощью них можно изменять сопротивление в каком-либо определенном диапазоне.

Последовательное и параллельное соединение резисторов

  • В электрических схемах постоянные резисторы обозначаются так:
  • переменные выглядят немного по-другому

Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

  1. В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где значение между точками А и В (RAB) и есть то самое R общее:
  2. При последовательном соединении номиналы резисторов просто суммируются
  3. В этом случае

Резюме

Сопротивление играет главную роль в электронике и электротехнике. Любой материал во Вселенной обладает сопротивлением электрическому току. Некоторые материалы очень плохо пропускают через себя электрический ток, а некоторые материалы, такие как серебро и медь, обладают очень малым сопротивлением и отлично пропускают через себя электрический ток.

На сопротивление влияют также такие параметры, как материал, площадь поперечного сечения материала, а также его длина. Материалы, которые отлично проводят через себя электрический ток называются проводниками, а которые препятствую протеканию электрического тока – диэлектриками.

Резисторы – специальные радиоэлементы в электронике, которые обладают определенным номиналом сопротивления и выполняют различные функции.

Источник: https://www.RusElectronic.com/soprotivljenije/

3. И снова Закон Ома!

И снова Закон Ома!

Довольно часто нам приходится слышать такие фразы, как «Ударило током» или «Убило током», и ни какого упоминания о напряжении. Исходя из этого, у вас может сложиться впечатление, что для человека опасен ток, а не напряжение.

Какой-то элемент истины здесь имеет место быть.

Однако, если напряжение не представляет никакой опасности, то зачем пишутся предупреждающие таблички примерно такого содержания: «ОСТОРОЖНО — ВЫСОКОЕ НАПРЯЖЕНИЕ!»?

По большому счету принцип «опасности тока» верен. Электрический ток вызывает ожоги тканей тела, блокирует мышцы и останавливает сердце, но он не может возникнуть сам по себе. Чтобы создать поток электронов через тело человека, к нему нужно приложить напряжение. При выполнении расчетов мы так же должны учесть сопротивление, которое тело человека оказывает электрическому току.

Если с помощью Закона Ома мы выразим силу тока через известные значения напряжения и сопротивления, то получим следующее уравнение:

Сила тока, проходящего через тело человека прямопропорциональна величине напряжения, приложенного к двум его точкам, и обратнопропрорциональна сопротивлению между этими точками. Очевидно, чем больше величина напряжения, создающего поток электронов, тем легче эти электроны будут проходить через конкретную величину сопротивления.

Следовательно, высокое напряжение опасно для жизни, потому что оно создает большой ток, который может травмировать или убить человека. И наоборот, чем большее сопротивление оказывает тело электрическому току, тем медленнее будут течь через него электроны при заданной величине напряжения.

Проще говоря, опасность того или иного напряжения зависит от величины сопротивления, оказываемого телом человека потоку электронов.

Сопротивление тела не является фиксированной величиной. Оно изменяется от человека к человеку, и время от времени. На измерении электрического сопротивления между пальцами рук и ног основывается метод определения процентного содержания жира в организме.

Разные проценты содержания жира обеспечивают разные сопротивления, и это только одна из величин, влияющая на электрическое сопротивление тела человека.

Чтобы метод работал точно, человек за несколько часов до теста должен регулировать потребление жидкости, а это говорит о том, что гидратация является еще одним фактором, влияющим на сопротивление человеческого тела.

Сопротивление так же зависит от того, между какими частями тела мы его будем измерять: между руками, между ногами, между рукой и ногой и т.д.

Необходимо учесть и тот фактор, что прекрасными проводниками электричества являются пот, богатый солями и минералами, а также кровь, с ее высоким содержанием проводящих химических элементов.

 Таким образом, контакт между проводом и потными руками или руками с кровоточащей раной будет обладать гораздо меньшим сопротивлением, чем контакт между проводом и руками с сухой, чистой кожей.

Измеряя сопротивление своего тела чувствительным измерительным прибором, путем сжимания его щупов пальцами рук,  я получил значение 1 миллион Ом (1 МОм).

При этом прибор показывает меньшее сопротивление, когда я плотно сжимаю щупы, и большее сопротивление — когда я ослабляю пальцы. Руки мои при этом чисты и сухи.

Если бы я работал во влажной и грязной производственной среде, то сопротивление между моими руками было бы намного меньше, представляя большую угрозу поражения электрическим током.

Итак, какая же величина тока опасна для человека?. Ответ на этот вопрос зависит от нескольких факторов. Значительное влияние на то, как электрический ток воздействует на человека, оказывает химический состав его тела.

Некоторые люди очень чувствительны к току, и поэтому испытывают непроизвольное сокращение мышц даже от разряда статического электричества, который другие люди могут и не почувствовать.

Несмотря на эти различия, посредством тестов были выведены примерные значения тока (очень небольшие), которые могут оказать вредное воздействие на организм человека. Все значения в таблице даны в миллиамперах (миллиампер равен 1/1000 ампера):

«Гц» является сокращенным обозначением единицы измерения Герц, которая служит мерой скорости чередования направлений переменного тока. Эта мера иначе известна как частота.

Так, заголовок «60 Гц АС» одного из столбцов таблицы означает что все значения этого столбца относятся к переменному току, который чередуется с частотой 60 циклов в секунду (1 цикл равен периоду времени, в течении которого поток электронов сначала движется в одном направлении, а потом в другом).

Последняя колонка, с надписью «10 кГц АС», относится к переменному току, который совершает десять тысяч циклов в секунду.

Следует иметь ввиду, что все вышеприведенные цифры являются приблизительными, поскольку реакция на ток  людей с разным химическим составом тела будет различной. Существует предположение, что достаточно пропустить переменный ток величиной в 17 миллиампер через грудь человека, чтобы при определенных условиях вызвать у него аритмию сердца.

Большинство данных таблицы, касающихся аритмии сердца, взяты из опытов над животными. И это естественно, ведь никто не будет проводить такие эксперименты на людях, в связи с чем имеющиеся данные весьма приблизительны.

Если вас интересует вопрос, почему женщины более восприимчивы к электрическому току чем мужчины, то здесь мы вам не поможем — для нас это тоже загадка.

Теперь давайте предположим, что я взялся сухими и чистыми руками за контакты источника напряжения переменного тока частотой 60 Гц. Какое напряжение должно быть у этого источника, чтобы создать ток величиной 20 миллиампер (при таком токе я не смогу самостоятельно отпустить контакты источника)? Ответ на этот вопрос можно найти в Законе Ома (U = IR):

  • U = IR
  • U = (20 мA)(1 МОм)
  • U = 20,000 вольт, или 20 кВ

Имейте в виду, что это сценарий «лучшего случая» с точки зрения электробезопасности (чистая, сухая кожа), а полученная величина напряжения, с огромной долей вероятности, вызовет оцепенение человека.

Гораздо меньшее напряжение потребуется для вызова болевых ощущений.

Следует учесть так же и тот момент, что физиологические эффекты воздействия различных токов на разных людей могут значительно отличаться, поэтому наши расчеты являются только приблизительной оценкой действительности.

Если я смочу пальцы своих рук водой, имитируя пот, то сопротивление моего тела между руками составит всего 17000 Ом (17 кОм). Обратите внимание, что в нашем случае с тонкими металлическими щупами измерительного прибора контактирует по одному пальцу каждой руки. Повторно вычислив напряжение, необходимое для получения тока величиной 20 мА, мы получим следующее значение:

  1. U = IR
  2. U = (20 мA)(17 kОм)
  3. U = 340 вольт

В этом случае достаточно напряжения 340 вольт, чтобы создать ток 20 миллиампер через тело человека. Однако, смертельный удар током можно получить и от меньшего напряжения если увеличить площадь контакта, уменьшив тем самым его сопротивление.

Примером такого контакта служит кольцо на пальце (золото обернутое вокруг пальца создает превосходный контакт для поражения электрическим током) или большой металлический предмет, такой как труба или ручка инструмента.

Сопротивление организма при этом понизится до 1000 Ом (10 кОм), что создаст реальную угрозу поражения низкими значениями напряжения:

  • U = IR
  • U = (20 мA)(1 kОм)
  • U = 20 вольт

Таким образом, чтобы создать ток величиной 20 мА и вызвать оцепенение человека, достаточно напряжения 20 вольт. Ранее мы упомянули предположение, что сила тока 17 мА, пропущенная через грудь человека, при определенных условиях может вызвать аритмию сердца. Так вот, если сопротивление между руками человека будет равно 1 кОм, то для создания этого опасного условия потребуется всего 17 вольт:

  1. U = IR
  2. U = (17 мA)(1 kОм)
  3. U = 17 вольт

В этих расчетах мы показали вам «наихудший» сценарий для напряжения переменного тока частотой 60 Гц и отличной проводимости человеческого тела. Данный пример дает наглядную картину опасности даже небольших значений напряжения.

Понизить сопротивление человеческого тела до 1000 Ом можно не только путем воздействия рассмотренных выше экстремальных факторов (например плотным контактом золотого кольца с пальцем).

Оно может уменьшиться при длительном воздействии напряжения (например, когда человек под действием тока не может разжать руку, и только крепче сжимает проводник).

Одновременно с уменьшением сопротивления увеличивается сила тока при фиксированном напряжении.

Ниже приведены примерные значения сопротивлений точек контакта человека с различными предметами в различных условиях:

  • Контакт пальца с проводом: от 40 000 Ом до 1 000 000 Ом (сухой палец), от 4 000 Ом до 15 000 Ом (влажный палец).
  • Контакт руки с проводом: от 15 000 Ом до 50 000 Ом (сухая рука), от 3 000 Ом до 5 000 Ом (влажная рука).
  • Контакт руки с металлическими плоскогубцами: от 5 000 Ом до 10 000 Ом (сухая рука), от 1 000 Ом до 3 000 Ом (влажная рука).
  • Контакт с ладонью: от 3 000 Ом до 8 000 Ом (сухая ладонь), от 1 000 Ом до 2 000 Ом (влажная ладонь).
  • Контакт (обхват) одной руки с 1,5-дюймовой металлической трубой: от 1 000 Ом до 3 000 Ом (сухая рука), от 500 Ом до 1 500 Ом (влажная рука).
  • Контакт (обхват) двух рук с 1,5-дюймовой металлической трубой: от 500 Ом до 1 500 Ом (сухие руки), от 250 Ом до 750 Ом (влажные руки).
  • Контакт руки, погруженной в проводящую жидкость, с этой жидкостью: от 200 Ом до 500 Ом.
  • Контакт ноги, погруженной в проводящую жидкость, с этой жидкостью: от 100 Ом до 300 Ом.         

Обратите внимание на значения сопротивлений в двух случаях с 1,5-дюймовой металлической трубой. Если трубу обхватить двумя руками, то сопротивление будет ровно в два раза меньше, чем при обхвате этой же трубы одной рукой.

Две руки, сжимающие металлическую трубу, увеличивают площадь контакта в два раза по сравнению с одной рукой. Это очень важное обстоятельство: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. В этом случае электроны текут из трубы в тело (или наоборот) по двум параллельным маршрутам.

Как вы увидите позже, общее сопротивление параллельной цепи всегда меньше (или равно) любого из сопротивлений этой цепи.

В промышленности пороговым значением опасного напряжения считается, как правило, напряжение величиной 30 вольт. Осторожный человек должен рассматривать любое напряжение, превышающее это значение, как опасное.

Работая с электричеством он должен содержать свои руки чистыми и сухими, а так же снять все металлические украшения, которые представляют опасность и при более низких значениях напряжения.

Такие украшения, выступая в качестве контактов между двумя точками цепи, способны провести достаточный ток, чтобы сжечь кожу.

Опасными могут быть и напряжения менее 30 вольт, если они достаточны чтобы вызвать неприятные ощущения, в результате которых человек может совершить резкое движение и вступить в контакт с другим, более высоким напряжением или иным источником повышенной опасности.

Автор статьи вспоминает, как однажды он ремонтировал свой автомобиль в жаркий летний день. По причине теплой погоды он был в шортах, и работая с аккумуляторной батареей прислонился оголенной частью ног к хромированному бамперу машины.

Когда он коснулся металлическим ключом положительного контакта 12-вольтовой батареи, то почувствовал покалывание в точке контакта ноги с бампером.

Таким образом, надежный контакт с металлом и потная кожа позволили почувствовать удар током  от электрического потенциала значением всего-лишь 12 вольт.

К счастью, в этом случае ничего плохого не случилось.

Но, если бы двигатель автомобиля был запущен, и воздействие тока почувствовала рука а не нога, то автор, возможно, рефлексивно дернул бы ее в сторону вращающегося вентилятора или уронил бы ключ на клеммы аккумулятора (вызвав тем самым короткое замыкание и сноп искр). Этот пример иллюстрирует еще один важный урок электробезопасности — электрический ток может послужить косвенной причиной травмирования.

Очень важное значение имеет путь, по которому ток течет через тело человека.

Благодаря тому, что электрический ток оказывает влияние на все мышцы организма находящиеся на его пути, в том числе и на такие жизненно-важные, как сердце и легкие, наиболее опасным будет такой ток, который проходит через грудь человека. Это сценарий возможен в том случае, если человек соприкоснется с источником напряжения двумя руками.

В целях недопущения такого сценария, при работе со схемой (находящейся под напряжением) желательно использовать только одну руку, засунув вторую при этом в карман (чтобы случайно ничего ей не тронуть).

Конечно, безопаснее было бы работать с обесточенной схемой, но на практике это не всегда возможно. Если схема находится под напряжением, то работать с ней предпочтительнее правой рукой. А почему правой, спросите вы.

Во-первых, если человек правша (каких большинство), то ему удобнее будет работать именно этой рукой, а во-вторых — сердце расположено в левой части грудной клетки.

Лучшей защитой от удара электрическим током является сопротивление, которое может быть добавлено к телу при помощи изолированных инструментов, перчаток, сапог и других приспособлений.

Как вы уже знаете, ток в цепи равен напряжению деленному на общее сопротивление потоку электронов.

Наибольший эффект сопротивления будут иметь при расположении их таким образом, чтобы создать только один путь для потока электронов (подробнее на этом мы остановимся в последующих статьях):

Ниже представлена эквивалентная схема человека, экипированного перчатками и сапогами:

В этом случае суммарное (общее) сопротивление сапог, тела и перчаток потоку электронов будет больше, чем сопротивление каждого из компонентов по отдельности.

Безопасность является одной из причин, по которой электрические провода покрываются пластмассовой или резиновой изоляцией, которая значительно увеличивает сопротивление между проводником и прикоснувшемуся к нему человеком. Однако покрывать изоляцией высоковольтные провода линий электропередач слишком дорого, поэтому безопасность в этом случае достигается путем подвешивания их на столбы высоко над землей.

Краткий обзор:

  • Электрический ток оказывает вредное воздействие на организм человека. Чем больше напряжение, тем больший и опасный ток оно производит. Уменьшить силу тока может сопротивление. Высокое сопротивление является хорошей защитой от удара электрическим током.
  • Напряжение величиной выше 30 вольт способно создать опасный ток.
  • Не нужно надевать металлические украшения при работе с электрическими схемами. Кольца, ремешки часов, ожерелья, браслеты и другие подобные вещи обеспечивают отличный электрический контакт с телом человека и способны провести достаточный ток, чтобы вызвать ожог кожи даже при низких напряжениях.
  • Опасность несет и такое низкое напряжение, которое непосредственно не может поразить человека. Его может быть достаточно, чтобы человек отдернул руку и вступил в контакт с другим, находящимся вблизи источником опасности.
  • В целях предотвращения прохождения опасного тока через грудь человека, работать с запитанной схемой необходимо одной рукой (по возможности — правой).  

Источник: http://www.radiomexanik.spb.ru/3.-elektrobezopasnost/3.-i-snova-zakon-oma.html

Электрическое сопротивление человека. Сопротивление тела у людей

Тема: какое электрическое сопротивление имеет человеческое тело

Кожа человека, как известно, имеет два слоя:

наружный слой кожи (также ещё называется эпидермис) состоит из несколько слоёв, самый верхний из которых называется роговым и представляет собой множество рядов отмерших и ороговевших клеток.

В чистом и сухом виде этот слой можно характеризовать как диэлектрик (он имеет очень большое электрическое сопротивление).

Следующий слой эпидермиса (носит название — ростковый) гораздо тоньше рогового и имеет значительно большую электрическую проводимость (меньшее сопротивление).

внутренний слой кожи (называется дерма) представляет собой живую ткань. Данный слой дермы имеет малое электрическое сопротивление.

Электрическое сопротивление обычного человека при условии, что кожа у него чистая, сухая и неповреждённая (измеренное напряжением 15-20 Вольт) лежит в пределах 3 — 100 кОм (1кОм = 1000 Ом), в некоторых случаях и более.

Сопротивление тела человека, а именно проводимость между двух электродов, которые касаются поверхности кожи, можно рассматривать как 3 сопротивления включённых последовательно: наружные слои (эпидермиса) представляют собой первое сопротивление, и внутренние слои является вторым и третьим сопротивлением, включающим в себя сопротивления внутреннего слоя кожи и сопротивление внутренних тканей.

Ёмкостная составляющая, присутствующая в сопротивлении человека обуславливает влияние, как рода электрического тока, так и его частоты на общую величину сопротивления тела.

