Стабилитрон двухсторонний: Стабилитрон. Особенности практического применения. — Радиомастер инфо

Содержание

Стабилитрон. Особенности практического применения. — Радиомастер инфо

Рассказано о назначении и применении стабилитронов, как проверить их исправность и основные параметры, чем и как можно заменить.

Сердцем практически любого стабилизатора напряжения является стабилитрон. Его основная функция поддерживать постоянное напряжение на выходе при изменении напряжения на входе. Информации на эту тему очень много. Я постараюсь ее систематизировать и подать максимально коротко, только то, что нужно для практики.

На схемах обозначаются так:

Выглядят, в основном, вот так:

Стабилитрон — специально изготовленный диод с особой воль-амперной характеристикой. Показать ее и пояснить нужно обязательно, для понимания принципа работы. Вот как она выглядит для обычного стабилитрона, например, Д814:

Когда на анод подают плюс, а на катод минус, то стабилитрон ведет себя как обычный диод. На рисунке прямая ветвь. При возрастании напряжения ток растет. Когда плюс подают на катод, а минус на анод, т.е. включают в обратном направлении, то характеристика стабилитрона, зависимость тока через него от приложенного напряжения, тоже кардинально меняется. Это хорошо видно по форме обратной ветви характеристики. Когда напряжение на стабилитроне достигает напряжения пробоя, cтабилитрон пробивается, но не перегорает, так как ток через него ограничен резистором. Этот резистор называется балластным.  Если не будет этого резистора, или его номинал подобран не правильно, то стабилитрон выйдет из строя. Величина сопротивления этого резистора подбирается таким образом, чтобы в диапазоне изменения входных напряжений ток через стабилитрон не выходил за допустимые для данного стабилитрона пределы Iст min Iст max. При этом напряжение на стабилитроне остается постоянным и равно напряжению стабилизации. Его величина для каждого типа стабилитрона своя. У двуханодных стабилитронов прямая ветвь такая же как и обратная только расположена справа вверху.

В схемах двуханодный стабилитрон можно включать независимо от полярности входного напряжения. Это удобно для ограничения переменного напряжения по амплитуде.

Типовая схема включения стабилитрона на конкретном примере:

Параметры стабилитрона КС182 указаны в справочнике:

Напряжение стабилизации стабилитрона 8,2В. При этом ток стабилизации может изменяться от 3мА до 17мА.

Как правило, в расчетах рекомендуют брать минимальное напряжение на входе в 1,5 раза выше напряжения стабилизации. Получаем 12,3 В. Максимальное примем исходя из допустимого разброса напряжения сети 20%. Получаем 14,73 В. Номинал резистора по закону Ома можно посчитать вручную, но в интернете много онлайн калькуляторов для решения таких задач, например, вот этот:

При таких заданных параметрах получим ток в нагрузке от 0 до 12 мА, что соответствует максимальной мощности 0,1 Вт.

Сопротивление балластного резистора 340 Ом, его мощность 0,125 Вт.

Мощность стабилитрона 0,156 Вт.

Мощность, рассеиваемая на резисторе и стабилитроне, составляет в сумме 0,28 Вт. При этом мощность в нагрузке 0,1 Вт. КПД получается 36%. При больших мощностях это не рационально.

Теперь основные моменты из практики.

  1. Как проверить исправность стабилитрона? Обычный стабилитрон проверяется как диод, т.е. прозванивается мультиметром и должен обладать односторонне проводимостью. Другое дело, стабилитрон двухстронний (или двуханодный) или стабилитрон с защитным диодом. Их прозвонить как диод не удастся. Они показывают обрыв в обе стороны. Проверяются только по методике, указанной в следующем пункте.
  2. Проверка напряжения стабилизации. Перед проверкой нужно определиться с мощностью стабилитрона. Это можно сделать по внешнему виду. Если стабилитрон малых размеров и выводы тонкие, то это малая мощность с током стабилизации от 3 до 20 мА. Если корпус чуть больше и выводы толще, то это средняя мощность и ток стабилизации до 90 мА. Ну а мощный стабилитрон имеет большие размеры и возможность установки на радиатор. У него ток стабилизации до ампера и выше.

Есть еще одна особенность. Чем выше напряжение стабилизации стабилитрона, тем меньше ток стабилизации, так как определяющей в этом случае является рассеиваемая стабилитроном мощность. Так что для стабилитронов малой и средней мощности при проверке достаточно тока 10 мА, для большой мощности 20-30мА. Поэтому для большинства проверок стабилитронов с напряжением стабилизации до 30В  берем резистор 1-2 кОм и через него подключаем катод стабилитрона к плюсу регулируемого блока питания, анод соответственно к минусу.

Параллельно стабилитрону подключаем вольтметр. От нуля плавно повышаем напряжение и следим за показаниями вольтметра. Как только они перестали расти при увеличении напряжения блока питания снимаем показания вольтметра. Если напряжение перестало расти при значениях около 1В, значит перепутан анод и катод стабилитрона. Нужно их поменять местами и повторить процедуру. Значение напряжения, при котором прекратились увеличиваться показания вольтметра, и есть напряжение стабилизации. У двуханодных оно будет одинаковым при смене полярности подключения. У стабилитрона с диодом напряжение стабилизации при неправильном включении будет достаточно высоким, на практике выше напряжения блока питания. Теоретически оно будет равно обратному напряжению диода. Можно применять для проверки и нерегулируемый блок питания напряжением выше предполагаемого напряжения стабилизации стабилитрона. При подключении, как на схеме, измеренное напряжение на стабилитроне будет равно напряжению стабилизации стабилитрона. Если показания вольтметра равны напряжению блока питания, значит стабилитрон включен наоборот или имеет напряжение стабилизации выше напряжения блока питания.

  1. В некоторых случаях очень важным параметром является температурный коэффициент напряжения стабилизации. Например, в автомобильном реле-регуляторе, которое управляет величиной напряжения в бортсети автомобиля. Если оно будет сильно изменяться в зависимости от температуры в моторном отсек, то выйдет из строя электрооборудование автомобиля.
    Следующий наглядный пример. В телевизорах и радиоприемниках в блоке формирования напряжения настройки на частоту принимаемого сигнала также недопустима зависимость напряжения от температуры, иначе сигнал будет плавать и пропадать. Именно поэтому в реле-регуляторах применяют стабилитроны типа Д818Е, а в блоках настройки телевизоров КС531. У первых температурный коэффициент составляет +0,001 %/град, у вторых ±0,005%/град. В то время, как у других, например, КС182 о которых упоминалось в начале статьи, температурный коэффициент составляет около 0,1 %/град. Это почти в 100 раз хуже. как правило, стабилитроны с хорошим температурным коэффициентом содержат внутренний диод, катод которого соединен с катодом стабилитрона. Температурный коэффициент этого диода имеет знак противоположный температурному коэффициенту самого стабилитрона. Таким образом достигается высокая температурная стабильность напряжения стабилизации.

Пока проверяемый стабилитрон подключен для проверки напряжения стабилизации по схеме п. 2 этой статьи, можно его выводы подогреть паяльником, немного, градусов до 60-70 и понаблюдать за изменением напряжения на вольтметре. Разница между термостабильным стабилитроном и обычным будет очень заметна.

  1. То, что основное назначение стабилитрона поддерживать постоянное напряжение на нагрузке при изменении входного напряжения и тока нагрузки уже понятно. Но тут есть особенность. Для эффективного выполнения этих задач, мощность нагрузки реально не должна превышать 30% от мощности, рассеиваемой на балластном резисторе и стабилитроне. Об этом уже было сказано в начале статьи. Для увеличения КПД и тока в нагрузке применяют транзисторы. Наиболее простая схема:

Если ток стабилитрона 10мА, а коэффициент усиления транзистора по току 100 раз, то ток в нагрузке будет 10х100=1000мА. Установив параллельно стабилитрону переменный резистор можно напряжение стабилизации в нагрузке изменять от нуля почти до максимального значения напряжения стабилизации стабилитрона.

  1. Чем можно заменить стабилитрон или изменить напряжение стабилизации?

Обычный кремниевый диод включенный в прямом направлении может выполнять функции стабилитрона напряжением около 0,7 В. Для увеличения напряжения диоды можно включать последовательно с такими же диодами или стабилитроном, напряжение которого нужно немного увеличить. Германиевый диод, при прямом включении, стабилизирует напряжение около 0,5 В, светодиод, в зависимости от типа 2…3,2 В.

Примеры показаны ниже на фото:

Кремниевые транзисторы в диодном включении также могут выполнять функции стабилитрона напряжением 5…6 В. Причем можно использовать последовательное подключение транзистора с диодами, нескольких транзисторов, как показано ниже:

Если есть маломощный стабилитрон на нужное напряжение, а нужен более мощный, то можно использовать такую аналогию ( где VD1 маломощный стабилитрон):

R2 – балластный резистор. Напряжение стабилизации схемы равно напряжению стабилизации стабилитрона плюс напряжение б-э транзистора (0,7В у кремниевых и 0,5В у германиевых). Максимальный ток стабилизации схемы равен току стабилитрона, умноженному на коэффициент усиления транзистора по току (h21). Используя такие схемы нельзя допускать превышения значений параметров применяемых элементов.

Если нужны высоковольтные стабилитроны на напряжения 120…180В (КС620А, КС630А, КС650А, КС680А), то можно использовать такие схемы:

Как источник стабильного тока используют германиевые диоды Д220, Д220А, Д219А которые имеют низкое дифференциальное сопротивление при обратном включении и обратном токе 0,1…10 мА. Понятно, что напряжение применяемого транзистора должно быть выше 180 В.

Материал статьи продублирован на видео:

 

Двуханодный стабилитрон принцип работы

Как работает стабилитрон

Диод Зенера или стабилитрон (полупроводниковый стабилитрон) представляет собой особый диод, функционирующий в режиме устойчивого пробоя в условиях обратного смещения p-n перехода.

До момента наступления этого пробоя, ток через стабилитрон протекает лишь очень малый, ток утечки, в силу высокого сопротивления запертого стабилитрона.

Но когда наступает пробой, ток мгновенно вырастает, поскольку дифференциальное сопротивление стабилитрона составляет в этот момент от долей до сотен Ом. Таким образом, напряжение на стабилитроне весьма точно поддерживается в определенном диапазоне обратных токов, относительно широком.

Стабилитрон называют диодом Зенера (от англ. Zener diode) в честь ученого, впервые открывшего явление туннельного пробоя, американского физика Кларенса Мэлвина Зенера (1905 — 1993).

Открытый Зенером электрический пробой p-n перехода, связанный с туннельным эффектом, явлением просачивания электронов сквозь тонкий потенциальный барьер, называется теперь эффектом Зенера, который и служит сегодня в полупроводниковых стабилитронах.

Физическая картина эффекта заключается в следующем. При обратном смещении p-n перехода энергетические зоны перекрываются, и электроны могут переходить из валентной зоны p-области в зону проводимости n-области, благодаря электрическому полю, это повышает количество свободных носителей заряда, и обратный ток резко возрастает.

Таким образом, главным назначением стабилитрона является стабилизация напряжения. Промышленностью выпускаются полупроводниковые стабилитроны с напряжениями стабилизации от 1,8 В до 400 В, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током.

На этой базе изготавливают простые стабилизаторы напряжения. На схемах стабилитроны обозначаются символом похожим на символ диода, с тем лишь отличием, что катод стабилитронов изображается в форме буквы «Г».

Стабилитроны скрытой интегральной структуры, с напряжением стабилизации около 7 В — это самые точные и стабильные твердотельные источники опорного напряжения: лучшие их экземпляры характеристически близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).

К стабилитронам особого типа относятся высоковольтные лавинные диоды («TVS-диоды» и «супрессоры»), которые широко применяются в цепях защиты от перенапряжений всевозможной аппаратуры.

Как видим, стабилитрон, в отличие от обычного диода, работает на обратной ветви ВАХ. В обычном диоде, если к нему приложить обратное напряжение, может возникнуть пробой по одному из трех путей (или по всем сразу): туннельный пробой, пробой лавинный и пробой вследствие теплового разогрева токами утечки.

Тепловой пробой кремниевым стабилитронам не важен, ибо они проектируются так, чтобы или туннельный, или лавинный пробой, либо оба типа пробоя одновременно наступали задолго до тенденции к тепловому пробою. Серийные стабилитроны на данный момент изготавливаются преимущественно из кремния.

Пробой при напряжении ниже 5 В — проявление эффекта Зенера, пробой выше 5 В — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, как правило, является результатом сочетания двух этих эффектов. Напряженность электрического поля в момент пробоя стабилитрона составляет около 30 МВ/м.

Пробой стабилитрона происходит в умеренно легированных полупроводниках р-типа и сильно легированных полупроводниках n-типа. При повышении температуры на стыке уменьшается срыв стабилитрона и вклад лавинного пробоя увеличивается.

Стабилитроны имеют следующие типичные характеристики. Vz – напряжение стабилизации. В документации указываются два значения для этого параметра: максимальное и минимальное значение напряжения стабилизации. Iz – минимальный ток стабилизации. Zz – сопротивление стабилитрона. Izk и Zzk– ток и динамическое сопротивление при постоянном токе. Ir и Vr — максимальный ток утечки и напряжение при заданной температуре. Tc — температурный коэффициент. Izrm — максимальный ток стабилизации стабилитрона.

Стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений (опорных напряжений) в стабилизаторах на транзисторах.

Для получения малых образцовых напряжений стабилитроны включают и в прямом направлении, как обычные диоды, тогда напряжение стабилизации одного стабилитрона будет равно 0,7 – 0,8 вольт.

Максимальная рассеиваемая корпусом стабилитрона мощность, обычно лежит в диапазоне от 0,125 до 1 ватта. Этого, как правило, достаточно для нормальной работы цепей защиты от импульсных помех и для построения маломощных стабилизаторов.

Стабилитрон. Параметрические стабилизаторы напряжения

Доброго времени суток. Сегодня мой пост о стабилизаторах напряжения. Что же это такое? Прежде всего, любой радиоэлектронной схеме для работы необходим источник питания. Источники питания бывают разные: стабилизированные и нестабилизированные, постоянного тока и переменного тока, импульсные и линейные, резонансные и квазирезонансные. Такое большое разнообразие обусловлено различными схемами, от которых будут работать электронные схемы. Ниже приведена таблица сравнения схем источников питания.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

ПоказательЛинейный источник питанияИмпульсный источник питания
СтоимостьНизкаяВысока
МассаБольшаяНебольшая
ВЧ-шумОтсутствуетВысокий
КПД35 — 50 %70 — 90 %
Несколько выходовНетЕсть

Для питания электронных схем, которые не требуют высокой стабильности питающего напряжения постоянного тока или большой выходной мощности, целесообразно применять простые, надёжные и дешевые линейные источники напряжения. Основой любого линейного источника напряжения является параметрический стабилизатор напряжения. Основой таких устройств является элемент с нелинейной вольт-амперной характеристикой, у которого напряжение на электродах мало зависит от протекающего через элемент тока. Одним из таких элементов является стабилитрон.

Стабилитрон представляет собой особую группу диодов, режим работы которых характеризуется обратной ветвью вольт-амперной характеристики в области пробоя. Рассмотрим поподробнее вольт-амперную характеристику диода.


Вольт-амперная характеристика диода

Принцип работы стабилитрона

Когда диод включён в прямом направлении (анод – «+», катод – «–»), то он свободно начинает пропускать ток при напряжении Uпор, а при включении в обратном направлении (анод – «–», катод – «+») через диод может проходить лишь ток Iобр, который имеет значение нескольких мкА. Если увеличивать обратное напряжение Uобр на диоде до определённого значения Uобр. max произойдёт электрический пробой диода и если ток достаточно вели, то происходит тепловой пробой и диод выходит из строя. Диод можно заставить работать в области электрического пробоя, если ограничить ток, который проходит через диод (напряжение пробоя для разных диодов составляет 50 – 200 В).

Стабилитрон же разработан таким образом, что его вольт-амперная характеристика в области пробоя обладает высокой линейностью, а напряжение пробоя достаточно постоянно. Таким образом можно сказать, что стабилизация напряжения стабилитроном осуществляется при его работе на обратной ветви вольт-амперной характеристики, в области же прямой ветви стабилитрон ведёт себя аналогично обыкновенному диоду. Стабилитрон обозначается следующим образом


Обозначение стабилитрона

Основные параметры стабилитрона

Рассмотрим основные параметры стабилитрона по его вольт-амперной характеристике.


Вольт-амперная характеристика стабилитрона

Напряжение стабилизации Uст определяется напряжением на стабилитроне при протекании тока стабилизации Iст. В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.

Максимально допустимый постоянный ток стабилизации Iст.max ограничен значением максимально допустимой рассеиваемой мощности Pmax, зависящей в свою очередь от температуры окружающей среды.

Минимальный ток стабилизации Iст.min определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.

Дифференциальное сопротивление стабилитрона rСТ – величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.

Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр и максимально допустимого постоянного прямого тока Iпр. max.

Параметрический стабилизатор

Основная схема включения стабилитрона, которая является схемой параметрического стабилизатора, а также источником опорного напряжения в стабилизаторах других типов приведена ниже.


Схема включения стабилитрона

Данная схема представляет собой делитель напряжения, состоящий из балластного резистора R1 и стабилитрона VD, параллельно которому включено сопротивление нагрузки RН. Такой стабилизатор напряжения обеспечивает стабилизацию выходного напряжения при изменении напряжения питания UП и тока нагрузки IН.

Рассмотрим принцип работы данной схемы. Увеличении напряжения на входе стабилизатора приводит к увеличению тока который проходит через резистор R1 и стабилитрон VD. За счёт своей вольт-амперной характеристики напряжение на стабилитроне VD практически не изменится, а соответственно напряжение на сопротивлении нагрузки Rн тоже. Таким образом практически всё изменение напряжение будет приложено к резистору R1. Таким образом достаточно легко подсчитать необходимые параметры схемы.

Расчёт параметрического стабилизатора.

Исходными данными для расчёта для расчёта простайшего параметрического стабилизатора напряжения являются:

входное напряжение U0;

выходное напряжение U1 = Ust – напряжение стабилизации;

Для примера возьмём следующие данные: U0 = 12 В, U1 = 5 В, IH = 10 мА = 0,01 А.

1. По напряжению стабилизации выбираем стабилитрон типа BZX85C5V1RL (Ust = 5,1 В, дифференциальное сопротивление rst = 10 Ом).

2. Определяем необходимое балластное сопротивление R1:

3. Определяем коэффициент стабилизации:

4. Определяем коэффициент полезного действия

Увеличение мощности параметрического стабилизатора

Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.

Параллельный стабилизатор


Схема ПСН с параллельным включением транзистора

Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно

Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h31e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.

Коэффициент стабилизации будет равен

где RVT – входное сопротивление эмиттерного повторителя

где Re и Rb – сопротивления эмиттера и базы транзистора.

Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.

Последовательный стабилизаттор

Параметрический стабилизатор напряжения, схема которого представлена ниже, представляет собой эмиттерный повторитель на транзисторе VT с последовательно включённым сопротивлением нагрузки RH. Источником опорного напряжения в данной схеме является стабилитрон VD.


Схема ПСН с последовательным включением транзистора

Выходное напряжение стабилизатора:

Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UST) на выходе стабилизатора происходит уменьшение отпирающего напряжения UEB транзистора и его базовый ток уменьшается. Это приводит к росту напряжения на переходе коллектор – эмиттер, в результате чего выходное напряжение практически не изменяется. Оптимальное значение тока опорного стабилитрона VD определяется сопротивлением резистора R2, включённого в цепь источника питания U0. При постоянном значении входного напряжения U0 базовый ток транзистора IB и ток стабилизации связаны между собой соотношением IB + IST = const.

Коэффициент стабилизации схемы

где Rk – сопротивление коллектора биполярного транзистора.

Коэффициент стабилизации параметрического стабилизатора напряжения может быть существенно увеличен при введении в его схему отдельного вспомогательного источника с U’0 > U1 и применении составного транзистора.


Схема ПСН с составным транзистором и питанием стабилитрона от отдельного источника напряжения

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Как работает стабилитрон

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:

Теперь внимательно следим за показаниями мультиметра и блока питания:

Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.

Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!

Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.

Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Iminэто сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.

Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).

Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:

Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.

Стабилитроны и стабисторы: классификация, устройство, принцип и режимы работы, основные параметры, применение

Стабилитроны и стабисторы: классификация, устройство, принцип и режимы работы, основные параметры, применение

Стабилитрон

Стабилитроном называется радиокомпонент, конструктивно напоминающий диод, но кардинально отличающийся от него характером функционирования. Ключевым элементом так же, как и в обычном полупроводниковом вентиле, является полупроводниковый p-n-переход. И реакции обоих элементов на подачу обратного напряжения схожи – они оба запираются. Разница заключается в том, что пробой p-n-переходной зоны, который наступает при достижении обратным смещением некоего критического значения и выводит диод из строя, для стабилитрона является рабочим режимом.

Основа функциональности стабилитрона состоит в том, что при довольно больших изменениях обратного тока напряжение на элементе остаётся практически неизменным. Другими словами, насколько бы существенным ни было обратное смещение, радиокомпонент будет поддерживать постоянный уровень выходной разности потенциалов. Эта стабилизированное напряжение может использоваться в качестве опорного, что и находит применение в реальных радиоэлектронных устройствах, критичных к электрическим характеристикам сигнала.

Туннельный и лавинный пробой

Пробой p-n-перехода, при котором работают стабилитроны, может быть лавинным или туннельным. Они являются электрическими и носят обратимый характер. То есть при отключении обратного смещения физико-химические свойства полупроводников восстанавливаются, и диод продолжает исполнять свои функции. Однако в случае стабилитронов условия возникновения пробоя создаются и поддерживаются искусственно.

В основе лавинного и туннельного пробоя лежат одноимённые квантовые эффекты, наблюдаемые в кристаллической структуре полупроводника при возбуждении электрического поля. При разной природе и механизмах данных процессов их последствия одинаковы – электроны приобретают энергию, достаточную для прохождения через p-n-переход. Возникает пробой, и через диод начинает протекать обратный ток.

Именно в этом режиме и работает стабилитрон. При этом существует различие между радиокомпонентами, в которых используются разные эффекты. Стабилитроны, функционирующие при лавинном пробое, оперируют разностями потенциалов свыше 7 Вольт. В элементах, рассчитанных на напряжение стабилизации 3-7 Вольт, провоцируется туннельный пробой. Для стабилизации более низких разностей потенциалов применяются стабисторы, о которых мы расскажем ниже.

Классификация стабилитронов

В настоящее время выпускается широкая номенклатура стабилитронов, но вся их масса классифицируется по функциональным характеристикам и конструкции. В зависимости от параметров данные радиокомпоненты подразделяются на следующие классы:

  1. прецизионные;
  2. двуханодные;
  3. быстродействующие.

Прецизионные отличаются высокой точностью стабилизации напряжения. Отклонения стабилизируемой разности потенциалов на выходе такой детали не превышают 0,0001%. Точность сильно зависит от времени жизни прецизионного стабилитрона и температуры полупроводника. В связи с этим в отношении этих радиокомпонентов введены эксплуатационные нормы, которые должны постоянно контролироваться в процессе использования аппаратуры.

Двуханодный стабилитрон исполняет функцию двух стабилитронов, включенных встречно. Это позволяет элементу обрабатывать сигналы и с одинаковой эффективностью обрабатывать напряжения разной полярности. Такая радиодеталь изготавливается в едином технологическом цикле, когда на одном кристалле кремния выращивается два встречных p-n-перехода, но, в принципе, роль двуханодного радиокомпонента могут играть и два дискретных стабилитрона, взаимно соединённых катодами.

И, наконец, стабилитроны третьего типа – быстродействующие – отличаются пониженной барьерной ёмкостью, вследствие чего сокращается продолжительность переходных процессов, протекающих в полупроводнике. Эти радиокомпоненты являются наилучшим решением для работы с импульсными сигналами. Конструктивная особенность данных элементов состоит в небольшой ширине p-n-перехода, которая обеспечивается применением особой технологии легирования полупроводника.

Стабистор

Немного по-другому функционируют радиокомпоненты, называемые стабисторами, о которых мы говорили выше. Они исполняют ту же функцию, то есть стабилизируют выходное напряжение, но являются низковольтными. Обычные стабилитроны не способны оперировать малыми разностями потенциалов. При напряжениях до 3 Вольт не возникает условий ни для лавинного, ни для туннельного пробоя p-n-перехода. Для стабилизации меньших напряжений прибегают к другому решению, а именно к использованию не обратного, а прямого смещения.

Установлено, что в сильно легированном p-n-переходе дырки и электроны рекомбинируют таким образом, что при значительном прямом токе наблюдается эффект стабилизации выходного напряжения на уровне 2,5-3 Вольт. Это обуславливает ключевое технологическое различие стабилитронов и стабисторов. Вторые предназначены для работы только в низковольтных радиосхемах.

Применение стабилитронов и стабисторов

Хорошие стабилизирующие свойства стабилитронов и стабисторов обуславливают основную сферу применения этих радиокомпонентов – создание фиксированного питающего и опорного напряжения в различных радиоэлектронных устройствах. На первом месте по распространённости стоят стабилитроны, используемые в источниках питания. Применение этих специализированных диодов обеспечивает стабильные выходные параметры питающего напряжения и одновременно упрощает схему.

В блоках питания с повышенными требованиями по точности выходных характеристик находят применение прецизионные стабилитроны. Эти элементы устанавливаются в высокоточной измерительной аппаратуре и аналого-цифровых преобразователях. Двуханодные стабилитроны используются в подавителях импульсных помех. Данные радиокомпоненты в реальных схемах нередко сочетаются с импульсными диодами. Быстродействующие стабилитроны в сочетании с СВЧ-диодами применяются в аппаратуре, работающей на сверхвысоких частотах – передатчиках, радиолокаторах и так далее.

Основные параметры

  1. Напряжение стабилизации;
  2. Ток стабилизации;
  3. Разброс напряжения стабилизации;
  4. Температурный коэффициент напряжения стабилизации;
  5. Временная нестабильность напряжения стабилизации;
  6. Дифференциальное сопротивление;
  7. Минимальный ток стабилизации;
  8. Максимальный ток стабилизации;
  9. Рассеиваемая мощность;
  10. Максимально-допустимая температура корпуса;
  11. Максимально-допустимая температура перехода.

Все что нужно знать о маркировке стабилитронов

Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.

Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Обозначения работы элемента электросхемы

Схематическое обозначение стабилитрона

Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.

На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.

Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.

Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.

Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.

Стабилитрон и диод

Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:

Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.

Подробно о цветовой маркировке стабилизирующего диода

Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:

Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Цветовая маркировка стабилитрона

  • первая полоска обозначает тип устройства;
  • вторая – полупроводник;
  • третья – что это за прибор, а также, какая у него проводимость;
  • четвертая — номер разработки;
  • пятая — модификация устройства.

Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.

Стабилитрон

Его назначение, параметры и обозначение на схеме

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора, который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа. Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус “-“. При таком включении через него протекает обратный ток (I обр) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст. (напряжение стабилизации) и I ст. (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Д814Б2С147А

V стаб. мин. – 8 вольт.

V стаб. ном. – 9 вольт.

V стаб. макс. – 9,5 вольт.

I стаб. – 3 – 35 мA.

P макс. – 340 мВт.

V стаб. мин. – 4,2 вольта.

V стаб. ном. – 4,7 вольт.

V стаб. макс. – 5,1 вольт.

I стаб. – 3 – 60 мА.

P макс. – 300 мВт.

Рядом паспортные данные современного стабилитрона (2C147A), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

Стабилитрон: принцип работы, маркировка, обозначение, параметры, свойства

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении. Обычный диод при подаче обратного напряжения и превышении его номинального значения просто выходит из строя. А  для стабилитрона подключение обратного напряжения и его рост до установленной точки является штатным режимом. При достижении определенной точки обратного напряжения в стабилитроне возникает обратимый пробой. Через устройство начинает течь ток. До наступления пробоя стабилитрон находится в нерабочем состоянии и через него протекает только малый ток утечки.  На электросхемах стабилитрон обозначается как стрелка-указатель, на конце которой имеет черточка, обозначающая запирание. Стрелка указывает направление тока. Буквенное обозначение на схемах – VD.

Содержание статьи

Устройство

Полупроводниковые стабилитроны пришли на смену морально устаревшим стабилитронам тлеющего разряда – ионным газоразрядным электровакуумным приборам. Для изготовления стабилитронов используются кремниевые или германиевые кристаллы (таблетки) с проводимостью n-типа, в которые добавляют примеси сплавным или диффузно-сплавным способом. Для получения электронно-дырочного p-n перехода используются акцепторные примеси, в основном алюминий. Кристаллы заключают в корпуса из полимерных материалов, металла или стекла.

Кремниевые сплавные стабилитроны Д815 (А-И) выпускаются в металлическом герметичном корпусе, который является положительным электродом. Такие элементы имеют широкий интервал рабочих температур – от -60°C до +100°C. Кремниевые сплавные двуханодные стабилизирующие диоды КС175А, КС182А, КС191А, КС210Б, КС213Б выпускают в пластмассовом корпусе. Кремниевые сплавные термокомпенсированные детали КС211 (Б-Д), используемые в качестве источников опорного напряжения, имеют пластмассовый корпус.

SMD стабилитроны, то есть миниатюрные компоненты, предназначенные для поверхностного монтажа, изготавливаются в основном в стеклянных и пластиковых корпусах. Такие элементы могут выпускаться с двумя и тремя выводами. В последнем случае третий вывод является «пустышкой», никакой смысловой нагрузки не несет и предназначается только для надежной фиксации детали на печатной плате.

Принцип действия

Стабилитрон был открыт американским физиком Кларенсом Мелвином Зенером, именем которого его и назвали. Электрический пробой p-n перехода может быть обусловлен туннельным пробоем (в этом случае пробой носит название Зенеровского), лавинным пробоем, пробоем в результате тепловой неустойчивости, который наступает из-за разрушительного саморазогрева токами утечки.

И инженеры конструируют эти элементы таким образом, чтобы возникновение туннельного и/или лавинного пробоя произошло задолго до того, как в них возникнет вероятность теплового пробоя.

Величина напряжения пробоя зависит от концентрации примесей и способа легирования p-n-перехода. Чем больше концентрация примесей и чем выше их градиент в переходе, тем ниже обратное напряжение, при котором образуется пробой.

  • Туннельный (зенеровский) пробой появляется в полупроводнике в тех случаях, когда напряженность электрического поля в p-n зоне равна 106 В/см. Такая высокая напряженность может возникнуть только в высоколегированных диодах. При напряжениях пробоя, находящихся в диапазоне 4,5…6,7 В, сосуществуют туннельный и лавинный эффекты, а вот при напряжении пробоя менее 4,5 В остается только туннельный эффект.
  • В стабилитронах с небольшими уровнями легирования или меньшими градиентами легирующих добавок присутствует только лавинный механизм пробоя, который появляется при напряжении пробоя примерно 4,5 В. А при напряжении выше 7,2 В остается только лавинный эффект, а туннельный полностью исчезает.

Как было сказано ранее, при прямом подключении стабилитрон при прямом включении ведет себя так же, как и обычный диод, – он пропускает ток. Различия между ними возникают при обратном подключении.

Обычный диод при обратном подключении запирает ток, а стабилитрон при достижении обратным напряжением величины, которая называется напряжением стабилизации, начинает пропускать ток в обратном направлении. Это объясняется тем, что при подаче на стабилитрон напряжения, которое превышает U ном. устройства, в полупроводнике возникает процесс, называемый пробоем. Пробой может быть туннельным, лавинным, тепловым. В результате пробоя ток, протекающий через стабилитрон, возрастает до максимального значения, ограниченного резистором. После достижения напряжения пробоя ток остается примерно постоянным в широком диапазоне обратных напряжений. Точка, в которой напряжение запускает ток, может очень точно устанавливаться в процессе производства легированием. Поэтому каждому элементу присваивают определенное напряжение пробоя (стабилизации).

Стабилитрон используется только в режиме «обратного смещения», то есть его анод подключается к «-» источника питания. Способность стабилитрона запускать обратный ток при достижении напряжения пробоя применяется для регулирования и стабилизации напряжения при изменении напряжения питания или подключенной нагрузки. Использование стабилитрона позволяет обеспечить постоянное выходное напряжение для подключенного потребителя при перепадах напряжения ИП или меняющемся токе потребителя.

Вольт-амперная характеристика

ВАХ стабилитрона, как и обычного диода, имеет две ветви – прямую и обратную. Прямая ветвь является рабочим режимом для традиционного диода, а обратная характеризует работу стабилитрона. Стабилитрон называют опорным диодом, а источник напряжения, в схеме которого есть стабилитрон, называют опорным.

На рабочей обратной ветви опорного диода выделяют три основные значения обратного тока:

  • Минимальное. При силе тока, которая меньше минимального значения, стабилитрон остается закрытым.
  • Оптимальное. При изменении тока в широких пределах между точками 1 и 3 значение напряжения меняется несущественно.
  • Максимальное. При подаче тока выше максимальной величины опорный диод перегреется и выйдет из строя. Максимальное значение тока ограничивается максимально допустимой рассеиваемой мощностью, которая очень зависит от внешних температурных условий.

Области применения

Основная область применения этих элементов – стабилизация постоянного напряжения в маломощных ИП или в отдельных узлах, мощность которых не более десятков ватт. С помощью опорных диодов обеспечивают нормальный рабочий режим транзисторов, микросхем, микроконтроллеров.

В стабилизаторах простой конструкции стабилитрон является одновременно источником опорного напряжения и регулятором. В более сложных конструкциях стабилитрон служит только источником опорного напряжения, а для силового регулирования применяется внешний силовой транзистор.

Термокомпенсированные стабилитроны и детали со скрытой структурой востребованы в качестве дискретных и интегральных источников опорного напряжения. Для защиты электрической аппаратуры от перенапряжений разработаны импульсные лавинные стабилитроны. Для защиты входов электрических приборов и затворов полевых транзисторов в схему устанавливают рядовые маломощные стабилитроны. Полевые транзисторы с изолированным затвором (МДП) изготавливаются с одним кристаллом, на котором расположены: защитный стабилитрон и силовой транзистор.

Основные характеристики

В паспорте стабилизирующего диода указывают следующие параметры:

  • Номинальное напряжение стабилизации Uст. Этот параметр выбирает производитель устройства.
  • Диапазон рабочих токов. Минимальный ток – величина тока, при которой начинается процесс стабилизации. Максимальный ток – значение, выше которого устройство разрушается.
  • Максимальная мощность рассеивания. В маломощных элементах это паспортная величина. В паспортах мощных стабилитронов для расчета условий охлаждения производитель указывает: максимально допустимую температуру полупроводника и коэффициент теплового сопротивления корпуса.

Помимо параметров, указываемых в паспорте, стабилитроны характеризуются и другими величинами, среди которых:

  • Дифференциальное сопротивление. Это свойство определяет нестабильность устройства по напряжению питания и по току нагрузки. Первый недостаток устраняется запитыванием стабилизирующего диода от источника постоянного тока, а второй – включением между стабилитроном и нагрузкой буферного усилителя постоянного тока с эмиттерным повторителем.
  • Температурный коэффициент напряжения. В соответствии со стандартом эта величина равна отношению относительного изменения напряжения стабилизации к абсолютному изменению наружной температуры. В нетермостабилизированных стабилитронах при нагреве от +25°C до +125°C напряжение стабилизации сдвигается на 5-10% от первоначального значения.
  • Дрейф и шум. Эти характеристики для обычных стабилитронов не определяются. Для прецизионных устройств они являются очень важными свойствами. В обычных (непрецизионных) стабилитронах шум создают: большое количество посторонних примесей и дефекты кристаллической решетки в области p-n перехода. Способы снижения шума (если в этом есть необходимость): защитная пассивация оксидом или стеклом (примеси направляются вглубь кристалла) или перемещением вглубь кристалла самого p-n-перехода. Второй способ является более радикальным. Он востребован в диодах с низким уровнем шума со скрытой структурой.

Способы включения – последовательное и параллельное

На детали импортного производства в сопроводительных документах ситуации, при которых возможно последовательное или параллельное соединение, не регламентируются. В документации на отечественные опорные диоды можно встретить два указания:

  • В приборах маленькой и средней мощности можно последовательно или параллельно подсоединять любое количество односерийных стабилитронов.
  • В приборах средней и значительной мощности можно последовательно соединять любое число стабилизирующих диодов единой серии. При параллельном соединении необходимо произвести расчеты. Общая мощность рассеивания всех параллельно подсоединенных стабилитронов не должна быть выше аналогичного показателя одной детали.

Допускается последовательное подключение опорных диодов разных серий в том случае, если рабочие токи созданной цепи не превышают паспортные токи стабилизации для каждой серии, установленной в схеме.

На практике для умножения напряжения стабилизации чаще всего применяют последовательное соединение двух-трех стабилитронов. К этой мере прибегают в том случае, если не удалось достать деталь на нужное напряжение или необходимо создать высоковольтный стабилитрон. При последовательном соединении напряжение отдельных элементов суммируется. В основном этот вид соединения используется при сборке высоковольтных стабилизаторов.

Параллельное соединение деталей служит для того, чтобы повышать ток и мощность. Однако на практике этот вид соединения применяется редко, поскольку различные экземпляры опорных диодов даже одного типа не имеют совершенно одинаковых напряжений стабилизации. Поэтому при параллельном соединении разряд возникнет только в детали с наименьшим напряжением стабилизации, а в остальных пробой не произойдет. Если пробой и возникает, то одни стабилитроны в такой цепи будут работать с недогрузкой, а другие с перегрузкой.

Для стабилизации переменного напряжения стабилитроны соединяются последовательно и встречно. В первый полупериод синусоиды переменного тока один элемент работает как обычный диод, а второй выполняет функции стабилитрона. Во втором полупериоде элементы меняются функциями. Форма выходного напряжения отличается от входного. Ее конфигурация напоминает трапецию. Это связано с тем, что напряжение, превышающее напряжение стабилизации, будет отсекаться и верхушки синусоиды будут срезаны. Последовательное и встречное соединение стабилитронов может применяться в термостабилизированном стабилитроне.

Составные стабилитроны

Составной стабилитрон – устройство, применяемой в ситуациях, когда необходимы токи и мощность большего значения, чем это допускают технические условия. В этом случае между стабилизирующим диодом и нагрузкой подсоединяют буферный усилитель постоянного тока. В схеме коллекторный переход транзистора включен параллельно стабилизирующему диоду, а эммиттерный переход – последовательно.

Схема обычного составного стабилитрона не предназначена для применения на прямом токе. Но добавление диодного моста превращает составной стабилитрон в систему двойного действия, которая может работать и при прямом, и при обратном токе. Такие стабилитроны еще называют двойными или двуханодными. Стабилитроны, которые могут работать с напряжением только одной полярности, называют несимметричными. А составные стабилитроны, дееспособные при любом направлении тока, называют симметричными.

Виды стабилитронов

На современном рынке электроники имеется широкий ассортимент стабилитронов, адаптированных к определенным условиям применения.

Прецизионные

Эти устройства обеспечивают высокую стабильность напряжения на выходе. К ним предъявляются дополнительные требования к временной нестабильности напряжения и температурного коэффициента напряжения. К прецизионным относятся устройства:

  • Термокомпенсированные. В схему термокомпенсированного стабилитрона входят последовательно соединенные: стабилитрон номинальным напряжением 5,6 В (с плюсовым значением температурного коэффициента) и прямоосвещенный диод (с минусовым коэффициентом). При последовательном соединении этих элементов происходит взаимная компенсация температурных коэффициентов. Вместо диода в схеме может использоваться второй стабилитрон, включаемый последовательно и встречно.
  • Со скрытой структурой. Ток пробоя в обычном стабилитроне сосредотачивается в приповерхностном кремниевом слое, где находится максимальное количество посторонних примесей и дефектов кристаллической решетки. Эти несовершенства конструкции провоцируют шум и нестабильную работу. В деталях со скрытой структурой ток пробоя «загоняют» внутрь кристалла путем формирования глубокого островка p-типа проводимости.   

Быстродействующие

Для них характерны: низкое значение барьерной емкости, всего десятки пикофарад, и краткий период переходного процесса (наносекунды). Такие особенности позволяют опорному диоду ограничивать и стабилизировать кратковременные импульсы напряжения.

Стабилизирующие диоды могут быть рассчитаны на напряжение стабилизации от нескольких вольт до нескольких сотен вольт. Высоковольтные стабилитроны устанавливаются на специальные охладители, способные обеспечить нужный теплообмен и уберечь элемент от перегрева и последующего разрушения.

Регулируемые стабилитроны

При изготовлении стабилизированных блоков питания необходимый стабилитрон может отсутствовать. В этом случае собирают схему регулируемого стабилитрона.

Нужное напряжение стабилизирующего диода подбирают при помощи резистора R1. Для настройки схемы на место резистора R1 подключают переменный резистор номиналом 10 кОм. После получения нужного значения напряжения определяют полученное сопротивление и устанавливают на постоянное место резистор нужного номинала. Для этой схемы можно применить транзисторы КТ342А, КТ3102А.

Способы маркировки

На корпусе детали имеется буквенная или буквенно-цифровая маркировка, которая характеризует электрические свойства и назначение устройства. Различают два типа маркировки. Детали в стеклянном корпусе маркируются привычным образом. На поверхности элемента пишут напряжение стабилизации с использованием буквы V, которая выполняет функцию десятичной запятой. Маркировка из четырех цифр и буквы в конце менее понятна. Расшифровать ее можно только с помощью даташита.

Еще один способ обозначения стабилизирующих диодов – цветовая маркировка. Часто применяется японский вариант, который представляет собой два или три цветных кольца. При наличии двух колец, каждое из них обозначает определенную цифру. Если второе кольцо нанесено в удвоенном варианте, то это означает, что между первой и второй цифрой надо поставить запятую.

Как отличить стабилитрон от обычного диода

Оба эти элемента имеют схожее обозначение на схеме. На практике отличить стабилитрон от обычного диода  и даже узнать его номинал, если оно не более 35 В, можно с помощью приставки к мультиметру.

Схема приставки к мультиметру

Для выполнения генератора с широтно-импульсной модуляцией используется специализированная микросхема MC34063. Чтобы обеспечить гальваническую развязку между ИП и измерительной частью схемы напряжение контролируют на первичной обмотке трансформатора. Это позволяет сделать выпрямитель на VD2. Точка стабилизации выходного напряжения устанавливается с помощью резистора R3. Напряжение на конденсаторе С4 – примерно 40 В. Стабилизатор тока А2 и проверяемый опорный диод составляют параметрический стабилизатор, а мультиметр, подключенный к выводам схемы, позволяет определить напряжение стабилитрона.

Если диод подключить в обратной полярности (анод к «-», а катод к «+»), то мультиметр для обычного диода покажет 40 В, а для стабилитрона – напряжение стабилизации.

Для определения работоспособности стабилитрона с известным номиналом используют простую схему, состоящую из источника питания и токоограничительного резистора на 300…500 Ом. В этом случае с помощью мультиметра определяют не сопротивление перехода, а напряжение. Включают элементы, как показано на схеме, и меряют напряжение на стабилитроне.

Медленно поднимают напряжение блока питания. На значении напряжения стабилизации напряжение на стабилитроне должно прекратить свой рост. Если это произошло, значит, элемент исправен. Если при последующем увеличении напряжения ИП диод не начинает стабилизировать, значит, он не исправен.

Как правильно подобрать стабилитрон?

Стабилитроны относятся к стабилизаторам небольшой мощности. Поэтому их необходимо подбирать так, чтобы через них без перегрева мог проходить весь ток нагрузки плюс минимальный ток стабилизации.

Для правильного выбора стабилитрона для электрической схемы необходимо знать следующие параметры: минимальное и максимальное входное напряжение, напряжение на выходе, минимальный и максимальный ток нагрузки. Напряжение стабилизации стабилитрона равно выходному напряжению. А рассчитать максимальный ток, который может пройти через стабилитрон в конкретной схеме, и мощность рассеивания при максимальном токе, лучше всего с помощью онлайн-калькулятора. 

Содержание драгоценных металлов в стабилитронах

В стабилитронах, как и в других полупроводниках – обычных диодах, тиристорах, варикапах, из драгоценных металлов содержится, в основном, серебро, в некоторых – золото. Конкретное количество указывается в специальных таблицах. Содержание палладия и платины, даже если они и присутствуют в полупроводниках, обычно не указывается, поскольку их концентрация ничтожно мала.



Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Стабилитрон или диод Зенера — подробное описание

Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон, служит для стабилизации напряжения на выходе.

Принцип действия стабилитрона

Принцип работы прибора заключается в подаче на диод через резистор запирающего напряжения, величина которого превышает величину напряжения пробоя самого диода. До того времени, пока не наступил момент совершения пробоя, через стабилитрон идут токи утечки величина, которых очень незначительна, в тоже время сопротивление прибора очень высокое.

В момент совершения пробоя величина тока резко повысится, а значение дифференциального сопротивления понизится до самых малых величин. Благодаря этому свойству режим пробоя характеризуется стабильным значением напряжения в широких границах обратного тока. Иными словами стабилитрон служит для распределения тока резистора, на который приходится избыток напряжения, а также тока, составляющего полезную нагрузку.

Рис. №1. Вольт-амперная характеристика (ВАХ) стабилитрона. Для работы стабилитрона используются участки ВАХ, на которых при существенных изменениях тока, напряжение практически  не изменяется, что бывает при обратном подключении прибора на участке электрического пробоя.

Рис.№2. Стабилитрон с резистором

Рис. №3. Стабилитрон, состоящий из двух последовательно-встречно подключенных диодов, служит для ограничения напряжения обеих полярностей.

 

Основа действия прибора строится на двух механизмах – это туннельный пробой и p-n-переход, его называют эффект Зенера и лавинный пробой p-n-перехода.

Основные электрические параметры, характеризующие стабилитрон

Рис. №4. Электрические характеристики важные для стабилитрона.

Пояснение главных величин, которые характеризуют стабилитрон:

  • Стабилизирующее напряжение – U раб, оно соответствует средней точке в месте стабилизации. Напряжение стабилизации – средняя величина между минимальным и предельно-максимальным значением стабилизируемого напряжения.
  • Минимальный ток стабилизации, для этого значения осуществляется лавинный пробой p-n-перехода обратимого действия, он неизменно соответствует минимальному значению стабилизируемого напряжения.
  • Максимальный предельно-допустимый ток стабилитрона.
  • Ток стабилизации или прямой ток, он определяется, как – Iст.ном = Imax – Imin. (он способен выдержать в течение продолжительного отрезка времени p-n-переход без термического разрушения.
  • Температурный коэффициент – величина, которая служит для определения отношения изменяющейся температуры окружающей среды при токе неизменной величины. Для каждого типа стабилитрона свойствен свой коэффициент температуры.
  • Дифференциальное сопротивление – величина, которая зависит от приращения стабилизационного напряжения к приращению тока в определенном диапазоне частоты.
  • Рассеиваемая мощность – величина мощности, обеспечивающей необходимую надежность и рассеиваемую на стабилитроне.

 

Типы стабилитронов

Существует три основных типа стабилитронов:

  1. Прецизионные стабилитроны – для них свойственно наличие повышенной стабильности напряжения. Пример: 2С191 или КС211.
  2. Двухсторонние – ограничивают и стабилизируют двухполярное напряжение. Пример: 2С170А или 2С182А.
  3. Быстродействующий стабилитрон – пониженная величина барьерной емкости и небольшая работа переходного процесса – это делает возможным работать в области кратковременных импульсов напряжений. Это такие стабилитроны: 2С175Е; КС182Е; 2С211Е.

Распределение по мощности – это мощные и маломощные стабилитроны.

 

Особенности использования стабилитронов

Для использования стабилитронов, особенно российских производителей не желательна работа вне зоны пробоя, что является следствием повышения, со временем, тока утечки. Например, на стабилитрон рассчитанный на U15 В, не рекомендуется подавать отличное от расчетного значение напряжения, по крайней мере необходимо следить за минимальным током стабилизации.

Во время неудачного разброса напряжений, при выборе его к предельному значению, может произойти перегрев устройства и возникает режим пробоя.

Нежелательно подключать стабилитроны в сеть в качестве предохранителя, последствия для стабилитрона будут плачевны, при превышении значения тока они выйдут из строя. Для защиты лучше всего использовать, в некоторых случаях, специализированные стабилитроны (супрессоры) марки ZY5.6. Установка стабилитрона (диода Зенера) в цепь низковольтного питания крайне нежелательно из того, что туннельный пробой при U обладает отрицательным температурным коэффициентом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

ДИОДЫ

   Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

Пример односторонней проводимости диода

   На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь. 

Иллюстрация прямой обратный ток диода

   Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

Вольт-амперная характеристика диода

   В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Диод полупроводниковый

   Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.  

 

Плоскостной и точечный диод

Какие бывают типы диодов ?


Схематическое изображение диодов


Фото выпрямительного диода

   А) На фото изображен рассмотренный нами выше диод.

Стабилитрон изображение на схеме

   Б) На этом рисунке изображён стабилитрон, (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.


Двуханодный стабилитрон — изображение на схеме

   В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.

Туннельный диод

   Г) Туннельный диод, может использоваться в качестве усилительного элемента.

Обращенный диод

   Д) Обращенный диод, применяется в высокочастотных схемах для детектирования.

Варикап

   Е) Варикап, применяется как конденсатор переменной ёмкости.

Фотодиод

   Ж) Фотодиод, при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок. 

 

Светодиоды

   З) Светодиоды, всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только. 

   Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое — это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме, стандартной для выпрямителей:

Схема диодного моста

   Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405:

Фото диодный мост

   А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.

Светодиодная лампа фото

   Светодиоды существуют в разных корпусах, в том числе и SMD.

smd светодиод фото

   Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный — Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.

Подключение RGB ленты

   Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:

Контроллер rgb

   Светодиоды при использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил — AKV.

   Форум по радиодеталям

Как проверить стабилитрон мультиметром расписано по шагам

Любой электроприбор нуждается в стабильном энергоснабжении. Для этого существуют стабилизаторы, ШИМ контроллеры и прочие разновидности блоков питания.

Какой бы простой не была схема стабилизатора, она стоит определенных денег. В некоторых случаях высокое качество питания не требуется. Чаще всего такая ситуация бывает, когда надо обеспечить часть большой электросхемы напряжением, отличным от основного, стабильного.

Самый простой элемент, обеспечивающий относительно стабильное напряжение – это стабилитрон.

Поскольку это единичная деталь, ремонт блока питания представляется несложным. Как проверить стабилитрон? Как и любую другую деталь, только есть нюансы, связанные с конструкцией.

Как работает этот элемент?

И внешне, и по реализации p-n перехода, этот элемент похож на полупроводниковый диод. Даже схематическое обозначение не сильно отличается.

Через него также протекает ток в одном направлении, при этом есть одна особенность. Диод организует движение частиц только от анода к катоду, прохождение обратного тока является аварийной ситуацией: то есть пробоем радиоэлемента.

В стабилитроне обратный ток является нормальной ситуацией, именно эта особенность определяет его назначение. При возникновении на его выводах определенного значения вольтажа, открывается движение электронов в направлении от катода к аноду, и элемент становится обратно проводимым.

Причем это напряжение является основной характеристикой: например, стабилитрон на 12 вольт при достижении этого значения начинает пропускать ток в обратном направлении.

Рассмотрим это явление на простом примере

Допустим, у нас есть сосуд для воды со сливным патрубком на определенном уровне.

Когда жидкость достигает необходимой высоты, происходит перелив из сливного патрубка. То есть, сосуд будет заполняться только до определенного значения, которое будет оставаться стабильным до определенного напора. Если поступление воды превысит возможности сливного патрубка, сосуд переполнится или лопнет.

Переводим ситуацию в электронику.

  • напор воды – это максимальная сила тока, на которую рассчитан стабилитрон без электрического (термического) разрушения;
  • необходимый уровень – это напряжение срабатывания стабилитрона.

При достижении заданного напряжения, оно фиксируется, и «лишний» ток движется в обратную сторону. Таким образом, элемент стабилизирует напряжение. Если сила тока будет слишком высокой, стабилитрон сгорит.

Обратите внимание

Стабилитроны работают только в цепях постоянного тока, стабилизация происходит только по напряжению.

Основная цель определения работоспособности – проверка стабилитрона на напряжение стабилизации.

Как проверить стабилитрон мультиметром на исправность?

Методика аналогична классическому диоду. Выставляем переключатель в положение проверки диодов (присутствует на любом устройстве) и соединяем щупы с контактами детали. Прямое подключение показывает протекание тока, обратное – запертое состояние p-n перехода.

Важно! Напряжение на проводах прибора должно быть ниже значения срабатывания радиоэлемента. Иначе проверить стабилитрон мультиметром не получится: он будет открыт одинаково в каждом направлении.

Этот тест говорит лишь о том, что элемент не «пробит». Замерить параметры таким способом не получится.

А как проверить стабилитрон тестером на соответствие напряжения срабатывания?

Для начала надо узнать, на сколько вольт стабилитрон. Как это сделать? По маркировке. В зависимости от типа корпуса, это может быть символьное или цветовое обозначение. Таблицы маркировок есть в справочниках, подробно останавливаться на этом вопросе не будем.

Собираем несложную схему с балластным резистором (для ограничения тока, поскольку нагрузка не предусмотрена).

Важно: Обратите внимание на подключение детали: в отличие от диода плюс соединен с минусом, минус с плюсом.

Подопытный стабилитрон рассчитан на значение стабилизации 5,1 вольта. Как проверить исправность? Подать на вход различные значения напряжения с помощью регулируемого блока питания.

Сначала выставляем значение, ниже уровня срабатывания: 4 вольта. На выходе получаем тоже самое. Это означает, что p-n переход не пробит.

Постепенно повышаем входное значение. Если деталь исправна, после значения 5,1 вольта напряжение на выходе будет стабильным, и не должно превышать напряжения срабатывания.

Что мы и видим на иллюстрации:

То есть наш стабилитрон исправен.

Важно помнить (как при тестировании, так и при проверках), что сила тока не может быть бесконечно большой. Любой стабилитрон рассчитан на определенные режимы работы: как правило, на небольшие токи.

Можно ли проверить стабилитрон не выпаивая?

Да, это возможно, но тестируются не все режимы радиоэлемента. Стабилитрон всегда имеет электрические связи с остальными элементами схемы, поэтому проверить его на пробой в составе изделия невозможно.

Вы сможете проверить стабилитрон мультиметром на плате только на стабильность напряжения питания. Для этого необходимо включить электроприбор, и соединить щупы тестера с ножками детали.

Естественно, вы должны знать исходное значение по маркировке. При этом надо замерить напряжение на входе и после стабилизатора. Если значение на входе выше или равно напряжению после стабилитрона, значит он исправен.

Как проверить двусторонний стабилитрон?

Эта деталь представляет собой два стабилитрона в одном корпусе, соединенная навстречу друг другу.

Такой элемент может работать с импульсным напряжением, и с переменной полярностью. Проверка на пробой бессмысленна, поэтому можно лишь тестировать соответствие напряжения стабилизации.

Для этого собирается схема, аналогичная описаниям выше. Для проверки необходимо также подавать на вход завышенное напряжение, только различной полярности.

В обоих случаях на выходе должно быть стабилизированное значение напряжения, в соответствии с маркировкой. Разумеется, проверка возможна и на монтажной плате, если обеспечить входное напряжение разной полярности.

Проверяем стабилитрон мультиметром — видео

About sposport

View all posts by sposport

Загрузка…

Как проверить стабилитрон мультиметром и сделать для него тестер своими руками

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя.

Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение.

Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение.

При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого.

Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет.

Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Тестер для стабилитронов

Проверка стабилитронов мультиметром не дает 100% гарантии их исправности. Это связано с тем, что он не может проверить его основные параметры. Поэтому многие радиолюбители изготавливают тестер стабилитронов своими руками.

Схема самого простого варианта состоит из набора аккумуляторов, постоянного резистора номиналом 200 Ом, переменного сопротивления на 2 кОм и мультиметра.

Аккумуляторы соединяются последовательно для получения потенциала необходимого для измерения параметров стабилитронов. Напряжения стабилизации в основном лежат в пределах 1,8-16 В.

Поэтому собирается батарея на 18 В. Затем к ее выводам параллельно подсоединяем последовательную цепочку из переменного резистора на 2 кОм мощностью 5 Вт и постоянного на 200 Ом.

Второй будет играть роль ограничивающего сопротивления. Выводы переменного резистора присоединяются к трехконтактной клеммной колодке.

К первому контакту присоединяется вывод, подключенный к плюсу батареи, ко второму другой крайний вывод, а к третьему средний подвижный контакт резистора.

В других вариантах тестеров можно применять импульсные источники питания с регулируемым напряжением выходного каскада, но суть не меняется, измерителем остается мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления.

Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора.

Проверка происходит в режиме измерения постоянного напряжения. Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально.

Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном.

При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Стабилитрон — Last Minute Engineers

Обычные кремниевые диоды блокируют проходящий через них ток, когда они смещены в обратном направлении, и выходят из строя, когда обратное напряжение слишком велико. Поэтому эти диоды никогда намеренно не эксплуатируются в области пробоя.

Стабилитроны разные. Они специально разработаны для безотказной работы в зоне пробоя. По этой причине стабилитроны иногда называют пробойными диодами .

Стабилитроны являются основой регуляторов напряжения и схем, которые поддерживают почти постоянное напряжение нагрузки, несмотря на большие изменения напряжения сети и сопротивления нагрузки.

На следующих рисунках показаны схематические обозначения стабилитрона. В любом символе линии напоминают « Z », что означает « Zener ».

Рабочий стабилитрон

Стабилитрон может работать в любом из трех регионов: прямой, утечка и пробой. Давайте разберемся в этом через график ВАХ стабилитрона.

Область прямого смещения

При прямом смещении стабилитроны ведут себя так же, как обычные кремниевые диоды, и начинают проводить при напряжении около 0,7 В

Область утечки

Область утечки существует между нулевым током и пробоем.

В области утечки через диод протекает небольшой обратный ток. Этот обратный ток вызван термически образованными неосновными носителями.

Область пробоя

Если вы продолжите увеличивать обратное напряжение, вы в конечном итоге достигнете так называемого напряжения стабилитрона В Z диода.

В этот момент в слое обеднения полупроводников происходит процесс, называемый лавинным пробоем, и диод начинает сильно проводить в обратном направлении.

Из графика видно, что пробой имеет очень резкий изгиб, за которым следует почти вертикальное увеличение тока. Обратите внимание, что напряжение на стабилитроне практически постоянно и приблизительно равно V Z на большей части области пробоя.

На графике также показан максимальный обратный ток I Z (Max) .Пока обратный ток меньше I Z (макс.) , диод работает в безопасном диапазоне. Если ток превышает I Z (макс.) , диод выйдет из строя.

Стабилитрон напряжения

Стабилитрон поддерживает постоянное выходное напряжение в области пробоя, даже если ток через него меняется. Это важная особенность стабилитрона, который можно использовать в стабилизаторах напряжения. Поэтому стабилитрон иногда называют диодом-стабилизатором напряжения .

Например, выход полуволнового, двухполупериодного или мостового выпрямителей состоит из пульсаций, наложенных на напряжение постоянного тока. Подключив простой стабилитрон к выходу выпрямителя, мы можем получить более стабильное выходное напряжение постоянного тока.

На следующем рисунке показан простой стабилизатор напряжения стабилитрона (также известный как стабилитрон).

Для работы стабилитрона в состоянии пробоя стабилитрон имеет обратное смещение, подключая его катод к положительной клемме входного источника питания.

Последовательный (токоограничивающий) резистор R S включен последовательно с стабилитроном, так что ток, протекающий через диод, меньше его максимального номинального тока. В противном случае стабилитрон перегорит, как и любой прибор, из-за слишком большого рассеивания мощности.

Источник напряжения V S подключен к комбинации. Кроме того, чтобы поддерживать диод в состоянии пробоя, напряжение источника V S должно быть больше, чем напряжение пробоя стабилитрона V Z .

Стабилизированное выходное напряжение V out снимается через стабилитрон.

Работа при пробое

Чтобы проверить, работает ли стабилитрон в области пробоя, нам нужно вычислить, какое напряжение Тевенина на диоде.

Напряжение Thevenin — это напряжение, которое существует, когда стабилитрон отключен от цепи.

Из-за делителя напряжения можно написать:

Когда это напряжение превышает напряжение стабилитрона, происходит пробой.

Последовательный ток

Напряжение на последовательном резисторе равно разнице между напряжением источника и напряжением стабилитрона. Следовательно, согласно закону Ома, ток через последовательный резистор равен:

Последовательный ток остается неизменным независимо от того, есть ли нагрузочный резистор или нет. Это означает, что даже если вы отключите нагрузочный резистор, ток через последовательный резистор будет равен напряжению на резисторе, деленному на сопротивление.

Напряжение нагрузки и ток нагрузки

Поскольку нагрузочный резистор включен параллельно стабилитрону, напряжение нагрузки совпадает с напряжением стабилитрона.

Используя закон Ома, мы можем рассчитать ток нагрузки:

Ток Зенера

Стабилитрон и нагрузочный резистор включены параллельно. Полный ток равен сумме их токов, которая равна току через последовательный резистор.

Это говорит нам о том, что ток стабилитрона равен последовательному току минус ток нагрузки.

Общие напряжения стабилитронов

Стабилитроны производятся со стандартными номинальными напряжениями, указанными в таблице ниже.В таблице указаны стандартные напряжения для деталей 0,3 Вт и 1,3 Вт .

19 6,2 В 1 1 1
2,7 В 3,0 В 3,3 В 3,6 В 3,9 В 4,3 В 4,7 В
5,1 В 5,6 В 7,5В 8,2В 9,1В
10В 11В 12В 13В 15В 16В 18В
15120 1
4.7 В 5,1 В 5,6 В 6,2 В 6,8 В 7,5 В 8,2 В
9,1 В 10 В 11 В 12 В
18V 20V 22V 24V 27V 30V 33V
36V 39V 43V 901 9011 9011 9011 9011 9011 9011 9011 9011 9011 9011 9011 75V 100V 200V

Мощность соответствует мощности, которую диод может рассеивать без повреждений.

Приложения на стабилитронах

До сих пор мы видели, как стабилитроны можно использовать для регулирования постоянного источника постоянного тока. Кроме того, стабилитроны используются в различных приложениях. Вот некоторые из них.

Пререгулятор

Основная идея, лежащая в основе пререгулятора, состоит в том, чтобы обеспечить хорошо регулируемый вход для стабилитрона, чтобы конечный выход был очень хорошо регулируемым.

Ниже приведен пример предварительного регулятора (первый стабилитрон), управляющего стабилитроном (второй стабилитрон).

Форма волны

В большинстве случаев стабилитроны остаются в области пробоя. Но есть исключения, такие как волновые схемы.

В приведенной выше схеме формирования сигнала два стабилитрона включены друг за другом для генерации прямоугольной волны. Эту схему также в шутку называют « Генератор прямоугольных сигналов бедняка ».

В положительном полупериоде верхний диод Z1 проводит, а нижний диод Z2 выходит из строя. Следовательно, вывод обрезается.

В отрицательном полупериоде действие меняется на противоположное. Нижний диод Z2 проводит, а верхний диод Z1 выходит из строя. Таким образом, выходной сигнал представляет собой примерно прямоугольную волну.

Уровень ограничения равен напряжению стабилитрона (пробитый диод) плюс 0,7 В (диод с прямым смещением).

Производство нестандартных выходных напряжений

Комбинируя стабилитроны с обычными кремниевыми диодами, мы можем получить несколько нестандартных выходных напряжений постоянного тока, например:

Управление реле

Как вы знаете, подключение реле 6 В к системе 12 В может вызвать повреждение реле.Вам нужно немного снизить напряжение. На рисунке ниже показан один из способов сделать это.

В этой схеме стабилитрон 5,6 В последовательно соединен с реле, так что на реле появляется только 6,4 В, что находится в пределах допустимого диапазона напряжения реле.

PREV

Полноволновой мостовой выпрямитель

NEXT

Светоизлучающий диод (LED)

диодов — learn.sparkfun.com

Добавлено в избранное Любимый 63

Введение

После того, как вы перейдете от простых пассивных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, пора перейти в удивительный мир полупроводников.Одним из наиболее широко используемых полупроводниковых компонентов является диод.

В этом уроке мы рассмотрим:

  • Что такое диод !?
  • Теория работы диодов
  • Важные свойства диода
  • Диоды разные
  • Как выглядят диоды
  • Типовые применения диодов

Рекомендуемая литература

Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем перейти к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:

Что такое схема?

Каждый электрический проект начинается со схемы.Не знаю, что такое схема? Мы здесь, чтобы помочь.

Что такое электричество?

Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!

Как пользоваться мультиметром

Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.

Хотите изучить различные диоды?

Мы вас прикрыли!

Комплект запчастей для начинающих SparkFun

В наличии КОМПЛЕКТ-13973

Комплект деталей для начинающих SparkFun — это небольшой контейнер с часто используемыми деталями, который дает вам все основные компоненты, которые вы…

12

Идеальные диоды

Ключевая функция диода ideal — управление направлением тока.Ток, проходящий через диод, может идти только в одном направлении, называемом прямым направлением. Ток, пытающийся течь в обратном направлении, заблокирован. Они похожи на односторонний клапан электроники.

Если напряжение на диоде отрицательное, ток не может течь *, и идеальный диод выглядит как разомкнутая цепь. В такой ситуации говорят, что диод от или с обратным смещением .

Пока напряжение на диоде не отрицательное, он «включается» и проводит ток.В идеале * диод должен действовать как короткое замыкание (0 В на нем), если он проводит ток. Когда диод проводит ток, он смещен в прямом направлении (жаргон электроники означает «включено»).

Соотношение тока и напряжения идеального диода. Любое отрицательное напряжение дает нулевой ток — разрыв цепи. Пока напряжение неотрицательно, диод выглядит как короткое замыкание.

Характеристики идеального диода
Рабочий режим Вкл. (Смещение вперед) Выкл. В = 0 В
Диод выглядит как Короткое замыкание Обрыв цепи

Обозначение цепи

Каждый диод имеет две клеммы — соединения на каждом конце компонента — и эти клеммы поляризованы , что означает, что эти две клеммы совершенно разные.Важно не перепутать соединения на диоде. Положительный конец диода называется анодом , а отрицательный конец называется катодом . Ток может течь от конца анода к катоду, но не в другом направлении. Если вы забыли, в каком направлении протекает ток через диод, попробуйте вспомнить мнемонику ACID : «анодный ток в диоде» (также анодный катод — это диод ).

Обозначение цепи стандартного диода представляет собой треугольник, соприкасающийся с линией.Как мы расскажем позже в этом руководстве, существует множество типов диодов, но обычно их обозначение схемы будет выглядеть примерно так:

Вывод, входящий в плоский край треугольника, представляет собой анод. Ток течет в направлении, указанном треугольником / стрелкой, но не может идти в обратном направлении.

Выше приведены несколько простых примеров схем диодов. Слева диод D1 смещен в прямом направлении и пропускает ток через цепь. По сути это похоже на короткое замыкание.Справа диод D2 имеет обратное смещение. Ток не может течь по цепи, и она выглядит как разомкнутая цепь.

* Внимание! Звездочка! Не совсем так … К сожалению, идеального диода не существует. Но не волнуйтесь! Диоды действительно настоящие, у них просто есть несколько характеристик, которые заставляют их работать немного хуже, чем наша идеальная модель …


Реальные характеристики диода

В идеале диоды будут блокировать любой ток, текущий в обратном направлении, или просто действовать как короткое замыкание, если ток идет вперед.К сожалению, реальное поведение диодов не совсем идеальное. Диоды потребляют некоторое количество энергии при проведении прямого тока, и они не будут блокировать весь обратный ток. Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.

Взаимосвязь тока и напряжения

Наиболее важной характеристикой диода является его вольт-амперная зависимость ( i-v ). Это определяет ток, протекающий через компонент, с учетом того, какое напряжение на нем измеряется.Резисторы, например, имеют простую линейную зависимость i-v … Закон Ома. Кривая i-v диода, однако, полностью не -линейна. Выглядит это примерно так:

Вольт-амперная зависимость диода. Чтобы преувеличить несколько важных моментов на графике, масштабы как в положительной, так и в отрицательной половине не равны.

В зависимости от приложенного к нему напряжения диод будет работать в одном из трех регионов:

  1. Прямое смещение : Когда напряжение на диоде положительное, диод включен, и ток может протекать через него.Напряжение должно быть больше прямого напряжения (V F ), чтобы ток был значительным.
  2. Обратное смещение : Это режим «выключения» диода, при котором напряжение меньше, чем V F , но больше, чем -V BR . В этом режиме ток (в основном) заблокирован, а диод выключен. Очень небольшой ток (порядка нА), называемый током обратного насыщения, может протекать через диод в обратном направлении.
  3. Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.

прямое напряжение

Чтобы «включиться» и провести ток в прямом направлении, диод требует приложения к нему определенного количества положительного напряжения. Типичное напряжение, необходимое для включения диода, называется прямым напряжением F ).Его также можно назвать либо , , либо напряжением включения , .

Как мы знаем из кривой i-v , ток через диод и напряжение на диоде взаимозависимы. Больше тока означает большее напряжение, меньшее напряжение означает меньший ток. Однако, когда напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения. Если диод полностью проводящий, обычно можно предположить, что напряжение на нем соответствует номинальному прямому напряжению.

Мультиметр с настройкой диода можно использовать для измерения (минимального) прямого падения напряжения на диоде.

V F конкретного диода зависит от того, из какого полупроводникового материала он сделан. Обычно кремниевый диод имеет V F около 0,6–1 В . Диод на основе германия может быть ниже, около 0,3 В. Диод типа также имеет некоторое значение для определения прямого падения напряжения; светодиоды могут иметь намного большее значение V F , в то время как диоды Шоттки разработаны специально для того, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.

Напряжение пробоя

Если к диоду приложить достаточно большое отрицательное напряжение, он поддастся и позволит току течь в обратном направлении. Это большое отрицательное напряжение называется пробивным напряжением . Некоторые диоды на самом деле предназначены для работы в области пробоя, но для большинства нормальных диодов не очень полезно подвергаться воздействию больших отрицательных напряжений.

Для нормальных диодов это напряжение пробоя составляет от -50 В до -100 В или даже более отрицательное.

Таблицы данных диодов

Все вышеперечисленные характеристики должны быть подробно описаны в даташите на каждый диод. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):

Таблица данных может даже представить вам хорошо знакомый график вольт-амперной характеристики, чтобы более подробно описать поведение диода. Этот график из таблицы данных диода увеличивает изогнутую переднюю часть кривой i-v .Обратите внимание, как больший ток требует большего напряжения:

Эта диаграмма указывает на еще одну важную характеристику диода — максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенное количество энергии, прежде чем они взорвутся. На всех диодах должны быть указаны максимальный ток, обратное напряжение и рассеиваемая мощность. Если диод подвергается большему напряжению или току, чем он может выдержать, ожидайте, что он нагреется (или, что еще хуже, расплавится, задымится и т. Д.).

Некоторые диоды хорошо подходят для больших токов — 1 А или более — другие, например, малосигнальный диод 1N4148, показанный выше, могут подходить только для тока около 200 мА.


Этот 1N4148 — лишь крошечная выборка всех существующих типов диодов. Далее мы рассмотрим, какое удивительное разнообразие существует и для какой цели служит каждый тип.

Типы диодов

Нормальные диоды

Сигнальные диоды

Стандартные сигнальные диоды являются одними из самых простых, средних и простых членов семейства диодов. Обычно они имеют средне-высокое прямое падение напряжения и низкий максимальный ток.Типичный пример сигнального диода — 1N4148.

Очень общего назначения, он имеет типичное прямое падение напряжения 0,72 В и максимальный номинальный прямой ток 300 мА.

Слабосигнальный диод, 1N4148. Обратите внимание на черный кружок вокруг диода, который отмечает, какой из выводов является катодом.

Силовые диоды

Выпрямитель или силовой диод — это стандартный диод с гораздо более высоким максимальным током. Этот более высокий номинальный ток обычно достигается за счет большего прямого напряжения.1N4001 — это пример силового диода.

1N4001 имеет номинальный ток 1 А и прямое напряжение 1,1 В.

Диод 1N4001 PTH. На этот раз серая полоса указывает, какой вывод является катодом.

И, конечно же, большинство типов диодов также выпускаются для поверхностного монтажа. Вы заметите, что у каждого диода есть способ (независимо от того, насколько он крошечный или плохо различимый), чтобы указать, какой из двух контактов является катодом.

Светодиоды (светодиоды!)

Самым ярким членом семейства диодов должен быть светодиод (LED).Эти диоды буквально загораются при подаче положительного напряжения.

Горстка сквозных светодиодов. Слева направо: желтый 3 мм, синий 5 мм, зеленый 10 мм, сверхяркий красный 5 мм, RGB 5 мм и синий 7-сегментный светодиод.

Как и обычные диоды, светодиоды пропускают ток только в одном направлении. У них также есть номинальное прямое напряжение, то есть напряжение, необходимое для их включения. Рейтинг светодиода V F обычно выше, чем у обычного диода (1.2 ~ 3 В), и это зависит от цвета, излучаемого светодиодом. Например, номинальное прямое напряжение сверхяркого синего светодиода составляет около 3,3 В, а для сверхяркого красного светодиода такого же размера — всего 2,2 В.

Очевидно, вы чаще всего найдете светодиоды в осветительных приборах. Они веселые и веселые! Но более того, их высокая эффективность привела к широкому использованию в уличных фонарях, дисплеях, подсветке и многом другом. Другие светодиоды излучают свет, невидимый человеческому глазу, например инфракрасные светодиоды, которые являются основой большинства пультов дистанционного управления.Другое распространенное использование светодиодов — оптическая изоляция опасной высоковольтной системы от низковольтной цепи. Оптоизоляторы соединяют инфракрасный светодиод с фотодатчиком, который пропускает ток при обнаружении света от светодиода. Ниже приведен пример схемы оптоизолятора. Обратите внимание на то, как схематический символ диода отличается от обычного диода. Светодиодные символы добавляют пару стрелок, выходящих из символа.

Диоды Шоттки

Другой очень распространенный диод — диод Шоттки.

Диод Шоттки

В наличии COM-10926

Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением. Этот диод Шоттки 1 А 40 В составляет…

. 1

Полупроводниковый состав диода Шоттки немного отличается от обычного диода, и это приводит к гораздо меньшему на прямому падению напряжения , которое обычно находится между 0.15 В и 0,45 В. Однако они все равно будут иметь очень большое напряжение пробоя.

Диоды Шоттки

особенно полезны для ограничения потерь, когда каждый последний бит напряжения должен быть сохранен. Они достаточно уникальны, чтобы получить собственное обозначение схемы с парой изгибов на конце катодной линии.

Стабилитроны

Стабилитроны

— странный изгой из семейства диодов. Обычно они преднамеренно используются для проведения обратного тока .

Стабилитрон — 5.1 В 1 Вт

На пенсии COM-10301

Стабилитроны полезны для создания опорного напряжения или в качестве стабилизатора напряжения для слаботочных приложений. Эти диоды…

На пенсии Стабилитрон

разработан для обеспечения очень точного напряжения пробоя, называемого стабилитроном или напряжением стабилитрона . Когда через стабилитрон протекает достаточный ток в обратном направлении, падение напряжения на нем будет стабильным на уровне напряжения пробоя.

Благодаря своей пробивной способности стабилитроны часто используются для создания известного опорного напряжения, точно равного их напряжению стабилитрона. Их можно использовать в качестве регуляторов напряжения для небольших нагрузок, но на самом деле они не предназначены для регулирования напряжения в цепях, которые потребляют значительный ток.

Стабилитроны

достаточно особенные, чтобы иметь собственное обозначение схемы с волнистыми концами на катодной линии. Этот символ может даже обозначать, что такое напряжение стабилитрона диода.Вот стабилитрон 3,3 В, создающий надежное опорное напряжение 3,3 В:

Фотодиоды

Фотодиоды — это специально сконструированные диоды, которые улавливают энергию фотонов света (см. Физика, квант) для генерации электрического тока. Вид работы как анти-светодиод.

Фотодиод BPW34 (не четверть, да мелочь). Поставьте его на солнце, и он может генерировать около нескольких мкВт энергии !.

Солнечные элементы — главный благодетель фотодиодной технологии.Но эти диоды также могут использоваться для обнаружения света или даже для оптической связи.


Применение диодов

Для такого простого компонента диоды имеют множество применений. Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.

Выпрямители

Выпрямитель — это схема, преобразующая переменный ток (AC) в постоянный (DC).Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.

Ток в цепях переменного тока буквально чередуется — быстро переключается между положительным и отрицательным направлениями — но ток в сигнале постоянного тока течет только в одном направлении. Итак, чтобы преобразовать переменный ток в постоянный, вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!

Однополупериодный выпрямитель может быть выполнен только из одного диода.Если сигнал переменного тока, такой как, например, синусоида, передается через диод, любая отрицательная составляющая сигнала отсекается.

Формы сигналов входного (красный / левый) и выходного (синий / правый) напряжения после прохождения через схему полуволнового выпрямителя (в центре).

Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных выступов в сигнале переменного тока в положительные.

Схема мостового выпрямителя (в центре) и форма выходной волны, которую она создает (синий / правый).

Эти цепи являются критическим компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока сетевой розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. Д. Если вы разорвали стенную бородавку, вы, скорее всего, увидели бы там несколько диодов, которые ее исправили.

Можете ли вы заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?

Защита от обратного тока

Когда-нибудь вставлял батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива.Диод, расположенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.

Это применение диода полезно, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.

Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения.Это делает диодов Шоттки отличным выбором для диодов обратной защиты.

Логические ворота

Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.

Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1.Когда оба входа имеют логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.

Логический элемент И построен аналогичным образом. Аноды обоих диодов соединены вместе, где находится выход схемы. Оба входа должны иметь логическую единицу, заставляя ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на каком-либо из входов низкий уровень, ток от источника питания 5 В проходит через диод.

Для обоих логических вентилей можно добавить больше входов, добавив только один диод.

Обратные диоды и подавление скачков напряжения

Диоды

очень часто используются для ограничения потенциального повреждения из-за неожиданных больших скачков напряжения. Диоды с подавлением переходных напряжений (TVS) — это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большой номинальной мощностью (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.

Обратные диоды выполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, например двигателем.Когда ток через катушку индуктивности внезапно изменяется, создается всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.

Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.


Закупка диодов

Теперь, когда ваш текущий течет в правильном направлении, пришло время найти хорошее применение вашим новым знаниям.Независимо от того, ищете ли вы отправную точку или просто пополняете запасы, у нас есть набор изобретателя, а также отдельные диоды на выбор.

Наши рекомендации:

Диод Шоттки

В наличии COM-10926

Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением.Этот диод Шоттки 1 А 40 В составляет…

. 1

Комплект изобретателя SparkFun — версия 3.2

На пенсии КОМПЛЕКТ-12060

** Как вы, возможно, видели из [нашего сообщения в блоге] (https://www.sparkfun.com/news/2241), мы недавно перенесли нашу литьевую форму для SIK…

76 На пенсии

Ресурсы и дальнейшее развитие

Теперь, когда вы познакомились с диодами, возможно, вы захотите продолжить изучение других полупроводников:

Или откройте для себя другие распространенные электронные компоненты:

3: Обратное смещение — Engineering LibreTexts

Когда на диод с p-n переходом подается внешнее напряжение, мы говорим, что на диоде присутствует смещение .Когда напряжение на стороне n выше, чем напряжение на стороне p , мы говорим, что диод находится под обратным смещением . Одно из применений диодов с обратным смещением — стабилитрон .


p n переходной диод при обратном смещении. Сторона p синяя; сторона n красная.

Обратное смещение

При обратном смещении сторона n удерживается под более высоким напряжением, чем сторона p .Если приложенное напряжение составляет В , то полная разность потенциалов на диоде становится В обратное смещение = В 0 + В (где В 0 — потенциал барьера ).

Следовательно, на рисунке выше свободные электроны на стороне n (отрицательный заряд) будут испытывать силу дрейфа вправо (в сторону положительного катода). Как и прежде, они также испытывают диффузную силу слева.Электроны, которые находятся рядом с областью пространственного заряда, будут испытывать наибольшую диффузионную силу, так как они находятся ближе всего к месту диффузии; эти электроны диффундируют в область пространственного заряда. Электроны, находящиеся дальше от области пространственного заряда, будут испытывать большую силу дрейфа, чем диффузионную силу, и поэтому будут дрейфовать вправо. В то же время отверстия на стороне p будут испытывать силу сноса в направлении влево и силу рассеивания в направлении вправо .Тогда произойдет обратное с электронами на стороне n: дырки, расположенные ближе всего к центру, будут диффундировать в область пространственного заряда, где они будут рекомбинировать с диффундирующими электронами. Дырки, наиболее удаленные от области объемного заряда, будут дрейфовать к аноду. Усиленная рекомбинация из-за диффузии и миграция носителей из области пространственного заряда из-за дрейфа будут объединяться, чтобы произвести общий эффект более широкой области пространственного заряда.

Теперь рассмотрим неосновных носителей в соответствующем материале.Для свободного электрона в материале p-типа сила дрейфа направлена ​​вправо. Диффузионная сила ничтожна, потому что плотность неосновных носителей мала (по определению!). Когда этот электрон движется вправо, он, вероятно, рекомбинирует с дыркой. Однако некоторые электроны пересекают сторону p без рекомбинации и попадают в область пространственного заряда, где их толкает электрическое поле. [Для отверстий на стороне n произойдет обратное] Результатом является небольшой ток, направленный влево, называемый током насыщения .Для диодов с переходом p n , изготовленных из кремния, ток насыщения составляет порядка наноампера, 10 -9 A.

Пока диод смещен в обратном направлении, ток насыщения обычно не зависит от звездная величина V ; однако, если V станет слишком большим, диод выйдет из строя и пропустит практически любое количество тока. Эта характеристика называется пробой , и она обычно разрушает переходные диоды p n .Переходные диоды p n , которые предназначены для использования при пробое, называются стабилитронами .

Стабилитроны

Стабилитроны — это просто диоды с обратным смещением, которые могут выдерживать работу в условиях пробоя. По мере увеличения напряжения обратного смещения стабилитроны продолжают проводить постоянный ток (ток насыщения), пока не будет достигнуто определенное напряжение. При этом напряжении, известном как напряжение пробоя , В, Z , диод выйдет из строя и пропустит почти любое количество тока.Поэтому при пробое величина тока определяется другими элементами схемы (действующим сопротивлением, источниками тока и т. Д.). Напряжения пробоя могут находиться в диапазоне от 1 до 100 В.

Обозначение цепи для стабилитрона

Пробой в стабилитронах вызывается двумя разными, но похожими факторами: лавинным эффектом и эффектом стабилитрона. Лавинный эффект возникает, когда разность потенциалов на переходе p n становится настолько большой, что свободные электроны, пересекающие переход, получают достаточно энергии, чтобы выбить другие ковалентно связанные электроны из своих связей, столкнувшись с ними.Это столкновение создает новую пару электрон-дырка. Затем процесс повторяется, вызывая цепную реакцию; почти мгновенно может образоваться огромная «лавина» носителей заряда. Этот поток новых носителей заряда представляет собой очень внезапное увеличение тока через диод.

Эффект Зенера возникает, когда электрическое поле, создаваемое областью пространственного заряда, становится настолько сильным, что может оторвать ковалентно связанные электроны от их связей. Это также создает новую пару электрон-дырка, которая будет быстро разделена сильным электрическим полем.Когда электрическое поле становится достаточно сильным, чтобы разделять много электронов и дырок одновременно, в результате возникает большой скачок тока.

Стабилитроны находят полезное применение в электронике. Поскольку они пропускают большой ток, они могут рассеивать большое количество энергии (P = IV ). Стабилитроны также используются в регуляторах напряжения, устройствах, которые принимают переменное входное напряжение и выдают постоянное напряжение. Простейший регулятор напряжения можно создать, включив стабилитрон последовательно с резистором.

Clipper & Clamper — положительный, отрицательный, смещенный, двойные диодные ограничители

Цепь, в которой напряжение отсечки выше или ниже заданного уровня, называется ограничителем. Ограничитель, который удаляет часть положительного полупериода входного сигнала, называется положительным ограничителем. Схема клипсатора, которая удаляет отрицательный полупериод, называется отрицательным клиппером.

Рисунок (а) Положительный клиппер (b) Отрицательный клиппер

На рисунке (а) показана схема положительного клиппера.Он состоит из диода D и резистора R, выводы которых подключены к резистору. Во время положительного полупериода входного напряжения клемма A является положительной по отношению к B. Это обратное смещение смещает диод, и он действует как размыкающий переключатель. Следовательно, все приложенное напряжение падает на диоде, а не на резисторе. В результате выходное напряжение отсутствует в течение положительного полупериода входного напряжения.

Во время отрицательного полупериода входного напряжения клемма B является положительной по отношению к A.Поэтому он смещает диод вперед и действует как замкнутый переключатель. Таким образом, на диоде нет падения напряжения.

Во время отрицательного полупериода входного напряжения. Все входное напряжение падает на резисторе, как показано на форме выходного сигнала.

На рисунке (b) показана форма входного напряжения. Во время положительного полупериода напряжения клемма A является положительной по отношению к клемме B. Следовательно, диод смещен в прямом направлении; в результате все входное напряжение появляется на резисторе.

Во время отрицательного полупериода входного напряжения клемма B является положительной по отношению к клемме A. Следовательно, диод смещен в обратном направлении, и, следовательно, нет падения напряжения на резисторе в течение отрицательного полупериода.

Цепь смещенного клипсатора

Если напряжение смещения подается последовательно с диодом, то схема называется ограничителем смещения или схемой ограничителя. Это смещение определяет точку, в которой диод начинает проводить, и продолжительность проводимости. При смещении ограничение может быть выполнено до любого процента входного сигнала в диапазоне от 1% до 99%.

Машинка для стрижки одинарного конца

Рисунок (c): Клипер с односторонним / шунтирующим положительным зажимом

На рисунке (c) показан клипер с односторонним положительным зажимом. Обратите внимание, что положительный полюс батареи подключен к катоду диода, поэтому диод проводит, когда входное напряжение достигает уровня 4,7 В (смещение В, + 0,7). И когда диод проводит, в R L не будет тока, и на R L не будет падать напряжение. Так что все входное напряжение выше этого уровня будет отключаться на выходе.

Если напряжение смещения изменяется в большую или меньшую сторону, уровень ограничения изменяется соответственно.

Двойной диодный ограничитель

Схема, которая может использоваться для ограничения пиков обоих полупериодов входного сигнала переменного тока, называется двойным ограничителем конца.

Рисунок (d): Двойной диодный ограничитель

Принципиальная схема этой схемы показана на рисунке (d)

.

Обратите внимание, что эта схема содержит шунтирующий положительный ограничитель с положительным смещением и шунтирующий отрицательный ограничитель с отрицательным смещением.

Когда напряжение смещения достигает + 8,7 В, диод D 1 проводит, и выше этого уровня напряжения ток через R L не протекает. Следовательно, ограничение формы волны до 8,7 В. Диод D 2 не проводит до тех пор, пока напряжение не достигнет -6,7 В, а отрицательные сильфоны -6,7 В не будут отсечены. Результирующая форма выходного сигнала отображается на выходе схемы.

Зажим

Схема, которая фиксирует положительный или отрицательный пик сигнала на желаемом значении D.Уровень C известен как зажим. Фиксация добавляет к сигналу компоненты постоянного тока и не меняет форму или амплитуду входного сигнала.

Зажимы диодные

Зажим положительный

Схема ограничения диода

просто состоит из диода D и конденсатора C, как показано на рисунке ниже.

Положительный фиксатор

Во время отрицательного полупериода входного напряжения V в диод смещен в прямом направлении, и ток течет по цепи. В результате этого конденсатор C заряжается до напряжения, равного отрицательному пиковому значению i.э., -В м . Когда конденсатор полностью заряжен до -V m , он не может разрядиться, потому что диод не может проводить в обратном направлении. Это означает, что этот конденсатор действует как батарея с ЭДС, равной -V m . Полярность этого напряжения такова, что оно добавляется к входному сигналу. Следовательно, выходное напряжение равно сумме входного сигнала переменного тока и напряжения конденсатора V м , то есть V в + V м .

Отрицательный зажим

Если поменять полярность диода и конденсатора, то в цепи станет отрицательный фиксатор.

Стабилитрон

— PAL3_Electronics — ~ Confluence ~ Institute ~ for ~ Creative ~ Technologies

Стабилитрон действует как обычный диод в том смысле, что пропускает ток только в одном направлении, но делает исключение. Если напряжение в направлении обратного смещения выше определенного значения, называемого напряжением пробоя, то стабилитрон пропускает ток. Стабилитроны часто используются для регулирования напряжения, когда нестабильный или изменяющийся во времени сигнал превращается в почти постоянное напряжение.Стабилитроны хорошо подходят для этой цели, когда они помещены в обратное смещение, поскольку они пропускают ток только тогда, когда напряжение выше напряжения пробоя.

Как и обычный диод с P-N переходом, стабилитрон имеет две клеммы, называемые анодом и катодом. Вот схематический символ:

Чтобы помочь запомнить, какой терминал является каким, обратите внимание, что буква «А» анода выглядит как треугольник, а катодная полоса выглядит как вертикальная полоса (также называемая полоской «k» или бар «т»).Этот символ отличается от обычного диода тем, что линия на конце стрелки слегка изогнута с каждой стороны.

Стабилитрон имеет три основных режима: прямое смещение, обратное смещение и пробой / лавина при обратном смещении.

Прямое смещение: Когда напряжение на аноде выше порогового «напряжения колена» на катоде (~ 0,7 В для кремниевого диода), тогда диод смещен в прямом направлении и проводит ток. Когда диод смещен в прямом направлении, ток течет в направлении треугольника: от анода к катоду.Хотя диоды можно рассматривать как короткое замыкание при прямом смещении и обрыв цепи при обратном смещении, это идеальный вариант. На самом деле, когда диод смещен в прямом направлении, он проводит столько тока, сколько требуется внешней схеме, и регулирует свое внутреннее сопротивление так, чтобы падение напряжения на нем всегда составляло 0,7 В, напряжение колена.

Обратное смещение (до пробоя): Когда диод смещен в обратном направлении и ниже напряжения пробоя, он имеет очень высокое сопротивление, поэтому он почти не проводит ток.

Пробой / Лавина: После напряжения пробоя стабилитрон легко проводит ток. Когда напряжение на аноде более отрицательное, чем напряжение на катоде, и разница больше, чем напряжение пробоя, стабилитрон проводит столько тока, сколько требует внешняя схема, и регулирует свое внутреннее сопротивление так, чтобы на нем падало напряжение. всегда напряжение пробоя. Этот режим работы уникален для стабилитронов и называется лавинным или пробивным.В отличие от обычного диода, стабилитроны предназначены для работы за пределами напряжения пробоя и не повреждаются, пока не будут достигнуты гораздо более высокие напряжения. Стабилитроны рассчитаны на определенные значения напряжения пробоя, часто в диапазоне 5,6 В, но часто могут быть намного выше, когда стабилитроны используются как часть высоковольтного стабилизатора.

Основными параметрами диода являются его пороговое напряжение (также известное как изгибное напряжение ) и напряжение пробоя .Напряжение изгиба для кремниевых диодов составляет около 0,7 В, что связано со свойствами кремния при легировании с образованием P-N переходов. Почти все диоды сделаны из кремния, за исключением случаев, когда требуются другие специфические характеристики (например, германиевые диоды имеют более низкое пороговое напряжение около 0,3 вольт).

Напряжение пробоя стабилитрона — второй важный параметр. В отличие от обычных диодов, этот параметр точно контролируется и важен для практического функционирования диода.

Эти параметры можно понять, рассматривая кривую зависимости напряжения от тока, показанную ниже. При пробое ток внезапно течет после того, как почти нет тока. Точно так же при напряжении колена ток начинает течь легко, с небольшим сопротивлением.

Стабилитроны сконструированы так же, как и обычные диоды, но с некоторыми ключевыми отличиями. Как и обычный диод, стабилитрон сделан из материала P и N с переходом между ними. Материал P соединен с анодом, а материал N соединен с катодом.Они образуют «область истощения», которая работает как односторонний клапан: ток довольно легко течет в одном направлении, но действует как барьер для тока при обратном смещении. Однако стабилитроны могут проводить обратное смещение, используя два механизма: эффект Зенера и лавинный пробой.

Прямое смещение: Когда положительное напряжение подключено к материалу P, а отрицательное напряжение подключено к материалу N, напряжения толкают основные носители материала (отверстия для P; электроны для N) к переходу.Этот толчок сжимает область истощения, пока она не исчезнет, ​​и тогда может течь ток. Когда толчок достаточно сильный, а именно превышает пороговое значение напряжения колена, диод смещается в прямом направлении и течет ток.

Обратное смещение (ниже пробоя): Когда стабилитрон имеет отрицательное напряжение, приложенное к материалу P, и положительное напряжение, приложенное к материалу N, напряжения оттягивают большинство носителей от перехода. Если напряжения слабые, то основные носители не будут двигаться далеко, потому что они притягиваются друг к другу и хотят оставаться рядом с переходом.При этом область истощения расширяется вокруг стыка, но не ломается.

Пробой (Лавина): Когда напряжения достаточно велики, а именно больше, чем напряжение пробоя, они преодолевают взаимное притяжение, которое тянет их к переходу, и вырываются. Лавинный пробой происходит при наличии достаточного напряжения, чтобы свободные электроны обладали достаточной энергией для того, чтобы их столкновения разрушали электронно-дырочные пары. Эти столкновения высвобождают больше электронов, вызывая больше столкновений и формируя электронную «лавину», которая позволяет току течь.Эти столкновения разрушают область истощения в P-N-переходе, позволяя току течь в обратном направлении. Лавинный пробой также происходит в обычных диодах, но обычно не контролируется и приводит к повреждению диода. Для сравнения, стабилитроны построены так, чтобы выдерживать ток, протекающий при обратном смещении, и лавина контролируется: ток легко течет с повышенным напряжением, но не закорачивает полностью диод.

Пробой (эффект стабилитрона): Эффект стабилитрона обычно возникает до 5.6 В и происходит через специальный механизм, известный как квантовое туннелирование, когда электроны «прыгают» с одной стороны перехода на другую. Это особый эффект, который возникает из-за повышенного электрического поля, вызванного оттягиванием основных носителей заряда от перехода.

Идентификация и использование стабилитронов

Введение

Стабилитрон — это кремниевый диод, оптимизированный для работы в так называемой области пробоя.Это означает, что они могут вести себя, когда у них обратное смещение. Это не похоже на обычные диоды, которые самоуничтожаются. Напряжение пробоя стабилитрона может составлять от 2 до 200 вольт, что делает его полезным во множестве приложений.

Одно из популярных применений — стабилизатор напряжения. Это связано со способностью стабилитрона поддерживать постоянное выходное напряжение при изменении тока в цепи. Это делает стабилитроны идеальными в качестве входов для других схем или в качестве источников опорного напряжения для операционных усилителей.

Тестирование

Стабилитроны проверяются так же, как и обычные диоды. Напомним, что диоды ведут себя как переключатель, который открыт в одном направлении, но закрыт в другом. Перед тестированием убедитесь, что мультиметр поставлен на диодную настройку.

Измерьте прямое смещенное напряжение диода, поместив положительный или красный провод мультиметра на анодную часть диода. Это немаркированная сторона стабилитрона. Отрицательный или черный вывод мультиметра должен находиться на катоде или маркированной стороне диода.Кремниевый диод с прямым смещением должен показывать от 0,5 до 0,7 вольт, так что это значение, которое вы должны видеть для стабилитрона.

Для проверки напряжения обратного смещения переключите провода мультиметра. Мультиметр должен показывать перегрузку или отсутствие падения напряжения, указывая на отсутствие тока или бесконечное сопротивление.

Идентификация

Стабилитроны могут быть неотличимы от обычных диодов. Стабилитроны могут иметь темный пластиковый корпус с темной полосой, такой же окраски, как и у других диодов.Многие другие стабилитроны окрашены в медный цвет и заключены в стеклянный корпус с белой, черной или синей полосой. Третьи могут иметь металлические кожухи.

Если диод не закреплен и упаковки у вас нет, найдите номер на корпусе. Например, это может быть 1N4734A или 1N751. Этой информации достаточно, чтобы выполнить поиск с помощью любимой поисковой системы. Другой способ — перейти непосредственно на веб-сайт производителя или дистрибьютора, например Fairchild Semiconductor или Newark, и найти там компонент.

Иногда диод не болтается, а припаивается к плате. Он может быть спаян таким образом, что вы не сможете увидеть номер. В подобных случаях посмотрите, отображается ли на плате символ стабилитрона. Этот символ такой же, как и у обычного диода, за исключением того, что полоса, представляющая катод, имеет дополнительные линии, указывающие вверх и вниз.

Ссылки

Мальвино, Альфред. Электронные принципы. McGraw-Hill

Horowitz, Paul; Хилл, Уинфилд.Искусство электроники. Издательство Кембриджского университета

Ресурсы

Fairchild Semiconductor

Newark

National Semiconductor

Как проверить стабилитрон

Стабилитрон — это диод, предназначенный для работы в области пробоя. Эти условия разрушают нормальные диоды, но стабилитрон проводит небольшой ток. Он поддерживает постоянное напряжение на устройстве, поэтому обычно используется в качестве простого регулятора напряжения во многих схемах.Чтобы проверить один, используйте мультиметр, чтобы проверить его напряжение как в цепи, так и вне ее.

Стабилитрон 1N4734A имеет номинальную мощность 5,6 В и 1 Вт. Он подает на цепь стабильное напряжение 5,6 В. Максимальный ток составляет примерно 1 Вт / 5,6 В = 179 мА. Чтобы предотвратить чрезмерный ток в тестовой цепи, используйте резистор на 200 Ом последовательно с диодом.

    Установка мультиметра на диоде. Обычно это обозначается маленьким символом диода на корпусе.

    Измерьте прямое падение напряжения на стабилитроне.Сделайте это, подключив положительный или красный провод мультиметра к анодной стороне диода, на которой нет маркировки. Поместите отрицательный или черный провод на катодную сторону диода, отмеченную полосой. Стабилитрон сделан из кремния, поэтому неповрежденное устройство показывает от 0,5 до 0,7 В при прямом смещении.

    Измерьте напряжение обратного смещения на стабилитроне, переключив щупы мультиметра. Поместите положительный вывод на сторону с маркировкой или со стороны катода, а отрицательный провод на сторону без маркировки или со стороны анода.Вы должны получить показания, указывающие на бесконечное сопротивление или отсутствие тока.

    Присоедините положительный полюс 9-вольтовой батареи к одной стороне резистора, а другой конец резистора подсоедините к катодной стороне стабилитрона, чтобы он имел обратное смещение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *