Как прозвонить трансформатор или как определить обмотки трансформатора
Здравствуйте, уважаемые читатели сайта sesaga.ru. На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки. А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.
Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины. Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка. На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.
1. Определение обмоток визуальным осмотром.
При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.
Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки. Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора. Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.
Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.
При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.
В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.
2. Определение обмоток по сопротивлению.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.
Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.
Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.
Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений. Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами. Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.
Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.
Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки.
Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:
Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:
Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.
В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.
Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.
Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт. Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть. Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.
Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией. Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно. В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.
Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.
Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.
Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.
Удачи!
Как проверить трансформатор мультиметром: прозваниваем на сопротивление
Автор Aluarius На чтение 5 мин. Просмотров 2.4k. Опубликовано
Основное назначение трансформатора – это преобразование тока и напряжения. И хотя это устройство выполняет достаточно сложные преобразования, само по себе оно имеет простую конструкцию. Это сердечник, вокруг которого намотано несколько катушек проволоки. Одна из них является вводной (носит название первичная обмотка), другие выходными (вторичные). Электрический ток подается на первичную катушку, где напряжение индуцирует магнитное поле. Последнее во вторичных обмотках образует переменный ток точно такого же напряжения и частоты, как и в обмотке входной. Если количество витков в двух катушках будет разным, то и ток на входе и выходе будет разным. Все достаточно просто. Правда, это устройство нередко выходит из строя, и его дефекты не всегда видны, поэтому у многих потребителей возникает вопрос, как проверить трансформатор мультиметром или другим прибором?
Необходимо отметить, что мультиметр пригодиться и в том случае, если перед вами лежит трансформатор с неизвестными параметрами. Так вот их с помощью этого прибора также можно определить. Поэтому, начиная работать с ним, надо в первую очередь разобраться с обмотками. Для этого придется все концы катушек вытянуть по отдельности и прозвонить их, выискивая тем самым парные соединения. При этом рекомендуется концы пронумеровать, определив, к какой обмотке они относятся.
Самый простой вариант – это четыре конца, по две на каждую катушку. Чаще встречаются устройства, у которых более четырех концов. Может оказаться и так, что некоторые из них «не прозваниваются», но это не значит, что в них произошел обрыв. Это могут оказаться так называемые экранирующие обмотки, которые располагаются между первичными и вторичными, они обычно соединяются с «землей».
Вот почему так важно при прозвонке обращать внимание на сопротивление. У сетевой первичной обмотки оно определяется десятками или сотнями Ом. Обратите внимание, что маленькие трансформаторы обладают большим сопротивлением первичных обмоток. Все дело в большем количестве витков и малом диаметре медной проволоки. Сопротивление вторичных обмоток обычно приближенно к нулю.
Проверка трансформатора
Итак, с помощью мультиметра определены обмотки. Теперь можно переходить непосредственно к вопросу, как проверить трансформатор, используя все тот же прибор. Разговор идет о дефектах. Их обычно два:
- обрыв;
- износ изоляции, что приводит к замыканию на другую обмотку или на корпус устройства.
Обрыв определить проще простого, то есть, проверяется каждая катушка на сопротивление. Мультиметр выставляется в режим омметра, щупами подключаются к прибору два конца. И если на дисплее показывается отсутствие сопротивления (показаний), то это гарантированно обрыв. Проверка цифровым мультиметром может быть недостоверной в том случае, если тестируется обмотка с большим количеством витков. Все дело в том, что чем больше витков, тем выше индуктивность.
Замыкание проверяется так:
- Один щуп мультиметра замыкается на выводной конец обмотки.
- Второй щуп попеременно подсоединяется к другим концам.
- В случае с замыканием на корпус второй щуп соединяется с корпусом трансформатора.
Есть еще один часто встречаемый дефект – это так называемое межвитковое замыкание. Оно происходит в том случае, если изоляция двух соседних витков изнашивается. Сопротивление в этом случае у проволоки остается, поэтому в месте отсутствия изоляционного лака происходит перегрев. Обычно при этом выделяется запах гари, появляются почернения обмотки, бумаги, вздувается заливка. Мультиметром этот дефект также можно обнаружить. При этом придется узнать из справочника, какое сопротивление должно быть у обмоток данного трансформатора (будем считать, что его марка известна). Сравнивая фактический показатель со справочным, можно точно сказать, есть ли изъян или нет. Если фактический параметр отличается от справочного вполовину или больше, то это прямое подтверждение межвиткового замыкания.
Внимание! Проверяя обмотки трансформатора на сопротивление, не имеет значение, какой щуп к какому концу подсоединять. В данном случае полярность не играет никакой роли.
Измерение тока холостого хода
Если трансформатор после тестирования мультиметром оказался исправным, то специалисты рекомендуют проверить его и на такой параметр, как ток холостого хода. Обычно у исправного устройства он равен 10-15% от номинала. В данном случае под номиналом имеется в виду ток под нагрузкой.
Для примера, трансформатор марки ТПП-281. Входное его напряжение – 220 вольт, и ток холостого хода равен 0,07-0,1 А, то есть не должен превышать сто миллиампер. Перед тем как проверить трансформатор на параметр тока холостого хода, необходимо измерительный прибор перевести в режим амперметра. Обратите внимание, что при подаче электроэнергии на обмотки сила пускового тока может превосходить номинальный в несколько сот раз, поэтому измерительный прибор подключают к тестируемому устройству замкнутым накоротко.
После чего необходимо разомкнуть выводы измерительного прибора, при этом на его дисплее отразятся числа. Это и есть ток без нагрузки, то есть, холостого хода. Далее, замеряется напряжение без нагрузки на вторичных обмотках, затем под нагрузкой. Снижение напряжения на 10-15% должно привести к показателям тока, которые не превышают один ампер.
Чтобы изменить напряжение, к трансформатору необходимо подключить реостат, если такового нет, можно подключить несколько лампочек или спираль из вольфрамовой проволоки. Чтобы увеличить нагрузку, надо или увеличивать количество лампочек, или укорачивать спираль.
Заключение по теме
Перед тем как проверить трансформатор (понижающий или повышающий) мультиметром, необходимо понимать, как устроено это устройство, как оно работает, и какие нюансы необходимо учитывать, проводя проверку. В принципе, ничего сложного в данном процессе нет. Главное знать, как переключить сам измерительный прибор в режим омметра.
Как проверить трансформатор мультиметром ⋆ diodov.net
Начинающим радиолюбителям очень полезно уметь и знать, как проверить трансформатор мультимтером. Такие знания полезны по той причине, что позволяют сэкономить время и деньги. В большинстве линейных блоков питания львиную долю стоимости составляет трансформатор. Поэтому, если в руках оказался трансформатор с неизвестными параметрами не спешите его выбрасывать. Лучше возьмите в руки мультиметр. Также для некоторых опытов нам понадобится лампа накаливания с патроном.
С целью более осознанного выполнения дальнейших опытов и экспериментов следует понимать, как устроен и работает трансформатор трансформатора. Рассмотрим здесь это в упрощенной форме.
Простейший трансформатор представляет собой две обмотки, намотанных на сердечник или магнитопровод. Каждая обмотка представляет собой изолированные друг от друга проводники. А сердечник набирается из тонких изолированных друг от друга листов из специальной электротехнической стали. На одну из обмоток, называемую первичной, подается напряжение, а со второй, называемой вторичной, оно снимается.
При подаче переменного напряжения на первичную обмотку, поскольку электрическая цепь замкнута, то в ней создается пуль для протекания переменного электрического тока. Вокруг проводника с переменным током всегда образуется переменное магнитное поле. Магнитное поле замыкается и усиливается посредством сердечника магнитопровода и наводит во вторичной обмотке переменную электродвижущую силу ЭДС. При подключении нагрузки ко вторично обмотке в ней протекает переменный ток i2.
Этих знаний на еще не достаточно, чтобы полностью понимать, как проверить трансформатор мультиметром. Поэтому рассмотрим еще ряд полезных моментов.
Как проверить трансформатор мультимтером правильноНе вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах
E ~ w.
Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.
Так как
E1 > E2,
то
w1 > w2.
Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:
S1 = S2.
А так как мощность – это произведение тока i на напряжение u
S = u∙i,
то
S1 = u1∙i1; S2 = u2∙i2.
Откуда получаем простое уравнение:
u1∙i1 = u2∙i2.
Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.
Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:
kт = w1 / w2 = E1 / E2.
Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.
Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.
Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.
Как определить обмотки трансформатора
Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.
В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.
Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.
Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.
Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).
Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.
Соединение обмоток трансформатора
Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.
Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток. При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей. Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.
При встречном соединении начала или концы обмоток соединяются вместе. При встречном соединении ЭДС направлены встречно. На выводах получают разницу ЭДС: от большего значения отнимается меньшее значение. Если соединить встречно две обмотки с равными значениями ЭДС, то на выводах будет ноль.
Теперь мы знаем, как, как проверить трансформатор мультиметром, а также можем найти первичную и вторичную обмотки.
Еще статьи по данной теме
Трансформатор | Устройство, виды, принцип работы
Слово “трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.
Трансформатор напряжения
Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.
Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода
а с другой катушки два красных провода
Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого
Ничего сложного, правда ведь?
Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.
Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.
Обмотки трансформатора
Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.
Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.
У самого простого однофазного трансформатора можно увидеть две такие обмотки.
Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.
Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.
I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.
O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.
Как работает трансформатор
Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.
Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.
Формула трансформатора
Главная формула трансформатора выглядит так.
где
U2 – напряжение на вторичной обмотке
U1 – напряжение на первичной обмотке
N1 – количество витков первичной обмотки
N2 – количество витков вторичной обмотки
k – коэффициент трансформации
В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:
Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.
Типы трансформаторов по конструкции
Однофазные трансформаторы
Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.
В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.
На схемах однофазный трансформатор обозначается так:
Первичная обмотка слева, а вторичная – справа.
Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:
Трехфазные трансформаторы
Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.
На схемах трехфазные трансформаторы обозначаются вот так:
Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.
Здесь мы видим три типа соединения обмоток (слева-направо)
- звезда-звезда
- звезда-треугольник
- треугольник-звезда
В 90% случаев используется именно звезда-звезда.
Типы трансформаторов по напряжению
Понижающий трансформатор
Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.
Повышающий трансформатор
Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.
Разделительный или развязывающий трансформатор
Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.
Согласующий трансформатор
Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.
Работа понижающего трансформатора на практике
Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .
Итак, имеем простой однофазный понижающий трансформатор.
Именно на нем мы будем проводить различные опыты.
Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.
Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.
Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.
Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.
Как проверить трансформатор
Как проверить на короткое замыкание обмоток
Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.
Проверка на обрыв обмоток
При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.
Таким же образом проверяем и вторичную обмотку.
Отсюда делаем вывод, что наш трансформатор жив и здоров.
Похожие статьи по теме “трансформатор”
Лабораторный автотрансформатор (ЛАТР)
Программа для расчета трансформатора
Как получить постоянное напряжение из переменного
Как определить где у трансформатора вход 220
Тема: как можно понять где у трансформатора какие обмотки, чем измерить.
Несмотря на большую популярность импульсных блоков питания, в которых также стоят трансформаторы (хотя и ферритовые), старые, добрые трансформаторы с железным сердечником по прежнему повсеместно используются. Для новичка или человека, особо не связанного с профессией электрика, электронщика может быть затруднительным быть подключения этих самых силовых трансформаторов к электрической сети 220 вольт. Например, вы у себя в гараже нашли нерабочее устройство и решили использовать имеющийся трансформатор для сборки блока питания для своих нужд. Но даже в самом простом трансе имеются 4 вывода, и не всегда можно понять какие 2 относятся к входу 220 В, а какие 2 к выходному, пониженному напряжению. Вот мы и постараемся разобраться с этим вопросом.
Итак, как я только что заметил, самый простой силовой трансформатор имеет 4 вывода. Два из которых являются входом первичной обмотки, рассчитанной на 220 вольт, а другие два вывода относятся к выходной, вторичной обмотке, с которой и нужно снимать пониженное напряжение для своих нужд. На «правильных» трансформаторах даже новичку легко понять где какая обмотка. Хотя бы по имеющимся надписям или по объему провода обмотки, с которой выводы выходят (там где много провода, это входная 220, где намного меньше провода, это выходная).
Если на первый взгляд проблематично определить где какая обмотка, то тут уж на помощь придет электронный мультиметр, которым нужно будет измерить сопротивление обмоток. Первичные, входные обмотки силовых, понижающих трансформаторов имеют в десятки раз больше сопротивление, по сравнению с вторичными, выходными обмотками. Первички мотаются более тонким проводом и имеют большее количество витков. А как известно, чем тоньше и длиннее провод, тем больше у него электрическое сопротивление. Вторички рассчитываются на меньшее напряжение (обычно это 3, 5, 6, 9, 12, 15, 24 вольта) и на больший ток. В принципе в этом и заключается основная функция понижающих трансформаторов, чтобы из большего сетевого напряжения с меньшим токов на входе делать меньшее напряжение и больший ток на выходе.
Итак, допустим у нас есть относительно небольшой трансформатор, который мы сняли с очень старого видеомагнитофона. Мощность таких трансформаторов около 20 ватт. Первичная обмотка может иметь аж три вывода. Один общий, относительно двух другим можно подавать на этот трансформатор либо 220 вольт или 110. На вторичной обмотке может быть от двух и более выводов. Чтобы выяснить, какое напряжение имеется на выходной обмотке нам сначало нужно найти входную обмотку, к которой мы будем подсоединять сетевое напряжение 220 вольт. Поскольку 220 В это самое большое напряжение на этом трансе, то мы мультиметром ищем два вывода, которые имеют самое большое сопротивление. Для трансформатора на 20 Вт сопротивление первички будет около 300 ом (200-500, где-то так). На вторичке сопротивление будет в десятки раз меньше!
Допустим мы нашли нашу первичную, входную обмотку. Далее мы подсоединяем к этим выводам сетевой провод и подключаем питание 220 вольт. После этого мультиметр переводим в режим измерения переменного напряжения. Начинаем аккуратно (чтобы случайно не ударило током) измерять переменное напряжение на остальных выводах. Скорее всего мы увидим стандартные низковольтные напряжения от 3 до 25 вольт. Естественно, наличие нужного напряжения еще не говорит о том, что этот трансформатор подходит для наших задач. Дело в том, что обмотка с нужным напряжением может оказаться малого диаметра, а это влияет на величину выдаваемого тока. То есть, чем больше сечение провода обмотки, тем больше тока она может обеспечить.
Чтобы понять какую максимальную величину силы тока можно получить с выходной обмотки, нужно просто измерить диаметр этой обмотки. Далее через поиск в интернете находим таблицу зависимости сечения провода трансформатора от силы тока. Для примерного расчета можно воспользоваться такой формулой: I = 3,14 * d² (I — амперы, d — мм). В итоге мы узнаем тот ток, который может обеспечить выходная обмотка с данным диаметром провода. Например после того как мы измеряли штангенциркулем диаметр провода с напряжением 12 вольт (к примеру), и оно равно 1 мм. То по формуле мы вычислим, что этот провод может нам обеспечить 3,14 ампер. Ну и выходную мощность этой обмотки можно посчитать так, мы напряжение перемножаем на ток: 12 вольт умножить на 3,14 ампер будет равно около 37 ватт.
Если на вашем трансформаторе несколько вторичных обмоток, то общая мощность трансформатора будет равна сумме мощностей всех вторичных обмоток, минус КПД транса (в среднем КПД трансформаторов равно около 80% ). Вот и получается, что если у нас трансформатор на 100 ватт, то суммарная мощность выходной или выходных обмоток может быть около 80 ватт, приблизительно.
Видео по этой теме:
Первое, что надо сделать, это взять листок бумаги, карандаш и мультиметр. Пользуясь всем этим, прозвонить обмотки трансформатора и зарисовать на бумаге схему. При этом должно получиться что-то очень похожее на рисунок 1.
Выводы обмоток на картинке следует пронумеровать. Возможно, что выводов получится намного меньше, в самом простейшем случае всего четыре: два вывода первичной (сетевой) обмотки и два вывода вторичной. Но такое бывает не всегда, чаще обмоток несколько больше.
Некоторые выводы, хотя они и есть, могут ни с чем не «звониться». Неужели эти обмотки оборваны? Вовсе нет, скорей всего это экранирующие обмотки, расположенные между другими обмотками. Эти концы, обычно, подключают к общему проводу – «земле» схемы.
Поэтому, желательно на полученной схеме записать сопротивления обмоток, поскольку главной целью исследования является определение сетевой обмотки. Ее сопротивление, как правило, больше, чем у других обмоток, десятки и сотни Ом. Причем, чем меньше трансформатор, тем больше сопротивление первичной обмотки: сказывается малый диаметр провода и большое количество витков. Сопротивление понижающих вторичных обмоток практически равно нулю – малое количество витков и толстый провод.
Рис. 1. Схема обмоток трансформатора (пример)
Предположим, что обмотку с наибольшим сопротивлением найти удалось, и можно считать ее сетевой. Но сразу включать ее в сеть не надо. Чтобы избежать взрывов и прочих неприятных последствий, пробное включение лучше всего произвести, включив последовательно с обмоткой, лампочку на 220В мощностью 60…100Вт, что ограничит ток через обмотку на уровне 0,27…0,45А.
Мощность лампочки должна примерно соответствовать габаритной мощности трансформатора. Если обмотка определена правильно, то лампочка не горит, в крайнем случае, чуть теплится нить накала. В этом случае можно почти смело включать обмотку в сеть, для начала лучше через предохранитель на ток не более 1…2А.
Если лампочка горит достаточно ярко, то это может оказаться обмотка на 110…127В. В этом случае следует прозвонить трансформатор еще раз и найти вторую половину обмотки. После этого соединить половины обмоток последовательно и произвести повторное включение. Если лампочка погасла, то обмотки соединены правильно. В противном случае поменять местами концы одной из найденных полуобмоток.
Итак, будем считать, что первичная обмотка найдена, трансформатор удалось включить в сеть. Следующее, что потребуется сделать, измерить ток холостого хода первичной обмотки. У исправного трансформатора он составляет не более 10…15% от номинального тока под нагрузкой. Так для трансформатора, данные которого показаны на рисунке 2, при питании от сети 220В ток холостого хода должен быть в пределах 0,07…0,1А, т.е. не более ста миллиампер.
Рис. 2. Трансформатор ТПП-281
Как измерить ток холостого хода трансформатора
Ток холостого хода следует измерить амперметром переменного тока. При этом в момент включения в сеть выводы амперметра надо замкнуть накоротко, поскольку ток при включении трансформатора может в сто и более раз превышать номинальный. Иначе амперметр может просто сгореть. Далее размыкаем выводы амперметра и смотрим результат. При этом испытании дать поработать трансформатору минут 15…30, и убедиться, что заметного нагрева обмотки не происходит.
Следующим шагом следует замерить напряжения на вторичных обмотках без нагрузки, — напряжение холостого хода. Предположим, что трансформатор имеет две вторичные обмотки, и напряжение каждой из них 24В. Почти то, что надо для рассмотренного выше усилителя. Далее проверяем нагрузочную способность каждой обмотки.
Для этого надо к каждой обмотке подключить нагрузку, в идеальном случае лабораторный реостат, и изменяя его сопротивление добиться, чтобы напряжение на обмотке упало на 10-15%%. Это можно считать оптимальной нагрузкой для данной обмотки.
Вместе с измерением напряжения производится замер тока. Если указанное снижение напряжения происходит при токе, например 1А, то это и есть номинальный ток для испытуемой обмотки. Измерения следует начинать, установив движок реостата R1 в правое по схеме положение.
Рисунок 3. Схема испытания вторичной обмотки трансформатора
Вместо реостата в качестве нагрузки можно использовать лампочки или кусок спирали от электрической плитки. Начинать измерения следует с длинного куска спирали или с подключения одной лампочки. Для увеличения нагрузки можно постепенно укорачивать спираль, касаясь ее проводом в разных точках, или увеличивая по одной количество подключенных ламп.
Для питания усилителя требуется одна обмотка со средней точкой (см. статью «Трансформаторы для УМЗЧ»). Соединяем последовательно две вторичные обмотки и измеряем напряжение. Должно получиться 48В, точка соединения обмоток будет средней точкой. Если в результате измерения на концах соединенных последовательно обмоток напряжение будет равно нулю, то концы одной из обмоток следует поменять местами.
В этом примере все получилось почти удачно. Но чаще бывает, что трансформатор приходится перематывать, оставив только первичную обмотку, что уже почти половина дела. Как рассчитать трансформатор это тема уже другой статьи, здесь было рассказано лишь о том, как определить параметры неизвестного трансформатора.
Статьи, Схемы, Справочники
Регистрация Вход. Ответы Mail. Вопросы — лидеры Бокс и видеокарта для MB Pro 15 1 ставка. Когда выйдет в продажу i9 в мире?
Поиск данных по Вашему запросу:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.Перейти к результатам поиска >>>
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как проверить трансформатор
Трансформатор на 110В выдержит 220В ?
Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не «спалить» и как определить максимальные токи вторичных обмоток. Такие и подобные вопросы задают себе многие начинающие радиолюбители. В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов фото в начале статьи , разобраться с каждым из них..
Надеюсь, эта статья будет полезной многим радиолюбителям. Для получения различных выходных напряжений и нагрузочных токов обмоток для личных нужд, отличных от имеющихся на трансформаторе, можно получать путём различных соединений имеющихся обмоток между собой. Рассмотрим все возможные варианты. Нагрузочный ток такой обмотки, будет равен наименьшему нагрузочному току из имеющихся обмоток. Например: имеются две обмотки с напряжениями 6 и 12 вольт и токами нагрузки 4 и 2 ампера — в итоге получим общую обмотку с напряжением 18 вольт и током нагрузки — 2 ампера.
Правильность соединения проверяется так. Соединяем вместе два провода от обмоток и на оставшихся двух измеряем напряжение. Если напряжение будет равно удвоенному, то соединение произведено не правильно, в этом случае меняем концы любой из обмоток. Если напряжение на оставшихся концах равно нулю, или около того перепад более чем в пол-вольта не желателен, обмотки в этом случае будут греться на ХХ , смело соединяем вместе оставшиеся концы.
Общее напряжение такой обмотки не изменяется, а нагрузочный ток будет равен сумме нагрузочных токов, всех соединённых параллельно обмоток. Например: имеются три обмотки с выходным напряжением 24 вольта и токами нагрузки по 1 амперу.
В итоге получим обмотку с напряжением 24 вольта и током нагрузки — 3 ампера. Общее напряжение и ток будет, как при последовательном соединении. Например: имеем две последовательно и три параллельно соединённые обмотки примеры, описанные выше.
Соединяем эти две составные обмотки последовательно. Общее напряжение такой обмотки будет равно разности напряжений, включённых встречно обмоток, общий ток будет равен наименьшей по току нагрузки обмотки. Такое соединение применяется в том случае, когда необходимо понизить выходное напряжение имеющейся обмотки. Так же, что бы понизить выходное напряжение какой либо обмотки, можно домотать поверх всех обмоток дополнительную обмотку проводом, желательно не меньшего диаметра той обмотки, напряжение которой необходимо понизить, что бы не уменьшился нагрузочный ток.
Обмотку можно намотать, даже не разбирая трансформатор, если есть зазор между обмотками и сердечником , и включить её встречно с нужной обмоткой. Например: имеем на трансформаторе две обмотки, одна 24 вольта 3 ампера, вторая 18 вольт 2 ампера.
Включаем их встречно и в итоге получим обмотку с выходным напряжением в 6 вольт и током нагрузки 2 ампера. Но это чисто теоретически, на практике-же КПД такого включения будет ниже, чем если бы трансформатор имел одну вторичную обмотку Дело в том, что протекающий по обмоткам ток — создаёт в обмотках ЭДС, и в б о льшей обмотке напряжение уменьшается по отношению к напряжению ХХ, а в м е ньшей — увеличивается, и чем больше протекающий по обмоткам ток — тем больше это воздействие. В итоге общее расчётное напряжение при расчётном токе будет ниже.
Начнём с маленького трансформатора, придерживаясь вышеописанных особенностей левый на фото. Внимательно его осматриваем. Все выводы у него пронумерованы и провода подходят к следующим выводам; 1, 2, 4, 6, 8, 9, 10, 12, 13, 22, 23, и Дальше необходимо прозвонить омметром все выводы между собой, чтобы определить количество обмоток и нарисовать схему трансформатора.
Получается следующая картина. Выводы 1 и 2 — сопротивление между ними 2,3 Ома, 2 и 4 — между ними 2,4 Ома, между 1 и 4 — 4,7 Ома одна обмотка со средним выводом. Дальше 8 и 10 — сопротивление ,5 Ома ещё одна обмотка. Выводы 12 и 13 — 26 Ом ещё обмотка. Выводы 22 и 23 — 1,5 Ома последняя обмотка. Выводы 6, 9 и 27 не прозваниваются с другими выводами и между собой — это скорее всего экранные обмотки между сетевой и другими обмотками.
Эти выводы в готовой конструкции соединяются между собой и присоединяются к корпусу общий провод. Ещё раз внимательно осматриваем трансформатор. Сетевая обмотка, как мы знаем, мотается первой, хотя бывают и исключения. На фото плохо видно, поэтому продублирую. К выводу 8 подпаян провод, выходящий от самого сердечника то есть он к сердечнику ближе всех , потом идёт провод к выводу 10 — то есть обмотка намотана первой и имеет самое высокое активное сопротивление и скорее всего является сетевой.
Теперь по полученным данным от прозвонки, можно нарисовать и схему трансформатора. Остаётся попробовать подключить предполагаемую первичную обмотку трансформатора к сети вольт и проверить ток холостого хода трансформатора. Для этого собираем следующую цепь.
Последовательно с предполагаемой первичной обмоткой трансформатора у нас это выводы , соединяем обычную лампу накаливания мощностью ватт для более мощных трансформаторов ватт. Лампа в этом случае сыграет роль своеобразного предохранителя ограничителя тока , и защитит обмотку трансформатора от выхода её из строя при подключении к сети вольт, если мы выбрали не ту обмотку или обмотка не рассчитана на напряжение вольт.
Максимальный ток, протекающий в этом случае по обмотке при мощности лампы 40 ватт , не превысит миллиампер. Это убережёт Вас и испытываемый трансформатор от возможных неприятностей.
Соблюдая осторожность, подключаем собранную цепь к сети вольт у меня напряжение сети чуть больше, а точнее — вольт. Что видим? Лампа накаливания не горит. Значит сетевая обмотка выбрана правильно и дальнейшее подключение трансформатора можно производить без лампы.
Подключаем трансформатор без лампы и измеряем ток холостого хода трансформатора. Ток холостого хода ХХ трансформатора измеряется так; собирается аналогичная цепь, что мы собирали с лампой рисовать уже не буду , только вместо лампы включается амперметр, который предназначен для измерения переменного тока внимательно осмотрите свой прибор на наличие такого режима.
Амперметр сначала устанавливается на максимальный предел измерения, потом, если его много, амперметр можно перевести на более низкий предел измерения. Соблюдая осторожность — подключаем к сети вольт, лучше через разделительный трансформатор. Если трансформатор мощный, то щупы амперметра на момент включения трансформатора в сеть лучше закоротить или дополнительным выключателем, или просто закоротить между собой, так как пусковой ток первичной обмотки трансформатора превышает ток холостого хода в раз и амперметр может выйти из строя.
После того, как трансформатор включён в сеть — щупы амперметра разъединяются и измеряется ток. Как видим, ток холостого хода чуть более 28 миллиампер, что вполне допустимо ну может чуток завышен , так как на вид этот трансформатор мощностью ватт.
Измеряем напряжения холостого хода вторичных обмоток. Дальше нам нужно определить возможности обмоток и их нагрузочные токи. Как это делается? Если измерить диаметры проводов не представляется возможным, то поступаем следующим образом. Нагружаем по очереди каждую из обмоток активной нагрузкой, в качестве которой может быть что угодно, например лампы накаливания различной мощности и напряжения лампа накаливания мощностью 40 ватт на напряжение вольт имеет активное сопротивление Ом в холодном состоянии, лампа мощностью ватт — 30 Ом , проволочные сопротивления резисторы , нихромовые спирали от электро плиток, реостаты и т.
Потом измеряем ток нагрузки. Этот ток и будет являться максимальным током, который обмотка способна будет выдавать длительное время не перегреваясь.
Все эти расчёты приближённые. Номинальная мощность трансформатора получается около 36 ватт округляем до Да, ещё хочу рассказать о сопротивлении первичной обмотки. Для маломощных трансформаторов оно может составлять десятки, или даже сотни Ом, а для мощных — единицы Ом. Очень часто на форуме задают такие вопросы; «Измерил мультиметром сопротивление первичной обмотки ТС, а оно оказалось 5 Ом.
Не мало ли оно для сети вольт, я боюсь его включать в сеть. Подскажите — нормально ли оно? Если у Вас есть, чем измерить индуктивность, то Вы сами можете рассчитать сопротивление обмотки переменному току индуктивное сопротивление.
Например; Индуктивность первичной обмотки при измерении составила 6 Гн,, идём сюда и вводим эти данные индуктивность 6 Гн, частота тока сети 50 Гц , смотрим — получилось , округляем , это и будет индуктивное сопротивление этой обмотки для частоты 50 Гц. Естественно, что для частоты Гц будет совсем другое сопротивление этой обмотки. Аналогично проверяются и другие трансформаторы.
На фото второго трансформатора видно, что выводы подпаяны к контактным лепесткам 1, 3, 4, 6, 7, 8, 10, 11, После прозвонки становится ясно, что у трансформатора 4 обмотки. Причём хорошо видно, что обмотка 1 и 6 намотана первой белые выводы , потом идёт обмотка чёрные выводы.
У более мощных трансформаторов активное сопротивление обмотки доходит до единиц Ом. Вторая обмотка 83 Ома , возможно повышающая.
Здесь можно замерить диаметры проводов всех обмоток, кроме обмотки , выводы которой выполнены чёрным, многожильным, монтажным проводом.
Дальше подключаем трансформатор через лампу накаливания. Лампа не горит, трансформатор на вид мощностью , замеряем ток холостого хода, получается 53 миллиампера, что вполне допустимо. Замеряем напряжения холостого хода обмоток. Получается — вольта, — 79,5 вольта, и обмотка по 3,4 вольта 6,8 со средним выводом. Максимальный ток нагрузки этой обмотки, как видно из фотографии — 0,24 ампера.
Токи других обмоток определяются из таблицы плотности тока, исходя из диаметра провода обмоток. Обмотка намотана проводом 0,4 и накальная проводом 1,,1. Соответственно токи получаются 0,,5 и 3,,0 ампера.
Номинальная мощность трансформатора получается около ватт. Остался ещё один трансформатор. У него контактная планка с ю контактами, верх 1, 3, 5, 7, 9, 11, 13 и низ соответственно чётные.
Он мог переключаться на различные напряжения сети , Подключаем к выводам 1 и 3 сеть с последовательно включённой лампой накаливания. Лампа горит в половину накала. Измеряем напряжение на выводах трансформатора, оно равняется вольт.
Значит не угадали и первичная обмотка здесь состоит из двух частей, и подключенная часть при напряжении вольт начинает входить в насыщение повышается ток холостого хода и по этому нить лампы раскалилась.
Коэффициент трансформации трансформатора
Трансформатор на В выдержит В? SergeyE , а если подать на первичку через диод вроде как раз половина останется. Попробуй лампочку ильича включить в и посмотреть результат. Достают любители жопонии привозят а посля
Как рассчитать количество витков и диаметр провода обмоткок трнасформатора? FAQ Часть 3
Nov Log in No account? Create an account. Remember me. Facebook Twitter Google. Как узнать ноги трансформатора? В наличии имеется мультиметр, осциллограф, и мощный электронно-цифровой вычислительный комплекс, для просчёта сложных моделей электромагнитного поля. Как узнать характеристики трансформатора? Ну, разные обмотки определить, это прозвонить.
Определение начала и конца обмотки трансформатора
Конструктивно трансформатор может состоять из одной автотрансформатор или нескольких изолированных проволочных либо ленточных обмоток катушек , охватываемых общим магнитным потоком , намотанных, как правило, на магнитопровод сердечник из ферромагнитного магнитомягкого материала. Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории [3]. В году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции , лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества. При подключении к зажимам одной обмотки батареи гальванических элементов начинал отклоняться гальванометр на зажимах другой обмотки. Так как Фарадей работал с постоянным током, при достижении в первичной обмотке его максимального значения, ток во вторичной обмотке исчезал, и для возобновления эффекта трансформации требовалось отключить и снова подключить батарею к первичной обмотке.
Что такое трансформатор и как его проверить
Без этого электротехнического устройства потребители электроэнергии не смогли бы заряжать автомобильные аккумуляторы, подключать энергосберегающие источники света. Электротехническое изделие понижает стационарное напряжение до требуемого уровня. Прибор изготовлен на базе электромагнитной индукции. Продается в специализированных стационарных торговых предприятиях, интернет-магазинах. Понижающий трансформатор с на 12 вольт покупают водители, дачники, владельцы загородных домов, коттеджей для устройства внутридомовой низковольтной осветительной сети.
Как проверить трансформатор в микроволновке
На нашем сайте собрано более бесплатных онлайн калькуляторов по математике, геометрии и физике. Не можете решить контрольную?! Мы поможем! Более 20 авторов выполнят вашу работу от руб! На практике при использовании энергии электрического тока часто появляется необходимость изменять напряжение, которое подается от генератора.
Подключаем к сети неизвестный трансформатор.
Нам понадобится обычная плоская батарейка на 4,5 В и комбинированный измерительный прибор тестер или миллиамперметр постоянного тока. Обмотки трансформатора мы предварительно вызвонили омметром и у нас имеются несколько пар проводов, но нам надо определить, где у этих пар начало обмотки, а где конец. Берем любую пару проводов принадлежащих одной из обмоток трансформатора.
Понижающие трансформаторы. Виды и работа. Особенности
Канал ЭлектроХобби на YouTube. Несмотря на большую популярность импульсных блоков питания, в которых также стоят трансформаторы хотя и ферритовые , старые, добрые трансформаторы с железным сердечником по прежнему повсеместно используются. Для новичка или человека, особо не связанного с профессией электрика, электронщика может быть затруднительным быть подключения этих самых силовых трансформаторов к электрической сети вольт. Например, вы у себя в гараже нашли нерабочее устройство и решили использовать имеющийся трансформатор для сборки блока питания для своих нужд.
Как узнать мощность трансформатора
Как разобраться с обмотками трансформатора, как его правильно подключить к сети и не «спалить» и как определить максимальные токи вторичных обмоток. Такие и подобные вопросы задают себе многие начинающие радиолюбители. В этой статье я постараюсь ответить на подобные вопросы и на примере нескольких трансформаторов фото в начале статьи , разобраться с каждым из них.. Надеюсь, эта статья будет полезной многим радиолюбителям. Для получения различных выходных напряжений и нагрузочных токов обмоток для личных нужд, отличных от имеющихся на трансформаторе, можно получать путём различных соединений имеющихся обмоток между собой.
Как узнать мощность трансформатора
Блог new. Технические обзоры. Опубликовано: , Эту страницу нашли, когда искали : как понять насколько мощный трансформатор , как проверить мощность трансформатора в амперах , на какую мощность рассчитан трансформатор ва , как найти мощность рассчитываемого трансформатора , стандарт как определить мощность силовой трансформатор , как расчитать сколько по мощности вторичка трансформатора , как определить мощность трансформатора по замерам , какая мощность трансформатора на 10 ампер , трансформатор работает с нагрузкой сравните входную и выходную мощность , как рассчитать трансформатор по току покоя усилителя , как определить характеристики трансформатора зная сечение обмоток , узнать сколько ампер дает трансформатор , сколько выдает трансформатор тока , как рассчитать выходную силу тока трансформатора , как узнат тр жилиза на какои мошност.
Что такое трансформатор и как его проверить 🔴
Сварочный аппарат, микроволновка, компьютер, блок питания, телевизор — такие разные электроприборы но в каждом из них есть трансформатор. Как прозвонить обмотки и замерить напряжение выдаваемое трансформатором, как посчитать допустимую мощность и что такое ток холостого хода — вопросы на которые Вы получите исчерпывающие ответы и несколько практических советов по работе с трансформаторами. В конце расскажу о трансформаторе тока и где он используется.
Для чего нужен трансформатор?
Основное свойство трансформатора преобразование напряжения или тока до требуемого значения и гальванической развязки — это очень полезное свойство трансформаторов о котором расскажем ниже.
И так, например, в домашней электро-розетке напряжение 220 вольт 50 герц (AC — так на схемах и блоках питания обозначают переменное напряжение — AC 220v 50hz), т.е., переменное напряжение, а для питания ноутбука нам нужно 18 вольт постоянного тока (DC — так обозначается постоянное напряжение DC 18v). С помощью трансформатора мы можем преобразовать напряжение до требуемой величины, а затем выпрямить его. После чего, это напряжение будет пригодно для питания Вашего ноутбука. Не совсем понятно? Не хватает термина — Коэффициент трансформации.
Как рассчитать обмотки трансформатора
В нашем примере, 220/18=12,22 это соотношение количества витков обмоток и это значение коэффициента трансформации.
Зная, коэффициент трансформации , этим числом можно посчитать количество витков трансформатора. Если поменять обмотки, т.е., подать напряжение 220 вольт на вторичную обмотку, с первичной мы получим 2688 вольт — но делать так я не рекомендую, транс сгорит сразу или выбьет автомат в щитке.
Допустим, вы знаете что в первичной обмотке транса 2200 витков, а сколько витков должно быть во вторичной обмотке для получения 18 вольт? Все просто, 18 (напряжение в вольтах)*12,22 (коэффициент трансформации) = 220 витков.
Как устроен трансформатор?
Простейший трансформатор, это две независимых обмотки связанных магнитопроводом. В первой обмотке создается магнитное поле, затем через магнитопровод передается на вторую обмотку, в которой в зависимости от коэффициента трансформации повышается или понижается. На самом деле, все значительно сложнее, много факторов влияющих на выходное напряжение, но для данного контекста этого достаточно.
Какие бывают трансформаторы?
- — Повышающий трансформатор (высоковольтный) — повышает напряжение до требуемой величины, но снижает ток пропорционально. При повышении напряжения более чем 20-30 раз большое значение имеет КПД трансформатора, как правило для частоты 50 герц это предел, дальше начинаются значительные потери. Для повышения КПД трансформаторов увеличивают частоту, так высоковольтный трансформатор в электро-шокере повышает напряжение до 20-100 тысяч вольт и работает на частотах от 800гц до 2,4кгц. При этом, ток пропорционально снижается.
- — Понижающий трансформатор (силовой) — понижает напряжение до требуемой величины, пропорционально увеличивает допустимый ток. Например сварочный аппарат, снижает напряжение до 50 вольт (в 4,4 раза), увеличивает ток в 4,4 раза. Но для соблюдения этого условия сечение провода во вторичной обмотке тоже, должно быть больше в 4,4 раза.
Автотрансформатор (ЛАТР) — понижающий трансформатор с одной обмоткой, с которой с помощью ручки реостата, получают напряжение от 1 до 180 вольт. Такие трансы используются в лабораторных условиях для проверки различных устройств. В быту используется в некоторых регуляторах напряжения.
Масляный трансформатор — трансформатор монстр! с обмотками трубами, заполненными минеральным маслом. Такие устанавливают в силовых подстанциях для снижения напряжения с 10000 вольт до 220. Если передавать на большое расстояние напряжение в 220 вольт по обычным проводам, потери будут значительны. Как известно, чем выше напряжение, тем меньше влияет сопротивление провода. С ТЭЦ и ГРЭС по Линиям Электро Передач передается вообще 100000 вольт!
Импульсный трансформатор — без него не обходится не один современный электроприбор, будь то ТВ, ноутбук, компьютер или зарядник для телефона. Как правило работает на частотах свыше 800гц в паре с контроллером ШИМ который увеличивает частоту импульсов в возрастанием нагрузки. Гениальное изобретение, позволяющее получать большие токи при скромных размерах. Сравните размеры традиционного сварочного аппарата и сварочного инвертора работающего на этом принципе.
Как отличить первичную обмотку от вторичной в трансформаторе
Существует три основных признака первичной обмотки трансформатора:
1) В понижающем трансформаторе сопротивление первичной обмотки значительно выше, чем вторичной.
2) Как правило, первичная обмотка наматывается более тонким проводом.
3) Первичная обмотка транса наматывается ближе к магнитопроводу для увеличения КПД трансформатора.
4) Если трансформатор запаян в схему, можно посмотреть по выводам. Во вторичной обмотке, как правило включается диодный мостик и за ним электролитический конденсатор большой емкости (от 1000мкф). В первичной, обычно ставят предохранитель.
Подробно, как определить где первичная обмотка смотрите видео ниже.
В некоторых трансформаторах устанавливают самовосстанавливаемый предохранитель, его скрывает защитная пленка на первичной обмотке. Я часто сталкивался с обрывом обмотки, который на самом деле оказывался сгоревшим предохранителем. Вскрываешь защитную пленку, перепаиваешь и вуаля! Заработало!
Как прозвонить обмотки трансформатора?
Если в вашем распоряжении цешка или мультиметр, выяснить где и какая обмотка не так сложно. Включаем тестер в режим измерения сопротивления (100ом) и прозваниваем выводы трансформатора. Допустим, тестер показал на одной из обмоток 89ом, на другой всего 7ом — соответственно это вторичка.
Как узнать ток холостого хода у трансформатора?
Ток холостого хода — это ток, который транс потребляет без нагрузки, чем он ниже, тем качественнее рассчитан и изготовлен трансформатор. Низкое качество магнитопровода, межвитковое замыкание, неправильное подключение увеличивают ток холостого хода. Этот ток преобразуется в тепло и если он велик (более 20-100ма) транс может сгореть. Переключите тестер в режим измерения тока и включите последовательно с первичной обмоткой трансформатора. по результату измерения, решайте сами не опасно ли использовать такой трансформатор.
Как найти первичную обмотку и проверить трансформатор — смотрите видео:
Входная обмотка трансформатора содержит более 2х выводов, как подключить 220 вольт.
Наиболее распространенным использованием трансформатора является понижение сетевого переменного напряжения. При этом еще происходит и гальваническая развязка — разрыв прямого электрического контакта между сетевым и пониженным напряжением, что повышает безопасность при использовании электроприборов. Понижающие трансформаторы имеют первичную и вторичную обмотку. Первичная намотка рассчитана на то напряжение, которое на неё подаётся (напряжение электросети 220, 380, 110 вольт). Со вторичной обмотки снимается пониженное напряжение, используемое для нагрузки.
Если вы имеете в наличии трансформатор, у которого четко понятно, куда и какое напряжение подавать на него, то проблем нет. Но вот есть такие, у которых имеется неясность. В этом случае вы хотя бы должны быть точно уверены, что у него первичная обмотка одна, она рассчитана на 220 вольт, нет повышающих обмоток. Тут выявит первичку достаточно легко. Берём мультиметр, электронный тестер, выставляем его на измерение сопротивления (предел Омы), начинаем измерять. Намотка с наибольшим сопротивлением и будет первичной (на 220 вольт).
На некоторых понижающих трансформаторах, которые были сняты с различной техники, на первичной обмотке имеется более 2 выводов. Такие трансформаторы рассчитаны на несколько входных напряжений. Обычно это переменное сетевое напряжение 110 вольт и 220. То есть, такой трансформатор (электроприбор) можно питать как от сети 110 вольт, так и от сети 220. Если намотки не помечены, то опять же, берём в руки тестер, начинаем измерять обмотку с наибольшим сопротивлением (это будет 220 вольт). На этой же обмотке, относительно других выводов, будет меньшее сопротивление, что соответствует напряжению 110 вольт (хотя вряд ли она вам понадобиться).
Если в руки попался трансформатор, у которого нет обозначений, не ясно, на какое напряжение он рассчитан, то лучше его пожалуй не использовать. Если всё же хотите это выяснить, то поступайте примерно так — у трансформатора размером примерно с 3 спичечные коробка первичная обмотка будет иметь примерное сопротивление в 500 Ом. Транс размером с кулак взрослого человека это сопротивление будет около 100 Ом. Более мелкие трансформаторы с небольших блоков питания (телефонных трубок, зарядок, антенных БП, игровых приставок и т.д.) сопротивление первички около 1000 Ом. Ну, думаю примерно вы поняли величины. Но перед подачей сетевого напряжения на условно первичную обмотку лучше поставить небольшой плавких предохранитель (так, на всякий случай). Подайте напряжение кратковременно, смотрите что будет.
После подачи напряжения 220 вольт на трансформатор, который мы испытываем (с неизвестными напряжениями) смотри на его работу. Не издает ли большой гул, не начала ли у него быстро нагреваться обмотка. Если в течении 15 минут транс работает нормально (главное не греется сильно) и при этом выдает некое нормальное, подходящее напряжение на своей вторичной обмотке, то всё отлично, его можно смело использовать для работы. Лишь бы подошел по своей мощности!
P.S. Всё же подбирайте себе понижающий трансформатор с известными и максимально подходящими для вас характеристиками. Учитывайте его мощность. Поскольку используя понижающие трансформаторы меньшей мощности, чем это необходимо для нормальной работы нагрузки, вы рискуете перегревом, нестабильным напряжением и током питания, а это чревато для самой нагрузки. Оптимальный вариант при нужде в трансе, это купить подходящий именно для ваших целей.
Как определить, какой провод какой на трансформаторе?
Как определить, какой провод какой на трансформаторе? — Обмен электротехнического стекаСеть обмена стеков
Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Подписаться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 106k раз
\ $ \ begingroup \ $Допустим, у меня есть трансформатор с 3-мя катушками.Когда первичная катушка подключена к 230 В, две вторичные выдают 12 В. Провода имеют цветовую маркировку, но я не знаю, что это за цвета, да и на сайте производителя информации об этом нет.
Есть ли относительно простой способ определить, какой провод является первичным, какой вторичным, а какой — началом вторичной обмотки, а какой — концом вторичной катушки?
Создан 17 дек.
АндрейКо22.3k2424 золотых знака
\ $ \ endgroup \ $ \ $ \ begingroup \ $В понижающем трансформаторе первичная обмотка будет иметь более высокое сопротивление. Сопротивление будет низким, но разница должна быть заметной, если только у вас нет действительно большого трансформатора.
Если вы пытаетесь определить, что такое обмотка, то вот несколько примечаний:
- Если 3 провода непрерывны, то, вероятно, у вас центральная обмотка (+, 0, -)
- Если только 2 провода имеют непрерывность, то это простая обмотка.
- Если 4 или более проводов имеют целостность, значит, у вас многоотводная обмотка трансформатора.
Обмотки трансформатора имеют фазовое соотношение, но обычно это не важно для источников питания. Если один из проводов не соединен с сердечником трансформатора, полярность не имеет значения.
Относительно безопасный способ проверки трансформаторов — подключить небольшое переменное напряжение (1–5 В переменного тока) и измерить напряжения на других обмотках.
Создан 17 дек.
W5VOW5VO17.1k77 золотых знаков5858 серебряных знаков9090 бронзовых знаков
\ $ \ endgroup \ $ 5 \ $ \ begingroup \ $ Провод первичной обмотки тоньше и, как утверждает W5VO, имеет более высокое сопротивление.Что касается вторичных звеньев, я полагаю, они разделены. Чтобы найти начало и конец обмотки, вы измеряете сопротивление с помощью мультиметра. В зависимости от номинала трансформатора вы измеряете несколько сотен Ом между началом и концом обмотки. Если вы измеряете мегаом, ваше измерение проводится на двух изолированных обмотках. Допустим, вы можете найти таким образом обмотки A-B, C-D и E-F. Чтобы определить полярность, вам нужно подключить первичную обмотку к сети. Измерьте напряжение переменного тока на A-B, C-D и E-F. Допустим, это 19 В, 19 В и 12 В.Это напряжения без нагрузки, особенно для тороидальных трансформаторов, они могут быть намного выше номинального напряжения. В моем примере номинальное напряжение может составлять 2 x 12 В и 8 В.
Теперь подключите A к C и измерьте напряжение между B и D. Если это 0 В (в любом случае очень низкое), AB и CD находятся в фазе, поэтому, если A является «началом» AB, то C является «началом» CD. Если напряжения равны, вы можете разместить их параллельно, чтобы удвоить ток.
Если напряжение, измеренное между B и D, составляло 38 В, обмотки находятся в противофазе: если A — начало A-B, то C — конец C-D.Вы можете соединить обмотки таким образом, чтобы удвоить напряжение, или поменять местами C и D, чтобы обмотки снова были в фазе.
Можно сделать что-то подобное с третьей обмоткой. Подключите A к E и измерьте между B и F. Если напряжение выше 19 В (все еще работаю с моим примером), значит, вы подключили начало одной обмотки к концу другой. Если измеренное напряжение представляет собой разницу напряжений двух обмоток, значит, вы подключили пуск с пуском. Вы можете использовать любой способ подключения для создания более высокого или более низкого напряжения.
Создан 21 сен.
Stevenvhstevenvh1k2020 золотых знаков442442 серебряных знака657657 бронзовых знаков
\ $ \ endgroup \ $ 1 \ $ \ begingroup \ $В многообмоточном трансформаторе каждая обмотка (включая центральный отвод, если он есть, и несколько отводов) обозначается отдельным цветом кабеля.то есть обмотка с центром имеет другой цвет, а обмотка без отвода — другой цвет. кроме того, у них другой размер кабеля
Создан 29 мая ’15 в 23: 432015-05-29 23:43
\ $ \ endgroup \ $ Очень активный вопрос .Заработайте 10 репутации (не считая бонуса ассоциации), чтобы ответить на этот вопрос. Требование репутации помогает защитить этот вопрос от спама и отсутствия ответов.Не тот ответ, который вы ищете? Просмотрите другие вопросы с метками трансформатор или задайте свой вопрос.
Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Как найти номинальный выходной ток вторичной обмотки понижающего трансформатора?
Мой стандартный способ первоначально оценить общую номинальную мощность трансформатора в ВА — это взвесить его, а затем сравнить вес с опубликованными значениями из каталога трансформаторов.Например, обычные трансформаторы EI RS весом 500 г рассчитаны на 20 ВА, тогда как тороидальные трансформаторы того же веса рассчитаны на 30 ВА.
Это общее количество виртуальных машин, которое, как вы ожидаете, будет обрабатывать первичный. Вы должны разделить это между вторичными.
У вас есть измеренное напряжение \ $ V \ $ и измеренное сопротивление \ $ R \ $ обмоток.
Есть два ограничения на максимальный ток, который может быть получен из вторичных обмоток: регулирование (падение напряжения) и повышение температуры.
Регулировка проста в обращении, так как ее можно легко оценить по току, который мы хотим нарисовать \ $ I \ $ как \ $ V_ {drop} = IR \ $. Это не повредит трансформатор, а влияет только на нашу нагрузку и достаточное ли напряжение на нагрузке.
Повышение температуры более затруднено и может повредить трансформатор. Мы можем видеть, насколько нагревается трансформатор на ощупь, но это не говорит нам, становится ли одна конкретная обмотка слишком горячей или нет.
Если мы предположим, что все обмотки охлаждаются до температуры окружающей среды одинаково (что не так уж и неправильно, особенно для первого удара и особенно для тороидального), тогда VA обмотки пропорциональна массе \ $ m \ $ меди, используемой в нем, независимо от количества витков \ $ N \ $, длины \ $ L \ $ или площади провода \ $ A \ $.2 / R \ $, и пропорционально распределите ваши общие 20 или 30 ВА, это ваша оценка ВА для каждой обмотки.
Получив предварительные оценки ВА отдельных обмоток, подожгите трансформатор от источника питания с предохранителем. Нагрузите каждую обмотку резистором, чтобы получить половину расчетной ВА, и измерьте падение напряжения. Прежде чем продолжить испытание, убедитесь, что это разумно (несколько процентов для больших трансформаторов, возможно, 10% для маленьких) для всех обмоток.
Загрузите на все обмотки половину расчетной ВА и дайте ей поработать 30 минут для достижения теплового равновесия.Теперь отключите все и быстро измерьте сопротивление каждой обмотки, прежде чем они успеют изменить температуру. Вы можете оценить повышение температуры каждой обмотки, зная, что температура меди составляет 0,4% на градус Цельсия при комнатной температуре. Например, если ваша обмотка 2,5 Ом перешла на 2,75 Ом (+ 10%), это указывает на повышение на 25 ° C выше температуры окружающей среды. Возможно, вам потребуется провести четырехконтактное измерение, чтобы получить достаточно точные разницы, чтобы их можно было использовать на уровне Ом.
Если какая-либо обмотка особенно горячая или холодная, вы можете изменить пропорцию общей ВА, идущей на нее, и попробовать еще раз.2 \ $, значит, измеренное вами повышение температуры на половину ВА составляло четверть конечного, а не половину!
Трансформаторов — Университетская физика, Том 2
Цели обучения
К концу раздела вы сможете:
- Объясните, почему электростанции передают электроэнергию при высоком напряжении и малом токе и как они это делают
- Установление взаимосвязей между током, напряжением и количеством обмоток в повышающих и понижающих трансформаторах
Хотя электроэнергия переменного тока вырабатывается при относительно низком напряжении, она передается по линиям передачи с очень высоким напряжением (до 500 кВ).Одна и та же мощность может передаваться при разных напряжениях, потому что мощность — это продукт (для простоты мы игнорируем фазовый коэффициент. Таким образом, конкретная потребность в мощности может быть удовлетворена при низком напряжении и высоком токе или при высоком напряжении и низком токе. Преимущество выбора высокого напряжения / низкого тока заключается в том, что он приводит к более низким омическим потерям в линиях передачи, которые могут быть значительными в линиях длиной много километров ((Рисунок)).
Среднеквадратичное значение напряжения электростанции в конечном итоге необходимо понизить с 12 кВ до 240 В, чтобы его можно было безопасно ввести в дом.Линия передачи высокого напряжения позволяет передавать слабый ток через подстанцию на большие расстояния.
Обычно переменные ЭДС, производимые на электростанциях, «повышаются» до очень высоких напряжений перед передачей по линиям электропередачи; затем они должны быть «понижены» до относительно безопасных значений (110 или 220 В, действующее значение), прежде чем они будут введены в дома. Устройство, которое преобразует напряжение из одного значения в другое с помощью индукции, — это трансформатор ((рисунок)).
Трансформаторыиспользуются для понижения высокого напряжения в линиях электропередачи до 110–220 В, используемых в домах. (кредит: модификация работы Fortyseven / Flickr)
Как показано на рисунке, трансформатор в основном состоит из двух отдельных катушек или обмоток, намотанных вокруг сердечника из мягкого железа. Первичная обмотка имеет петли или витки и подключена к переменному напряжению.Вторичная обмотка имеет витки и подключена к нагрузочному резистору. Мы предполагаем идеальный случай, когда все силовые линии магнитного поля ограничены сердечником, так что одинаковый магнитный поток проникает в каждый виток как первичной, так и вторичной обмоток.Мы также пренебрегаем потерями энергии на магнитный гистерезис, на омический нагрев в обмотках и на омический нагрев индуцированных вихревых токов в сердечнике. У хорошего трансформатора потери могут составлять всего 1% от передаваемой мощности, так что это неплохое предположение.
Повышающий трансформатор (во вторичной обмотке больше витков, чем в первичной). Две обмотки намотаны на сердечник из мягкого железа.
Для анализа схемы трансформатора сначала рассмотрим первичную обмотку.Входное напряжение равно разности потенциалов, индуцированной на первичной обмотке. Согласно закону Фарадея, индуцированная разность потенциалов равна потоку, проходящему через один виток первичной обмотки. Таким образом,
Точно так же выходное напряжение, подаваемое на нагрузочный резистор, должно равняться разности потенциалов, индуцированной во вторичной обмотке. Поскольку трансформатор идеален, магнитный поток через каждый виток вторичной обмотки также составляет
Объединяя последние два уравнения, получаем
Следовательно, при соответствующих значениях входного напряжения можно «повышать» или «понижать» () до выходного напряжения.Это часто сокращенно называют уравнением трансформатора,
., который показывает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их обмотках. Для повышающего трансформатора, который увеличивает напряжение и уменьшает ток, это отношение больше единицы; для понижающего трансформатора, который снижает напряжение и увеличивает ток, это отношение меньше единицы.
Согласно закону сохранения энергии, мощность, вводимая в первичную обмотку в любой момент, должна быть равна мощности, рассеиваемой в резисторе вторичной цепи; таким образом,
В сочетании с (Рисунок) это дает
Если напряжение повышается, ток понижается, и наоборот.
Наконец, мы можем использовать вместе с (Рисунок) и (Рисунок), чтобы получить
, который говорит нам, что входное напряжение «видит» не сопротивление, а сопротивление.
Наш анализ основан на мгновенных значениях напряжения и тока. Однако полученные уравнения не ограничиваются мгновенными значениями; они справедливы также для максимальных и среднеквадратичных значений.
Проверьте свое понимание Трансформатор понижает линейное напряжение с 110 до 9.0 В, чтобы на дверной звонок можно было подавать ток 0,50 А. а) Каково соотношение количества витков первичной и вторичной обмоток? б) Какой ток в первичной обмотке? (c) Какое сопротивление видит источник 110 В?
а. 12: 1; б. 0,042 А; c.
Сводка
- Электростанции передают высокое напряжение при малых токах для достижения более низких омических потерь на многокилометровых линиях передачи.
- Трансформаторы используют индукцию для преобразования напряжения из одного значения в другое.
- Для трансформатора напряжения на первичной и вторичной катушках или обмотках связаны уравнением трансформатора.
- Токи в первичной и вторичной обмотках связаны количеством первичных и вторичных петель или витков в обмотках трансформатора.
- Повышающий трансформатор увеличивает напряжение и снижает ток, тогда как понижающий трансформатор снижает напряжение и увеличивает ток.
Концептуальные вопросы
Почему линии передачи работают при очень высоком напряжении, в то время как бытовые цепи работают при довольно низком напряжении?
Тепловые потери меньше, если линии передачи работают при низких токах и высоких напряжениях.
Как отличить первичную обмотку от вторичной в повышающем трансформаторе?
Аккумуляторы в некоторых электронных устройствах заряжаются с помощью адаптера, подключенного к сетевой розетке. Подумайте о назначении адаптера.
В адаптере есть понижающий трансформатор, обеспечивающий более низкое напряжение и, возможно, более высокий ток, при котором устройство может работать.
Будет ли трансформатор работать, если на входе постоянное напряжение?
Почему первичная и вторичная обмотки трансформатора намотаны на один и тот же замкнутый контур из железа?
, поэтому каждый контур может испытывать одинаковое изменение магнитного потока
Проблемы
Повышающий трансформатор спроектирован так, что выход его вторичной обмотки составляет 2000 В (действующее значение), когда первичная обмотка подключена к линейному напряжению 110 В (среднеквадратичное значение).(а) Если в первичной обмотке 100 витков, сколько витков во вторичной обмотке? (b) Если резистор, подключенный ко вторичной обмотке, потребляет действующий ток 0,75 А, каков ток в первичной обмотке?
Повышающий трансформатор, подключенный к линии 110 В, используется для питания водородно-газовой газоразрядной трубки с напряжением 5,0 кВ (действующее значение). Трубка рассеивает мощность 75 Вт. а) Каково отношение числа витков вторичной обмотки к числу витков первичной обмотки? (b) Каковы среднеквадратичные токи в первичной и вторичной обмотках? (c) Какое эффективное сопротивление видит источник 110 В?
а.45: 1; б. 0,68 А, 0,015 А; c.
Источник ЭДС переменного тока выдает мощность 5,0 мВт при действующем токе 2,0 мА, когда он подключен к первичной обмотке трансформатора. Среднеквадратичное значение напряжения на вторичной обмотке составляет 20 В. (a) Какое напряжение на первичной обмотке и ток через вторичную обмотку? (б) Какое отношение витков вторичной обмотки к первичной у трансформатора?
Трансформатор используется для понижения напряжения 110 В от настенной розетки до 9,0 В для радио. (а) Если у первичной обмотки 500 витков, сколько витков у вторичной обмотки? (b) Если радиостанция работает при токе 500 мА, каков ток через первичную обмотку?
Трансформатор используется для питания поезда модели на 12 В от сетевой розетки на 110 В.Поезд работает при мощности 50 Вт. (а) Какое среднеквадратичное значение тока во вторичной обмотке трансформатора? (б) Каков среднеквадратичный ток в первичной обмотке? (c) Каково соотношение количества витков первичной и вторичной обмоток? (г) Какое сопротивление поезда? (e) Какое сопротивление видит источник 110 В?
Дополнительные проблемы
Конденсатор емкостью 700 пФ подключен к источнику переменного тока с амплитудой напряжения 160 В и частотой 20 кГц. (а) Определите емкостное сопротивление конденсатора и амплитуду выходного тока источника.(b) Если частота изменяется на 60 Гц при сохранении амплитуды напряжения 160 В, каковы емкостное реактивное сопротивление и амплитуда тока?
Катушка индуктивности 20 мГн подключена к источнику переменного тока с переменной частотой и амплитудой постоянного напряжения 9,0 В. (a) Определите реактивное сопротивление цепи и максимальный ток через катушку индуктивности, когда частота установлена на 20 кГц. . (b) Проделайте те же вычисления для частоты 60 Гц.
а. ; б.
Конденсатор подключен к источнику переменного тока частотой 60 Гц с амплитудой напряжения 50 В.а) Каков максимальный заряд конденсатора? (б) Каков максимальный ток в конденсаторе? (c) Каково соотношение фаз между зарядом конденсатора и током в цепи?
Катушка индуктивности 7,0 мГн подключена к источнику переменного тока частотой 60 Гц, амплитуда напряжения которого составляет 50 В. (a) Каков максимальный ток через катушку индуктивности? (b) Каково соотношение фаз между текущим током и разностью потенциалов на катушке индуктивности?
а. 19 А; б. индуктор выводов на
Каков импеданс последовательной цепи RLC на резонансной частоте?
Какое сопротивление R в схеме, показанной ниже, если амплитуда переменного тока через катушку индуктивности равна 4.24 А?
Источник переменного тока с амплитудой напряжения 100 В и частотой 1,0 кГц управляет последовательной цепью RLC с, и. (а) Определите среднеквадратичное значение тока в цепи. (б) Каковы среднеквадратичные значения напряжения на трех элементах? (c) Каков фазовый угол между ЭДС и током? (d) Какова выходная мощность источника? (e) Какая мощность рассеивается на резисторе?
Генератор электростанции вырабатывает 100 А при 15 кВ (действующее значение).Трансформатор используется для повышения напряжения в линии передачи до 150 кВ (действующее значение). (а) Какой действующий ток в линии передачи? (b) Если сопротивление на единицу длины линии равно потерям мощности на метр в линии? (c) Каковы были бы потери мощности на метр, если бы линейное напряжение составляло 15 кВ (действующее значение)?
Рассмотрим электростанцию, расположенную в 25 км от города, поставляющую в город мощность 50 МВт. Линии электропередачи выполнены из алюминиевых кабелей с поперечным сечением.Найдите потерю мощности в линиях передачи, если она передается при (a) 200 кВ (среднеквадратичное значение) и (b) 120 В (среднеквадратичное значение).
а. ; б.
Для работы неоновых вывесок требуется напряжение 12 кВ. Трансформатор должен использоваться для изменения напряжения с 220 В (действующее значение) переменного тока на 12 кВ (действующее значение) переменного тока. Какое должно быть соотношение витков вторичной обмотки к виткам первичной обмотки? (b) Какой максимальный среднеквадратичный ток могут потреблять неоновые лампы, если предохранитель в первичной обмотке сработает при 0,5 А? (c) Сколько энергии потребляет неоновая вывеска, когда она потребляет максимальный ток, допустимый предохранителем в первичной обмотке?
Задачи
Электроэнергия переменного тока напряжением 335 кВ от ЛЭП подается в первичную обмотку трансформатора.Отношение числа витков вторичной обмотки к числу витков первичной обмотки составляет. (а) Какое напряжение индуцируется во вторичной обмотке? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка ответственны?
а. 335 МВ; б. результат получается слишком высоким, намного превышающим напряжение пробоя воздуха на разумных расстояниях; c. входное напряжение слишком высокое
Резистор и катушка индуктивности 30 мГн подключены последовательно, как показано ниже, к источнику переменного тока напряжением 120 В (среднеквадратичное значение), колеблющемуся с частотой 60 Гц.(а) Найдите ток в цепи. (б) Найдите падение напряжения на резисторе и катушке индуктивности. (c) Найдите полное сопротивление цепи. (d) Найдите мощность, рассеиваемую на резисторе. (e) Найдите мощность, рассеиваемую в катушке индуктивности. (f) Найдите мощность, производимую источником.
Найдите реактивные сопротивления следующих конденсаторов и катушек индуктивности в цепях переменного тока с заданными частотами в каждом случае: (а) индуктивность 2 мГн с частотой цепи переменного тока 60 Гц; (б) индуктор 2 мГн с частотой 600 Гц цепи переменного тока; (c) индуктор 20 мГн с частотой цепи переменного тока 6 Гц; d) индуктор на 20 мГн с частотой переменного тока 60 Гц; д) конденсатор емкостью 2 мФ с частотой цепи переменного тока 60 Гц; и (е) конденсатор емкостью 2 мФ с частотой 600 Гц цепи переменного тока.
Выходной импеданс аудиоусилителя имеет импеданс, равный и не соответствует низкоомному громкоговорителю. Вас попросят вставить соответствующий трансформатор, соответствующий импедансу. Какое передаточное число вы будете использовать и почему? Используйте упрощенную схему, показанную ниже.
Покажите, что единицей СИ для емкостного реактивного сопротивления является ом. Покажите, что единицей СИ для индуктивного сопротивления также является ом.
Единицы измерения индуктивного реактивного сопротивления (рисунок) указаны ниже.Радианы можно игнорировать при модульном анализе. Генри можно определить как. Их объединение дает единицу реактивного сопротивления.
Катушка с самоиндукцией 16 мГн и сопротивлением подключена к источнику переменного тока, частоту которого можно изменять. На какой частоте напряжение на катушке будет вести ток через катушку на
?Последовательная цепь RLC состоит из резистора, конденсатора и катушки индуктивности 120 мГн, сопротивление катушки которойИсточник для схемы имеет среднеквадратичное значение ЭДС 240 В на частоте 60 Гц. Рассчитайте среднеквадратичные значения напряжения на резисторе (а), конденсаторе (б) и катушке индуктивности (в).
а. 156 В; б. 42 В; c. 154 В
Последовательная цепь RLC состоит из резистора, конденсатора и катушки индуктивности 50 мГн. Источник переменной частоты 110 В (среднеквадратичное значение) подключен к комбинации. Какова выходная мощность источника, если его частота установлена на половину резонансной частоты контура?
Глоссарий
- трансформатор понижающий
- трансформатор, понижающий напряжение и увеличивающий ток
- повышающий трансформатор
- трансформатор, повышающий напряжение и понижающий ток
- трансформатор
- устройство, которое преобразует напряжения из одного значения в другое с помощью индукции
- уравнение трансформатора Уравнение
- , показывающее, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их обмотках
, понижающий трансформатор с 230 В на 12 В, материалы
Привет, ребята, добро пожаловать в мой блог.В этой статье я расскажу о конструкции трансформатора, о том, как спроектировать трансформатор на 12 вольт, материалах, необходимых для разработки трансформатора, и т. Д.
Если вам нужна статья по другим темам, оставьте комментарий ниже в поле для комментариев. Вы также можете поймать меня в Instagram — Четан Шидлинг.
Также читайте:
- Однофазный блок резистивной нагрузки
- Смарт-цветок Рабочий
Конструкция трансформатора
Конструкция трансформатора
Трансформатор состоит из двух индуктивных обмоток и сердечника из многослойного листа.Обмотки будут изолированы друг от друга, а также от стального сердечника. Сердечник изготовлен из кремниевой стали, которая собрана так, чтобы обеспечить непрерывный магнитный путь для магнитного потока. Благодаря этому слоистому сердечнику потери на вихревые токи сведены к минимуму. Толщина ламинированных листов составляет от 0,35 мм до 5 мм, которые изолированы лаком, оксидом или фосфатом, которые образуют сердцевину.
Трансформатор содержит две обмотки, называемые первичной и вторичной обмотками, которые изготовлены из высококачественной меди.Напряжение, подключенное к первичной обмотке, называется первичным напряжением, а напряжение вторичной обмотки — вторичным напряжением. Если вторичное напряжение больше, чем первичное, то это называется повышающим трансформатором, а если меньше, то это называется понижающим трансформатором.
Из-за этого обмотки считаются обмотками ВН и обмотками НН в зависимости от уровня напряжения. Обмотка ВН требует большей изоляции, чтобы выдерживать высокие напряжения. Катушки могут быть концентрическими и многослойными.Концентрические катушки будут использоваться в сердечнике, а многослойные катушки будут использоваться в трансформаторах с корпусом.
Другими частями трансформаторов являются расширительный бак, который будет использоваться для хранения масла, чтобы давление масла при больших нагрузках стабилизировалось. Будут предусмотрены вводы для изоляции выходных клемм, которые снимаются с обмоток трансформатора. В трансформаторе на 12 вольт этих деталей не будет. КПД трансформатора будет очень высоким — от 95% до 98%.
Как сконструировать понижающий трансформатор дома?
Давайте посмотрим, как сделать трансформатор дома без использования каких-либо машин. Здесь я собираюсь обсудить, как построить понижающий трансформатор 12 В, 2 А.
Что вам нужно для этого трансформатора:
- Катушка (медный провод SWG-37, медный провод SWG-25).
- Малярная лента.
- Влагостойкая бумага / вощеная бумага.
- Мультиметр.
- Питание 220AC.
Как рассчитать вторичные витки с учетом предполагаемых витков первичной обмотки?
- Учтите, сделаю 2000 оборотов в сторону первичной обмотки для питания 220 В переменного тока,
- Тогда количество витков первичной обмотки на каждый вольт = 2000/220 = 9,09 витка / В
- Тогда вторичные витки должны быть = 12 × 9,09 = 109,09 витков.
Как намотать первичную обмотку:
Для первичной обмотки используйте медный провод SWG 37, и вы должны покупать первичные медные провода в зависимости от веса.Чтобы создать первичный сердечник, вам нужно намотать провод SWG-37 вокруг сердечника. Но возникает вопрос, сколько поворотов нам нужно сделать? Это зависит от значения напряжения трансформатора. Здесь я показываю конструкцию трансформатора 12 В, 2 А, поэтому я возьму 2000 первичных витков и намотаю катушку. Но вы должны держать два конца медной проволоки без проводов. Затем вам нужно припаять внешние патч-корды к этим обоим концам с помощью паяльного пистолета для подключения к источнику питания.
Затем необходимо обмотать малярной лентой, чтобы плотно разместить первичную обмотку.После этого возьмите термостойкую и влагостойкую бумагу, вместо этой бумаги можно также использовать вощеную бумагу. Затем оберните эту влажную бумагу на первичной обмотке, чтобы сохранить изоляцию между первичной и вторичной обмотками.
Еще раз обмотал малярным скотчем, чтобы было плотно. Если оставить зазор, вторичная и первичная обмотки могут соприкоснуться друг с другом. Так что завернуть надо как следует.
Как намотать вторичную обмотку
Для вторичной обмотки взять медный провод SWG-25.Здесь мы обсуждаем понижающий трансформатор, что означает, что вторичный виток должен быть меньше, чем первичный виток. Итак, для 12-вольтного трансформатора мы должны сделать 109 витков на вторичной стороне и намотать его на ту же катушку, оставив два конца свободными для выхода. Затем к обоим концам необходимо припаять внешний патч-корд. Снова оборачиваем вощеной бумагой, которую снова обматываем малярным скотчем.
Теперь мы успешно повредили вторичную и первичную обмотки.
Примечание: вы можете наматывать провода в любом направлении, как по часовой стрелке, так и против часовой стрелки.
Как проверить значение сопротивления каждой обмотки?
Сопротивление обеих обмоток можно проверить с помощью мультиметра. В нашем случае сопротивление первичной обмотки должно быть 35 Ом. Сопротивление вторичной обмотки должно составлять от 2 до 3 Ом.
Наконец, сконструированная катушка должна быть закреплена кортами, которые будут составлены из железных листов в форме E и I. Вы должны правильно вставить эти сердечники в катушку. Затем поместите на эту сердцевину внешний каркас.
Теперь вы можете проверить напряжение вашего трансформатора с помощью мультиметра.
Подключите два свободных конца первичной обмотки к источнику переменного тока 220 В и подсоедините еще два свободных конца вторичной обмотки к мультиметру. Оставьте мультиметр в режиме питания переменного тока, затем подключите коммутационные шнуры мультиметра к свободным концам вторичной обмотки, чтобы измерить напряжение трансформатора. Теперь вы получите напряжение трансформатора 12 В.
Я надеюсь, что эта статья может вам всем очень помочь.Спасибо за чтение. Если у вас есть сомнения по поводу конструкции трансформатора, оставьте комментарий ниже.
Также читайте:
- 10 шагов для подготовки к трудоустройству и получения высокой заработной платы в год
- 10 советов по обслуживанию батареи для длительного срока службы
- 10 советов, как сэкономить на счетах за электроэнергию, сэкономить деньги за счет экономии электроэнергии
- 100+ Electrical MCQ для интервью
- 200+ проектов электромобилей для инженеров, МТех, кандидат технических наук, диплом
- 50 советов по экономии электроэнергии дома, в магазине, в промышленности, офисе
- 50+ Вопросы и ответы по подстанции, вопрос по электрике
- 500+ Идеи проектов Matlab Simulink для инженеров, MTech, диплом
- Активная балансировка ячеек с использованием имитации обратного преобразователя в Matlab Simulink
- Основы электротехники, термины, определения, единицы СИ, формула
- Базовый тест по электричеству, пройдите онлайн-тест по основам электричества, тест по электричеству
- Лучшее инженерное направление для будущего
- Лучший инвертор и аккумулятор для покупки в 2021 году
- Лучшие языки программирования для инженеров-электриков
- Двигатель BLDC, преимущества, недостатки, применение, работа
- Блок-схема системы управления батареями (BMS)
- Карьерные возможности для инженеров-электриков
- Потолочный вентилятор работает, цена, почему используется конденсатор
- Расчет номинальной мощности автоматического выключателя
- Сравнение внутренней и внешней подстанции, достоинства и недостатки
Я энтузиаст обучения, блоггер, ютубер, специалист по цифровому маркетингу, фрилансер и создатель контента.Мне всегда нравится делиться своими знаниями через блоги, Instagram и YouTube.
15.7: Трансформаторы — Физика LibreTexts
Цели обучения
К концу раздела вы сможете:
- Объясните, почему электростанции передают электроэнергию при высоком напряжении и малом токе и как они это делают
- Установление взаимосвязей между током, напряжением и количеством обмоток в повышающих и понижающих трансформаторах
Хотя электроэнергия переменного тока вырабатывается при относительно низком напряжении, она передается по линиям передачи с очень высоким напряжением (до 500 кВ).2R \) омические потери в линиях передачи, которые могут быть значительными в линиях протяженностью много километров (рисунок \ (\ PageIndex {1} \)).
Рисунок \ (\ PageIndex {1} \): Действующее значение напряжения электростанции в конечном итоге необходимо понизить с 12 кВ до 240 В, чтобы его можно было безопасно ввести в дом. Линия передачи высокого напряжения позволяет передавать слабый ток через подстанцию на большие расстояния.Обычно переменные ЭДС, производимые на электростанциях, «повышаются» до очень высоких напряжений перед передачей по линиям электропередачи; затем они должны быть «понижены» до относительно безопасных значений (110 или 220 В, действующее значение), прежде чем они будут введены в дома.Устройство, которое преобразует напряжения из одного значения в другое с помощью индукции, — это трансформатор (рисунок \ (\ PageIndex {2} \)).
Рисунок \ (\ PageIndex {2} \): Трансформаторы используются для понижения высокого напряжения в линиях электропередачи до 110–220 В, используемых в домах. (кредит: модификация работы Fortyseven / Flickr)Как показано на рисунке \ (\ PageIndex {3} \), трансформатор в основном состоит из двух отдельных катушек или обмоток, намотанных вокруг сердечника из мягкого железа. Первичная обмотка имеет \ (N_p \) петли или витки и подключена к переменному напряжению \ (v_p (t) \).Вторичная обмотка имеет \ (N_s \) витков и подключена к нагрузочному резистору \ (R_s \). Мы предполагаем идеальный случай, когда все силовые линии магнитного поля ограничены сердечником, так что один и тот же магнитный поток пронизывает каждый виток как первичной, так и вторичной обмоток. Мы также пренебрегаем потерями энергии на магнитный гистерезис, на омический нагрев в обмотках и на омический нагрев индуцированных вихревых токов в сердечнике. У хорошего трансформатора потери могут составлять всего 1% от передаваемой мощности, так что это неплохое предположение.
Рисунок \ (\ PageIndex {3} \): повышающий трансформатор (во вторичной обмотке больше витков, чем в первичной). Две обмотки намотаны на сердечник из мягкого железа.Для анализа схемы трансформатора сначала рассмотрим первичную обмотку. Входное напряжение \ (v_p (t) \) равно разности потенциалов, индуцированной на первичной обмотке. Согласно закону Фарадея индуцированная разность потенциалов равна \ (- N_p (d \ Phi / dt) \), где \ (\ Phi \) — поток через один виток первичной обмотки.Таким образом,
\ [v_p (t) = -N_p \ dfrac {d \ Phi} {dt}. \ nonumber \]
Аналогично, выходное напряжение \ (v_s (t) \), подаваемое на нагрузочный резистор, должно равняться разности потенциалов, индуцированной во вторичной обмотке. Поскольку трансформатор идеален, поток через каждый виток вторичной обмотки также равен \ (\ Phi \) и
\ [v_s (t) = -N_s \ dfrac {d \ Phi} {dt}. \ nonumber \]
Объединяя последние два уравнения, получаем
\ [v_s (t) = \ dfrac {N_s} {N_p} v_p (t).\ label {15.20} \]
Следовательно, с соответствующими значениями для \ (N_s \) и \ (N_p \) входное напряжение \ (v_p (t) \) может быть «повышено» \ ((N_s> N_p) \) или «понижено» \ ((N_s
\ [\ dfrac {V_s} {V_p} = \ dfrac {N_s} {N_p}, \ label {transformerEQ} \]
, который показывает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их обмотках.Для повышающего трансформатора , который увеличивает напряжение и уменьшает ток, это отношение больше единицы; для понижающего трансформатора , который снижает напряжение и увеличивает ток, это отношение меньше единицы.
Согласно закону сохранения энергии, мощность, вводимая \ (v_p (t) \) в первичную обмотку в любой момент, должна быть равна мощности, рассеиваемой в резисторе вторичной цепи; таким образом,
\ [i_p (t) v_p (t) = i_s (t) v_s (t). \ nonumber \]
В сочетании с уравнением \ ref {transformerEQ} это дает
\ [i_s (t) = \ dfrac {N_p} {N_s} i_p (t).2 р_с. \ nonumber \]
Наш анализ основан на мгновенных значениях напряжения и тока. Однако полученные уравнения не ограничиваются мгновенными значениями; они справедливы также для максимальных и среднеквадратичных значений.
Пример \ (\ PageIndex {1} \): понижающий трансформатор
Трансформатор на опоре электросети снижает среднеквадратичное значение напряжения с 12 кВ до 240 В.
- Каково отношение числа витков вторичной обмотки к числу витков первичной обмотки?
- Если входной ток трансформатора равен 2.0 А какой выходной ток?
- Определите потери мощности в линии передачи, если полное сопротивление линии передачи равно \ (200 \, \ Omega \).
- Каковы были бы потери мощности, если бы линия передачи имела напряжение 240 В по всей длине линии, а не обеспечивала напряжение 12 кВ? Что это говорит о линиях электропередачи?
Стратегия
Число витков, относящихся к напряжениям, определяется из уравнения \ ref {15.3 V} = \ dfrac {1} {50}, \], поэтому количество витков первичной обмотки в 50 раз превышает количество витков вторичной обмотки.
г. Из уравнения \ ref {15.22} выходной среднеквадратичный ток \ (I_s \) находится с использованием уравнения трансформатора с током
\ [I_S = \ dfrac {N_p} {N_S} I_p \ label {15.23} \]
такое, что
\ [I_s = \ dfrac {N_p} {N_s} I_p = (50) (2. 2R = (2.6 \, W. \ nonumber \]
Следовательно, когда необходимо передать мощность, мы хотим избежать потери мощности. Таким образом, линии передаются с высоким напряжением и малым током и регулируются с помощью трансформатора до того, как энергия будет подаваться в дома.
Значение
Это применение понижающего трансформатора позволяет дому, в котором используются розетки на 240 В, иметь ток 100 А. Это может питать многие устройства в доме.
Упражнение \ (\ PageIndex {1} \)
ТрансформаторА понижает линейное напряжение с 110 до 9.0 В, чтобы на дверной звонок можно было подавать ток 0,50 А.
- Каково соотношение количества витков первичной и вторичной обмоток?
- Какой ток в первичной обмотке?
- Какое сопротивление видит источник 110 В?
- Ответьте на
12: 1
- Ответ б
0,042 А
- Ответ c
\ (2.3 \, \ Omega \)
Авторы и авторство
Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).
Базовые силовые трансформаторы
, Льюис Лофлин
В этом разделе мы рассмотрим широкий круг тем, связанных с трансформаторами.Это будет ограничиваться в основном силовыми трансформаторами, их работой и способами их использования / тестирования. Я предполагаю, что у читателя есть базовые знания о постоянном токе и законе Ома, а также основы магнетизма. Если необходимо рассмотреть эти темы, см. Следующее:
На схеме выше базовый трансформатор состоит как минимум из двух катушек с проволокой, намотанной на железный сердечник. Пульсирующее магнитное поле, создаваемое в первичной обмотке переменным током, индуцирует напряжение во вторичной обмотке, когда расширяющееся и сжимающееся магнитное поле первичной обмотки пересекает вторичную обмотку.Выходное напряжение вторичной обмотки пропорционально входному напряжению и отношению первичных обмоток (количества витков) к вторичным обмоткам.
Рисунок 1 Основные типы трансформаторов.
На рисунке 1 выше показан основной электрический символ трансформатора. Базовый трансформатор состоит как минимум из двух катушек с проволокой, намотанной на железный сердечник. Хотя есть много вариантов, перечисленных выше:
T1: разделительный трансформатор «один к одному». Напряжение на входе такое же, как на выходе.Они используются для изоляции «горячей» стороны линии электропередачи от пользователя на вторичной стороне. Фактически, за исключением автотрансформаторов, это свойство всех трансформаторов — электрическая изоляция между первичной и вторичной обмотками.
T2: базовый понижающий трансформатор. Количество обмоток в первичной обмотке больше, чем количество обмоток во вторичной обмотке, что дает более низкое выходное напряжение, чем входное. Понижающее напряжение основывается на соотношении первичных обмоток и вторичных обмоток.
T3: базовый повышающий трансформатор. Количество обмоток в первичной обмотке меньше, чем во вторичной. Повышающее напряжение основано на соотношении первичных обмоток и вторичных обмоток.
T4: трансформатор с центральным отводом вторичной обмотки. Напряжение, измеренное от центрального отвода к любому концу, должно быть одинаковым.
T5: трансформатор с отводом по центру первичной и вторичной обмоток.
T6: понижающий трансформатор с центральным отводом вторичной обмотки.Так устроен обычный «полюсный трансформатор», питающий дом.
T7: трансформатор с несколькими вторичными обмотками. Отдельные обмотки могут иметь любую комбинацию повышающей или понижающей.
Рисунок 2
Напряжение и ток в силовых трансформаторах
На рисунке показан теоретический трансформатор с входным напряжением 120 В переменного тока и выходом 20 В переменного тока на один ампер (I). Допустим, резистор R1 составляет 20 Ом. Какой ток будет протекать через предохранитель F1? В данном случае соотношение обмоток 120: 20 = 6: 1.
Для решения подобных проблем я использую формулу «мощность равна выходной мощности». (Я расскажу о потерях в ближайшее время.) Во вторичном резисторе R1 составляет 20 Ом (R) и 20 В (E), поэтому E / R = I; 20/20 = 1 ампер. Мощность = E * I = 20 * 1 = 20 Вт. Итак, в этой задаче вторичный потребляет 20 Вт, поэтому первичный должен обеспечивать 20 Вт. В приведенном выше примере 1 ампер протекает через амперметр 2.
В первичной обмотке мы знаем, что входное напряжение (E) составляет 120 вольт, а подаваемая мощность (P) — 20 ватт.Чтобы найти ток (I), мы используем формулу P / E = 20/120 = 0,167 ампер или 167 мА. Это также ток через амперметр 1 и предохранитель, поэтому для безопасности мы должны использовать предохранитель не более стандартного предохранителя на 1/4 ампера.
Это, кажется, сбивает с толку многих студентов, потому что такой небольшой ток при гораздо более высоком напряжении может быть таким же уровнем мощности, как и большой ток при низком напряжении. Мы говорим о мощности как о произведении тока и напряжения, а не только о напряжении или токе.
Трансформатор с многослойным сердечником, на котором виден край слоев
вверху изображения.
Неужели первичный выдает только 20 Вт для передачи 20 Вт на нагрузку? Нет, скорее всего 23 Вт. В самом трансформаторе есть потери, по крайней мере, несколько ватт в этой простой схеме. Существует три основных типа потерь мощности в трансформаторах:
Гистерезис: сопротивление изменению магнитных полей в магнитном материале. Другими словами, железный сердечник трансформатора противостоит изменению магнитных полей, вызванному переменным током. Молекулы железа сопротивляются изгибу, вызванному магнитным полем, выделяющим отходящее тепло.
Вихревые токи: небольшой ток, индуцированный в железном сердечнике трансформатора. Сердечник трансформатора часто состоит не из прочного железа / стали, а из ламинированных листов, соединенных вместе. Я не буду вдаваться в подробности о нескольких других типах магнитных потерь.
Потери в меди: нагрев, вызванный сопротивлением медной проволоки в обмотках. Термин применяется независимо от того, сделаны ли обмотки из меди или другого проводника, например алюминия. Поэтому часто предпочитают термин «потери в обмотке».
Потери меди возникают в результате джоулева нагрева, поэтому их также называют «квадратичными потерями R» в соответствии с Первым законом Джоуля. Это означает, что энергия, теряемая каждую секунду, или мощность, увеличивается пропорционально квадрату тока через обмотки и пропорционально электрическому сопротивлению проводников.
Потери в меди = I * I * R, где I — ток, протекающий в проводнике, а R — сопротивление проводника. Если I в амперах, а R в омах, расчетная потеря мощности выражается в ваттах.
Чем больше ток в проводе, тем выше потери из-за тепла. Кроме того, сопротивление медной проволоки (и большинства металлов) увеличивается с температурой. Используя рисунок 2 в качестве примера с одним ампером, мы действительно имеем потери в проводе, но тот же провод при двух амперах будет производить в четыре раза больше потерь (в виде тепла), чем на один ампер!
Сопротивление меди напрямую зависит от диаметра (калибра) провода и его длины. Например, провод AWG 28 имеет сопротивление 64.9 Ом на 1000 футов провода и диаметром 0,013 дюйма. AWG 12 калибра имеет сопротивление 1,588 Ом на 1000 футов и диаметр провода 0,081 дюйма. Он используется в домашней проводке и может выдерживать 41 ампер, в то время как AWG 28 может выдерживать только 1,4 ампера.
Примечание: чем выше номер AWG, тем тоньше провод. Другими словами, AWG 28 может проводить ток, достаточный для безопасной работы лампочки мощностью 150 Вт, в то время как AWG 12 может проводить ток для безопасной эксплуатации большой микроволновой печи или электрического обогревателя на 3600 Вт.
Глядя на наш трансформатор выше на рисунке 2, мы имеем первичный ток 0,167 ампер и вторичный ток 1 ампер. Очевидно, что мы можем использовать провод меньшего диаметра в первичной обмотке, чем во вторичной. При проектировании трансформатора калибры проводов, используемых в первичной и вторичной обмотках, часто бывают как можно более тонкими, чтобы снизить стоимость при пропускании указанного тока. Но более тонкий провод имеет большее сопротивление, чем более толстый. Это необходимо учитывать при выборе трансформатора.
Давайте поспорим, наш трансформатор на рисунке 2 измеряет 50 Ом в первичной обмотке и 2 Ом во вторичной. Сколько мощности будет потеряно из-за потерь в меди?
Для первичного: I * I * R = 0,167 * 0,167 * 50 = 1,39 Вт.
Для вторичной обмотки: I * I * R = 1 * 1 * 2 = 2 Вт.
Общие потери в ваттах из-за потерь в меди = 3,39 Вт плюс около 2 Вт различных магнитных потерь. С трансформатором на 20 Вт это значительные потери — почти 22%. Использование проволоки большего сечения (с более высокой стоимостью) для уменьшения этого нагрева жизненно важно.В действительности хороший трансформатор часто имеет КПД более 95%.
Таким образом, калибр провода напрямую связан с допустимой нагрузкой по току. Напряжение зависит от качества электрической изоляции. Мощность — это произведение напряжения и тока. Если мы передаем мощность с более высоким напряжением, но с меньшим током, мы можем доставить мощность с меньшими затратами, используя провод меньшего сечения. Давайте рассмотрим это подробнее.
В заключение, эти показания могут быть неточными как таковые. Трансформаторы — это индуктивные устройства, в которых индуктивное реактивное сопротивление искажает показания переменного тока.
Трансформаторы для электропитания дома
Без использования трансформаторов современная электроэнергия была бы невозможна или намного дороже. Здесь я рассмотрю современный дом и то, как используются трансформаторы. (Приведенные ниже примеры могут не соответствовать местным кодам и являются только примерами.)
Опять же, мощность — это произведение напряжения и тока. (E * I) Современное домашнее электроснабжение составляет 200 ампер при 240 вольт. (Взгляните на домашнюю коробку выключателя.) При использовании воздушной линии для проводки от погодозависимой головки, где энергокомпания подключается к дому, до самой коробки выключателя часто используется провод AWG 00.
Если медь, то она может выдерживать 283 ампер свободного воздуха, этого достаточно для работы на 200 ампер. Но это очень дорогой провод диаметром 0,365 дюйма и весом 403 фунта на 1000 футов. Миля этого провода будет весить более одной тонны, и это всего лишь для одной сети на 200 ампер в одном доме. Алюминиевый провод дешевле, но он должен быть большего диаметра, чтобы пропускать ток, равный медному. Стоимость здесь с обоими будет непомерно высокой.
Решение — использование трансформаторов. Когда генерируется энергия, напряжение повышается до напряжения передачи до 400 000 вольт на большие расстояния.Можно использовать провод гораздо меньшего диаметра (а значит, и более дешевый и легкий) для подачи питания на местную подстанцию. Здесь высокое напряжение понижается до напряжения распределения 7200 вольт для домов и предприятий.
На рисунке выше показан типичный однофазный полюсный трансформатор. В верхней части полюса находится напряжение распределения 7200 вольт, а используемое выходное напряжение — 240 вольт. Дом на 200 ампер может потреблять 48 000 ВА (E * I) или 48 кВА. Трансформатор на 150 кВА может обслуживать три дома или легко подавать 600 ампер на три дома.Это будут очень короткие отрезки провода по трем разным токопроводящим путям.
Даже 1000 футов AWG 00 имеют 0,0799 Ом, таким образом, скажем, 100 футов при 200 А приведут к небольшим потерям мощности. Скорее всего, для такого короткого пробега они будут использовать, скажем, AWG 10 при 1,2 Ом на 1000 футов. 1000 футов AWG 10 весит около 30 фунтов.
Обратите внимание на то, что на рисунке выше провод высокого напряжения в верхней части полюса тоньше, чем вторичная сторона, идущая к трем домам. Провода какого калибра я могу использовать для передачи 7200 вольт для питания полюсного трансформатора? Для подачи 150 кВА при 7200 вольт верхние проводники должны выдерживать около 21 ампер.Это может быть выполнено с помощью AWG 14 диаметром 0,064 дюйма с сопротивлением 2,5 Ом на 1000 футов. Общий вес 1000 футов проволоки составляет менее 13 фунтов. (Я предполагаю за вычетом веса изоляции.) Таким образом, из 150 000 ватт мы потеряем около 52 ватт из-за потерь в меди на 1000 футов провода.
Наконец, трансформатор имеет коэффициент трансформации 7200: 240 = 30: 1.
Соленоиды и трансформаторы
3. Катушки и трансформаторы
3.1 Катушки
Катушкине очень общий компонент в электронных схемах, однако, когда они используются, они нужно понимать. Они встречаются в генераторах, радиоприемниках, передатчиках и подобных устройствах, содержащих колебательные контуры. В любительские устройства, катушки могут быть изготовлены путем намотки одного или нескольких слоев изолированный медный провод на каркас, такой как ПВХ, картон, и т.д. Заводские катушки бывают разных форм. и размеров, но общим для всех является утепленный корпус с витками медной проволоки.
Основная характеристика каждой катушки — это ее индуктивность. Индуктивность измеряется в Генри (H), но чаще всего используются миллигенри (мГн) и микрогенри (H) как единое целое. Генри имеет довольно высокое значение индуктивности. Напоминаем:
1H = 1000 мГн = 10 6 H.
Катушка индуктивность обозначена как X L и может быть рассчитана с помощью по следующей формуле:
где f представляет частоту напряжения в Гц, а L представляет индуктивность катушки в Гн.
Например, если f равно 684 кГц, а L = 0,6 мГн, импеданс катушки будет:
Та же катушка иметь в три раза больший импеданс и в три раза больше частота. Как видно из приведенной выше формулы, импеданс катушки прямо пропорционален частоте, так что катушки, как как и конденсаторы, используются в схемах для фильтрации на заданных частотах. Обратите внимание, что импеданс катушки равен нулю для постоянного тока ( f = 0).
Несколько катушек показаны на рисунках 3.1, 3.2, 3.3 и 3.4.
Самая простая катушка однослойная катушка с воздушным сердечником. Это сделано на цилиндрической изолятор (ПВХ, картон и др.), как показано на рисунке 3.1. На рисунке 3.1a, повороты между ними остается пробел, в то время как общие Практика заключается в том, чтобы наматывать провод без промежутков между витками. Во избежание раскручивания бухты концы следует продеть через небольшие отверстия, как показано на рисунке. показано на рисунке.
Рис. 3.1: Однослойный змеевик
На рис. 3.1b показано, как катушка сделана. Если катушке нужно 120 витков при постукивании на тридцатом витке две катушки L1 с 30 витками и L2 с 90 витками. Когда конец первого и начало второй катушки припаиваем, получаем «отвод».
Многослойная катушка показана на рисунке 3.2a. В внутри пластмассового каркаса есть резьба, так что можно вставить ферромагнитный сердечник в форме винта.Ввинчивание сердечника перемещает его по оси в центр катушки для увеличения индуктивности. Таким образом, хорошо можно изменить индуктивность.
Рис. 3.2: а. Многослойная катушка с сердечником, б. В сочетании катушки
На рис. 3.2b показан высокочастотный трансформатор. Как видно, это две катушки, соединенные магнитной индукцией на общем теле. Когда требуется, чтобы катушки имели точные значения индуктивности, каждая катушка имеет ферромагнитный сердечник, который можно регулировать вдоль катушки ось.
На очень высоком частот (выше 50 МГц) индуктивность катушки мала, поэтому катушкам требуется только несколько поворотов. Эти катушки сделаны из толстый медный провод (около 0,5 мм) без корпуса катушки, как показано на рисунке 3.3a. Их индуктивность можно регулировать путем физического растяжения или сжимая витки вместе.
Рис. 3.3: а. Катушка высокой частоты , б. Трансформатор межчастотный
Рисунок 3.3b показан металлический кожух, содержащий две катушки, схематически на право. Параллельное соединение первой катушки и конденсатора С образует колебательный контур. Вторая катушка используется для передачи сигнал к следующему этапу. Используется в радиоприемниках и подобные устройства. Металлический кожух служит экраном для предотвращения внешние сигналы, воздействующие на катушки. Чтобы оболочка была эффективной, он должен быть заземлен.
На рис. 3.4 показан индуктор с сердечником. Ядро состоит из двух половинки и склеены.Сердечник изготовлен из ферромагнитного материала, обычно называют «ферритом». Эти индукторы используются на частотах до 100 кГц. Регулировка индуктивности может производиться латунью или стальной винт в центре катушки.
Рис. 3.4: Катушка индуктивности с сердечником
3,2 Трансформаторы
Для электроники Для работы устройств необходимо наличие источника постоянного тока.Батареи и аккумуляторы могут выполнять эту роль, но гораздо более эффективны. способ — использовать ИСТОЧНИК ПИТАНИЯ. Основным компонентом источника питания является трансформатор для преобразования «сети» 220 В на более низкое значение, скажем 12 В. Обычный тип трансформатора имеет одну первичную обмотку, которая подключается к 220В и одна (или несколько) вторичных обмоток для более низких напряжений. Чаще всего сердечники изготавливают из E и I, но некоторые из них сделаны из ферромагнитного материала.Также используются трансформаторы с железным сердечником. для более высоких частот. На картинке показаны различные типы трансформаторов. ниже.
Рис. 3.5: Различные типы трансформаторов
Символы для трансформатор показан на рисунке 3.6. Две вертикальные линии показывают, что первичная и вторичная обмотки использовать одно и то же ядро.
Рис. 3.6: Символы трансформатора
С трансформатор, производители обычно предоставляют схему, содержащую информацию о первичной и вторичной обмотках, напряжениях и максимальных токах.В случай, когда диаграмма отсутствует, существует простой метод определения того, какой обмотка является первичной, а вторичная обмотка: первичная обмотка состоит из провода тоньше и витков больше, чем у вторичной обмотки. Она имеет более высокое сопротивление — и может быть легко проверено омметром. На рисунке 3.6d показан символ для трансформатор с двумя независимыми вторичные обмотки, одна из них имеет три вывода, что в сумме дает 4 разные выходные напряжения. Вторичный 5в выполнен из более тонкой проволоки с максимальным током 0.3А, а другая обмотка выполнена из более толстого провода с максимальным током 1,5 А. Максимальное напряжение на большей вторичной обмотке составляет 48 В, как показано на фигура. Обратите внимание, что напряжения, отличные от указанных на диаграмма может быть произведена — например, напряжение между ответвлениями обозначено 27V 36 В равно 9 В, напряжение между выводами, обозначенными 27 В и 42 В, равно 15 В, пр.
3.2.1 Принцип работы и основные характеристики
Как уже говорилось, Трансформаторы состоят из двух обмоток, первичной и вторичной (рисунок 3.7). При напряжении Up подключен к первичной обмотке (в нашем случае «сеть» 220В), через нее протекает переменный ток Ip . Этот ток создает магнитное поле, которое переходит к вторичная обмотка через сердечник трансформатора, индуцирующая напряжение Us (24 В в нашем примере). «Нагрузка» подключена ко вторичной обмотке, показанной на схеме как Rp (30 Ом в нашем примере). Типичной нагрузкой может быть электрическая лампочка, работающая на 24 В с расход 19.2Вт.
Рис. 3.7: Трансформатор: a. Принципы работы, б. Символ
Передача электрической энергии от первичный к вторичному осуществляется через магнитное поле (называемое «потоком») и магнитная цепь, называемая «сердечником трансформатора». К для предотвращения потерь необходимо убедиться, что весь магнитный поле, созданное первичным, переходит к вторичному. Это достигается за счет использования железного сердечника, который имеет гораздо более низкое магнитное сопротивление чем воздух.
Первичное напряжение — это «сетевое» напряжение. Это значение может быть 220 В или 110 В, в зависимости от страны. Вторичное напряжение обычно намного ниже, например 6 В, 9 В, 15 В, 24 В и т. Д., Но также может быть выше 220 В, в зависимости от назначения трансформатора. Соотношение первичного и вторичного напряжения указано с помощью следующая формула:
, где Ns и Np представляют количество витков на первичной и вторичной обмотке соответственно.Например, если Ns равно 80 и Np равно 743, вторичное напряжение будет быть:
Соотношение между первичным и вторичным током определяется по формуле:
Например, если Rp равно 30 Ом, то вторичный ток равен Ip = Up / Rp = 24 В / 30 Ом = 0,8 А. Если Ns равно 80 и Np равно 743, первичный ток будет:
Мощность трансформатораможно рассчитать по следующим формулам:
В нашем примере мощность равно:
Все до этого момента относится к идеальный трансформатор.Ясно, что идеального не бывает, поскольку потери неизбежный. Они присутствуют из-за того, что обмотки имеют определенное значение сопротивления, которое нагревает трансформатор во время работы, и тот факт, что магнитное поле, создаваемое первичной обмоткой, не целиком переходят на вторичку. Вот почему выходная мощность меньше чем входная мощность. Их соотношение называется КПД:
.Для поставки трансформаторов сотни ватт, КПД около = 0.85, что означает, что 85% электрическая энергия, взятая из сети, поступает к потребителю, в то время как 15% теряется из-за ранее упомянутых факторов в виде тепла. Для Например, если потребляемая мощность равна Up * Ip = 30 Вт, тогда мощность, которую трансформатор получает от сети равно:
Чтобы избежать путаница, имейте в виду, что производители уже приняли все меры по минимизации потерь трансформаторов и других электронных компонентов и что практически это максимально возможный КПД.Приобретая трансформатор, следует только беспокоюсь о требуемое напряжение и максимальный ток вторичной обмотки. Разделение мощность и вторичное напряжение дает вам максимальное значение тока для потребителя. Разделив мощность и первичное напряжение, вы получите ток что трансформатор питается от сети, что важно знать, когда покупка предохранителя. В любом случае, вы сможете рассчитать любое значение, которое вы может потребоваться использование соответствующих формул, указанных выше.
3.3 Практические примеры с катушками и трансформаторы
На рисунке
Катушки 2.6b вместе с конденсатором образуют два фильтра для проведения
токи к динамикам.
Катушка и конденсатор C на рисунке 2.6c образуют
параллельный колебательный контур для «усиления» конкретного радиосигнала,
отвергая все остальные частоты.
Рис. 2.6: а. Усилитель с наушниками, б.Переключатель диапазона, c. Детекторный радиоприемник
Самое очевидное заявка на трансформатор находится в блоке питания. Типичный трансформатор показан на рисунке 3.8 и используется для преобразования 220В. до 24В.
Рис. 3.8: Стабилизированный преобразователь со схемой LM317
Выходное напряжение постоянного тока может регулируется линейным потенциометром P в диапазоне 3 ~ 30 В.
Фиг.3.9: а. Стабилизированный преобразователь с регулятором 7806, б. автотрансформатор, c. трансформатор для устройств рабочая на 110В, д. разделительный трансформатор
Рисунок 3.9a показывает простой источник питания, использующий трансформатор с центральным отводом на вторичной обмотке. обмотка. Это дает возможность использовать два диода. вместо моста в рисунок 3.8.
Специальный типы трансформаторы, в основном используемые в лаборатории, автотрансформаторы.Схема автотрансформатора показано на рисунке 3.9b. Имеет только одну обмотку, намотанную на утюг. основной. Напряжение снимается с трансформатора через ползунок. Когда ползунок находится в крайнем нижнем положении, напряжение равно нулю. Перемещение ползунка вверх увеличивает напряжение U до 220 В. Дальнейшее движение ползунок увеличивает напряжение U выше 220В.
Трансформатор на рисунке 3.9c преобразует 220v в 110v и используется для питания устройств рассчитан на работу от 110В.
В качестве последнего примера на рисунке 3.9d представляет собой разделительный трансформатор. Этот трансформатор имеет одинаковое количество витков на первичной и вторичной обмотках. обмотки. Вторичное напряжение такое же, как первичное, 220 В, но полностью изолированы от «сети», сводя к минимуму риски поражения электрическим током.