При частоте 10 — 20 кГц и свыше можно утверждать, что поверхностный слой кожи почти полностью утрачивает своё сопротивление, и общее сопротивление человека в данном случае будет состоять лишь из внутреннего сопротивления тела (сопротивление дермы и внутренних тканей).

Общее состояние кожи в значительной мере оказывает влияние на величину электрического сопротивления человека. При повреждении рогового слоя кожи (царапины, порезы, ссадины и т.д.

) происходит снижение сопротивления человека до величины, приближенного к значению внутреннего сопротивления, а это, естественно, повышает опасность поражения электрическим током.

Подобное влияние может оказываться и в случае увлажнения кожи водой или потом.

При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм.

В действительности данное электрическое сопротивление есть величина непостоянная, что имеет нелинейную характеристику и зависит от дополнительных условий, в том числе от параметров электрической цепи, состояния кожи, состояния окружающей среды, физиологии человека и т.д.

P.S. Всякие случайности хороши в том случае, когда они имеют положительный характер. Случайный удар электрическим током нельзя отнести к таковым. Следовательно, будьте внимательны и осторожны при работе с электричеством.

Источник: https://electrohobby.ru/elektr-soprot-chelov-soprot-tel.html

Сопротивление тела человека принимается равным 1000 Ом

  • МЕТОДИЧЕСКИЕ УКАЗАНИЯ
  • по выполнению лабораторных работ по курсу
  • «Безопасность жизнедеятельности»
  • для студентов всех специальностей
  • ОЦЕНКА ЭФФЕКТИВНОСТИ СПОСОБОВ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ
  • Красноярск, 2012 г.
  • УДК

Рецензент: Калинин А.А., к.т.н., профессор, академик МАН экологии и безопасности.

Оценка эффективности способов защиты человека от поражения электрическим током. Методические указания по выполнению лабораторных работ для студентов всех специальностей/ составили Емец А.А., Красноярск, 2012, 19 с.

  1. Печатается по решению
  2. Редакционно-издательского совета университета
  3. Ó СФУ, 2012
  4. Печатается в авторской редакции
  5. Лабораторные работы
  6. « Оценка эффективности способов защиты человека от поражения электрическим током»
  7. Цель работы— изучение количественных и качественных характеристик защитного заземления, защитного зануления и устройства защитного отключения (УЗО), как средств защиты человека от поражения электрическим током.
  8. ОБЩИЕ СВЕДЕНИЯ
  9. ЭЛЕКТРОБЕЗОПАСНОСТЬ
  10. Электробезопасность — система организационных и технических мероприятий и средств, обеспечивающих защиту работающих от воздействия электрического тока.
  11. Поражение человека электрическим током может произойти при прикосновениях:
  12. — к токоведущим частям, находящимся под напряжением;
  13. — отключенным токоведущим частям, на которых остался заряд или появилось напряжение в результате случайного включения;
  14. — к металлическим нетоковедущим частям электроустановок после перехода на них напряжения с токоведущих частей.
  15. Характер и последствия поражения человека электрическим током зависят от ряда факторов, в том числе и от:
  16. — электрического сопротивления тела человека,
  17. — величины и длительности протекания через него тока,
  18. — рода и частоты тока,
  19. — схемы включения человека в электрическую цепь,
  20. — состояния окружающей среды
  21. — индивидуальных особенностей организма.
  • Электрическое сопротивление тела человека складывается из сопро­тивления кожи и сопротивления внутренних тканей.
  • При расчетах
  • сопротивление тела человека принимается равным 1000 Ом.
  • Сила тока, протекающего через тело человека, является главным фактором, от которого зависит исход поражения: чем больше сила тока, тем опаснее последствия.

Сила тока, протекающего через тело человек, при которой человек начинает ощущать проходящий через него ток, называется пороговым ощутимым током. Обычно, при частоте токапромышленной частоты 50 Гц пороговым ощутимым является значение 0,5…1,5 мА.

Ток силой 10… 15 мА вызывает сильные и непроизвольные судороги мышц, которые человек не в состоянии преодолеть, т. е. он не может разжать руку, которой касается токоведущей части, отбросить от себя провод, оказываясь как бы прикованным к токоведущей части. Такой ток называется пороговым неотпускающим.

При силе тока 20…25 мА у человека происходит судорожное сокращение мышц грудной клетки, затрудняется и даже прекращается дыхание, что может привести к смерти вследствие прекращения работы легких.

Ток силой 100 мА является смертельно опасным, так как он в этом случае оказывает непосредственное влияние на мышцы сердца, вызывая его остановку или фибрилляцию (быстрые хаотические и разновременные сокращения волокон сердечной мышцы), при которой сердце перестает работать.

Длительность протекания тока через тело человека определяет исход поражения им, так как с течением времени резко возрастает сила тока вследствие уменьшения сопротивления тела, и также потому, что в организме человека накапливаются отрицательные последствия воздействия тока.

  1. Опасность электрических сетей.
  2. На производстве используются следующие виды электрических сетей:
  3. — трехфазные электрические сети с изолированной нейтралью;
  4. — трехфазные электрические сети с заземленной нейтралью;
  5. — однофазные электрические сети.
  6. Опасность трехфазных электрических сетей с изолированнойнейтралью.

Провода электрических сетей по отношению к земле имеют емкость и активное сопротивление — сопротивление утечки, равное сумме сопротивлений изоляции и пути тока на землю (рис 5.10).

Для упрощения анализа можно принять их равными, т. е.

Са=Св= Сс и rА = rВ = rС = r

При прикосновении человека к одному из фазных проводов (однофазное сопротивление) исправной сети проводимость этого провода относительно земли уменьшается и происходит смещение нейтрали. Ток через человека в этом случае выражается зависимостью:

где — фазное напряжение сети; — сопротивление цепи человека (Rч = rтч + rод + rоб + rоп), rтч — сопротивление тела человека; rод— сопротивление одежды 0,5…1 кОм для влажной ткани и 10…15 кОм — для сухой; rоб

Источник: https://megaobuchalka.ru/10/3826.html

Чему равно сопротивление тела человека | Режимщик

Электрическое сопротивление различных тканей тела человека не одинаково.

Например, при токе частотой 50 Гц удельное сопротивление равно: кости – 107 Ом∙м, кожа сухая – 105 Ом∙м, крови – 1,7 Ом∙м.

При сухой, чистой и неповрежденной коже сопротивление тела, измеренное, при напряжении 15-20 В переменного тока (50 Гц), колеблется в пределах от 1 до 10 кОм, а иногда и в более широких пределах.

Сопротивление кожи, а следовательно сопротивление тела в целом резко уменьшается при повреждении ее рогового слоя, наличие влаги на ее поверхности, интенсивном потовыделении и загрязнении.

Электрическое сопротивление тела человека зависит так же от места приложения электродов к телу, значений тока, проходящего через человека, и приложенного к телу напряжения, рода и частоты тока, площади электродов, длительности прохождения тока через человека и некоторых других факторов.

Увеличение тока приводит к снижению сопротивления соответствующих участков кожи, за счет местного нагрева кожи и действия на центральную нервную систему (усиливается приток крови, повышается потоотделение). С ростом напряжения сопротивление тела уменьшается в десятки раз.

При больших напряжениях приближается к наименьшему пределу 300 Ом. В России в качестве расчетных значений сопротивление человека равно 1000 Ом при напряжении, приложенном к телу, равное 50 В и выше и сопротивление человека равное 6000 Ом при приложенном напряжении 36 В.

Опыты показывают, что сопротивление тела человека постоянному току больше, чем переменному любой частоты. Разница в значениях сопротивлений постоянному и переменному (50 Гц) током особенно велико при малых напряжениях – до 10 В.

С ростом приложенного напряжения эта разница уменьшается и начиная с 40-80 В сопротивление тела человека как постоянному, так и переменному току промышленной частоты становится практически одинаковым.

На значение сопротивления тела человека влияют и другие факторы, хотя в значительно меньшей степени. Пол и возраст. У женщин, как правило, сопротивление тела меньше, чем у мужчин, а у детей – меньше, чем у взрослых, у молодых людей меньше, чем у пожилых. Объясняется это, очевидно, тем, что у одних людей кожа тоньше и нежнее, у других — толще и грубее.

Физическое раздражение снижает сопротивление тела на 20-25%.

Повышенная температура окружающего воздуха (30-450 С) или тепловое облучение человека, вызывает некоторое понижение сопротивление тела.

Принцип работы трансформатора отбора напряжения в шкафу отбора напряжения Обслуживание устройств АПВ Назначение и область применения устройства автоматического повторного включения

Источник: http://elektro-rezhim.ru/soprotivlenie-tela-cheloveka/

25) Электрическое сопротивление тела человека. Электрическое сопротивление тела человека

Тело
человека является проводником
электрического тока. Различные ткани
тела оказывают току разное сопротивление:
кожа, кости, жировая ткань — большое, а
мышечная ткань, кровь и особенно спинной
и головной мозг — малое. Кожа обладает
очень большим удельным сопротивлением,
что является главным фактором, определяющим
сопротивление всего тела человека.

Кожа
состоит из двух основных слоёв: наружного,
называемого эпидермисом, и внутреннего,
являющегося собственно кожей и носящего
название дермы. Наружный слой кожи —
эпидермис, в своё очередь имеет несколько
слоёв, из которых самый верхний называется
роговым и состоит из многих рядов
ороговевших клеток.

В
сухом и незагрязнённом виде роговой
слой можно рассматривать как диэлектрик.
Другие слои эпидермиса (ростковый слой)
в несколько раз тоньше рогового слоя и
обладает значительно меньшим
сопротивлением.

Внутренний
слой кожи — дерма является живой тканью.
Электрическое сопротивление дермы
невелико.

Сопротивление
тела человека при сухой, чистой и
неповреждённой коже (измеренное при
напряжении до 15-20 В) колеблется в пределах
примерно от 3000 до 100 000 Ом, а иногда и
более.

Сопротивление тела человека, то
есть сопротивление между двумя
электродами, наложенными на поверхность
тела, можно условно считать состоящим
из трёх последовательно включённых
сопротивлений: двух одинаковых наружных
слоя кожи (эпидермиса), составляющих в
совокупности так называемое наружное
сопротивление тела человека, и одного,
называемого внутренним сопротивлением
тела, включающим в себя два сопротивления
внутреннего слоя кожи (дермы) и
сопротивление внутренних тканей тела.

Наружное
сопротивление тела обладает не только
активным сопротивлением, но и ёмкостным,
так как в месте прикосновения электродов
к телу человека образуются как бы
конденсаторы, обкладками которых
являются электроды и хорошо проводящие
токи ткани тела человека, лежащие под
наружным слоем кожи, а диэлектриком —
наружный слой (эпидермис). Внутреннее
сопротивление тела считается чисто
активным.

Обычно
при переменном токе промышленной частоты
учитывают лишь активное сопротивление
тела человека и принимают его равным
1000 Ом. В действительности это сопротивление
— величина переменная, имеющая нелинейную
зависимость от множества факторов, в
том числе от состояния кожи, параметров
электрической цепи, физиологических
факторов и состояния окружающей среды.

Состояние
кожи

— очень сильно сказывается на величине
сопротивления тела человека.

Так,
повреждение рогового слоя, в том числе
порезы, царапины, ссадины и другие
микротравмы, могут снизить полное
сопротивление тела до значения, близкого
к величине внутреннего сопротивления,
что безусловно увеличивает опасность
поражения человека током. Такое же
влияние оказывает и увлажнение кожи
водой или за счёт пота, а также загрязнение
кожи проводящей пылью или грязью.

Поскольку
у одного итого же человека сопротивление
кожи неодинаково на разных участках
тела, то на сопротивление в целом
сказывается место приложения контактов,
а также их площадь.

Величина тока и
длительность его прохождения через
тело оказывают непосредственное влияние
на полное сопротивление: с ростом тока
и времени его прохождения сопротивление
падает, поскольку при этом усиливается
местный нагрев кожи, что приводит к
расширению её сосудов, а следовательно
к усилению снабжения этого участка
кровью и увеличению потовыделения.

Повышение
напряжения, приложенного к телу человека,
вызывает уменьшение в десятки раз
сопротивления кожи, а следовательно, и
полного сопротивления тела человека,
приближающегося в пределе к своему
наименьшему значению — 300-500 Ом.

Наличие
ёмкостной составляющей в сопротивлении
тела человека обусловливает влияние
рода и частоты тока на величину полного
сопротивления.

Так, при частоте 10-20 кГц
и более можно считать, что наружный слой
кожи практически утрачивает сопротивление
электрическому току, и полное сопротивление
кожи состоит только из внутреннего
сопротивления тела человека (то есть
из сопротивлений дермы и внутренних
тканей тела).

Источник: https://studfile.net/preview/5301451/page:16/

Сколько в Омах сопротивление у человеческого тела?

Войти через mail.ru
Виктор

  • 500 Ом, если без кожи.
  • Расчётное 1 кОм, практически — до 1 МОм.

Илья

Уточнить ты не сможешь, ибо человек не конкретный металл, сопротивление кожи всегда меняется. Зависить от возраста, от влажности, от настроение, от температуры тело. Вообщем начинается от 100 Ом, до 10 МОм

Андрей

Сопротивл ение у каждого чел овека разное и зависит от состояния чел овека. В среднем по правил ам расчета по ел ектробезопасности 1000 Ом.

Обычно 10кОм -максимум 500 кОм. Расчетное сопротивление для человека берется 1 кОм. Оно может быть у пьяного или сильно переживающего человека, с мокрыми руками, сильно потеющего, поврежденной кожей. Сопротивление имеет как активную составляющую, так и реактивную. Ток лентяй и течет где ему легче.

Если вы взяли 2 щупа в руки то он покажет сопротивление между рукой-плечами- 2 рукой. Ток через ноги не потечет в этом случае. Так что работай с током обычно только правой рукой, даже если ты левша. И не лезь к высокому напряжению. Это обычно считают более 42 В опасно для жизни и сила тока более 0,1 А.

Eugene

Оно разное для различных участков тела. В среднем при расчете электробезопасности его принимают равным 1 кОм. Самым большим сопротивлением обладает верхний слой кожи (3..

20 кОм) Сопротивление человека Для расчёта величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм [5]. Эта величина имеет малое отношение к реальному сопротивлению человеческого тела.

В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых меняется во времени, в третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.

Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА.

Удельное сопротивление тела человека весьма значительно (около 15 кОм) . Поэтому опасные токи могут быть достигнуты только при значительном напряжении.

Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В.

Другие вопросы из категории «Наука, Техника, Языки»

Источник: https://sprashivalka.com/tqa/q/18027055

Большая Энциклопедия Нефти и Газа

Cтраница 2

Электрическое сопротивление тела человека может меняться РІ широких пределах — РѕС‚ 100000 РґРѕ 300 РћРј.

Оно зависит от приложенного напряжения, длительности, прохождения тока и др.

Нервные, сердечные Рё легочные заболевания, влажность кожи также понижают электрическую сопротивляемость тела человека.  [16]

Электрическое сопротивление тела человека изменяется от 800 до 100000 Ом.

РћРЅРѕ зависит РѕС‚ РјРЅРѕРіРёС… факторов: состояния Р·РґРѕСЂРѕРІСЊСЏ, нервной системы, психического состояния — влажности кожи, состояния одежды, РѕР±СѓРІРё Рё РґСЂСѓРіРёС… причин.  [17]

Электрическое сопротивление тела человека складывается из сопротивления кожи и сопротивления внутренних тканей.

 [18]

Электрическое сопротивление тела человека изменяется РІ широком диапазоне-РѕС‚ 400 РґРѕ 100000 РћРј. Р—Р° опасную силу тока РЅР° основании последних исследований принимают 0 01 Рђ.  [19]

Электрическое сопротивление тела человека изменяется от 800 до 100000 Ом.

РћРЅРѕ зависит РѕС‚ РјРЅРѕРіРёС… факторов: состояния Р·РґРѕСЂРѕРІСЊСЏ, нервной системы, психического состояния, влажности кожи, состояния одежды, РѕР±СѓРІРё Рё РґСЂСѓРіРёС… причин.  [20]

Электрическое сопротивление тела человека РїСЂРё СЃСѓС…РѕР№ неповрежденной коже находится РІ пределах 10000 — 100 000 РѕРј.

Величина этого сопротивления определяется в основном сопротивлением внешнего рогового слоя кожи и при влажной коже может снизиться до тысяч ом.

РџСЂРё снятом СЂРѕРіРѕРІРѕРј слое кожи сопротивление уменьшается РґРѕ 800 — 1000 РѕРј.  [21]

Электрическое сопротивление тела человека складывается из сопротивления кожи и сопротивления внутренних тканей.

Кожа, РІ РѕСЃРЅРѕРІРЅРѕРј верхний ее слой толщиной 0 2 РјРј, состоящий РёР· мертвых ороговевших клеток, обладает большим сопротивлением, которое определяет общее сопротивление тела человека.  [22]

Электрическое сопротивление тела человека нелинейно.

Эта нелинейность чрезвычайно сложна: как уже указывалось, она зависит от физических, биофизических и биохимических факторов и о ней мало что достоверно известно.

Поэтому приходится делать СЂСЏРґ допущений Рё прежде всего считать РїСЂРё первом рассмотрении, что электрическое сопротивление тела человека линейно, Р° затем уже РїРѕ мере накопления экспериментального материала вносить необходимые уточнения. Основанием для такого допущения служит то, что большая часть биохимических Рё биофизических процессов проявляется РЅРµ РІ первое же мгновение после электротравмы, Р° РїРѕ истечении некоторого времени. РћР± этом свидетельствуют хотя Р±С‹ кривые СЂРёСЃ. 6 — 6, показывающие изменение электрического сопротивления тела человека РїРѕРґ влиянием физических раздражителей. Р�Р· этих кривых РІРёРґРЅРѕ, что изменение наступает РІ течение РјРёРЅСѓС‚, тогда как РїСЂРё оценке электрической цепи РІ процессе расследования несчастных случаев приходится решать РІРѕРїСЂРѕСЃ Рѕ переходных процессах, длительность которых РЅРµ превышает миллисекунд.  [23]

Электрическое сопротивление тела человека складывается из сопротивления кожи и сопротивления внутренних тканей.

 [24]

Величина электрического сопротивления тела человека изменяется от 800 до 100 000 Ом.

РћРЅР° зависит РѕС‚ РјРЅРѕРіРёС… факторов: состояния Р·РґРѕСЂРѕРІСЊСЏ, нервной системы, психического состояния, влажности кожи, состояния одежды, РѕР±СѓРІРё Рё РґСЂСѓРіРёС… причин.  [25]

�зучение электрического сопротивления тела человека сильно продвинулось вперед, когда в исследовательский обиход были внедрены измерения сопротивлений на высоких частотах.

Эти измерения впервые показали, что электрическое сопротивление внутренних органов является преимущественно активным сопротивлением, Р° емкостная составляющая полного сопротивления обусловлена РІ РѕСЃРЅРѕРІРЅРѕРј сопротивлением кожи.  [26]

�змерения электрического сопротивления тела человека обычно проводятся обстоятельно, но противоречия не сглаживаются.

Называется общее значение сопротивления в омах, но не указываются ни площади поверхностей электродов, ни силы, с которыми они давили на кожу.

Если сообщается Рѕ сопротивлении РїСЂРё петле СЂСѓРєР° — СЂСѓРєР°, то РЅРµ уточняется, РІ какой части СЂСѓРєРё — тыльной или ладонной — произошел контакт.  [27]

Зависимость электрического сопротивления тела человека Рё тока, проходящего через него, РѕС‚ величины приложенного напряжения показаны РЅР° СЂРёСЃ. 26, РіРґРµ 1 Рё 2 — переменный ток СЃ частотой 50 Гц; 3 Рё 4 — постоянный ток.  [28]

Р�зучение электрического сопротивления тела человека сильно продвинулось Р• — перед, РєРѕРіРґР° РІ исследовательский РѕР±РёС…РѕРґ были внедрены измерения сопротивлений РЅР° высоких частотах.

Эти измерения впервые показали, что электрическое сопротивление внутренних органов является преимущественно активным сопротивлением, Р° емкостная составляющая полного сопротивления обусловлена РІ РѕСЃРЅРѕРІРЅРѕРј сопротивлением кожи.  [29]

�змерения электрического сопротивления тела человека обычно проводятся обстоятельно, но противоречия не сглаживаются.

Называется общее значение сопротивления в омах, но не указываются ни площади поверхностей электродов, ни силы, с которыми они давили на кожу.

Если сообщается Рѕ сопротивлении РїСЂРё петле СЂСѓРєР° — СЂСѓРєР°, то РЅРµ уточняется, РІ какой части СЂСѓРєРё — тыльной или ладонной — произошел контакт.  [30]

Страницы:      1    2    3    4

Источник: https://www.ngpedia.ru/id457960p2.html

Электрическое сопротивление человека. Сопротивление тела у людей.

 

 

 

Тема: какое электрическое сопротивление имеет человеческое тело.

 

Человеческое тело, как и любое другое тело живого организма, имеет свойство проводить через себя электрический ток. Разные живые ткани в организме имеют различную проводимость (сопротивление). К примеру — кожа, жировая ткань, кости – имеют большое сопротивление, а кровь, мышечная масса и особенно головной и спинной мозг – малое. Кожа имеет большое удельное электрическое сопротивление, что впоследствии и определяет фактическое сопротивление человеческого тела.

 

Кожа человека, как известно, имеет два слоя:

 

наружный слой кожи (также ещё называется эпидермис) состоит из несколько слоёв, самый верхний из которых называется роговым и представляет собой множество рядов отмерших и ороговевших клеток. В чистом и сухом виде этот слой можно характеризовать как диэлектрик (он имеет очень большое электрическое сопротивление). Следующий слой эпидермиса (носит название — ростковый) гораздо тоньше рогового и имеет значительно большую электрическую проводимость (меньшее сопротивление).

 

внутренний слой кожи (называется дерма) представляет собой живую ткань. Данный слой дермы имеет малое электрическое сопротивление.

 

Электрическое сопротивление обычного человека при условии, что кожа у него чистая, сухая и неповреждённая (измеренное напряжением 15-20 Вольт) лежит в пределах 3 — 100 кОм (1кОм = 1000 Ом), в некоторых случаях и более. Сопротивление тела человека, а именно проводимость между двух электродов, которые касаются поверхности кожи, можно рассматривать как 3 сопротивления включённых последовательно: наружные слои (эпидермиса) представляют собой первое сопротивление, и внутренние слои является вторым и третьим сопротивлением, включающим в себя сопротивления внутреннего слоя кожи и сопротивление внутренних тканей.

 

 

 

 

Наружное сопротивление человека обладает не только активным сопротивлением, а ещё и ёмкостным, поскольку в самом месте контактирования электродов с человеческим телом образовывается некое подобие конденсатора, в роле обкладок которого являются сами электроды и ткани тела человека, хорошо проводящие электрический ток, что находятся под наружным слоем кожи, ну, а диэлектриком (изолятором между обкладками) в данном случае будет выступать наружный слой кожи (эпидермис).

 

Ёмкостная составляющая, присутствующая в сопротивлении человека обуславливает влияние, как рода электрического тока, так и его частоты на общую величину сопротивления тела. При частоте 10 — 20 кГц и свыше можно утверждать, что поверхностный слой кожи почти полностью утрачивает своё сопротивление, и общее сопротивление человека в данном случае будет состоять лишь из внутреннего сопротивления тела (сопротивление дермы и внутренних тканей).

 

Общее состояние кожи в значительной мере оказывает влияние на величину электрического сопротивления человека. При повреждении рогового слоя кожи (царапины, порезы, ссадины и т.д.) происходит снижение сопротивления человека до величины, приближенного к значению внутреннего сопротивления, а это, естественно, повышает опасность поражения электрическим током. Подобное влияние может оказываться и в случае увлажнения кожи водой или потом.

 

При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. В действительности данное электрическое сопротивление есть величина непостоянная, что имеет нелинейную характеристику и зависит от дополнительных условий, в том числе от параметров электрической цепи, состояния кожи, состояния окружающей среды, физиологии человека и т.д.

 

Так как сопротивление кожи у одного и того же человека может быть неодинаковое в разных местах и частях тела, то, естественно, на его сопротивление сильно будет влиять конкретное место прикосновения электрических контактов, а также их общая площадь. Величина электрического тока и длительность воздействия на тело оказывают прямое влияние на полное сопротивление человека: с увеличением значения тока и времени его прохождения, сопротивление будет понижаться, потому что происходит местный нагрев участков кожи, а это, само собой, ведёт к расширению сосудов, тем самым усиливая снабжение данного участка тела кровью, увеличения его потоотделение. Увеличение напряжения, воздействующее на тело человека, вызывает понижение сопротивления кожи в 10-ки раз, следовательно, и общее сопротивление человека, снижается до предела 300 — 500 Ом. А это опасно.

 

P.S. Всякие случайности хороши в том случае, когда они имеют положительный характер. Случайный удар электрическим током нельзя отнести к таковым. Следовательно, будьте внимательны и осторожны при работе с электричеством.

Исследовательская работа, «Сопротивление тела человека»

Муниципальное бюджетное общеобразовательное учреждение

«Бардымская средняя общеобразовательная школа №2»

Муниципальная научно-практическая конференция учащихся

«Юный исследователь»

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

ТЕЛА ЧЕЛОВЕКА

Работу выполнил:

Мансуров Данил

Ученик 9б класса МБОУ «Бардымская СОШ №2»

Руководитель:

Халитова Гюзель Феликсовна

Учитель физики МБОУ «Бардымская СОШ №2»

с.Барда

2016 г.

ОГЛАВЛЕНИЕ

Используя электротехнические изделия в быту или на производстве, человек может попасть под действие электрического тока. Одним из факторов, влияющие на исход поражения человека электрическим током, является сопротивление тела человека. Поэтому проблема защиты человека от воздействия электрического тока была и остаётся актуальной.

Все чаще учащихся проявляют интерес к изучению физики тела человека. Все чаще они пробуют объяснить те или иные изменения состояния человека с точки зрения науки. Но в курсе физики, изучаемом в школе, практически не уделяется внимания физическим параметрам, характеризующим человека. Законы рассматриваются в основном на неживых объектах. Именно поэтому было принято решение провести исследование одного из физических параметров, а именно, сопротивление тела человека. И на этих исследованиях показать, что, причинно-следственная связь явлений имеет всеобщий характер и что, все явления, происходящие в окружающем нас мире, взаимосвязаны.

Существуют теоретические утверждения о зависимости сопротивления тела от кожного покрова, не исключено и влияние пути протекания электрического тока по телу, а также влияние физического и психоэмоционального состояния [2].

Цель исследования: провести измерение сопротивления тела человека электрическому току и выяснить от каких факторов оно зависит.

Объект исследования: учащиеся МБОУ БСОШ №2 (в возрастной категории от 6 до 9 класса) , семья Мансуровых.

Предмет исследования – руки человека.

Для достижения цели поставлены следующие задачи исследования:

  • научиться работать с научной литературой, отбирать, анализировать, систематизировать информацию;

  • научиться правильно пользоваться мультиметром;

  • исследовать зависимость сопротивления тела человека:

  1. от состояния кожного покрова,

  2. от времени суток,

  3. от физиологических факторов .

В процессе данной исследовательской работы использовались следующие теоретические и эмпирические методы:

  • сравнение и сопоставление теоретических данных с результатами эксперимента;

  • анализ различных информационных источников и результатов исследования по данному вопросу;

  • систематизация приведения в систему полученных теоретических и практических знаний.

  • наблюдение за экспериментом

  • исследование – выявление зависимости сопротивления тела от различных факторов.

Новизна исследований заключалась в проведении измерение сопротивления тела человека:

  • в разное время суток,

  • с различным состоянием поверхности кожи,

  • с различным эмоциональным состоянием,

  • у детей и подростков разного возраста (от12 до 16 лет)

  • у детей и подростков разных полов.

В ходе работы, рассматривались вопросы, направленные на развитие интереса к физике, к экспериментальной деятельности, формирование умений работать со справочной литературой. Я познакомился с методами исследования в физике и биологии, получил краткие данные о медицинской и биологической аппаратуре. Объяснение отдельных процессов, происходящих в живых организмах, на основе физических законов помогли мне установить причинно-следственные связи, существующие в живой и неживой природе, сформировали интерес не только к физике, но и биологии. Навыки, полученные при работе с измерительным прибором, при постановке эксперимента пригодятся в дальнейшем в научно-технической деятельности.

1. 1. Электричество и кожа

Существование и развитие человека невозможно без непрерывного взаимодействия с окружающей средой. Влияние внешней среды на человека обычно рассматривается на примере действия электрического тока и магнитного поля. Причем это не случайно. Энергия любого из этих факторов, так или иначе, преобразуется в электрическую, которая, взаимодействуя с электричеством человека, обуславливает реакцию человека на действие внешнего фактора[6].

Преобразование энергии взаимодействующих факторов в электрическую подчиняется определенной передаточной функции. Основные процессы преобразования, описываемые передаточной функцией, происходят через кожу. Кожа является источником информации о состоянии органов и тканей человека и в то же время – защитной оболочкой человека от вредного воздействия среды.

Кожа, осуществляющая связь в системе «среда – человек» (рис. 1.1), представляет собой трехкомпонентную структуру, образованную эпидермисом, дермой и подкожной жировой клетчаткой, которые находятся в функциональном разрезе. Самым тонким слоем является эпидермис. Несмотря на незначительные размеры, он обладает наиболее ответственными функциями – защитной и информационной. Информация необходима для саморегуляции ряда биофизических процессов в организме, прежде всего тепловых и биоэлектрохимических.

Рис.1.1. Кожа человека

Эпидермис плоский, тонкий, ороговевший слой, представляет собой пограничную часть с разнообразными сложными барьерно-информативными функциями. Одна из основных функций – защита от проникновения в организм чужеродных, не свойственных ему микробов, аэрозольной пыли. Он способствует защите тканей и органов от проникновения ультрафиолетового и коротковолнового рентгеновского излучения. Структурные особенности эпидермиса обеспечивают ему высокую упругость, эластичность. Он имеет большую механическую прочность, что позволяет ему выдерживать большие механические нагрузки. Обладая высокими регенерационными свойствами, способен при повреждениях быстро восстанавливаться. Благодаря удивительным и многообразным видам электропроводимости он имеет исключительно высокую рецепторную защитную способность[2].

Кожу многие ученые представляют, как топографическую связь отдельных участков эпидермиса со всеми органами человека. В эпидермисе находятся акупунктуры – точки и участки кожи, обладающие отличным от основного состава эпидермиса значением проводимости. Значит, есть различие и в свойствах этих точек. Через эти зоны в основном и осуществляется связь эпидермиса с внутренними органами. Возникновение электрической цепи через область эпидермиса в акупунктурных зонах может привести к смертельному исходу даже при очень маленьком напряжении. В то же время очень популярно воздействие на эти точки иглами с целью лечения или усиления некоторых функций организма – иглотерапия.

Свойства кожи уникальны и удивительны. Уже давно было обнаружено, что клетки чистой кожи убивают болезнетворные бактерии и микробы, попадающие на ее поверхность, на воздухе, и в то же время через мокрую кожу могут свободно проходить эти же микробы. Чем это вызвано?

Эпидермис – поверхностный слой кожи относится к диэлектрикам, обладающим огромным удельным сопротивлением и большим значением диэлектрической проницаемости. Под влиянием разности температур внутренних органов и окружающей среды возникает диффузия «электрического газа». При прохождении газа через место ранения, обладающего высоким удельным сопротивлением и большой диэлектрической проницаемостью, появляется статическое электричество. Напряженность поля может достигнуть десятка киловольт на 1 квадратный сантиметр. При такой напряженности клеточные мембраны разрушаются и бактерии погибают. Для разрушения нейрона или клетки достаточна электрическая энергия поля в пределах 10-20 Дж. Это свидетельствует о том, что кожа является своеобразным электростатическим фильтром, подобным электростатическому фильтру, применяемому в системах жизнеобеспечения для замкнутых помещений, представляя собой стерилизатор. Но все это происходит при условии, что сопротивление кожи поддерживается на очень высоком уровне. При наличии воды на коже или повышенной влажности кожи такое электростатическое поле возникнуть не может – нет и «стерилизатора». Следовательно, электричество человека служит очень хорошим стражем от поражения микроорганизмами – бактериями окружающей человека воздушной среды[5].

1.2. Электрические свойства тела человека

Человек – существо многогранное: он покорил высочайшие горные вершины, опустился в самые глубокие точки Мирового океана, побывал на Луне, расщепил атомное ядро. Но чаще всего мы не задумываемся, а что же мы представляем собой, что мы можем сделать, какими возможностями и ресурсами обладаем? Человеческий организм представляет собой сложные биологические системы, поэтому, изучая происходящие в нем процессы, мы обратились к методам, которые используются в таких точных науках, как физика и химия. Ведь человек состоит из атомов и молекул, подчиняющихся физическим и химическим закономерностям. По нервному волокну распространяется электрический импульс. Профессор кафедры анатомии в Болонье (Италия) Луиджи Гальвани в книге «Трактат о силах электричества при мышечном движении» пишет: «Я разрезал и препарировал лягушку… Когда один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедренных нервов этой лягушки, то немедленно все мышцы конечностей начали так сокращаться, что казались впавшими в сильнейшие тонические судороги… Я зажегся страстным желанием исследовать это явление…» Но ответ на этот вопрос дал соотечественник Гальвани – Алессандро Вольта: живой организм проводит, пропускает через себя электрический ток. Именно Вольта и создал первый источник. Такой источник тока можно продемонстрировать. Нужно взять по пять пластинок из меди и цинка размером 30х30х4 мм и сложить их стопкой, чередуя и перекладывая промокательной бумагой, смоченной крепким раствором поваренной соли. Если взять столбик мокрыми пальцами за торцы, то почувствуешь слабый, но явственный электрический удар! Если этот элемент подключить к гальванометру, он покажет наличие тока в цепи. Прошел 121 год после статьи Гальвани, и в 1912 г. было обнаружено, что внутри человеческого организма протекают токи, хотя и очень слабые. Исследователи доказали, что любой процесс внутри человека: работа сердца и мозга, прохождение нервных сигналов, мышечные сокращения – сопровождаются биологическими электрическими сигналами.

Электропроводность – один из параметров, характеризующих жизненную деятельность живого существа. Известно, что с возникновением живого организма любого вида начинаются биоэлектрические явления, которые прекращаются при гибели живого существа. Человек при этом не является исключением. Тело человека представляет собой по своим электрофизическим свойствам соленый раствор (раствор электролита)[2].

1.3. Сопротивление тела человека

Проводимость живой ткани в отличие от обычных проводников обусловлена не только ее физическими свойствами, но и сложнейшими биохимическими и биофизическими процессами, присущими лишь живой материи. В живой ткани нет свободных электронов, и поэтому она не может быть уподоблена металлическому проводнику, электрический ток в котором представляет собой упорядоченное движение свободных электронов.

Большинство тканей тела человека содержит значительное количество воды (до 65% по весу). Поэтому живую ткань можно рассматривать как электролит, обладающий ионной проводимостью. Иначе говоря, можно полагать, что перенос электрических зарядов в живой ткани осуществляется не свободными электронами, как это имеет место в металлических проводниках, а заряженными атомами или группами атомов – ионами.

В живой ткани наблюдается явление межклеточной миграции (перемещение) энергии, т.е. резонансный перенос энергии электронного возбуждения между возбужденной и невозбужденной клетками. Поэтому можно предположить, что живая ткань обладает также электронно-дырочной проводимостью, свойственной полупроводникам, в которых перенос зарядов осуществляется электронами проводимости и дырками.

Таким образом, тело человека можно рассматривать как проводник особого рода, имеющий переменное сопротивление и обладающий в какой-то мере свойствами проводников первого рода (полупроводники) и второго рода (электролиты).

Из этих данных следует, что кожа обладает очень большим удельным сопротивлением, которое является главным фактором, определяющим сопротивление тела человека в целом.

Следовательно, сопротивление тела человека является переменной величиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, параметров электрической цепи, физиологических факторов и состояния окружающей среды.

Сопротивление тела человека можно условно считать состоящим из трех последовательно включенных сопротивлений (рис 1.3.): двух одинаковых сопротивлений наружного слоя кожи, т. е. эпидермиса, 2Rн (которые в совокупности составляют так называемое наружное сопротивление тела человека) и одного, называемого внутренним сопротивлением тела Rв (которое включает в себя сопротивление внутренних слоев кожи и сопротивление внутренних тканей тела).

Рис. 1.3. Эквивалентная схема замещения сопротивления тела человека

Сопротивление наружного слоя кожи Rн состоит из активного и емкостного сопротивлений, включенных параллельно. Полное сопротивление наружного слоя кожи Rн зависит от площади электродов, частоты тока, а также от значения приложенного напряжения и при площади электродов в несколько квадратных сантиметров может достигать весьма больших значений.

Внутреннее сопротивление тела считается чисто активным, хотя, оно также обладает емкостной составляющей. Внутреннее сопротивление Rв практически не зависит от площади электродов, частоты тока, а также от значения приложенного напряжения и равно примерно 500 – 700 Ом [5].

Омметр – это измерительный прибор специализированного назначения, предназначенный для определения сопротивления электрического тока. Так как сопротивление выражается в Омах (Ом), то и прибор, его измеряющий получил название омметра.

Омметр – это прибор непосредственного отсчета. Его основная функция – определение активных сопротивлений электрического тока. Как правило, омметр преобразует переменный ток в постоянный и производит измерения. Однако некоторые модели могут измерять сопротивление непосредственно переменного тока, без его преобразования. Омметры являются довольно полезными, а в ряде случаем и незаменимыми приборами, в зависимости от предъявляемых требований к диапазону производимых ими измерений.

Цифровые омметры. Микроомметр MOM600A представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок.

Аналоговые электронные омметры. Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый объект включается в цепь обратной связи (линейная шкала) или на вход усилителя.

Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания.

Мультиме́тр (от англ. multimeter), те́стер (от англ. test — испытание), аво́метр (от ампервольтомметр) — комбинированный электроизмерительный прибор, объединяющий в себе несколько функций. В минимальном наборе включает функции вольтметра, амперметра и омметра. Иногда выполняется мультиметр в виде токоизмерительных клещей. Существуют цифровые и аналоговые мультиметры.

Мультиметр может быть как лёгким переносным устройством, используемым для базовых измерений и поиска неисправностей, так и сложным стационарным прибором со множеством возможностей.

3.1. Исследование зависимости сопротивления тела человека от состояния кожного покрова

При исследовании зависимости сопротивления кожного покрова были использованы следующие приборы и материалы: мультиметр М-830, (см. приложение рис. 1) дистиллированная и подсоленная вода, салфетки.

Порядок выполнения работы:

1. С помощью мультиметра измерили сопротивление своего тела при чистой, сухой и неповрежденной коже. Электроды приложили от ладони одной руки к ладони другой руки Rлп. Повторили измерения 10 раза и вычислили среднее значение сопротивления. Полученные результаты занесли в таблицу 1(см. приложение на стр.18).

2. Дистиллированной водой увлажнили руки, провели измерения, сопротивление уменьшилось. Данные измерений занесли в таблицу 2(см. приложение на стр.18).

3. Сильно подсоленной водой увлажнили руки, провели измерения, сопротивление тела понизилось еще больше. Данные измерений занесли в таблицу 3(см. приложение на стр.18).

Сопротивление кожи понижается при её увлажнении даже в том случае, если влага обладает большим удельным сопротивлением. Влага, попавшая на кожу, растворяет находящиеся на ее поверхности минеральные вещества и жирные кислоты, выведенные из организма вместе с потом и кожным салом, и становится более электропроводной. Пот хорошо проводит электрический ток, поскольку в его состав входят вода и растворенные в ней минеральные соли, а также некоторые продукты обмена веществ. Он выделяется на поверхность кожи по выводным протокам – тонким трубочкам, пронизывающим всю толщу кожи.

Выделение пота происходит непрерывно, даже на холоде, но особенно обильно при высокой температуре окружающего воздуха, напряжённой физической работе, местном нагреве кожи, болезни человека и т. п.[3].

Следовательно, работа в условиях, вызывающих интенсивное потовыделение, увеличивает опасность поражения человека током, работа сырыми руками или в условиях, вызывающих увлажнение каких-либо участков кожи, создает предпосылки для тяжелого исхода в случае попадания человека под напряжение.

4. Соскоблили роговой слой на сухих участках кожи, где прикладываются электроды, измерили сопротивление, оно снизилось еще больше.

Полученные результаты занесли в таблицу 4(см. приложение на стр.19).

Порезы, царапины, ссадины и другие микротравмы, т.е. повреждения рогового слоя – снижают сопротивление тела человека что, бесспорно, увеличивает опасность поражения током человека.

5. Потерли руки пылью, взятой от мебели. Приложили электроды на загрязненную кожу рук и измерили сопротивление. Полученные результаты занесли в таблицу 5(см. приложение на стр.19).

По результатам исследования, используя Microsoft PowerPoint построили диаграмму «Исследование зависимости сопротивления тела человека от состояния кожного покрова» (см. приложение рис.2)

Загрязнение кожи различными веществами, в особенности хорошо проводящими ток (металлическая или угольная пыль, окалина и т. п.), сопровождается снижением ее сопротивления, подобно тому, как это наблюдается при поверхностном увлажнении кожи. Кроме того, токопроводящие вещества, проникая в выводные протоки потовых и сальных желез, создают в коже длительно существующие токопроводящие каналы, резко понижающие ее сопротивление.

Таким образом, токарь по металлу, шахтер и лица других специальностей, у которых руки загрязняются токопроводящими веществами, подвержены большей опасности поражения током, чем лица, работающие сухими чистыми руками.

Вывод: сопротивление кожи, а, следовательно, и тела в целом резко уменьшается при наличии влаги на ее поверхности, сильном потовыделении, загрязнении и повреждении ее рогового слоя.

3.2. Исследование зависимости сопротивления тела человека от времени суток

Сопротивление тела человека у разных людей различно. Различным оказывается оно и у одного и того же человека в разное время суток. В качестве испы-

туемого выступил Данил Мансуров. Измерения проводились: рано утром – после пробуждения R1, после завтрака R2, в обед R3, вечером R4, ночью R5.

Данные измерений занесли в таблицу 6(см. приложение стр.19).

По полученным данным построили диаграмму (см. приложение рис.3).

Вывод: в результате этого исследования выяснено, что наименьшим сопротивлением тело обладает ночью и рано утром, наибольшим – сразу после завтрака (зарядки) и ближе к вечеру. Это объясняется тем, что утором организм отдохнул и после завтрака получил большой запас энергии. Следовательно, завтрак – полезный и важный прием пищи, пренебрегать которым не стоит. Завтрак является своеобразным аккумулятором, который заряжает человека энергией на весь день.

3.3. Исследование зависимости сопротивления тела человека от физиологических факторов

На значение сопротивления влияют и другие факторы, хотя и в значительно меньшей степени, например пол и возраст.

1. Для проведения опыта были приглашены близкие мне люди разного пола и возраста – мужчина (папа), женщина (мама), девочка (сестра – 9 лет) и я (мальчик 15 лет) . Измерения проводились с помощью мультиметра при одинаковых начальных условиях – ежедневно в 18.00 по местному времени в течении 3 дней. Электроды прикладывались от одной руки к другой. Полученные результаты занесли в таблицу 7(см. приложение стр.20) и построили диаграмму (см. приложение рис.4).

У мужчин сопротивление тела больше, чем у женщин, а у девочек – меньше, чем у мальчиков. У взрослых больше, чем у детей. Объясняется это, очевидно, тем, что у одних людей кожа тоньше и нежнее, у других – толще и грубее. Расчитали среднее значение сопротивления и отобразили данные в виде диаграммы (см. приложение рис. 4)

2. Для доказательства того, что сопротивление человека меняется с возрастом и полом провели эксперименты с учащимися разных классов (от 6 по 9). Были приглашены девочки и мальчики, юноши и девушки в равных количествах с разной возрастной категории 5 девушек (девочек) и 5 юношей (мальчиков). Всего испытуемых – 60 человек. Результаты измерений занесли в таблицу 8(см. приложение стр.21).

Как видно из опытов кожа учащихся старших классов обладают большим сопротивление нежели младших, это объясняется тем, что с возрастом кожа становится толще, её защитные функции становятся более совершенными. По данным исследований построили диаграмму (см. приложение рис.5)

При проведении было замечено что сопротивление кожи девочек меньше нежели сопротивление мальчиков, что обусловлено физиологическими особенностями – кожа мальчиков имеет более толстый роговой слой, а дерма богаче коллагеном, поэтому она более плотная и упругая (см. приложение рис. 5). Хотя были случаи, когда сопротивление кожи мальчиков было очень маленьким.

3. Для определения зависимости сопротивления человеческого тела от настроения, проверялся мальчик Дамир — 10 мес. Измерили сопротивление тела прикладывая электроды к ладоням испытуемого. Результаты внесли в таблицу 9(см. приложение стр.22).

По полученым результатам построили диаграмму (см. приложение рис.6).

Максимальное сопротивление тела оказалось у Дамира, когда он был зол и раздражен. Минимальным соротивлением обладал Дамир , когда он был грустным. У Дамира , когда он был в радостном настроениии сопротивление изменилось мало, но повысилось. Испытуемый Дамир подвергался и физическим раздражениям, возникающим неожиданно это световые, звуковые, болевые.Все перечисленные раздражения привели к снижению сопротивления на 20-50%

Вывод: на сопротивление кожи человека влияют физиологические особенности организма, а также эмоциональное состояние. С возрастом наша кожа становится более защищенной.

При анализе полученного материала выявляется четко выраженная зависимость сопротивления тела человека от:

— состояния кожного покрова,

— физического и психического состояния человека,

— от времени суток.

Таким образом, наша гипотеза о зависимости сопротивления тела от кожного покрова, физиологических факторов была подтверждена экспериментальным путем.

На величину сопротивления, а, следовательно, и на исход поражения электрическим током, большое влияние также оказывает повышенная потливость кожного покрова, переутомление, нервное возбуждение, физические раздражители.

Все перечисленные факторы приводят к резкому уменьшению сопротивления тела человека (до 800–1000 Ом). Поэтому, даже сравнительно небольшие напряжения могут привести к поражению электрическим током. Также значение полного сопротивления тела человека зависит и от параметров электрической цепи – места приложения электродов к телу человека, значений тока и приложенного напряжения, рода и частоты тока, площади электродов, длительности прохождения тока. Это дальнейшее продолжение изучение данной темы.

Каждый работающий с электро-радиоаппаратурой должен помнить, что человеческий организм поражает не напряжение, а величина тока. При неблагоприятных условиях даже низкие напряжения (30–40 В) могут быть опасными для жизни. Если сопротивление тела человека равно 700 Ом, то опасным будет напряжение 35 В.

Данная работа может быть применена для профилактики несчастных случаев при поражении электрическим током, а также поможет при подготовке к проведению занятий по ОБЖ.

  1. Беркинблит М.Б. и др. Электричество в живых организмах. – М.: Наука, 1988.

  2. Богданов К.Ю. Физика в гостях у биолога. – М., 1986.

  3. Долин П.А. Основы техники безопасности в электроустановках. – М.: «Знак», 2000.

  4. Охрана труда в энергетике / под ред. Б.А. Князевского. – М.: “Энергоатомиздат”, 1985. – 200с.

  5. Энциклопедия для детей [том 16]. Физика Ч.1 Биография физиков. Путешествия вглубь материала. Механическая картина мира. – 2-е изд. Испр. /ред. Коллегия: М. Аксёнова, В. Володин, А. Элиович и др. – М.: Мир энциклопедий Аванта+, 2007. – 448с.: ил.

  6. Энциклопедия для детей [том 16]. Физика Ч.2 Электричество и магнетизм. Термодинамика и квантовая механика. Физика ядра и элементарных частиц. /ред. Коллегия: М. Аксёнова, А. Элиович, В. Санюк и др. – М.: Мир энциклопедий Аванта+, 2007. – 432с.: ил

  7. Информационный сайт

http://ftemk.mpei.ac.ru/bgd/bgd_.htm#deistvie_toka – Безопасность жизнедеятельности Московский энергетический институт (ТУ) Кафедра инженерной экологии и охраны труда.

Рис.1.1 Мультиметр М830BZ

Таблица 1

опыта

1

2

3

4

5

6

7

8

9

10

Rлп, кОм

1,9

2

1,8

1,9

1,8

1,8

1,9

1,9

1,8

1,9

Rср, кОм

1,87

Таблица 2

Таблица 3

опыта

1

2

3

4

5

6

7

8

9

10

Rлп, кОм

1,3

1,2

1,1

1,4

1,2

1,2

1,1

1,1

1,3

1,1

Rср, кОм

1,2

Таблица 4

Таблица 5

Рис.2. Зависимости сопротивления тела человека от состояния кожного покрова

. Таблица 6

R1,

кОм

Rср1, кОм

R2 , кОм

Rср2, кОм

R3,

кОм

Rср3,

кОм

R4,

кОм

Rср4,

кОм

R5,

кОм

Rср5,

кОм

1

1,6

1,6

1,7

1,7

1,6

1,63

1,7

1,7

1,5

1,51

2

1,7

1,7

1,6

1,6

1,5

3

1,8

1,6

1,5

1,8

1,5

4

1,6

1,8

1,65

1,8

1,4

5

1,5

1,9

1,7

1,7

1,6

6

1,5

1,6

1,7

1,8

1,6

7

1,5

1,6

1,65

1,6

1,5

Рис.3. Зависимости сопротивления тела человека от времени суток.

Таблица 7

мужчина

женщина

мальчик

девочка

№ опыта

R1,

кОм

Rср1, кОм

R2 , кОм

Rср2, кОм

R3,

кОм

Rср3,

кОм

R4,

кОм

Rср4,

кОм

1

1,9

1,97

1,8

1,72

1,9

1,84

1,5

1,48

2

2

1,7

1,8

1,5

3

1,9

1,8

1,8

1,4

4

2

1,6

1,9

1,5

5

1,9

1,7

1,8

1,5

6

1,9

1,6

1,9

1,5

7

2

1,7

1,8

1,5

Рис.4. Зависимости сопротивления тела человека от физиологических факторов

Таблица 8

5 класс

6 класс

7 класс

8 класс

9 класс

10 класс

№ оп.

R5,

кОм

Rср5,

кОм

R6,

кОм

Rср6,

кОм

R7,

кОм

Rср7,

кОм

R8,

кОм

Rср8,

кОм

R9,

кОм

Rср9,

кОм

R10,

кОм

Rср10,

кОм

1

1,2

1,23

1,1

1,12

1,1

1,21

1,3

1,44

1,4

1,46

1,4

1,51

2

1,2

1,2

1,2

1,3

1,3

1,5

3

1,3

1

1

1,6

1,6

1,6

4

1,2

1,2

1,2

1,4

1,4

1,5

5

1,3

1

1,2

1,5

1,5

1,5

6

1,3

0,8

1,3

1,6

1,6

1,6

7

0,9

1,3

1,4

1,3

1,2

1,4

8

1,3

1,1

1,1

1,5

1,6

1,6

9

1,2

1,2

1,3

1,4

1,6

1,6

10

1,4

1,3

1,3

1,5

1,4

1,4

Рис.5. Зависимость сопротивления человеческого тела от возраста

Таблица 9

раздражение

радость

грусть

злость

№ опыта

R1,

кОм

Rср1, кОм

R2 , кОм

Rср2, кОм

R3,

кОм

Rср3,

кОм

R4,

кОм

Rср4,

кОм

1

0,9

0,88

0,9

0,78

0,7

0,67

0,8

0,83

2

1

0,7

0,6

1

3

0,8

0,7

0,7

0,9

4

0,8

0,9

0,6

0,8

5

0,9

0,8

0,6

0,8

6

0,8

0,8

0,6

0,7

7

0,9

0,8

0,7

0,7

8

1

0,6

0,7

0,8

9

0,9

0,7

0,7

0,9

10

0,8

0,9

0,8

0,9

Рис.6. Зависимость сопротивления человеческого тела от настроения

Рис.8. Зависимость сопротивления человеческого тела от окружающей среды

Рис. 7. Факторы влияющие на исход поражения электрическим током

Проведение электрического тока через тело человека: обзор

Эпластика. 2009; 9: e44.

Опубликовано в Интернете 12 октября 2009 г.

, PhD, MD, FACEP a и, MS, PhD, DSc b

Raymond M. Fish

a Исследовательская лаборатория биоакустики и отделение хирургии Университета Иллинойс, Урбана-Шампейн,

Лесли А. Геддес

b Школа биомедицинской инженерии Велдона, Университет Пердью, У-Лафайет, штат Индиана

a Лаборатория биоакустических исследований и отделение хирургии, Иллинойский университет в Урбана-Шампейн,

b Школа биомедицинской инженерии Велдона, Университет Пердью, W Lafayette, Ind

Это статья открытого доступа, в которой авторы сохраняют авторские права на работу.Статья распространяется по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

Эта статья цитируется в других статьях в PMC.

Abstract

Цель: Цель этой статьи — объяснить, каким образом электрический ток проходит через тело человека и как это влияет на характер травм. Методы: Эта междисциплинарная тема объясняется путем первого обзора электрических и патофизиологических принципов.Есть дискуссии о том, как электрический ток проходит через тело через воздух, воду, землю и искусственные проводящие материалы. Также обсуждаются сопротивление кожи (импеданс), внутреннее сопротивление тела, путь тока через тело, феномен расслабления, разрушение кожи, электрическая стимуляция скелетных мышц и нервов, сердечная аритмия и остановка, а также утопление при поражении электрическим током. После обзора основных принципов обсуждается ряд клинически значимых примеров механизмов аварий и их медицинских последствий.Темы, связанные с высоковольтными ожогами, включают замыкания на землю, градиент потенциала земли, ступенчатый и контактный потенциалы, дуги и молнии. Результат: Практикующий врач будет лучше понимать электрические механизмы повреждения и их ожидаемые клинические эффекты. Выводы: Существует множество типов электрических контактов, каждый из которых имеет важные характеристики. Понимание того, как электрический ток достигает и проходит через тело, может помочь врачу понять, как и почему происходят конкретные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

В этой статье объясняется, каким образом электрический ток проходит через человеческое тело и как это влияет на характер травм. Эта междисциплинарная тема объясняется в части A путем сначала обзора электрических и патофизиологических принципов, а затем в части B путем рассмотрения конкретных типов несчастных случаев. Есть дискуссии о том, как электрический ток проходит через тело через воздух, воду, землю и искусственные проводящие материалы. Обсуждаются сопротивление кожи (импеданс), внутреннее сопротивление тела, путь тока через тело, феномен расслабления, разрушение кожи, электрическая стимуляция скелетных мышц и нервов, сердечная аритмия и остановка, а также утопление при поражении электрическим током.После обзора основных принципов в части B обсуждается ряд клинически значимых примеров механизмов аварий и их медицинских последствий. К темам, связанным с ожогами высоким напряжением, относятся замыкания на землю, градиент потенциала земли, ступенчатые потенциалы и потенциалы прикосновения, дуги и молнии. . Понимание того, как электрический ток достигает и проходит через тело, может помочь понять, как и почему происходят определенные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

ЧАСТЬ A: ОСНОВЫ ЭЛЕКТРИЧЕСТВА И КАК ЭТО ВЗАИМОДЕЙСТВУЕТ С ТЕЛОМ ЧЕЛОВЕКА

Поражение электрическим током определяется как внезапная резкая реакция на электрический ток, протекающий через любую часть тела человека. Удар электрическим током — смерть от поражения электрическим током. Первичное поражение электрическим током — повреждение тканей, вызванное прямым воздействием электрического тока или напряжения. Вторичные травмы, такие как падения, являются обычным явлением. Если не указано иное, эта статья относится к токам и напряжениям 60 (или 50) Гц переменного тока (среднеквадратичное значение). Кроме того, под сопротивлением мы на самом деле подразумеваем величину импеданса. Высокое напряжение относится к среднеквадратичному значению переменного тока 600 В или более.

Очень небольшое количество электрического тока приводит к серьезным физиологическим эффектам.

Ток означает количество электричества (электронов или ионов), протекающего в секунду.Ток измеряется в амперах или миллиамперах (1 мА = 1/1000 ампера). Количество электрического тока, протекающего через тело, определяет различные эффекты поражения электрическим током. Как указано в таблице, различные величины тока вызывают определенные эффекты. Большинство эффектов, связанных с током, возникает в результате нагревания тканей и стимуляции мышц и нервов. Стимуляция нервов и мышц может привести к проблемам, начиная от падения из-за отдачи от боли до остановки дыхания или сердца. Чтобы вызвать физиологические эффекты, требуется относительно небольшой ток.Как показано в таблице, для отключения автоматического выключателя на 20 А требуется в тысячу раз больше тока, чем для остановки дыхания.

Таблица 1

Расчетное влияние переменного тока 60 Гц *

1 мА Едва заметное
16 мА Максимальный ток, который средний человек может схватить и «отпустить»
20 мА Паралич дыхательных мышц
100 мА Порог фибрилляции желудочков
2 A Остановка сердца и повреждение внутренних органов
15/20 A Общий предохранитель размыкает цепь

Сопротивление кожи защищает тело от электричества

Тело имеет сопротивление току.Более 99% сопротивления тела прохождению электрического тока приходится на кожу. Сопротивление измеряется в Ом. Мозолистая, сухая рука может иметь сопротивление более 100000 Ом из-за толстого внешнего слоя мертвых клеток в роговом слое. Внутреннее сопротивление тела составляет около 300 Ом по отношению к влажным, относительно соленым тканям под кожей. Сопротивление кожи можно эффективно обойти, если есть повреждение кожи от высокого напряжения, порез, глубокое истирание или погружение в воду (таблица). Кожа действует как электрическое устройство, такое как конденсатор, в том смысле, что пропускает больше тока, если напряжение быстро меняется.Быстро меняющееся напряжение будет приложено к ладони и пальцам руки, если он держит металлический инструмент, который внезапно касается источника напряжения. Этот тип контакта даст намного большую амплитуду тока в теле, чем это могло бы произойти в противном случае. 2

Таблица 2

Способы значительного снижения защитного сопротивления кожи

Существенные физические повреждения кожи: порезы, ссадины, ожоги
Разрушение кожи при напряжении 500 В или более
Быстрое приложение напряжения к участку кожи
Погружение в воду

Напряжение

Напряжение можно рассматривать как силу, проталкивающую электрический ток через тело .В зависимости от сопротивления будет течь определенный ток при любом заданном напряжении. Именно ток определяет физиологические эффекты . Тем не менее, напряжение действительно влияет на результат поражения электрическим током несколькими способами, как описано ниже.

Разрыв кожи

При напряжении 500 В или более высокое сопротивление внешнего слоя кожи выходит из строя. 3 Это значительно снижает сопротивление тела току. В результате увеличивается сила тока, протекающего при любом заданном напряжении.Области разрыва кожи иногда представляют собой раны размером с булавочную головку, которые можно легко не заметить. Они часто являются признаком того, что в тело может проникнуть большой ток. Можно ожидать, что этот ток приведет к повреждению глубоких тканей мышц, нервов и других структур. Это одна из причин, по которой при высоковольтных повреждениях часто возникают серьезные повреждения глубоких тканей, а не ожоги кожи.

Электропорация

Электропорация (повреждение клеточной мембраны) происходит из-за приложения большого напряжения к длине ткани.Это могло произойти при 20 000 В из рук в руки. Электропорация также может происходить при напряжении 120 В, когда конец шнура питания находится во рту ребенка. В этой ситуации напряжение невелико, но вольт на дюйм ткани такое же, как и в случае, когда высокое напряжение прикладывается от руки к руке или с головы до ног. В результате электропорации даже кратковременный контакт может привести к серьезным травмам мышц и других тканей. Электропорация — еще одна причина возникновения глубоких повреждений тканей.

Нагрев

При прочих равных, тепловая энергия, передаваемая тканям, пропорциональна квадрату напряжения (увеличение напряжения в 10 раз увеличивает тепловую энергию в 100 раз).

Переменный и постоянный ток

Мембраны возбудимых тканей (например, нервных и мышечных клеток) будут передавать ток в клетки наиболее эффективно при изменении приложенного напряжения. Кожа в чем-то похожа тем, что пропускает больше тока при изменении напряжения. Следовательно, при переменном токе происходит непрерывное изменение напряжения с 60 циклами изменения напряжения в секунду. При использовании переменного тока, если уровень тока достаточно высок, будет ощущение поражения электрическим током, пока сохраняется контакт.Если есть достаточный ток, клетки скелетных мышц будут стимулироваться настолько быстро, насколько они могут ответить. Эта скорость меньше 60 раз в секунду. Это вызовет тетаническое сокращение мышц, что приведет к потере произвольного контроля над мышечными движениями. Клетки сердечной мышцы будут получать 60 стимуляций в секунду. Если амплитуда тока достаточная, произойдет фибрилляция желудочков. Сердце наиболее чувствительно к такой стимуляции в «уязвимый период» сердечного цикла, который происходит во время большей части зубца T.

Напротив, при постоянном токе ощущение шока возникает только тогда, когда цепь замкнута или разорвана, если только напряжение не относительно высокое. 4 Даже если амплитуда тока велика, это может не произойти в уязвимый период сердечного цикла. При переменном токе длительность разряда более 1 сердечного цикла определенно даст стимуляцию в уязвимый период.

Как связаны ток, напряжение и сопротивление

Закон Ома выглядит следующим образом:

На рисунке показаны источник напряжения и резистор.Например, сопротивление 1000 Ом, подключенное к источнику электроэнергии на 120 В, будет иметь значение

. Напряжение вызывает протекание тока ( I ) через данное сопротивление. Несколько круговой путь тока называется цепью.

Токовый путь (-а)

Электроэнергия течет из (как минимум) одной точки в другую. Часто это происходит от одной клеммы к другой клемме источника напряжения. Соединение между выводами источника напряжения часто называют «нагрузкой».«Нагрузкой может быть что угодно, проводящее электричество, например лампочка, резистор или человек. Это показано на рисунке.

Чтобы проиллюстрировать некоторые важные моменты, эту схемную модель можно применить к автомобилю. Например, отрицательная клемма автомобильного аккумулятора подключена («заземлена») к металлическому шасси автомобиля. Положительный вывод подключается к красному кабелю, состоящему из отдельных проводов, идущих к стартеру, фарам, кондиционеру и другим устройствам. Электрический ток течет по множеству параллельных путей: радио, стартер, свет и многие другие пути тока.Ток в каждом пути зависит от сопротивления каждого устройства. Отсоединение положительного или отрицательного полюса батареи остановит прохождение тока, хотя другое соединение не повреждено.

Применение модели к человеческому телу

На примере автомобиля легче понять, как протекает ток в человеческом теле. Человек, получивший удар электрическим током, будет иметь (как минимум) 2 точки контакта с источником напряжения, одна из которых может быть заземлением. Если либо соединение отключено, ток не будет течь.Аналогия также объясняет, как ток может проходить по множеству параллельных путей, например, через нервы, мышцы и кости предплечья. Сила тока в каждом автомобильном приборе или типе ткани зависит от сопротивления каждого компонента.

Рисунок развивает модель еще дальше. Он показывает аккумулятор и фары на велосипеде. Ржавые контакты на положительной и отрицательной клеммах аккумуляторной батареи. Общее сопротивление, через которое напряжение должно протекать, равно сопротивлению двух ржавых контактов в дополнение к сопротивлению фар. Чем больше сопротивление, тем меньше ток . Ржавое соединение аналогично сопротивлению кожи, а фара аналогична внутреннему сопротивлению кузова. Общее сопротивление тела равно внутреннему сопротивлению тела плюс 2 сопротивления кожи .

Ржавые контакты добавляют сопротивление току. Фары аналогичны внутреннему сопротивлению кузова, а ржавые соединения аналогичны сопротивлению кожи. Общее сопротивление тела равно внутреннему сопротивлению тела плюс 2 сопротивления кожи.

На рисунке изображен человек, подключенный к источнику напряжения. Есть соединения с левой рукой и левой ногой. «Общее сопротивление тела» человека складывается из очень низкого (приблизительно 300 Ом) внутреннего сопротивления тела плюс 2 сопротивления при контакте с кожей. Сопротивление контакта с кожей обычно составляет от 1000 до 100000 Ом, в зависимости от площади контакта, влажности, состояния кожи и других факторов. Таким образом, кожа обеспечивает большую часть защиты тела от электрического тока.

Схема человека, подключенного к источнику напряжения.

Высоковольтный контакт

Высоковольтные (≥600 В) контакты иногда кажутся парадоксальными. Птица удобно сидит на высоковольтной линии электропередачи. Но человек в рабочих ботинках, стоящий рядом с грузовиком, погибает при прикосновении к его стороне, потому что приподнятое навесное оборудование грузовика касалось линии электропередачи. Высокое напряжение разрушает электрические изоляторы, включая краску, кожу и большую часть обуви и перчаток. Специальная обувь, перчатки и инструменты считаются защитными при определенных уровнях напряжения.Эти элементы необходимо периодически проверять на наличие (иногда точного размера) разрывов изоляции. Изоляция может оказаться неэффективной, если на поверхности предмета есть влага или загрязнения.

Как отмечалось выше, для протекания тока требуются 2 или более точек контакта, находящихся под разным напряжением. Многие электрические системы подключены («заземлены») к земле. Опорные конструкции часто бывают металлическими, а также физически находятся в земле.

Рабочий был электрически подключен к линии электропередачи через металлические части своего грузовика.Высокое напряжение (7200 В) было достаточно высоким, чтобы пройти через краску на грузовике и его обуви. Птица находилась недостаточно близко к земле или чему-либо еще, чтобы замкнуть цепь на землю. Есть птицы с большим размахом крыльев, которые действительно получают удар током, когда перекрывают разрыв между проводами и конструкциями, находящимися под разным напряжением.

ЧАСТЬ B: ВИДЫ ЭЛЕКТРИЧЕСКОГО КОНТАКТА

Шаговый и контактный потенциалы

Земля (земля) под нашими ногами обычно находится под напряжением 0 В.Линии электропередач и радиоантенны заземляют путем соединения их с металлическими стержнями, вбитыми в землю. Если человек идет босиком по земле с расставленными ногами, между двумя ступнями должно быть напряжение 0 В. Это нормальное состояние нарушается, если проводник высоковольтной линии электропередачи достигает земли или если молния ударяет по земле.

Напряжение от воздушных линий электропередачи может достигать земли несколькими способами. Линия может порваться или отсоединиться от своих изолированных опор и вступить в контакт с самой землей или с конструкциями, которые сами связаны с землей.Опорные провода (растяжки) могут отсоединяться от своих соединений у земли и становиться под напряжением, когда они соприкасаются с линией электропередачи. В этом случае растяжка под напряжением находится под высоким напряжением. Если растяжка касается земли, напряжение на земле в точке контакта и вокруг нее больше не равно 0 В.

Когда провод под напряжением контактирует с землей напрямую или через проводник, это называется замыканием на землю. Уменьшение напряжения с расстоянием от точки контакта с землей объекта под напряжением называется градиентом потенциала земли .Падения напряжения, связанные с этим рассеянием напряжения, называются потенциалами земли.

На рисунке показана типичная кривая распределения градиента напряжения. Этот график показывает, что напряжение уменьшается с увеличением расстояния от заземляющего объекта. Слева от заземленного объекта, находящегося под напряжением, есть разница напряжений между двумя ногами человека, называемая ступенчатым потенциалом. Справа есть разница напряжений между рукой человека и двумя ногами, называемая потенциалом прикосновения.Также существует ступенчатый потенциал между двумя ногами человека справа. (Рисунок и этот раздел являются модификациями части правил OSHA [Standards-29 CFR].)

Ступенчатые и сенсорные потенциалы. Фактические цифры могут варьироваться в зависимости от типа почвы и влажности, а также других факторов.

Мгновенное горение, нагрев электрическим током или и то, и другое.

Дуга высокого напряжения связана с прохождением электричества по воздуху. В некоторых случаях дуга не касается человека. В этой ситуации от тепла дуги могут возникнуть серьезные ожоги (мгновенный ожог).Также возможны ожоги от горящей одежды и других веществ. Ожоги также могут быть вызваны прикосновением к предметам, которые термически горячие, но не находятся под напряжением.

Дуги высокой энергии могут вызывать взрывные ударные волны. 5 Сила тупой травмы, которая может вызвать ушиб человека, разрыв барабанных перепонок и ушиб внутренних органов.

Если дуга или провод под напряжением контактирует с человеком и через него проходит электричество, может возникнуть травма из-за электрического тока, протекающего через тело, в дополнение к механизмам повреждения, упомянутым выше.

Клинически важно определить, повлекло ли высоковольтное повреждение электрический ток, протекающий через тело. Ток, протекающий через тело из-за высокого напряжения, может привести к возникновению условий, за которыми необходимо следить с течением времени. Эти состояния включают миоглобинурию, коагулопатию и компартмент-синдромы. Несколько клинических и связанных с электрическим контактом проблем могут помочь определить, протекал ли ток через тело. Во-первых, для протекания электрического тока через тело требуется как минимум 2 точки контакта.При высоком напряжении это обычно ожоги на всю толщину. Они могут быть размером с булавочную головку, а иногда их может быть несколько из-за искрения. Если проводник, например кусок проволоки, соприкоснулся с кожей, это может привести к ожогу из-за формы соприкасающегося объекта.

Горение от вспышки при отсутствии тока через тело, напротив, имеет тенденцию быть диффузным и относительно однородным. Мгновенные ожоги на иногда на меньше полной толщины, тогда как ожоги высоковольтного контакта будут на всю толщину.

Так называемые входные и выходные раны

Часто бывает всего 2 контактных ожога, которые обычно называют входными и выходными ранами.Эти термины относятся к тому факту, что электрический ток исходит от источника напряжения, входит в тело в одной точке, протекает через тело в другую точку контакта, где он выходит из тела и возвращается к источнику напряжения (или земле). Эта терминология несколько сбивает с толку, если учесть, что переменный ток меняет направление много раз в секунду. Терминология также может вводить в заблуждение, потому что она напоминает пулевые ранения, которые иногда имеют небольшие входные и более крупные выходные ранения. При поражении электрическим током размер раны будет зависеть от таких факторов, как размер и форма проводника, геометрия пораженной части тела и влажность.Аналогия с огнестрельными ранениями также вводит в заблуждение, поскольку не всегда имеется выходное ранение от пули, потому что пуля остается застрявшей в человеке. Таким образом, 2 отдельных ожога третьей степени предполагают протекание тока через тело. Диффузный ожог неполной толщины не предполагает протекания тока через тело.

Помимо особенностей, связанных с контактом, существуют клинические признаки, которые могут помочь определить, был ли ток через глубокие ткани. Например, можно ожидать, что высоковольтный контакт с рукой, связанный с током, протекающим в руку, будет вызывать твердость и нежность предплечья.При пассивных и активных движениях пальцев может возникнуть боль, а в руке может возникнуть сенсорная недостаточность.

Молния

Молния обычно сверкает над поверхностью тела, что приводит к удивительно небольшим повреждениям у некоторых людей. Влажная кожа и очень короткие электрические импульсы побуждают электрический ток проходить по поверхности тела. Тем не менее, молния иногда травмирует людей из-за протекания тока в теле, тупой механической силы, эффекта взрыва, который может разорвать барабанные перепонки и ушибить внутренние органы, а также интенсивный свет, который может привести к катаракте.

Контакт с проводниками

Низкое напряжение (

<600 В)

Влияние ударов низкого напряжения указано в таблице. Приведенные текущие уровни зависят от конкретного пути тока, продолжительности контакта, веса, роста и телосложения человека (особенно мускулатуры и костных структур) и других факторов. Эффекты, которые возникают в каждом конкретном случае, сильно зависят от нескольких факторов, связанных с тем, как осуществляется контакт с источником электричества. Эти факторы включают в себя путь тока, влажность, отсутствие возможности отпустить и размер областей контакта.

Путь тока

Если путь тока проходит через грудную клетку, постоянные тетанические сокращения мышц грудной стенки могут привести к остановке дыхания. Далзил, 6 , проводивший измерения на людях, сообщает, что токи, превышающие 18 мА, стимулируют мышцы груди, так что дыхание останавливается во время шока.

Другой эффект, который возникает при трансторакальном пути тока, — это фибрилляция желудочков. Трансторакальные пути тока включают руку в руку, руку к ноге и от передней части грудной клетки до задней части грудной клетки.Эксперименты на животных показали, что порог фибрилляции желудочков обратно пропорционален квадратному корню из продолжительности тока.

Явление отпускания при низком (

<600 В) контакте

Фактором, который имеет большое значение для травм, полученных при низковольтном разряде, является неспособность отпустить. Сила тока в руке, которая заставляет руку непроизвольно сжимать ее, называется отпускающим током. 7 Если, например, пальцы человека обхватить большой кабель или ручку пылесоса под напряжением, большинство взрослых смогут отпустить его с током менее 6 мА.При 22 мА более 99% взрослых не смогут отпустить. Боль, связанная с отпусканием тока, настолько сильна, что молодые мотивированные добровольцы могли терпеть ее всего несколько секунд. 7 При прохождении тока в предплечье стимулируются мышцы сгибания и разгибания. Однако сгибательные мышцы сильнее, и человек не может добровольно расслабиться. Практически во всех случаях неспособности отпускать руки используется переменный ток. Переменный ток многократно стимулирует нервы и мышцы, что приводит к тетаническому (устойчивому) сокращению, которое длится до тех пор, пока продолжается контакт.Если это приводит к тому, что субъект ужесточает хватку за проводник, результатом является продолжение электрического тока через человека и снижение контактного сопротивления. 8

При переменном токе возникает ощущение поражения электрическим током, пока сохраняется контакт. Напротив, с постоянным током возникает только ощущение шока, когда цепь замкнута или разорвана. Пока контакт поддерживается, ощущения шока не возникает. Ниже 300 мА постоянного тока (среднеквадратичное значение) явление отпускания отсутствует, потому что рука не зажата непроизвольно.Когда ток проходит через руку, возникает ощущение тепла. Замыкание или разрыв цепи приводит к болезненным неприятным ударам. При токе более 300 мА отпускание может быть невозможно. 4 Порог фибрилляции желудочков для разряда постоянного тока длительностью более 2 секунд составляет 150 мА по сравнению с 50 мА для разряда 60 Гц; для разрядов короче 0,2 секунды порог такой же, как и для разрядов 60 Гц, то есть примерно 500 мА. 4

Мощность обогрева также увеличивается, когда человек не может отпустить.Это связано с тем, что плотный захват увеличивает площадь кожи, эффективно контактирующую с проводниками. Кроме того, со временем между кожей и проводниками накапливается высокопроводящий пот. Оба эти фактора снижают контактное сопротивление, что увеличивает протекающий ток. Кроме того, нагревание сильнее, потому что продолжительность контакта часто составляет несколько минут по сравнению с долей секунды, необходимой для того, чтобы отказаться от болезненного раздражителя.

Неспособность отпустить приводит к увеличению тока в течение более длительного периода времени.Это увеличит повреждение из-за нагрева мышц и нервов. Также будет усиление боли и частота остановки дыхания и сердца. Также может быть вывих плеча с травмой связок и сухожилий, а также переломы костей в области плеч.

Явление отпускания для высокого (> 600 В) контакта

Несколько разных результатов могут произойти, когда человек схватится за провод, подающий из рук в руки напряжение 10 кВ переменного тока. Такой контакт занимает более 0,5 секунды, прежде чем большая часть клеток дистального отдела предплечья подвергнется тепловому повреждению.Однако в течение 10–100 миллисекунд мышцы на пути тока сильно сократятся. Человека можно стимулировать, чтобы он сильнее сжимал провод, создавая более сильный механический контакт. Или человека может оттолкнуть от контакта. Какое из этих событий произойдет, зависит от положения руки относительно проводника. Большинство очевидцев сообщают, что жертвы отталкиваются от проводника, возможно, из-за общих мышечных сокращений. В таких случаях время контакта оценивается примерно в 100 миллисекунд или меньше. 9 (p57)

Контакт с погружением: утопление электрическим током

Клинические проблемы

Утопление или близкое к утоплению может быть результатом воздействия электричества в воду. Состояния, требующие лечения почти утопления, вызванного электричеством, в основном такие же, как и условия, связанные с неэлектрическим утоплением. Эти состояния включают повышение миоглобина, которое может привести к почечной недостаточности (обнаруживаемой по повышению креатинкиназы [КФК] и анализу мочи), респираторному дистресс-синдрому взрослых, гипотермии, гипоксии, электролитным нарушениям и аритмиям, которые включают желудочковую тахикардию и фибрилляцию желудочков.Считается, что уровни креатинкиназы и миоглобина в неэлектрических случаях утопления связаны с жестокой борьбой, а также иногда с длительной гипоксией и электролитным дисбалансом. Электричество в воде может стимулировать мышцы достаточно сильно, чтобы вызвать у человека сильную мышечную боль во время и после того, как он или она почти утонул. Это еще больше увеличит уровни КФК и миоглобина по сравнению с теми, которые могут возникнуть в результате неэлектрического воздействия на стол, близкий к утоплению. Уровень креатинкиназы иногда повышается в течение дня или более под влиянием проводимого лечения, продолжающейся гипоксии или гипотонии и других состояний, которые могут повлиять на продолжающийся некроз тканей.

Таблица 3

Почему погружение в воду при очень низких напряжениях может быть фатальным

1 Погружение очень эффективно увлажняет кожу и значительно снижает ее сопротивление на единицу площади
2 Площадь контакта большой процент площади всей поверхности тела
3 Электрический ток также может проникать в организм через слизистые оболочки, такие как рот и горло.
4 Человеческое тело очень чувствительно к электричеству.Очень небольшое количество тока может вызвать потерю способности плавать, остановку дыхания и остановку сердца.

Воздействие электрического тока

Многие определения воздействия электрического тока на людей были сделаны Далзилом. 10 Для любого эффекта, такого как столбнячные мышечные сокращения, существует диапазон текущих уровней, которые вызывают эффект в зависимости от индивидуальных особенностей субъектов. Например, ток, необходимый для возникновения тетанических сокращений мышц предплечья («отпускающий» ток), может составлять от 6 до 24 мА (среднеквадратичное значение переменного тока 60 Гц) в зависимости от пациента.Следовательно, текущие уровни, перечисленные в публикациях, могут быть максимальными, средними или минимальными уровнями, в зависимости от обсуждаемых вопросов. С точки зрения безопасности часто подходят значения, близкие к минимальным.

Как указано в таблице, Dalziel 7 обнаружил, что ток 10 мА может вызывать тетанические сокращения мышц и, следовательно, потерю мышечного контроля. Кроме того, Smoot and Bentel 12 обнаружили, что 10 мА тока было достаточно, чтобы вызвать потерю мышечного контроля в воде. Они проводили измерения в соленой воде и не сообщали о приложенных напряжениях.

Таблица 4

Механизмы смерти при утоплении электрическим током

Механизм Необходимый ток, мА Необходимое напряжение, В переменного тока
Электрическая стимуляция сердца, вызывающая фибрилляцию желудочков 100 30
Тетаническое сокращение (эффективный паралич) мышц дыхания 20 6
Потеря мышечного контроля конечностей: 16 мА для среднего человека 1 16 4 .8
Потеря мышечного контроля конечностей: всего 10 мА для наиболее чувствительных женщин 7 , 11 10 3

Общее сопротивление тела в воде

Общее с учетом мер безопасности сопротивление тела от руки к ноге в воде считается равным 300 Ом. 13 15 Smoot 11 , 16 измерили полное сопротивление тела 400 Ом при погружении.Во многом это связано с внутренним сопротивлением тела. Таким образом, погружение устраняет большую часть сопротивления кожи.

Соленая вода обладает высокой проводимостью по сравнению с человеческим телом, поэтому поражение электрическим током в соленой воде является относительно редким явлением. Это связано с тем, что большая часть электрического тока проходит по внешней стороне тела.

Если есть разница напряжений, например, между одной рукой и другой, то через тело будет протекать электрический ток. Сила тока равна напряжению, деленному на общее сопротивление тела.

Какое напряжение в воде может быть смертельным?

В таблице указаны величины тока, необходимые для возникновения фибрилляции желудочков и других смертельных состояний. Общее сопротивление тела в воде составляет 300 Ом. Таким образом, известны необходимый ток и сопротивление, которое он должен испытывать. Таким образом, можно рассчитать необходимое напряжение. Для фибрилляции желудочков расчет выглядит следующим образом:

Требуемое напряжение = Ток × Сопротивление

Для того, чтобы вызвать фибрилляцию желудочков, необходимое напряжение составляет:

Напряжение = 100 мА × 300 Ом = 30 В

Рисунки для других механизмов смерти указаны в табл.

Электрический контакт, связанный с водой, часто происходит двумя способами. Эти механизмы могут происходить в ваннах, бассейнах и озерах. Первый механизм контакта заключается в том, что человек в воде выходит из воды и контактирует с токопроводящим объектом, находящимся под напряжением. Например, человек чувствует себя хорошо, сидя в ванне. Сопротивление контакта его руки с объектом под напряжением за пределами ванны может быть достаточно высоким, чтобы защитить его или ее, особенно если его или ее рука не мокрая и площадь контакта небольшая.

Второй механизм контакта включает человека в воде, находящегося в электрическом поле из-за проводника под напряжением, который находится в воде. Например, электрический нагреватель, подключенный к тёплому проводу розетки 120 В переменного тока, падает в воду. Заземленный слив находится близко к плечам человека, а обогреватель — у его или ее ног. Это дает разницу напряжений 120 В переменного тока от плеч до ступней. При общем сопротивлении тела 300 Ом протекает 360 мА, что более чем в 3 раза превышает величину, необходимую для фибрилляции желудочков.

В озерах, прудах и других водоемах источник электроэнергии может генерировать ток в воде. Местоположение напряжений в воде можно измерить. В воде могут присутствовать напряжения из-за того, что корпус лодки, подключенной к береговому источнику питания, находится под напряжением. В воде также могут присутствовать напряжения из-за находящихся под напряжением проводников в воде, которые пропускают электрический ток в воду.

Может существовать электрический градиент (или поле), аналогичный описанной выше ситуации для ступенчатого и касательного потенциалов.Ситуацию сложнее проанализировать в воде, потому что человек в воде принимает разные позы и ориентации в трех измерениях (вверх, вниз и в стороны — север, юг, восток и запад). Трансторакальное напряжение и напряжение на конечностях будут меняться по мере движения человека в зависимости от ориентации (направления) электрического поля.

Измерения потери мышечного контроля в воде

Измерения, аналогичные измерениям Smoot and Bentel 12 , были выполнены с одобрения институционального наблюдательного совета Университета Иллинойса в Урбана-Шампейн.Металлические пластины помещали внутрь резиновых контейнеров. Металлические пластины были плоскими на дне контейнеров. Сверху на каждую металлическую пластину помещали резиновый коврик с отверстиями. (Изолированный) провод заземления источника питания был подключен к одной пластине, а напряжение переменного тока 60 Гц от источника питания было подключено к другой пластине. Испытуемый стоял, опираясь на каждый резиновый коврик по одной ноге, как показано на рисунке. Таким образом, субъект контактировал с электрическим током в основном через воду, контактирующую с ногами через отверстия, а также через воду, контактирующую с ногами выше.Эта траектория потока между ногами имитировала ситуации рукопашного боя и рукопожатия, которые могут возникнуть у пловцов в воде. Эта установка минимизировала ток через грудную клетку. В исследовании участвовал всего 1 субъект.

Установка для измерения напряжения и тока в воде.

Свежая (не соленая) вода с проводимостью 320 мкм / см наполняла каждое ведро до уровня около бедра. Было обнаружено, что электрически индуцированные сокращения мышц сильно меняются положением ног в воде.

Первоначальное тестирование показало, что при 3,05 В (среднеквадратичное значение переменного тока 60 Гц) между пластинами протекал ток 8,65 мА, что приводило к непроизвольному сгибанию колена на 90 °. Это сгибание нельзя было преодолеть произвольным усилием. Колено можно было произвольно сгибать дальше, но оно не выпрямлялось больше, чем на 90 °. Непроизвольное резкое сгибание произошло, когда нога была поднята (сгибанием бедра) так, чтобы бедро было горизонтальным, а колено находилось на уровне воды. Это похоже на ситуацию во время плавания.Контроль над мышцами постепенно восстанавливается, когда ступня опускается на дно ведра (путем разгибания бедра в нейтральное положение) и нога становится вертикальной. Общее сопротивление корпуса рассчитывается следующим образом:

При 4,05 В протекает ток 12,6 мА. Колено было согнуто на 135 °, то есть пятка находилась рядом с ягодицами. Это нельзя было преодолеть добровольными усилиями. Опять же, это произошло, когда нога была поднята так, чтобы колено находилось на уровне воды, аналогично ситуации, когда кто-то плывет.Меньшее нарушение мышечного контроля было отмечено в других положениях ног. Контроль над мышцами постепенно восстанавливается, когда ступня опускается на дно ведра и нога становится вертикальной. Сопротивление будет 4,05 В / 12,6 мА = 332 Ом.

Текущие уровни, измеренные в этих экспериментах, согласуются с уровнями, о которых сообщают Dalziel, 7 Smoot, 11 и NIOSH, 1 , как указано в таблицах и. Общее сопротивление системы (вода плюс предмет) близко к 300 Ом, что часто упоминается в литературе.

ЗАКЛЮЧЕНИЕ

Существует множество типов электрических контактов, каждый из которых имеет важные характеристики. Понимание того, как электрический ток достигает и проходит через тело, может помочь врачу понять, как и почему произошли конкретные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

Благодарности

Авторы благодарят Энди Фиша за иллюстрации.

СПИСОК ЛИТЕРАТУРЫ

1. Национальный институт охраны труда.Смерть рабочих от удара током. Публикация NIOSH № 98-131. 2009 г. Доступно по адресу: http://www.cdc.gov/niosh/docs/98-131/overview.html. Проверено 20 марта. [Google Scholar] 2. Рыба Р. М., Геддес Л. А.. Электрофизиология всплесков тока подключения. Cardiovasc Eng. 2008. 8 (4): 219–24. [PubMed] [Google Scholar] 3. Гримнес С. Диэлектрический пробой кожи человека in vivo. Med Biol Eng Comp. 1983; 21: 379–81. [PubMed] [Google Scholar] 4. Бернштейн Т. Расследование предполагаемых случаев поражения электрическим током и возгораний, вызванных внутренним напряжением.IEEE Ind Appl. 1989. 25 (4): 664–8. [Google Scholar] 5. Капелли-Шеллпфеффер М, Ли RC, Тонер М, Диллер КР. Документ представлен на конференции IEEE PCIC. Филадельфия, Пенсильвания: 1996. Взаимосвязь между параметрами аварии и травмы. 23–25 сентября. [Google Scholar] 6. Далзил CF. Опасность поражения электрическим током. IEEE Spectr. 1972; 9 (2): 41–50. [Google Scholar] 7. Далзил CF. Воздействие электрического шока на человека. ИРЭ Транс Мед Электрон. 1956: 44–62. PGME-5. [Google Scholar] 8. Рыба РМ. Феномен отпускания. В: Рыба Р.М., Геддес Л.А., редакторы.Электрическая травма: медицинские и биоинженерные аспекты. Тусон, Аризона: Издательство юристов и судей; 2009. глава 2. [Google Scholar] 9. Ли Р. К., Кравальо Э. Г., Берк Дж. Ф., редакторы. Электрическая травма. Кембридж, Англия: Издательство Кембриджского университета; 1992. [Google Scholar] 10. Далзил Чарльз Ф., Ли В. Р. Переоценка смертельных электрических токов. IEEE Trans Indus Gen Appl. 1968; ИГА-4 (5): 467–476. D.O.I.10.1109 / TIGA.1968.4180929. [Google Scholar] 11. Smoot AW, Bentel CA. Опасность поражения электрическим током осветительных приборов подводного плавательного бассейна.IEEE Trans Power Apparat Sys. 1964; 83 (9): 945–964. [Google Scholar] 12. Smoot AW, Bentel CA. Опасность поражения электрическим током осветительных приборов подводного плавательного бассейна. Нью-Йорк. При поддержке Underwriter’s Laboratories Inc. Доклад представлен на: Зимнем совещании по энергетике IEEE; Февраль 1964 г .; Нью-Йорк (раздел на страницах 4 и 5) [Google Scholar] 13. ВМС США. Серия учебных курсов по электричеству и электронике для ВМФ. Модуль 1 — Введение в материю, энергию и постоянный ток. Иногородний учебный курс. Пенсакола, штат Флорида: Центр профессионального развития и технологий военно-морского образования и обучения; 1998 г.С. 3–108. Доступно по адресу: www.hnsa.org/doc/neets/mod01.pdf. По состоянию на 26 марта 2009 г. [Google Scholar] 14. Управление военно-морского флота, канцелярия начальника военно-морских операций. Руководство по программе безопасности и гигиены труда ВМС США для сил на плаву. Том III. Вашингтон, округ Колумбия: военно-морское ведомство, канцелярия начальника военно-морских операций; 2007. С. D5–9. Доступно по адресу: http // doni.daps.dla.mil / Directive / 05000% 20General% 20Management% 20Security% 20and% 20Safety% 20Services / 05-100% 20Safety% 20and% 20Occupational% 20Health% 20Services / 5100.19E% 20-% 20Volume% 20III.pdf. [Google Scholar] 15. Национальный центр испытаний и исследований в области электроэнергетики. Паразитные напряжения — проблемы, анализ и смягчение последствий [окончательный вариант] Форест-Парк, штат Джорджия: Национальный центр испытаний и исследований в области электроэнергетики; 2001. С. 5–28. Проект NEETRAC № 00-092. [Google Scholar] 16. Smoot AW. Заседание панели по импедансу кузова В. В: Бриджес Ю.Э., Форд Г.Л., Шерман И.А., Вайнберг М., редакторы. Материалы Первого международного симпозиума по критериям защиты от поражения электрическим током.Нью-Йорк: Пергамон; 1985. с. 235. [Google Scholar]

3.4: Закон Ома (снова) — Workforce LibreTexts

Принцип «текущее убивает» по сути верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступное напряжение, чтобы заставить электроны проходить через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.

Взяв закон Ома для напряжения, тока и сопротивления и выразив его через ток для заданных напряжения и сопротивления, мы получим следующее уравнение:

Величина тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками этого тела, деленному на электрическое сопротивление, оказываемое телом между этими двумя точками.Очевидно, что чем больше напряжения доступно, чтобы заставить электроны течь, тем легче они будут проходить через любое заданное сопротивление. Следовательно, опасность высокого напряжения: высокое напряжение означает возможность протекания через ваше тело большого количества тока, который может вас травмировать или убить. И наоборот, чем большее сопротивление тело оказывает току, тем медленнее электроны будут течь при любом заданном напряжении. Насколько опасно напряжение, зависит от того, какое полное сопротивление в цепи препятствует потоку электронов.

Сопротивление тела не является фиксированной величиной. Это варьируется от человека к человеку и время от времени. Существует даже метод измерения содержания жира в организме, основанный на измерении электрического сопротивления между пальцами рук и ног. Различное процентное содержание жира в организме дает разное сопротивление: всего одна переменная, влияющая на электрическое сопротивление в теле человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.

Сопротивление тела также зависит от того, как происходит контакт с кожей: от руки к руке, от руки к ноге, от ступни к ступне, от руки к локтю и т. Д.? Пот, богатый солями и минералами, является отличным проводником электричества, будучи жидкостью. То же самое и с кровью с таким же высоким содержанием проводящих химикатов. Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

Измеряя электрическое сопротивление чувствительным измерителем, я измеряю сопротивление приблизительно 1 миллион Ом (1 МОм) двумя руками, держась за металлические щупы измерителя между пальцами.Измеритель показывает меньшее сопротивление, когда я сильно сжимаю щупы, и большее сопротивление, когда я держу их слабо. Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертельному току и большую опасность поражения электрическим током.

А какой ток вреден? Ответ на этот вопрос также зависит от нескольких факторов.Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току, испытывая непроизвольное сокращение мышц из-за ударов статического электричества. Другие могут получить большие искры от разряда статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, информацию об источнике этих данных см. В конце главы).Все текущие значения даны в миллиамперах (миллиампер равен 1/1000 ампер):

Таблица воздействия электричества на тело

«Гц» — это единица измерения Гц, , мера того, насколько быстро меняется переменный ток, величина, также известная как частота . Таким образом, столбец цифр, обозначенный «60 Гц переменного тока», относится к току, который меняется с частотой 60 циклов (1 цикл = период времени, когда электроны текут в одном направлении, а затем в другом) в секунду.Последний столбец, обозначенный «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) возвратно-поступательных циклов каждую секунду.

Имейте в виду, что эти цифры являются приблизительными, поскольку люди с различным химическим составом тела могут реагировать по-разному. Было высказано предположение, что ток через грудную клетку всего 17 мА переменного тока достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получены в результате испытаний на животных.Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны. О, и если вам интересно, я понятия не имею, почему женщины, как правило, более восприимчивы к электрическому току, чем мужчины! Исходит из испытаний на животных.

Предположим, я положил обе руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов, или чередование назад и вперед, в секунду). Какое напряжение потребуется в этом чистом, сухом состоянии кожи, чтобы произвести ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома (E = IR), чтобы определить это: необходимо ли в этом чистом, сухом состоянии кожи производить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома (E = IR), чтобы определить это:

E = IR

E = (20 мА) (1 МОм)

E = 20 000 вольт или 20 кВ

Имейте в виду, что это «лучший случай» (чистая, сухая кожа) с точки зрения электробезопасности, и что это значение напряжения представляет собой величину, необходимую для индукции столбняка.Чтобы вызвать болезненный шок, потребуется гораздо меньше! Также имейте в виду, что физиологические эффекты любой конкретной силы тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными только оценками.

Обрызгав пальцы водой, чтобы имитировать пот, я смог измерить сопротивление рук в руках всего 17 000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 мА, мы получим эту цифру:

E = IR

E = (20 мА) (17 кОм)

E = 340 вольт

В этом реалистичном состоянии потребуется всего 340 вольт потенциала от одной моей руки к другой, чтобы вызвать ток 20 миллиампер.Тем не менее, все еще возможно получить смертельный удар от меньшего напряжения, чем это. При условии значительно более низкого сопротивления тела, увеличенного за счет контакта с кольцом (полоса из золота, обернутая по окружности пальца, делает отличной точкой контакта для поражения электрическим током) или полного контакта с большим металлическим предметом, таким как труба или металл рукояткой инструмента сопротивление корпуса может упасть до 1000 Ом (1 кОм), что приведет к тому, что даже более низкое напряжение будет представлять потенциальную опасность:

E = IR

E = (20 мА) (1 кОм)

E = 20 вольт

Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы вызвать ток в 20 миллиампер через человека: достаточно, чтобы вызвать столбняк.Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашной в 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт:

E = IR

E = (17 мА) (1 кОм)

E = 17 вольт

Для электрических систем семнадцать вольт — это не так уж и много. Конечно, это «наихудший» сценарий с напряжением переменного тока 60 Гц и отличной проводимостью тела, но он действительно показывает, насколько низкое напряжение может представлять серьезную угрозу при определенных условиях.

Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как то, что было представлено (потная кожа при контакте с золотым кольцом). Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего крепче держать проводник), так что при постоянном напряжении удар может усилиться после первого контакта. То, что начинается как легкий шок — ровно настолько, чтобы «заморозить» жертву, чтобы она не могла отпустить ее, может перерасти в нечто достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а сила тока соответственно увеличивается.

Research предоставило приблизительный набор цифр для электрического сопротивления точек контакта человека в различных условиях (информацию об источнике этих данных см. В конце главы):

  • Провод, касающийся пальцем: от 40 000 Ом до 1 000 000 Ом в сухом состоянии, от 4 000 Ом до 15 000 Ом во влажном состоянии.
  • Провод, удерживаемый рукой: от 15 000 Ом до 50 000 Ом в сухом состоянии, от 3 000 Ом до 5 000 Ом во влажном состоянии.
  • Металлические плоскогубцы в руке: от 5000 Ом до 10 000 Ом в сухом состоянии, от 1000 Ом до 3000 Ом во влажном состоянии.
  • Контакт ладонью: от 3000 Ом до 8000 Ом в сухом состоянии, от 1000 Ом до 2000 Ом во влажном состоянии.
  • 1,5-дюймовая металлическая труба, захваченная одной рукой: от 1000 Ом до 3000 Ом в сухом состоянии, от 500 Ом до 1500 Ом во влажном состоянии.
  • 1,5-дюймовая металлическая труба, захватываемая двумя руками: от 500 Ом до 1500 кОм в сухом состоянии, от 250 Ом до 750 Ом во влажном состоянии.
  • Рука, погруженная в проводящую жидкость: от 200 Ом до 500 Ом.
  • Опора, погруженная в проводящую жидкость: от 100 Ом до 300 Ом.

Обратите внимание на значения сопротивления в двух условиях для металлической трубы диаметром 1,5 дюйма. Сопротивление, измеренное при захвате трубы двумя руками, составляет ровно половину сопротивления при захвате трубы одной рукой.

Двумя руками площадь соприкосновения с телом вдвое больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Если держать трубку двумя руками, электроны имеют два параллельных пути, по которым они проходят от трубки к телу (или наоборот).

Как мы увидим в более поздней главе, параллельных цепей всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

В промышленности 30 вольт обычно считается консервативным пороговым значением для опасного напряжения. Осторожный человек должен расценивать любое напряжение выше 30 В как опасное, не полагаясь на нормальное сопротивление тела для защиты от поражения электрическим током. При этом, по-прежнему, держать руки в чистоте и сухости и снимать все металлические украшения при работе с электричеством — это отличная идея. Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками в цепи.Металлические кольца, в частности, были причиной более чем нескольких ожогов пальцев из-за замыкания между точками в низковольтной и сильноточной цепи.

Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может вызвать вздрагивание и случайное соприкосновение с более высоким напряжением или другой опасностью. Я вспоминаю, как однажды жарким летним днем ​​работал над автомобилем. Я был в шортах, моя голая нога касалась хромированного бампера автомобиля, когда я затягивал контакты аккумулятора.Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в точке, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило почувствовать шок всего лишь при напряжении 12 вольт.

К счастью, ничего страшного не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не ноге, я мог бы рефлекторно толкнуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора ( выдача больших величин тока через гаечный ключ с большим количеством сопутствующих искр).Это иллюстрирует еще один важный урок, касающийся электробезопасности; этот электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас подпрыгивать или спазмировать части вашего тела в опасную для вас сторону.

Ток, проходящий через человеческое тело, имеет значение, насколько он опасен. Ток будет влиять на все мышцы, находящиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути удара, проходящие через грудную клетку, являются наиболее опасными.Это делает путь электрического тока из рук в руки очень вероятным способом получения травм и летального исхода.

Во избежание подобных ситуаций рекомендуется работать с цепями под напряжением, находящимися под напряжением, только одной рукой, а вторую руку держать в кармане, чтобы случайно ни к чему не прикоснуться. Конечно, всегда безопаснее работать в цепи, когда она отключена, но это не всегда практично или возможно. При работе одной рукой, как правило, предпочтение отдается правой руке по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно находится слева от центра в грудной полости.

Для левшей этот совет может быть не лучшим. Если такой человек недостаточно скоординирован с правой рукой, он может подвергнуть себя большей опасности, используя ту руку, с которой ему меньше всего комфортно, даже если электрический ток, протекающий через эту руку, может представлять большую опасность для его сердца. Относительная опасность между сотрясением одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.

Лучшая защита от ударов цепи под напряжением — это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Ток в цепи является функцией доступного напряжения, деленного на общее сопротивление на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены так, что электроны могут двигаться только по одному пути:

.

Теперь мы рассмотрим эквивалентную схему для человека в изолированных перчатках и ботинках:

Поскольку электрический ток должен проходить через ботинок и корпус и перчатку, чтобы замкнуть цепь обратно к батарее, общая сумма ( сумма ) этих сопротивлений противодействует потоку электронов в большей степени, чем любое другое. сопротивлений рассматривается индивидуально.

Безопасность — одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить сопротивление между проводником и тем или иным предметом, который может с ним контактировать. К сожалению, было бы непомерно дорого заключать проводники линии электропередачи в достаточную изоляцию, чтобы обеспечить безопасность в случае случайного контакта, поэтому безопасность поддерживается за счет того, что эти линии держат достаточно далеко вне досягаемости, чтобы никто не мог случайно прикоснуться к ним.

Обзор

  • Ущерб для тела зависит от силы электрического тока.Более высокое напряжение позволяет производить более высокие и опасные токи. Сопротивление противостоит току, поэтому высокое сопротивление является хорошей защитой от ударов.
  • Обычно считается, что любое напряжение выше 30 может создавать опасные электрические токи.
  • Металлические украшения определенно плохо носить при работе с электрическими цепями. Кольца, ремешки для часов, ожерелья, браслеты и другие подобные украшения обеспечивают отличный электрический контакт с вашим телом и сами могут проводить ток, достаточный для возникновения ожогов кожи даже при низком напряжении.
  • Низкое напряжение может быть опасным, даже если оно слишком низкое, чтобы напрямую вызвать поражение электрическим током. Их может быть достаточно, чтобы напугать жертву, заставив ее отпрянуть и коснуться чего-то более опасного в непосредственной близости.
  • Когда необходимо работать в «живой» цепи, лучше всего выполнять работу одной рукой, чтобы предотвратить смертельный путь электрического тока из рук в руки (через грудную клетку).

(PDF) Устройство для измерения сопротивления человеческого тела и температуры

Устройство для измерения сопротивления человеческого тела и температуры

Wara, S.T.

a

, Oghogho, I.,

b

Abayomi-Alli, A.

c

, Odikayor, C.D.

d

и Essien, MS

e

Центр разработки продуктов / энергетики, Департамент электротехники и вычислительной техники,

Инженерный колледж генерала Абдулсалами А. Абубакара, Университет Игбиндион Окада, штат Эдо,

Нигерия

a

[email protected],

b

oghoghoik @ yahoo.com,

c

[email protected]

d

[email protected]

Ключевые слова: детектор, влажность, сопротивление, температура и линеаризация

.

Аннотация. В этой статье обсуждается конструкция и конструкция устройства измерения сопротивления человеческого тела и температуры

. Устройство

измеряет температуру человеческого тела и сопротивление, когда датчики находятся в контакте с кожей человека.Анализ проекта

был основан на простых теориях электронных схем, что привело к спецификации и выбору компонентов, используемых для построения системы

. После построения и тестирования с различными людьми было обнаружено, что сопротивление тела человека

и температура находятся в пределах от 1 кОм до 210 кОм и от 36,1

0

° C до

37,5

0

° C соответственно. В статье обсуждаются различные эффекты электрического тока на человеческий организм и их значение

.Система может быть адаптирована к различным областям, таким как биотехнологии, безопасность (детектор лжи

), оборудование для обеспечения безопасности в отраслях и компаниях для определения изоляции.

Введение

В связи с развитием технологий, зависимость человека от электричества растет, но опасность поражения электрическим током

является основным недостатком его использования. Все большее значение приобретают предохранительные устройства и оборудование, которые помогают предотвратить или уменьшить вероятность поражения электрическим током.При стрессе или при воздействии условий

, связанных с напряжением, человеческое тело демонстрирует видимые изменения в своих физиологических реакциях, таких как частота сердечных сокращений

, артериальное давление, температура, сопротивление кожи и многие другие. С помощью соответствующих датчиков и преобразователей

эти физические величины могут быть преобразованы в электрические или промежуточные

электрические величины, которые могут быть измерены соответствующим электронным оборудованием.Измерение сопротивления

в инженерной практике важно для определения того, какой ток может выдержать конкретное тело

при приложении известного напряжения [1]. Эти знания помогают человеку, работающему с конкретной машиной или электронным устройством

, выбрать правильную степень изоляции, необходимую для предотвращения опасности поражения электрическим током

. Сегодня измерение сопротивления тела используется для выявления пациентов с риском гиповолемии

(снижение общего количества жидкости в организме) [2].Измерение температуры человеческого тела

находит подходящее применение в области медицины, а также помогает человеку определить, находится ли температура его тела

в приемлемом температурном диапазоне. В настоящее время используется прибор для измерения температуры

[3], который позволяет женщинам определять овуляцию путем мониторинга температуры своего тела. Лечение пациентов с сердечным приступом путем воздействия на них состояния индуцированной гипотермии

, которое требует измерения и мониторинга температуры, сегодня также используется

медицинскими работниками.[4]

Методология

Для достижения поставленной цели были изучены текущие исследования температуры тела [3,4] и сопротивления [2,5]

, а также рассмотрены различные варианты дизайна и их финансовые последствия. Устройство для измерения сопротивления и температуры body

можно разделить на три основных блока. К этим

относятся: блок питания, блок детектирования и линеаризации и блок вывода дисплея.

Advanced Materials Research Vols.62-64 (2009) стр. 153-158

Доступно онлайн с 20 февраля 2009 г. на сайте www.scientific.net

© (2009) Trans Tech Publications, Швейцария

doi: 10.4028 / www.scientific.net / AMR .62-64.153

Все права защищены. Никакая часть содержания этого документа не может быть воспроизведена или передана в любой форме и любыми средствами без письменного разрешения TTP,

www.ttp.net. (ID: 150.212.164.54, Университет Питтсбурга, Питтсбург, Соединенные Штаты Америки-14/07 / 14,19: 48: 26)

Влияние тока и напряжения на человеческое тело

В моем последнем посте об электробезопасности я говорил об опасности поражения электрическим током и ее причине.Теперь я расскажу о влиянии тока и напряжения на человеческое тело .

Начнем с человеческого тела. Сопротивление кожи человека варьировалось от 400 Ом для влажной кожи до 500000 Ом для сухой кожи . Это означает, что когда вы влажны, сопротивление кожи вашего тела будет 400 Ом, а когда кожа вашего тела будет сухой, сопротивление вашего тела будет 500000 Ом.

Смертельное напряжение для человеческого тела составляет 40 Вольт и выше. Принимая 100 мА как смертельный ток и 400 Ом как сопротивление тела, напряжение можно рассчитать по этому уравнению

В = 0.1 × 400 = 40 Вольт

Если тело имеет большее сопротивление, то урон будет меньше. Этого можно добиться, используя резиновые перчатки, резиновые коврики и т.п. Продолжительность прохождения тока через человеческое тело слишком важна.

Внезапный удар током от 15 до 20 мА в течение всего 10 секунд или дольше, тогда человек почувствует болезненный шок и эффект мышечного контроля, но не сможет отпустить. Это означает, что напряжение и ток через нормальное человеческое тело всегда меньше 40 В и 15 мА .

Связано: Первая помощь при поражении электрическим током

Вот диаграмма текущего воздействия на человеческое тело, которая даст вам четкое представление о повреждении человеческого тела, когда произошло внезапное поражение электрическим током.

Величина проходящего тока Влияние на организм человека
от 1 до 8 мА Заметно, но не болезненно
от 8 до 15 мА Болезненный шок, но мышечный контроль не утрачен
от 15 до 20 мА Болезненный шок, нарушение мышечного контроля, не могу отпустить
от 20 до 50 мА Сильное сокращение мышц, затрудненное дыхание
от 50 до 100 мА Серьезное сокращение сердечной мышцы, возможная смерть, лекарство неизвестно
100 мА и более Тяжелые ожоги, остановка сердца, определенная смерть

Теперь, если вы найдете этот пост полезным, поделитесь с друзьями и сообщите им, как ток и напряжение влияют на человеческое тело.

Емкость человеческого тела

, Пол Э. Шен из P S Technology, Inc.

Есть еще некоторая информация [относительно сопротивления человеческого тела] на http://van.physics.uiuc.edu/qa/listing.php?id=6793, где говорится, что внешнее сопротивление человеческого тела составляет около 1k до 100 кОм, а внутреннее сопротивление от 300 до 1000 Ом. Только тонкий слой сухой кожи отделяет внутреннее сопротивление от внешнего объекта.

Емкость человеческого тела относительно дальней земли составляет 100-200 пФ, что действительно является минимальным значением.Это соответствует импедансу около 13 МОм при 60 Гц, что соответствует минимум 9 мкА при 120 В переменного тока относительно земли. Этого достаточно, чтобы почувствовать и использовать для емкостных регуляторов света.

Вот способ измерить емкость вашего тела: http://web.mit.edu/Edgerton/www/Capacitance.html

Внутренняя часть вашего тела может считаться проводником, и, таким образом, если вы положите руку на металлическую пластину, вы сформируете конденсатор площадью примерно 15 квадратных дюймов с тонким (возможно, 0.005 ”) изолирующий слой из сухой кожи, который будет образовывать конденсатор, имеющий гораздо более высокую емкость, чем указанные выше 200 пФ. Согласно формуле в http://www.sayedsaad.com/fundmental/11_Capacitance.htm, это будет C = 0,2249 * k * A / d = 1350 пФ (при условии, что k для кожи равно 2, примерно как у сухой бумаги) . Это будет импеданс около 2 МОм и ток 60 мкА. Это все еще ниже нормального порога ощущения и все еще намного ниже обычных безопасных уровней тока от 1 до 5 мА.

Фактическая толщина эпидермиса (по http: // dermatology.about.com/cs/skinanatomy/a/anatomy.htm) варьируется от 0,05 мм (0,002 дюйма) для век до 1,5 мм (0,06 дюйма) для ладоней и подошв, но фактический внешний слой эпидермиса, который является хорошим изолятором, состоит из плоских мертвых клеток, которые намного тоньше. Таким образом, емкость может быть намного выше, чем быстрая оценка выше.

Вероятно, основная причина того, что электрический ток достигает уровня, достаточного для поражения электрическим током (от 6 до 200 мА в течение 3 секунд, согласно http://www.codecheck.com/ecution.htm), когда кожа становится потной или иным образом теряет свой сухой защитный слой, который быстро обнажает нижележащие 1000 Ом или меньше, которые будут проводить 120 мА при 120 В переменного тока.

Существуют безопасные способы измерения сопротивления и емкости тела с использованием реалистичных более высоких напряжений, состояния кожи и контактных поверхностей, но я не собираюсь предлагать кому-либо пробовать это. Достаточно сказать, что показания омметра вводят в заблуждение, и любая небрежность в отношении любого источника напряжения может быть опасной.

Для очень высокого напряжения должны соблюдаться стандартные минимальные расстояния между работником и линией под напряжением: http://www.dir.ca.gov/oshsb/rubberglove.html. Я нашел это при поиске тестов резиновых перчаток.

Напряженность поля возле высоковольтных линий настолько велика, что прикосновение к ним может быть смертельным, даже если вы находитесь в свободном воздухе. Вы можете заметить, что птицы могут сидеть на линиях электропередачи с более низким напряжением от 5 кВ до 50 кВ или около того, но не на линиях 200 кВ +.

Руководство по безопасности ISASTUR

3. Факторы, влияющие на электрические аварии

Когда электрический ток проходит через тело человека, он ведет себя как сопротивление, и, согласно закону Ома, сила проходящего тока будет определяться следующим образом:

I = V / R

где:

I: сила тока, проходящего через тело человека (амперы).

R: сопротивление тела проходящему через него току (Ом).

В: Напряжение прикосновения между текущими точками входа и выхода (Вольт).

Факторы, влияющие на электрические аварии, могут быть классифицированы как:

Технические факторы:

  • Сила тока, проходящего через тело человека.
  • Время воздействия опасности.
  • Путь, по которому электрический ток проходит через человеческое тело.
  • Характер тока (переменный / постоянный).
  • Электрическое сопротивление человеческого тела.
  • Приложенное напряжение.

Человеческий фактор:

  • Возраст.
  • Болезни.
  • Пол.
  • Эмоциональное состояние.
  • Обычная профессия или ремесло.
  • Опыт и пр.

3.1. Сила тока, проходящего через тело человека

Экспериментально было продемонстрировано, что именно сила тока, проходящего через тело человека, а не напряжение, может вызвать травмы в результате поражения электрическим током.

Различают:

Порог восприятия:

Значение силы тока, которое человек начинает ощущать (легкое покалывание), когда его рука соприкасается с проводником.

Установлено значение 1 мА для переменного тока.

Предел интенсивности:

Максимальная сила тока, при которой человек все еще может отпустить проводник.

Экспериментально установлено значение 10 мА для переменного тока.

ВЛИЯНИЕ ТОКА НА ТЕЛО ЧЕЛОВЕКА
ТОК ВЛИЯНИЕ НА ТЕЛО ЧЕЛОВЕКА
От 1 до 3 мА Нормальный организм ощущает ощущение покалывания, которое не опасно (порог восприятия).
От 5 мА и выше Продолжительный контакт у некоторых людей может спровоцировать резкие движения.
От 10 мА и выше Мышечные сокращения и тетанизация (ригидность и судорожное напряжение) начинаются в мышцах кисти и руки, что может привести к прилипанию кожи к точкам контакта с частями, находящимися под низким напряжением (явление жесткости).
Более 25 мА При контакте продолжительностью более 2 минут может возникнуть тетанизация грудной мышцы, если ток проходит через область сердца, что может привести к асфиксии человека из-за мышечной блокады грудной полости.
Между 30 и 50 мА Фибрилляция желудочков может возникнуть, если ток проходит через область сердца, что может привести к смерти, если пострадавший не получит внимания в течение нескольких минут.
Между 2 и 3 А Происходит остановка дыхания, потеря сознания и видимые следы.
Для токов более 3 А Последствия — тяжелые ожоги и возможная смерть.

Обучение электробезопасности | Spartan Robotics (FRC 971)

Это место для будущих материалов по обучению электричеству.

Дуг Бэйни
Последнее изменение 1 января 2013 г.

Электробезопасность

Часть 1: Основы работы с электричеством

Часть 2: Опасности поражения электрическим током

Часть 3: Безопасная работа с электричеством

Часть 4: Тест студентов

Часть 1: Электрика Основы:

Вольт, В , это сила, которая толкает электроны через пространство или материал, единицы измерения — вольт. Напряжение питания от аккумуляторов, от розеток переменного тока — переменное напряжение, как правило, 60 раз в секунду.Чем выше напряжение, тем больше сила для прохождения электронов через барьеры (например, человеческую кожу), при достаточно высоких напряжениях электроны будут перемещаться по воздуху, создавая искры. Автомобильные аккумуляторы имеют напряжение около 12 вольт, а домашнее напряжение в 10 раз выше при чередовании положительного и отрицательного напряжения. (1 мВ, т.е. 0,001 вольт, 1 кВ, то есть 1000 вольт)

Ток, I , представляет собой количество протекающих электронов (как река), единицы измерения — амперы или просто амперы. Батареи могут легко подавать сотни ампер, скажем, для запуска стартера двигателя автомобиля светодиодный фонарик может потреблять всего 0.1 ампер или 100 мА.

Сопротивление, R , в единицах Ом, относится к способности сопротивляться текущему течению, как валуны в реке. Единицы измерения — Ом. Сопротивление — это просто константа пропорциональности, относящаяся к потере напряжения на устройстве для определенного тока, проходящего через устройство.

В электрических цепях существует простая взаимосвязь между V, I и R, напряжение — это ток, умноженный на сопротивление:

В = IR

Пример: дан резистор 3 Ом, подключенный к батарее на 12 В, каков ток поток?

Ответ: I = V / R, поэтому I = 12/3 = 4 А

Пример: Учитывая 12-вольтовую батарею и

Часть 2: Опасность поражения электрическим током

Электроника может непреднамеренно вызвать возгорание и нанести большой ущерб.
Электричество может убить.

Ток, проходящий через ваше тело, может вызвать поражение электрическим током, что может привести к 3 типам потенциальных травм:

  1. Ожоги (дуга, горящая от тепла и излучения)

2. Физические травмы (переломы костей, падения и повреждение мышц)

· При токе 10 мА мышцы зажимают то, что держит человек.

3. Воздействие на нервную систему (остановка дыхания при 30–75 мА переменного тока при 60 Гц, фибрилляция при 75–100 мА)

Фибрилляция = сердце «подергивается» и кровоток в организме отсутствует.

· Просто 1 мА, проходящий непосредственно через сердце, может быть смертельным.

· Ток 200 мА, проходящий через тело, может быть смертельным.

Сердце может быть повреждено, поскольку оно находится на пути наиболее распространенных путей прохождения электричества тело:

Рукопашный

Рукопашный

Тест:

Предположим, Баффи порезал пальцы на каждой руке и случайно коснулся клемм 24-вольтовой батареи, предположим, что сопротивление крови человека составляет 120 Ом для этот пример.Какое будет электричество через Баффи, это потенциально опасно?

Ответ: I = 24/120 = 0,2 ампера. Да

Контуры заземления: проблемные, а иногда и опасные.

Контуры заземления возникают, когда есть некоторое сопротивление между предполагаемой точкой заземления и фактическим заземлением. Поток тока по этому пути затем приводит к тому, что намеченная точка заземления перемещается до ненулевого напряжения. Предполагаемое соединение с землей, например, от коаксиального кабеля, проложенного к точке повышенного напряжения и проложенного к фактическому заземлению в другом месте, вызовет протекание тока в заземляющем проводе кабеля.Контуры заземления могут вызвать сбои в работе электрического оборудования, также возможны опасные удары от контуров заземления, а также появление раздражающего гула в аудиосистемах. Использование методов заземления по схеме «звезда» и заземления с очень низким сопротивлением уменьшит количество контуров заземления. Рекомендуется измерять качество (сопротивление) заземления с помощью мультиметра.

Часть 3: Безопасная работа от электричества

Пожалуйста, следуйте этим общим указаниям, касающимся электробезопасности.

Никогда не работайте в одиночку при работе с электричеством

Выключите питание и отсоедините вилку от сети перед работой с электрическими или электронными цепями, за исключением случаев, когда требуется тестирование под напряжением.

Не работайте с электрооборудованием во влажной зоне или при прикосновении к предмету, который может создать опасный путь заземления.

Заменить неисправные шнуры и вилки. Осмотрите кабели на предмет дефектов, таких как изношенная проводка, неплотные соединения или трещины в изоляции.

Удалите металлические украшения, часы, кольца и т. Д. Перед работой с электрическими цепями.

По возможности работайте одной рукой, держите вторую руку подальше от проводящих электричество предметов.

Никогда не ставьте емкости с жидкостью на электрические системы.

Никогда не игнорируйте предохранитель или автоматический выключатель. Никогда не устанавливайте предохранитель с более высоким номинальным током, чем тот, который специально указан для вашей цепи.

Убедитесь, что шасси или шкафы оборудования заземлены. Никогда не обрезайте и не нарушайте заземление вилки.

Перед работой с цепями безопасно разрядите конденсаторы в оборудовании.

Носите обувь на резиновой подошве. Резина поможет предотвратить удары, не позволяя электричеству проходить через вас в землю.

Не пытайтесь паять электронные устройства, которые все еще подключены к источнику питания

Подробнее: Правила техники безопасности при работе с электроникой | eHow.com http://www.ehow.com/list_7442608_safety-rules-working-electronics.html#ixzz2EE3sG17e

Часть 4: Студенческий тест

  1. Работа с цепями 12 В или цепями 48 В представляет равные опасности: Верно / Неверно
  2. Работать босиком с электрическими цепями можно, поскольку человеческая кожа непроводящая: Верно / Неверно
  3. Ношение украшений при работе с электрическими цепями — это нормально, если в них нет батареи: Верно / Неверно
  4. При работе с электричеством необходимы защитные очки для защиты от разлетающихся частей: Верно / Ложно
  5. Контуры заземления возникают из-за воздушных линий электропередач, создающих вихревые токи в земной коре: Верно / Ложно

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *